统计过程控制SPC及过程能力
统计过程控制SPC第二版
例如,原材料的质量不符合规定要求;机 器设备带病运转;操作者违反操作规程; 测量工具带系统性误差,等等。由于这些 原因引起的质量波动大小和作用方向一般 具有一定的周期性或倾向性,因此比较容 易查明,容易预防和消除。又由于异常波 动对质量特性值的影响较大,因此,一般 说来在生产过程中是不允许存在的。
是
否
np或p图 p图
关心的是 单位零件缺陷数吗?
是
样本容量 是否恒定?
是
否
C或U图 U图
二、控制图
计量型控制图
二、控制图 计数型控制图
二、控制图 4、控制图应用的二个阶段
从生产过程中,定期抽取样本,测量各样 本的质量特性值,然后将测得的数据加以 统计分析,判断过程是否处于稳定受控状 态,从中发现过程异常原因(特殊原因), 从而及时采取有效对策,使过程恢复到正 常稳定受控状态。
预防与检测
检测——容忍浪费
在生产部门,通过检查最终产品并剔除不合格产品。不合格的总是不合格。 在管理部门,经常靠检查或重新检查工作来找出错误 这实质上是“死后验尸”,造成时间和材料等的浪费
计数型:通常是指不用仪器即可测出的数 据。计件如不合格件数;计点如PCB上的 漏焊数、溢胶数等
计量型 计数型
计件型 计点型
二、控制图 2、控制图的构成
18 17 16 15 14 13 12 11 10
9 8 7 6 5
1
2
3
4
点落在该区间的概率为99.7%
5
6
7
8
9
+3
Average
-3
10
二、控制图
▪ ……
二、控制图
计数型控制图
不良率控制图(P图) 不良品数控制图(Pn图) 缺陷数控制图(C图) 单位缺陷数控制图(U图)
SPC-统计过程控制介绍
4
SPC常用术语解释
名称 平均值 (X) 一组测量值的均值 一个子组、样本或总体中最大与最小值之差 用于代表标准差的希腊字母 过程输出的分布宽度或从过程中统计抽样值(例如:子组均值)的分布宽度的 量度,用希腊字母σ或字母s(用于样本标准差)表示。 造成变差的一个原因,它影响被研究过程输出的所有单值;在控制图分析中, 它表现为随机过程变差的一部分。 一种间断性的,不可预计的,不稳定的变差根源。有时被称为可查明原因,它 存在的信号是:存在超过控制限的点或存在在控制限之内的链或其它非随机性 的图形。 解释
6
福特(Ford)马自达(Mazda)案例
Mazda
Ford
7
生产检验与控制的演化
最终产品检验 公差控制: 过程控制: 规范控制(Specification Control) 统计控制 (Statistical Control)
8
质量管理的基本原則
INPUT
PROCESS
OUTPUT
针对过程的重要控制 参数和原材料所做的 才是SPC 原料 PROCESS 測量 結果
针对产品所做的 仍只是在做SQC
12
预防或容忍?
人
机 法
环 测量 测量
好 結果
原料
PROCESS
不好
不要等产品做出来后再去看它好不好 而是在制造的时候就要把它制造好
13
SPC的作用
确保制程持续稳定、可预测。 提高产品质量、生产能力、降低成本。 为制程分析提供依据。 区分变差的特殊原因和普通原因,作为采取局部措施或对系 统采取措施的指南。
UCL CL LCL
3 σ 3 σ
33
控制图的使用
控制图的判读 使用控制图注意事项
SPC过程能力分析
控制图是SPC的核心工具,它是一种图表示方法,用于实时监控过程中的关键变量。控制图通常包括中心线(CL )、上控制限(UCL)和下控制限(LCL),以及点估计值和过程控制界限。当点估计值超出控制界限或点估计 值在界限附近波动时,可以判断过程存在异常。
SPC的作用
监控过程稳定性
SPC可以实时监控生产过程中的关键变量,如产 品尺寸、重量、强度等,确保它们在可接受的范 围内波动。当发现异常时,可以及时采取措施消 除异常,恢复过程的稳定性。
分析原因
对问题的根本原因进行分析和 识别,找出影响过程能力的因 素。
实施改进措施
将改进措施应用到实际生产过 程中,并对实施效果进行监测 和评估。
识别问题
通过对生产过程进行观察和检 测,发现存在的问题和缺陷。
制定改进措施
根据分析结果,制定相应的改 进措施,如采用新的工艺、调 整设备参数、培训员工等。
总结经验
集成化和云化
企业将更多地采用集成化和云化的SPC技术,实现数据的快速共享和高 效处理,提高生产和管理效率。
03
工业4.0与IoT集成
SPC技术将与工业4.0和物联网(IoT)技术紧密结合,实现生产过程的
全面数字化和智能化。
SPC应用的发展趋势
拓展应用领域
SPC技术的应用领域将进一步扩大,例如在医疗、教育、服务业等 领域的应用,为企业提供更全面的质量管理解决方案。
过程能力的计算
Cpk的计算
Cpk = (USL - LSL) / 6σ,其中USL为上规 格限,LSL为下规格限,σ为标准差。
Ppk的计算
Ppk = (USL - LSL) / 3σ,其中USL为上规 格限,LSL为下规格限,σ为标准差。
统计过程控制(SPC)
(三) x R 控制图的操作步骤
1. 确定控制对象(统计量) 2. 收集k组预备数据(一般K=25;每组数
据个数n ≥ 2;遵循合理子组原则) 3. 计算每一个样本的均值 X i 与极差 Ri 。 4. 计算 X与R 5. 计算R图控制限并作图 6. 用各样本点绘在图中,判断状态。
分析过程若失控或异常,找出原因, 进行纠正,防止再发生。
7. 计算 X 图控制限并作图,判断状态。 8. 计算过程能力指数验证是否符合要求 9. 延长控制限,作控制用控制图,进行日
常管理
四、 X S 图(掌握) 五、X-Rs图(了解)
六、Me-R图(了解)
七、P控制图
(一)P控制图的控制状态
P 常数
n
n
ˆp p di / ni
i1 i1
(二)P控制图的统计基础为二项分布,其
内容 (1)利用控制图分析过程的稳定性,对
过程存在的异常原因进行预警;
(2)计算过程能力指数分析稳定的过程 能力满足技术要求的程度,对过程质量进行 评价。
三、统计过程控制的特点 是一种预防性的方法 贯彻预防原则是现代质量管理的核心 强调全员参与
SPC的涵义
为了贯彻预防原则,应用统计技术对 过程各阶段评估和监控,建立并保持过程 处于可接受的并且稳定的水平从而保证产 品与服务符合规定的要求的一种质量管理 技术。
过程能力指数 过程性能指数
CP
TU TL 6ˆ ST
PP
TU TL 6ˆ LT
其中 ˆ St —— 短期波动的标准差估计,在稳态
下计算
ˆ St
R d2
或
S C4
ˆ Lt —— 长期波动的标准差估计,在实
际情况下计算 ˆ Lt S
SPC各值计算公式
SPC各值计算公式SPC(统计过程控制)是一种统计方法,用于检测和控制过程的稳定性和变异性。
SPC各值计算公式包括控制图参数和过程能力指数等。
以下是常见的SPC各值计算公式及其解释:1.控制图参数:a.X̄控制图上的中心线是过程的平均值的估计量。
计算公式为:X̄=ΣX/n,其中X是测量值的总和,n是样本大小。
b. R 控制图上的极差线是过程的极差的估计量。
计算公式为:R = Xmax - Xmin,其中Xmax和Xmin是样本中最大值和最小值。
c.S控制图上的标准偏差线是过程的标准偏差的估计量。
计算公式为:S=√(Σ(X-X̄)²/(n-1)),其中Σ(X-X̄)²是样本值与平均值的差的平方的总和。
d.UCL控制图上的上限控制限是过程的可接受上限。
计算公式为:UCL=X̄+3S,其中3是标准差的倍数,用于确定上限控制限。
e.LCL控制图上的下限控制限是过程的可接受下限。
计算公式为:LCL=X̄-3S,其中3是标准差的倍数,用于确定下限控制限。
2.过程能力指数:a.Cp过程能力指数是衡量过程发生误差在可接受范围内的能力。
计算公式为:Cp=(USL-LSL)/(6σ),其中USL和LSL是规范上限和下限,σ是标准偏差的估计量。
b. Cpk 过程能力指数是衡量过程发生误差在可接受范围内的能力,同时考虑了过程的中心线偏移。
计算公式为:Cpk = min((USL - X̄) /(3σ), (X̄ - LSL) / (3σ)),其中USL和LSL是规范上限和下限,X̄是过程的平均值的估计量,σ是标准偏差的估计量。
c. Cpm 过程能力指数是衡量过程发生误差在可接受范围内的能力,同时考虑了过程的中心线偏移和过程的极差。
计算公式为:Cpm = (USL - LSL) / (6√((ΣR/n)² + σ²)),其中USL和LSL是规范上限和下限,ΣR/n是极差均值的估计量,σ是标准偏差的估计量。
统计过程控制(SPC)之过程控制过程能力过程性能和过程指数
统计过程控制(SPC)之过程控制过程能⼒过程性能和过程指数
统计过程控制(SPC)之过程控制/过程能⼒/过程性能和过程指数定义/说明/要求/⽬的:
能⼒是指:⼀个稳定过程中固有变差的总范围。
过程控制是指:分析某⼀过程或其输出,以便采取适当的措施来达到⼀种统计受控的状态,这种控制是对过程进⾏的控制,⽽不是事后的⾏为。
过程能⼒是指:⼀个稳定过程固有的变差的总范围,⼀般为过程固有变差的6?σ范围;对于计量型σ,对于计数型数据,通常为不合格品或不合格的平均⽐例或⽐率。
数据,其被定义为6?
c
过程能⼒指数是指:过程能⼒满⾜产品质量标准要求(规格范围等)的程度。
分布是指:描述具有稳定系统变差的⼀种输出⽅式,其中单个值是不可预测的,但⼀组单值就可形成⼀种图形,并可⽤位置、分布宽度和形状这些术语来描述。
过程控制系统的⽬的是对过程当前和将来的状态作出预测,以便对影响过程的措施做出经济合理的决定。
采⽤的总体标准差的估计⽅法的不同导致过程能⼒和过程性能之间的不同。
理解过程控制/过程能⼒/过程性能和过程指数才能最终⽐较“过程的声⾳”和“顾客的声⾳”。
检查表:。
SPC过程能力分析报告
SPC过程能力分析报告SPC(统计过程控制)是一种以统计方法来控制过程稳定性和质量的管理工具。
通过在过程中收集数据并进行统计分析,SPC可以帮助企业识别和纠正过程中的变异,以确保产品或服务的一致性和稳定性。
本篇报告将对公司进行SPC过程能力分析,以评估和改进其过程控制能力。
一、背景介绍本次分析的对象是一家电子产品制造公司,其主要产品为手机电池。
公司希望通过SPC过程能力分析来评估和改进其电池生产过程的稳定性和质量,以提高产品一致性并降低缺陷率。
二、数据收集和分析为了进行SPC过程能力分析,我们收集了公司过去六个月的电池生产数据。
主要数据包括每月产量、每月缺陷数量以及每月质量控制检查结果等。
通过对数据进行统计分析,我们得出了以下结论:1.控制图分析我们使用控制图来分析过程的稳定性。
通过绘制产量、缺陷数量和质量控制检查结果的控制图,我们发现产量的控制图显示过程处于可接受的稳定性范围内,而缺陷数量和质量控制检查结果的控制图则显示过程存在明显的非随机变异。
2.批次分析我们对每个批次的电池进行了分析,发现一些批次的电池存在较高的缺陷率。
通过深入分析这些批次的生产数据和质量控制记录,我们发现生产过程中存在一些固定的问题,如材料供应商质量不稳定和操作员技能不足等。
三、问题原因分析基于数据收集和分析结果,我们对电池生产过程中存在的问题进行了原因分析。
主要问题包括以下几个方面:1.材料质量不稳定一些批次的电池缺陷率较高,部分原因是材料供应商质量不稳定。
为了解决这个问题,公司应该与供应商合作,建立更加稳定的供应链,并定期审核供应商的质量体系。
2.过程操作不规范操作员技能和培训不足是导致缺陷率高的原因之一、公司应该加强对操作员的培训,确保其熟悉操作流程和使用设备的规范。
此外,公司还应该建立标准操作程序,并通过培训和审查来确保操作员按照这些程序进行操作。
3.设备维护不及时设备故障和维护不及时也会导致生产过程的不稳定性和缺陷率的升高。
统计过程控制(SPC)
解:
于是,过程能力指数为:
过程能力不够充分,从图2发现分布中心μ=0.1968与规范中心M=(TU+TL)/2=0.1720有偏离,应进行调整。调整后,Cp值会有所提高。
单侧规范情况的过程能力指数
01
只有上限要求,而对下限没有要求: 只适用于的范围:
02
只有下限要求,而对上限没有要求: 只适用于的范围:
4
3
6
5
判稳准则的分析 判稳准则的思路
打一个点未出界有两种可能性:
► 过程本来稳定 ► 漏报 (这里由于α小,所以β大),故打一个点子未出界不能立即判稳。
在点子随机排列的情况下,符合下列各点之一判稳:
01
► 连续25个点,界外点数d=0;
02
► 连续35个点,界外点数d<0;
03
► 连续100个点,界外点数d<2。
0.1821
0.1828
0.0086
18
0.1812
0.1585
0.1699
0.168
0.1694
0.0227
19
0.1700
0.1567
0.1694
0.1702
0.1666
0.0135
20
0.1698
0.1664
0.17
0.16
0.1666
0.01
图1
μ’
μ
图2-7 正态曲线随着标准差变化
σ=2.5
σ=1.0
σ=0.4
y
x
不论μ与σ取值为何,产品质量特性值落在[μ-3σ,μ+3σ]范围内的概率为99.73%。 图2-8 正态分布曲线下的面积
统计过程控制(SPC)之过程能力评价参考值
定义/说明/要求/目的:
理论上来说,过程能力越高越好;但是越高的过程能力,对过程的维持,包括资源的投入的要求就越高,反而不是最经济的。
必须依据客户的需求及过程的特点,来决定过程的能力应该达到什么样的程度
检查表:
编号
检查内容
1
能力指数 及 评价
及
级别
判定
应采取的措施
2
E
过程能力严重不足
必要时,停止生产,直到找出原因或全检
3
D
过程能力不足
找出原因,采取对策,产品全检
4
C
过程能力尚可
主要过程变化,产品需要加严检查
5
B
过程能力充分
维持现状
6
A
过程能力很高
理想状态,考虑抽检或免检
7
偏离指数 评价
级别
判定
应采取的措施
8
A
过程能力充分
继续维持
9
B
过程能力尚可
有必将其改善至A级
10
C
过程能力不足
立即检讨,进行改善
11
D
过程能力严重不足
停止生产,全面检讨
12
E
过程能力严重不足
采取紧急措施
SPC统计过程控制
基本统计计量说明
6. 标准偏差s 、 指各数据偏离平均值的距离
s
2 ( X i X ) i 1 N
N
的平均数,反映数据离散程度,
总体标准偏差s
( X i X )
i 1
n
2
n 1
样本的标准偏差
如:5,9,10,4,7, 如:7,7,7,6,8, s=2.28; s=0.63;
式来影响过程的输出。如果系统内存在变差的特殊原因,随时 间的推移,过程的输出将不稳定。 如设备故障,原材料不合格,没有资格的操作工、未按照 作业指导书操作、工艺参数设定不对等。
二、基本的统计概念-波动 波动的区别 存在性 方向 影响大小 消除的难 易度 小 难
普通原因 始终
偏向
特殊原因 有时
或大或小 大
二、基本的统计概念-正态分布 正态分布-普通原因产生的变差
二、基本的统计概念-正态分布 正态分布-特殊原因产生的变差
二、基本的统计概念-CP&CPK指数 制程能力分析前提 过程处于统计稳定状态 过程中测量值服从正态分布 测量变差相对较小,一般可以忽略不计 工程及其他规范准确地代表顾客的需求, 设计目标值位于规范中心
的比率为99.73%。分散
幅度6 σ表示该工序具有 的实际加工精度。
CP值的大小可定量计算出该工序的不合格率,可反 映工序品质水平。
二、基本的统计概念-CP&CPK指数 CP值分析
过程刚好满 足规格要求 均值位移将 导致产品超 出规格
过程无法满 足规格要求 均值位移将 导致更多产 品超出规格
过程满足规格要求 小的值位移将导致 产品不会超出规格
SPC-过程能力分析
统计过程控制(SPC )一、 基本概念1. 变差1.1 定义:过程的单个输出之间不可避免的差别。
1.2 分类:1.2.1 固有变差(普通变差):仅由普通原因造成的过程变差,由σR/d 2来估计。
1.2.2 特殊变差:由特殊原因造成的过程变差。
1.2.3 总变差:由于普通和特殊两个原因造成的变差,σS 估计。
2.过程2.1 定义:能产生输出—- 一种给定的产品或服务的人、设备、材料、方法和环境的组合。
过程可涉及到我们业务的各个方面,管理过程的一个有力工具,即为统计过程控制。
2.2 分类:2.2.1 受控制的过程:只存在普通原因的过程。
2.2.2 不受控制的过程:同时存在普通原因及特殊原因的过程。
又称不稳定过程。
3.过程均值: 一个特定过程的特性的测量值,分布的位置即为过程平均值,通常用X 来表示。
4.过程能力:一个稳定过程的固有变差( 6σR/d 2)的总范围.5.过程性能:一个过程总变差的总范围( 6σS ).6.正态分布:一种用于计量型数据的、连续的、对称的钟型频率分布,它是计量型数据用控制图的基础,当一组测量数据服从正态分布时,有大约68.26%的测量值落在平均值处正负一个标准差的区间内,大约95.44%的测量值将落在平均值处正负二个标准的区间内。
这些百分数是控制界限或控制图分析的基础,而且是许多过程能力确定的基础。
7.统计过程控制:使用诸如控制图等统计技术来分析过程或其输出以便采取适当的措施来达到并保持统计控制状态,从而提高过程能力。
ˆˆˆˆ8.措施8.1 定义:减小或消除变差的方法。
8.2 分类:8.2.1 局部措施:用来消除变差的特殊原因,由与过程直接相关人员实施,大约可纠正15%的过程问题。
8.2.2 对于系统采取措施:用来消除变差的普通原因,要求管理措施,以便纠正,大约可纠正85%的过程问题。
9.标准差: 过程输出的分布宽度或从过程中统计抽样值(如:子组均值)的分布宽度的量度,用希腊字母σ或字母S(用于样本标准差)表示。
统计过程控制及过程能力
过程控制和过程能力
3类(符合要求,不受控)
有相对较小的普通原因及特殊原因变差。 如果存在特殊原因已经明确但消除具影响可能不太
经济,客户可能接受这种过程状况。
4类(不符合要求,不受控)
存在过大的普通原因及特殊原因的变差。 需要进行100%检测以保障客户利益。 必须采取紧急措施使过程稳定,并减小变差。
一种在第一步就可以避免生产无用的输出,从 而避免浪费的更有效的方法是--预防
SPC强调全过程的预防!
8
基本统计概念
统计学(Statistics)
收集、整理、展示、分析解释统计资料 由样本(sample)推论母体群体(population) 能在不确定情况下作决策 是一门科学方法、决策工具
(中位数图)
计数型数据的控制图
P图(不合格品率图)
np图(不合格品数图)
c图(不合格数图)
u图(单位产品不合格数图)
47
控制图的使用策划
作控制图需要按以下步骤:
计划 资源 评估和改进
48
控制图的使用策划
要点
建立适于采取措施的环境 确定过程 确定待管理的特性
9.94 9.81 9.85 10.11 10.24 10.17 9.83 10.33 10.39 9.64
10.42 10.13 9.61 10.03 10.60 10.00 9.55 10.15 10.16 9.88
10.30 10.21 10.03 10.15 9.58 10.09 9.87 9.91 9.73 10.02
40
过程控制和过程能力
判断一个过程是否满足规格要求: 能力指数-Cpk 性能指数-Ppk
SPC过程控制精选全文完整版
可编辑修改精选全文完整版1.统计过程控制SPC即统计过程控制。
是利用统计方法对过程中的各个阶段进行控制,从而达到改进与保证质量的目的。
SPC强调以全过程的预防为主。
也是中国人民武装警察部队特种警察学院的简称,该学院又叫做武装特警学院.它是训练特种兵的学院,同时还是执行任务的机构.目录一、spc的基础知识1.关于控制、过程、统计2.特性及其分类3.统计学基础二、spc的基本原理4.过程的理解与过程控制5.波动及波动的原因6.局部措施和系统措施三、统计过程的控制思想1.正态分布简介2.统计控制状态及两种错误3.过程控制和过程能力4.过程改进循环四、控制图类型1.控制图应用说明2.控制图的定义和目的3.控制图解决问题思路4.控制图益处5.控制图分类6.控制图的选择五、建立计算型控制图的步骤和计算方法1.均值和极差图2.均值和标准差图3.中位数和极差图4.单值和移动极差图六、计数型控制图与过程能力指数1.过程能力解释前提2.过程能力的计算3.过程能力指数4.过程绩效指数七、过程判异准则以下是常用的八项判异准则:1、一点落在A区以外;2、连续9点落在中心线同一侧;3、连续6点递增或递减;4、连续14点相邻点上下交替;5、连续3点有2点落在中心线同一侧的B区以外;6、连续5点中有4点落在中心线同一侧的C区以外;7、连续15点在C区中心线上下;8、连续8点在中心线同侧。
SPC统计过程控制1、前言─SPC的由来、发展和基本要求2、识别关键控制点3、数据变异的衡量和分析· 直方图4、数据的动态变异· 控制图4.1、随机波动与异常波动4.2、ISO 8258:1991《休哈特控制图》(Control Chart)要点4.3、常规控制图的类型和实例s 控制图的结构和概念解释s 控制图类型和用途1) X平均与极差图(均值—极差控制图、均值—标准差控制图、中位数—极差控制图、单值—移动极差控制图)s 结构和应用流程s 举例2) I和MR控制图s 结构和应用流程s 举例3) 离散U、C、P、NP控制图s 结构和应用流程s 举例s 如何收集数据s 采样及数据收集s 设定和维持控制界限4.4、控制图制订和使用中的若干实际问题4.5、现代控制图技术案例5、过程能力与过程性能(Process Capability / Performance)分析以及相应的指数CPK、PPK的应用6、过程能力/性能的保证和提高---查找原因采取纠正/预防措施的逻辑推理工具s 5M1E要素s 分层法与排列图s 用于因果关系和逻辑关系分析的非数字资料方法工具: 因果图、系统图与“5Why分析表”、关联图、故障树分析(FTA)、过程决策程序图(PDPC)法7、如何实现有效的SPC现场控制s 受控的标准s 流程失控的表现s 失控的现场应对s 练习制作控制图进行失控分析s SPC实施中现场“看得见管理”应用的直观显示图表8、SPC的效果评估的方法s 显著性检验s 统计抽样检验9、回归分析s 一元线性回归分析s 曲线回归s 双列相关分析10、方差分析s 方差分析的基本概念及其应用s 方差分析在MSA(测量系统分析)中的应用s 多重比较:q检验11、试验设计(Design of Experiment, DOE) --介绍正交试验设计12、SPC项目的开展(SPC在QCC/QIT、6Sigma项目活动中的应用)如何创建SPC系统1、关键流程的确定2、稳定工艺过程3、过程能力的测定和分析4、确定控制标准5、选择和建立控制图6、制定反馈行动计划7、MSA测量系统分析8、SPC应用的有效性评估9、SPC应用的团队活动10、案例分析及实施疑难探讨SPC的有效实施一、原因分析目前我们国内许多企业也开始逐步认识和推广SPC,但并没有达到预期的效果,为什么呢?究其原因,主要可以分为以下几点:1、企业对SPC缺乏足够的全面了解2、企业对实施SPC的前期准备工作重视不够3、未能有效地总结和借鉴其他企业的经验二、改进对策针对以上原因,要保证SPC实施成功,企业应重视如下几方面的工作:1、领导的重视2、工程技术人员的认识和重视3、加强培训4、重视数据5、实施PDCA循环,达到持续改进统计工序控制即SPC(Statistical Process Control)。
SPC过程能力分析
SPC过程能力分析简介统计过程控制(Statistical Process Control,SPC)是一种对生产过程中的变化进行监控和改进的方法,通过收集和分析过程数据,可以评估过程的稳定性和能力,帮助企业实现质量的持续改进。
本文将介绍SPC过程能力分析的概念、目的和常用的分析方法。
其中包括控制图的应用和过程能力指数的计算。
SPC过程能力分析的目的SPC过程能力分析主要用于评估和改善生产过程的能力,以确保产品质量的稳定性和一致性。
通过分析过程数据,可以判断生产过程是否处于统计控制下,并确定其能力是否能够满足产品的质量要求。
具体目的包括:1.评估过程的稳定性:通过控制图的应用,可以判断过程是否处于统计控制下,即过程数据是否在可接受的变异范围内。
2.评估过程的能力:通过计算过程能力指数,可以评估过程的能力是否满足产品质量要求,以及可能存在的改进空间。
3.改进过程的稳定性和能力:基于对过程的分析,可以制定相应的改进措施,以提高过程的稳定性和能力。
SPC过程能力分析的方法控制图的应用控制图是SPC过程能力分析中最常用的工具之一,用于监控和分析过程数据的变化。
常见的控制图包括:1.均值-范围控制图(X-bar R chart):用于监控连续型数据的均值和范围,判断过程是否处于统计控制下。
2.均值-标准差控制图(X-bar S chart):与X-bar R chart类似,用于监控连续型数据的均值和标准差。
3.离散型数据控制图(p chart、np chart、c chart、u chart):用于监控离散型数据的比例、数量或计数。
4.过程能力控制图(Cp、Cpk chart):用于评估过程的能力是否满足产品质量要求。
控制图通过将过程数据与控制限进行比较,可以判断过程是否出现特殊因素或异常情况,并及时采取措施进行改进。
过程能力指数的计算过程能力指数可以提供有关过程能力的定量指标,用于评估过程的稳定性和能力。
统计过程控制SPC
二、统计基础知识
4、泊松分布 泊松分布与二项分布有联系,当某事件发生的概率很小,取样数很大,二项分布
→泊松分布
P(x;λ )
上式中共四项。第一项 是确定的
第二项
第三项(Pn)k=λk
Pn=λ
第四项 n→? 时 (1- )n→e-λ
(1- )-k→1
泊松分布的概率函数为 P(x)= λe-λ
01
2
…
3、二项分布
设一批产品或某一工序不合格品率 P。随机抽取若干样品进行检查,样本量 n. 检查 结果只能是合格或不合格,每次抽样结果互不影响。 合格品率 Q=1-P
每次抽样所得不合格品数为 x , 抽得 x 个不合格品数的概率为 P(x) 当 n=1,2,3,……时可得下列分布
n=1
n=2
n=3
n=4
通常为 0 和 1 之间的一个数值。 (2)必然事件:在一定条件下要发生的事件。
如:水在一个标准大气压下0o时要结冰,其概率是 100%。 (3)不可能事件:在一定条件下肯定不发生的事件。 如: 一批产品质量特性完全相同,电灯泡的寿命达 到无穷大,其概率是 0 。 (4)随机事件:在一定条件下可能发生也可能不发生 的事件 如:加工轴要求 Φ20±0.05 轴的尺寸可能大于20 , 也可能小于20,可能是合格,也可能是不合格事先不 知,测量后才知。
或Ф(1.18)= 1-Ф(1.18)
二、统计基础知识
④ p(a≤≤b)=Ф(b)- Ф(a)
4.-0.75 ≤≤1.18 的概率
p(-0.75≤≤1.18)=Ф(1.18)- Ф(-0.75)
⑤ p(||≤a)=2Ф(a)-1
5. ||≤1.18 的概率 p(||≤1.18) =Ф(1.18)-Ф(-1.18) =2Ф(1.18)-1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基本统计概念
❖ Mo 众数(mode) 众数是总体中出现次数最多或最普遍的标
志值,即频次或频率最大的标志值。数列中 最常出现的标志值说明该标志值最具有代表 性。
13
基本统计概念
2
❖
方差/变异(variance)
n
2i 1fin (x i1 x)2n1 1[x1 (x)2(x2x)2 (xnx)2]
统计过程控制(SPC)
1、SPC的发展史 2、基本统计概念 3、过程变差 4、控制图 5、过程控制和过程能力
1
SPC的发展
❖ 20世纪20年代,美国休哈特提出; ❖ 二战后期,美国将休哈特方法在军工部门推
行; ❖ 1950~1980,逐渐从美国工业中消失 ;休哈
特的同事戴明博士在日本推行SPC; ❖ 在日本强有力的竞争下,80年代起,美国又
14
基本统计概念
❖
标准差(standard deviation)
n
i 1fin (x i1 x)2n 1 1 [x ( 1 x)2 (x2 x)2 (xn x)2]
15
基本统计概念
❖ 例:
1,1,2,3,4,6,11
❖ R=10
X 4
❖ Md=3
Mo=1
2 12.67
❖
❖ 3.56
❖ Imagine for one brief moment that each of the one hundred and forty-one words of this paragraph is a separate component from a first run of fourteen-inch flywheels. You are one of five inspectors performing the final inspection of these finished components which were produced on fairly small dial index machines that are not being controlled by the use of statistical techniques. As can be expected from an operation of this nature , there are a number of defectives components being made .Each word that contains an f represents a defective component. How many of the defectives are you able to find? Check again and inspect for the present ’s off ’s. Write your final count in the bottom left hand corner of this page .This example should give you a fair idea of how reliable
重新大规模推行SPC; ❖ 美国三大汽车厂联合制定QS9000标准。 2
SPC的作用
❖ 1、确保制程持续稳定、可预测。 ❖ 2、提高产品质量、生产能力、降低成本。 ❖ 3、为制程分析提供依据。 ❖ 4、区分变差的特殊原因和普通原因,作为采
取局部措施或对系统采取措施的指南。
3
基本统计概念
4
F字母计数练习
16
精品资料网
练习
数列:12,11,12,13,18,30,24,9
请计算下列统计量X :
Md
Mo
2
17
数据的收集与整理
群体
行 动
抽样
样本
测 试
结论
分析
数据
18
每件产品的尺寸与别的都不同
范围
范围
范围
范围
但它们形成一个模型,若稳定,可以描述为一个分布
范围
范围
分布可以通过以下因素来加以区分
位置
分布宽度
范围 形状
或这些因素的组合
19
数据收集
10.24 10.21 10.01 10.15 9.73 10.12 9.49 10.27 10.09 9.79
9.94 9.79 10.36 9.76 9.82 9.97 9.97 10.18 10.33 9.94
100%inspection can be.
请用1分钟,彻底检查一次,看看字母“F”出现的次数
答案=?
5
F字母计数练习
❖结论:
100%的检验不能保证100%的合格
6
精品资料网
预防与检测
❖ 过去,制造商经常通过生产来制造产品,通 过质量控制来检查最终产品并剔除不合格产 品。在管理部门则经常靠检查或重新检查工 作来找出错误,在这两种情况下都是使用检 测的方法,这种方法是浪费的,因为它允许 将时间和材料投入到生产不一定有用的产品 或服务中。
R=Xmax-Xmin
10
精品资料网
统计基本概念
x( )
❖
算术平均数(arithmetic mean)
n
fixi
x i1 n
11
基本统计概念
❖ Md 中位数(median)
将总体单位数量标志的各个数值按照大小顺 序排列,居于中间位置的那个数值称为中位数。 ❖ 当资料项数n为奇数,数列中只有一个居中的标志 值,该标志值就是中位数。 ❖ 当n为偶数时,数列中有两个居中的标志值,中位 数便是中间两个标志值的简单算术平均数。
8
统计量
❖R
❖ x( )
❖ Md ❖ Mo
❖ 2
❖
基本统计概念
全距(range) 算术平均数(arithmetic mean) 中位数(median) 众数(mode) 方差/变异(variance) 标准差(standard deviation)
9
基本统计概念
❖ R 全距(range)
全距是指一个变量数列中最大标志值与最小标志 值之差。因为它是数列中两个极端值之差,故又称为极 差。
❖ 一种在第一步就可以避免生产无用的输出, 从而避免浪费的更有效的方法是--预防 7
基本统计概念
统计学(Statistics)
❖ 收集、整理、展示、分析解释统计资料 ❖ 由样本(sample)推论母体群体(population) ❖ 能在不确定情况下作决策 ❖ 是一门科学方法、决策工具
x 推论
抽样