SPC统计过程控制-详解

合集下载

详细全面的SPC详解

详细全面的SPC详解

详细全面的SPC详解SPC(Statistical Process Control,统计过程控制)是一种用于管理和优化生产过程的方法,它的目的是通过使用统计工具来分析生产过程中的数据,从而控制和改进产品质量。

SPC强调预防原则,即通过预防措施来减少产品缺陷和不良情况的发生,而不是在出现问题后再进行纠正。

SPC的基本概念包括控制图、过程能力指数、规格界限等。

控制图是SPC的核心工具,它用于监控生产过程中的关键变量,并根据统计原理判断生产过程是否处于控制状态。

控制图通常由均值-标准差控制图和极差控制图两种类型组成。

过程能力指数是指生产过程满足产品规格要求的程度,它通常被用来评估生产过程的能力,以便进行改进。

规格界限则是根据产品要求和客户要求设定的界限,用于确定产品是否合格。

SPC的实施方法包括以下几个步骤:1.选择关键变量:首先需要选择需要监控的关键变量,例如产品尺寸、材料特性等。

2.设计控制图:根据选定的关键变量,设计适合的控制图,并确定控制界限。

3.收集数据:按照一定的时间间隔收集生产过程中的数据,并对数据进行记录和整理。

4.分析数据:根据控制图的规则,判断生产过程是否处于控制状态,并找出异常点。

5.采取措施:根据分析结果,采取适当的措施来改进生产过程,例如调整工艺参数、更换设备等。

6.监控和反馈:持续监控生产过程,并及时反馈相关信息,以确保生产过程的质量和稳定性。

SPC的优势在于它可以及时发现生产过程中的异常情况,从而采取措施防止问题的扩大。

此外,SPC还可以提高生产过程的稳定性和产品质量的一致性,减少浪费和成本。

未来,SPC将会在更多的领域得到应用和发展,例如智能制造、医疗保健、金融服务等行业。

总之,SPC是一种有效的过程管理和优化工具,可以帮助企业提高产品质量和生产效率。

学习和掌握SPC技能对于从事质量管理、生产管理、工艺优化等工作的专业人士来说是非常重要的。

SPC的基本原理和过程控制

SPC的基本原理和过程控制

SPC的基本原理和过程控制概述SPC(统计过程控制)是一种常用于质量管理的统计方法,用于监控过程中的变异性,并及时采取控制措施来保持过程的稳定性和稳定品质。

本文将介绍SPC的基本原理和过程控制。

1. SPC的基本原理SPC的基本原理是基于统计学原理和质量管理理论。

其核心思想是通过收集和分析过程中的数据,以了解过程的变异性,并根据统计指标来判断过程是否处于控制状态。

基本原理包括:1.1 过程稳态与过程能力过程稳态是指过程在一个稳定区域内运行,并且其变异性是可控制的。

稳态下,过程的输出值会在一定的范围内波动,但是变异性是在可控范围内,不会出现特殊原因引起的异常波动。

过程能力是评估过程稳态的指标,通常使用过程能力指数(Cp)和过程能力指数(Cpk)来衡量。

Cp表示过程在规范要求的容差范围内的能力,而Cpk则考虑了过程的位置偏离能力。

1.2 变异性的来源过程中的变异性可以分为两种来源:常因和特因。

常因变异性是过程内在的、长期固定的,通常由一系列可以量化和测量的系统性因素引起。

这种变异性可以通过改善操作方法、调整设备或改善材料来减小。

特因变异性是由特殊原因引起的,通常是偶然事件,属于非系统的因素。

特因变异性无法通过常因改进来消除,应及时进行纠正。

1.3 统计过程控制图SPC使用控制图来监控过程的变异性。

控制图是一种统计图表,可以帮助鉴别过程中的常因和特因变异,以判断过程是否处于控制状态。

常用的控制图包括平均图(X-图),范围图(R-图),以及带有管制限的控制图(带A、B、C及D控制限的图表)。

控制图上的管制限是根据统计原理确定的,当过程数据落在管制限之外时,意味着过程出现特殊原因变异,需要采取措施进行纠正。

2. 过程控制方法SPC的过程控制方法包括以下几个步骤:2.1 数据收集首先,需要确定要收集的数据类型和采样方法。

数据类型通常是定量的,可以是尺寸、重量、时间等。

采样方法应该能够反映出过程的变异性,并且要求数据具有代表性。

SPC-统计过程控制介绍

SPC-统计过程控制介绍

4
SPC常用术语解释
名称 平均值 (X) 一组测量值的均值 一个子组、样本或总体中最大与最小值之差 用于代表标准差的希腊字母 过程输出的分布宽度或从过程中统计抽样值(例如:子组均值)的分布宽度的 量度,用希腊字母σ或字母s(用于样本标准差)表示。 造成变差的一个原因,它影响被研究过程输出的所有单值;在控制图分析中, 它表现为随机过程变差的一部分。 一种间断性的,不可预计的,不稳定的变差根源。有时被称为可查明原因,它 存在的信号是:存在超过控制限的点或存在在控制限之内的链或其它非随机性 的图形。 解释
6
福特(Ford)马自达(Mazda)案例
Mazda
Ford
7
生产检验与控制的演化
最终产品检验 公差控制: 过程控制: 规范控制(Specification Control) 统计控制 (Statistical Control)
8
质量管理的基本原則
INPUT
PROCESS
OUTPUT
针对过程的重要控制 参数和原材料所做的 才是SPC 原料 PROCESS 測量 結果
针对产品所做的 仍只是在做SQC
12
预防或容忍?

机 法
环 测量 测量
好 結果
原料
PROCESS
不好
不要等产品做出来后再去看它好不好 而是在制造的时候就要把它制造好
13
SPC的作用
确保制程持续稳定、可预测。 提高产品质量、生产能力、降低成本。 为制程分析提供依据。 区分变差的特殊原因和普通原因,作为采取局部措施或对系 统采取措施的指南。
UCL CL LCL
3 σ 3 σ
33
控制图的使用
控制图的判读 使用控制图注意事项

统计过程控制(SPC)

统计过程控制(SPC)

(三) x R 控制图的操作步骤
1. 确定控制对象(统计量) 2. 收集k组预备数据(一般K=25;每组数
据个数n ≥ 2;遵循合理子组原则) 3. 计算每一个样本的均值 X i 与极差 Ri 。 4. 计算 X与R 5. 计算R图控制限并作图 6. 用各样本点绘在图中,判断状态。
分析过程若失控或异常,找出原因, 进行纠正,防止再发生。
7. 计算 X 图控制限并作图,判断状态。 8. 计算过程能力指数验证是否符合要求 9. 延长控制限,作控制用控制图,进行日
常管理
四、 X S 图(掌握) 五、X-Rs图(了解)
六、Me-R图(了解)
七、P控制图
(一)P控制图的控制状态
P 常数
n
n
ˆp p di / ni
i1 i1
(二)P控制图的统计基础为二项分布,其
内容 (1)利用控制图分析过程的稳定性,对
过程存在的异常原因进行预警;
(2)计算过程能力指数分析稳定的过程 能力满足技术要求的程度,对过程质量进行 评价。
三、统计过程控制的特点 是一种预防性的方法 贯彻预防原则是现代质量管理的核心 强调全员参与
SPC的涵义
为了贯彻预防原则,应用统计技术对 过程各阶段评估和监控,建立并保持过程 处于可接受的并且稳定的水平从而保证产 品与服务符合规定的要求的一种质量管理 技术。
过程能力指数 过程性能指数
CP
TU TL 6ˆ ST
PP
TU TL 6ˆ LT
其中 ˆ St —— 短期波动的标准差估计,在稳态
下计算
ˆ St
R d2

S C4
ˆ Lt —— 长期波动的标准差估计,在实
际情况下计算 ˆ Lt S

统计过程控制SPC

统计过程控制SPC
样 品 2 28.122 28.127 28.125 28.116 28.110 28.121 28.121 28.127 28.119 28.116 28.124 28.124 28.114 28.115 28.118 28.121 28.116 28.120 28.117 28.115 28.125 28.121 28.115 28.128 28.125 测 3 28.124 28.122 28.122 28.115 28.116 28.128 28.124 28.122 28.121 28.119 28.122 28.125 28.118 28.120 28.115 28.118 28.118 28.125 28.119 28.117 28.126 28.125 28.119 28.124 28.121 定 4 28.124 28.125 28.127 28.119 28.118 28.124 28.120 28.125 28.125 28.119 28.123 28.128 28.112 28.119 28.125 28.125 28.117 28.126 28.118 28.118 28.127 28.128 28.117 28.121 28.127 值
0.256
1.744
3.258
0.283
1.717
3.336
0.307
1.693
3.407
0.328
1.672
3.472
0.347
1.653
3.532
0.363
1.637
3.588
0.378
1.622
3.640
0.391
1.608
3.689
0.403
1.597
3.735

SPC统计过程控制

SPC统计过程控制

SPC统计过程控制SPC(Statistical Process Control,统计过程控制)是一种基于统计原理和数据分析方法的质量管理工具,用于监控和控制生产过程中的变异性,以确保产品或服务的质量。

SPC是由质量概念的先驱沃尔特·A·谢温(Walter A. Shewhart)在20世纪20年代初首次引入的。

它的目的是通过使用统计技术来分析生产过程中的数据,从而减少产品或服务的变异性,提高整体质量水平。

SPC的基本原理是通过统计分析来了解生产过程中的变异性,以便及时采取措施来纠正和调整生产过程。

它主要包括以下步骤:1.确定控制指标:选择适当的指标来监控生产过程的变异性。

常用的指标包括尺寸、重量、硬度等。

2.收集数据:根据预定的采样计划和频率,定期收集生产过程中的数据。

数据可以通过各种手段收集,如直接测量、抽样检验等。

3.绘制控制图:使用统计方法将收集到的数据绘制成控制图。

控制图是一种图表,它显示了一个或多个过程指标的变化情况,以及上下限范围。

通过观察控制图,人们可以判断生产过程是否处于控制状态,是否存在异常情况。

4.分析控制图:根据控制图上的变化趋势和模式,进行统计分析,以确定生产过程的绩效。

常用的统计分析方法包括均值、标准差、极差等。

5.制定改进措施:根据分析的结果,确定需要改进的方面,并制定相应的措施。

改进措施可以包括修改生产过程参数、调整设备、培训员工等。

6.监控和调整:持续监控生产过程,并根据需要进行调整,以确保控制图保持在预定的限制范围内。

SPC的优势在于它能够提供实时和持续的监控生产过程的能力。

通过采集数据和绘制控制图,生产者可以及时发现生产过程中的变异,并采取措施进行纠正。

这样可以防止不良品的产生,并提高产品或服务的一致性和质量。

此外,SPC还具有以下几点优势:1.提高生产效率:通过控制和减少生产过程中的变异性,SPC可以提高生产效率。

它能够帮助生产者发现并消除生产过程中的浪费和不必要的变动,从而提高生产效率和资源利用率。

统计过程控制SPC讲义

统计过程控制SPC讲义

16587 15976 18322 17549 16753 17986 17569 16754 17914 19214 16554 16012 16503 16982 17991 17010 16889 17512 16842 14210
16268 16517 17432 16942 16875 17622 17581 17632 17923 18009 16548 16343 17228 17081 17210 17777 17241 17216 16852 16675
1924年,美国的休哈特博士提出将3Sigma原理运用于 生产过程当中,并发表了著名的“控制图法”,对过 程变量进行控制,为统计质量管理奠定了理论和方法 基础。
一、什麽是统计过程控制
2.预防与检测
1)事后检测——质量控制的最原始手段;
a.通过检查最终产品并剔除不符合规格产品, 保证不合格品不提交给顾客或下一工序;
1)是应用统计技术分析过程中的品质特 性,区分过程变异的特殊原因和普通原 因,从而达到控制过程变异的目的;
2)最终目的是在于预防问题的发生及减少 浪费;
3)是进行品质控制的强有力工具。
一、什麽是统计过程控制
工业革命以后, 随着生产力的进一步发展,大规模生 产的形成,如何控制大批量产品质量成为一个突出问 题,单纯依靠事后检验的质量控制方法已不能适应当 时经济发展的要求,必须改进质量管理方式。于是, 英、美等国开始着手研究用统计方法代替事后检验的 质量控制方法。
二、什麽是过程变异?
4. 观察和处理过程变异的两种方法:
2) 统计方法:下图为该过程品质成本变化的 X 图
18000
UCL=18106
17500 17000
Mean=17149

统计过程控制(SPC)(PPT58页)

统计过程控制(SPC)(PPT58页)
➢ 普通原因 ➢ 特殊原因
江铃汽车股份有限公司
统计过程控制(SPC)(PPT58页)
普通原因 普通原因造成变差的一个原因,它影响被研究过程的所
有单值。(处于统计控制状态;在统计上受控;受控) 造成随着时间的推移具有稳定的且可重复的分布过程中
的许多变差的原因 特点
过程分布将不发生变化 过程的输出是可预测的 过程是稳定、可控的。 采取系统的措施,由管理人员解决问题
江铃汽车股份有限公司
统计过程控制(SPC)(PPT58页)
2.3局部措施和系统措施
措施 对比
对象
系统措施
通常用来消除变差的普 通原因
局部措施
通常用来消除变 差的特殊原因
实施人员
几乎总是要求管理措施, 以便纠正
通常由与过程直 接相关的人员实 施
效果
大约可纠正85%的过程 问题
通常可纠正大约 15%的过程问题
一个可接受的过程必须是处于受控统计控制 状态的且其固有变差(能力)必须小于图纸 的公差
应通过检查并消除变差的特殊原因使过程处 于受统计控制状态,那么性能是可预测的, 变可评定其满足顾客期望的能力。这是持续 改进的基础
江铃汽车股份有限公司
统计过程控制(SPC)(PPT58页)
3.4过程改进循环
2.1过程的理解及过程控制
1.过程—所谓过程是指共同作用以产出输出的供方、生产 者、人、设备、输入材料、方法和环境及使用输出的顾 客的集合。
过程性能取决于:
供方与顾客之间的沟通
过程设计及实施的方式
运作和管理的方式
2.过程的信息
通过分析过程输出可以获得许多与过程性能有关的信息。如过程 是否稳定,过程能力如何。
4.1控制图应用说明

统计过程控制(SPC)

统计过程控制(SPC)

5-41
[例]设有某工序的上公差TU为0.2190, 下公差TL为0.1250,现场抽查的数据如 下表,其图如下图1.由图1可见,工序失控, 经过执行20字方针后,重新做图得到休 整后的图2.由图2可见,工序已经达到稳 态.故现在可对过程能力进行评价.
5-42
子组序号
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0.06 0.0086 0.0227 0.0135
0.01 5-43
0.22
0.21
UCL=0.2
133
0.2
平均值
0.19
X =0.19
0.18
状态III
状态IV(最不理想) 状态IV达到I的途径: ► IVIII ► IVIIII
调整过程即质量不断 改进过程
5-28
在控制状态下〔异因 消除,只有偶因〕
时间
下公差限
大小
上公差限
〔偶因的变异 减少〕
时间
在控制状态下,但工程 能力不足 〔偶因的变异太大〕
5-29
〔二〕控制用控制图 ► 当过程达到了我们所确定的状态后, 才能将分析用控制图的控制线延长作为控 制用控制图,应有正式交接手续. ► 判异准则 判稳准则 ► 进入日常管理后,关键是保持所确 定的状态.
偶然波动:偶因引起质量的波动 ,简称偶波;
异常波动:异因引起质量的 波动,简称异波. 5-16
2.控制图的第二种解释 假定现在异波均已消除,只剩下偶波,则此偶波的波动将
是最小波动,即正常波动.根据这正常波动,应用统计学 原理设计出控制图相应的控制界限,当异常波动发生 时,点子就会落在界外.因此点子频频出界就表明异波 存在. 控制图上的控制界限就是区分偶波与异波的科学界限.

SPC知识介绍统计过程控制

SPC知识介绍统计过程控制

什么是 SPC?对于质量分析和改进而言,判断产品质量是否受控,统计过程控制(SPC)是一种基于数据分析的相当科学的方法。

SPC知识介绍统计过程控制(Statistical Process Control),简称SPC,是一种借助数理统计方法的过程控制工具。

在企业的质量控制中,可应用SPC对质量数据进行统计、分析从而区分出生产过程中产品质量的正常波动与异常波动,以便对过程的异常及时提出预警,提醒管理人员采取措施消除异常,恢复过程的稳定性,从而提高产品的质量。

在制造过程中,统计过程控制(SPC)是作为数据测量和控制的行业标准而被普遍应用的方法之一。

记件型数值(测量)是在当产品被生产出来的时候就被记录的数据。

这些数据稍后会被绘制在已经做好控制限的图表上。

控制限是由过程能力决定的,相类似的,公差限则是由客户的需求所确定的。

落在控制限范围内部的数据表示每一步操作都是按照预想的方式进行的。

任何在控制限内部的数据波动大部分是由所谓的正常原因导致的—自然波动被认为是正常过程的一部分。

如果数据落在控制限范围之外,则象征某种特殊原因作为波动的主要原因出现在生产过程中,此时则需要对生产中的某环节进行改变来解决问题,并防止缺陷产品的出现。

实时SPC可以让您:◇降低产品差异性&减少废料◇科学的改进生产力状况◇降低成本◇揭示隐藏的过程特性◇及时应对过程变化◇在车间现场进行实时决策如何评价实时SPC解决方案的投资回报要对您的SPC投资回报做评估,首先需要确定您工厂中造成浪费和低效率的主要环节部分。

一般造成浪费的部分包括废料、返工、过度检查、低效数据采集、设备/过程加工能力弱、纸质文档记录以及低效生产线等。

您可以通过以下问题来衡量一个SPC解决方案的好坏:◇您明确知晓您的质量管理成本吗?◇您当前的数据确实用来进行过程改进吗,还是仅仅是字面上的数据而已?◇是否在正确的位置采集了正确的数据?◇决策是否基于那些真实的数据?◇您能够轻易的指出质量问题的原因吗?◇您是否知道该在什么时间对您的设备进行预防性维护?◇您能够准确预测产出结果吗?QFD质量功能展开QFD(Quality Function Deployment)是把顾客或市场的要求转化为设计要求、零部件特性、工艺要求、生产要求的多层次演绎分析方法,它体现了以市场为导向,以顾客要求为产品开发唯一依据的指导思想。

详细全面的SPC详解

详细全面的SPC详解
详细全面的SPC 详解
汇报人: 202X-01-06
目录
• SPC基本概念 • SPC实施步骤 • SPC应用领域 • SPC优势与局限性 • SPC未来发展趋势 • SPC案例分析
01
SPC基本概念
SPC定义
SPC即统计过程控制,是一种利用统计方法对生产过程进行监控和管理的质量控制技术。它通过收集 和分析生产过程中的数据,对生产过程进行评估和监控,以确保产品质量和生产过程的稳定性。
THANKS
感谢观看
SPC强调预防性的质量控制,通过实时监测和调整生产过程,以降低不良品率和生产成本,提高生产 效率和产品质量。
SPC目的和意义
确保产品质量
通过实时监测和调整生产过程, SPC能够及时发现并解决潜在的 质量问题,从而确保产品质量的 稳定性和可靠性。
提高生产效率
通过预防性的质量控制,SPC能 够降低生产过程中的不良品率, 减少生产浪费和损失,提高生产 效率。
某高校SPC教学案例
实施背景
某高校为了使学生更好地掌握质量管理知识,决定引入SPC 技术进行教学。
实施过程
该高校在课程中设置了SPC模块,通过理论教学、案例分析 和实践操作等方式,使学生全面了解和掌握SPC技术。
实施效果
通过SPC教学,该高校的学生对质量管理知识有了更深入的 理解,同时也提高了实际操作能力和问题解决能力。
优化生产过程
SPC通过对生产过程的实时监测 和分析,能够发现生产过程中的 瓶颈和问题,为生产过程的优化 提供数据支持。
SPC发展历程
20世纪40年代
美国军方开始广泛应用SPC技 术,以提高产品质量和一致性 。
20世纪80年代
随着计算机技术的发展,SPC 技术逐渐实现自动化和智能化 。

SPC-统计过程控制

SPC-统计过程控制

SPC-统计过程控制1.什么是SPC(统计过程控制)?SPC应用统计分析技术对生产过程进行实时监控,科学的区分出生产过程中产品质量的随机波动与异常波动,从而对生产过程的异常趋势提出预警,以便生产管理人员及时采取措施,消除异常,恢复过程的稳定,从而达到提高和控制质量的目的。

优点:适用于对大批量产品质量的控制(P7)缺陷:发现质量有失控,但不能判断为什么失控,需要与其他控制手段结合(如鱼骨图,SW1H等)分析。

2.SPC的作用是什么?1.对过程做出可靠的评估(对单个特性具有99.72%的合格率)2.确定过程的统计过程界限,判断过程是否失控和过程是否有能力3.为过程提供一个早期的报警系统,及时监控过程的情况以防止废品的发生4.减少对常规检验的依赖性,定时的观察以及系统的测量方法替代了大量的检测和验证工作3.怎么实现SPC?步骤一、确定过程流程图步骤二、识别特殊特性步骤三、初始确定人员、工装设备、原材料、参数(人机料法环)步骤四、收集数据(试生产),要求:客观,真实,25组数据以上(按时间先后顺序,不能调换),时间跨度覆盖一天的数据变化步骤五、通过均值极差控制图(X一-R控制图)、单值移动极差控制图(X-Rm控制图)计算出上控制限和下控制限步骤六、分析均值极差控制图的数据点,识别并标注特殊原因,重新计算控制界限控制状态的标准为:1.点超控制界限,极大概率有问题2.连续7点上升/下降/中心线的同一侧3.正产情况下,显著多余2/3的点集中在中心1/3区域步骤七、计算CPK/PPK,并分析、提高过程能力,对修改的过程控制图再分析步骤八、当初始过程稳定并可接受时,转入量产的过程控制阶段,此时所计算的上控制限、下控制限作为控制基准延长使用控制界限的重新计算:控制图使用一段时间后,生产过程有了变化(加工工艺改变、刀具改变、设备改变、技术革新、管理改革),应重新收集最近期间的数据,以重新计算控制界限并作出新的控制图。

SPC统计过程控制

SPC统计过程控制

目标1. 能够使用“XBar和S图表”进行连续数据分析。能够使用“p”控制图表进行离散数据分析。能够确定每一种图表类型的控制极限范围。能够对图表进行解释并确定工序什么时候处于失控状 态。5. 能够解释依据图表信息采取措施的重要性。
Tab 3: 统计过程控制
目的介绍统计过程控制的概念
什么是:统计过程
控制图的使用
控制图表可以在测量和分析阶段用于跟踪过程的变化,分析显著的变化并记录。
控制图在控制过程中用于保持改进的结果。用图进行监控并记录输入变量(X),分析X的变化并进行控制。
不断变化的控制限
与随每次观测而变化的极限相比,控制图最好使用历史的稳定过程的极限。历史极限决定了所“期望”的数据范围或“零假设(H0) ”。(使用Minita中的历史设置值) 改变控制限范围,当: 一个过程有了改变,且此改变被认为具有统计显著性的(即 Ha)。 当完成了一个规定的实际过程改变。
Y
X
什么时候使用SPC?
希望获悉什么信息? —关键过程变量(X或Y)在随时间变化吗?(即该过程稳定吗?)如何观察输出变量?— 基于实时数据、显示过程变化的图表
SPC是一个严密的过程,它要求操作小组积极参与数据的采集和分析。
失控状况,记录采取的修复行为
UCL
LCL
X Bar 图表
样本/分组(按时间排序)
控制(SPC)
统计 – 基于概率的决策方法。过程 --所有重复性的工作或步骤。 控制 --监控工序运行。 基于与“t test”假设检验相同的概念进行分析,能够使我们在出现的问题影响到输出结果之前,就作出有关工序的决定、采取行动、解决问题。。
当处于稳定状态的工序变差已经被外界可指定原因所影响时,SPC发出信号。

SPC过程控制精选全文完整版

SPC过程控制精选全文完整版

可编辑修改精选全文完整版1.统计过程控制SPC即统计过程控制。

是利用统计方法对过程中的各个阶段进行控制,从而达到改进与保证质量的目的。

SPC强调以全过程的预防为主。

也是中国人民武装警察部队特种警察学院的简称,该学院又叫做武装特警学院.它是训练特种兵的学院,同时还是执行任务的机构.目录一、spc的基础知识1.关于控制、过程、统计2.特性及其分类3.统计学基础二、spc的基本原理4.过程的理解与过程控制5.波动及波动的原因6.局部措施和系统措施三、统计过程的控制思想1.正态分布简介2.统计控制状态及两种错误3.过程控制和过程能力4.过程改进循环四、控制图类型1.控制图应用说明2.控制图的定义和目的3.控制图解决问题思路4.控制图益处5.控制图分类6.控制图的选择五、建立计算型控制图的步骤和计算方法1.均值和极差图2.均值和标准差图3.中位数和极差图4.单值和移动极差图六、计数型控制图与过程能力指数1.过程能力解释前提2.过程能力的计算3.过程能力指数4.过程绩效指数七、过程判异准则以下是常用的八项判异准则:1、一点落在A区以外;2、连续9点落在中心线同一侧;3、连续6点递增或递减;4、连续14点相邻点上下交替;5、连续3点有2点落在中心线同一侧的B区以外;6、连续5点中有4点落在中心线同一侧的C区以外;7、连续15点在C区中心线上下;8、连续8点在中心线同侧。

SPC统计过程控制1、前言─SPC的由来、发展和基本要求2、识别关键控制点3、数据变异的衡量和分析· 直方图4、数据的动态变异· 控制图4.1、随机波动与异常波动4.2、ISO 8258:1991《休哈特控制图》(Control Chart)要点4.3、常规控制图的类型和实例s 控制图的结构和概念解释s 控制图类型和用途1) X平均与极差图(均值—极差控制图、均值—标准差控制图、中位数—极差控制图、单值—移动极差控制图)s 结构和应用流程s 举例2) I和MR控制图s 结构和应用流程s 举例3) 离散U、C、P、NP控制图s 结构和应用流程s 举例s 如何收集数据s 采样及数据收集s 设定和维持控制界限4.4、控制图制订和使用中的若干实际问题4.5、现代控制图技术案例5、过程能力与过程性能(Process Capability / Performance)分析以及相应的指数CPK、PPK的应用6、过程能力/性能的保证和提高---查找原因采取纠正/预防措施的逻辑推理工具s 5M1E要素s 分层法与排列图s 用于因果关系和逻辑关系分析的非数字资料方法工具: 因果图、系统图与“5Why分析表”、关联图、故障树分析(FTA)、过程决策程序图(PDPC)法7、如何实现有效的SPC现场控制s 受控的标准s 流程失控的表现s 失控的现场应对s 练习制作控制图进行失控分析s SPC实施中现场“看得见管理”应用的直观显示图表8、SPC的效果评估的方法s 显著性检验s 统计抽样检验9、回归分析s 一元线性回归分析s 曲线回归s 双列相关分析10、方差分析s 方差分析的基本概念及其应用s 方差分析在MSA(测量系统分析)中的应用s 多重比较:q检验11、试验设计(Design of Experiment, DOE) --介绍正交试验设计12、SPC项目的开展(SPC在QCC/QIT、6Sigma项目活动中的应用)如何创建SPC系统1、关键流程的确定2、稳定工艺过程3、过程能力的测定和分析4、确定控制标准5、选择和建立控制图6、制定反馈行动计划7、MSA测量系统分析8、SPC应用的有效性评估9、SPC应用的团队活动10、案例分析及实施疑难探讨SPC的有效实施一、原因分析目前我们国内许多企业也开始逐步认识和推广SPC,但并没有达到预期的效果,为什么呢?究其原因,主要可以分为以下几点:1、企业对SPC缺乏足够的全面了解2、企业对实施SPC的前期准备工作重视不够3、未能有效地总结和借鉴其他企业的经验二、改进对策针对以上原因,要保证SPC实施成功,企业应重视如下几方面的工作:1、领导的重视2、工程技术人员的认识和重视3、加强培训4、重视数据5、实施PDCA循环,达到持续改进统计工序控制即SPC(Statistical Process Control)。

统计过程控制(SPC)

统计过程控制(SPC)

5、SPC怎样起作用
SPC将制造过程的测量数据变成可视图。通过
读图工人可以辩别出制程是否是受控的,制程 是否在规格范围之内生产,所有这些在制程发
生时及时避免错误而不是等到事后才纠正。
6、SPC能解决的过程问题
➢ 经济性 ➢ 预警性/时效性 ➢ 分辨普通原因与特殊原因 ➢ 善用机器设备 ➢ 改善的评估
二、控制图
• 1、什么是控制图 • 2、控制图基本原理 • 3、控制图是如何贯彻预防原则的 • 4、控制图常用术语 • 5、控制图的分类 • 6、控制图的选用原则 • 7、控制图的判定规则 • 8、应用控制图需要考虑的一些问题
1、什么是控制图
控制图是对制程质量特性值进行测定、记录、 评估,从而监察制程是否处于控制状态的一种用 统计方法设计的图。图上有中心线、上控制限和 下控制限,并有按时间顺序抽取的样本统计量数 值的描点序列。若控制图中的描点落在UCL与LCL 之外或描点在UCL与LCL之间的排列不随机,则表 明过程异常。控制图有一个很大的优点,即通过 将图中的点子与相应的控制界限相比较,可以具 体看见产品或服务质量的变化。
(3) Xmed-R控制图(中位数-极差控制图) Xmed -控制图检出力较差,但计算较为简单
(4)X-Rm控制图(个别值-移动极差控制图) 品质数据不能合理分组时使用,如液体浓度
• 计数值控制图
• (1) P控制图(不良率控制图) • 用来侦查或控制生产批中不良件数的小数比或百分
比,样本大小n可以不同。 • (2)np控制图(不良数控制图) • 用来侦查一个生产批中的实际不良数量(而不是与样
(2)品质变异因素的分类及其不同的对待策略
机遇原因之变机遇原因,其个别 之变异极为微小
3.几个较代表性之机遇原因如下: (1)原料之微小变异 (2)机械之微小掁动 (3)仪器测定时不十分精确之作 法

spc培训资料-统计过程控制

spc培训资料-统计过程控制

SPC培训资料 - 统计过程控制1. 简介统计过程控制(Statistical Process Control,SPC)是一种用来监控和控制质量的统计方法。

它通过收集和分析过程中产生的数据,以便及时发现过程中的变异和偏离,并采取相应的措施,以保持过程处于一种可控状态,提高产品和服务的质量。

这份培训资料旨在介绍统计过程控制的基本概念、原则和工具,以帮助培训受众理解和应用SPC,提升质量管理能力。

2. SPC的基本原则统计过程控制依据以下几个基本原则:2.1 过程的可测量性和可控性SPC基于过程的可测量性和可控性原则。

每个过程都应该有明确的测量指标,并且这些指标应该是可测量的。

同时,过程操作者应该能够对这些指标进行控制,以实现过程稳定和质量控制。

2.2 统计思维和数据驱动的决策SPC强调统计思维和数据驱动的决策。

通过数据的收集、整理和分析,可以更加客观地判断过程的稳定性和性能。

基于数据的决策能够降低人为主观性的影响,并提高决策的准确性。

2.3 变异的存在和可降低性统计过程控制承认过程中的变异是不可避免的,但也认为它是可以降低的。

通过分析和改善过程,可以减小过程的变异性,提高过程的稳定性和可重复性。

3. SPC的基本工具3.1 控制图控制图是用来显示过程数据变化的图表。

它可以帮助我们判断过程是否处于可控状态。

常用的控制图包括:均值图(X-Bar Chart)、范围图(R-Chart)、标准差图(S-Chart)等。

控制图通常由中心线、控制限和过程数据点组成。

中心线代表过程的平均值,控制限表示过程的可控范围。

3.2 基本统计量基本统计量包括均值、方差、标准差等。

这些统计量可以用来描述过程的中心位置和数据的分布情况。

通过分析这些统计量,可以判断过程的稳定性和性能。

3.3 过程能力指数过程能力指数用来评估过程的稳定性和性能。

常用的过程能力指数有过程能力指数(Cp)、过程潜在能力指数(Cpk)等。

这些指数可以帮助我们确定过程是否满足质量要求,并进行过程改进和优化。

详细全面的SPC详解

详细全面的SPC详解

详细全面的SPC详解SPC(Statistical Process Control,统计过程控制)是一种以数据为基础,通过统计分析手段对生产过程进行监控和改善,以提升产品质量和生产效率的管理方法。

它广泛应用于制造业、服务业、医疗健康等领域,是质量管理和六西格玛等理论的核心组成部分。

监控生产过程:SPC通过对生产过程中的数据进行分析,可以实时监控生产过程,及时发现异常情况,避免不良品的产生,提高产品质量。

预防性控制:SPC通过分析生产过程中的数据,可以找出潜在的问题和风险,提前采取措施进行预防性控制,避免问题的发生。

优化生产流程:SPC可以帮助企业优化生产流程,提高生产效率。

通过对生产过程的数据进行分析,可以找出瓶颈环节,针对性地进行改进。

降低成本:通过SPC的监控和优化,企业可以降低废品率,减少返工和维修成本。

同时,提高生产效率也可以降低生产成本。

提高客户满意度:SPC可以帮助企业提高产品质量和服务水平,从而提高客户满意度。

这对于企业的长期发展至关重要。

制定计划:明确SPC实施的目标、范围、时间安排等。

数据采集:收集与生产过程相关的数据,包括原材料、设备、工艺参数、产品质量等信息。

数据分析:运用统计分析方法对采集到的数据进行处理和分析,找出潜在的问题和风险。

制定措施:根据数据分析结果,制定相应的措施进行改进和优化。

实施改进:将制定的措施付诸实践,对生产过程进行改进和优化。

监控效果:对改进后的生产过程进行监控,评估改进效果是否达到预期目标。

持续改进:在实施过程中不断总结经验,持续改进和提高。

控制图:用于实时监控生产过程中的数据变化,及时发现异常情况。

控制图包括均值-极差图、均值-标准差图、中位数-极差图等。

因果图:用于分析生产过程中各因素之间的因果关系,找出潜在的问题和风险。

流程图:用于描述生产过程中的各个步骤和环节,帮助企业优化生产流程。

直方图:用于展示数据的分布情况,帮助企业了解生产过程中的数据特征和规律。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
过程不不稳定:如果存在特殊原 因,过程输出随时间将不不稳 定,同时也不不可预测。
二二、CPK——应用用范围
应用用范围:
初始能力力力分析:是为了了摸清过程能力力力状况,以便便在必要时 采取措施,使过程能力力力满足足生生产要求,(新产品在批量量生生 产前,即产品和过程确认阶段,需对控制计划所要求的特 殊特性进行行行过程能力力力研究,以评价生生产过程是否已准备就 绪);
偶 存在,对产品质量量经常发生生影响,但它 因 所造成的质量量特性值波动往往比比较小小。
有些情况下这些质量量波动在生生产过程中 是允许存在的
异 异常波动:由特殊原因引起的产品质量量

波动。这些特殊原因在生生产过程中并非非 大大量量存在,通常表现为周期性或突然地
对质量量产生生影响,一一旦存在,它对产品
SPC——定义:
使用用诸如控制图等统计技术来分析制造过程或其输出,以 便便采取适当的措施,为达到并保持统计控制状态从而而提高高或改 进制造过程能力力力


SPC就是利利用用统计方方法:
1.分析过程的输出并指出其特性. 2.使过程在统计控制情况下成功地进行行行和维持. 3.有系统地减少该过程主要输出特性的变异.
日日常能力力力评价:是进行行行过程能力力力复查主要是为了了掌握过程 能力力力变化情况,以便便采取措施保持或提高高过程能力力力;
二二、CPK——子子组内变差与子子组间变差
子子组内变差和过程总变差:
....... .
....... .
....... .
....... .


20
20 子子
15 组
子子

一一、变差的——概念
变差就是质量量的波动 过程的单个输出所不不可避免的差异 变差是有害的,是不不可避免的,他是工工业界的 通病
不不要习惯性的认为缺陷和偏差是不不可避免的!
一一、变差的——概念





精确性 与 准确性
一一、变差的——分类
质量量 波动
正常波动:由普通原因引起的产品质量量 波动。这些随机因素在生生产过程中大大量量
-?L()"
关键理理念2: SPC不不是做分析报告,不不是用用于改善前后对比比! 必须正确理理解μ和 δ,识别哪些是μ的问题?哪些是δ的问题? 将数据与过程影响因素结合,学会用用分 析结果进行行行思考!
一一、变差的——描述方方法
数据的累积——直方方图
数据随时间的展开——控制图
关键理理念3: SPC就是描述、分析、改进和控制变差的一一种系统工工具,而而不不是单 单的一一张控制图!要学会描述变差,掌握工工具间的关系。
质量量的影响就比比较显著,在生生产过程中
是不不允许存在的
正常波动 异常波动
一一、变差的——分类



KF 1#EM

61# '1#E
D* KF
I
E 31#E


M6 'EC"M 1#D* $,"A9
%BK0!% O/ >M6L(,"; KF
一一、变差的——描述方方法
直方方图的形状分析——识别不不稳定性问题

标准型
锯⻮齿型
偏峰型
陡壁型
平顶型
双峰型
孤岛型
直方SL方图位置(D分) 析——识别偏倚性 问题
SU

SL
(E)
SU
SL
(D)
SU
SL直方方图宽(C)度分析——识别波动性问题
SU
SL
(E)
SL
(A)
SU

10 变

5

变 差
子子
15 总 变 10 差5
组 间组
子子组内变差:仅由子子组内变差产生生的变差,如果过程处于统计受控状态,该变差 是对过程固有变差的一一种很好估计; 子子组间变差:由子子组间的变差所产生生的变差,如果过程处于统计受控状态,该变 差应该为0; 总变差:由子子组内和子子组间二二种变差所引起的变差,如果过程不不处于统计受控状 态,总变差将受普通原因和特殊原因影响
SPC—统计过程控制
杜绝 ⻔门柱 思想:
旧范例例
如果在规格范围内 顾客就满意
新范例例
不不考虑技术规格, 只偏离目目标就会增 加成本 1)检验,试验和返 工工成本 2)客户不不满意成本
关键理理念1:质量量能否集中于工工艺中心心是超越先进企业的前提!也是 开展SPC的追求。
SPC——课程目目录:
一一. 变差——质量量的波动 二二. CPK——过程能力力力 三. 控制图——稳定性判定与控制 四. 均值极差图应用用 五. 单值移动极差图应用用 六. 计数型控制图应用用
%B
GJM P7
%,"A9M6
L(,"E
=

:; 1#EIM KF6 $@+;K

8 F

1#EIME :E
C"<M $
8
K6 @+M$,"K
8
9
O$ 2.4>& @ M6L()"K K0 9
N458M P7 H E<M
SL
(B)
SL
(C)
SU
一一、变差的——三⻄西格玛原理理
分布曲线的演变:
=100
=1000
直方方图是把测量量数据的频数转化为柱状⻓长方方形的方方法来表示数据的分布状 态,而而正态分布曲线表示是对一一批产品的一一种预测,如图所示,在样本量量较小小 时,直方方图外形轮廓呈梯形,随着样本量量的增大大,梯形越来越小小,逐渐呈现成 一一条曲线,这就是正态曲线。
能满足足规范
(普通原因引起的
时间
变差被减少)
二二、CPK——应用用前提
应用用前提: 过程能力力力分析的前提是过程处于统计控制状态,即过程的分 布状态不不随时间的变化而而变化,或在控制图中没有异常出现,对于不不稳定 的过程,讨论过程变差及相关的能力力力指数是没有什什么价值的
过程稳定或处于统计受控状态: 如果仅存在普通原因,过程输出 将形成随时间稳定的分布状况, 并且是可预测的。
下规范
-3δ

6⻄西格玛宽度,99.73% 公差带
上规范
二二、CPK——概念
概念: 所谓过程能力力力是指过程质量量满足足要求的能力力力,即过程的分布与工工艺要 求的比比较,对他的研究与正态分布的两个参数μ和σ有着密切的联系
过程能力力力
样本
受控但不不能满足足规范 (普通原因引起的变差过大大)
受控并且
一一、变差的——三⻄西格玛原理理
拐点
一一、变差的——三⻄西格玛原理理
一一、变差的——三⻄西格玛原理理
关键理理念4:变差就是质量量的波动,过程的变差就是6 δ的宽度!
-3δ

6西格玛宽度,99.73%

将理理念融入入⻣骨子子里里里!
二二、CPK——概念
如何评价一一个过程变差的大大小小? 变差大大小小可以忍受吗?
相关文档
最新文档