连续介质力学(固体力学)讲解

合集下载

连续介质力学讲义

连续介质力学讲义
3.时空系
时间和空间是运动物体的客观存在形式,离开空间和时间来讨论物体的存在和运动是没 有意义的。空间表示物体的形状、大小和相互位置的关系;时间表示物体运动过程的顺序。
标架:作为描写物体运动的基准——时空系,称为标架。 位置变化是可逆的;时间变化是不可逆的。 但在讨论一些理想化的可逆模型时,有时时间也理想化成可逆的。 时空系之间可转换。
第 1 章 绪论
1.物体
在某一确定的瞬时,物体具有一定的几何形状,并有一定的质量。同时物体还可具有 电磁、热容和变形等许多重要的性质。
物体由质点组成,质点占据非常小的确定的空间,具有非常小的确定的质量。 物体可以抽象成各种模型:如质点,刚体、弹塑性体、流体、颗粒体等;按几何性质还 可分为质点、一维的弦和杆、二维的板壳、三维的块体等。若干个物体可以形成集合,组成 系统。系统外的物体构成这个系统的环境或外界。
且不全为零)。
a2
例 2 位于同一平面内的三个矢量 a1 ,a2 ,a3 是线 性相关的,即总可找到α1 ,α 2 ,α 3 (不全为零)使
α1a1 + α2a2 + α3a3 = 0 如图 2.1.2 所示, a2 = α1′a1 + α3′a3 。
集合 R 内线性无关元素的最大个数称为集合或空
间的维数。设 R 的维数为 n ,则记为 Rn ,欧氏空间为 R3 。
∑ ∑ r =
ξ a = (1) (1) ii
ξ a (2) (2) ii
(2.1.3)
因为
a (1) i

ai(
2)
间有确定的变换关系,因此,
ξ
(1) i

ξ
(2) i
间亦有确定的变换关系。
④ 空间的基往往与坐标系相关连,每一种坐标系有一个与之对应的确定的基,(2.1.2)

柯西连续介质力学

柯西连续介质力学

柯西连续介质力学柯西连续介质力学是研究连续介质中力学性质的一门学科。

它是经典力学的一个重要分支,广泛应用于固体力学、流体力学和弹性力学等领域。

柯西连续介质力学的基本原理是质点力学的推广,通过对物质的宏观运动进行描述,揭示了连续介质中的力学行为。

柯西连续介质力学的基本假设是将连续介质看作是由无数微小质点组成的,这些微小质点之间相互作用,从而导致介质的宏观性质。

在研究过程中,我们通常将连续介质分为固体和流体两类。

在固体力学中,柯西连续介质力学描述了固体的弹性性质。

根据固体的变形情况,我们可以将其分为线弹性、平面弹性和体弹性。

线弹性是指固体在受力作用下只发生轴向的变形,而不发生横向的变形;平面弹性是指固体在受力作用下只在一个平面内发生变形;体弹性是指固体在受力作用下发生三维的变形。

根据固体的弹性性质,我们可以推导出应力-应变关系,从而计算固体在受力作用下的应力和变形。

在流体力学中,柯西连续介质力学描述了流体的运动性质。

流体可以分为牛顿流体和非牛顿流体。

牛顿流体是指流体的粘度恒定,其流动遵循牛顿流体力学方程。

而非牛顿流体的粘度随着流动状态的改变而变化,其流动则需要引入非牛顿流体力学方程。

通过柯西连续介质力学,我们可以推导出流体的连续性方程、动量方程和能量方程,从而描述流体的运动规律。

柯西连续介质力学的研究对象不仅包括固体和流体,还包括其他的连续介质,例如粉末、泡沫等。

在研究过程中,我们需要考虑介质的宏观性质,如密度、体积、形状等,以及介质内部的微观结构和相互作用。

柯西连续介质力学的应用十分广泛。

在工程领域,它被用于设计和分析各种结构和器件的力学性能,如桥梁、建筑物、飞机等。

在地震学领域,它被用于研究地震波的传播和地壳的变形。

在生物医学领域,它被用于模拟和分析生物组织的力学行为,如骨骼、肌肉、血管等。

在石油工程领域,它被用于预测油田的产能和储层的力学性质。

柯西连续介质力学是研究连续介质中力学性质的一门学科,广泛应用于固体力学、流体力学和弹性力学等领域。

第六章 连续介质力学方法

第六章  连续介质力学方法

第六章连续介质力学方法连续介质力学方法的出发点是支护结构与围岩相互作用,组成一个共同承载体系,其中围岩是主要的承载结构,支护结构是镶嵌在无限或半无限介质孔洞上的加劲环。

它的特点能反映出隧道开挖后围岩的应力状态。

解析法:即根据所给定的边界条件,对问题的平衡方程、几何方程和物理方程直接求解。

由于数学上的困难,现在还只能对少数问题求解。

数值法:主要是指有限元法。

它把围岩和支护结构都划分为若干单元,然后根据能量原理建立单元刚度矩阵,并形成整个系统的总体刚度矩阵,从而求出系统上各个节点的位移和单元的应力。

它不但可以模拟各种施工过程和各种支护效果,同时可以分析复杂的地层情况(如断层、节理等地质构造以及地下水等)和材料的非线性等。

6.1 解析法以均匀内压水工隧洞的计算为例,说明解析法计算的基本思路。

(1)衬砌应力的分析水工隧洞衬砌厚度一般在20 cm以上、故力学分析中可将其视为厚壁圆筒。

如图6.1.1 (a)所示。

在均匀内水压力作用下,厚壁圆筒的内力分析是轴对称问题。

衬砌的径向应变为:近似按平面应变问题分析衬砌,则由平面问题极坐标解的物理方程可写为:作用在单元体上的外荷载为零,且在轴对称情况下单元体内力分量中的剪应力也为零,故根据平面问题极坐标解的静力平衡力程式,有:(2)洞室围岩应力分析均匀内力圆形水工隧洞围岩的应力仍可采用厚壁圆筒原理。

由式(6.1.16)可知:内水压力使围岩产生的切向应力σt是拉应力。

若σt 的量值大于围岩中原来存在的压应力,且差值超过岩体的抗拉强度,则当衬砌抗拉强度不足时岩体将与衬砌一起发生开裂。

将式(6.1.16)中的r0理解为毛洞半径,Pa理解为内压力,则该式就成为无衬砌圆形水工隧洞围岩应力的计算式。

(3)衬砌与围岩共同作用的计算分析均匀内力圆形水工隧洞围岩的应力仍可采用厚壁圆筒原理。

求得λ值以后,由式(6.1.11)、( 6.1.16 )即可算出衬砌与围岩的应力。

6.2 数值法由于岩体材料的复杂性〔非均质、各向异性、非连续、时间相关性等)以及结构几何形状和围岩初始应力状态的复杂性,使得在地下工程的应力应变分析中,难以采用解析法。

清华大学计算固体力学第三次课件_连续介质力学

清华大学计算固体力学第三次课件_连续介质力学


当参考构形与初始构形一致时,在 t = 0 时刻任意点处 的位置矢量 x 与其材料坐标一致
X x X , 0 Φ X , 0
一致映射
X Φ ,t
材料坐标 X i 为 常 数 值 的 线 被 蚀 刻 在 材 料 中 , 恰 似 Lagrangian网格;它们随着物体变形,当在变形构形中观察时, 这些线就不再是 Cartesian 型。这种观察方式下的材料坐标被 称为流动坐标。但是,当我们在参考构形中观察材料坐标时, 它们不随时间改变。建立的方程,是在参考构形上观察材料坐 标,因此以固定的 Cartesian 坐标系推导方程。另一方面无论 怎样观察,空间坐标系都不随时间变化。
T Ω R R
角速度张量或角速度矩阵 偏对称张量也称作反对称张量
二维问题
0 0 3 12 Ω 0 3 12 0
动力学教材中的刚体运动方程
v x ω x x v T T
2 变形和运动
推导并解释极分解原理,检验Cauchy应力张量的 客观率,也称作框架不变率。解释了率型本构方程要 求客观率的原因,然后表述了几种非线性有限元中常 用的客观率。
2 变形和运动
连续介质力学的目的就是提供有关流体、固体和组织结 构的宏观行为的模型。 它们的属性和响应可以用空间变量的平滑函数来表征, 至多具有有限个不连续点。它忽略了非均匀性,诸如分子、
面积坐标
y y x y x 1 23 x 23 x 2 3 3 2 1 y ξ y x x y x y 2 3 1 1 3 3 1 1 3 2 A y y x y 1 3 12 x 21 x 1 2 2 1

连续介质力学

连续介质力学

连续介质力学的应用领域包括:工 程力学、流体力学、固体力学、生 物力学等。
连续性假设:假设介质是连续的没 有空隙或裂缝
各向同性假设:假设介质在各个方 向上都是相同的
添加标题
添加标题
添加标题
添加标题
均匀性假设:假设介质在各个方向 上都是均匀的
小变形假设:假设介质的变形很小 不会影响其物理性质
流体:不可压缩、连续、无固定形状的 物质如空气、水等
多尺度连续介质力学:研究不同尺度下的连续介质力学问题如分子动力学、介观力学等
跨学科连续介质力学:与其他学科交叉如生物力学、环境力学等
计算连续介质力学:发展高效的计算方法和软件解决复杂问题如流体动力学、固体力学 等
PRT SIX
连续介质力学是研究流体和固体力学 的重要学科
连续介质力学的特点包括:连续性、 守恒性、对称性等
研究方法:数学模型、数值 模拟、实验验证等
研究对象:连续介质如液体、 气体、固体等
基本概念:应力、应变、位 移、速度、加速度等
应用领域:工程力学、流体 力学、固体力学等
PRT THREE
弹性力学的定义:研究弹性体在外力作用下的变形和应力分布的学科 弹性力学的基本假设:连续性假设、小变形假设、均匀性假设、各向同性假设 弹性力学的基本方程:平衡方程、几何方程、物理方程 弹性力学的应用:工程结构设计、地震工程、材料科学等
,
汇报人:
CONTENTS
PRT ONE
PRT TWO
连续介质力学是研究连续介质(如 液体、气体、固体等)在力作用下 的变形、流动和应力分布的学科。
连续介质力学的研究内容包括:应 力、应变、变形、流动、热传导等。
添加标题
添加标题
添加标题

力学讲义第六章连续介质力学

力学讲义第六章连续介质力学

第六章 连续介质力学连续介质模型:物质(气,液,固)连续地分布在它们所占有的区域内连续介质质元: 宏观小, 微观大物质讨论宏观力: 包括外力以及外力作用下形变or 运动引起内部的弹性恢复力 讨论内力的一般方法:假想将其切开,切下部分的作用由内力代表;由平衡条件求力.例: (不计重力)连续介质是比质点、刚体更普遍的经典力学模型,应用也最普遍。

物理状态量在连续介质模型下成为点函数. 不计微观内力 §6.1 应力和应变6.1.1 应力固体为例截面π , 方位 n ; P 处邻域 ∆S 上 张力∆TP 处应力σ = lim ∆∆ TS = d T /dS =σ(P, n ) =σt +σn正应力(法向应力, 张力) σn 单位:P a (压强)(>0为拉应力 ; <0为压应力) 剪应力 (or 切应力) σt应力状态:对同一点P 处,方位不同的截面上应力σ不同。

函数关系σ=σP ( n)叫P 处的应力状态. 由平衡方程可以证明,互相垂直的三个截面上的6个应力(正,切应力)就可以完全决定一点处的应力状态 (由此6个应力可以计算出该处任意方位截面上的应力)应力主面: 该面上只有正应力, 称为主应力. 一点处必有三个互相垂直的应力主面6.1.2 应变固体有两种基本的应变形式:线(拉,压)应变 ;剪应变1. 线应变 ε均匀形变 : 长度l , 总形变∆l (截面法向x ) 则 εx = ∆l / l形变不均匀:一点处位移uAB 段形变=∆u x =u x (x+∆x) -u x (x)=∂∂u xx∆x A 处x 方向线应变εx = lim (∆u x /∆x) = ∂u x / ∂x类似: y 方向线应变 εz =∂u y / ∂y z 方向线应变 εz =∂u z / ∂z 一般情况下应变也是点函数, 不均匀形变时各处应变也不相同.应变是位移的空间变化率(位移的偏导数)2. 剪应变以xy 平面为例, 矩形 → 菱形定义:A 点剪应变(xy 平面上,小变形)为 εt = lim (δ1+δ2)= ∂u x /∂x + ∂u y /∂y δ1 ≈tan δ1=B’B’’/A’B’’=[u y (x+∆x) -u y (x)]/∆x → ∂u y /∂x 类似, 当 ∆x →0 , ∆y →0时 , δ2 → ∂u x /∂y3. 体应变均匀形变时, 体应变 εV = 体积增量/体积 =∆V / V不均匀形变时, 讨论一点处体应变一点附近小长方体(∆x,∆y,∆z) 小形变后为[(1+εx )∆x ,(1+εy )∆y, (1+εz )∆z] V=∆x ∆y ∆z ∆V ≈(εx +εy +εz )∆x ∆y ∆z 小变形 εV =εx +εy +εz 剪应变引起的体应变为高阶小量.自然状态无内力内力与外力平衡F F 内∆S →0 ∆x →0∆x →0∆y →0 y+∆侧平面)∆ll x∆x)6.1.3 胡克定律——应力和应变的关系 1678年胡克提出单向拉伸时 ε ∝ σ , 后来推广到三维 (实验定律) 1. 单一正应力引起的线应变 σx 引起 纵向线应变 εx = σx /Y 横向线应变εy =εz = -μεx = -μσx /Y Y —杨氏模量(压强量纲)μ ——泊松比(无量纲) 0≤ μ ≤ 0.5 σy , σz 的贡献类似 2. 总线应变与正应力的关系——广义胡克定律(在一定的形变范围内—比例极限) εx =1Y [σx -μ(σy +σz )] εy =1Y [σy -μ(σx +σz )] εz =1Y [σz -μ(σx +σy )] 3. 体应变与正应力εV =εx +εy +εz =(1-2μ)(εx +εy +εz )/Y ≡ σ0/K σ0≡(σx +σy +σz )/3 K=Y/[3(1-2μ)] K —体弹性模量 由4. 剪应变与剪应力εt =σt /G G —剪切弹性模量5. 各向同性固体只有两个独立的弹性模量, Y 、G 、K 、μ中只有两个独立K= Y / [3(1-2μ)] G=Y /2(1+μ) < Y一般 μ ≈ 0.35 G 、K 、Y 的量级为1010 —1011 P a , 差别不太大部分材料的弹性模量材料 铝 铜 金 电解铁 铅 铂 银 熔融石英 聚苯乙烯 K 7.8 16.1 16.9 16.7 3.6 14.2 10.4 3.7 0.41 G 2.5 4.6 2.85 8.2 0.54 6.4 2.7 3.12 0.133 Y 6.8 12.6 8.1 21 1.51 16.8 7.5 7.3 0.36 μ 0.355 0.37 0.42 0.29 0.43 0.30 0.38 0.17 0.353 说明: K 、G 、Y 的单位 为1010P a补充题4. 矩形截面杆在轴向拉应力σz =2.0⨯105 P a作用下变形,已知Y=19.6⨯1010 P a , μ=0.3 .求:εV 补充题5. 矩形悬臂梁的一端有作用力P.已知l =2 m, h=20cm,梁宽b=5 cm ,P=1000kg 力, 求梁内最大正应力§6.2 固体拉伸.弯曲.扭转讨论三种情况下的应力状态,计算应力与应变 6.2.1等截面直杆的拉压 圆形截面直杆;两端均匀压强p (拉>0;压<0)横截面 σz =p σt =0 应力状态: 与z 轴互垂两面上 σR =σφ=0 ——单向应力状态 ∴ σz =p= Y εz = Y ∆l / l 均匀形变 弹性形变势能: E P = ⎰ F 外du = ⎰0∆lSY u ldu=YS ∆l 2 / 2l u 为z 方向位移, S 为横截面积(近似不变) 弹性形变势能密度 e P =E P /V=12Y εz 2 =12σz εz (也适于不均匀形变) 说明:其他均匀截面直杆σR ≈0 σφ≈0 可以近似按圆杆处理6.2.2 矩形梁纯弯曲矩形梁(高h,宽b) 力偶矩M纵向画线弯曲:上短—压; 中不变—中性面; 下长—拉横截面上 σx , σt =0应力状态: σy =σz =0——单向应力状态M ⇒ 应力σx , 形变θ0P 处:εx= lim (PP’-oo’)/oo’= lim[(ρ+y)∆θ-ρ ∆θ]/ρ ∆θ=y/ρ σx =Y εx =Yy / ρ ∝ y 下面求ρ 横截面上:∑F =0 (∴中性面正在中点)∆θ→0 ∆θ→0 p z φM 内= ⎰y σx dS = Y ⎰ y 2 dS /ρ ≡YρI z =(应该)= M ——柏努力. 欧勒定律∴ Y/ρ = M/I z σx =M I z y σx max =M I z 2h ρ=YI z /M θ0 = l /ρ(θ0 为转角,代表形变;l 为中性面的长度) 定义对z 轴惯性矩 I z ≡ ⎰y 2 dS 对矩形截面 I z =2b ⎰02h /y 2dy =112bh 3 为节约材料:h ↑ , b ↓ ; 减少中性层还有鸟骨、麦杆…说明:(1)其他形状截面的梁在力偶矩作用下弯曲时,σy ≠ 0 σz ≠0, 非单向应力状态,但σy ≈0 σz ≈0 ,与单向应力状态偏差不大,可以近似按单向应力状态计算(2)非力偶矩作用时,一般可以忽略剪应力,近似按纯弯曲处理:(不计重力) 悬臂梁M 内=M(x)=P(l -x)简支梁 x ∈(0,l /2) M 内=M(x)= P x/2仍有: σx (x)=M(x) y/I z ρ(x) =YI z / M(x) 注意:σx (x),ρ(x),M(x)不再是常数 (3)仍有:e P =12Y εz 2 =12σz εz6.2.3 圆柱扭转表面画上圆周和母线圆周线不变, 横截面保持平面——横截面上 σtR =0应力状态: 横截面上 σt =σt φ σz =0 (只有M) σR =σφ=0 横截面上形变:圆周处εt (R)=R φ /h r 处εt (r)=r φ /h ∴ σt (r)=Gr φ /h ∝ r下面求φ M 内= ⎰ σt r dS = ⎰0R σt r 2πrdr=12h πGR 4φ ≡D φ =(应该)=M ∴G φ/h=2M/(πR 4) σt (r)= G φr/h M=D φ ∴ σt (r)=24M R πr σt max (r)=2M /πR 3 φ=M/D 扭转弹性系数 D=πGR 4/2h (悬丝扭矩 M=D φ D ∝ R 4/h ) 扭转弹性势能E P = ⎰0φM d φ=D φ2 /2 可证e P =12G εt 2 =12σt εt6.2.4 允许应力.强度计算1. 只有正应力or 剪应力材料极限应力(正or 剪)σj , 许可应力[σ]=σj /K 安全系数=1.4—3.0 — 14材料 屈服极限σs 强度极限σb 许可应力 [σ] (kg/cm 2)A 3 2200—2400 3800—4700 1700 16Mn 2900—3500 4800—5200 2300 300#水泥 拉21,压210 拉6,压105 红松(顺纹) 拉981,压328 拉65, 压100 注:A 3—普通低碳钢 16 Mn —低合金钢 常温、静态、一般工作条件材料中最大应力(正or 剪) 应满足 σmax ≤ [σ] 2. 复杂应力情况——按相应的强度理论计算§6.3 流体静力学——流体力平衡下内应力的分布 流体:液,气; 具流动性; 主要讨论液体; 设: 连续、均匀6.3.1 静止流体内应力δσt1. 一点处应力状态σt≡0 只有正应力σ , 且正应力大小与截面无关σ( n)≡σ证: 因为可流动流体静摩擦力=0 ∴σt≡0如图四面体受力平衡设S面上正应力为σ ,x向Sσ⋅x -σx S x=0σ=σ n S=S n S x=S ⋅ x∴σx S x=Sσ⋅x =σS⋅x= σS xσx=σ类似σy=σ=σzx,y,z任选, ∴任意截面上的正应力的大小皆为σ由四面体受力平衡, 从三个坐标平面的应力⇒任意截面S上的应力. 注意:忽略了体积力2. 流体内压强定义:流体内压强为P= -σ(流体中一般没有拉应力,∴σ<0 P>0)说明:(1)压强为标量,严格定义P= -σ0 = (σx+σy+σz) /3(2) 由一点处应力状态, σ与方位无关∴P与方位无关(3) 从证明知,关键σt=0 . 所以对理想流体(无内摩擦)在流动(包括加速流动)时结论也对(4)对粘滞性流体流动时有剪应力,各截面σ不相同.但若σt较小可以忽略,各截面正应力近似相等为σ , P ≈-σ(5) 流体中负压强(拉应力).特定条件(稳定,缓慢过程)下,流体中可出现负压. 水的负压可以达到300atm6.3.2 静止流体平衡方程——临近点处压强关系取小段柱状流体f—单位质量..上的体积外力x向: [P(x) - P(x+∆x)] ∆S + ρ∆S ∆x f x =0∴∂P /∂x = ρf x类似: ∂P /∂y = ρf y ∂P /∂z = ρf z合起来:∇P = (∂P/∂x) x +(∂P/∂y) y +(∂P/∂z) z = ρf 6.3.3 重力场中静流体1. 流体中压强随高度分布小范围g为常矢量f = (∆m g) /∆m =g = g y ∂P/∂x =∂P/∂z = 0 ⇒P与x,z无关, 在同一高度上P相等∂P/∂y = ρg若ρ为常数(液体or高度差不大的气体)积分得:P(y)=P0+ρgy P0=P(0)不同密度液体(鸡尾酒)的稳定分界面为水平面2. 帕斯卡定律定律:加在密闭液体中的压强等值地传到液体中各处以及壁上.解释: 设压强加在o处,使P0等值地改变,但ρgy 保持不变,所以P(y)随P0同样增加.3. 阿基米德定律定律:浸在流体中物体所受浮力等于物体排开的流体的重量证明:设物体外表面为S .流体对物体作用通过压强体现.∴浮力=⎰-Pd S保持S不变,则浮力不变. 将物体换成流体,该流体应处于平衡,即外界对S的压力之和等于流体重量:⎰-Pd S +m g =0∴浮力= -m g 浮力作用点即该流体重心(一般情况下不是物体的重心)附: 等温理想气体压强随高度的分布已知其密度ρ=cP (c为常数)解: dP/dy = -ρg = -cgP ⎰PPdPP= ⎰y-cg dy 得:P(y)=P0e-cgy又例: 以ω匀速转动的水平试管,内部充满流体. 以试管为参考系, 则惯性离心力为体积力,产生径向压强差.§6.4 流体的定常流动6.4.1 描述流体运动的两种方法1. 两种方法拉格郎日法: 认准各个质元,分别描述其运动状态(r i,v i,a i)及其变化规律r i,v i,a i只是t的函数, v=d r/dt , a=d v/dt ; 应用牛顿定律必须用拉格郎日法. 困难:如何认准?如何跟踪?描述不便欧拉法: 讨论流体场(流体性质场)的场分布∆x)主要是流速场v=v(r,t) . 还有a=a(r,t)P=P(r,t) 压强场……2. 欧拉法中质元的加速度质元加速度a = d v/dt (速度全导数or实质导数)是对一个确定质元速度v(即拉格郎日法中的速度v)的导数.流速场v(r,t)在地点不变下对t的偏导数∂v/∂t ≠a (流速场中同一地点不同时刻的v是不同质点的速度)认准m i :a=d v(x,y,z,t)/dt=∂v/∂t+[∂∂vxdx +∂∂vydy+∂∂vzdz]/dt=∂∂vt+v x∂∂vx+v y∂∂vy+v z∂∂vz=∂∂vt+ v ⋅∇v3. 流体流动的图象表示拉格郎日法: 流体质元的实际运动轨迹——迹线流管——流线围成的细管;流束——流管中流体6.4.2定常流动: v与t无关,v=v(r) ;不定常流动: v与t有关定常流动特点:∂v/∂t =0 a = v⋅∇v≠ 0流线不变,与迹线重和∴迹线也不变P,ρ与t无关是否为定常流与参考系有关设迹线如图. V1,2,3为t1,2,3时刻同一质点的速度.若v与t无关,则v也是速度场中1,2,3点的速度,迹线也是流线. 迹线不变则场中质元数不变,∴ρ不变圆柱在理想流体在匀速直线运动. 在静系中流体为非定常流动,在圆柱参考系中为定常流动§6.6 粘滞流体的流体长时间、长距离、相对速度很大时,粘滞性不可忽略主要讨论层流. 层流:流体分层流动,彼此不混淆流体粘滞性的体现:固、液相对运动时出现摩擦力;液体内部流速不同,各层之间出现摩擦力6.6.1流体的粘滞性板A匀速直线运动引起层流,各层之间粘滞力fz层假想剖面∆S, 两侧粘滞力∆f牛顿摩擦定律:(实验定律) ∆f ∝ (dv/dz) ∆S 即∆f = ηdvdz∆Sdv/dz : z方向速度(空间)变化率(速度梯度)η: 粘滞系数(黏度)温度T↑⇒η↓ (液体) η↑(气体)(f本质: 液体主要来自层之间分子力;气体是通过该层交换宏观定向动量)[η]=ML-1T -1SI(MKS)制为Pa ⋅s CGS制为“泊”1泊=0.1 Pa⋅s η/ρ——运动黏度(比黏度)满足牛顿摩擦定律的流体——牛顿流体(否则叫非牛顿流体—少数如血液)6.6.2 粘滞流体的运动规律1. 动力学方程(介绍) 纳维—斯托克斯方程(Nevier,M. , Stokes,G.G.)-∇P+ρf+η∇2 v = ρ (d v/dt)2. 修改后的伯努力方程定常流动,不可压缩,沿流管(有粘滞性) 由功能原理dW粘1→2 +(P1-P2)dV = dE= (dm v22/2+dm gz2)-(dm v12/2+dm gz1)dm=ρdV∴ P1+ρv12/2+ρgz1=P2+ρv22/2+ρgz2 +w12——修正后的伯努力方程∆t)∆t)m i运动轨迹m质点t2t时刻:3流线w 12 = -w 粘1→2 = dW 粘1→2 /dV >0 为单位体积..流体克服..粘滞阻力做的功水平均匀细管中: v,z 相同, P 1 -P 2=w 12=P 2 -P 3=…=P 0’-P 1=ρg(H 1-H 2)=…=ρg ∆H=ρg(H 0’-H 1) ∴P 0’-P B =P 0’-P 0=ρgH 0’=w 细管 将液面A 与出口B 联系:P 0+ρgH 0+0=P 0+0+ρv 2/2+w 细管+w 粗管∴ρv 2/2=ρg(H 0-H 0’) -w 粗管=ρgh 0-w 粗管≈ρgh 0 v ≈(2gh 0)1/2w 细管, w 粗管分别是单位体积流体在细管和粗管中流动克服阻力做的功∴粘滞流体水平均匀流动必有压强差——流水水面不水平 , 熔岩流动高度差很大3. 哈根—泊肃叶(Hagen,G. , Poiseuille, J.L.M.)方程——水平圆管层流哈—泊定律由哈根1839年实验证实, 后为泊肃叶1842年独立发现水平圆管, 定常流动柱坐标(r,φ,z)v z 与r,φ无关v =v z (r)z d v /dt=0忽略体积力f =0 , 流线平行直线, ∴同一横截面上P 相同对小圆柱, 1、2两横截面上对应处速度相同 ∴合外力为零 即 (P 1-P 2)πr 2 + ηdv drz⋅2πr l =0 (f 粘为-z 方向, dv z /dr<0 ∴取 “+”)⎰0v r z ()dv z = ⎰R r -12ηl(P 1-P 2)r drv z (r)= (P 1-P 2)(R 2 -r 2) / (4ηl ) Q V = ⎰ v ⋅ d S = ⎰0Rv z 2πr dr = π(P 1 -P 2)R 4 / (8ηl ) ——哈—泊公式由此可以讨论石油、天然气、水输送问题(管径、压差与流量);隧道、河流的流量…平均流速 v =Q V /S= (P 1 -P 2)R 2 / (8ηl ) P 1 -P 2=8ηv l R -2 ∝ l R -2,l光滑金属管光滑同心环缝滑阀口Re C2000—2300 1100 260例. 日常生活. 水管d=0.025m Re C =2000 1atm 20︒C时η=1.0⨯10 -3Pa⋅ s 则临界水流速v C = ηRe C /ρd = 0.079 m/s∴一般管流为湍流。

连续介质力学中的固体力学问题

连续介质力学中的固体力学问题

连续介质力学中的固体力学问题连续介质力学是研究物质的宏观性质和运动规律的一门学科。

在连续介质力学中,固体力学问题是一个重要的研究方向。

固体力学是研究物体的形状、变形和应力分布等问题的学科,它对于工程学和物理学的发展具有重要意义。

固体力学的研究可以追溯到很早以前,当时人们开始关注物体的形变和应力。

随着科学技术的发展,固体力学逐渐成为一个独立的学科,并在物理学和工程学中广泛应用。

固体力学所研究的物体可以是固体材料,也可以是由多种物质组成的混合体,如岩石、土壤等。

固体力学可以帮助我们理解物体的变形行为,预测物体在外力作用下的响应,为工程设计和材料选择提供依据。

在固体力学中,弹性力学是一个基础概念。

弹性力学研究物体在受力后恢复原状的能力。

当外力作用于物体时,物体会发生变形,这种变形可以分为弹性变形和塑性变形。

弹性变形是指物体受力后恢复原状的变形,而塑性变形则是指物体变形后不会完全恢复原状的变形。

弹性力学的研究可以帮助我们了解物体在受力后的变形规律,预测物体的强度和稳定性。

除了弹性力学,固体力学还涉及到一些其他的研究内容,如塑性力学、断裂力学等。

塑性力学研究物体在超过一定应力后会发生塑性变形的问题。

塑性变形是指物体在受力后不能完全恢复原状的变形,这种变形会导致物体的形状和性质发生变化。

断裂力学是研究物体在受力后会发生破裂的问题。

断裂是指物体在受力超过其承受能力时发生的破坏现象,这种破坏会导致物体的完整性和稳定性受到影响。

塑性力学和断裂力学的研究可以帮助我们了解物体在受力后会发生的变化和破坏机制,为工程设计和材料选择提供依据。

在固体力学中,还有一些其他的问题也值得研究。

比如,热力学问题。

热力学是研究物质的能量转化和传递规律的学科,与固体力学有密切的联系。

在固体力学中,热力学问题主要涉及到物体的热膨胀和热应力等方面。

物体在受热后会发生膨胀,这种膨胀会导致物体的形状和性质发生变化,同时还会引起应力分布的改变。

研究物体的热膨胀和热应力等问题可以帮助我们了解物体在受热后的行为,预测物体的稳定性和可靠性。

《连续介质力学》课件

《连续介质力学》课件

动量矩守恒定律
描述物质系统动量矩变化规律的定律。
动量矩守恒定律也是连续介质力学中的基本定律之一。它指出在一个没有外力矩作用的封闭系统中,系统的总动量矩保持不 变。动量矩是系统动量和位置矢量的乘积,因此这个定律说明系统的旋转运动状态只与系统的初始状态有关,而与时间无关 。
能量守恒定律
描述物质系统能量变化规律的定律。
金属材料的疲劳和断裂 研究
01
02
03
复合材料的细观结构和 力学行为分析
04
无损检测和结构健康监 测技术
环境科学
01
土壤和岩石的力学性质研究
02
地质工程和地震工程中的稳定性分析
03
生态系统和自然资源的可持续性发展研究
04
环境流体力学的模拟和分析
06
连续介质力学的未来发展
新材料与新结构的挑战
新材料特性
能量守恒定律是物理学中的基本定律之一,它在连续介质力学中也有重要应用。这个定律指出在一个 封闭系统中,系统的总能量保持不变。能量的形式可以包括动能、势能、内能等,但不论能量的形式 如何转化,总量始终保持不变。
熵增原理
描述系统无序程度变化规律的定律。
熵增原理是热力学中的基本定律之一,它指出在一个 封闭的热力学系统中,系统的熵(表示系统无序程度 的物理量)总是趋向于增加。也就是说,系统总是倾 向于向更加混乱和无序的状态发展,而不是向更加有 序和有组织的状态发展。这个原理在连续介质力学中 也有重要的应用,例如在研究流体和热传导等问题时 需要考虑熵增原理的影响。
THANKS
感谢观看
《连续介质力学》ppt课 件
• 连续介质力学概述 • 连续介质力学的基本概念 • 连续介质力学的物理定律 • 连续介质力学的数学模型 • 连续介质力学的应用领域 • 连续介质力学的未来发展

Chap-1-连续体力学解析

Chap-1-连续体力学解析

例1-1 图1-8(a)所示为一装有高压气体的薄壁圆柱形容器的横 断面,壁厚为d,圆柱半径为R,气体压强为p,求壁内沿圆周切 向的应力(不计容器自重和大气压)
解:截取如图b所示的一半圆柱 形容器和气体作为隔离体,设 容器的长度为l。
气体对器壁的压力2pRl与器 壁的应力2σld相抗衡,按力的 平衡条件有:
3.14 3108
§2 静止液体的性质
一、液体的结构与分类
1.结构(structure)
特点:难以压缩,易于流动,各向同性
分子排列比晶体稍微松散。大多数液 体都是以分子为基本结构单元,分子之间 的键联较弱,主要是范德瓦耳斯键。由杂
乱分布的变动的微区构成。
近程有序和远程无序是液体结构的基本特征
非晶体有许多类型,玻璃体、弹性体和塑 性体是其中最主要的类型。生物材料大多属于 非晶体。
非晶体的分类:
❖ 玻璃体:近程有序,远程无序。如:玻璃 ❖ 弹形体:近,远程都无序,分子互相缠绕,有
弹性。如:橡胶。 ❖ 塑性体:近,远程都无序,分子相互分开,分
子间可以相互滑动,无弹性。
二、 应变与应力
1. 应变(strain)绪论一 物理学基本介绍 二 物理学的发展 三 本课程主要内容 四 学习本课程的基本方法 五 注意事项
第一章 连续体力学
(Mechanics of continuous medium)
引言
连续体力学又称连续介质力学,包括固体的弹 性力学和流体力学。连续体的共同特点是其内部质 点之间可以有相对运动。从宏观上看,连续体可以 有形变或非均匀流动。处理连续体的办法是不再把 它看成一个个离散的质点,而是取“质元”,即有 质量的体积元。在连续体力学中,力不再看成是作 用在一个个离散的质点上,而看成是作用在质量元 的表面上。本章主要研究固体的弹性性质、液体的 表面性质、液体的流动性质和黏滞性质,这些性质 无疑对农业和生物学中是非常重要的。

连续介质力学

连续介质力学

一、引论连续介质力学研究物体的宏观力学微观粒子性质.在宏观现象中,物体变化的最小特征尺度远大于原子的尺度,虽然物理上物体是物质点的集合,质量连续性假设对物休的宏观力学过程的研究却是合理的,在连续介质力学中可以对物体进行无限的分割,也就是说,可以用场的观点来描述物体的内部变化和作用过程.质量连续性假设要求物体连续地充满它所占据的空间,即可以用三维欧氏空间的一个开集表示物体的客观存在、指示其位置.开集中的一点表征占据该位置点的一个微小介质团,这样的介质团我们称之为物体单元,开集中所有点表征的物体单元组成了物体.若要用严格的数学理性推演连续介质力学,必须知道物体单元在数学上的确切涵义,即要回答: 表征物体单元的点是开集还是闭集?若是闭集,则物体单元表现为数学上离散的点,物体是连续点的集合,可以用构形(物体在空间所占的区域)表示;若是开集,则物体单元表现为数学上点的无穷小邻域,物体是作为拓扑基的所有点邻域的并集,可以用微分流形(容许拓扑结构改变的物体表示空间)表示.从逻辑上看,目前的连续介质力学是从经典质点力学类推得出的,它一方面把物体看作连续的质点系,物体单元具有离散特征,一方面又以场的观点看待物体的内部变化和受力,物体单元变化特征要求是连续的.在质量连续性假设下,物体单元虽然宏观意义上可以看作无穷小但总还是有尺度内涵的,即具有连续性适用的典型尺度,而经典力学中的质点却没有尺度内涵德冈辰雄指出“, 连续介质无论怎样分割也不会成为质点,质点无论怎样连续也不是连续介质”我们知道,经典力学中的质点在数学上表现为三维欧氏家间中的一点(闭集),把表征物体单元的数学上的点看作闭集,无异于沿用质点力学的观点,抹杀连续介质与质点系的区别,这样导出的连续介质力学(简称为质点观点的连续介质力学)是质点观点和场观点的大杂烩,这样的一种结合虽然使连续介质力学在其发展过程中可以同时借鉴经典力学和场论的一些成果,却妨碍了连续介质力学的现代发展,比如运用场论的现代发展—规范理论于连续介质时就显得不伦不类.实际上,质点观点在赋予物体变化连续性的同! 讨,对物体的表示空间强加了过分的约束.限制了场的观点的发挥,使连续介质力学在描述物体复杂宏观力学过程时困难重重.为了使连续介质力学摆脱质点观点的限制,.采用与现代场论一致的基本观点,物体单元用数学上的开集表示是必须的,这时连续性可以用邻域而不是距离定义从而与拓扑学的概念一致,称之为拓扑观点.我们知道,拓扑学是现代微分几何的概念基础,现代微分几何是规范场论的数学基础,因此,拓扑观点的连续介质力学是连续介质的纯粹的场理论,它可以容许物体空间拓扑结构的改变,能够刻划物休的复杂变化过程.可见,物体单元的开集表示与场的现代观点是同气共枝的,由此导出的理论保证了数学概念上的连贯、逻辑上的统一,并且能接纳耗散结构作为物体复杂变化的物理基础.二、流动与变形物体的流动由物沐单元的运动组合而成,物体的变形由物件单元的变形组合而成.物体单元不同于质点: 物体单元的开集表达隐含着单元具有尺度内涵,作为开集的点不仅有平移特征还有方向特征和尺度特征,从而可以独立地体现介质的变形和转动.物体单元的这些特征预示着单元的变形和单元的运动是两个不同的变化过程,物体单元的变形表现为点(及其邻域)的特征的改变,包括尺度的改变和方向的改变,物体单元的运动则表现为点(及其邻域)的平移(空问位置的改变)和转动(方向的改变),可见,单元的变形与其空间位置无关,单元的运动与其尺度特征无关.与此不同,作为闭集的点不具备尺度特征和方向特征,不能独立地体现介质的变形和转动,介质的变形是通过介质点之间距离及相对方位的改变体现的,介质的转动也是通过不同介质点之间的方位关系体现的,这就客观上对物体表示空间提出了要求,难以刻划复杂的变形过程,而单元的运动由于缺乏方向性,对物休单元具有曲线运动的流运过程就无法准确把握.三、局部与整体物体的局部变化是指组成物休的各个单元的变化,物体的整体变化是指物体整体特征或性质的变化.物体单元的变化除了运动和变形外,还有该单元的相邻其它单元的物质交换,这种交换可能是微观的(分子级的),也可能是细观的(源于结构的变化并具有耗散结构尺度的),一般物体单元的转动不均匀性会严重影响这种交换过程;物体的整体变化不仅包括组成物体的各单元的变化,还包括物体表示空间的拓扑结构的变化,后者可以用单元问的变化联络关系表达.一般来说,物体的整体变化不能用其局部变化的直和表示.质收观点的连续介质力学限制了物体空间性质的改变,各个变化阶段的物体的表示空问要求是拓扑等价的,物体单元变化的直和等价于物体的整体变化,因此客观上要求:l)单元间的物质交换与方一向无关;2)单元的尺度变化与方向无关,也就是说,物体单元的变化是各向同性的,这相当于平直层流和均匀变形或者转动影响可忽略的微小变形的情况.在大多数宏观现象中,物体实际变化状态不满足上述要求,质点观点的连续介质力学不再适用,必须用拓扑观点考察物体单元间的变化联络关系的影响,全面研究物体的整体变化过程.四、内应力物体的变形使物体的各部分之间存在相互作用,物体这种反抗变形的内部作用称为内应力,包括应力和应力偶.具体而言,在各物件单元的表面作用有应力和应力偶,这种作用不仅与该单元的纯变形有关,还与该单元的相对转动(净转动)有关,这样,质点观点的连续介质力学中的应力原理必须修正,而非极性物体内应力偶的存在成为可能的了.拓扑观点的连续介质力学给出的非均匀有限变形理论更合理和先进,可统一壳体等转动(方向性)占优的变形理论,并且在这一新观点下,加深了对物体塑性的理解。

力学7.连续体力学(固体的弹性)

力学7.连续体力学(固体的弹性)
l0 l
l
F S
YS 2l0
Y
x l0 l0
,F
l l0 2 0 l0
YS l0
( x l0 )
l0
( x l0 )2 |ll 0 1 Y( 2
2 ) l S1 Y V0 2
若杆的形变是均匀的,则形变势能均匀地分布于整个直 2 1 杆中,用V0去除上式,得拉压形变的势能密度:E 0 Y p
Y 2(1 )
0 2 1 G ㈢剪切形变的势能密度: Ep 2
0 2 Y 与拉、压形变的势能密度 E p 1 具有相同的形式 2
10
1.4 弯曲和扭转
㈠梁的纯弯曲
o'
b h F R F
θ
o
y
o x
y dx
x 梁仅在一对等大反向力偶距作用下的弯曲称为纯弯曲,上层被 压缩, 下层被拉长,y 轴所在的中间层,既不被压缩,也不被 拉长,保持原长,称为中性层,可见纯弯曲形变是由程度不同的 拉、压形变组成。
3
1.1 外力、内力、应力和应变
㈠外力与内力
• 外界对弹性体的作用力称为外力;内力就是弹性体内 部各部分间的相互作用力 • 为研究内力,必须在弹性体内部取一假想截面 S ,它 把弹性体分为两部分,这两部分间的相互作用力叫截 面 S 上的内力,内力总是成对出现的 • 在一般情况下,取不同的截面,内力不同;在同一截 面的不同点处,内力也不相同
L
ψ
z
τ' R
r
τ
⒈切应变和切应力的分布规律
从外观看,上端面各半径直线相对下底面转过一个相同 的角度φ,此角称为杆的扭转角 ;侧面轴向直线倾斜一 个相同角度ψ=Rφ/L,它就是外层体元的切变角 r 坐标为r的体元,切变角为: L G r 由胡克定律,切应力 G L 13

连续介质力学讲义

连续介质力学讲义
陈常青:固体力学讲义
2 预备数学知识
本章介绍有关张量分析的一些基本内容,这些知识是本课程的基础。
Equation Chapter 2 Section 0
2.1 向量分析初步................................................................................................... 2 2.1.1 向量 ................................................................................................... 2 2.1.2 向量的初等运算 ............................................................................... 2 2.1.3 直角坐标系中的向量 ....................................................................... 2 2.1.3.1 Kronecker 符号(ij) ............................................................. 3 2.1.3.2 Permutation 符号(ijk)......................................................... 3 2.1.4 直角坐标系中的向量初等运算 ....................................................... 3 2.1.5 坐标旋转矩阵 ................................................................................... 3 2.1.6 坐标变换 ................................................................................................................................................... 4 2.1.7.1 梯度(grad)............................................................................ 5 2.1.7.2 散度(div) ............................................................................. 6 2.1.7.3 旋度(curl) ............................................................................ 6 2.1.8 向量场的积分运算 ........................................................................... 6 2.1.8.1 Gauss 定理 ................................................................................ 6 2.1.8.2 Stokes 定理 ............................................................................... 6

连续介质力学-四章1ppt课件

连续介质力学-四章1ppt课件
27

[(e

V
2

)V ]


F
V



(V

)

q



(T
)
t
2
2
通常可以增加状态方程: p p(,T ) e e(T )
★(标量)方程的个数:1+3+1+2=5+2
★ 因变量个数:密度1+速度3+内能1+温度1+ 应力张量(6)=12;
所以一般情况下方程不封闭。要解决此问题需下 一章讨论本构关系
位时间内外界对系统所作的动和传人系统的热
量之和.
DE
Dt
D Dt
V*
2
(e
V 2
)dV* W
Q
W



F
VdV


P
V dA
V
A
Q


V
qdV


A

T dA n
6
q :单位时间,单位质量吸收的外界的热量;
(体积热源,如:辐射热,生成热) 规定热量从 系统外传入系统内为正,否则热量从系统内

[ (e

V
2
)]


[(e

V
2

)V ]
t
2
2


F V (V ) q (T )
25
(二)微分型方程组的封闭性讨论





(V )

0
t
(V )



(VV ) NhomakorabeaF

连续介质力学引论

连续介质力学引论

流体运动学
断裂力学
流体动力学
用哲学上的一个比喻: 连续介质力学是“共性”,它的研究具有 一般性;弹塑性力学等是“个性”。
连续介质的运动学
1.物质坐标
P(t) P(t0)
X
x
0
那么有如下形式:
x x( X, t )
(3.1) 就描述了在t=t0是位于X的每个质点的轨迹 (对于不同的质点,X不同)。
二连续介质力学关于上述连续体的力学即为连续介质力学1连续介质理论物质是由许多微小的粒子组成的所以物质并不是连续的但是在很多情况下为了描述宏观现象间的关系而不考虑微观尺度上物质结构的理论称为连续介质理论
连续介质力学引论
绪论
一、连续介质
1、质量分布密度
设有一定质量的物质充满一定的空间,并 设P为空间内的一点。取一系列子空间,使 其收敛于P。以 S n 表示第n子空间,其体积 为 Vn ,其中的物体质量为M n,则如果
(1)当某个采用物质描述时, θ= θ(X1,X2,X3,t) 那么,
D Dt t
Xi — —固定的
(3.3)
(2)当这个量采用空间描述时, θ= θ(x1,x2,x3,t) 又,xi=xi(X1,X2,X3,t) 于是:
D x1 x2 x3 Dt t X i 固定 x1 t x2 t x3 t t
Mn lim n V n V 0
n
存在,则将此定义为在P点处物体的质量分 布密度。
如果在所设空间内各点处都有这样的密度, 则质量被认为是连续分布的。同样,可以 定义动量密度、能量密度等等。所谓连续 介质,即指这样一类物体,它的质量密度、 能量密度、动量密度等,从上述意义上说, 都是存在的。简单地说,即认为真实的流 体和固体是由连续的,充满全部空间的介 质组成 。

黄筑平,连续介质力学-概述说明以及解释

黄筑平,连续介质力学-概述说明以及解释

黄筑平,连续介质力学-概述说明以及解释1.引言1.1 概述连续介质力学是力学中的一个重要分支,研究的是连续体(连续介质)的宏观运动和相互作用。

连续介质力学最初是为了研究流体和固体力学问题而发展起来的,后来逐渐扩展到其他领域,包括声学、热力学、电动力学等。

连续介质力学的基本概念是将物质视为连续不可分割的整体,在空间上是连续分布的。

通过将物质的宏观性质表示为连续介质场,如速度场、应力场、温度场等,来描述物质的宏观行为。

连续介质力学通过建立方程和边界条件,来描述物质的运动和相互作用。

连续介质力学的研究对象可以是流体、固体或其它物质形态。

在流体力学方面,连续介质力学可以研究流体的运动、压力、速度、密度等性质,包括液体和气体的流体力学。

在固体力学方面,连续介质力学可以研究固体的弹性、塑性、断裂、变形等性质,包括固体的力学性质和变形行为。

连续介质力学在科学研究和工程实践中有着广泛的应用。

在工程领域,可以通过连续介质力学来设计和优化结构、预测材料破坏、分析流体力学问题等。

在地球科学中,连续介质力学可以用于研究地震波传播、岩石变形等问题。

在生物医学领域,连续介质力学可以用于研究细胞变形、血液流动等生物力学问题。

总之,连续介质力学作为一门独立的力学分支,具有重要的理论价值和广泛的应用前景。

通过深入研究连续介质力学的基本概念和原理,我们可以更好地理解物质的宏观行为和相互作用,为解决实际问题提供理论支持和科学指导。

随着科学技术的不断进步和发展,连续介质力学的应用领域还将不断扩展,为人类社会的进步和发展做出更大的贡献。

1.2文章结构文章结构部分的内容可以包括对整篇文章的组织和内容的概述。

1.2 文章结构本文主要围绕黄筑平和连续介质力学展开论述,文章分为引言、正文和结论三个部分。

引言部分:在引言部分,我们将对黄筑平和连续介质力学进行简要介绍,包括作者的背景和相关研究领域的概述。

同时,我们将介绍本文的目的,即通过探讨连续介质力学的概念、原理和应用领域,强调其重要性和应用价值。

谢多夫连续介质力学

谢多夫连续介质力学

谢多夫连续介质力学谢多夫连续介质力学是一种研究连续介质力学性质的理论框架。

它基于连续介质的宏观性质,将其视为一个连续的物体,通过数学模型和方程来描述其力学行为。

谢多夫连续介质力学在物理学、工程学和地球科学等领域都有广泛的应用。

一、引言谢多夫连续介质力学是由俄罗斯科学家谢多夫于19世纪末提出的。

它是基于连续介质假设,即将物质视为一个连续不可分割的整体,忽略了物质微观结构的离散性。

这种假设适用于大部分实际问题中,例如流体流动、固体变形等。

二、基本概念1. 连续介质:指具有一定空间范围内均匀分布的物质。

例如气体、液体和固体都可以被视为连续介质。

2. 宏观量:指在宏观尺度上观察和测量得到的物理量。

例如速度、压力和密度等。

3. 微观量:指在微观尺度上观察和测量得到的物理量。

例如分子速度、分子间距和分子力等。

三、基本假设谢多夫连续介质力学基于以下基本假设:1. 连续性假设:连续介质被视为一个连续的物体,其宏观性质可以通过平均值来描述。

2. 宏观均匀性假设:连续介质在宏观尺度上具有均匀性,即其宏观性质在空间上是均匀分布的。

3. 理想化假设:忽略了物质微观结构的离散性,将物质视为连续不可分割的整体。

四、基本方程谢多夫连续介质力学通过一系列方程来描述连续介质的力学行为。

其中最重要的方程包括:1. 运动方程:描述了连续介质中物体运动的规律。

根据牛顿第二定律,可以得到运动方程。

2. 连续性方程:描述了连续介质中物体密度变化的规律。

根据物质守恒定律,可以得到连续性方程。

3. 力学平衡方程:描述了连续介质中物体受力平衡的规律。

根据牛顿第一定律,可以得到力学平衡方程。

五、应用谢多夫连续介质力学在许多领域都有广泛的应用,包括:1. 流体力学:研究流体在不同条件下的流动行为,如气象学中的大气运动和海洋学中的海流。

2. 固体力学:研究固体材料的变形和应力分布等问题,如工程结构中的强度计算和材料设计。

3. 地球科学:研究地球内部介质的物理性质和运动过程,如地震波传播和岩石变形等。

演示文稿连续介质力学第二讲

演示文稿连续介质力学第二讲

所以:
J J X A vi J vi Jdiv v xi X A xi
div v 0
2. 动量方程 (Balance of linear momentum )
2.1 以前的推导
在即时构形中,任意取一个域V ,体积元记为dV
对此域运用动量定理:
σ nda fdV aˆdV
d dt
vdV
f
dV
ቤተ መጻሕፍቲ ባይዱ
σ
nda
dv vdivv σ f
dt
div v 0
3. 角动量方程 (Balance of angular momentum ) 所以:
4. 守恒率的一般形式 如果采用欧拉描述,上述三个守恒率可表达为:
固体力学常采用拉格朗日描述:
其中: 拉格朗日描述中,体元体积不变:
可以推广于多个二阶张量点积的情况,例如 tr(a b c d)
w Jσ : D τ : D 的其它表达形式
由于: τ P FT F T FT
有: w P FT : L tr P FT T L tr F PT L
引理1:设a与b为二阶张量, 则:
a : b tr(a bT ) tr(aT b) aT : bT
引理2:
即: aijbij aijbTji aTjibij aTjibTji
tr(a b c) tr(b c a) tr(c a b)
即: aijbjk cki bjk ckiaij ckiaijbjk
对物质坐标求散度
5. 能量平衡律 在即时构型中任意v域内的总能量P由动能K与内能E组成,即
PKE
E edV
V
根据热力学第一定律,总能量P的物质导数,即对时间的 变化率等于作用于v域的外力功率与每单位时间从v域外部 所加的热:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
力以及它们与固体、液体及气体 的平衡、变形或 运动的关系。
连续介质力学 连续介质力学(Continuum mechanics)是物
理学(特别的,是力学)当中的一个分支,是处 理包括固体和流体的在内的所谓“连续介质”宏
观 性质的力学。
3
固体:固体不受外力时,具有确定的形状。固体包括不可变形的 刚体 和可变形固体。刚体在 一般力学 中的 刚体力学 研究;连续介 质力学中的 固体力学 则研究可变形固体,在应力,应变等外在因素 作用下的变化规律,主要包括 弹性 和 塑性 问题。
9
二、现代力学的发展及其特点
1、现代力学的发展
材料与对象: 金属、土木石等 新型复合材料、 高分子材料、 结构陶瓷、功能材料。
尺 度:宏观、连续体 含缺陷体,细、微观、 纳米尺度。
实验技术: 电、光测试实验技术 全息、超声、 光纤测量,及实验装置的大型化。
10
应用领域:航空、土木、机械、材料生命、微电 子技术等。
使工程结构分析技术;(结合CAD技术) 监测、控制技术(如振动监测、故障诊断); 工程系统动态过程的计算机数值仿真技术; 广泛应用至各工程领域。
材料设计:按所要求的性能设计材料。(90年代)
13
智能结构: 90年代开始,力学与材料、控制(包括 传感与激励)、计算机相结合,研究发展面向21世纪 的、具有“活”的功能的智能结构。
塑性 :应力作用后,不能恢复到原来的形状,发生永久形变。 弹性 :应力作用后,可恢复到原来的形状。 流体 :流体包括 液体 和 气体 ,无确定形状,可流动。流体最重 要的性质是 粘性 (viscosity,流体对由剪切力引起的形状的抵抗 力,无粘性的 理想气体 ,不属于流体力学的研究范围)。从理论研 究的角度,流体常被分为 牛顿流体 和 非牛顿流体 牛顿流体 :满足 牛顿粘性定律 的流体,比如水和空气。 非牛顿流体 :不满足 牛顿粘性定律 的流体,介乎于固体和牛顿 流体之间砄物质形态。
生物力学: (70年代冯元祯博士) 生物材料力学性能、微循环、定量生理学、心血管系 统临床问题和生物医学工程等。 “没有生物力学,就不能很好地了解生理学。”
14
二、 弹塑性力学的研究对象
在研究对象上,材料力学的研究对象是固 体,且基本上是各种杆件,即所谓一维构件。
弹塑性力学研究对象也是固体,是不受 几何尺寸与形态限制的能适应各种工程技术 问题需求的物体。
设计准则:静强度、 断裂控制设计、抗疲劳设 计、、刚度设计 损伤容限设计、结构优化 设计、耐久性设计和可靠性设计等。
设计目标:保证结构与构件的安全和功能 设计——制造——使用——维护的综合性分析 与控制,功能——安全——经济的综合性评价, 自感知、自激励、自适应(甚至自诊断、自修复) 的智能结构。
◆ 流体力学:研究对象是气体或液体。涉及到:
水力学、空气动力学等学科。
7
按研究手段分:(理论分析、实验和数值计算)
有实验力学、计算力学二个方面的分支。
按应用领域分:
有飞行力学、船舶结构力学、岩土力学、量 子力学等。
8
2、弹塑性力学
弹塑性力学是固体力学的一个重要分支学 科,是研究可变形固体受到外荷载或温度变化等 因素的影响而发生的应力、应变和位移及其分布 规律的一门科学,是研究固体在受载过程中产生 的弹性变形和塑性变形阶段这两个紧密相连的变 形阶段力学响应的一门科学。
声学
次声学 超声学 电声学 大气声学 音乐声学 语言声学 建筑声学 生理声学 生物声学 水声学
电磁学
磁学 电学 电动力学
量子物理学
量子力学 核物理学 高能物理学 原子物理学 分子物理学
固体物理学
高压物理学 金属物理学 表面物理学
5
1、学科分类
按运动与否分:
静力学:研究力系或物体的平衡问题,不涉及 物体运动状态的改变;如飞机停在地 面或巡航。
运动学:研究物体如何运动,不讨论运动与受 力的关系;如飞行轨迹、速度、加速度。
动力学:研究力与运动的关系。 如何提供加速度?
6
● 按研究对象分:
◆ 一般力学: 研究对象是刚体。研究力及其与
运动的关系。分支学科有理论力学,分析力学等。
◆ 固体力学:研究对象是可变形固体。研究材料
变形、流动和断裂时的力学响应。其分支学科有: 材料力学、结构力学、弹性力学、 塑性力学、 弹塑性力学、断裂力学、流变学、疲劳等。
4
物理学分支巡礼 物理学概览
力学
静力学 动力学 流体力学 分析力学 运动学 固体力学 材料力学 复合材料力学 流变学 结构力学 弹性力学 塑性力学 爆炸力学 磁流体力学 空气动力学 理性力学 物理力学 天体力学 生物力学 计算力学
热学 热力学 光学
几何光学 波动光学 大气光学 海洋光学 量子光学 光谱学 生理光学 电子光学 集成光学 空间光学
造成两者间这种差异的根本原因是什么呢?
15
三、 弹塑性力学的基本任务
可归纳为以下几点: 1.建立求解固体的应力、应变和位移分布规律的
基本方程和理论; 2.给出初等理论无法求解的问题的理论和方法,
以及对初等理论可靠性与精确度的度量; 3.确定和充分发挥一般工程结构物的承载能力,
提高经济效益; 4.为进一步研究工程结构物的强度、振动、稳定
连续介质力学(固体力学)
1
弹塑性力学
❖ 弹塑性力学及学科分类 ❖ 弹塑性力学的研究对象 ❖ 弹塑性力学的基本任务 ❖ 弹塑性力学的发展简介 ❖ 弹塑性力学中的简化假设 ❖ 弹塑性力学的基本思路与研究方法 ❖ 弹塑性力学的主要内容
2
一、弹塑性力学及学科分类
力学 力学是物理学的一个分支,主要研究能量和
性、断裂等力学问题,奠定必要的理论基础。
16
(1)工程结构和机械零件的设计
物体达到塑性阶段时,并没有破坏,它还有能力继续 工作,可把构件设计到部分塑性、部分保持弹性状态, 更合理地确定工程结构和机械零件的安全系数,节省材 料。(不允许大变形,塑性变形限制在弹性变形的量级)
11
● 引进新的科学技术成果, 内容更加丰富:
◆ 新材料-复合材料、聚合物等; ◆ 新概念-失效、寿命等; ◆ 新理论-损伤、混沌等; ◆ 新方法-数值方法、工程力学建模方法。
12
2﹒现代力学的特点
●互结合与渗透。
计算机应用:计算力学+计算机应用解决复杂、 (60年代) 困难的工程实际问题。
相关文档
最新文档