人教版九年级数学24章《圆》全章教案(DOC)
人教版九年级数学24章《圆》全章教案(DOC)
课时计划第9周第24课(章、单元)第1节第 1课时2014 年10月29日课时计划第9周第24课(章、单元)第1节第2课时2014 年10月30日课时计划第9周第24课(章、单元)第1节第3课时2014 年10月31日课时计划第10周第24课(章、单元)第1节第 4课时2014 年11月3日课时计划第10周第24课(章、单元)第2节第 1课时2014 年11月5日课时计划第10周第24课(章、单元)第2节第 2 课时2014 年11月6日那么直线与圆分别是什么位置关系?有几个公共点?归纳:判定直线与圆的位置关系的方法有两种:(1)根据定义,由直线与圆的公共点的个数来判断;(2)根据性质,由圆心到直线的距离与半径的关系来判断.二、学习探究圆的切线的性质与判断:1、切线的性质:圆的切线垂直于过切点的半径。
2、切线的判断:经过半径的外端,并且垂直于这条半径的直线是圆的切线.对性质和判断作出证明(略)三、运用举例:例1、已知:AB是⊙O的直径,∠ABT=45°,AT=AB.求证:AT是⊙的切线.例2、如图9,AB是⊙O的直径,点D在AB的延长线上,且BD=OB,点C在⊙O上,∠CAB=30°,求证:DC是⊙O的切线.例3、如图,BC是⊙O的直径,A是弦BD延长线上一点,切线DE平分AC于E,求证:AC 是⊙O的切线四、练习1.已知⊙O的半径为5cm,点O到直线a的距离为3cm,则⊙O与直线a的位置关系是________;直线a与⊙O的公共点个数是_______.2.已知⊙O的直径是11cm,点O到直线a的距离是5.5cm,则⊙O与直线a的位置关系是______,直线a与⊙O的公共点个数是_______.课时计划第11周第 24课(章、单元)第2节第 3课时2014 年11月12日三角形的内心:三角形内切圆的圆心.(即三角形三条角平分线的交点)思考:一张三角形的铁皮,如何在它上面截下一块圆形的用料,并且使圆的面积尽可能大呢?四、运用举例:例1:已知:在△ABC中,BC=14,AC=9,AB=13,它的内切圆分别和BC、AC、AB切于点D、E、F,求AF、BD和CE的长。
九年级数学第二十四章——圆(课时教案、学案)人教版
24.1 圆(教案)一.内容及其解析1.内容:本节主要内容是圆的概念以及与圆有关的一些性质,本节又分为四个小节:第一小节的主要内容是圆的定义及一些相关概念;第二小节是结合研究圆的对称性得到了垂径定律及有关的结论;第三小节是从圆的旋转不变性出发,推出了弧、弦、圆心角之间的相等关系。
第四小节主要介绍圆周角的概念、圆周角定律及推论。
是今后进一步学习圆的相关内容的基础。
2.解析:与圆有关的概念比较多,对于这些概念,教学时要引导学生分析它们之间的区别与联系。
如直径和弦———直径是弦,是经过圆心的特殊弦,但弦不一定是直径;又如弧与尤弧、劣弧———尤弧、劣弧都是弧但尤弧大于半圆,劣弧小于半圆。
垂径定理可以帮助学生分析定理的题设和结论,并可将定律改述为:一条直线若满足:①过圆心;②垂直于弦,则可推出:③平分弦;④平分弦所对的尤弧;⑤平分弦所对的劣弧,这样可以加深学生对定律的理解。
弧、弦、圆心角之间的相等关系是论证同圆或等圆中弧相等、角相等、线段线段的主要依据。
圆周角有两个特征:①角的顶点在圆上;②角的两边都与圆相交,二者缺一不可。
圆周角定理的证明,分三种情况讨论。
在三种情况中,第一种情况是特殊情况,是证明的基础,其他两种情况都可以转化为第一种情况来解决,转化的条件是添加以角的顶点为端的直径为辅助线这种由特殊到一般的思想方法,应当让学生注意和掌握。
二.目标及其解析1.目标①理解圆的定义,理解弧、弦、半圆、直径等有关概念。
②使学生理解圆的轴对称性,掌握垂径定理及其他结论,并学会应用这些结论解决一些有关证明、计算和作图问题。
③使学生掌握圆的旋转不变性,掌握圆心角的概念以及弧、弦、圆心角之间的相等关系并能运用这些关系解决有关的证明、计算问题。
④理解圆周角的概念,掌握圆周角定理及其推论并运用它们进行论证和计算。
通过圆周角定理的证明使学生了解分情况证明命题的思想和方法。
2.解析①向学生介绍“圆是到定点的距离等于定长的点的集合”.。
人教版数学九年级上册第24章圆24.1.1圆教学设计
5.拓展提高题:针对学有余力的学生,设计一些难度较大的题目,如圆与圆的位置关系、圆的切线问题等。这类题目旨在激发学生的学习兴趣,提高他们的数学思维。
作业布置要求:
1.学生需独立完成作业,确保作业质量。
(四)课堂练习
在课堂练习环节,我会设计以下几类题目:
1.基础巩固题:针对圆的基本概念和性质,设计一些选择题、填空题,让学生巩固所学知识。
2.应用提高题:设计一些与生活实际相关的题目,如计算圆形花坛的面积、圆桌的周长等,让学生学会将所学知识应用于实际问题。
3.拓展挑战题:针对学有余力的学生,设计一些难度较大的题目,如圆与圆的位置关系、圆的切线问题等。
2.创设问题情境,引导学生通过探究、讨论的方式,发现和掌握圆的相关性质。
-设计一系列由浅入深的问题,如圆中任意两点到圆心的距离是否相等,引导学生自主探索和发现圆的性质。
-组织小组合作学习,鼓励学生之间交流想法,共同解决难题。
3.将理论知识与生活实际相结合,设计实际应用题,提高学生解决问题的能力。
-通过设计如操场跑道周长、圆形花园面积等实际问题,让学生在实际情境中应用所学的圆的周长和面积知识。
5.教学评价多元化,不仅关注学生的知识掌握,也注重学习过程中的思维方法和情感态度。
-通过课堂提问、小组讨论、课后作业、小测验等多种方式,全面评估学生的学习成效。
-鼓励学生自我评价和同伴评价,培养他们的自我反思和批判性思维能力。
四、教学内容与过程
(一)导入新课
在导入新课的环节,我将利用学生对日常生活的经验,激发他们对圆的好奇心和探究欲。首先,我会向学生展示一系列包含圆的图片,如车轮、硬币、圆桌等,让学生观察并思考这些图片中的共同特征。通过这种方式,引导学生发现圆在生活中的普遍存在。接着,我会提出问题:“为什么这些图形都是圆的?圆有什么特别之处?”从而引出本节课的主题——圆。
初中数学人教版九年级上册:第24章《圆》全章教案
初中数学人教版九年级上册实用资料第二十四章圆24.1圆的有关性质24.1.1圆经历圆的概念的形成过程,理解圆、弧、弦等与圆有关的概念,了解等圆、等弧的概念.重点经历形成圆的概念的过程,理解圆及其有关概念.难点理解圆的概念的形成过程和圆的集合性定义.活动1创设情境,引出课题1.多媒体展示生活中常见的给我们以圆的形象的物体.2.提出问题:我们看到的物体给我们什么样的形象?活动2动手操作,形成概念在没有圆规的情况下,让学生用铅笔和细线画一个圆.教师巡视,展示学生的作品,提出问题:我们画的圆的位置和大小一样吗?画的圆的位置和大小分别由什么决定?教师强调指出:位置由固定的一个端点决定,大小由固定端点到铅笔尖的细线的长度决定.1.从以上圆的形成过程,总结概念:在一个平面内,线段OA绕它固定的一个端点O 旋转一周,另一个端点所形成的图形叫做圆.固定的端点O叫做圆心,线段OA叫做半径.以点O为圆心的圆,记作“⊙O”,读作“圆O”.2.小组讨论下面的两个问题:问题1:圆上各点到定点(圆心O)的距离有什么规律?问题2:到定点的距离等于定长的点又有什么特点?3.小组代表发言,教师点评总结,形成新概念.(1)圆上各点到定点(圆心O)的距离都等于定长(半径r);(2)到定点的距离等于定长的点都在同一个圆上.因此,我们可以得到圆的新概念:圆心为O,半径为r的圆可以看成是所有到定点O的距离等于定长r的点的集合.(一个图形看成是满足条件的点的集合,必须符合两点:在图形上的每个点,都满足这个条件;满足这个条件的每个点,都在这个图形上.) 活动3学以致用,巩固概念1.教材第81页练习第1题.2.教材第80页例1.多媒体展示例1,引导学生分析要证明四个点在同一圆上,实际是要证明到定点的距离等于定长,即四个点到O的距离相等.活动4自学教材,辨析概念1.自学教材第80页例1后面的内容,判断下列问题正确与否:(1)直径是弦,弦是直径;半圆是弧,弧是半圆.(2)圆上任意两点间的线段叫做弧.(3)在同圆中,半径相等,直径是半径的2倍.(4)长度相等的两条弧是等弧.(教师强调:长度相等的弧不一定是等弧,等弧必须是在同圆或等圆中的弧.)(5)大于半圆的弧是劣弧,小于半圆的弧是优弧.2.指出图中所有的弦和弧.活动5达标检测,反馈新知教材第81页练习第2,3题.活动6课堂小结,作业布置课堂小结1.圆、弦、弧、等圆、等弧的概念.要特别注意“直径和弦”“弧和半圆”以及“同圆、等圆”这些概念的区别和联系.等圆和等弧的概念是建立在“能够完全重合”这一前提条件下的,它将作为今后判断两圆或两弧相等的依据.2.证明几点在同一圆上的方法.3.集合思想.作业布置1.以定点O为圆心,作半径等于2厘米的圆.2.如图,在Rt△ABC和Rt△ABD中,∠C=90°,∠D=90°,点O是AB的中点.求证:A,B,C,D四个点在以点O为圆心的同一圆上.答案:1.略;2.证明OA=OB=OC=OD即可.24.1.2垂直于弦的直径理解垂径定理并灵活运用垂径定理及圆的概念解决一些实际问题.通过复合图形的折叠方法得出猜想垂径定理,并辅以逻辑证明加予理解.重点垂径定理及其运用.难点探索并证明垂径定理及利用垂径定理解决一些实际问题.一、复习引入①在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点所形成的图形叫做圆.固定的端点O 叫做圆心,线段OA 叫做半径.以点O 为圆心的圆,记作“⊙O ”,读作“圆O ”.②连接圆上任意两点的线段叫做弦,如图线段AC ,AB ; ③经过圆心的弦叫做直径,如图线段AB ;④圆上任意两点间的部分叫做圆弧,简称弧,以A ,C 为端点的弧记作“AC ︵”,读作“圆弧AC ”或“弧AC ”.大于半圆的弧(如图所示ABC ︵)叫做优弧,小于半圆的弧(如图所示AC ︵或BC ︵)叫做劣弧.⑤圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆. ⑥圆是轴对称图形,其对称轴是任意一条过圆心的直线. 二、探索新知(学生活动)请同学按要求完成下题:如图,AB 是⊙O 的一条弦,作直径CD ,使CD ⊥AB ,垂足为M.(1)如图是轴对称图形吗?如果是,其对称轴是什么? (2)你能发现图中有哪些等量关系?说一说你理由. (老师点评)(1)是轴对称图形,其对称轴是CD.(2)AM =BM ,AC ︵=BC ︵,AD ︵=BD ︵,即直径CD 平分弦AB ,并且平分AB ︵及ADB ︵. 这样,我们就得到下面的定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧. 下面我们用逻辑思维给它证明一下:已知:直径CD 、弦AB ,且CD ⊥AB 垂足为M. 求证:AM =BM ,AC ︵=BC ︵,AD ︵=BD ︵.分析:要证AM =BM ,只要证AM ,BM 构成的两个三角形全等.因此,只要连接OA ,OB 或AC ,BC 即可.证明:如图,连接OA ,OB ,则OA =OB , 在Rt △OAM 和Rt △OBM 中,∴Rt △OAM ≌Rt △OBM , ∴AM =BM ,∴点A 和点B 关于CD 对称, ∵⊙O 关于直径CD 对称,∴当圆沿着直线CD 对折时,点A 与点B 重合,AC ︵与BC ︵重合,AD ︵与BD ︵重合. ∴AC ︵=BC ︵,AD ︵=BD ︵.进一步,我们还可以得到结论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.(本题的证明作为课后练习)例1 有一石拱桥的桥拱是圆弧形,如图所示,正常水位下水面宽AB =60 m ,水面到拱顶距离CD =18 m ,当洪水泛滥时,水面宽MN =32 m 时是否需要采取紧急措施?请说明理由.分析:要求当洪水到来时,水面宽MN =32 m 是否需要采取紧急措施,只要求出DE 的长,因此只要求半径R ,然后运用几何代数解求R.解:不需要采取紧急措施,设OA =R ,在Rt △AOC 中,AC =30,CD =18, R 2=302+(R -18)2,R 2=900+R 2-36R +324, 解得R =34(m ),连接OM ,设DE =x ,在Rt △MOE 中,ME =16, 342=162+(34-x)2,162+342-68x +x 2=342,x 2-68x +256=0, 解得x 1=4,x 2=64(不合题意,舍去), ∴DE =4,∴不需采取紧急措施.三、课堂小结(学生归纳,老师点评) 垂径定理及其推论以及它们的应用. 四、作业布置1.垂径定理推论的证明.2.教材第89,90页 习题第8,9,10题.24.1.3 弧、弦、圆心角1.理解圆心角的概念和圆的旋转不变性,会辨析圆心角.2.掌握在同圆或等圆中,圆心角与其所对的弦、弧之间的关系,并能应用此关系进行相关的证明和计算.重点圆心角、弦、弧之间的相等关系及其理解应用.难点从圆的旋转不变性出发,发现并论证圆心角、弦、弧之间的相等关系.活动1动手操作,得出性质及概念1.在两张透明纸片上,分别作半径相等的⊙O和⊙O′.2.将⊙O绕圆心旋转任意角度后会出现什么情况?圆是中心对称图形吗?3.在⊙O中画出两条不在同一条直线上的半径,构成一个角,这个角叫什么角?学生先说,教师补充完善圆心角的概念.如图,∠AOB的顶点在圆心,像这样的角叫做圆心角.4.判断图中的角是否是圆心角,说明理由.活动2继续操作,探索定理及推论1.在⊙O′中,作与圆心角∠AOB相等的圆心角∠A′O′B′,连接AB,A′B′,将两张纸片叠在一起,使⊙O与⊙O′重合,固定圆心,将其中一个圆旋转某个角度,使得OA与O′A′重合,在操作的过程中,你能发现哪些等量关系,理由是什么?请与小组同学交流.2.学生会出现多对等量关系,教师给予鼓励,然后,老师小结:在等圆中相等的圆心角所对的弧相等,所对的弦也相等.3.在同一个圆中,相等的圆心角所对的弧相等吗?所对的弦相等吗?4.综合2,3,我们可以得到关于圆心角、弧、弦之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.请用符号语言把定理表示出来.5.分析定理:去掉“在同圆或等圆中”这个条件,行吗?6.定理拓展:教师引导学生类比定理,独立用类似的方法进行探究:(1)在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角,所对的弦也分别相等吗?(2)在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角,所对的弧也分别相等吗?综上所述,在同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,就可以推出它们所对应的其余各组量也相等.活动3学以致用,巩固定理1.教材第84页例3.多媒体展示例3,引导学生分析要证明三个圆心角相等,可转化为证明所对的弧或弦相等.鼓励学生用多种方法解决本题,培养学生解决问题的意识和能力,感悟转化与化归的数学思想.活动4 达标检测,反馈新知 教材第85页 练习第1,2题. 活动5 课堂小结,作业布置课堂小结1.圆心角概念及圆的旋转不变性和对称性.2.在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等,以及其应用.3.数学思想方法:类比的数学方法,转化与化归的数学思想.作业布置1.如果两个圆心角相等,那么( ) A .这两个圆心角所对的弦相等 B .这两个圆心角所对的弧相等C .这两个圆心角所对的弦的弦心距相等D .以上说法都不对2.如图,AB 和DE 是⊙O 的直径,弦AC ∥DE ,若弦BE =3,求弦CE 的长.3.如图,在⊙O 中,C ,D 是直径AB 上两点,且AC =BD ,MC ⊥AB ,ND ⊥AB ,M ,N 在⊙O 上.(1)求证:AM ︵=BN ︵;(2)若C ,D 分别为OA ,OB 中点,则AM ︵=MN ︵=BN ︵成立吗?答案:1.D ;2.3;3.(1)连接OM ,ON ,证明△MCO ≌△NDO ,得出∠MOA =∠NOB ,得出AM ︵=BN ︵;(2)成立.24.1.4圆周角(2课时)第1课时圆周角的概念和圆周角定理1.理解圆周角的概念,会识别圆周角.2.掌握圆周角定理,并会用此定理进行简单的论证和计算.重点圆周角的概念和圆周角定理.难点用分类讨论的思想证明圆周角定理,尤其是分类标准的确定.活动1复习类比,引入概念1.用几何画板显示圆心角.2.教师将圆心角的顶点进行移动,如图1.(1)当角的顶点在圆心时,我们知道这样的角叫圆心角,如∠AOB.(2)当角的顶点运动到圆周时,如∠ACB这样的角叫什么角呢?学生会马上猜出:圆周角.教师给予鼓励,引出课题.3.总结圆周角概念.(1)鼓励学生尝试自己给圆周角下定义.估计学生能类比圆心角给圆周角下定义,顶点在圆周上的角叫圆周角,可能对角的两边没有要求.(2)教师提问:是不是顶点在圆周上的角就是圆周角呢?带着问题,教师出示下图.学生通过观察,会发现形成圆周角必须具备两个条件:①顶点在圆周上;②角的两边都与圆相交.最后让学生再给圆周角下一个准确的定义:顶点在圆周上,两边都与圆相交的角叫圆周角.(3)比较概念:圆心角定义中为什么没有提到“两边都与圆相交”呢?学生讨论后得出:凡是顶点在圆心的角,两边一定与圆相交,而顶点在圆周上的角则不然,因此,学习圆周角的概念,一定要注意角的两边“都与圆相交”这一条件.活动2观察猜想,寻找规律1.教师出示同一条弧所对圆周角为90°,圆心角为180°和同一条弧所对圆周角为45°,圆心角为90°的特殊情况的图形.提出问题:在这两个图形中,对着同一条弧的圆周角和圆心角,它们之间有什么数量关系.由于情况特殊,学生观察、测量后,容易得出:对着同一条弧的圆周角是圆心角的一半.2.教师提出:在一般情况下,对着同一条弧的圆周角还是圆心角的一半吗?通过上面的特例,学生猜想,得出命题:一条弧所对的圆周角等于它所对的圆心角的一半.活动3动手画图,证明定理1.猜想是否正确,还有待证明.教师引导学生结合命题,画出图形,写出已知、求证.2.先分小组交流画出的图形,议一议:所画图形是否相同?所画图形是否合理?3.利用实物投影在全班交流,得到三种情况.若三种位置关系未出现全,教师利用电脑演示同一条弧所对圆周角的顶点在圆周上运动的过程,得出同一条弧所对的圆心角和圆周角之间可能出现的不同位置关系,得到圆心角的顶点在圆周角的一边上、内部、外部三种情况.4.引导学生选一种最特殊、最容易证明的“圆心角的顶点在圆周角的一边上”进行证明,写出证明过程,教师点评.5.引导学生通过添加辅助线,把“圆心角的顶点在圆周角的内部、外部”转化成“圆心角的顶点在圆周角的一边上”的情形,进行证明,若学生不能构造过圆周角和圆心角顶点的直径,教师给予提示.然后小组交流讨论,上台展示证明过程,教师点评证明过程.6.将“命题”改为“定理”,即“圆周角定理”.活动4达标检测,反馈新知1.教材第88页练习第1题.2.如图,∠BAC和∠BOC分别是⊙O中的弧BC所对的圆周角和圆心角,若∠BAC =60°,那么∠BOC=________.3.如图,AB,AC为⊙O的两条弦,延长CA到D,使AD=AB,如果∠ADB=30°,那么∠BOC=________.答案:1.略;2.120°;3.120°.活动5课堂小结,作业布置课堂小结1.圆周角概念及定理.2.类比从一般到特殊的数学方法及分类讨论、转化与化归的数学思想.作业布置教材第88页练习第4题,教材第89页习题第5题.第2课时圆周角定理推论和圆内接多边形1.能推导和理解圆周角定理的两个推论,并能利用这两个推论解决相关的计算和证明. 2.知道圆内接多边形和多边形外接圆的概念,明确不是所有多边形都有外接圆. 3.能证明圆内接四边形的性质,并能应用这个性质解决简单的计算和证明等问题.重点圆周角定理的两个推论和圆内接四边形的性质的运用. 难点圆内接四边形性质定理的准确、灵活应用以及如何添加辅助线.活动1 温习旧知1.圆周角定理的内容是什么?2.如图,若BC ︵的度数为100°,则∠BOC =________,∠A =________.3.如图,四边形ABCD 中,∠B 与∠1互补,AD 的延长线与DC 所夹的∠2=60°,则∠1=________,∠B =________.4.判断正误:(1)圆心角的度数等于它所对的弧的度数;( )(2)圆周角的度数等于它所对的弧的度数的一半.( ) 答案:1.略;2.100°,50°;3.120°,60°;4.略活动2 探索圆周角定理的“推论”1.请同学们在练习本上画一个⊙O.想一想,以A ,C 为端点的弧所对的圆周角有多少个?试着画几个.然后教师引导学生:观察下图,∠ABC ,∠ADC ,∠AEC 的大小关系如何?为什么?让学生得出结论后,教师继续追问:如果把这个结论中的“同弧”改为“等弧”,结论正确吗?2.教师引导学生观察下图,BC 是⊙O 的直径.请问:BC 所对的圆周角∠BAC 是锐角、直角还是钝角?让学生交流、讨论,得出结论:∠BAC 是直角.教师追问理由.3.如图,若圆周角∠BAC=90°,那么它所对的弦BC经过圆心吗?为什么?由此能得出什么结论?4.师生共同解决教材第87页例4.活动3探索圆内接四边形的性质1.教师给学生介绍以下基本概念:圆内接多边形与多边形的外接圆;圆内接四边形与四边形的外接圆.2.要求学生画一画,想一想:在⊙O上任作它的一个内接四边形ABCD,∠A是圆周角吗?∠B,∠C,∠D呢?进一步思考,圆内接四边形的四个角之间有什么关系?3.先打开几何画板,验证学生的猜想,然后再引导学生证明,最后得出结论:圆内接四边形对角互补.4.课件展示练习:(1)如图,四边形ABCD内接于⊙O,则∠A+∠C=________,∠B+∠ADC=________;若∠B=80°,则∠ADC=________,∠CDE=________;(2)如图,四边形ABCD内接于⊙O,∠AOC=100°,则∠D=________,∠B=________;(3)四边形ABCD内接于⊙O,∠A∶∠C=1∶3,则∠A=________;(4)如图,梯形ABCD内接于⊙O,AD∥BC,∠B=75°,则∠C=________.(5)想一想对于圆的任意内接四边形都有这样的关系吗?答案:(1)180°,180°,100°,80°;(2)130°,50°;(3)45°;(4)75°;(5)都有.活动4巩固练习1.教材第88页练习第5题.2.圆的内接梯形一定是________梯形.3.若ABCD为圆内接四边形,则下列哪个选项可能成立()A.∠A∶∠B∶∠C∶∠D=1∶2∶3∶4B.∠A∶∠B∶∠C∶∠D=2∶1∶3∶4C.∠A∶∠B∶∠C∶∠D=3∶2∶1∶4D.∠A∶∠B∶∠C∶∠D=4∶3∶2∶1答案:1.略;2.等腰;3.B.活动5课堂小结与作业布置课堂小结本节课我们学习了圆周角定理的两个推论和圆内接四边形的重要性质,要求同学们理解圆内接四边形和四边形的外接圆的概念,理解圆内接四边形的性质定理;并初步应用性质定理进行有关问题的证明和计算.作业布置教材第89~91页习题第5,6,13,14,17题.24.2点和圆、直线和圆的位置关系24.2.1点和圆的位置关系1.理解并掌握设⊙O的半径为r,点P到圆心的距离OP=d,则有:点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r及其运用.2.理解不在同一直线上的三个点确定一个圆并掌握它的运用.3.了解三角形的外接圆和三角形外心的概念.4.了解反证法的证明思想.复习圆的两种定理和形成过程,并经历探究一个点、两个点、三个点能作圆的结论及作图方法,给出不在同一直线上的三个点确定一个圆的结论.接着从这三点到圆心的距离逐渐引入点P到圆心距离与点和圆位置关系的结论,并运用它们解决一些实际问题.重点点和圆的位置关系的结论:不在同一直线上的三个点确定一个圆及它们的运用.难点讲授反证法的证明思路.一、复习引入(学生活动)请同学们口答下面的问题.1.圆的两种定义是什么?2.你能至少举例两个说明圆是如何形成的?3.圆形成后圆上这些点到圆心的距离如何?4.如果在圆外有一点呢?圆内呢?请你画图想一想.(老师点评)(1)在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A 所形成的图形叫做圆;圆心为O,半径为r的圆可以看成是所有到定点O的距离等于定长r 的点组成的图形.(2)圆规:一个定点,一个定长画圆.(3)都等于半径.(4)经过画图可知,圆外的点到圆心的距离大于半径;圆内的点到圆心的距离小于半径.二、探索新知由上面的画图以及所学知识,我们可知:设⊙O的半径为r,点P到圆心的距离为OP =d,则有:点P在圆外⇒d>r;点P在圆上⇒d=r;点P在圆内⇒d<r;反过来,也十分明显,如果d>r⇒点P在圆外;如果d=r⇒点P在圆上;如果d<r⇒点P在圆内.因此,我们可以得到:设⊙O的半径为r,点P到圆的距离为d,则有:点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r.这个结论的出现,对于我们今后解题、判定点P是否在圆外、圆上、圆内提供了依据.下面,我们接着研究确定圆的条件:(学生活动)经过一点可以作无数条直线,经过二点只能作一条直线,那么,经过一点能作几个圆?经过二点、三点呢?请同学们按下面要求作圆.(1)作圆,使该圆经过已知点A,你能作出几个这样的圆?(2)作圆,使该圆经过已知点A,B,你是如何做的?你能作出几个这样的圆?其圆心的分布有什么特点?与线段AB有什么关系?为什么?(3)作圆,使该圆经过已知点A,B,C三点(其中A,B,C三点不在同一直线上),你是如何做的?你能作出几个这样的圆?(老师在黑板上演示)(1)无数多个圆,如图(1)所示.(2)连接A,B,作AB的垂直平分线,则垂直平分线上的点到A,B的距离都相等,都满足条件,作出无数个.其圆心分布在AB的中垂线上,与线段AB互相垂直,如图(2)所示.(3)作法:①连接AB,BC;②分别作线段AB,BC的中垂线DE和FG,DE与FG相交于点O;③以O为圆心,以OA为半径作圆,⊙O就是所要求作的圆,如图(3)所示.在上面的作图过程中,因为直线DE与FG只有一个交点O,并且点O到A,B,C三个点的距离相等(中垂线上的任一点到两端点的距离相等),所以经过A,B,C三点可以作一个圆,并且只能作一个圆.即不在同一直线上的三个点确定一个圆.也就是,经过三角形的三个顶点可以做一个圆,这个圆叫做三角形的外接圆.外接圆的圆心是三角形三条边垂直平分线的交点,叫做这个三角形的外心.下面我们来证明:经过同一条直线上的三个点不能作出一个圆.证明:如图,假设过同一直线l上的A,B,C三点可以作一个圆,设这个圆的圆心为P,那么点P既在线段AB的垂直平分线l1,又在线段BC的垂直平分线l2,即点P为l1与l2交点,而l1⊥l,l2⊥l,这与我们以前所学的“过一点有且只有一条直线与已知直线垂直”矛盾.所以,过同一直线上的三点不能作圆.上面的证明方法与我们前面所学的证明方法思路不同,它不是直接从命题的已知得出结论,而是假设命题的结论不成立(即假设过同一直线上的三点可以作一个圆),由此经过推理得出矛盾,由矛盾断定所作假设不正确,从而得到命题成立.这种证明方法叫做反证法.在某些情景下,反证法是很有效的证明方法.例1 某地出土一明代残破圆形瓷盘,如图所示.为复制该瓷盘确定其圆心和半径,请在图中用直尺和圆规画出瓷盘的圆心.分析:圆心是一个点,一个点可以由两条直线交点而成,因此,只要在残缺的圆盘上任取两条线段,作线段的中垂线,交点就是我们所求的圆心.作法:(1)在残缺的圆盘上任取三点连接成两条线段; (2)作两线段的中垂线,相交于一点O. 则O 就为所求的圆心.图略. 三、巩固练习教材第95页 练习1,2,3. 四、课堂小结(学生总结,老师点评)本节课应掌握:1.点和圆的位置关系:设⊙O 的半径为r ,点P 到圆心的距离为d ,则 ⎩⎪⎨⎪⎧点P 在圆外⇔d >r ;点P 在圆上⇔d =r ;点P 在圆内⇔d <r.2.不在同一直线上的三个点确定一个圆. 3.三角形外接圆和三角形外心的概念. 4.反证法的证明思想. 5.以上内容的应用.五、作业布置教材第101,102页 习题1,7,8.24.2.2 直线和圆的位置关系(3课时)第1课时 直线和圆的三种位置关系(1)了解直线和圆的位置关系的有关概念.(2)理解设⊙O 的半径为r ,直线l 到圆心O 的距离为d ,则有:直线l 和⊙O 相交⇔d<r ;直线l 和⊙O 相切⇔d =r ;直线l 和⊙O 相离⇔d>r.重点理解直线和圆的三种位置关系. 难点由上节课点和圆的位置关系迁移并运动直线导出直线和圆的位置关系的三个对应等价.一、复习引入(老师口问,学生口答,老师并在黑板上板书)同学们,我们前一节课已经学到点和圆的位置关系.设⊙O 的半径为r ,点P 到圆心的距离OP =d.则有:点P在圆外⇔d>r,如图(a)所示;点P在圆上⇔d=r,如图(b)所示;点P在圆内⇔d<r,如图(c)所示.二、探索新知前面我们讲了点和圆有这样的位置关系,如果这个点P改为直线l呢?它是否和圆还有这三种的关系呢?(学生活动)固定一个圆,把三角尺的边缘移动,如果把这个边缘看成一条直线,那么这条直线和圆有几种位置关系?(老师口问,学生口答)直线和圆有三种位置关系:相交、相切和相离.(老师板书)如图所示:如图(a),直线l和圆有两个公共点,这时我们就说这条直线和圆相交,这条直线叫做圆的割线.如图(b),直线l和圆有一个公共点,这时我们说这条直线和圆相切,这条直线叫做圆的切线,这个点叫做切点.如图(c),直线l和圆没有公共点,这时我们说这条直线和圆相离.我们知道,点到直线l的距离是这点向直线作垂线,这点到垂足D的距离,按照这个定义,作出圆心O到l的距离的三种情况.(学生分组活动):设⊙O的半径为r,圆心到直线l的距离为d,请模仿点和圆的位置关系,总结出什么结论?老师点评:直线l和⊙O相交⇔d<r,如图(a)所示;直线l和⊙O相切⇔d=r,如图(b)所示;直线l和⊙O相离⇔d>r,如图(c)所示.例1如图,已知Rt△ABC的斜边AB=8 cm,AC=4 cm.(1)以点C为圆心作圆,当半径为多长时,直线AB与⊙C相切?(2)以点C为圆心,分别以2 cm和4 cm为半径作两个圆,这两个圆与直线AB分别有怎样的位置关系?解:(1)如图,过C作CD⊥AB,垂足为D.在Rt △ABC 中, BC =82-42=4 3. ∴CD =43×48=23,因此,当半径为2 3 cm 时,AB 与⊙C 相切.(2)由(1)可知,圆心C 到直线AB 的距离d =2 3 cm ,所以 当r =2时,d>r ,⊙C 与直线AB 相离; 当r =4时,d<r ,⊙C 与直线AB 相交. 三、巩固练习教材第96页 练习 四、课堂小结(学生归纳,总结发言,老师点评)本节课应掌握:1.直线和圆相交(割线)、直线和圆相切(切线、切点)、直线和圆相离等概念. 2.设⊙O 的半径为r ,直线l 到圆心O 的距离为d 则有: 直线l 和⊙O 相交⇔d<r ; 直线l 和⊙O 相切⇔d =r ; 直线l 和⊙O 相离⇔d>r. 五、作业布置教材第101页 习题第2题.。
人教数学九年级上册第二十四章24.1.1圆教学设计
三、教学重难点和教学设想
(一)教学重点
1.圆的基本概念和性质,如半径、直径、圆周率等。
2.圆的方程,包括标准方程和一般方程的求解和应用。
3.圆的周长和面积的计算方法,以及在实际问题中的应用。
4.圆与直线、圆与圆之间的位置关系,以及这些关系在几何问题中的应用。
(二)教学难点
1.圆的方程的求解,特别是含有多个未知数的方程组的求解。
2.圆与直线、圆与圆位置关系的判断,以及这些关系在复杂几何图形中的应用。
3.在实际问题中,如何将问题抽象为几何模型,并运用圆的相关知识进行解决。
教学设想:
1.对于教学重点的突破,我设想采用以下策略:
-利用直观教具和几何画板,让学生通过观察和操作,直观感受圆的性质。
1.基础知识掌握情况:了解学生对圆的基本概念、性质、周长和面积公式的掌握程度,以便进行有针对性的教学。
2.思维能力:关注学生的逻辑思维和空间想象力,引导他们运用圆的性质和位置关系解决几何问题。
3.学习方法:培养学生主动探究、合作交流的学习习惯,提高学生分析问题和解决问题的能力。
4.情感态度:关注学生的学习兴趣和积极性,激发他们对数学学科的热情,培养严谨、求实的科学态度。
-定期进行课堂小结,帮助学生巩固所学知识,形成系统化的知识网络。
4.教学评价方面,我将:
-采用多元化的评价方式,包括课堂问答、小组讨论、作业、小测验等,全面评估学生的学习效果。
-注重过程性评价,关注学生在学习过程中的态度、方法、合作精神等非智力因素。
-及时给予反馈,指导学生进行自我反思和调整学习策略,促进学生的持续发展。
2024年人教版九年级数学上册教案及教学反思全册第24章 圆(教案) 点和圆的位置关系教案
24.2 点和圆、直线和圆的位置关系24.2.1 点和圆的位置关系一、教学目标【知识与技能】1.掌握点与圆的三种位置关系及数量间的关系.2.探求过点画圆的过程,掌握过不在同一直线上三点画圆的方法.3.了解运用“反证法”证明命题的思想方法.【过程与方法】通过生活中的实例探求点和圆的三种位置关系,并提炼出数量关系,从而渗透数形结合,分类讨论等数学思想.【情感态度与价值观】形成解决问题的一些基本策略,体验解决问题策略的多样性,发展实践能力与创新精神.二、课型新授课三、课时1课时。
四、教学重难点【教学重点】(1)点与圆的三种位置关系.(2)过三点作圆.【教学难点】点与圆的三种位置关系及其数量关系反证法五、课前准备课件、图片、圆规、直尺等.六、教学过程(一)导入新课我国射击运动员在奥运会上获金牌,为我国赢得荣誉.如图是射击靶的示意图,它是由许多同心圆(圆心相同,半径不相同)构成的,你知道击中靶上不同位置的成绩是如何计算的吗?(出示课件2)解决这个问题要研究点和圆的位置关系.(板书课题)(二)探索新知探究一点和圆的位置关系教师问:观察下图中点和圆的位置关系有哪几种?(出示课件4)学生交流,回答问题.教师点评:点与圆的位置关系有三种:点在圆内,点在圆上,点在圆外.教师问:设点到圆心的距离为d,圆的半径为r,量一量在点和圆三种不同位置关系时,d与r有怎样的数量关系?(出示课件5)学生答:教师问:反过来,由d与r的数量关系,怎样判定点与圆的位置关系呢?学生观察思考交流后,师生共同得到结论:(出示课件6)点与圆的三种位置关系及其数量间的关系:边结论.读作“等价于”.⑵要明确“d”表示的意义,是点P到圆心O的距离.出示课件7,8:例如图,已知矩形ABCD的边AB=3,AD=4.(1)以A为圆心,4为半径作⊙A,则点B、C、D与⊙A的位置关系如何?(2)若以A点为圆心作⊙A,使B、C、D三点中至少有一点在圆内,且至少有一点在圆外,求⊙A的半径r的取值范围?(直接写出答案)学生独立思考后,师生共同解答.解:⑴AD=4=r,故D点在⊙A上;AB=3<r,故B点在⊙A内;AC=5>r,故C点在⊙A外.⑵3≤r≤5.巩固练习:(出示课件9)1.⊙O的半径为10cm,A、B、C三点到圆心的距离分别为8cm、10cm、12cm,则点A、B、C与⊙O的位置关系是:点A在_______;点B在_______;点C在_______.2.圆心为O的两个同心圆,半径分别为1和2,若,则点P在()A.大圆内B.小圆内C.小圆外D.大圆内,小圆外学生独立思考后口答:1.圆内;圆上;圆外 2.D探究二过不共线三点作圆教师问:如何过一个点A作一个圆?过点A可以作多少个圆?(出示课件10)学生动手探究,作图,交流,得出结论,教师点评并总结.以不与A点重合的任意一点为圆心,以这个点到A点的距离为半径画圆即可;可作无数个圆.教师问:如何过两点A、B作一个圆?过两点可以作多少个圆?(出示课件11)学生动手探究,作图,交流,得出结论,教师点评并总结.作线段AB的垂直平分线,以其上任意一点为圆心,以这点和点A或B的距离为半径画圆即可;可作无数个圆.教师问:过不在同一直线上的三点能不能确定一个圆?(出示课件12)学生思考后师生共同解答:经过A,B两点的圆的圆心在线段AB的垂直平分线上.经过B,C两点的圆的圆心在线段BC的垂直平分线上.经过A,B,C三点的圆的圆心应该在这两条垂直平分线的交点O的位置.教师归纳:不在同一直线上的三点确定一个圆.(出示课件13)出示课件14:例已知:不在同一直线上的三点A、B、C.求作:⊙O,使它经过点A、B、C.学生动手探究,作图,交流后,师生共同解答.作法:1.连接AB,作线段AB的垂直平分线MN;2.连接AC,作线段AC的垂直平分线EF,交MN于点O;3.以O为圆心,OB为半径作圆.所以⊙O就是所求作的圆.教师问:现在你知道怎样将一个如图所示的破损的圆盘复原了吗?(出示课件15)学生动手探究,交流,在教师指导下作图.作法:1.在圆弧上任取三点A、B、C;2.作线段AB、BC的垂直平分线,其交点O即为圆心;3.以点O为圆心,OC长为半径作圆.⊙O即为所求.巩固练习:(出示课件16)如图,CD所在的直线垂直平分线段AB,怎样用这样的工具找到圆形工件的圆心.学生独立思考后口答:∵A、B两点在圆上,所以圆心必与A、B两点的距离相等,又∵和一条线段的两个端点距离相等的点在这条线段的垂直平分线上,∴圆心在CD所在的直线上,因此可以做任意两条直径,它们的交点为圆心.探究三三角形的外接圆及外心已知△ABC,用直尺与圆规作出过A、B、C三点的圆.(出示课件17)学生复述作法.教师对照图形进行归纳:(出示课件18)1.外接圆:经过三角形三个顶点可以作一个圆,这个圆叫做三角形的外接圆.⊙O叫做△ABC的外接圆,△ABC叫做⊙O的内接三角形.2.三角形的外心定义:外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.作图:三角形三边中垂线的交点.性质:到三角形三个顶点的距离相等.练一练:判断下列说法是否正确.(出示课件19)(1)任意的一个三角形一定有一个外接圆.( )(2)任意一个圆有且只有一个内接三角形.( )(3)经过三点一定可以确定一个圆. ( )(4)三角形的外心到三角形各顶点的距离相等.( )学生口答:⑴√⑵×⑶×⑷√画一画:分别画一个锐角三角形、直角三角形和钝角三角形,再画出它们的外接圆,观察并叙述各三角形与它的外心的位置关系.(出示课件20)学生动手探究,作图,交流后,教师总结.锐角三角形的外心位于三角形内,直角三角形的外心位于直角三角形斜边的中点,钝角三角形的外心位于三角形外.出示课件21,22:例1 如图,将△AOB置于平面直角坐标系中,O为原点,∠ABO=60°,若△AOB的外接圆与y轴交于点D(0,3).(1)求∠DAO的度数;(2)求点A的坐标和△AOB外接圆的面积.学生独立思考后师生共同解答.解:(1)∵∠ADO=∠ABO=60°,∠DOA=90°,∴∠DAO=30°;⑵∵点D的坐标是(0,3),∴OD=3.在Rt△AOD中,∵∠DOA=90°,∴AD为直径.又∵∠DAO=30°,∴AD=2OD=6,OA=因此圆的半径为3.点A的坐标(0),∴△AOB外接圆的面积是9π.教师强调:解题妙招:图形中求三角形外接圆的面积时,关键是确定外接圆的直径(或半径)长度.巩固练习:(出示课件23)如图,已知直角坐标系中,A(0,4),B(4,4),C(6,2).(1)写出经过A,B,C三点的圆弧所在圆的圆心M的坐标.(2)判断点D(5,-2)和圆M的位置关系.学生独立解答.解:(1)在方格纸中,线段AB和BC的垂直平分线相交于点(2,0),所以圆心M的坐标为(2,0).(2)圆的半径AM==线段DM所以点D在圆M内.出示课件24:例2 如图,在△ABC中,O是它的外心,BC=24cm,O到BC的距离是5cm,求△ABC的外接圆的半径.学生独立思考后师生共同解答.解:连接OB ,过点O 作OD ⊥BC.则OD =5cm ,112cm 2BD BC ==在Rt △OBD 中,13cm OB ==,即△ABC 的外接圆的半径为13cm.巩固练习:(出示课件25)在Rt △ABC 中,∠C=90°,AC=6 cm,BC=8cm,则它的外心与顶点C 的距离为( )A.5cmB.6cmC.7cmD.8cm学生思考后口答:A探究四 反证法教师问:经过同一条直线上的三个点能作出一个圆吗?(出示课件26)学生动手探究,作图,交流后,师生共同解答.如图,假设过同一条直线l 上三点A 、B 、C 可以作一个圆,设这个圆的圆心为P.那么点P 既在线段AB 的垂直平分线l 1上,又在线段BC 的垂直平分线l 2上,即点P 为l 1与l 2的交点.而l 1⊥l ,l 2⊥l 这与我们以前学过的“过一点有且只有一条直线与已知直线垂直”相矛盾.所以过同一条直线上的三点不能作圆.教师归纳:(出示课件27)1.反证法的定义先假设命题的结论不成立,然后由此经过推理得出矛盾(常与公理、定理、定义或已知条件相矛盾),由矛盾判定假设不正确,从而得到原命题成立,这种方法叫做反证法.2.反证法的一般步骤⑴假设命题的结论不成立(提出与结论相反的假设);⑵从这个假设出发,经过推理,得出矛盾;⑶由矛盾判定假设不正确,从而肯定命题的结论正确.出示课件28:例求证:在一个三角形中,至少有一个内角小于或等于60°.师生共同解答.已知:△ABC.求证:△ABC中至少有一个内角小于或等于60°.证明:假设△ABC中没有一个内角小于或等于60°,则∠A>60°,∠B>60°,∠C>60°.因此∠A+∠B+∠C>180°.这与三角形的内角和为180度矛盾.假设不成立.因此△ABC中至少有一个内角小于或等于60°.巩固练习:(出示课件29)利用反证法证明“在直角三角形中,至少有一个锐角不大于45°”时,应先假设()A.有一个锐角小于45°B.每一个锐角都小于45°C.有一个锐角大于45°D.每一锐角都大于45°学生口答:D(三)课堂练习(出示课件30-36)1.已知△ABC的三边a,b,c,满足a+b2+|c﹣,则△ABC的外接圆半径=______.2.如图,⊙O是△ABC的外接圆,∠A=45°,BC=4,则⊙O的直径为______.3.如图,请找出图中圆的圆心,并写出你找圆心的方法?4.正方形ABCD的边长为2cm,以A为圆心2cm为半径作⊙A,则点B在⊙A______;点C在⊙A______;点D在⊙A______.5.⊙O的半径r为5cm,O为原点,点P的坐标为(3,4),则点P与⊙O的位置关系为()A.在⊙O内B.在⊙O上C.在⊙O外D.在⊙O上或⊙O外6.已知:在Rt△ABC中,∠C=90°,AC=6,BC=8,则它的外接圆半径=______.7.如图,△ABC内接于⊙O,若∠OAB=20°,则∠C的度数是________.8.如图,在5×5正方形网格中,一条圆弧经过A,B,C三点,那么这条圆弧所在圆的圆心是()A.点P B.点Q C.点R D.点M9.画出由所有到已知点的距离大于或等于2cm并且小于或等于3cm的点组成的图形.10.某地出土一明代残破圆形瓷盘,如图所示.为复制该瓷盘要确定其圆心和半径,请在图中用直尺和圆规画出瓷盘的圆心.参考答案:1.2582.3.解:如图所示.4.上;外;上5.B6.57.70°8.B9.解:如图所示.10.解:(1)在圆形瓷盘的边缘选A、B、C三点;(2)连接AB、BC;(3)分别作出AB、BC的垂直平分线;(4)两垂直平分线的交点就是瓷盘的圆心.(四)课堂小结本节课你学到了哪些数学知识和数学方法?请与同伴交流.(五)课前预习预习下节课(24.2.2第1课时)的相关内容.七、课后作业1.教材95页练习2.2.配套练习册内容八、板书设计:九、教学反思:本节课通过学生操作,总结出了点与圆的三种位置关系,其中渗透着分类讨论的思想,经过探讨过一点、两点、三点作圆,得出了不在同一直线上三点确定一个圆,从而自然引出三角形外接圆、外心及圆内接三角形的定义,此外还学习了用反证法证明命题的方法和步骤.这些定理都是从学生实践中得出的,培养了学生动手的能力.。
人教版九年级上24.1.1圆(教案)
其次,在讲解切线和割线时,我发现学生们对这两个概念容易混淆。为了帮助学生区分,我计划在下节课中增加一些图示和实物操作,比如用绳子模拟切线和割线,让学生亲自感受两者的不同。通过这样的实践活动,我相信学生们能够更清晰地理解这些几何关系。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了圆的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对圆的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在今天的教学中,我发现学生们对圆的概念和性质掌握得还不错,但在圆的方程和切线割线的理解上存在一些困难。这让我意识到,需要从以下几个方面进行反思和调整。
我还注意到,在小组讨论环节,有些学生参与度不高,可能是由于主题不够吸引他们或者他们对自己的观点不够自信。为了提高学生的参与度,我打算在下次讨论前,先给学生提供一些背景资料和思考问题,激发他们的兴趣,并在讨论过程中给予更多的鼓励和支持。
另外,实践活动虽然能够帮助学生加深对圆的理解,但我也发现有些学生在操作过程中关注了操作本身,却忽略了背后的数学原理。因此,我计划在下次实践活动中,增加一些引导性的问题和任务,让学生在动手操作的同时,思考这些操作与圆的性质和公式之间的联系。
-圆的面积与周长计算:掌握面积和周长的公式,是实际应用中必不可少的技能。
举例:圆以及如何根据实际问题的条件建立圆的方程。
2.教学难点
-圆的方程理解:学生需要理解方程背后的几何意义,以及如何将实际问题转化为方程求解。
人教版九年级数学上册第24章《圆》教案
第二十四章圆1.理解圆、弧、弦、圆心角、圆周角的概念,了解等圆、等弧的概念,理解弧、弦、圆心角的关系,探索并了解点和圆的位置关系.2.探索并证明垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧.3.探索圆周角、圆心角及所对的弧的关系,理解并证明圆周角定理及其推论.4.了解直线和圆的位置关系,掌握切线的概念,探索切线与过切点的半径之间的关系,能判定一条直线是否为圆的切线.5.了解三角形的内心和外心,会利用基本作图方法作三角形的外接圆、内切圆.6.了解正多边形的概念及正多边形与圆的关系,会利用基本作图方法作圆的内接正方形和正六边形.7.会计算弧长、扇形的面积.1.积极引导学生从事观察、测量、平移、旋转、推理证明等活动,了解概念,掌握定理及公式.2.通过探究活动中小组合作交流,培养学生合作意识.3.在探索圆周角和圆心角之间的关系的过程中,让学生体会分类讨论的数学思想和归纳的数学方法.4.通过平移、旋转等方式,认识直线与圆、圆与圆的位置关系,使学生明确图形在运动变化过程中的特点和规律,进一步发展学生的推理能力.5.探索弧长、扇形的面积、圆锥的侧面积和全面积的计算公式并理解公式的意义,提高学生计算能力和数学思维.1.通过探索具体问题中数量关系和变化规律的过程,体验数学来源于生活,又应用于生活,提高学生用数学的意识,体验数学活动中的探索性和创造性.2.让学生经历观察、比较、归纳、应用以及猜想、验证的学习过程,使学生掌握类比、转化等学习数学的方法,养成既能自主探索,又能合作探究的良好学习习惯.3.结合相关图形性质的探索和证明,进一步培养推理能力及综合运用所学知识分析问题、解决问题的能力.4.对学生进行辩证唯物主义世界观的教育.与三角形、四边形一样,圆也是基本的平面图形,也是“空间与图形”的主要研究对象,是人们生活中常见的图形.学生在前面学习了一些基本的直线型——三角形、四边形等图形的基础上,进一步研究一个基本的曲线图形——圆,对圆的概念和性质进行系统梳理,并结合一些图形性质的证明,进一步发展学生的逻辑思维能力.在小学学过圆的基础上,进一步学习研究圆的概念和性质,圆的许多性质比较集中地反映了事物内部量变与质变、一般与特殊、矛盾的对立统一等关系,把这种针对具体图形的结论和方法推广,能使学生实现由具体到抽象、由特殊到一般的认识上的飞跃,提高学生的思维能力,圆锥侧面积的计算还可以培养学生的空间观念,所以圆这一章在初中数学学习中占有重要地位.通过本章的学习,对学生今后继续学习数学,尤其是逐步树立分类讨论的数学思想、归纳的数学思想起着良好的铺垫作用.本章的学习是高中阶段圆锥曲线的学习基础.【重点】1.垂径定理及其推论的推导及应用.2.圆周角定理及其推论的推导及应用.3.切线的性质及判定、切线长定理的应用.4.正多边形的有关计算.5.弧长、扇形面积及圆锥的侧面积的相关计算.【难点】1.垂径定理及其推论的推导及应用.2.圆周角定理及其推论的推导及应用.3.圆锥的侧面展开图的理解.1.“圆”这部分内容处于学生初步掌握了推理论证方法的基础上进一步巩固和提高的阶段,不仅要求学生能熟练地用综合法证明命题,通过探索,展示推理过程,而且要求了解反证法.教学中要重视推理论证的教学,进一步提高学生的思维能力.另外,这部分内容涉及的图形很多是圆和直线型图形的组合,题目比较复杂,教学时多帮助学生复习有关直线型图形的知识,做到新旧结合,加强解题思路的分析,使学生学会把复杂问题化为简单问题,把一般问题化为特殊问题.2.圆是平面图形中一种基本图形,它是一种特殊的曲线,圆的许多性质是通过与圆有关的线段和角体现的.在教学中,要注意结合相关内容,体现这种研究圆的思路.圆是日常生活中应用较广的一种几何图形,这部分内容与实际生活联系紧密,所以应在教学中创设较多的生活情境问题,帮助学生从实际生活中发现数学问题、运用所学知识解决实际问题.3.本章涉及的数学思想方法较多,如分类讨论思想、建模思想、化归思想、数形结合思想、从特殊到一般的方法等,在教学中多给学生自主探究的机会,让学生体会这些思想方法在学习中的重要作用,同时提高学生分析问题和解决问题的能力.4.圆是一种特殊曲线,它有独特的对称性,不仅是轴对称图形、中心对称图形,而且还有旋转不变性,它的对称性在本章性质的探究活动及实际生活中应用广泛,所以在本章教学中,要重视利用圆的对称性进行证明和计算.24.1圆的有关性质24.4弧长和扇形面积2课时24.1圆的有关性质1.理解圆、弧、弦、圆心角、圆周角的概念,了解等圆、等弧的概念.2.探索并证明垂径定理.3.探索圆周角与圆心角及其所对弧的关系.4.理解并证明圆周角定理及其推论,并能应用其解决有关计算和证明.1.结合相关图形性质的探索和证明,进一步发展推理能力.2.在探索圆周角和圆心角之间的关系的过程中,让学生形成分类讨论的数学思想和归纳的数学方法.3.结合相关图形性质的探索和证明,进一步培养综合运用所学知识分析问题、解决问题的能力.1.通过探索具体问题中数量关系和变化规律的过程,体验数学来源于生活,又应用于生活,提高学生用数学的意识,体验数学活动中的探索性和创造性.2.让学生经历观察、比较、归纳、应用以及猜想、验证的学习过程,使学生掌握类比、转化等学习数学的方法,养成既能自主探索,又能合作交流的良好学习习惯.【重点】1.垂径定理.2.圆心角、弦、弧之间的关系.3.圆周角定理.【难点】探索并证明圆的有关性质,并解决一些实际问题.24.1.1圆1.理解圆的定义,掌握弦、直径、弧、优弧、劣弧、半圆、等圆、等弧等基本概念.2.通过对圆的相关概念的理解,能够从图形中识别“弦、直径”、“弧、优弧、劣弧”、“半圆、等圆、等弧”.3.能应用圆的有关概念解决问题.1.通过观察生活中存在的大量的圆形,提高学生识图能力,体会数学与生活息息相关.2.通过探索圆的概念的过程,学会用猜想归纳的方法解决问题.1.经历动手实践、观察思考、分析概括的学习过程,养成自主探究、合作交流的良好习惯.2.引导学生对图形的观察、发现,激发学生的好奇心和求知欲.【重点】与圆有关的概念.【难点】理解“直径与弦”、“半圆与弧”、“等弧与长度相等的弧”等概念.【教师准备】多媒体课件1~6.【学生准备】预习教材P79~80.导入一:【课件1】圆是常见的图形,生活中的许多物体都给我们以圆的形象(如图所示).思考并回答:1.你能举出生活中圆的哪些例子?2.为什么车轮都做成圆形?能不能做成正方形或长方形?3.如图所示,A,B表示车轮边缘上两点,点O表示车轮的轴心,那么A,O之间的距离与B,O之间的距离有什么关系?【师生活动】学生思考后回答,教师适当点评,导出本节课课题.[设计意图]通过欣赏图片,让学生感受生活中处处有数学,激发学生学习本章的兴趣.同时让学生体会圆是实际生活中常见的图形,结合小学对圆的初步接触,让学生回忆圆的知识,思考圆的特征,为后面给出圆的定义做准备,这样从已有的知识体系自然地构建出新知识.[过渡语]实际生活中存在着大量的圆的图形,今天让我们一起认识什么活动1:思考并动手实践你怎样画圆?你能说出圆的形成有几种方法吗?【师生活动】学生思考后会用圆规作圆,教师引导还有没有其他画圆的方法,小组合作交流,共同观察思考圆的特征,老师点评.活动2:自主学习课本79页【学生活动】互相交流圆的概念及表示方法.【课件2】圆的定义:如图所示,在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆.其固定的端点O叫做圆心,线段OA叫做半径.以点O为圆心的圆,记作☉O,读作“圆O”.活动3:根据圆的定义思考1.篮球是圆吗?太阳是圆吗?(强调定义中的同一平面内.)2.以3 cm为半径画圆,能画出几个圆?为什么?(无数个,圆心不确定.)3.以O为圆心画圆,能画出几个圆?为什么?(无数个,半径不确定.)【师生活动】学生思考、操作,小组合作交流,展示结果,教师点评.教师强调:圆心确定圆的位置,半径确定圆的大小,圆心和半径两个元素确定一个圆.[设计意图]通过自学教材形成概念,培养自主学习、合作交流的能力.通过动手操作和生活实例形成圆的概念,体会数学中的建模思想.追加思考,让学生更深入地理解圆的概念,提高学生分析问题的能力.二、共同探究2【课件3】思考并回答下列问题.1.圆上各点到定点(圆心O)的距离有什么规律?2.到定点的距离等于定长的点又有什么特点?【师生活动】学生思考后,小组合作交流,教师引导学生通过动手画图得到上述问题2的结论,学生回答问题后,教师点评,并归纳总结.【课件4】1.圆上各点到定点(圆心O)的距离都等于定长(半径r).2.到定点的距离等于定长的点都在同一个圆上.教师追问:你能不能用动态的观点归纳圆的定义?圆的第二定义:圆心为O、半径为r的圆可以看成是所有到定点O的距离等于定长r的点的集合.三、共同探究3【课件5】(教材例1)矩形ABCD的对角线AC,BD相交于点O.求证A,B,C,D四个点在以点O为圆心的同一个圆上.思路一教师引导学生思考并回答:圆的定义为,矩形的对角线的性质为.分析题意,题目中已知条件为:,所求证结论为,要证明A,B,C,D四个点在以点O为圆心的同一个圆上,只需证明,由矩形的性质:可得.【师生活动】学生独立回答问题后,教师点评并分析如何建立几何模型.证明:∵四边形ABCD为矩形,∴OA=OC=AC,OB=OD=BD,AC=BD.∴OA=OC=OB=OD.∴A,B,C,D四个点在以点O为圆心,OA为半径的圆上.(如图所示)思路二小组活动,共同探究,思考下列问题:1.圆上的点到圆心的距离有什么特点?2.要证明点在圆上,只需要证明什么?3.矩形的对角线有什么性质?4.如何把矩形的问题转化到圆上,进而解决问题?5.你能写出证明过程吗?【师生活动】小组讨论,教师在巡视过程中及时解决疑难问题,学生讨论后小组展示讨论结果,教师及时补充.证明:∵四边形ABCD为矩形,∴OA=OC=AC,OB=OD=BD,AC=BD.∴OA=OC=OB=OD.∴A,B,C,D四个点在以点O为圆心,OA为半径的圆上.[设计意图]师生共同探讨,通过探索证明点在同一个圆上的方法,找到几何问题之间的联系,为学习更多圆的知识做铺垫,同时提高学生利用圆的基本知识解决问题的能力.四、共同探究4活动1:自主学习课本80页【学生活动】互相交流和圆有关的概念及表示方法.【课件6】1.弦、直径.连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径.如图中,AB,AC 是弦,AB是直径.2.弧、半圆.圆上任意两点间的部分叫做圆弧,简称弧.以A,B为端点的弧记作,读作“圆弧AB”或“弧AB”.圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.大于半圆的弧叫做优弧,用三个点表示,如图中的;小于半圆的弧叫做劣弧,如图中的.3.等圆、等弧.能够重合的两个圆叫做等圆.容易看出:半径相等的两个圆是等圆;反过来,同圆或等圆的半径相等.在同圆或等圆中,能够互相重合的弧叫做等弧.活动2:思考下列问题1.直径是弦正确吗?弦是直径呢?直径是最长的弦吗?2.半圆是弧正确吗?弧是半圆呢?半圆是最长的弧吗?3.长度相等的两条弧是等弧吗?为什么?【师生活动】小组合作交流,学生展示后教师点评,强调易错点.[设计意图]通过学生自主学习,掌握和圆有关的概念,培养学生自学能力,同时通过活动2加深学生对概念的辨析与再认识.[知识拓展]1.圆上各点到圆心的距离都等于半径.2.到圆心的距离等于半径的点都在圆上.3.圆可以看作到定点的距离等于定长的点的集合.4.圆是一条封闭的曲线,是指圆周而不是指圆面,圆由圆心确定位置,由半径确定大小.5.弦是一条线段,它的两个端点都在圆上.6.直径是弦,但弦不一定是直径,直径是圆中最长的弦.1.圆的定义.(1)在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆.(2)圆心为O、半径为r的圆可以看成是所有到定点O的距离等于定长r 的点的集合.2.圆的元素:圆心决定圆的位置,半径决定圆的大小.3.和圆有关的概念:弦、直径、弧、优弧、劣弧、半圆、等圆、等弧.1.下列说法正确的是()A.直径是弦,弦是直径B.半圆是弧,弧是半圆C.等弧的长度相等D.长度相等的两条弧是等弧解析:直径是弦,但弦不一定是直径,所以A错误;半圆是弧,但弧不一定是半圆,所以B错误;等弧是能够重合的弧,所以等弧的长度相等,但长度相等的弧不一定是等弧,所以C正确,D错误.故选C.2.如图所示,在☉O中,弦的条数是 ()A.2B.3C.4D.以上均不正确解析:观察可得AB,BC,BD,CD都是☉O的弦.故选C.3.圆O的半径为3 cm,则圆O中最长的弦长为.解析:∵圆O的半径是3 cm,∴圆O的直径是6 cm,又直径是圆中最长的弦,∴圆O中最长的弦长为6 cm.故填6 cm.4.证明对角线互相垂直的四边形的各边的中点在同一个圆上.已知:如图所示,四边形ABCD中,对角线AC⊥BD,E,F,G,H分别为DA,AB,BC,CD的中点.求证:点E,F,G,H在同一个圆上.证明:∵E,H分别为DA,DC的中点,∴在ΔDAC中,EH∥AC,同理得FG∥AC,EF∥DB,HG∥DB,∴EH∥FG,EF∥HG,∴四边形EFGH是平行四边形,又∵AC⊥BD,∴EH⊥HG,∴四边形EHGF为矩形,∴E,H,G,F在同一个圆上.24.1.1圆一、共同探究1圆的第一定义:二、共同探究2圆的第二定义:三、共同探究3例1四、共同探究4和圆有关的概念:一、教材作业【必做题】教材第81页练习的1,2题.【选做题】教材第89页习题24.1的1题.二、课后作业【基础巩固】1.下列说法正确的是 ()A.周长相等的两个圆是等圆B.长度相等的两条弧是等弧C.同一条弦所对的两条弧是等弧D.半径确定了,圆也就确定了2.如图所示,AB是☉O的弦,∠AOB=80°,则∠A等于()A.50°B.55°C.65°D.80°3.过圆内的一点(非圆心)有条弦,有条直径.4.圆内最长的弦长为10 cm,则圆的半径等于cm.5.如图所示的圆中有条直径,条弦,以点A为一个端点的劣弧有条.6.如图所示,已知OA,OB,OC是☉O的三条半径,∠AOC=∠BOC,M,N分别为OA,OB的中点.求证MC=NC.7.如图所示,AB是☉O的弦(非直径),C,D是AB上的两点,并且AC=BD.求证OC=OD.【能力提升】8.如图所示,AB是☉O的直径,AC是弦,D是AC的中点,若OD=4,求BC的长.9.如图所示,AB是☉O的直径,点C在☉O上,CD⊥AB,垂足为D,已知CD=4,OD=3,求AB的长.10.如图所示,CD是☉O的直径,∠EOD=84°,AE交☉O于点B,且AB=OC,求∠A 的度数.【拓展探究】11.如图所示,两正方形彼此相邻且大正方形ABCD的顶点A,D在半圆O上,顶点B,C在半圆的直径上,小正方形BEFG的顶点F在半圆O上,B,E两点在半圆O的直径上,点G在大正方形的边AB上,若小正方形的边长是4 cm,求该半圆的半径.【答案与解析】1.A(解析:周长相等的两个圆半径相等,所以是等圆,所以A正确;长度相等的弧不一定能重合,所以B错误;同一条弦所对的两条弧构成一个圆,不一定相等,所以C错误;半径确定圆的大小,圆心确定圆的位置,两者共同确定一个圆,所以D 错误.故选A.)2.A(解析:∵OA=OB,∴∠A=∠B,∵∠AOB+∠A+∠B=180°,∴∠A=-=50°.故选A.)3.无数一(解析:过圆内一点(非圆心)有无数条直线与圆相交,根据弦的定义可知过圆内一点(非圆心)有无数条弦;两点确定一条直线,所以过圆心和该点只有一条直径.)4.5(解析:∵圆内最长的弦长为10 cm,又直径是圆中最长的弦,∴圆的直径是10 cm,∴圆的半径是5 cm.故填5.)5.134(解析:根据圆的有关定义可得图中AB是直径,AB,CD,EF是弦,以A 为一个端点的劣弧有,,,.)6.证明:∵OA,OB为☉O的半径,∴OA=OB,∵M是OA中点,N是OB中点,∴OM=ON,又∵∠AOC=∠BOC,OC=OC,∴ΔMOC≌ΔNOC,∴MC=NC.7.证明:分别连接OA,OB.∵OB=OA,∴∠A=∠B.又∵AC=BD,∴ΔAOC≌ΔBOD,∴OC=OD.8.解:∵AB是☉O的直径,∴OA=OB,∵D是AC的中点,∴AD=DC,∴OD是ΔABC 的中位线,∴BC=2OD=8.9.解:连接OC.∵CD=4,OD=3,∴在RtΔODC中,OC==5,∴AB=2OC=10.10.解:连接OB.∵AB=OC,∴AB=BO,∴∠BOC=∠A,∴∠EBO=∠BOC+∠A=2∠A,由OB=OE,得∠E=∠EBO=2∠A,∴∠EOD=∠E+∠A=3∠A,而∠EOD=84°,∴3∠A=84°,∴∠A=28°.11.解析:设大正方形边长为2x,根据勾股定理可得半圆半径,连接圆心和小正方形右上顶点,也可得直角三角形,已知小正方形的边长,利用勾股定理即可求解.解:设大正方形的边长为2x,半圆的半径为R,则BO=x,AB=2x,∵小正方形的边长为4 cm,∴BE=EF=4,连接OA,OF,由勾股定理,得R2=OB2+AB2=OE2+EF2,即x2+4x2=(x+4)2+42,解得x=4或x=-2(舍去),∴R=4cm.∴该半圆的半径为4cm.本节课由观察图形导入新课,让学生体会圆在实际生活中无处不在,可激发学生探究圆的知识的欲望.本节课的主要学习方式为自主学习、合作交流、共同探究、归纳总结,学生通过观察、操作、交流、归纳,理解圆及和圆有关的概念,由于本节课内容较为简单,故给了学生充分展示的舞台,学生交流后展示,其他组学生补充,让学生真正体会数学概念的形成过程,提高学生归纳总结能力.例题的探究与讨论,让学生体会到几何之间的互相转化,提高学生运用知识解决问题的能力.由于这节课内容较少,加上小学对圆的认识,误认为学生会通过自学掌握所有知识,教学时概念的形成过程中有点过于急躁,造成学生对概念中的细节问题掌握不牢固.对形如例1这样的几何问题,不能找到新旧知识的联系,造成解题困难,在今后的教学中,应注重培养学生逻辑思维能力.圆是一种常见的几何图形,它的应用非常广泛,许多实际问题往往可以归结为圆的问题加以研究.在教学中要重视圆的概念的形成和构建,在概念的学习过程中,让学生体验从问题出发到解决图形问题的过程,体验用函数思想去描述、研究变量之间变化规律的意义.教学中多给学生交流的空间,通过与同学、老师之间的合作交流,体验数学学习带来的快乐.练习(教材第81页)1.提示:拿一根5 m长的绳子,站定一个位置,当做圆的圆心,再让另一个人拉紧绳子,绕走一圈,并画出走的轨迹即可.2.解:=0.575(cm).3.证明:如图所示,取AB的中点O,连接CO.在RtΔABC中,∵AO=BO,∠ACB=90°,∴CO=AB,即CO=AO=BO.∴A,B,C三点在同一个圆上,圆心为点O.本节课主要探究圆的定义和圆的有关概念,是对小学里已学过的圆的认识的巩固,也为本章即将探究的圆的性质打下基础.本节课的重点是通过观察、操作、归纳,理解圆的两种定义,理解弦(直径)、弧(优弧、劣弧、半圆)、等圆、等弧等和圆有关的概念,并通过讨论等活动提高学生用圆的相关知识解决实际问题的能力.课前准备生活中圆形图片,由生活实例入手,激发学生探究圆的知识的欲望,然后引导学生自主学习课本有关概念,通过合作交流解决疑难问题并强化知识点,把课堂真正交给学生,给学生足够的时间思考和探索.教师只是一个引导者,引导学生经历知识的形成过程,从而达到强化学习重点,提高学习能力,发展创新精神的目的.圆O所在平面上的一点P到圆O上的点的最大距离是10,最小距离是2,求此圆的半径是多少.〔解析〕题目中说到最大距离和最小距离,我们首先想到的就是直径,然后过点P作圆的直径,从而得到圆的半径.通常情况下,我们进行的都是在圆内的有关计算,这逐渐成为一种习惯,使得我们忽略了圆外的情况,所以经常会出现漏解的情况.解:如图所示,分两种情况:(1)当点P为圆O内一点时,过点P作圆O的直径,分别交圆O于A,B两点,由题意可得AP=2,BP=10,所以圆O的半径为=6.(2)当点P在圆外时,作直线OP,分别交圆O于A,B两点,由题意可得BP=10,AP=2,所以圆O的半径为-=4.综上所述,所求圆的半径为6或4.24.1.2垂直于弦的直径1.通过观察试验,理解圆的轴对称性.2.掌握垂径定理及其推论.3.会用垂径定理解决有关的证明与计算问题.1.通过探索圆的对称性及相关性质,培养学生动手操作能力及观察、分析、逻辑推理和归纳概括能力.2.经历探究垂径定理及其推论的过程,进一步体会和理解研究几何图形的各种方法.1.通过探究垂径定理的活动,激发学生探究、发现数学问题的兴趣,培养学生大胆猜想、乐于探究的良好品质.2.培养学生观察能力,激发学生的好奇心和求知欲,并从数学学习活动中获得成功的体验.【重点】垂径定理及其应用.【难点】探索并证明垂径定理,利用垂径定理解决一些实际问题.【教师准备】多媒体课件1~5.【学生准备】圆形纸片、预习教材P81~83.导入一:【课件1】赵州桥(如图所示)是我国隋代建造的石拱桥,距今约有1400年的历史,是我国古代人民勤劳与智慧的结晶.它的主桥拱是圆弧形,它的跨度(弧所对的弦的长)为37 m,拱高(弧的中点到弦的距离)为7.23 m,求赵州桥主桥拱的半径(结果保留小数点后一位).复习提问:1.什么是轴对称图形?2.圆是轴对称图形吗?如果是,它的对称轴是什么?你能找到多少条对称轴?3.你是用什么方法解决上述问题的?(教师引导折叠课前准备的圆形纸片.)4.直径是圆的对称轴这种说法正确吗?【师生活动】学生思考后小组合作交流,学生回答后教师点评,指出“直径是圆的对称轴”这种说法错误的原因.【课件2】圆是轴对称图形,任何一条直径所在直线都是圆的对称轴.[设计意图]通过实际问题导入新课,让学生感受数学来源于生活,又应用于生活.通过复习旧知识和创设动手操作活动,激发学生的学习兴趣,引出本节内容,为本节课的学习进行铺垫.思路一在自己课前准备的纸片上作图.1.任意作一条弦AA'.2.过圆心O作弦AA'的垂线,得直径CD交AA'于点M.3.观察图形,你能找到哪些相等线段?4.你能证明你的结论吗?写出你的证明过程.5.如果沿着CD折叠,你能不能得到相等的弧?6.图形中的已知条件、结论分别是什么?你能用语言叙述这个命题吗?【师生活动】让学生独立思考、尝试证明,然后小组合作交流,共同探究结论.教师在巡视过程中帮助有困难的学生.学生回答问题,并展示自己的证明过程,教师适时点评.【课件3】证明:连接OA,OA',在ΔOAA'中,∵OA=OA',∴ΔOAA'是等腰三角形.又AA'⊥CD,∴AM=MA'.即CD是AA'的垂直平分线.这就是说,对于圆上任意一点A,在圆上都有关于直线CD的对称点A',因此☉O关于直线CD对称.把圆沿着直径CD折叠时,点A与点A'重合,AM与A'M重合,,分别与,重合.因此,AM=A'M,,.即直径CD平分弦AA',并且平分,.垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧.思路二动手操作:1.把课前准备的圆形纸片(☉O)对折,使圆的两半部分重合;2.把得到的折痕记作CD;3.在☉O上任取一点A,过点A作折痕CD的垂线,沿垂线折叠,得到新的折痕,两条折痕的交点为M,即垂足为M.4.将纸片打开,新的折痕与圆交于另一点A'.(如上图所示)【思考】1.通过上面的操作,你发现了哪些相等的线段和相等的弧?为什么?2.你能不能把刚才的操作当成条件,观察到的结果作为结论,归纳出一个正确的命题?【师生活动】互相交流操作结果及思考后得到的结论,教师对学习有困难的学生给予帮助,学生展示后教师点评.由折叠可得A与A'重合,,分别与,重合.∴AM=MA',,.即直径CD平分弦AA',并且平分,.归纳结论:垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧.。
人教版九年级第二十四章《圆》整章教案
人教版九年级第二十四章《圆》整章教案五、课后记:24.1.2 垂直于弦的直径教学目标知识技能探索圆的对称性,进而得到垂直于弦的直径所具有的性质;能够利用垂直于弦的直径的性质解决相关实际问题.数学思考在探索问题的过程中培养学生的动手操作能力,使学生感受圆的对称性,体会圆的一些性质,经历探索圆的对称性及相关性质的过程.解决问题进一步体会和理解研究几何图形的各种方法;培养学生独立探索,相互合作交流的精神.情感态度使学生领会数学的严谨性和探索精神,培养学生实事求是的科学态度和积极参与的主动精神.重点垂直于弦的直径所具有的性质以及证明.难点利用垂直于弦的直径的性质解决实际问题.教学过程一、创设问题情境,激发学生兴趣,引出本节内容活动1:用纸剪一个圆,沿着圆的任意一条直径对折,重复做几次,你发现了什么?由此你能得到什么结论?(课件:探究圆的性质)学生活动设计:学生动手操作,观察操作结果,可以发现沿着圆的任意一条直径对折,直径两旁的部分能够完全重合,由此可以发现:圆是轴对称图形,任何一条直径所在直线都是它的对称轴.教师活动设计:在学生归纳的过程中注意学生语言的准确性和简洁性.二、问题引申,探究垂直于弦的直径的性质,培养学生的探究精神活动2:按下面的步骤做一做:第一步,在一张纸上任意画一个⊙O,沿圆周将圆剪下,把这个圆对折,使圆的两半部分重合;第二步,得到一条折痕CD;第三步,在⊙O上任取一点A,过点A作CD折痕的垂线,得到新的折痕,其中点M是两条折痕的交点,即垂足;第四步,将纸打开,新的折痕与圆交于另一点B,如图1.图1 图2在上述的操作过程中,你发现了哪些相等的线段和相等的弧?为什么?学生活动设计:如图2所示,连接OA 、OB ,得到等腰△OAB ,即OA =OB .因CD ⊥AB ,故△OA M 与△OB M 都是直角三角形,又O M 为公共边,所以两个直角三角形全等,则A M =B M .又⊙O 关于直径CD 对称,所以A 点和B 点关于CD 对称,当圆沿着直径CD 对折时,点A 与点B 重合,AC 与BC 重合.因此AM =B M ,AC =BC ,同理得到AD BD =.在学生操作、分析、归纳的基础上,引导学生归纳垂直于弦的直径的性质:(1)垂直于弦的直径平分弦,并且平分弦所对的两条弧;(2)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.活动3:如图3,AB 所在圆的圆心是点O ,过O 作OC⊥AB 于点D ,若CD =4 m ,弦AB =16 m ,求此圆的半径.学生活动设计:学生观察图形,利用垂直于弦的直径的性质分析图形条件,发现若OC ⊥AB ,则有AD =BD ,且△ADO 是直角三角形,在直角三角形中可以利用勾股定理构造方程.教师活动设计:在学生解决问题的基础上引导学生进行归纳:弦长、半径、拱形高、弦心距(圆心到弦的距离)四个量中,只需要知道两个量,其余两个量就可以求出来.〔解答〕设圆的半径为R ,由条件得到OD =R -4,AD =8,在R t △ADO 中222AO OD AD =+,即222(4)8R R =-+. 解得 R =10(m ).答:此圆的半径是10 m . 图4活动4:如图4,已知AB ,请你利用尺规作图的方法作出AB 的中点,说出你的作法.师生活动设计:根据基本尺规作图可以发现不能直接作出弧的中点,但是利用垂径定理只需要作出弧所对的弦的垂直平分线,垂直平分线与弧的交点就是弧的中点.〔解答〕1.连接AB ;2.作AB 的中垂线,交 于点C ,点C 就是所求的点.三、拓展创新,培养学生思维的灵活性以及创新意识.活动5 解决下列问题1.如图5,某条河上有一座圆弧形拱桥ACB ,桥下面水面宽度AB 为7.2米,桥的最高处点C 离水面的高度2.4米.现在有一艘宽3米,船舱顶部为方形并高出水面2米的货船要经过这里,问:这艘船是否能够通过这座拱桥?说明理由.图3BA AB A M E A B G H F图5 图6学生活动:学生根据实际问题,首先分析题意,然后采取一定的策略来说明能否通过这座拱桥,这时要采取一定的比较量,才能说明能否通过,比如,计算一下在上述条件下,在宽度为3米的情况下的高度与2米作比较,若大于2米说明不能经过,否则就可以经过这座拱桥.〔解答〕如图6,连接AO 、GO 、CO ,由于弧的最高点C 是弧AB 的中点,所以得到 OC ⊥AB ,OC ⊥G F ,根据勾股定理容易计算OE =1.5米,OM =3.6米.所以ME =2.1米,因此可以通过这座拱桥.2.银川市某居民区一处圆形下水管道破裂,修理人员准备更换一段新管道.如图7所示,污水水面宽度为60 cm ,水面至管道顶部距离为10 cm ,问修理人员应准备内径多大的管道?图7 图8师生活动设计:让学生在探究过程中,进一步把实际问题转化为数学问题,掌握通过作辅助线构造垂径定理的基本结构图,进而发展学生的思维.〔解答〕如图8所示,连接OA ,过O 作OE ⊥AB ,垂足为E ,交圆于F ,则AE =21AB = 30 cm .令⊙O 的半径为R , 则OA =R ,OE =OF -EF =R -10.在R t △AEO 中,OA 2=AE 2+OE 2,即R 2=302+(R -10)2.解得R =50 cm .修理人员应准备内径为100 cm 的管道.四、归纳小结、布置作业1、小结:垂直于弦的直径的性质,圆对称性.2、作业:第88页练习,习题24.1 第1题,第8题,第9题.五、课后记:24.1.3 弧、弦、圆心角教学过程设计二、创设问题情境,激发学生兴趣,引出本节内容活动11.按下面的步骤做一做:(1)在两张透明纸上,作两个半径相等的⊙O和⊙O′,沿圆周分别将两圆剪下;(2)在⊙O和⊙O′上分别作相等的圆心角∠AOB和∠A′O′B′,如图1所示,圆心固定.注意:在画∠AOB与∠A′O′B′时,要使OB相对于OA的方向与O′B′相对于O′A′的方向一致,否则当OA与OA′重合时,OB与O′B′不能重合.图1(3)将其中的一个圆旋转一个角度.使得OA 与O ′A ′重合.通过上面的做一做,你能发现哪些等量关系?同学们互相交流一下,说一说你的理由. (课件:探究三量关系)师生活动设计:教师叙述步骤,同学们一起动手操作. 由已知条件可知∠AOB =∠A ′O ′B ′;由两圆的半径相等,可以得到∠OAB =∠OBA =∠O ′A ′B ′=∠O ′B ′A ′;由△AOB ≌△A ′O ′B ′,可得到AB =A ′B ′;由旋转法可知''AB A B =.在学生分析完毕后,教师指出在上述做一做的过程中发现,固定圆心,将其中一个圆旋转一个角度,使半径OA 与O ′A ′重合时,由于∠AOB =∠A ′O ′B ′.这样便得到半径OB 与O ′B ′重合.因为点A 和点A ′重合,点B 和点B ′重合,所以AB 和''A B 重合,弦AB 与弦A ′B ′重合,即''AB A B =,AB =A ′B ′.进一步引导学生语言归纳圆心角、弧、弦之间相等关系定理:在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等.2.根据对上述定理的理解,你能证明下列命题是正确的吗?(1)在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等;(2)在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的优(劣)弧相等.师生活动设计: 本问题由学生在思考的基础上讨论解决,可以证明上述命题是真命题. 二、主体活动,巩固新知,进一步理解三量关系定理.活动2: 1. 如图2,在⊙O 中,AB AC =,∠ACB =60°, 求证:∠AOB =∠AOC =∠BOC .图2学生活动设计:学生独立思考,根据对三量定理的理解加以分析.由AB AC =,得到AB AC =,△ABC 是等腰三角形,由∠ACB =60°,得到△ABC 是等边三角形,AB =AC =BC ,所以得到∠AOB =∠AOC =∠BOC .教师活动设计:这个问题是对三量关系定理的简单应用,因此应当让学生独立解决,在必要时教师可以进行适当的启发和提醒,最后学生交流自己的做法.OB C〔证明〕∵AB AC∴AB=AC,△ABC是等腰三角形.又∠ACB=60°,∴△ABC是等边三角形,AB=BC=CA.∴∠AOB=∠AOC=∠BOC.图 3 图42.如图3,AB是⊙O的直径,BC、CD、DA是⊙O的弦,且BC=CD=DA,求∠BOD的度数.三、拓展创新、应用提高,培养学生的应用意识和创新能力活动3:定理“在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等”中,可否把条件“在同圆或等圆中”去掉?为什么?如图4所示,虽然∠AOB=∠A′O′B′,但AB≠A′B′,弧AB≠弧A′B′.教师进一步引导学生用同样的思路考虑命题:(1)在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等;(2)在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的优(劣)弧相等中的条件“在同圆和等圆中”是否能够去掉.四、归纳小结、布置作业活动4:小结:弦、圆心角、弧三量关系.作业:课本第90页练习2.习题24.1 第2、3题,第10题.五、课后记:24.1.4 圆周角教学任务分析教学目标知识技能1.了解圆周角与圆心角的关系.2.探索圆周角的性质和直径所对圆周角的特征.3.能运用圆周角的性质解决问题.数学思考1.通过观察、比较,分析圆周角与圆心角的关系,发展学生合情推理能力和演绎推理能力.2.通过观察图形,提高学生的识图能力.3.通过引导学生添加合理的辅助线,培养学生的创造力.解决问题学生在探索圆周角与圆心角的关系的过程中,学会运用分类讨论的数学思想、转化的数学思想解决问题.情感态度引导学生对图形的观察发现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心.重点探索圆周角与圆心角的关系,发现圆周角的性质和直径所对圆周角的特征.难点发现并论证圆周角定理.教学教程:一、创设情境:[活动1 ] 演示课件或图片:问题1如图:同学甲站在圆心O的位置,同学乙站在正对着玻璃窗的靠墙的位置C,他们的视角(AOB∠和ACB∠)有什么关系?问题2如果同学丙、丁分别站在其他靠墙的位置D和E,他们的视角(ADB∠和AEB∠)和同学乙的视角相同吗?教师演示课件或图片:展示一个圆柱形的海洋馆.教师解释:在这个海洋馆里,人们可以通过其中的圆弧形玻璃窗AB观看窗内的海洋动物.教师出示海洋馆的横截面示意图,提出问题.教师结合示意图,给出圆周角的定义.利用几何画板演示,让学生辨析圆周角,并引导学生将问题1、问题2中的实际问题转化成数学问题:即研究同弧(AB)所对的圆心角(AOB∠)与圆周角(ACB∠)、同弧所对的圆周角(ACB∠、ADB∠、AEB∠等)之间的大小关系.教师引导学生进行探究.二、自主探索:[活动2]:问题1同弧(弧AB)所对的圆心角∠AOB与圆周角∠ACB的大小关系是怎样的?问题2,同弧(弧AB)所对的圆周角∠ACB与圆周角∠ADB的大小关系是怎样的?B O A CDE O B A C教师提出问题,引导学生利用度量工具(量角器或几何画板)动手实验,进行度量,发现结论.由学生总结发现的规律:同弧所对的圆周角的度数没有变化,并且它的度数恰好等于这条弧所对的圆心角的度数的一半.教师利用几何画板课件“圆周角定理”,从动态的角度进行演示,验证学生的发现.教师可从以下几个方面演示,让学生观察圆周角的度数是否发生改变,同弧所对的圆周角与圆心角的关系有无变化.1.拖动圆周角的顶点使其在圆周上运动;2.改变圆心角的度数;3.改变圆的半径大小.三、合作探究:[活动3]问题1,在圆上任取一个圆周角,观察圆心与圆周角的位置关系有几种情况? (课件:折痕与圆周角的关系)教师引导学生,采取小组合作的学习方式,前后四人一组,分组讨论.问题2,当圆心在圆周角的一边上时,如何证明活动2中所发现的结论?教师巡视,请学生回答问题.回答不全面时,请其他同学给予补充.教师演示圆心与圆周角的三种位置关系.问题3,另外两种情况如何证明,可否转化成第一种情况呢?学生采取小组合作的学习方式进行探索发现,教师观察指导小组活动.启发并引导学生,通过添加辅助线,将问题进行转化.四、自主探索:[活动4]问题1:如图1.半圆(或直径)所对的圆周角是多少度?(课件:圆周角定理推论) A O BC 1C 2C 3图1 图2 图3问题2:90°的圆周角所对的弦是什么?问题3: 在半径不等的圆中,相等的两个圆周角所对的弧相等吗?问题4:在同圆或等圆中,如果两个圆周角相等,它们所对的弧一定相等吗?为什么? DO A C问题5:如图2,点A、B、C、D在同一个圆上,四边形ABCD的对角线把4个内角分成8个角,这些角中哪些是相等的角?问题6:如图3,⊙O的直径AB 为10 cm,弦AC 为6 cm,∠ACB的平分线交⊙O 于D,求BC、AD、BD的长.五、小结与作业:小结:问题通过本节课的学习你有哪些收获?作业:教科书94页习题24.1第2、3、4、5题.六、课后记:24.2.1点与圆的位置关系图1 A D C B A D C B A D C B 一、问题情境爱好运动的小华、小强、小兵三人相邀搞一次掷飞镖比赛。
九年级数学上册第二十四章圆教案新人教版.docx
文档来源为 :从网络收集整理.word 版本可编辑 .欢迎下载支持.第二十四章圆教案单元要点分析教学内容1.本单元数学的主要内容.(1)圆有关的概念:垂直于弦的直径,弧、弦、圆心角、圆周角.( 2)与圆有关的位置关系:点和圆的位置关系,直线与圆的位置关系,?圆和圆的位置关系.( 3)正多边形和圆.( 4)弧长和扇形面积:弧长和扇形面积,圆锥的侧面积和全面积.2.本单元在教材中的地位与作用.学生在学习本章之前,已通过折叠、对称、平移旋转、推理证明等方式认识了许多图形的性质,积累了大量的空间与图形的经验.本章是在学习了这些直线型图形的有关性质的基础上,进一步来探索一种特殊的曲线──圆的有关性质.通过本章的学习,对学生今后继续学习数学,尤其是逐步树立分类讨论的数学思想、归纳的数学思想起着良好的铺垫作用.本章的学习是高中的数学学习,尤其是圆锥曲线的学习的基础性工程.教学目标1.知识与技能( 1)了解圆的有关概念,探索并理解垂径定理,探索并认识圆心角、弧、?弦之间的相等关系的定理,探索并理解圆周角和圆心角的关系定理.(2)探索并理解点和圆、直线与圆以及圆与圆的位置关系:了解切线的概念, ?探索切线与过切点的直径之间的关系,能判定一条直线是否为圆的切线,会过圆上一点画圆的切线.(3)进一步认识和理解正多边形和圆的关系和正多边的有关计算.(4)熟练掌握弧长和扇形面积公式及其它们的应用; ?理解圆锥的侧面展开图并熟练掌握圆锥的侧面积和全面积的计算.2.过程与方法( 1)积极引导学生从事观察、测量、平移、旋转、推理证明等活动.?了解概念,理解等量关系,掌握定理及公式.( 2)在教学过程中,鼓励学生动手、动口、动脑,并进行同伴之间的交流.( 3)在探索圆周角和圆心角之间的关系的过程中,?让学生形成分类讨论的数学思想和归纳的数学思想.( 4)通过平移、旋转等方式,认识直线与圆、圆与圆的位置关系,?使学生明确图形在运动变化中的特点和规律,进一步发展学生的推理能力.(5)探索弧长、扇形的面积、 ?圆锥的侧面积和全面积的计算公式并理解公式的意义、理解算法的意义.3.情感、态度与价值观经历探索圆及其相关结论的过程,发展学生的数学思考能力;通过积极引导,帮助学生有意识地积累活动经验,获得成功的体验;利用现实生活和数学中的素材,设计具有挑战性的情景,激发学生求知、探索的欲望.教学重点1 .平分弦(不是直径)的直径垂直于弦,?并且平分弦所对的两条弧及其运用.2 .在同圆或等圆中,相等的圆心角所对的弧相等,?所对的弦也相等及其运用.3.在同圆或等圆中,同弧或等弧所对的圆周角相等, ?都等于这条弧所对的圆心角的一半及其运用.14 .半圆(或直径)所对的圆周角是直角,90?°的圆周角所对的弦是直径及其运用.5.不在同一直线上的三个点确定一个圆.6 .直线 L 和⊙ O相交d<r ;直线 L 和圆相切d=r ;直线 L 和⊙ O相离d>r 及其运用.7.圆的切线垂直于过切点的半径及其运用.8. ?经过半径的外端并且垂直于这条半径的直线是圆的切线并利用它解决一些具体问题.9.从圆外一点可以引圆的两条切线,它们的切线长相等, ?这一点和圆心的连线平分两条切线的夹角及其运用.10.两圆的位置关系: d 与 r和 r2之间的关系:外离d>r +r;外切d=r +r;相11212交│ r 2-r 1│ <d<r 1+r 2;内切d=│ r 1-r 2│;内含d<│r 2-r 1│.11.正多边形和圆中的半径R、边心距 r 、中心角θ之间的等量关系并应用这个等量关系解决具体题目.12. n°的圆心角所对的弧长为L= n R, n°的圆心角的扇形面积是S扇形= n R2及其180360运用这两个公式进行计算.13.圆锥的侧面积和全面积的计算.教学难点1.垂径定理的探索与推导及利用它解决一些实际问题.2 .弧、弦、圆心有的之间互推的有关定理的探索与推导,?并运用它解决一些实际问题.3.有关圆周角的定理的探索及推导及其它的运用.4.点与圆的位置关系的应用.5.三点确定一个圆的探索及应用.6.直线和圆的位置关系的判定及其应用.7.切线的判定定理与性质定理的运用.8.切线长定理的探索与运用.9.圆和圆的位置关系的判定及其运用.10.正多边形和圆中的半径 R、边心距 r 、中心角θ的关系的应用.11. n 的圆心角所对的弧长 L= n R及 S 扇形=n R2的公式的应用.18036012.圆锥侧面展开图的理解.教学关键1.积极引导学生通过观察、测量、折叠、平移、旋转等数学活动探索定理、 ?性质、“三个”位置关系并推理证明等活动.2.关注学生思考方式的多样化,注重学生计算能力的培养与提高.3.在观察、操作和推导活动中,使学生有意识地反思其中的数学思想方法,?发展学生有条理的思考能力及语言表达能力.单元课时划分本单元教学时间约需13 课时,具体分配如下:24. 1圆3课时24. 2与圆有关的位置关系4课时24. 3正多边形和圆1课时224 . 4 弧长和扇形面积2课时教学活动、习题课、小结3课时3。
人教版初中数学九年级上册第二十四章:圆(全章教案)
第二十四章圆本章总共分四个模块的内容.模块一:圆的有关性质;模块二:点和圆、直线和圆的位置关系;模块三:正多边形和圆;模块四:弧长和扇形面积.在对圆的初步认识的基础上,通过画圆引入圆的有关概念,通过类比点和线、线和线的位置关系学习点和圆、直线和圆的位置关系,进一步学习正多边形和圆、弧长和扇形面积,进而学会用圆的有关知识解决一些实际问题.在中考中,本章是考查的重点,主要考查圆的基本性质、与圆有关的位置关系、圆的有关计算.【本章重点】圆的有关性质、直线和圆的位置关系及与圆有关的计算.【本章难点】垂径定理,弧、弦、圆心角的关系定理,圆周角定理,切线的性质和判定,切线长定理及正多边形与圆的关系.【本章思想方法】1.体会和掌握类比的学习方法.如:通过与点和线位置关系的类比,学习点和圆的位置关系.2.体会数形结合思想:如:点和圆的位置关系、直线和圆的位置关系通过“数”“形”转化;弧、弦、圆心角、圆周角的关系通过“数”“形”转化.因此,本章应突出数形结合思想,体会数形结合思想的作用.3.体会分类讨论思想:如:探究平行弦之间的距离、圆心角与圆周角的关系、与圆有关的位置关系.24.1圆的有关性质4课时24.2点和圆、直线和圆的位置关系4课时24.3正多边形和圆1课时24.4弧长和扇形面积2课时24.1圆的有关性质24.1.1圆(第1课时)一、基本目标【知识与技能】理解并掌握圆的两种定义及与圆有关的概念,并能够从图形中识别.【过程与方法】通过实际操作体会圆的不同定义,数形结合理解与圆有关的概念,掌握学习几何的一些常用方法:实际操作法、数形结合法等.【情感态度与价值观】通过实际操作,体会数学中的创造与探索精神,体会圆的有关概念.二、重难点目标【教学重点】圆的有关概念.【教学难点】用集合观点定义圆.环节1自学提纲,生成问题【5 min阅读】阅读教材P79~P81的内容,完成下面练习.【3 min反馈】1.(1)到定点O的距离为5的点的集合是以__O__为圆心,__5__为半径的圆.(2)连结圆上任意两点的__线段__叫做弦,经过圆心的弦叫做__直径__;圆上任意两点间的部分叫做__圆弧__;圆上任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆,大于半圆的弧叫做__优弧__,小于半圆的弧叫做__劣弧__.2.如图,图中有__1__条直径,__2__条非直径的弦;圆中以点A为一个端点的优弧有__4__条,劣弧有__4__条.3.什么叫等圆?什么叫等弧?解:能够重合的两个圆叫做等圆;在同圆或等圆中,能够互相重合的弧叫做等弧. 环节2 合作探究,解决问题 【活动1】 小组讨论(师生互学)【例1】下列说法:①弧分为优弧和劣弧;②半径相等的圆是等圆;③过圆心的线段是直径;④长度相等的弧是等弧;⑤半径是弦,其中正确的是________.(填序号)【互动探索】(引发学生思考)优弧、劣弧、等圆、直径、等弧的定义分别是什么?圆上的弧可以分为哪几类?【答案】②【互动总结】(学生总结,老师点评)由圆的有关概念可知,连结圆上任意两点的线段是弦;过圆心的弦是直径;在同圆或等圆中,能够互相重合的弧是等弧;圆上的弧分为优弧、半圆、劣弧.【例2】如图,在Rt △ABC 和Rt △ABD 中,∠C =90°,∠D =90°,点O 是AB 的中点.求证:A 、B 、C 、D 四个点在以点O 为圆心的同一圆上.【互动探索】(引发学生思考)要使A 、B 、C 、D 四个点在以点O 为圆心的同一圆上,结合圆的集合性定义,圆上各点到定点(圆心O )的距离有什么关系?点A 、B 、C 、D 与点O 有什么关系?【证明】连结OC 、OD .∵在Rt △ABC 和Rt △ABD 中,∠ACB =90°,∠ADB =90°,点O 是AB 的中点, ∴OA =OB =OC =OD =12AB ,∴A 、B 、C 、D 四个点在以点O 为圆心的同一圆上.【互动总结】(学生总结,老师点评)由圆的集合性定义可知,圆上各点到定点(圆心O )的距离都等于定长(半径r ).【活动2】 巩固练习(学生独学)1.给出下列说法:①直径是弦;②优弧是半圆;③半径是圆的组成部分;④两个半径不相等的圆中,大的半圆的弧长小于小的半圆的周长.其中正确的是__①__.(填序号)2.如图,点A 、B 、C 、E 在⊙O 上,点A 、O 、D 与点B 、O 、C 分别在同一直线上,图中有几条弦?分别是哪些?解:图中有3条弦,分别是弦AB、BC、CE.3.如图,点A、N在半圆O上,四边形ABOC、DNMO均为矩形,求证:BC=MD.证明:连结ON、OA.∵点A、N在半圆O上,∴ON=OA.∵四边形ABOC、DNMO均为矩形,∴ON=MD,OA=BC,∴BC=MD.【活动3】拓展延伸(学生对学)【例3】下列说法:①经过点P的圆有无数个;②以点P为圆心的圆有无数个;③半径为3 cm,且经过点P的圆有无数个;④以点P为圆心,以3 cm为半径的圆有无数个,其中错误的有()A.1个B.2个C.3个D.4个【互动探索】(引发学生思考)结合圆的定义,怎样确定一个圆?确定一个圆的条件有哪些?【答案】A【互动总结】(学生总结,老师点评)确定一个圆需要两个要素:一是圆心,确定圆的位置;二是半径,确定圆的大小.两者缺一不可.【例4】A、B是半径为5的⊙O上两个不同的点,则弦AB的取值范围是()A.AB>0B.0<AB<5C.0<AB<10D.0<AB≤10【互动探索】(引发学生思考)连结圆上任意两点的线段是弦,求弦AB的取值范围,就要知道连结圆上任意两点构成的最长线段和最短线段分别是什么?【答案】D【互动总结】(学生总结,老师点评)圆上最长的弦是直径,则圆上不同两点构成的弦长大于0且小于等于直径长.环节3课堂小结,当堂达标(学生总结,老师点评)圆⎩⎪⎪⎨⎪⎪⎧圆的集合性定义圆的有关概念⎩⎪⎨⎪⎧ 弦——直径弧⎩⎪⎨⎪⎧劣弧半圆优弧等圆等弧请完成本课时对应练习!24.1.2垂直于弦的直径(第2课时)一、基本目标【知识与技能】1.理解与掌握圆的对称性、垂径定理及其推论.2.运用垂径定理及其推论解决一些有关证明、计算和作图问题.【过程与方法】经历探索发现圆的对称性,证明垂径定理及其推论的过程,获得几何学习的一些常用方法:合情推理、证明、抽象概括等.【情感态度与价值观】通过观察、操作、变换和研究的过程,进一步培养学生的思维能力、创新意识和良好的运用数学的习惯和意识.二、重难点目标【教学重点】垂径定理及其推论.【教学难点】垂径定理及其推论的运用.环节1自学提纲,生成问题【5 min阅读】阅读教材P81~P83的内容,完成下面练习.【3 min反馈】1.圆是__轴对称__图形,任何一条直径所在直线都是圆的__对称轴__.2.垂径定理:垂直于弦的直径__平分__弦,并且__平分__弦所对的两条弧.即一条直线如果满足:①CD经过圆心O且与圆交于C、D两点;②AB⊥CD交CD于M;那么可以推出:③__AM_=_BM__ ,④__AC=BC__,⑤__AD=BD.3.垂径定理的推论:__平分__弦(不是直径)的直径垂直于弦,并且__平分__弦所对的两条弧.环节2 合作探究,解决问题 【活动1】 小组讨论(师生互学)【例1】一根横截面为圆形的下水管道的直径为1米,管内有少量的污水(如图),此时的水面宽AB 为0.6米,求此时的水深(即阴影部分的弓形高).【互动探索】(引发学生思考)要求此时的水深,即阴影部分的弓形高,结合垂径定理,考虑怎样作辅助线才能得到水深?【解答】如图,过点O 作OD ⊥AB 于点C ,交⊙O 于点D ,连结OB .根据垂径定理,得C 是AB 的中点,D 是AB ︵ 的中点,CD 就是水深,则BC =12AB =0.3米.由题意知,OD =OB =0.5米,在Rt △OBC 中,由勾股定理,得OC =OB 2-BC 2=0.4米, 所以CD =OD -OC =0.1米, 即此时的水深为0.1米.【互动总结】(学生总结,老师点评)在圆中求半径、弦等线段的长时,常常借助垂径定理构造直角三角形,再在直角三角形中运用勾股定理来解决.【活动2】 巩固练习(学生独学)1.如图,AB 为⊙O 的弦,⊙O 的半径为5,OC ⊥AB 于点D ,交⊙O 于点C ,且CD =1,则弦AB 的长是多少?解:连结AO .由题意可知,OA =OC =5,则OD =OC -CD =5-1=4.∵OC ⊥AB ,∴∠ODA =90°,∴AD =OA 2-OD 2=3.又∵AB 为⊙O 的弦,∴AB =2AD =6.2.一条排水管的截面如图所示.已知排水管的半径OB =10 cm ,水面宽AB =16 cm.求截面圆心O 到水面的距离.解:过点O 作OC ⊥AB 于点C .∵OC ⊥AB ,AB =16 cm ,∴∠OCB =90°,BC =12AB =8cm.又∵OB =10 cm ,∴OC =OB 2-BC 2=6 cm ,即截面圆心O 到水面的距离为6 cm.3.如图,一条公路的转弯处是一段圆弧(即图中CD ,点O 是CD 的圆心,其中CD =600 m ,E 为CD 上一点,且OE ⊥CD ,垂足为点F ,EF =90 m ,求这段弯路的半径.解:如图,连结OC .设弯路的半径为R m ,则OF =(R -90)m.∵OE ⊥CD ,CD =600 m ,∴∠OFC =90°,CF =12CD =300 m .在Rt △OFC 中, 根据勾股定理,得OC 2=CF 2+OF 2,即R 2=3002+(R -90)2,解得R =545.即这段弯路的半径为545 m.【活动3】 拓展延伸(学生对学)【例2】已知⊙O 的半径为13,弦AB =24,弦CD =10,AB ∥CD ,求这两条平行弦AB 、CD 之间的距离.【互动探索】(引发学生思考)要求两条平行弦AB 、CD 之间的距离,想到垂直,又在圆中已知弦长,则可以想到垂径定理,由此根据这些怎么作图呢?根据题中数据怎样求解呢?【解答】分两种情况讨论:当弦AB 和CD 在圆心同侧时,如图1,过点O 作OF ⊥CD 于点F ,交AB 于点E ,连结OC 、OA .由题意可知,OA =OC =13. ∵AB ∥CD ,OF ⊥CD ,∴OE ⊥AB . 又∵AB =24,CD =10, ∴AE =12AB =12,CF =12CD =5,∴EO =OA 2-AE 2=5,OF =OC 2-CF 2=12, ∴EF =OF -OE =7.当弦AB 和CD 在圆心异侧时,如图2,过点O 作OF ⊥CD 于点F ,反向延长OF 交AB 于点E ,连结OC 、OA .同(1)可得,EO =5,OF =12,∴EF =OF +OE =17. 综上,两条平行弦AB 与CD 之间的距离为7或17.【互动总结】(学生总结,老师点评)解此类题时,要考虑两弦在圆心的同侧还是异侧,再结合实际作出半径和弦心距,利用勾股定理和垂径定理求解即可.【例3】有一石拱桥的桥拱是圆弧形,如图所示,正常水位下水面宽AB =60 m ,水面到拱顶距离CD =18 m ,当洪水泛滥时,水面到拱顶距离为3.5 m 时需要采取紧急措施,当水面宽MN =32 m 时是否需要采取紧急措施?请说明理由.【互动探索】(引发学生思考)求当水面宽MN =32 m 时是否需要采取紧急措施,那么此时水面到拱顶的距离为多少?怎样求出这个距离?【解答】不需要采取紧急措施. 理由如下:连结OM ,设OA =R m.由题意知,在Rt △AOC 中,AC =12AB =30 m ,CD =18 m ,由勾股定理,得R 2=302+(R -18)2,解得R =34. 在Rt △MOE 中,ME =12MN =16 m ,∴OE =OM 2-ME 2=30 m , ∴DE =OD -OE =4 m.∵4>3.5,∴不需要采取紧急措施.【互动总结】(学生总结,老师点评)解此类题时,要注意根据垂径定理,利用半径、半弦长、弦心距构造直角三角形,结合勾股定理求解.环节3 课堂小结,当堂达标 (学生总结,老师点评)垂直于弦的直径⎩⎪⎨⎪⎧圆的轴对称性垂径定理垂径定理的推论请完成本课时对应练习!24.1.3弧、弦、圆心角(第3课时)一、基本目标【知识与技能】理解并掌握圆的旋转不变性,圆心角、弧、弦之间的关系定理.【过程与方法】通过观察、比较、操作、推理、归纳等活动,学习圆心角、弧、弦之间的关系定理.【情感态度与价值观】通过探索圆心角、弧、弦之间的关系,培养探索精神,体会分类讨论思想在数学中的应用.二、重难点目标【教学重点】圆心角、弧、弦之间的关系定理及其应用.【教学难点】圆心角、弧、弦之间的关系定理的探索和证明.环节1自学提纲,生成问题【5 min阅读】阅读教材P83~P85的内容,完成下面练习.【3 min反馈】1.圆是中心对称图形,__圆心__就是它的对称中心;把圆绕圆心旋转一个角度,所得的图形与原图形__重合__.2.顶点在__圆心__的角叫做圆心角.3.(1)在同圆或等圆中,相等的圆心角所对的弧__相等__,所对的弦也__相等__.(2)在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角__相等__,所对的弦__相等__.(3)如果两条弦相等,那么它们所对的圆心角__相等__,所对的优弧和劣弧分别__相等__.4.如图,在⊙O中,AB、CD是两条弦,若∠AOB=∠COD,则__AB=CD,AB=CD __;若AB=CD,则__∠AOB=∠COD,AB=CD____;若AB =CD ,则__∠AOB =∠COD ,AB =CD __.环节2 合作探究,解决问题 【活动1】 小组讨论(师生互学)【例1】如图所示,A 、B 、C 是⊙O 上三点,∠AOB =120°,C 是AB 的中点,试判断四边形OACB 的形状,并说明理由.【互动探索】(引发学生思考)由∠AOB =120°,C 是AB 的中点,可想到连结OC ,则结合弧、圆心角之间的关系可以知道什么?又同圆中半径相等,可以猜想出四边形OACB 的形状是什么?【解答】四边形OACB 是菱形. 理由如下:如图,连结OC . ∵∠AOB =120°,C 是AB ︵的中点, ∴∠AOC =∠BOC =12∠AOB =60°.又∵CO =BO ,∴△OBC 是等边三角形,∴OB =BC . 同理可得,△OCA 是等边三角形,∴OA =AC . 又∵OA =OB ,∴OA =AC =BC =BO , ∴四边形OACB 是菱形.【互动总结】(学生总结,老师点评)解此类题时,由弧中点联想到弧、弦、圆心角的关系定理,作辅助线(连结弧中点和圆心)解决问题.【活动2】 巩固练习(学生独学)1.如图,在⊙O 中,已知AB =CD ,则AC 与BD 的关系是( A )A .AC =BDB .AC <BDC .AC >BD D .不确定2.如图,AB 是⊙O 的直径,BC 、CD 、DA 是⊙O 的弦,且BC =CD =DA ,求∠BOD 的度数.解:∵BC 、CD 、DA 是⊙O 的弦,且BC =CD =DA ,∴∠AOD =∠DOC =∠BOC .又∵AB 是⊙O 的直径,∴∠BOD =23×180°=120°.3.如图,在⊙O 中,弦AB =CD ,那么∠AOC 和∠BOD 相等吗?请说明理由.解:∠AOC =∠BOD .理由如下:∵在⊙O 中,AB =CD ,∴∠AOB =∠COD ,∴∠AOB -∠COB =∠COD -∠COB ,∴∠AOC =∠BOD .【活动3】 拓展延伸(学生对学)【例2】如图,已知AB 是⊙O 的直径,M 、N 分别是AO 、BO 的中点,CM ⊥AB ,DN ⊥AB .求证:AD ︵ =BD ︵.【互动探索】(引发学生思考)求证AD ︵ =BD ︵,由弧、弦、圆心角的关系定理,可以转化为证明什么?转化后的结论又应该怎样证明?【证明】如图,连结OC 、OD .∵AB 是⊙O 的直径,M 、N 分别是AO 、BO 的中点,∴OM =ON . ∵CM ⊥AB ,DN ⊥AB ,∴∠OMC =∠OND =90°.在Rt △OMC 和Rt △OND 中,∵⎩⎪⎨⎪⎧OC =OD ,OM =ON ,∴Rt △OMC ≌Rt △OND (HL), ∴∠COM =∠DON ,∴AD ︵ =BD ︵.【互动总结】(学生总结,老师点评)在同圆或等圆中,如果两条弧(一般同为优弧或劣弧)、两条弦、两个圆心角中有一组量相等,那么它们所对应的其余各组量都分别相等.【例3】如图,⊙O 中,已知∠AOB =2∠COD ,求证:2CD >AB .【互动探索】(引发学生思考)求证2CD >AB ,是比较AB 与2CD 的大小,而题中没有线段长是2CD ,无法直接比较,这就需要将2CD 进行转化或构造2CD ,再进行比较.已知∠AOB =2∠COD ,由弧、弦、圆心角之间的关系定理,想怎样将2CD 进行转化或构造2CD ,再想比较两边大小时的方法有哪些.【证明】如图,过点O 作OE ⊥AB 交⊙O 于点E ,连结AE 、BE ,∴AE =BE , ∴∠AOE =∠BOE =12∠AOB .又∵∠AOB =2∠COD , ∴∠AOE =∠BOE =∠COD , ∴AE =BE =CD .∵在△ABE 中,AE +BE >AB , ∴2CD >AB .【互动总结】(学生总结,老师点评)解此类题时,要注意分析题中的已知条件,结合问题将条件进行转化,再求解.解本题的关键是根据∠AOB =2∠COD 利用垂径定理将角平分,从而将问题转化为三角形三边关系问题,进而得证.环节3 课堂小结,当堂达标 (学生总结,老师点评)弧、弦、圆心角⎩⎪⎨⎪⎧圆是中心对称图形圆心角弧、弦、圆心角的关系请完成本课时对应练习!24.1.4圆周角(第4课时)一、基本目标【知识与技能】1.理解圆周角的概念,掌握圆周角定理及其推论,并能解决相关问题.2.理解圆内接多边形和多边形的外接圆,掌握圆内接四边形的性质.【过程与方法】1.经历圆周角定理的证明,使学生了解分情况证明命题的思想和方法,体会类比、分类的数学方法.2.经历圆内接四边形性质的证明,引导学生添加合理的辅助线,培养学生的创造力.【情感态度与价值观】通过圆周角定理的证明向学生渗透由特殊到一般,由一般到特殊的数学思想方法,体现了辩证唯物主义从未知到已知的认识规律,并在解答问题的活动中获取成功的体验,建立学好数学的信心.二、重难点目标【教学重点】圆周角的概念,圆周角定理及其推论,圆内接四边形的性质.【教学难点】探究并论证圆周角定理及其推论.环节1自学提纲,生成问题【5 min阅读】阅读教材P85~P88的内容,完成下面练习.【3 min反馈】1.顶点在__圆上__,并且两边都与圆__相交__的角叫做圆周角.2. 圆周角定理:一条弧所对的圆周角等于它所对的圆心角的__一半__.3. 圆周角定理的推论:同弧或等弧所对的圆周角__相等__ ;半圆(或直径)所对的圆周角是__直角__,90°的圆周角所对的弦是__直径__.4.如果一个多边形的所有顶点都在同一个圆上,这个多边形叫做__圆内接多边形__,这个圆叫做这个多边形的外接圆.5.圆内接四边形的性质:圆内接四边形的对角__互补__.环节2合作探究,解决问题【活动1】 小组讨论(师生互学)【例1】如图,在⊙O 的内接四边形ABCD 中,AB =AD ,∠C =110°.若点P 为AB ︵上,求∠P 的度数.【互动探索】(引发学生思考)求∠P 的度数,题中只知道∠C 的度数,两者有什么关系吗?可以转化为求什么?由⊙O 的内接四边形ABCD 可以得到什么?这与求∠P 的度数有什么关系?【解答】如图,连结BD .∵四边形ABCD 是⊙O 的内接四边形, ∴∠BAD +∠C =180°, ∴∠BAD =180°-∠C =70°. 又∵AB =AD ,∴∠ABD =∠ADB =12(180°-∠BAD )=55°.∵四边形APBD 是⊙O 的内接四边形, ∴∠P +∠ADB =180°, ∴∠P =180°-∠ADB =125°.【互动总结】(学生总结,老师点评)解此类题的关键是正确作出辅助线,题中可以多次运用圆内接四边形的性质.【例2】如图,AB 是⊙O 的直径,C 、D 是⊙O 上的两点(在直径AB 的同一侧),且BC ︵=CD ︵,弦AC 、BD 相交于点P ,如果∠APB =110°,求∠ABD 的度数.【互动探索】(引发学生思考)求∠ABD 的度数,∠ABD 在△ABP 中,又∠APB =110°,此时想到什么?已知AB 是⊙O 的直径,BC ︵ =CD ︵结合圆周角定理及其推论,可以求出哪些角?【解答】如图,连结CD 、CB . ∵AB 是圆O 的直径,∴∠ACB =90°. ∵∠APB =∠DPC =110°,∴∠CBD =∠DPC -∠ACB =20°. ∵BC ︵ =CD ︵,∴∠CBD =∠CAB =20°, ∴∠ABD =180°-∠APB -∠CAB =50°.【互动总结】(学生总结,老师点评)解此题的关键是正确作出辅助线,利用等弧所对的圆周角相等求出∠CAB 的度数.【活动2】 巩固练习(学生独学)1.在⊙O 中,弦AB 所对的圆心角的度数为50°,则它所对的圆周角的度数为( C ) A .25° B .50° C .25°或155°D .50°或130°【教师点拨】圆中一条弦(非直径)对应的弧有两条:一条优弧、一条劣弧. 2.如图,点A 、B 、C 都在⊙O 上,若∠C =35°,则∠AOB 的度数为__70°__.3.如图,A 、B 、C 为⊙O 上的任意三点,若∠BOC =100°,则∠BAC 的度数为__130°__.【教师点拨】综合利用圆周角定理和圆内接四边形的性质求解. 4.如图,AB 是⊙O 的直径,∠ACD =25°,求∠BAD 的度数.解:∵AB 是⊙O 的直径,∴∠ADB =90°.∵∠ACD =25°,∴∠B =∠ACD =25°,∴∠BAD =90°-∠B =65°.5.如图,△ABC 的三个顶点都在⊙O 上,直径AD =6 cm ,∠DAC =2∠B ,求AC 的长.解:如图,连结OC .∵∠AOC =2∠B ,∠DAC =2∠B ,∴∠AOC =∠DAC ,∴AO =AC .又∵OA =OC ,∴AO =AC =OC ,∴△AOC 是等边三角形,∴AC =AO =12AD =3 cm.【活动3】 拓展延伸(学生对学)【例3】如图,△ABC 内接于⊙O ,AF 是⊙O 的弦,AF ⊥BC ,垂足为点D ,点E 为BF 上一点,且BE =CF .(1)求证:AE 是⊙O 的直径;(2)若∠ABC =∠EAC ,AE =8,求AC 的长.【互动探索】(引发学生思考)(1)要证明AE 是⊙O 的直径,结合圆周角定理的推论可以转化为证明什么?怎样进行证明?(2)要求AC 的长,求线段长的方法有哪些?题中只给出了AE 的长,AC 的长怎样和AE 建立关系?先从哪儿入手呢?【解答】(1)证明:∵BE =CF ,∴∠BAE =∠CAF . ∵AF ⊥BC ,∴∠ADC =90°, ∴∠F AD +∠ACD =90°.又∵∠E =∠ACB ,∴∠E +∠BAE =90°, ∴∠ABE =90°,∴AE 是⊙O 的直径. (2)如图,连结OC . ∵∠ABC =∠CAE ,∴AC ︵ =BC ︵,∴∠AOC =∠EOC . 由(1)知,AE 是⊙O 的直径, ∴∠AOC =∠EOC =90°.又∵OA =OC ,∴△AOC 是等腰直角三角形. ∵AE =8,∴AO =CO =12AE =4,∴AC =4 2.【互动总结】(学生总结,老师点评)解此题时,也可以逆向思考,即由所求结论和问题出发,看由结论和问题可以推出什么,再结合已知条件进行证明或求解,从而使问题得到解决.【例4】如图,AB 是半圆的直径,C 、D 是半圆上的两点,且∠BAC =20°,AD =CD .请连结线段BC ,求四边形ABCD 各内角的度数.【互动探索】(引发学生思考)求四边形ABCD 各内角的度数,由AB 是半圆的直径,且∠BAC =20°,想到圆周角定理及其推论,由此可以求出哪些角的度数?又由题可知,四边形ABCD 是圆的内接四边形,由此可以推出什么?【解答】如图,连结BC .∵AB 是半圆的直径,∴∠ACB =90°. ∵∠BAC =20°,∴∠B =90°-∠BAC =70°. ∵四边形ABCD 是圆O 的内接四边形, ∴∠D =180°-∠B =110°. ∵AD ︵ =CD ︵,∴∠DAC =∠DCA =12(180°-∠D )=35°,∴∠DAB =∠DAC +∠BAC =55°,∠DCB =∠DCA +∠ACB =125°. 即四边形ABCD 各内角的度数为55°,70°,125°,110°.【互动总结】(学生总结,老师点评)本题综合运用了圆周角定理及其推论、圆内接四边形的性质.解题时,要仔细审题,明确已知条件和所求问题,一步一步进行推导和计算,做到有理有据.环节3 课堂小结,当堂达标 (学生总结,老师点评) 圆周角⎩⎪⎨⎪⎧圆周角定理圆周角定理的推论圆内接四边形请完成本课时对应练习!24.2点和圆、直线和圆的位置关系24.2.1点和圆的位置关系(第1课时)一、基本目标【知识与技能】1.了解点和圆的三种位置关系,掌握点到圆心的距离与半径之间的关系.2.掌握“不在同一直线上的三点确定一个圆”,并能作出这个圆.3.了解反证法的意义,会用反证法进行简单的证明.【过程与方法】1.经历不在同一条直线上的三个点确定一个圆的探索过程,培养学生的探索能力.2.通过探索不在同一条直线上的三个点确定一个圆的问题,进一步体会解决数学问题的策略.【情感态度与价值观】1.形成解决问题的一些基本策略,体验解决问题策略的多样性,发展实践能力与创新精神.2.学会与人合作,并能与他人交流思维的过程和结果.二、重难点目标【教学重点】1.不在同一条直线上的三个点确定一个圆.2.三角形的外接圆和外心.【教学难点】反证法的应用.环节1自学提纲,生成问题【5 min阅读】阅读教材P92~P95的内容,完成下面练习.【3 min反馈】1.设⊙O的半径为r,点P到圆心的距离OP=d,则有:点P在圆外⇔__d>r__;点P在圆上⇔__d=r__;点P在圆内⇔__d<r__.2.已知⊙O的直径为5,若PO=5,则点P与⊙O的位置关系是__点P在⊙O外__.3.过已知点A,可以作__无数__个圆;过已知点A、B,可以作__无数__个圆;过不在同一条直线上的三点,可以作__一__个圆.4.经过三角形的__三个顶点__的圆叫做三角形的外接圆,外接圆的圆心是三角形的三条边的__垂直平分线__的交点,叫做这个三角形的外心.5.锐角三角形的外心在三角形__内部__;直角三角形的外心是三角形__斜边的中点__;钝角三角形的外心在三角形__外部__;任意三角形的外接圆有__一__个,而一个圆的内接三角形有__无数__个.6.用反证法证明命题的一般步骤:(1)假设命题的结论__不成立__;(2)从这个假设出发,经过推理论证得出__矛盾__;(3)由__矛盾__判定假设__不正确__,从而得到原命题成立.环节2合作探究,解决问题【活动1】小组讨论(师生对学)【例1】如图,⊙O的半径r=10,圆心O到直线l的距离OD=6,在直线l上有A、B、C三点,AD=6,BD=8,CD=53,问A、B、C三点与⊙O的位置关系如何?【互动探索】(引发学生思考)判断点与圆的位置关系的关键是判断点到圆心的距离与半径的大小关系.【解答】∵OA=OD2+AD2=62<10,∴点A在⊙O内.∵OB=OD2+BD2=10,∴点B在⊙O上.∵OC=OD2+CD2=111>10,∴点C在⊙O外.【互动总结】(学生总结,老师点评)判断点与圆的位置关系的关键是比较点到圆心的距离与半径的大小.同时注意垂径定理和勾股定理的应用.【例2】用反证法证明“一个三角形中不可能有两个角是钝角”.【互动探索】(引发学生思考)用反证法证明命题的步骤是什么?其中最关键的又是哪一步?【解答】假设△ABC中有两个角是钝角,不妨设∠A、∠B为钝角,∴∠A+∠B>180°,这与三角形内角和定理相矛盾,故假设不成立,原命题正确.即一个三角形中不可能有两个角是钝角.【互动总结】(学生总结,老师点评)用反证法证明命题时,准确写出与原命题的结论相反的假设是关键,从这个假设出发,通过推理论证,得出矛盾.【活动2】 巩固练习(学生独学)1.已知⊙O 的直径为8 cm ,点A 与O 距离为7 cm ,试判断点A 与⊙O 的位置关系. 解:∵⊙O 的半径为4 cm,4<7,∴点A 在⊙O 外.2.某地出土一个明代残破圆形瓷盘,为复制该瓷盘需确定其圆心和半径,请在图中用直尺和圆规画出瓷盘的圆心(不要求写作法、证明和讨论,但要保留作图痕迹).解:在圆上任取两条弦,根据垂径定理,垂直平分弦的直线一定过圆心,所以作出两弦的垂直平分线即可.3.已知:a 、b 、c 三条直线,a ∥c ,b ∥c ,求证:a ∥b .证明:如图,假设a 与b 相交于点M ,则过M 点有两条直线平行于直线c ,这与过直线外一点平行于已知直线的直线有且只有一条相矛盾,所以a ∥b .【活动3】 拓展延伸(学生对学)【例3】如图,在Rt △ABC 中,∠ACB =90°,AC =6,CB =8,AD 是△ABC 的角平分线,过A 、D 、C 三点的圆与斜边AB 交于点E ,连结DE .(1)求证:AC =AE ; (2)求△ACD 外接圆的直径.【互动探索】(引发学生思考)证明线段相等的方法有哪些?结合图形,适宜用哪种方法?看到∠ACB =90°,结合图形能得到哪些结论?对于求直径又该使用哪种方法?【解答】(1)证明:∵∠ACB =90°,且∠ACB 为⊙O 的圆周角,∴AD 为⊙O 的直径, ∴∠AED =90°,∴∠ACB =∠AED . ∵AD 是△ABC 中∠BAC 的平分线, ∴∠CAD =∠EAD ,∴CD =DE ,在Rt △ACD 与Rt △AED 中,⎩⎪⎨⎪⎧AD =AD ,CD =ED ,∴△ACD ≌△AED (HL),∴AC =AE . (2)∵AC =6,BC =8,。
人教版九年级第二十四章《圆》整章教案
24.1.1 圆教学目标知识技能探索圆的两种定义,理解并掌握弧、弦、优弧、劣弧、半圆等基本概念,能够从图形中识别.数学思考体会圆的不同定义方法,感受圆和实际生活的联系.解决问题培养学生把实际问题转化为数学问题的能力.情感态度在解决问题过程中使学生体会数学知识在生活中的普遍性.重点圆的两种定义的探索,能够解释一些生活问题.难点圆的运动式定义方法【教学过程】一、创设问题情境,激发学生兴趣,引出本节内容活动1:如图1,观察下列图形,从中找出共同特点.图1学生活动设计:学生观察图形,发现图中都有圆,然后回答问题,此时学生可以再举出一些生活中类似的图形.教师活动设计:让学生观察图形,感受圆和实际生活的密切联系,同时激发学生的学习渴望以及探究热情.二、问题引申,探究圆的定义,培养学生的探究精神活动2:如图2,观察下列画圆的过程,你能由此说出圆的形成过程吗?(课件:画圆)图2学生活动设计:学生小组合作、分组讨论,通过动画演示,发现在一个平面内一条线段OA绕它的一个端点O旋转一周,另一个端点形成的图形就是圆.教师活动设计:在学生归纳的基础上,引导学生对圆的一些基本概念作一界定:圆:在一个平面内,一条线段OA绕它的一个端点O旋转一周,另一个端点A所形成的图形叫作圆;圆心:固定的端点叫作圆心;半径:线段OA的长度叫作这个圆的半径.圆的表示方法:以点O为圆心的圆,记作“⊙O”,读作“圆O”.图3同时从圆的定义中归纳:(1)圆上各点到定点(圆心)的距离都等于定长(半径);(2)到定点的距离等于定长的点都在同一个圆上.于是得到圆的第二定义:所有到定点的距离等于定长的点组成的图形叫作圆.活动3:讨论圆中相关元素的定义.如图3,你能说出弦、直径、弧、半圆的定义吗?学生活动设计:学生小组讨论,讨论结束后派一名代表发言进行交流,在交流中逐步完善自己的结果.教师活动设计:在学生交流的基础上得出上述概念的严格定义,对于学生的不准确的叙述,可以让学生讨论解决.弦:连接圆上任意两点的线段叫作弦;直径:经过圆心的弦叫作直径;弧:圆上任意两点间的部分叫作圆弧,简称弧;弧的表示方法:以A、B为端点的弧记作,读作“圆弧AB”或“弧AB”;AB半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫作半圆.优弧:大于半圆的弧叫作优弧,用三个字母表示,如图3中的ABC;劣弧:小于半圆的弧叫作劣弧,如图3中的BC.活动4:讨论,车轮为什么做成圆形?如果做成正方形会有什么结果?学生活动设计:学生首先根据对圆的概念的理解独立思考,然后进行分组讨论,最后进行交流.教师活动设计:引导学生进行如下分析:如图4,把车轮做成圆形,车轮上各点到车轮中心(圆心)的距离都等于车轮的半径,当车轮在平面上滚动时,车轮中心与平面的距离保持不变,因此当车辆在平坦的路上行驶时,坐车的人会感觉到非常平稳;如果做成其他图形,比如正方形,正方形的中心(对角线的交点)距离地面的距离随着正方形的滚动而改变,因此中心到地面的距离就不是保持不变,因此不稳定.图4 图5三、应用提高,培养学生的应用意识和创新能力活动5:如何在操场上画一个半径是5 m的圆?说出你的理由师生活动设计:教师鼓励学生独立思考,让学生表述自己的方法.根据圆的定义可以知道,圆是一条线段绕一个端点旋转一周,另一个端点形成的图形,所以可以用一条长5m的绳子,将绳子的一端A固定,然后拉紧绳子的另一端B,并绕A在地上转一圈.B所经过的路径就是所要的圆.活动6:从树木的年轮,可以很清楚地看出树生长的年龄.如果一棵20年树龄的红杉树的树干直径是23 cm,这棵红杉树平均每年半径增加多少?师生活动设计:首先求出半径,然后除以20即可.〔解答〕树干的半径是23÷2=11.5(cm).平均每年半径增加11.5÷20=0.575(cm).四、归纳小结、布置作业1、小结:圆的两种定义以及相关概念.2、作业:请做一个正方形的车轮,体会在车轮滚动的过程中车身的情况.五、课后记:24.1.2 垂直于弦的直径教学目标知识技能探索圆的对称性,进而得到垂直于弦的直径所具有的性质;能够利用垂直于弦的直径的性质解决相关实际问题.数学思考在探索问题的过程中培养学生的动手操作能力,使学生感受圆的对称性,体会圆的一些性质,经历探索圆的对称性及相关性质的过程.解决问题进一步体会和理解研究几何图形的各种方法;培养学生独立探索,相互合作交流的精神.情感态度使学生领会数学的严谨性和探索精神,培养学生实事求是的科学态度和积极参与的主动精神.重点垂直于弦的直径所具有的性质以及证明.难点利用垂直于弦的直径的性质解决实际问题.教学过程一、创设问题情境,激发学生兴趣,引出本节内容活动1:用纸剪一个圆,沿着圆的任意一条直径对折,重复做几次,你发现了什么?由此你能得到什么结论?(课件:探究圆的性质)学生活动设计:学生动手操作,观察操作结果,可以发现沿着圆的任意一条直径对折,直径两旁的部分能够完全重合,由此可以发现:圆是轴对称图形,任何一条直径所在直线都是它的对称轴.教师活动设计:在学生归纳的过程中注意学生语言的准确性和简洁性.二、问题引申,探究垂直于弦的直径的性质,培养学生的探究精神活动2:按下面的步骤做一做:第一步,在一张纸上任意画一个⊙O,沿圆周将圆剪下,把这个圆对折,使圆的两半部分重合;第二步,得到一条折痕CD;第三步,在⊙O上任取一点A,过点A作CD折痕的垂线,得到新的折痕,其中点M是两条折痕的交点,即垂足;第四步,将纸打开,新的折痕与圆交于另一点B,如图1.图1 图2在上述的操作过程中,你发现了哪些相等的线段和相等的弧?为什么?学生活动设计:如图2所示,连接OA、OB,得到等腰△OAB,即OA=OB.因CD⊥AB,故△OA M与△OB M都是直角三角形,又O M为公共边,所以两个直角三角形全等,则A M =B M.又⊙O关于直径CD对称,所以A点和B点关于CD对称,当圆沿着直径CD对折时,点A 与点B 重合,AC 与BC 重合.因此AM =B M ,AC =BC ,同理得到AD BD =.在学生操作、分析、归纳的基础上,引导学生归纳垂直于弦的直径的性质:(1)垂直于弦的直径平分弦,并且平分弦所对的两条弧;(2)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.活动3:如图3,AB 所在圆的圆心是点O ,过O 作OC⊥AB 于点D ,若CD =4 m ,弦AB =16 m ,求此圆的半径.学生活动设计:学生观察图形,利用垂直于弦的直径的性质分析图形条件,发现若OC ⊥AB ,则有AD =BD ,且△ADO 是直角三角形,在直角三角形中可以利用勾股定理构造方程.教师活动设计:在学生解决问题的基础上引导学生进行归纳:弦长、半径、拱形高、弦心距(圆心到弦的距离)四个量中,只需要知道两个量,其余两个量就可以求出来.〔解答〕设圆的半径为R ,由条件得到OD =R -4,AD =8,在R t △ADO 中222AO OD AD =+,即222(4)8R R =-+. 解得 R =10(m ).答:此圆的半径是10 m . 图4活动4:如图4,已知AB ,请你利用尺规作图的方法作出AB 的中点,说出你的作法.师生活动设计:根据基本尺规作图可以发现不能直接作出弧的中点,但是利用垂径定理只需要作出弧所对的弦的垂直平分线,垂直平分线与弧的交点就是弧的中点.〔解答〕1.连接AB ;2.作AB 的中垂线,交 于点C ,点C 就是所求的点.三、拓展创新,培养学生思维的灵活性以及创新意识.活动5 解决下列问题1.如图5,某条河上有一座圆弧形拱桥ACB ,桥下面水面宽度AB 为7.2米,桥的最高处点C 离水面的高度2.4米.现在有一艘宽3米,船舱顶部为方形并高出水面2米的货船要经过这里,问:这艘船是否能够通过这座拱桥?说明理由.图5 图6图3BA AB A B M E O A B G H F D学生活动:学生根据实际问题,首先分析题意,然后采取一定的策略来说明能否通过这座拱桥,这时要采取一定的比较量,才能说明能否通过,比如,计算一下在上述条件下,在宽度为3米的情况下的高度与2米作比较,若大于2米说明不能经过,否则就可以经过这座拱桥.〔解答〕如图6,连接AO 、GO 、CO ,由于弧的最高点C 是弧AB 的中点,所以得到 OC ⊥AB ,OC ⊥G F ,根据勾股定理容易计算OE =1.5米,OM =3.6米.所以ME =2.1米,因此可以通过这座拱桥.2.银川市某居民区一处圆形下水管道破裂,修理人员准备更换一段新管道.如图7所示,污水水面宽度为60 cm ,水面至管道顶部距离为10 cm ,问修理人员应准备内径多大的管道?图7 图8师生活动设计:让学生在探究过程中,进一步把实际问题转化为数学问题,掌握通过作辅助线构造垂径定理的基本结构图,进而发展学生的思维.〔解答〕如图8所示,连接OA ,过O 作OE ⊥AB ,垂足为E ,交圆于F ,则AE =21AB = 30 cm .令⊙O 的半径为R , 则OA =R ,OE =OF -EF =R -10.在R t △AEO 中,OA 2=AE 2+OE 2,即R 2=302+(R -10)2.解得R =50 cm .修理人员应准备内径为100 cm 的管道.四、归纳小结、布置作业1、小结:垂直于弦的直径的性质,圆对称性.2、作业:第88页练习,习题24.1 第1题,第8题,第9题.五、课后记:24.1.3 弧、弦、圆心角 教学目标知识技能 通过探索理解并掌握:(1)圆的旋转不变性;(2)圆心角、弧、弦之间相等关系定理;数学思考 (1)通过观察、比较、操作、推理、归纳等活动,发展空间观念、推理能力以及概括问题的能力; (2)利用圆的旋转不变性,研究圆心角、弧、弦之间相等关系定理. 解决问题 学生在探索圆周角与圆心角的关系的过程中,学会运用分类讨论的数学思想,转化的数学思想解决问题.情感态度 培养学生积极探索数学问题的态度及方法.重点 探索圆心角、弧、弦之间关系定理并利用其解决相关问题.难点 圆心角、弧、弦之间关系定理中的“在同圆或等圆”条件的理解及定理的证明.教学过程设计二、 创设问题情境,激发学生兴趣,引出本节内容活动11.按下面的步骤做一做:(1)在两张透明纸上,作两个半径相等的⊙O 和⊙O ′,沿圆周分别将两圆剪下;(2)在⊙O 和⊙O ′上分别作相等的圆心角∠AOB 和∠A ′O ′B ′,如图1所示,圆心固定. 注意:在画∠AOB 与∠A ′O ′B ′时,要使OB 相对于OA 的方向与O ′B ′相对于O ′A ′的方向一致,否则当OA 与OA ′重合时,OB 与O ′B ′不能重合.图1(3)将其中的一个圆旋转一个角度.使得OA 与O ′A ′重合.通过上面的做一做,你能发现哪些等量关系?同学们互相交流一下,说一说你的理由. (课件:探究三量关系)师生活动设计:教师叙述步骤,同学们一起动手操作. 由已知条件可知∠AOB =∠A ′O ′B ′;由两圆的半径相等,可以得到∠OAB =∠OBA =∠O ′A ′B ′=∠O ′B ′A ′;由△AOB ≌△A ′O ′B ′,可得到AB =A ′B ′;由旋转法可知''AB A B .在学生分析完毕后,教师指出在上述做一做的过程中发现,固定圆心,将其中一个圆旋转一个角度,使半径OA 与O ′A ′重合时,由于∠AOB =∠A ′O ′B ′.这样便得到半径OB 与O ′B ′重合.因为点A 和点A ′重合,点B 和点B ′重合,所以AB 和''A B 重合,弦AB 与弦A ′B ′重合,即''AB A B =,AB =A ′B ′.进一步引导学生语言归纳圆心角、弧、弦之间相等关系定理:在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等.2.根据对上述定理的理解,你能证明下列命题是正确的吗?(1)在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等;(2)在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的优(劣)弧相等.师生活动设计: 本问题由学生在思考的基础上讨论解决,可以证明上述命题是真命题.二、主体活动,巩固新知,进一步理解三量关系定理.活动2: 1.如图2,在⊙O 中,AB AC =,∠ACB =60°, 求证:∠AOB =∠AOC =∠BOC .图2学生活动设计:学生独立思考,根据对三量定理的理解加以分析.由AB AC =,得到AB AC =,△ABC 是等腰三角形,由∠ACB =60°,得到△ABC 是等边三角形,AB =AC =BC ,所以得到∠AOB =∠AOC =∠BOC .教师活动设计:这个问题是对三量关系定理的简单应用,因此应当让学生独立解决,在必要时教师可以进行适当的启发和提醒,最后学生交流自己的做法.〔证明〕∵ AB AC =∴ AB =AC ,△ABC 是等腰三角形.又 ∠ACB =60°,∴ △ABC 是等边三角形,AB =BC =CA .∴ ∠AOB =∠AOC =∠BOC . 图3 图42.如图3,AB 是⊙O 的直径,BC 、CD 、DA 是⊙O 的弦,且BC =CD =DA ,求∠BOD 的度数.三、拓展创新、应用提高,培养学生的应用意识和创新能力活动3:定理“在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等”中,可否把条件“在同圆或等圆中”去掉?为什么?如图4所示,虽然∠AOB =∠A ′O ′B ′,但AB ≠A ′B ′,弧AB ≠弧A ′B ′.教师进一步引导学生用同样的思路考虑命题:(1)在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等;(2)在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的优(劣)弧相等中的条件“在同圆和等圆中”是否能够去掉.四、归纳小结、布置作业活动4:小结:弦、圆心角、弧三量关系.OA B C作业:课本第90页练习2.习题24.1 第2、3题,第10题.五、课后记:24.1.4 圆周角教学任务分析教学目标知识技能1.了解圆周角与圆心角的关系.2.探索圆周角的性质和直径所对圆周角的特征.3.能运用圆周角的性质解决问题.数学思考1.通过观察、比较,分析圆周角与圆心角的关系,发展学生合情推理能力和演绎推理能力.2.通过观察图形,提高学生的识图能力.3.通过引导学生添加合理的辅助线,培养学生的创造力.解决问题学生在探索圆周角与圆心角的关系的过程中,学会运用分类讨论的数学思想、转化的数学思想解决问题.情感态度引导学生对图形的观察发现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心.重点探索圆周角与圆心角的关系,发现圆周角的性质和直径所对圆周角的特征.难点发现并论证圆周角定理.教学教程:一、创设情境:[活动1 ] 演示课件或图片:问题1如图:同学甲站在圆心O的位置,同学乙站在正对着玻璃窗的靠墙的位置C,他们的视角(AOB∠和ACB∠)有什么关系?问题2如果同学丙、丁分别站在其他靠墙的位置D和E,他们的视角(ADB∠和AEB∠)和同学乙的视角相同吗?教师演示课件或图片:展示一个圆柱形的海洋馆.教师解释:在这个海洋馆里,人们可以通过其中的圆弧形玻璃窗AB观看窗内的海洋动物.教师出示海洋馆的横截面示意图,提出问题.教师结合示意图,给出圆周角的定义.利用几何画板演示,让学生辨析圆周角,并引导学生将问题1、问题2中的实际问题转化成数学问题:即研究同弧(AB )所对的圆心角(AOB ∠)与圆周角(ACB ∠)、同弧所对的圆周角(ACB ∠、ADB ∠、AEB ∠等)之间的大小关系.教师引导学生进行探究.二、自主探索:[活动2]:问题1同弧(弧AB )所对的圆心角∠AOB 与圆周角∠ACB 的大小关系是怎样的?问题2,同弧(弧AB )所对的圆周角∠ACB 与圆周角∠ADB 的大小关系是怎样的? B O A CDE O B A C教师提出问题,引导学生利用度量工具(量角器或几何画板)动手实验,进行度量,发现结论.由学生总结发现的规律:同弧所对的圆周角的度数没有变化,并且它的度数恰好等于这条弧所对的圆心角的度数的一半.教师利用几何画板课件“圆周角定理”,从动态的角度进行演示,验证学生的发现.教师可从以下几个方面演示,让学生观察圆周角的度数是否发生改变,同弧所对的圆周角与圆心角的关系有无变化.1.拖动圆周角的顶点使其在圆周上运动;2.改变圆心角的度数;3.改变圆的半径大小.三、合作探究:[活动3]问题1,在圆上任取一个圆周角,观察圆心与圆周角的位置关系有几种情况? (课件:折痕与圆周角的关系)教师引导学生,采取小组合作的学习方式,前后四人一组,分组讨论.问题2,当圆心在圆周角的一边上时,如何证明活动2中所发现的结论?教师巡视,请学生回答问题.回答不全面时,请其他同学给予补充.教师演示圆心与圆周角的三种位置关系.问题3,另外两种情况如何证明,可否转化成第一种情况呢?学生采取小组合作的学习方式进行探索发现,教师观察指导小组活动.启发并引导学生,通过添加辅助线,将问题进行转化.四、自主探索:[活动4]问题1:如图1.半圆(或直径)所对的圆周角是多少度?(课件:圆周角定理推论)图1 图2 图3问题2:90°的圆周角所对的弦是什么?问题3: 在半径不等的圆中,相等的两个圆周角所对的弧相等吗?问题4:在同圆或等圆中,如果两个圆周角相等,它们所对的弧一定相等吗?为什么? 问题5:如图2,点A 、B 、C 、D 在同一个圆上,四边形ABCD 的对角线把4个内角分成8个角,这些角中哪些是相等的角?问题6:如图3, ⊙O 的直径 AB 为10 cm ,弦 AC 为6 cm ,∠ACB 的平分线交⊙O 于 D ,求BC 、AD 、BD 的长.五、小结与作业:小结:问题通过本节课的学习你有哪些收获?作业:教科书94页习题24.1第2、3、4、5题.六、课后记:A O BC 1C 2C 3DO A C图1A DA DA D24.2.1点与圆的位置关系一、问题情境爱好运动的小华、小强、小兵三人相邀搞一次掷飞镖比赛。
人教版九上数学第24章 圆 24.1.1圆 教案+学案
人教版九年级数学(上)第24章圆24.1圆的有关性质24.1.1圆教案【教学目标】知识与技能:1.认识圆,理解圆的本质属性;2.认识弦、弧、半圆、优弧、劣弧、同心圆、等圆、等弧等与圆有关的概念,并了解它们之间的区别和联系;3.利用圆的有关概念进行简单的证明和计算.过程与方法:掌握点和圆的三种位置关系.使学生会利用点到圆心的距离和圆的半径之间的数量关系判定点和圆的位置关系.情感态度与价值观:初步会运用圆的定义证明四个点在同一个圆上.使学生真正体验到数学知识来源于实践,反过来指导实践这一理论.【教学重点】1.与圆有关的概念,并了解它们之间的区别和联系;2.点和圆的三种位置关系.【教学难点】理解圆的本质属性,用集合的观点定义圆.【教学过程设计】一、情境导入在我们日常生活中常常可以看到有许多圆形物体,例如茶碗的碗口、锅盖、太阳、车轮、射击用的靶子等都是圆的,怎样画出一个圆呢?木工师傅是用一根黑线来画圆的,给你一根细绳、一个图钉和一支铅笔,你能画出一个圆吗?二、新知探究知识点:圆的有关概念【类型一】圆的有关概念的理解例1直径;④半圆是弧,但弧不一定是半圆;⑤任意一条直径都是圆的对称轴.其中错误的说法个数是( )A.1 B.2 C.3 D.4解析:根据圆、直径、弦、半圆等概念来判断.半径确定了,只能说明圆的大小确定了,但是位置没有确定;直径是弦,但弦不一定是直径;圆的对称轴是一条直线,每一条直径所在的直线是圆的对称轴,所以①③⑤的说法是错误的.故选C.方法总结:对称轴是直线,不能说成每条直径就是圆的对称轴;注意圆的对称轴有无数条.【类型二】点和圆的三种位置关系若设圆O的半径为r,点O到圆心的距离为d,当点与圆心的距离由小于半径变到等于半径再变到大于半径时,点和圆的位置关系就由圆内变到圆上再变到圆外.这说明点和圆的位置关系可以得到d与r之间的关系,由d与r的数量关系也可以判定点和圆的位置关系.这时板书下列关系式:点在圆内⇔d<r点在圆上⇔d=r点在圆外⇔d>r这时教师讲清“⇔”符号的组哟用和圆的表示方法.以点O为圆心的圆,记作“⊙O”,读作“圆O”.接下来为了巩固定义,师生共同分析例1.例2求证矩形四个顶点在以对角线交点为圆心的同一个圆上.已知:如图,矩形ABCD的对角线AC和BD相交于点O.求证:A、B、C、D4个点在以O为圆心,OA为半径的圆上.解析:∵AC=BD ∴21AC=21BD即OA=OC=OB=OD∴A、B、C、D4个点在以O为圆心,OA为半径的圆上.方法总结:求证矩形四个顶点在以对角线交点为圆心的同一个圆上,对于这个问题不是教师讲怎么做,而是引导学生分析这个命题的题设和结论,然后启发学生思考分析这一问题的证明思路.【类型三】圆中有关线段的证明例3如图所示,OA、OB是⊙O的半径,点C、D分别为OA、OB的中点,求证:AD=BC.解析:先挖掘隐含的“同圆的半径相等”、“公共角”两个条件,再探求证明△AOD≌△BOC的第三个条件,从而可证出△AOD≌△BOC,根据全等三角形对应边相等得出结论.证明:∵OA、OB是⊙O的半径,∴OA=OB.∵点C、D分别为OA、OB的中点,....OBAC∴OC =12OA ,OD =12OB ,∴OC =OD .又∵∠O =∠O ,∴△AOD ≌△BOC (SAS),∴BC =AD .方法总结:“同圆的半径相等”、“公共角”、“直径是半径的2倍”等都是圆中隐含的条件.在解决问题时,要充分利用图形的直观性挖掘出这些隐含的条件,从而使问题迎刃而解.【类型四】圆中有关角的计算例3 CD 是⊙O 的弦,AB ,CD 的延长线交于点E .已知AB =2DE ,∠E =18°,求∠AOC 的度数.解析:要求∠AOC 的度数,由图可知∠AOC =∠C +∠E ,故只需求出∠C 的度数,而由AB =2DE 知DE 与⊙O 的半径相等,从而想到连接OD 构造等腰△ODE 和等腰△OCD .解:连接OD ,∵AB 是⊙O 的直径,OC ,OD 是⊙O 的半径,AB =2DE ,∴OD =DE ,∴∠DOE =∠E =18°,∴∠ODC =∠DOE +∠E =36°.∵OC =OD ,∴∠C =∠ODC =36°,∠AOC =∠C +∠E =36°+18°=54°.三、教学小结1.圆的两种定义:动态:如图,在一个平面内,线段OA 绕它固定的一个端点O 旋转一周,另一个端点A 所形成的图形叫做圆.静态:圆心为O 、半径为r 的圆可以看成是所有到定点O 的距离等于定长r 的点组成的图形.2.与圆有关的概念弦:连接圆上任意两点的线段叫做弦,直径:经过圆心的弦叫做直径.弧:圆上任意两点间的部分叫做圆弧,简称弧.以A 、B 为端点的弧记作 AB,读作“圆弧AB”或“弧AB”. 半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆. 优弧:大于半圆的弧(用三个字母表示)叫做优弧.劣弧:小于半圆的弧叫做劣弧;【板书设计】24.1 圆的有关性质24.1.1 圆1.圆有关概念的认识2.点和圆的三种位置关系3.圆中有关线段的证明4.圆中有关角的计算【课堂检测】1.圆的定义○1:在一个平面内,线段OA绕它固定的一个端点O旋转,另一个端点所形成的图形叫做.固定的端点O叫做,线段OA叫做.以点O为圆心的圆,记作“”,读作“”决定圆的位置,决定圆的大小。
人教版数学九年级上册24.1《圆(1)》教案
人教版数学九年级上册24.1《圆(1)》教案一. 教材分析人教版数学九年级上册第24.1节《圆(1)》主要介绍了圆的定义、圆心和半径的概念。
本节内容是学生对圆的基本知识的掌握,为后续学习圆的周长、面积等知识打下基础。
教材通过生活中的实例,引导学生认识圆,并探索圆的性质,从而培养学生的观察、思考和动手能力。
二. 学情分析九年级的学生已经掌握了初中阶段的基本数学知识,具备一定的逻辑思维和空间想象能力。
但对于圆的概念和性质,部分学生可能还较为陌生。
因此,在教学过程中,教师需要注重引导学生从生活实际中发现圆的规律,激发学生的学习兴趣,并通过实例让学生体会圆在生活中的广泛应用。
三. 教学目标1.知识与技能:使学生了解圆的定义,掌握圆心和半径的概念,能运用圆的性质解决实际问题。
2.过程与方法:通过观察、操作、思考、交流等过程,培养学生探索圆的性质的能力。
3.情感态度与价值观:激发学生学习圆的兴趣,体验数学与生活的紧密联系,培养学生的团队协作精神。
四. 教学重难点1.重点:圆的定义,圆心和半径的概念。
2.难点:圆的性质的探索和应用。
五. 教学方法采用问题驱动法、合作学习法、实例教学法等,引导学生从实际问题中发现圆的规律,培养学生的动手操作能力和团队协作精神。
六. 教学准备1.教具:圆形的实物,如硬币、圆规等。
2.学具:每人一份圆形的实物,如硬币、圆规等。
七. 教学过程1. 导入(5分钟)教师通过展示生活中常见的圆形物体,如硬币、圆桌等,引导学生观察并思考:这些物体有什么共同的特点?学生思考后,教师总结出圆的定义:在同一平面内,到定点的距离等于定长的点的集合。
2. 呈现(10分钟)教师提问:圆心在哪里?半径是什么?学生通过观察手中的圆形实物,思考并回答问题。
教师进行点评并总结:圆心是圆的中心点,半径是从圆心到圆上任意一点的线段。
3. 操练(10分钟)学生分组进行讨论,尝试找出圆的性质。
教师巡回指导,给予提示和指导。
人教版九年级数学上册《24.1.1 圆》 教 案
第二十四章圆24.1 圆的有关性质24.1.1 圆一、教学目标1.理解圆的有关概念.2.体会圆的不同定义方法.二、教学重点及难点重点:(1)圆的两种定义方法与圆的有关概念.(2)能够解释和解决一些生活中关于圆的问题.难点:圆的第二种定义.三、教学用具多媒体课件,三角板、直尺、圆规。
四、相关资源多个《生活中圆的应用》图片五、教学过程【创设情景,提出问题】1.如图,观察下列图形,从中找出共同特点.师生活动:让学生观察图形,发现图中都有圆,此时可以让学生再举出一些生活中类似的图形.对于回答比较好的同学,教师给予表扬.设计意图:让学生感受到圆的无处不在,圆中蕴涵的数学美,提高他们的学习兴趣.2.阅读数学史材料.设计意图:向学生介绍数学史,引出本节课的内容,增加学生的知识面,激发学生的学习兴趣,为本节课的内容作铺垫.【合作探究,形成知识】1.如图,观察下列画圆的过程,你能由此说出圆的形成过程吗?师生活动:学生小组合作、分组讨论,通过活动,发现在一个平面内一条线段OA绕它的一个端点O 旋转一周,另一个端点形成的图形就是圆.在学生归纳的基础上,教师引导学生对圆的一些基本概念作一界定:圆:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫作圆.圆心:固定的端点O叫做圆心.半径:线段OA叫做这个圆的半径.圆的表示方法:以点O为圆心的圆,记作“⊙O”,读作“圆O”.2.你能举例说明圆在生活中的应用吗?从集合的角度归纳圆的第二个定义.生活中的圆,用于教学过程中师生活动:让学生举出几例圆在生活中的应用,并将圆与三角形、四边形进行比较,写出圆的特性,从集合的角度归纳圆的第二个定义.教师同时从圆的定义中归纳出圆的特性:(1)圆上各点到定点(圆心)的距离都等于定长(半径);(2)到定点的距离等于定长的点都在同一个圆上.于是得到圆的第二个定义:所有到定点的距离等于定长的点的集合组成的图形叫做圆.注意:要确定一个圆,需要两个基本条件,一个是圆心的位置;另一个是半径的长短.其中,圆心确定圆的位置,半径的长短确定圆的大小.设计意图:提高学生运用所学的数学知识解释生活中的一些问题的能力,让学生体会到数学在生活中的地位和作用,同时也激发了学生学习数学的兴趣.【例题分析,深化提高】例矩形ABCD的对角线AC,BD相交于点O.求证:A,B,C,D四个点在以点O为圆心的同一个圆上.师生活动:让学生根据圆的第二个定义和矩形的性质证明OA=OC=OB=OD,独立解决上述问题.教师巡视学生掌握情况,指导有困难的学生.证明:∵四边形ABCD为矩形,∴OA=OC=12AC,OB=OD=12BD,AC=BD.∴OA=OC=OB=OD.∴A,B,C,D四个点在以点O为圆心,OA为半径的圆上.教师引导:矩形的对角线相等,并且互相平分,根据线段的等量关系可知OA=OC=OB=OD.设计意图:新知产生后,直接应用新知是学生的模仿阶段,也是本节课教学最基本的目标,这时需要强化记忆,引导学生根据矩形的性质和圆的第二个定义入手证明.圆中相关元素的定义.弦:连接圆上任意两点的线段叫做弦.直径:经过圆心的弦叫做直径.弧:圆上任意两点间的部分叫做圆弧,简称弧.弧的表示方法:以A、B为端点的弧记作AB,读作“圆弧AB”或“弧AB”.半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.优弧:大于半圆的弧叫做优弧,用三个字母表示,如图中的ABC.劣弧:小于半圆的弧叫做劣弧,如图中的BC.等圆:能够重合的两个圆叫做等圆.等弧:在同圆或等圆中,能够互相重合的弧叫做等弧.设计意图:通过动画展示圆的有关概念.【练习巩固,综合应用】1.下列说法:①半圆是最长的弧;②面积相等的两个圆是等圆;③长度相等的弧是等弧;④经过圆内的一个定点可以作无数条弦;⑤经过圆内一定点可以作无数条直径.其中不正确的语句的个数是().A.1个B.2个C.3个D.4个设计意图:考查圆的有关概念.2.下列结论正确的是().A.直径是弦B.弦是直径C.半圆不是弧D.弧是半圆师生活动:让学生口答,教师强调直径和弦、弧及半圆的区别与联系.设计意图:考查与圆有关的概念.3.以已知点O为圆心、已知线段a为半径作圆,可以作出圆的个数为().A.1B.2C.3D.无数4.半径为5 cm的⊙O上的点到圆心的距离().A.大于5 cm B.小于5 cm C.不等于5 cm D.等于5 cm5.下列说法中,正确的是().A.两个半圆是等弧B.同圆中优弧与半圆的差必是劣弧C.长度相等的弧是等弧D.同圆中优弧与劣弧的差必是优弧6.如图,在⊙O中,点A,O,D在一条直线上,点B,O,C在一直线上,图中弦的条数为.7.如图,(1)若点O是⊙O的圆心,则线段__________是圆O的半径;线段________是圆O的弦,其中最长的弦是______;______是劣弧;______是半圆.(2)若∠A=40°,则∠ABO=______.设计意图:加深对圆的定义的理解,培养学生的应用意识和能力.8.若⊙O的半径是12 cm,OP=8 cm,求点P到圆上各点的距离中最短距离和最长距离.设计意图:让学生准确掌握直径与弦,弧与半圆的关系,以及准确理解圆、半圆、等圆和等弧的概念.参考答案1.D 2.A 3.A 4.D 5.B 6.28.点P到圆上各点的距离中最短距离为12-8=4(cm);点P到圆上各点的距离中最长距离为12+8=20(cm).六、课堂小结圆:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆.圆心:固定的端点O叫做圆心.半径:线段OA叫做这个圆的半径.圆的表示方法:以点O为圆心的圆,记作“⊙O”,读作“圆O”.圆的第二个定义:所有到定点的距离等于定长的点的集合组成的图形叫做圆.弦:连接圆上任意两点的线段叫做弦;直径:经过圆心的弦叫做直径;弧:圆上任意两点间的部分叫做圆弧,简称弧;弧的表示方法:以A,B为端点的弧记作AB,读作“圆弧AB”或“弧AB”;半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.优弧:大于半圆的弧叫做优弧,用三个字母表示,如图中的ABC;劣弧:小于半圆的弧叫做劣弧,如图中的BC;等圆:能够重合的两个圆叫做等圆;等弧:在同圆或等圆中,能够互相重合的弧叫做等弧.设计意图:帮助学生养成系统整理知识的学习习惯,加深认识,深化提高,形成学生自己的知识体系.七、板书设计24.1 圆的有关性质——24.1.1 圆1.圆的有关概念.2.圆的不同定义方法.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时计划
第9周第24课(章、单元)第1节第 1课时2014 年10月29日
课时计划
第9周第24课(章、单元)第1节第2课时2014 年10月30日
课时计划
第9周第24课(章、单元)第1节第3课时2014 年10月31日
课时计划
第10周第24课(章、单元)第1节第 4课时2014 年11月3日
课时计划
第10周第24课(章、单元)第2节第 1课时2014 年11月5日
课时计划
第10周第24课(章、单元)第2节第 2 课时2014 年11月6日
那么直线与圆分别是什么位置关系?有几个公共点?
归纳:判定直线与圆的位置关系的方法有两种:
(1)根据定义,由直线与圆的公共点的个数来判断;
(2)根据性质,由圆心到直线的距离与半径的关系来判断.
二、学习探究圆的切线的性质与判断:
1、切线的性质:圆的切线垂直于过切点的半径。
2、切线的判断:经过半径的外端,并且垂直于这条半径的直线是圆的切线.
对性质和判断作出证明(略)
三、运用举例:
例1、已知:AB是⊙O的直径,∠ABT=45°,AT=AB.
求证:AT是⊙的切线.
例2、如图9,AB是⊙O的直径,点D在AB的延长线上,且BD=OB,点C在⊙O上,∠CAB=30°,求证:DC是⊙O的切线.
例3、如图,BC是⊙O的直径,A是弦BD延长线上一点,切线DE平分AC于E,求证:AC 是⊙O的切线
四、练习
1.已知⊙O的半径为5cm,点O到直线a的距离为3cm,则⊙O与直线a的位置关系是________;直线a与⊙O的公共点个数是_______.
2.已知⊙O的直径是11cm,点O到直线a的距离是5.5cm,则⊙O与直线a的位置关系是______,直线a与⊙O的公共点个数是_______.
课时计划
第11周第 24课(章、单元)第2节第 3课时2014 年11月12日
三角形的内心:三角形内切圆的圆心.(即三角形三条角平分线的交点)
思考:一张三角形的铁皮,如何在它上面截下一块圆形的用料,并且使圆的面积尽可能大呢?
四、运用举例:
例1:已知:在△ABC中,BC=14,AC=9,AB=13,它的内切圆分别和BC、AC、AB切于点D、E、F,求AF、BD和CE的长。
解:(略)
例2:直角三角形的两直角边分别是5cm, 12cm 则其内切圆的半径为______。
五、练习:
P100 练习 P101 1
六、小结:
复述本节所学内容
板书设计:切线长定理
1、切线长定义:经过圆外一点的圆的切线上,这点和切点之间线段的长,叫做这点到圆的切线长。
2、切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。
3、三角形内切圆
三角形的内切圆:与三角形各边都相切的圆.
三角形的内心:三角形内切圆的圆心.(即三角形三条角平分线的交点)
作业布置:
P101 6 P102 12
教学后记:
课时计划
第 11周第24课(章、单元)第2节第4课时2014 年11月13日
课时计划
第11周第24课(章、单元)第3节第1课时2014 年11月14日
课时计划
第12周第24课(章、单元)第4节第 1课时2014 年11月17日
课时计划
第12周第 24课(章、单元)第4节第2课时2014 年11月19日
课时计划
第12周第 24课(章、单元)第5节第 1课时2014 年11月20日
(1)
求证:CE =DF ;
(2)求证:AC
=BD ;
(3)若CD =4,EF =2,
求这两个圆围成圆环的面积.
2、如图24-17所示,C 为半圆上一点,AC =CE ,过点C 作直径AB 的垂线CP ,P 为垂足,弦AE 交PC 于点D ,交CB 于点F.
求证:AD =CD.
3、在Rt △ABC 中,∠C =90°,AC =3 cm ,BC =4 cm ,以点C 为圆心,2.4 cm 为半径画圆.求(1)AB 的中点D 与⊙C 的位置关系;(2)直线AB 与⊙C 的位置关系.
4、如图24-22所示,已知在⊙O 中,AB =43,AC 是⊙O 的直径,AC⊥BD 于F ,∠A =30°.
(1)求图中阴影部分的面积;
(2)若用阴影扇形OBD 围成一个圆锥侧面,请求出这个圆锥的底面圆的半径. 解:(略)
三、练习:P122 复习巩固 1
图24-17。