离散型随机变量的概念教学设计
离散型随机变量教案
离散型随机变量教案教案标题:离散型随机变量教案一、教学目标:1. 了解离散型随机变量的基本概念和性质;2. 掌握离散型随机变量的概率质量函数和累积分布函数的计算方法;3. 理解离散型随机变量的期望值和方差的含义和计算方法;4. 能够应用离散型随机变量的知识解决实际问题。
二、教学内容:1. 离散型随机变量的概念和特点;2. 离散型随机变量的概率质量函数和累积分布函数;3. 离散型随机变量的期望值和方差;4. 离散型随机变量的应用实例。
三、教学重点和难点:1. 离散型随机变量的概念和性质;2. 离散型随机变量的概率质量函数和累积分布函数的计算方法;3. 离散型随机变量的期望值和方差的含义和计算方法。
四、教学方法:1. 讲授与示范相结合的方法,通过具体的例子引导学生理解离散型随机变量的概念和性质;2. 引导学生通过计算概率质量函数和累积分布函数来掌握离散型随机变量的计算方法;3. 通过实际问题的分析和解决,帮助学生理解离散型随机变量的应用。
五、教学工具:1. 教材:离散型随机变量相关章节;2. 计算器;3. 板书。
六、教学过程:1. 导入:通过一个具体的例子引导学生思考,什么是随机变量,什么是离散型随机变量。
2. 概念讲解:介绍离散型随机变量的定义、概率质量函数和累积分布函数的概念和计算方法。
3. 计算练习:让学生通过计算给定离散型随机变量的概率质量函数和累积分布函数,加深对概念和计算方法的理解。
4. 期望值和方差:讲解离散型随机变量的期望值和方差的定义和计算方法,并通过实例进行说明。
5. 应用实例:给出几个实际问题,引导学生运用离散型随机变量的知识解决问题。
6. 总结与拓展:对本节课的内容进行总结,并引导学生思考离散型随机变量的更多应用领域。
七、教学评估:1. 课堂练习:布置一些计算题,检查学生对离散型随机变量的概念和计算方法的掌握程度;2. 问题解答:鼓励学生提问,解答他们在学习过程中遇到的问题;3. 实际应用评估:通过学生对应用实例的解答,评估他们运用离散型随机变量知识解决实际问题的能力。
《离散型随机变量的概念》教育教学设计
3、情感与态度目标:通过列举生活中的实例,提高学生学习数学的积极性,使学生进一步感受到数学与生活的零距离,增强数学应用意识。
五、教学重点与难点
教学重点:随机变量、离散型随机变量概念的理解及随机变量的实际应用;
如果我们只关心灯泡是否为合格品,应该如何定义随机变量呢?
思考:下面两个问题中的随机变量是离散型随机变量吗?
(1)某网页在24小时内被浏览的次数
(2)某人接连不断的射击,首次命中目标需要射击的次数.
2、议一议:你能举出一些离散型随机变量的例子吗?
教师举例子,学生根据随机变量的定义对试验的结果进行表示.
在上面两个随机变量举例的基础上,让学生对第三个例子进行理解.而学生也会意识到他们之间的不同,进而对离散型随机变量形成一个模糊的概念.
在教师的引导下,学生进行讨论
学生分组活动,进行成果展示,教师适当点评。
巩固并加深学生对随机变量定义的理解
通过两类截然不同的例子,使得学生更易接受新知识
根据实际问题恰当的定义随机变量;连续型随机变量有时可以转化成离散型随机变量
对比上面例子,总结归纳离散型随机变量的定义:
离散型随机变量的定义:
所有取值可以一一列举出的随机变量,称为离散型随机变量.
除了离散型随机变量外,还有连续型随机变量,而上面的例子就是连续性随机变量.
(有的随机变量,它可以取某一区间内的一切值这样的随机变量叫做连续型随机变量.)
思考:
问题(3)中,如果将使用寿命超过1500小时的灯泡视为合格品;不足1500小时的视为不合格品。
《离散型随机变量的概念》教学设计
教学设计2:2.1.1 离散型随机变量
2.1.1离散型随机变量教学目标知识目标:1.理解随机变量的意义;2.学会区分离散型与非离散型随机变量,并能举出离散性随机变量的例子;3.理解随机变量所表示试验结果的含义,并恰当地定义随机变量.能力目标:发展抽象、概括能力,提高实际解决问题的能力.情感目标:学会合作探讨,体验成功,提高学习数学的兴趣.教学重点离散型随机变量的概念,以及在实际问题中如何恰当地定义随机变量.教学难点对引入随机变量目的的认识,了解什么样的随机变量便于研究.教学方法发现式为主、讲授式为辅,讲练结合.教学基本流程创设情境探究发现意义建构例题讲解练习反馈课堂小结分层作业提出问题,引入课题.对抽象的离散型随机变量概念的理解.感知数学,探寻随机变量的定义及与函数的联系.总结加深,升华概念应用数学,解决一些实际的问题.教学过程课题:离散型随机变量探究发现问题二:完成掷一枚骰子的试验,总结学生列举的随机变量,归纳实际意义.对应可为:(1)一点对应数字1(2)两点对应数字2以此类推在这些随机试验中,可能出现的结果都可以用一个数来表示.这个数在随机试验前是否是预先确定的?在不同的随机试验中,结果是否不变?随机变量:在一些试验中,试验可能出现的结果可以用一个变量X来表示,并且X是随着试验的结果的不同而变化的,我们把这样的变量X叫做一个随机变量.随机变量常用字母X、Y、η来表示.教师提出问题,引导学生根据第一个例子,去发现定义.在前面例子的基础上,让学生自己探求随机试验的结果表示方法使学生的认知起点与新知识平顺的对接.2、问题三在投掷一枚硬币的随机试验中,结果可以用数字来表示吗?(1)正面朝上对应数字1反面朝上对应数字0(2)正面朝上对应数字-1反面朝上对应数字1如果投掷n此后,我们关心的是正猜想硬币投掷的表示结果.学生回答问题,答案可能是多种的,教师应该让学生充分地表达,然后根据学生的回答给与总结.使学生了解用随机变量表示一个随机试验结果的多样性,同时深化试验结果与随机变量的对应关系.教学教学内容师生活动设计意图ξ七、板书设计:(略)八、教后记:。
离散型随机变量教案上交
离散型随机变量教案上交第一章:离散型随机变量的概念1.1 引入离散型随机变量的概念解释离散型随机变量的定义强调离散型随机变量与连续型随机变量的区别1.2 离散型随机变量的例子举例说明离散型随机变量的常见类型,如二项分布、几何分布等1.3 离散型随机变量的概率分布介绍离散型随机变量的概率分布的概念解释概率分布表的编制方法第二章:离散型随机变量的期望值2.1 离散型随机变量的期望值的定义解释期望值的定义和意义强调期望值是衡量随机变量平均取值大小的指标2.2 离散型随机变量的期望值的计算方法介绍利用概率分布表计算期望值的方法举例说明如何计算具体离散型随机变量的期望值第三章:离散型随机变量的方差3.1 离散型随机变量的方差的定义解释方差的定义和意义强调方差是衡量随机变量取值分散程度的指标3.2 离散型随机变量的方差的计算方法介绍利用概率分布表计算方差的方法举例说明如何计算具体离散型随机变量的方差第四章:离散型随机变量的标准差4.1 离散型随机变量的标准差的定义解释标准差的定义和意义强调标准差是衡量随机变量取值分散程度的一种直观指标4.2 离散型随机变量的标准差的计算方法介绍利用方差计算标准差的方法举例说明如何计算具体离散型随机变量的标准差第五章:离散型随机变量的概率分布函数5.1 离散型随机变量的概率分布函数的定义解释概率分布函数的概念和意义强调概率分布函数能够描述随机变量的取值概率分布情况5.2 离散型随机变量的概率分布函数的计算方法介绍利用概率分布表计算概率分布函数的方法举例说明如何计算具体离散型随机变量的概率分布函数第六章:离散型随机变量的累积分布函数6.1 离散型随机变量的累积分布函数的定义解释累积分布函数的概念和意义强调累积分布函数能够描述随机变量取值小于或等于某个值的概率6.2 离散型随机变量的累积分布函数的计算方法介绍利用概率分布表计算累积分布函数的方法举例说明如何计算具体离散型随机变量的累积分布函数第七章:离散型随机变量的概率质量函数7.1 离散型随机变量的概率质量函数的定义解释概率质量函数的概念和意义强调概率质量函数是描述随机变量取各个值的概率7.2 离散型随机变量的概率质量函数的计算方法介绍利用概率分布表计算概率质量函数的方法举例说明如何计算具体离散型随机变量的概率质量函数第八章:离散型随机变量的期望值和方差的性质8.1 离散型随机变量的期望值的性质介绍离散型随机变量期望值的基本性质举例说明期望值的性质在实际问题中的应用8.2 离散型随机变量的方差的性质介绍离散型随机变量方差的基本性质举例说明方差的性质在实际问题中的应用第九章:离散型随机变量的标准化9.1 离散型随机变量的标准化的概念解释标准化的概念和意义强调标准化是将随机变量转化为标准正态分布的过程9.2 离散型随机变量的标准化的方法介绍利用累积分布函数进行标准化的方法举例说明如何进行具体离散型随机变量的标准化处理第十章:离散型随机变量的实际应用10.1 离散型随机变量在实际问题中的应用举例说明离散型随机变量在各个领域中的应用,如概率论、统计学、经济学等强调离散型随机变量是解决实际问题的重要工具10.2 离散型随机变量的实际案例分析分析具体离散型随机变量的实际案例,如骰子问题、抽奖问题等强调通过离散型随机变量分析和解决实际问题的方法和技巧重点和难点解析一、离散型随机变量的概念:理解离散型随机变量的定义及其与连续型随机变量的区别是基础。
高中三年级上学期数学《离散型随机变量的概念》教学设计
7.2.1离散型随机变量的概念(教学设计)【学习目标】1.理解随机变量及离散型随机变量的含义2.了解随机变量与函数的区别与联系3.会用离散型随机变量描述随机现象【自主学习】知识点一随机变量(1)定义:随着试验结果变化而变化的变量称为随机变量.(2)表示:常用字母X,Y,ξ,η等表示.知识点二离散型随机变量离散型随机变量的定义:所有取值可以一一列出的随机变量,称为离散型随机变量.【合作探究】探究一随机变量的概念【例1】指出下列变量中,哪些是随机变量,哪些不是随机变量,并说明理由.(1)某编辑部一天接到咨询电话的个数;(2)从10张已编好号码的卡片(1号到10号)中任取一张,被取出的卡片的号数;(3)某林场树木最高达30 m,此林场中树木的高度;(4)体积为27 cm3的正方体的棱长.【分析】根据随机变量的概念判断.【解】(1)接到咨询电话的个数可能是0,1,2,3,…,出现哪一个结果是随机的,因此是随机变量.(2)被抽取的卡片号数是随机的,是随机变量.(3)林场树木的高度可以取(0,30]内的一切值,它是一个随机变量.(4)体积为27 cm3的正方体的棱长为3 cm,为定值,不是随机变量.归纳总结:在一次随机试验中,随机变量的取值实质是随机试验的结果所对应的数,且这个数所有可能的取值是预先知道的,但不知道究竟会出现哪一个值,这便是“随机”的本源【练习1】将一枚均匀骰子掷两次,随机变量为()A.第一次出现的点数B.第二次出现的点数C.两次出现的点数之和D.两次出现相同点的种数【答案】C解析:A,B,D中出现的点数虽然是随机的,但是其取值所反映的结果,都不能整体反映本试验,C整体反映两次投掷的结果,可以预见两次出现的点数的和是2,3,4,5,6,7,8,9,10,11,12这十一种结果,但每掷一次之前都无法确定是哪一个,因此是随机变量.探究二离散型随机变量的判定【例2】下列随机变量是否是离散型随机变量,并简述其理由.(1)在2 006张已编号的卡片(从1号到2006号)中任取1张,被取出的号数为X;(2)某人连续不断地射击,首次命中目标需要的射击次数X;(3)从2 006张已编号的卡片(从1号到2006号)中任取3张,被取出的卡片的号数和为X;(4)某工厂加工的某种钢管外径与规定的外径尺寸之差X.【分析】看一个随机变量是否是离散型随机变量,主要看此变量的取值是否是有限个,或虽是无限个,但可以按一定的顺序列举出来.【解】(1)随机变量X的值有2 006个,是有限个,因此X是离散型随机变量.(2)首次命中目标需要的射击次数X虽然有无限个,但是可以列举出来,1,2,3,…,可见,随机变量X是离散型随机变量.(3)与(1)比较,虽然取的张数有1张和3张区别,但实质是一样的,故X是离散型随机变量.(4)由于随机变量X的值是(-∞,+∞)内的一切实数(从理论上看),不可能列举出来,故随机变量X不是离散型随机变量.归纳总结:看一个变量是否是离散型随机变量,首先看它是否是随机的,其次是看它是否是离散的,然后才能下结论.【练习2】指出下列随机变量是否是离散型随机变量,并说明理由.(1)白炽灯的寿命ξ;(2)某射手对目标进行射击,击中目标得1分,未击中目标得0分,用ξ表示该射手在一次射击中的得分;(3)郑州至武汉的电气化铁道线上,每隔50 m有一电线铁塔,从郑州至武汉的电气化铁道线上将电线铁塔进行编号,而其中某一电线铁塔的编号ξ;(4)江西九江市长江水位监测站所测水位在(0,29]这一范围内变化,该水位站所测水位ξ.解:(1)白炽灯的寿命ξ的取值是一个非负实数,而所有非负实数不能一一列出,所以ξ不是离散型随机变量.(2)是离散型随机变量,因为射手的得分的取值只有1或0,可一一列举.(3)是离散型随机变量.因为电线铁塔为有限个,其编号从1开始可一一列出.(4)不是离散型随机变量.因为水位在(0,29]这一范围内变化,对水位值我们不能按一定次序一一列出探究三用随机变量表示随机试验的结果【例3】写出下列各随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果:(1)在2019年北京大学的自主招生中,参加面试的5名考生中,通过面试的考生人数X;(2)一个袋中装有5个同样的球,编号分别为1,2,3,4,5.现从该袋内随机取出3个球,被取出的球的最大号码数X.【分析】明确随机变量X的意义,写出X的所有可能取值及每个值对应的试验结果.【解】(1)X可能取0,1,2,3,4,5.X=i表示“面试通过的有i人”,其中i=0,1,2,3,4,5.(2)X可取3,4,5.X=3表示“取出的3个球的编号为1,2,3”;X=4表示“取出的3个球的编号为1,2,4或1,3,4或2,3,4”;X=5表示“取出的3个球的编号为1,2,5或1,3,5或1,4,5或2,3,5或2,4,5或3,4,5”.归纳总结:因为随机变量的取值描述了随机试验的结果,因此,要准确写出随机变量的所有取值,就必须弄清楚所有试验的结果.还要注意一个随机变量的取值可能对应一个和多个随机试验的结果,因此在解决这类问题时不能漏掉某些试验结果【练习3】写出下列各随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果:(1)盒中装有6支白粉笔和2支红粉笔,从中任意取出3支,其中所含白粉笔的支数X,所含红粉笔的支数Y;(2)在含有10件次品的100件产品中,任意抽取4件,所含次品的件数X.解:(1)X可取1,2,3.X=i表示“取出i支白粉笔,3-i支红粉笔”,其中i=1,2,3.Y可取0,1,2.Y=i表示“取出i支红粉笔,3-i支白粉笔”,其中i=0,1,2.(2)随机变量X可能的取值为0,1,2,3,4.X=i表示“取出的4件产品中有i件次品”,其中i=0,1,2,3,4.探究四随机变量与函数的关系【例4】抛掷两枚骰子各一次,记第一枚骰子掷出的点数与第二枚骰子掷出的点数之差为ξ,试求ξ的值域,并说明“ξ>4”表示的试验结果.【解】设第一枚骰子掷出的点数为x,第二枚骰子掷出的点数为y,其中x,y=1,2,3,4,5,6,依题意得ξ=x-y.则-5≤ξ≤5,即ξ的值域为{-5,-4,-3,-2,-1,0,1,2,3,4,5}.则ξ>4⇔ξ=5,表示x=6,y=1,即第一枚骰子掷出6点,第二枚骰子掷出1点.归纳总结:随机变量ξ与函数f(x)的区别函数是研究确定性现象的,它定义在实轴上,有确定的因果关系;随机变量从本质上讲就是以随机试验的每一个可能结果为自变量的一个函数,即随机变量的取值实质上是试验结果所对应的数,但这些数是预先知道的所有可能的值,这便是“随机”的本源.【练习4】一个袋中装有5个白球和5个黑球,从中任取3个,其中所含白球的个数为ξ.(1)列表说明可能出现的结果与对应的ξ的值;(2)若规定抽取3个球中,每抽到一个白球加5分,抽到黑球不加分,且最后不管结果如何都加上6分,求最终得分η的可能取值,并判定η的随机变量类型.解:(1)+6,5×2+6,5×3+6.故η的可能取值为{6,11,16,21},显然η为离散型随机变量.。
离散型随机变量及其分布复习课教案
离散型随机变量及其分布复习课教案一、教学目标1. 复习离散型随机变量的概念及其性质。
2. 掌握离散型随机变量的概率分布及其数学期望。
3. 能够运用离散型随机变量及其分布解决实际问题。
二、教学内容1. 离散型随机变量的定义及其性质。
2. 离散型随机变量的概率分布,包括概率质量函数和累积分布函数。
3. 离散型随机变量的数学期望。
4. 离散型随机变量的方差及其性质。
5. 实际问题中的离散型随机变量及其分布的应用。
三、教学方法1. 采用讲解、案例分析、练习相结合的教学方法。
2. 通过具体的例子和问题,引导学生理解离散型随机变量及其分布的概念和性质。
3. 利用数学软件或图形计算器,进行离散型随机变量的模拟实验,增强学生对离散型随机变量分布的理解。
四、教学准备1. 教学PPT或教案。
2. 数学软件或图形计算器。
3. 相关的练习题和案例分析题。
五、教学过程1. 复习离散型随机变量的定义及其性质,通过具体的例子进行解释和说明。
2. 讲解离散型随机变量的概率分布,包括概率质量函数和累积分布函数的定义和计算方法。
3. 引入离散型随机变量的数学期望的概念,讲解其计算方法和性质。
4. 引入离散型随机变量的方差的概念,讲解其计算方法和性质。
5. 通过案例分析,让学生运用离散型随机变量及其分布解决实际问题,如概率计算、期望和方差的估计等。
教案内容待补充六、教学评估1. 通过课堂练习和讨论,评估学生对离散型随机变量及其分布的理解程度。
2. 通过课后作业和练习题,评估学生对离散型随机变量及其分布的掌握程度。
3. 结合学生的参与度和提问反馈,评估学生的学习效果。
七、教学拓展1. 介绍离散型随机变量及其分布在其他学科领域的应用,如物理学、化学、生物学等。
2. 探讨离散型随机变量及其分布在实际问题中的应用,如统计学、经济学、社会学等。
八、教学资源1. 离散型随机变量及其分布的教材或参考书。
2. 离散型随机变量的模拟实验软件或图形计算器。
离散型随机变量及其分布列教案
离散型随机变量及其分布列教案离散型随机变量及其分布列教案一、引言1.1 概念介绍离散型随机变量是统计学中的一个重要概念,它描述了在一次实验中可能取到的离散数值,如扔一枚硬币可以取到正面和反面两个离散数值。
本文将介绍离散型随机变量的基本概念及其分布列。
1.2 学习目标通过本教案的学习,你将能够:- 理解离散型随机变量的基本概念;- 了解离散型随机变量的分布列及其性质;- 掌握计算离散型随机变量概率的方法。
二、离散型随机变量的定义2.1 随机变量的概念在概率论中,随机变量是指定义在某个概率空间上的实值函数,它的取值是由实验结果决定的。
随机变量可以分为离散型和连续型两种类型,本文主要关注离散型随机变量。
2.2 离散型随机变量的定义离散型随机变量是指其取值是有限个或可数个的随机变量。
扔一枚硬币的实验可以定义一个离散型随机变量X,它的取值为1(正面)和-1(反面)。
三、离散型随机变量的分布列3.1 定义离散型随机变量的分布列,也称为概率质量函数(Probability Mass Function,简称PMF),描述了随机变量取各个值的概率。
3.2 示意图我们可以通过绘制柱状图来直观地表示离散型随机变量的分布列。
横轴表示随机变量的取值,纵轴表示对应取值的概率。
3.3 性质离散型随机变量的分布列具有以下性质:- 非负性:概率质量函数的取值非负;- 总和为1:所有可能取值的概率之和等于1。
四、计算概率4.1 概念介绍在实际问题中,我们常常需要计算离散型随机变量的概率。
概率计算可以基于分布列进行。
4.2 计算方法计算离散型随机变量概率的基本方法是通过分布列查找对应取值的概率。
具体而言,对于随机变量X和某个取值x,我们可以通过查找分布列找到对应的概率P(X=x)。
五、总结与回顾5.1 概括概念通过本教案的学习,我们了解了离散型随机变量的基本概念及其分布列。
离散型随机变量的分布列描述了随机变量取各个值的概率。
5.2 理解计算方法我们学会了通过分布列计算离散型随机变量的概率的方法。
离散型随机变量及其分布教案
离散型随机变量及其分布教案一、引言随机变量是概率论中的重要概念,它描述了随机试验中的各种可能结果与相应的概率分布之间的关系。
离散型随机变量是指在一定范围内取有限个或可列无限个离散值的随机变量。
本教案将介绍离散型随机变量及其分布。
二、离散型随机变量的概念离散型随机变量可以理解为能够取到离散值的随机变量。
例如,抛掷一个骰子出现的点数就是一个离散型随机变量,因为它只能取到1、2、3、4、5、6这几个离散值之一。
三、离散型随机变量的分布律离散型随机变量可以通过分布律来描述其各个取值的概率。
1. 定义离散型随机变量的分布律是指在给定取值情况下的概率分布。
对于离散型随机变量X,其分布律可以表示为P(X=x),其中x表示X的某个取值。
2. 性质离散型随机变量的分布律必须满足以下两个性质:(1)非负性:对于任意的x,P(X=x)≥0;(2)归一性:所有可能的取值情况的概率之和等于1,即∑P(X=x)=1。
四、常见离散型随机变量及其分布1. 伯努利分布伯努利分布是最简单的离散型随机变量分布之一,它描述了一个随机试验只有两个可能结果的情况。
例如,投掷硬币的结果只能是正面或反面。
2. 二项分布二项分布是描述n个独立的伯努利试验中成功次数的离散型随机变量的分布。
例如,投掷一枚硬币n次,正面朝上的次数就是一个满足二项分布的离散型随机变量。
3. 泊松分布泊松分布是描述在给定时间段或空间范围内某事件发生次数的离散型随机变量的分布。
例如,单位时间内到达某一地点的车辆数量就可以用泊松分布来描述。
4. 几何分布几何分布是描述在一系列独立的伯努利试验中,首次获得成功所需要的试验次数的离散型随机变量的分布。
例如,第一次抛掷正面朝上的硬币所需要的抛掷次数就可以用几何分布来描述。
五、总结离散型随机变量及其分布是概率论中的重要概念,通过分布律可以准确描述随机变量的取值情况和相应的概率分布。
常见的离散型随机变量包括伯努利分布、二项分布、泊松分布和几何分布,它们在实际问题中具有广泛应用。
离散型随机变量分布列教学案
离散型随机变量分布列教学案一、知识目标1.能够定义离散型随机变量;2.了解离散型随机变量分布的概念;3.能够构造离散型随机变量分布列,了解分布列的意义及其特点;4.能够求离散型随机变量分布的期望和方差。
二、教学重点四、教学方法讲授、举例、讨论。
五、教学过程1.引入现实生活中经常碰到的事件有可能是某种情况的多次发生,每次事件的结果都是不确定的,这样的现象叫做随机事件。
而随机变量则是随机事件的结果所标示的数值。
本节课将着重介绍离散型随机变量的概念、分布列的构造及相关计算方法。
2.概念解释(1)离散型随机变量:若随机变量取值只能是由有限个或无限个可数的数值所构成的集合中的一个,则该随机变量称为离散型随机变量。
3.分布列的构造及意义离散型随机变量的分布列是对离散型随机变量分布的一种简洁的表达方式,它由随机变量的可能取值和对应的概率构成。
(1)列出随机变量可能取的所有值;(2)确定每个值出现的概率;(3)将每个值及其对应的概率填入表格。
例如,某种硬币正面朝上的概率为0.4,反面朝上的概率为0.6,则构造硬币正面朝上的次数的分布列如下:正面朝上的次数 x 概率 P(x)0 0.64.分布列的特点(1)每个值的概率都非负,即P(x)≥0。
5.分布的期望和方差(1)期望离散型随机变量的期望定义为E[X]=∑xP(x),其中x为随机变量的取值,P(x)为x取某一特定值的概率。
(2)方差离散型随机变量的方差定义为Var[X]=E[X^2]-(E[X])^2,其中E[X^2]表示随机变量的二次方的期望。
6.范例讲解某小组4名同学和参加模拟考试,假设每位同学的通过率为0.8,未通过率为0.2。
求小组中通过数的概率分布。
解:构造通过数的分布列如下:其中,P(0)=0.2^4=0.0016,P(1)=C(4,1)×0.8×0.2^3=0.0256,P(2)=C(4,2)×0.8^2×0.2^2=0.1536,P(3)=C(4,3)×0.8^3×0.2=0.4096,P(4)=0.8^4=0.4096。
离散型随机变量优秀教学设计
2.1.1 离散型随机变量
一、教材分析
《离散型随机变量》是本章的第一课。
因此,在本节课中,让学生了解本章的主要内容及其研究该内容所用的数学思想方法,对学生明确学习目标和学习任务,提高他们的求知欲望,激发他们的学习兴趣非常重要。
对于随机试验,只要了解了它可能出现的结果,以及每一个结果发生的概率,也就基本把握了它的统计规律。
为了使用数学工具研究随机现象,需要用数字描述随机现象,建立起连接数和随机现象的桥梁——随机变量。
高中阶段主要研究的是有限的离散型的随机变量,因此,本节课的教学任务就是通过具体实例,帮助学生掌握随机变量和离散型随机变量的概念,理解它们的意义和作用,能对一个随机试验的结果,用一个随机变量表示,并能确定其取值范围。
二、教学目标
知识与技能:理解随机变量和离散型随机变量的描述性定义;随机变量如何表示。
过程与方法:学会区分离散型与非离散型随机变量,并能举出离散型随机变量的例子;
掌握随机变量与函数的关系,能够把一个随机试验的结果用随机变量表
示,能够根据所关心的问题定义一个随机变量。
情感态度与价值观:理解随机变量所表示试验结果的含义,并恰当地定义随机变量.发展抽象、概括能力,提高实际解决问题的能力.学会合作探讨,体验成功,
提高学习数学的兴趣。
三、教学重难点
重点:用随机变量表示随机试验结果的意义和方法。
难点:对随机变量意义的理解;构造随机变量的方法;随机变量取值范围的确定。
四、教学过程
引导学生完成“当堂小
测”,并总结本节课的
知识点,以及解题过程
中需要注意的问题。
件正品,。
离散型随机变量及其分布列教案
离散型随机变量及其分布列教案离散型随机变量是指在其中一区间内取值有限或可列无限个的随机变量。
离散型随机变量通常用来描述一些试验的结果,例如抛硬币的结果,掷骰子的结果等。
在教学过程中,可以通过引入离散型随机变量教授概率论的基本概念和计算方法。
以下是一个关于离散型随机变量及其分布列的教案:教学目标:1.了解离散型随机变量的定义和特点;2.掌握计算离散型随机变量的分布列;3.学会使用分布列计算期望值和方差。
教学内容:1.离散型随机变量的定义和特点:-定义:离散型随机变量是指在其中一区间内取值有限或可列无限个的随机变量。
-特点:离散型随机变量的取值是可以数清的,不能取到区间之外的值。
2.离散型随机变量的分布列:-分布列是用来描述离散型随机变量各个取值的概率的表格或公式。
-分布列的特点:各个取值的概率之和为13.离散型随机变量的期望值和方差:-期望值是离散型随机变量各个取值与其相应概率的乘积之和。
表示为E(X)。
E(X) = x1*p1 + x2*p2 + ... + xn*pn- 方差是离散型随机变量各个取值与其相应概率的乘积减去期望值的平方之和。
表示为Var(X)。
Var(X) = (x1-E(X))^2*p1 + (x2-E(X))^2*p2 + ... + (xn-E(X))^2*pn教学步骤:Step 1:引入离散型随机变量的概念通过实际例子引入离散型随机变量的概念,例如掷骰子的结果就是一个离散型随机变量。
Step 2:介绍离散型随机变量的定义和特点详细介绍离散型随机变量的定义和特点,并与连续型随机变量进行对比。
Step 3:讲解离散型随机变量的分布列解释离散型随机变量分布列的含义,给出分布列的例子,并教授计算分布列的方法。
Step 4:演示如何计算离散型随机变量的期望值和方差从分布列的角度出发,演示如何计算离散型随机变量的期望值和方差。
Step 5:练习和巩固提供一些练习题,让学生通过计算离散型随机变量的分布列、期望值和方差来巩固所学知识。
离散型随机变量优秀教学设计
离散型随机变量一.教学目的1.了解随机变量、离散型随机变量、连续型随机变量的意义,并能说明随机变量取的值所表示的随机试验的结果.2.通过本课的学习,能举出一些随机变量的例子,并能识别是离散型随机变量,还是连续型随机变量.二.教学重点:随机变量,离散型随机变量,连续型随机变量的概念的理解.教学难点:随机变量,离散型随机变量,连续型随机变量的概念的理解三.教学用具:投影仪四.教学过程1.新课引入(1)展示教科书章头提出的两个实际问题(有条件的学校可用计算机制作好课件辅助教学),激发学生的求知欲.(2)指出本章是在初中“统计初步”和高中必修课“概率”的基础上,学习随机变量和统计的一些知识.学习这些知识后,我们将能解决类似引言中的一些实际问题.2.提出教科书中两个随机试验的例子,让学生观察,概括出它们的共同特点可问:在这些随机试验中,可能出现的结果都可以用一个数来表示.这个数在随机试验前是否是预先确定的?在不同的随机试验中,结果是否不变?3.提出随机变量的概念在观察、思考、概括上述两个随机试验的共同特点的基础上,提出随机变量这一概念:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量.随机变量常用希腊字母ξ、η等表示.让学生自己看教科书中两个例子的随机变量可能取的值及随机变量所取值表示的随机试验的结果.4.讲解例1、例2例1 写出下列随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果.(1)一袋中装有5只同样大小的白球,编号为1,2,3,4,5.现从该袋内随机取出3只球,被取出的球的最大号码数ξ;(2)某单位的某部电话在单位时间内收到的呼叫次数η.解:(1)ξ可取3,4,5.ξ,表示取出的3个球的编号为1,2,3;3=ξ,表示取出的3个球的编号为1,2,4或1,3,4或2,3,4=4ξ,表示取出的3个球的编号为1,2,5或1,3,5或1,4,5或2,3,5或2,4,5=5或3,4,5.(2)η可取0,1,2,…,n,….i =η,表示被呼叫i 次,其中i =0,1,2,….例2 抛掷两枚骰子各一次,记第一枚骰子掷出的点数与第二枚骰子掷出的点数的差为ξ,试问:“ξ>4”表示的试验结果是什么? 答:因为一枚骰子的点数可以是1,2,3,4,5,6六种结果之一,由已知得55≤≤-ξ,也就是说“ξ>4”就是“ξ=5”.所以,“ξ>4”表示第一枚为6点,第二枚为1点.5.提出离散型随机变量的概念引导学生观察教科书中的两个例子,以及例1和例2.概括出离散型随机变量的概念: 对于随机变量可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.6.通过实际例子,引出连续型随机变量的概念比较离散型随机变量与连续型随机变量两个概念,概括出它们的区别与联系.7.讲解例3通过此例,说明“若ξ是随机变量,则b a +=ξη(其中a 、b 是常数)也是随机变量”. 例3 某城市出租汽车的起步价为10元,行驶路程不超出4km ,则按10元的标准收租车费.若行驶路程超出4km ,则按每超出1km 加收2元计费(超出不足1km 的部分按1km 计).从这个城市的民航机场到某宾馆的路程为15km .某司机常驾车在机场与此宾馆之间接送旅客,由于行车路线的不同以及途中停车时间要转换成行车路程(这个城市规定,每停车5分钟按1km 路程计费),这个司机一次接送旅客的行车路程多是一个随机变量,他收旅客的租车费η也是一个随机变量.(Ⅰ)求租车费η关于行车路程ξ的关系式;(Ⅱ)已知某旅客实付租车费38元,而出租汽车实际行驶了15km ,问出租车在途中因故停车累计最多几分钟?解:(Ⅰ)依题意得10)4(2+-=ξη,即22+=ξη.(Ⅱ)由2238+=ξ,得.15)1518(5,18=-⨯=ξ所以,出租车在途中因故停车累计最多15分钟.8.课堂练习做教科书的“练习”.9.归纳小结(1)填表:概念具体内容 随机变量离形型随机变量连续型随机变量(2)随机变量ξ是关于试验结果的函数,即每一个试验结果对应着一个实数;随机变量ξ的线性组合b a +=ξη(a 、b 是常数)也是随机变量.五.布置作业教科书习题第1题.。
“离散型随机变量”教学设计、反思与重新设计
( ) 步学会恰 当地定义随机变量来描述所感兴趣的随机现 难一些. 2初 故在随机变量的教学 中,要特别重视学生举例 ,让学生
[ 0 0年第 3期 ] 中 国 数 学 教 育 21
,
N 。 f A0 l I
[至 口
在 充分 的 自主 活 动 中 体 验 数 学 化 的 过 程 ,体 验 将 随 机 试 验 结 果
( ) 对具 体 实 例 的 分析 中 ,认 识 和体 会 随 机 变量 对 刻 画 随 关 内容 而 建 立 新 的认 知 结 构 .因此 ,从 这 一 角 度来 分 析 ,学 生对 1在 机 现 象 的重 要 性 和建 立 随 机变 量 概 念 的 必要 性 .
随机 变量概 念的学习和真正理解 比离散型随机变量 的学 习要 困
知道这个随机现象 中所有 可能出现的结果 ,以及每一个 结果出 论 ,形成 离散型随机变量概念 ,并会 利用离散型随机变量刻画 现的概率.而对于给定的随机现象 ,首先要描述所有可能出现的 随机 试 验 的结 果 . 结果 . 在数学上处理时,一个常用的 、也很 自然 的做法就是用数
() 4 在举例 、观察 、思考 、发现中经历将 实际问题数学化 ,
一
、
原教 学 设 计
象 ( 实际问题 ) ,能叙述随机变量可能取 的值及其所表示的随机
试验 的结 果 .
1 .内容和 内容 解 析 概 率 是研 究 随 机 现 象 的 数量 规律 的 . 识 随机 现 象 就 是 指 : 认
() 3 在列举 的随机试验 中,通过对随机变量取值的辨析和讨
随机变量的取值范围相 当于函数的值域.
用数来表示 其试验结果 ,并且所用的数又尽量简单 ,便 于研究.
《工程数学》教案16随机变量的概念与离散型随机变量
《工程数学》教案16随机变量的概念与离散型随机变量教学目标:1.了解随机变量的概念和分类。
2.掌握离散型随机变量的概念、概率函数和分布函数的计算方法。
3.能够通过例题分析和解决实际问题。
教学重点:1.随机变量的定义和分类;2.离散型随机变量的概念和计算方法。
教学难点:离散型随机变量的计算方法和实际问题的应用。
教学过程:一、引入(5分钟)教师通过一个例子引入随机变量的概念,如抛掷一枚硬币,正面记为1,反面记为0,这个结果就可以看作是一个随机变量。
二、随机变量的定义和分类(15分钟)1.随机变量的定义:随机变量是对试验结果的一个变量描述。
它是定义在样本空间上的一个实值函数。
2.随机变量的分类:(1)离散型随机变量:只能取一系列离散值的随机变量,其概率分布由概率函数表示。
(2)连续型随机变量:可以取任意实数的随机变量,其概率分布由密度函数表示。
三、离散型随机变量(20分钟)1.离散型随机变量的概念:只有有限个或可数个取值的随机变量。
2.离散型随机变量的概率函数和分布函数:(1)概率函数:用来描述离散型随机变量的各个可能取值的概率。
(2)分布函数:用来描述离散型随机变量小于或等于一些特定值的概率。
3.离散型随机变量的例题分析:(1)抛硬币的例子:计算正面朝上的概率,构建概率函数和分布函数。
(2)掷骰子的例子:计算各个点数的概率,构建概率函数和分布函数。
四、实际问题的应用(15分钟)1.使用离散型随机变量解决实际问题:(1)生日悖论的例子:计算生日相同的概率。
(2)掷骰子游戏的例子:计算游戏获胜的概率。
2.学生独立思考和解答问题。
五、小结与作业布置(5分钟)教师对本次课进行小结,复习重点内容,并布置相关练习题作业。
教学方法:1.情景教学法:通过具体的例子引入随机变量的概念。
2.讲授法:通过讲解随机变量的定义和分类、离散型随机变量的概念和计算方法,让学生掌握相关知识。
3.问题导向法:通过实际问题的分析和解答,培养学生的解决问题的能力。
离散型随机变量的教学设计资料讲解
“离散型随机变量”的教学设计一、内容和内容解析“随机变量及其分布”一章的主要内容就是要通过具体实例,帮助学生理解取有限值的离散型随机变量及其分布列、均值、方差的概念,理解超几何分布和二项分布的概型并能解决简单的实际问题,使学生认识分布列对于刻画随机现象的重要性,认识正态分布曲线的特点及曲线所表示的意义,了解条件概率和两个事件相互独立的概念。
“离散型随机变量”是这一章的开门课。
因此,在本节课中,让学生了解本章的主要内容及其研究该内容所用的数学思想方法,对学生明确学习目标和学习任务,提高他们的求知欲望,激发他们的学习兴趣非常重要。
于是,本节课的第一个教学任务就是要做好章头图的教学。
教材的章头图从实例和图形两个方面展示了本章要学习的内容,一个是离散型随机变量的产生背景和分布列的条形图,另一个是正态分布的背景和正态分布密度曲线。
教学时要充分地运用章头图的这两个背景,通过问题的形式,帮助学生明确本章要学习的主要内容和意义。
对于一个随机现象,就是要了解它所有可能出现的结果和每一个结果出现的概率。
对于随机试验,只要了解了它可能出现的结果,以及每一个结果发生的概率,也就基本把握了它的统计规律。
为了使用数学工具研究随机现象,需要用数字描述随机现象,建立起连接数和随机现象的桥梁——随机变量。
随机变量能够反映随机现象的共性,有关随机变量的结论可以应用到具有不同背景的实际问题中。
而高中阶段主要研究的是有限的离散型的随机变量,因此,本节课的第二个教学任务就是通过具体实例,帮助学生掌握随机变量和离散型随机变量的概念,理解它们的意义和作用,能对一个随机试验的结果,用一个随机变量表示,并能确定其取值范围。
二、目标和目标解析1.了解本章学习的内容和意义。
具体要求为:(1)通过章头图中给出的射击运动的情景,帮会学生了解,在射击运动中,每次射击的成绩是一个非常典型的随机事件。
在这个离散型的随机事件中,如何刻画每个运用员射击的技术水平与特点?如何比较两个运动员的射击水平?如何选拔运动员参加比赛获胜的概率大?这些问题的解决需要离散型随机变量的概率分布、均值、方差等有关知识;(2)通过章头图中给出的高尔顿板游戏情景,帮助学生了解在这样一个连续型的随机事件的游戏活动中,小球落在哪个槽中的可能性更大?槽中的小球最后会堆积成什么形状?这些问题与本章将要学习的正态分布有关;(3)在上述两个情景的基础上,通过问题的形式,帮助学生提出本章要研究的问题和基本思想:随机事件形形色色,随机现象表现各异,但如果舍弃具体背景,它们就会呈现出一些共性;如果把随机试验的结果数量化,用随机变量表示试验结果,就可以用数学工具来研究这些随机现象。
教学设计1:2.1.1 离散型随机变量
2.1.1 离散型随机变量教学目标:知识目标:1.理解随机变量的意义;2.学会区分离散型与非离散型随机变量,并能举出离散性随机变量的例子;3.理解随机变量所表示试验结果的含义,并恰当地定义随机变量.能力目标:发展抽象、概括能力,提高实际解决问题的能力.情感目标:学会合作探讨,体验成功,提高学习数学的兴趣.教学重点:随机变量、离散型随机变量、连续型随机变量的意义.教学难点:随机变量、离散型随机变量、连续型随机变量的意义.授课类型:新授课 .教具:多媒体、实物投影仪.内容分析:本章是在初中“统计初步”和高中必修课“概率”的基础上,学习随机变量和统计的一些知识.学习这些知识后,我们将能解决类似引言中的一些实际问题.教学过程:一、复习引入:展示教科书章头提出的两个实际问题(有条件的学校可用计算机制作好课件辅助教学),激发学生的求知欲.某人射击一次,可能出现命中0环,命中1环,…,命中10环等结果,即可能出现的结果可能由0,1,……10这11个数表示;某次产品检验,在可能含有次品的100件产品中任意抽取4件,那么其中含有的次品可能是0件,1件,2件,3件,4件,即可能出现的结果可以由0,1,2,3,4这5个数表示.在这些随机试验中,可能出现的结果都可以用一个数来表示.这个数在随机试验前是否是预先确定的?在不同的随机试验中,结果是否不变?观察,概括出它们的共同特点.二、讲解新课:思考1:掷一枚骰子,出现的点数可以用数字1 , 2 ,3,4,5,6来表示.那么掷一枚硬币的结果是否也可以用数字来表示呢?掷一枚硬币,可能出现正面向上、反面向上两种结果.虽然这个随机试验的结果不具有数量性质,但我们可以用数1和0分别表示正面向上和反面向上(图2.1一1 ) .在掷骰子和掷硬币的随机试验中,我们确定了一个对应关系,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果的变化而变化.定义1:随着试验结果变化而变化的变量称为随机变量(random variable ).随机变量常用字母X , Y,ξ,η,… 表示.思考2:随机变量和函数有类似的地方吗?随机变量和函数都是一种映射,随机变量把随机试验的结果映为实数,函数把实数映为实数.在这两种映射之间,试验结果的范围相当于函数的定义域,随机变量的取值范围相当于函数的值域.我们把随机变量的取值范围叫做随机变量的值域.例如,在含有10件次品的100 件产品中,任意抽取4件,可能含有的次品件数X 将随着抽取结果的变化而变化,是一个随机变量,其值域是{0, 1, 2 , 3, 4 } .利用随机变量可以表达一些事件.例如{X=0}表示“抽出0件次品” , {X =4}表示“抽出4件次品”等.你能说出{X< 3 }在这里表示什么事件吗?“抽出3 件以上次品”又如何用X 表示呢?定义2:所有取值可以一一列出的随机变量,称为离散型随机变量( discrete random variable ) .离散型随机变量的例子很多.例如某人射击一次可能命中的环数X 是一个离散型随机变量,它的所有可能取值为0,1,…,10;某网页在24小时内被浏览的次数Y也是一个离散型随机变量,它的所有可能取值为0, 1,2,….思考3:电灯的寿命X是离散型随机变量吗?电灯泡的寿命X 的可能取值是任何一个非负实数,而所有非负实数不能一一列出,所以X 不是离散型随机变量.在研究随机现象时,需要根据所关心的问题恰当地定义随机变量.例如,如果我们仅关心电灯泡的使用寿命是否超过1000 小时,那么就可以定义如下的随机变量:⎧⎨≥⎩0,寿命<1000小时;Y=1,寿命1000小时. 与电灯泡的寿命 X 相比较,随机变量Y 的构造更简单,它只取两个不同的值0和1,是一个离散型随机变量,研究起来更加容易.连续型随机变量: 对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量.如某林场树木最高达30米,则林场树木的高度是一个随机变量,它可以取(0,30]内的一切值.4.离散型随机变量与连续型随机变量的区别与联系: 离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出.注意:(1)有些随机试验的结果虽然不具有数量性质,但可以用数量来表达如投掷一枚硬币,=0,表示正面向上,=1,表示反面向上(2)若是随机变量,b a b a ,,+=ξη是常数,则也是随机变量.三、讲解范例:例1.写出下列随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果.(1)一袋中装有5只同样大小的白球,编号为1,2,3,4,5 现从该袋内随机取出3只球,被取出的球的最大号码数ξ;(2)某单位的某部电话在单位时间内收到的呼叫次数η.解:(1) ξ可取3,4,5.ξ=3,表示取出的3个球的编号为1,2,3;ξ=4,表示取出的3个球的编号为1,2,4或1,3,4或2,3,4;ξ=5,表示取出的3个球的编号为1,2,5或1,3,5或1,4,5或2,3或3,4,5.(2)η可取0,1,…,n ,…..η=i ,表示被呼叫i 次,其中i=0,1,2,….例2. 抛掷两枚骰子各一次,记第一枚骰子掷出的点数与第二枚骰子掷出的点数的差为ξ,试问:“ξ> 4”表示的试验结果是什么?答:因为一枚骰子的点数可以是1,2,3,4,5,6六种结果之一,由已知得-5≤ξ≤5,也就是说“ξ>4”就是“ξ=5”所以,“ξ>4”表示第一枚为6点,第二枚为1点.ξξξξη例3 某城市出租汽车的起步价为10元,行驶路程不超出4km ,则按10元的标准收租车费若行驶路程超出4km ,则按每超出lkm 加收2元计费(超出不足1km 的部分按lkm 计).从这个城市的民航机场到某宾馆的路程为15km .某司机常驾车在机场与此宾馆之间接送旅客,由于行车路线的不同以及途中停车时间要转换成行车路程(这个城市规定,每停车5分钟按lkm 路程计费),这个司机一次接送旅客的行车路程ξ是一个随机变量,他收旅客的租车费可也是一个随机变量.(1)求租车费η关于行车路程ξ的关系式;(Ⅱ)已知某旅客实付租车费38元,而出租汽车实际行驶了15km ,问出租车在途中因故停车累计最多几分钟?解:(1)依题意得η=2(ξ-4)+10,即η=2ξ+2.(Ⅱ)由38=2ξ+2,得ξ=18,5×(18-15)=15.所以,出租车在途中因故停车累计最多15分钟.四、课堂练习:1.①某寻呼台一小时内收到的寻呼次数ξ;②长江上某水文站观察到一天中的水位ξ;③某超市一天中的顾客量ξ 其中的ξ是连续型随机变量的是( )A .①;B .②;C .③;D .①②③2.随机变量ξ的所有等可能取值为1,2,,n …,若()40.3P ξ<=,则( )A .3n =;B .4n =;C .10n =;D .不能确定3.抛掷两次骰子,两个点的和不等于8的概率为( )A .1112;B .3136;C .536; D .112 4.如果ξ是一个离散型随机变量,则假命题是( )A. ξ取每一个可能值的概率都是非负数;B. ξ取所有可能值的概率之和为1;C. ξ取某几个值的概率等于分别取其中每个值的概率之和;D. ξ在某一范围内取值的概率大于它取这个范围内各个值的概率之和.答案:1.B 2.C 3.B 4.D五、小结 :随机变量离散型、随机变量连续型随机变量的概念,随机变量ξ是关于试验结果的函数,即每一个试验结果对应着一个实数;随机变量ξ的线性组合η=aξ+b (其中a 、b 是常数)也是随机变量六、课后作业:七、板书设计(略)八、教学反思:。
《离散型随机变量》教学设计
概念形成
离散型随机变量:
让学生总结并得出离散型随机变量.
通过引导分析让学生能够分清哪种是离散型随机变量.
例题讲解
例1中的哪些是离散型随机变量呢?
(1)体积为64 cm3的正方体的棱长
(2)抛两枚质地均匀的骰子,出现的点数之和
(3)2015年6月1日蚌埠龙湖大桥一天中经过的车辆数
学生用自己的语言来概括本节课学到的知识和方法,是一种“主动建构”,也让学生真正体会到知识学到了手的感觉.
布置作业
必做题:
1.举出两个离散型随机变量的例子
2.教材习题2.1 A组第1、2题
选做题:
假设进行一次从袋中摸出一个球的游戏,袋中有3个红球、4个白球、1个蓝球、2个黑球,摸到红球得2分、白球得1分、黑球得-2分,列表写出可能的结果、对应的分值X及相应的概率.
其中是离散型随机变量的为()
A.①②B.③④C.①③D.②④
2.将一颗均匀骰子掷两次,不能作为随机变量的是( )
A.两次出现的点数之和B.两次掷出的最大点数
C.第一次减去第二次的点数差D.抛掷的次数
3.袋中有大小相同的5个小球,分别标有1、2、3、4、5五个号码,现在在有放回的条件下取出两个小球,设两个小球号码之和为X,则X所有可能值的个数是___个;“X=4”表示.
难点
对引入随机变量目的的认识.
二、教学设计
教学环节
提出问题
师生活动
设计意图
问题导入
问题1:掷一枚骰子,可能出现的结果有哪些?如何表示?
问题2:某人射击一次,可能出现命中的环数有哪些?如何表示?
问题3:在某次产品检验中,共检测100件产品,其中次品有4件,其余为正品.若从中任意抽取4件,那么其中含有的次品可能是多少件呢?
离散型随机变量教案上交
离散型随机变量教案上交第一章:离散型随机变量的概念与性质1.1 离散型随机变量的定义1.2 离散型随机变量的性质1.3 离散型随机变量的概率分布第二章:离散型随机变量的期望与方差2.1 离散型随机变量的期望2.2 离散型随机变量的方差2.3 离散型随机变量的标准差第三章:离散型随机变量的协方差与相关系数3.1 离散型随机变量的协方差3.2 离散型随机变量的相关系数3.3 离散型随机变量之间的独立性第四章:离散型随机变量的最大似然估计4.1 似然函数的定义与性质4.2 离散型随机变量的最大似然估计4.3 最大似然估计的性质与条件第五章:离散型随机变量的假设检验5.1 假设检验的基本概念5.2 离散型随机变量的假设检验方法5.3 离散型随机变量的假设检验的性质与限制第六章:离散型随机变量的函数6.1 离散型随机变量的函数的定义6.2 离散型随机变量的函数的性质6.3 离散型随机变量的函数的期望与方差第七章:条件概率与贝叶斯定理7.1 条件概率的定义与性质7.2 贝叶斯定理的定义与证明7.3 贝叶斯定理的应用与实例第八章:离散型随机变量的独立性8.1 独立性的定义与性质8.2 离散型随机变量的独立性的检验8.3 离散型随机变量的独立性在实际应用中的重要性第九章:离散型随机变量的组合9.1 离散型随机变量的组合的定义与性质9.2 离散型随机变量的组合的概率分布9.3 离散型随机变量的组合的期望与方差第十章:离散型随机变量的极限定理10.1 大数定律的定义与证明10.2 中心极限定理的定义与证明10.3 离散型随机变量的极限定理在实际应用中的重要性第十一章:离散型随机变量的应用案例分析11.1 离散型随机变量在统计学中的应用11.2 离散型随机变量在经济学中的应用11.3 离散型随机变量在其他领域的应用第十二章:离散型随机变量的计算机模拟12.1 离散型随机变量的模拟方法12.2 离散型随机变量的模拟实现12.3 离散型随机变量的模拟在实际应用中的例子第十三章:离散型随机变量的优化问题13.1 离散型随机变量的优化问题的定义与性质13.2 离散型随机变量的优化问题的求解方法13.3 离散型随机变量的优化问题在实际应用中的例子第十四章:离散型随机变量的决策分析14.1 离散型随机变量的决策问题的定义与性质14.2 离散型随机变量的决策问题的解决方法14.3 离散型随机变量的决策问题在实际应用中的例子第十五章:离散型随机变量的进一步研究15.1 离散型随机变量的最新研究进展15.2 离散型随机变量的未来研究方向15.3 离散型随机变量的相关学术资源和参考文献重点和难点解析本文教案涵盖了离散型随机变量的基本概念、性质、概率分布、期望、方差、协方差和相关系数、最大似然估计、假设检验、函数、条件概率、独立性、组合、极限定理以及应用案例分析、计算机模拟、优化问题、决策分析等多个方面。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
离散型随机变量的概念
教学设计
公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-
离散型随机变量的概念》教学设计
一、教材分析
《离散型随机变量的概念》是人教A版《普通高中课程标准实验教科书
数学选修2-3》第二章随机变量及其分布的第一节离散型随机变量及其分布列的第一课时。
本章是在必修三中学习了基本的概率统计知识的基础上,进一步学习随机变量及其分布的知识。
本节内容一方面承接了必修三的知识;另一方面,掌握好这一节课将有助于后续的学习,因此它在知识体系上起着承上启下的作用。
随机变量是连接随机现象和实数空间的一座桥梁,从而使得更多的数学工具有了用武之地。
离散型随机变量是最简单的随机变量。
本节课主要通过离散型随机变量展示用实数空间刻画随机现象的方法。
二、学情分析
学生在必修3概率一章中学习过的随机试验、随机事件、简单的概率模型和必修1中学习过的变量、函数、映射等知识是学习、领悟和“接纳”随机变量概念的重要知识基础,教学时应充分注意这一教学条件;另外,为更好地形成随机变量和离散型随机变量两个概念,教学中可借助媒体列举和展现丰富的实例和问题,以留给学生更多的时间思考和概括。
三、教学策略分析
学生是教学的主体,本节课要给学生提供各种参与机会。
本课以情境为载体,以学生为主体,以问题为手段,激发学生观察思考、猜想探究的兴趣。
注重引导帮助学生充分体验“从实际问题到数学问题”的建构过程,培养学生分析问题、解决问题的能力。
四、目标分析
1、知识与技能目标:理解随机变量和离散型随机变量的概念,能够运用随机变量表示随机事件,学会恰当的定义随机变量;
2、过程与方法目标:在教学过程中,以不同的实际问题为导向,引导学生分析问题的特点,归纳问题的共性,提高理解分析能力和抽象概括能力;
3、情感与态度目标:通过列举生活中的实例,提高学生学习数学的积极性,使学生进一步感受到数学与生活的零距离,增强数学应用意识。
五、教学重点与难点
教学重点:随机变量、离散型随机变量概念的理解及随机变量的实际应用;
教学难点:对随机变量概念的透彻理解及对引入随机变量目的的认识。
六、教学过程设计:。