基于MATLAB的电动汽车差速控制

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于MATLAB的电动汽车差速控制

线

摘要

电动汽车是汽车工业发展的一个重要分支,其核心技术包括车辆工程,电机及其驱动技术,电池技术,控制技术。随着能源危机迫近,电动汽车独特的发展前景,吸引了国内外大型研究机构的推动,已成为相关领域研究的一个热点,并且取得了各种成果。

双轮驱动电动汽车是一种新的电动汽车(Electric vehicle,简称EV)的发展方向,随着电动汽车的研发和产业化过程,电动汽车以其理想的控制性能和广阔的应用前景,在学术界和工程界引起了广泛的关注。本文针对两轮驱动电动车控制系统进行了相关的研究、分析、设计和实验。

首先,电动汽车的国内外发展的背景进行了详细的分析,介绍了驱动系统的分类和比较。

其次,从传统的电子差速控制算法,该项目受到车轮简单新颖驱动电动汽车为背景的优势,通过对系统动态性能的优化设计和控制,车辆的速度控制先进的车辆控制策略研究的深入,基于电动汽车驱动芯片轮设计,并围绕这一思路,硬件电路设计。

最后分析了输入参数,根据实测波形,验证了电动汽车电子差速控制方案的可行性。

关键词:电动汽车,差速控制,转矩分配,整车动力模型。

基于MATLAB的电动汽车差速控制

线

ABSTRACT

Electric vehicle is an important branch of the development of automobile industry, the core technology includes vehicle engineering, motor and drive technology, battery technology, control technology. With the energy crisis looming, the development prospects of electric vehicle unique, attracted to promote large-scale research institutions at home and abroad, has become a hot research, and has made various achievements.

The wheel drive electric vehicle is a new electric vehicle (Electric vehicle, referred to as EV) the direction of development, with the development of electric vehicles and the process of industrialization, the electric car with its ideal control performance and wide application prospect, and has caused widespread concern in the academic and engineering circles. The two were studied, analysis, and experimental design related to drive control system of electric vehicle.

First of all, electric cars, the domestic and foreign development background in detail, introduces the classification and comparison of driving system.

Secondly, the differential control algorithm from the traditional electronic, the project by the wheel has the advantages of simple and novel drive electric vehicle as the background of the advantages, by optimizing the design and control of the dynamic performance of the system, in-depth vehicle speed control advanced vehicle control strategy research, chip wheel drive electric vehicle based on the design, and around this idea, the hardware circuit design.

Finally, this paper final analysis of the input parameters, according to the measured waveform, verified the feasibility of electric automobile electronic differential control scheme.

Key words: electric vehicle, differential control, torque distribution, vehicle dynamic model.

相关文档
最新文档