2018-2019学年上海市徐汇中学高一下学期期末数学试题(解析版)
2018-2019学年高一数学下学期期末考试试题(含解析)_33
2018-2019学年高一数学下学期期末考试试题(含解析)注意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
写在试卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内。
写在试卷、草稿纸和答题卡上的非答题区域均无效。
4.选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试卷、草稿纸和答题卡上的非答题区域均无效。
5.考试结束后,请将本试卷和答题卡一并上交。
一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列说法中正确的是( )A. 棱柱的侧面可以是三角形B. 正方体和长方体都是特殊的四棱柱C. 所有的几何体的表面都能展成平面图形D. 棱柱的各条棱都相等【答案】B【解析】试题分析:棱柱的侧面是平行四边形,不可能是三角形,所以A不正确;球的表面就不能展成平面图形,所以C不正确;棱柱的侧棱与底面边长不一定相等,所以D不正确.考点:本小题主要考查空间几何体的性质.点评:解决此类问题的主要依据是空间几何体的性质,需要学生有较强的空间想象能力.2.在空间直角坐标系中,点P(3,4,5)关于平面的对称点的坐标为( )A. (−3,4,5)B. (−3,−4,5)C. (3,−4,−5)D. (−3,4,−5)【答案】A【解析】【分析】由关于平面对称的点的横坐标互为相反数,纵坐标和竖坐标相等,即可得解.【详解】关于平面对称的点的横坐标互为相反数,纵坐标和竖坐标相等,所以点P(3,4,5)关于平面的对称点的坐标为(−3,4,5).故选A.【点睛】本题主要考查了空间点的对称点的坐标求法,属于基础题.3.把正方形ABCD沿对角线AC折起,当以A,B,C,D四点为顶点的三棱锥体积最大时,二面角的大小为()A. 30° B. 45° C. 60° D. 90°【答案】D【解析】【分析】当平面ACD垂直于平面BCD时体积最大,得到答案.【详解】取中点,连接当平面ACD垂直于平面BCD时等号成立.此时二面角为90°故答案选D【点睛】本题考查了三棱锥体积的最大值,确定高的值是解题的关键.4.方程表示的曲线是()A. 一个圆B. 两个圆C. 半个圆D. 两个半圆【答案】D【解析】原方程即即或故原方程表示两个半圆.5.已知不同的两条直线m,n与不重合的两平面,,下列说法正确的是()A. 若,,则B. 若,,则C. 若,,则D. 若,,则【答案】C【解析】【分析】依次判断每个选项的正误得到答案.【详解】若,,则或 A错误.若,,则或,B错误若,,则,正确若,,则或,D错误故答案选C【点睛】本题考查了线面关系,找出反例是解题的关键.6.已知数列2008,2009,1,-2008,-2009…这个数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前2019项之和等于()A. 1B. 2010C. 4018D. 4017【答案】C【解析】【分析】计算数列的前几项,观察数列是一个周期为6的数列,计算得到答案.【详解】从第二项起,每一项都等于它的前后两项之和计算数列前几项得:2008,2009,1,-2008,-2009,-1,2008,2009,1,-2008…观察知:数列是一个周期为6的数列每个周期和为0故答案为C【点睛】本题考查了数列的前N项和,观察数列的周期是解题的关键.7.已知函数的零点是和(均为锐角),则()A. B. C. D.【答案】B【解析】【分析】将函数零点转化的解,利用韦达定理和差公式得到,得到答案.【详解】的零点是方程的解即均为锐角故答案B【点睛】本题考查了函数零点,韦达定理,和差公式,意在考查学生的综合应用能力.8.设集合,,若存在实数t,使得,则实数的取值范围是()A. B. C. D.【答案】C【解析】【分析】得到圆心距与半径和差关系得到答案.详解】圆心距存在实数t,使得故答案选C【点睛】本题考查了两圆的位置关系,意在考查学生的计算能力.9.如图所示,在正方体中,侧面对角线,上分别有一点E,F,且,则直线EF与平面ABCD所成的角的大小为()A. 0°B. 60°C. 45°D. 30°【答案】A【解析】【分析】证明一条直线与一个平面平行,除了可以根据直线与平面平行的判定定理以外,通常还可以通过平面与平面平行进行转化,比如过E作EG∥AB交BB1于点G,连接GF,根据三角形相似比可知:平面EFG∥平面ABCD.而EF在平面EFG中,故可以证得:EF∥平面ABCD.【详解】解:过E作EG∥AB交BB1于点G,连接GF,则,∵B1E=C1F,B1A=C1B,∴.∴FG∥B1C1∥BC.又∵EG∩FG=G,AB∩BC=B,∴平面EFG∥平面ABCD.而EF在平面EFG中,∴EF∥平面ABCD.故答案为:A【点睛】本题主要考查空间直线和平面平行的判定,根据面面平行的性质是解决本题的关键.10.平面直角坐标系xOy中,角的顶点在原点,始边在x轴非负半轴,终边与单位圆交于点,将其终边绕O点逆时针旋转后与单位园交于点B,则B的横坐标为()A. B. C. D.【答案】B【解析】【分析】,B的横坐标为,计算得到答案.【详解】有题意知:B横坐标为:故答案选B【点睛】本题考查了三角函数的计算,意在考查学生的计算能力.11.如图所示,在四边形ABCD中,,,.将四边形ABCD沿对角线BD折成四面体,使平面平面BCD,则下列结论中正确的结论个数是()①;②;③与平面A'BD所成的角为30°;④四面体的体积为A. 0个B. 1个C. 2个D. 3个【答案】B【解析】【分析】根据题意,依次判断每个选项的正误得到答案.【详解】,平面平面且平面取的中点∵∴.又平面平面BCD,平面平面,平面.∴不垂直于.假设,∵为在平面内的射影,∴,矛盾,故A错误;,平面平面,平面,在平面内的射影为.,,故B正确,为直线与平面所成的角,,故C错误;,故D错误.故答案选B【点睛】本题考查了线线垂直,线面夹角,体积的计算,意在考查学生的计算能力和空间想象能力.12.已知,两条不同直线与的交点在直线上,则的值为()A. 2B. 1C. 0D. -1【答案】C【解析】【分析】联立方程求交点,根据交点在在直线上,得到三角关系式,化简得到答案.【详解】交点在直线上观察分母和不是恒相等故故答案选C【点睛】本题考查了直线方程,三角函数运算,意在考查学生的计算能力.二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中的横线上)13.圆和圆交于A,B两点,则弦AB 的垂直平分线的方程是________.【答案】【解析】【分析】弦AB的垂直平分线即两圆心连线.【详解】弦AB的垂直平分线即两圆心连线方程为故答案为:【点睛】本题考查了弦的垂直平分线,转化为过圆心的直线可以简化运算.14.数列满足,(且),则数列的通项公式为________.【答案】【解析】【分析】利用累加法和裂项求和得到答案.【详解】当时满足故答案为:【点睛】本题考查了数列的累加法,裂项求和法,意在考查学生对于数列公式和方法的灵活运用.15.直线和将单位圆分成长度相等的四段弧,则________.【答案】0【解析】【分析】将单位圆分成长度相等的四段弧,每段弧对应的圆周角为,计算得到答案.【详解】如图所示:将单位圆分成长度相等的四段弧,每段弧对应的圆周角为或故答案为0【点睛】本题考查了直线和圆相交问题,判断每段弧对应的圆周角为是解题的关键.16.将边长为2的正沿边上的高折成直二面角,则三棱锥的外接球的表面积为.【答案】5π/6【解析】试题分析:外接球半径.考点:外接球.三、解答题:本大题共6小题,满分70分。
(10份试卷合集)上海市徐汇区名校高中2019年数学高一下学期期末模拟试卷
2018-2019学年高一下学期数学期末模拟试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12小题,共60.0分)1.若,则下列不等式中正确的是A. B. C. D.2.已知中,,,,则B等于A. B. 或 C. D. 或3.在中,已知,,,则角C为A. B. C. D.4.已知数列1,,,,,,则是这个数列的A. 第10项B. 第11项C. 第12项D. 第21项5.数列中,,,则的值为A. 94B. 96C. 190D. 1926.已知等差数列中,,则A. 20B. 30C. 40D. 507.已知等差数列中,,,则的前n项和的最大值是A. 15B. 20C. 26D. 308.已知等比数列中,,,则A. 3B. 15C. 48D. 639.已知等比数列的公比,其前4项和,则等于A. 16B. 8C.D.10.若x,y满足,则的最大值为A. 1B. 3C. 5D. 911.已知,,,则的最小值为A. 8B. 6C.D.12.下列命题,能得出直线m与平面平行的是A. 直线m与平面内所有直线平行B. 直线m 与平面内无数条直线平行C. 直线m与平面没有公共点D. 直线m与平面内的一条直线平行二、填空题(本大题共4小题,共20.0分)13.设平行四边行ABCD中,,,,则平行四边形ABCD的面积为______ .14.已知数列满足,则通项 ______ .15.设不等式的解集为,则 ______ .16.如图是正方体平面展开图,在这个正方体中:与AF平行;与BE是异面直线;与BM成角;与ED垂直.以上四种说法中,正确说法的序号是______ .三、解答题(本大题共6小题,共70.0分)17.已知数列:,求此数列的前n项和.18.等比数列中,,.Ⅰ求数列的通项公式;Ⅱ若,分别为等差数列的第4项和第16项,试求数列的前项和.19.在中,a,b,c分别为角A,B,C的对边,,,.求的周长;求的值.20.解关于x的不等式.21.如图,在四棱锥中,四边形ABCD是平行四边形,E、F分别是AB、PC中点,求证:面PAD22.如图,空间四边形ABCD中,E, F分别是AB和CB上的点,G, H分别是CD和AD上的点,且EH与FG相交于点K, 求证:EH, BD, FG三条直线相交于同一个点。
2018-2019学年高一数学第二学期期末试卷及答案(一)
2018-2019学年高一数学第二学期期末试卷及答案(一)2018-2019学年高一数学第二学期期末试卷及答案(一)一.选择题1.两直线3x+y﹣3=0与6x+my+1=0平行,则它们之间的距离为()A. 4B.C.D.2.将边长为的正方形ABCD沿对角线AC折成一个直二面角B﹣AC﹣D.则四面体ABCD的内切球的半径为()A. 1B.C.D.3.下列命题正确的是()A. 两两相交的三条直线可确定一个平面B. 两个平面与第三个平面所成的角都相等,则这两个平面一定平行C. 过平面外一点的直线与这个平面只能相交或平行D. 和两条异面直线都相交的两条直线一定是异面直线4.在空间中,给出下面四个命题,则其中正确命题的个数为()①过平面α外的两点,有且只有一个平面与平面α垂直;②若平面β内有不共线三点到平面α的距离都相等,则α∥β;③若直线l与平面α内的无数条直线垂直,则l⊥α;④两条异面直线在同一平面内的射影一定是两条平行线.A. 0B. 1C. 2D. 35.已知直线l1:x+2ay﹣1=0,与l2:(2a﹣1)x﹣ay﹣1=0平行,则a的值是()A. 0或1B. 1或C. 0或D.6.如果圆(x﹣a)2+(y﹣a)2=8上总存在到原点的距离为的点,则实数a的取值范围是()A. (﹣3,﹣1)∪(1,3)B. (﹣3,3)C. [﹣1,1]D. [﹣3,﹣1]∪[1,3]7.若圆C:(x﹣5)2+(y+1)2=m(m>0)上有且只有一点到直线4x+3y﹣2=0的距离为1,则实数m的值为()A. 4B. 16C. 4或16D. 2或48.已知二面角α﹣l﹣β为60°,AB?α,AB⊥l,A为垂足,CD?β,C∈l,∠ACD=135°,则异面直线AB与CD所成角的余弦值为()9.如图,在圆的内接四边形ABCD中,AC平分∠BAD,EF切⊙O 于C点,那么图中与∠DCF相等的角的个数是()A. 4B. 5C. 6D. 710.点P是双曲线﹣=1的右支上一点,M是圆(x+5)2+y2=4上一点,点N的坐标为(5,0),则|PM|﹣|PN|的最大值为()A. 5B. 6C. 7D. 811.m,n,l为不重合的直线,α,β,γ为不重合的平面,则下列说法正确的是()A. m⊥l,n⊥l,则m∥nB. α⊥γ,β⊥γ,则α⊥βC. m∥α,n∥α,则m∥nD. α∥γ,β∥γ,则α∥β12.曲线y=1+ 与直线y=k(x﹣2)+4有两个交点,则实数k的取值范围是()二.填空题13.如图,网格纸上每个小正方形的边长为1,若粗线画出的是某几何体的三视图,则此几何体的体积为________.14.若过定点M(﹣1,0)且斜率为k的直线与圆x2+4x+y2﹣5=0在第一象限内的部分有交点,则k的取值范围是________.15.若点P在圆上,点Q在圆上,则|PQ|的最小值是________.16.直线x+7y﹣5=0分圆x2+y2=1所成的两部分弧长之差的绝对值为________.三.解答题17.已知△ABC三边所在直线方程:l AB:3x﹣2y+6=0,l AC:2x+3y﹣22=0,l BC:3x+4y﹣m=0(m ∈R,m≠30).(1)判断△ABC的形状;(2)当BC边上的高为1时,求m的值.18.如图,在三棱柱ABC﹣A1B1C1中,AA1⊥底面ABC,且△ABC为等边三角形,AA1=AB=6,D 为AC的中点.(1)求证:直线AB1∥平面BC1D;(2)求证:平面BC1D⊥平面ACC1A1;(3)求三棱锥C﹣BC1D的体积.答案解析部分一.选择题1.【答案】D【考点】两条平行直线间的距离【解析】【解答】解:∵直线3x+y﹣3=0与6x+my+1=0平行,∴,解得m=2.因此,两条直线分别为3x+y﹣3=0与6x+2y+1=0,即6x+2y﹣6=0与6x+2y+1=0.∴两条直线之间的距离为d= = = .故答案为:D【分析】根据两条直线平行的一般式的系数关系可求出m=2,进而得到两条直线的方程,再利用两条平行线间的距离公式可得结果。
2018-2019学年第二学期高一下学期期末考试数学试卷及答案解析
……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………2018-2019学年第二学期高一下学期期末考试数学试卷评卷人 得分一、选择题1、已知为角的终边上的一点,且,则的值为( )A .B .C .D .2、在等差数列中,,则( )A .B .C .D .3、若,则一定有( )A .B .C .D .4、已知等差数列的前项和为,若且,则当最大时的值是( )A .B .C .D .5、若,则的值为( )A .B .C .D .6、在中,已知,则的面积等于( )A .B .C .D .7、各项均为正数的等比数列的前项和为,若,则( ) A .B .C .D .……○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※……○…………内…………○…………装…………○…………订…………○…………线…………○…………8、若变量满足约束条件,且的最大值为,最小值为,则的值是( ) A . B .C .D .9、在中,角所对的边分别为,且,若,则的形状是( )A .等腰三角形B .直角三角形C .等边三角形D .等腰直角三角形 10、当甲船位于处时获悉,在其正东方向相距海里的处,有一艘渔船遇险等待营救,甲船立即前往营救,同时把消息告知在甲船的南偏西相距海里处的乙船,乙船立即朝北偏东角的方向沿直线前往处营救,则的值为( )A .B .C .D .11、已知是内的一点,且,若和的面积分别为,则的最小值是( )A .B .C .D . 12、已知数列满足,则( ) A .B .C .D .评卷人 得分二、填空题13、已知,且,则__________。
2019-2020学年上海市徐汇区高一下学期期末数学试卷 (解析版)
2019-2020学年上海市徐汇区高一第二学期期末数学试卷一、填空题(共12小题).1.函数f(x)=sinπx的最小正周期是.2.计算:=.3.与两数的等比中项是.4.函数f(x)=arcsin x+1的定义域为5.若tanα=3,则tan(﹣α)=.6.若数列{a n}满足a n+1=2a n(n∈N*),且a1=2,a m=1024,则m=.7.已知=4,则tanα=.8.已知数列{a n}满足a n+1﹣a n=n(n∈N*),且a1=1,则数列{a n}的通项公式a n=.9.已如扇形的圆心角为,弧长为,则扇形的面积为.10.已知数列{a n}的前n项和S n=3n+1+k(n∈N*),且{a n}不是等比数列,则常数k的取值范围是.11.设无穷等比数列{a n}的各项和为,则首项a1的取值范围是.12.已知数列{a n}、{b n}的通项公式分别为a n=3•2n,b n=2n+4(n∈N*),取出数列{a n}、{b n}中的不同的项从小到大排列组成一个新的数列{c n},设数列{c n}的前n项和为S n,则S100=.二、选择题13.已知函数f(x)=sin(x+φ)的图象关于y轴对称,则实数φ的取值可能是()A.B.C.D.π14.要得到函数y=sin(2x﹣)的图象,只需将函数y=sin2x的图象()A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位15.已知数列a n=n•sin(n∈N*),则a1+a2+a3+…+a100等于()A.﹣48B.﹣50C.﹣52D.﹣5416.设{a n}是首项为正数的等比数列,公比为q,对于以下两个命题:(甲)“q>1”是“{a n}为递增数列”的充分非必要条件;(乙)“q<0”是“对任意的正整数n,a2n﹣1+a2n<0”的必要非充分条件,下列判断正确的是()A.甲和乙均为真命题B.甲和乙均为假命题C.甲为假命题,乙为真命题D.甲为真命题,乙为假命题三、解答题17.设等差数列{a n}的前n项和为S n,若a1=2,a k=38,S k=200.(1)求常数k的值;(2)求{a n}的前n项和S n.18.已知函数.(1)若函数f(x)在区间[0,a]上单调递增,求实数a的取值范围;(2)求函数f(x)在区间[0,2π]上的所有零点.19.已知数列{a n}满足a n+1=a n+1(n∈N*),a1=3,b n=a n﹣2(n∈N*).(1)证明:数列{b n}是等比数列;(2)若c n=﹣n•b n(n∈N*),求数列{c n}中的最小项.20.今年年初新冠肺炎肆虐全球,抗击新冠肺炎的有效措施之一是早发现、早隔离.现某地发现疫情,卫生部门欲将一块如图所示的四边形区域ABCD沿着边界用固定高度的板材围成一个封闭的隔离区.经测量,边界AB与AD的长都是200米,∠BAD=60°,∠BCD=120°.(1)若∠ADC=105°,求BC的长(结果精确到米);(2)围成该区域至多需要多少米长度的板材?(不计损耗,结果精确到米).21.对于数列{a n},设数列{a n}的前n项和为S n,若存在正整数k,使得恰好为数列{a n}的一项,则称数列{a n}为“P(k)数列”.(1)已知数列1,2,3,x为“P(2)数到”,求实数x的值;(2)已知数列{a n}的通项公式为a n=,试问数列{a n}是否是“P(k)数列”?若是,求出所有满足条件的正整数k;若不是,请说明理由.参考答案一、填空题1.函数f(x)=sinπx的最小正周期是2.【分析】根据正弦函数的周期公式:,可以求出函数的最小正周期解:根据正弦函数的周期公式有,故答案为2.2.计算:=3.【分析】由数列的极限的运算法则和常见数列的极限公式,计算可得所求值.解:====3,故答案为:3.3.与两数的等比中项是±1.【分析】要求两数的等比中项,我们根据等比中项的定义,代入运算即可求得答案.解:设A为与两数的等比中项则A2=()•()=1故A=±1故答案为:±14.函数f(x)=arcsin x+1的定义域为[﹣1,1]【分析】根据反函数的定义及正弦函数的值域即可求出f(x)=arcsin x+1的定义域.解:y=sin x的值域为[﹣1,1];∴f(x)=arcsin x+1的定义域为[﹣1,1].故答案为:[﹣1,1].5.若tanα=3,则tan(﹣α)=﹣.【分析】由题意利用两角差的正切公式,求得tan(﹣α)的值.解:∵tanα=3,则tan(﹣α)===﹣,故答案为:﹣.6.若数列{a n}满足a n+1=2a n(n∈N*),且a1=2,a m=1024,则m=10.【分析】直接根据等比数列的通项公式即可求出.解:数列{a n}满足a n+1=2a n(n∈N*),则数列{a n}为公比为2的等比数列,∴a m=2×2m﹣1=1024,解得m=10,故答案为:10.7.已知=4,则tanα=2.【分析】由已知利用同角三角函数基本关系式即可化简求解.解:∵==4,∴tanα=2.故答案为:2.8.已知数列{a n}满足a n+1﹣a n=n(n∈N*),且a1=1,则数列{a n}的通项公式a n=.【分析】利用累加求和法直接求解.解:∵数列{a n}满足a n+1﹣a n=n(n∈N*),且a1=1,∴a n=a1+(a2﹣a1)+(a3﹣a2)+(a4﹣a3)+…+(a n﹣a n﹣1)=1+1+2+3+4+…+n﹣1=1+=.∴数列{a n}的通项公式a n=.故答案为:.9.已如扇形的圆心角为,弧长为,则扇形的面积为.【分析】根据弧长公式和扇形的面积公式计算即可.解:扇形的圆心角为,弧长为,根据弧长公式可得l=αR,则R===4,根据扇形面积公式,S=lR=×4×=,故答案为:.10.已知数列{a n}的前n项和S n=3n+1+k(n∈N*),且{a n}不是等比数列,则常数k的取值范围是(﹣∞,﹣3)∪(﹣3,+∞).【分析】根据数列的递推公式可得a n=2×3n,n≥2时,若{a n}不是等比数列,则9+k≠6,即k≠﹣3.解:∵S n=3n+1+k,①当n=1时,a1=9+k,当n≥2时,∴S n﹣1=3n+k,②①﹣②可得a n=2×3n,此时当n=1时,a1=6,若{a n}不是等比数列,则9+k≠6,即k≠﹣3,∴常数k的取值范围是(﹣∞,﹣3)∪(﹣3,+∞),故答案为:(﹣∞,﹣3)∪(﹣3,+∞).11.设无穷等比数列{a n}的各项和为,则首项a1的取值范围是.【分析】由已知可得,得0<|q|<1,=,把首项用公比表示,再由公比q的范围求得首项a1的取值范围.解:∵无穷等比数列{a n}的各项和为,即,∴0<|q|<1,=,∴,当﹣1<q<0时,∈();当0<q<1时,∈(0,).则首项a1的取值范围是.故答案为:.12.已知数列{a n}、{b n}的通项公式分别为a n=3•2n,b n=2n+4(n∈N*),取出数列{a n}、{b n}中的不同的项从小到大排列组成一个新的数列{c n},设数列{c n}的前n项和为S n,则S100=11388.【分析】由题可知,数列{a n}、{b n}的公共项恰为a n,因此S100=(b1+b2+…+b106)﹣(a1+a2+…+a6),再结合等差数列和等比数列的求和公式即可得解.解:数列{a n}表示6,12,24,48,……,相当于是6的倍数,而数列{b n}表示所有的偶数,∴数列{a n}、{b n}的公共项恰为a n,∴S100=(b1+b2+…+b106)﹣(a1+a2+…+a6)=﹣3×(21+22+ (26)=(6+216)×53﹣3×=11766﹣3×2×(26﹣1)=11388.故答案为:11388.二、选择题13.已知函数f(x)=sin(x+φ)的图象关于y轴对称,则实数φ的取值可能是()A.B.C.D.π【分析】由题意根据正弦函数的对称性即可求出φ的一个值.解:y=sin(x+φ)的图象关于y轴对称,则φ=kπ+,k∈Z,当k=0时,φ的一个值是.故选:C.14.要得到函数y=sin(2x﹣)的图象,只需将函数y=sin2x的图象()A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位【分析】由函数y=A sin(ωx+φ)的图象变换规律,可得结论.解:∵y=sin(2x﹣)=sin[2(x﹣)],∴将函数y=sin2x的图象上所有的点向右平移个单位,即可得到函数y=sin(2x﹣)的图象.故选:D.15.已知数列a n=n•sin(n∈N*),则a1+a2+a3+…+a100等于()A.﹣48B.﹣50C.﹣52D.﹣54【分析】先根据正弦函数的周期性对a1+a2+a3+…+a100进行化简运算,再采用分组求和法即可得解.解:a1+a2+a3+…+a100=1•sin+2•sinπ+3•sin+…+98•sin+99•sin+100•sin=(1﹣3)+(5﹣7)+…+(97﹣99)=﹣2×25=﹣50.故选:B.16.设{a n}是首项为正数的等比数列,公比为q,对于以下两个命题:(甲)“q>1”是“{a n}为递增数列”的充分非必要条件;(乙)“q<0”是“对任意的正整数n,a2n﹣1+a2n<0”的必要非充分条件,下列判断正确的是()A.甲和乙均为真命题B.甲和乙均为假命题C.甲为假命题,乙为真命题D.甲为真命题,乙为假命题【分析】利用等比数列的通项公式及不等式的性质判断出前者成立后者一定成立;反之后者成立推不出前者成立,利用充要条件的有关定义得到结论.解:设{a n}是首项为正数的等比数列,公比为q,若“q>1”成立,则a n+1=a1q n>a n=a1q n﹣1即“对于任意正自然数n,都有a n+1>a n”成立,反之若“对于任意正自然数n,都有a n+1>a n”成立,即a n+1=a1q n>a n=a1q n﹣1成立,即a1q n﹣1(q﹣1)>0∴q>1,∴“q>1”是“{a n}为递增数列”的充要条件,故甲为假命题,由a2n﹣1+a2n<0,则a1q2n﹣2+a1q2n﹣1=a1q2n﹣2(1+q)<0,∵a1>0,∴1+q<0,∴q<﹣1,∴q<0为q<﹣1的必要而不充分条件,∴“q<0”是“对任意的正整数n,a2n﹣1+a2n<0”的必要而不充分条件.故B为真命题,故选:C.三、解答题17.设等差数列{a n}的前n项和为S n,若a1=2,a k=38,S k=200.(1)求常数k的值;(2)求{a n}的前n项和S n.【分析】(1)直接根据求和公式即可求出k,(2)设公差为d,则a10=a1+9d,解得d,再根据求和公式即可求出.解:(1)S k===200,解得k=10,(2)设公差为d,则a10=a1+9d,可得38=2+9d,解得d=4,∴S n=2n+×4=2n2.18.已知函数.(1)若函数f(x)在区间[0,a]上单调递增,求实数a的取值范围;(2)求函数f(x)在区间[0,2π]上的所有零点.【分析】(1)求出函数f(x)的单调增区间,结合函数f(x)在区间[0,a]上单调递增,即可求得实数a的取值范围;(2)由f(x)=0,求解x在[0,2π]上的值,即可得到函数f(x)在区间[0,2π]上的所有零点.解:(1)由,得,k∈Z.取k=0,可得,∵函数在区间[0,a]上单调递增,∴实数a的取值范围是;(2)由f(x)=sin(x+)﹣,得sin(x+)=,则x+=或,k∈Z.又x∈[0,2π],∴x=0,,2π.即函数f(x)在区间[0,2π]上的所有零点是0,,2π.19.已知数列{a n}满足a n+1=a n+1(n∈N*),a1=3,b n=a n﹣2(n∈N*).(1)证明:数列{b n}是等比数列;(2)若c n=﹣n•b n(n∈N*),求数列{c n}中的最小项.【分析】(1)利用等比数列的定义,转化求解即可.(2)化简数列的通项公式,判断数列后项与前项的比值,然后求解数列{c n}中的最小项.解:(1)证明:,∴{b n}是首项为1,公比为的等比数列,;(2),则,①n=1时,,c1=c2,②n≥2时,,c n+1>c n,∴c1=c2<c3<c4<…,即(c n)min=c1=c2=﹣1.数列{c n}中的最小项为:第一项与第二项.20.今年年初新冠肺炎肆虐全球,抗击新冠肺炎的有效措施之一是早发现、早隔离.现某地发现疫情,卫生部门欲将一块如图所示的四边形区域ABCD沿着边界用固定高度的板材围成一个封闭的隔离区.经测量,边界AB与AD的长都是200米,∠BAD=60°,∠BCD=120°.(1)若∠ADC=105°,求BC的长(结果精确到米);(2)围成该区域至多需要多少米长度的板材?(不计损耗,结果精确到米).【分析】(1)直接根据正弦定理即可求出;(2)方法一:设,利用三角函数的变换和三角函数的性质即可求出,方法二:设BC=x千米,CD=y千米,(x,y∈R+),利用余弦定理和基本不等式即可求出.解:(1)连接BD,则在△BCD中BD=200,∠BDC=45°,由,得:,所以BC的长约为163米.(2)方法一:设,则在△BCD中,由,得:,所以,所以当时,BC+CD取得最大值,此时围成该施工区域所需的板材长度最长,为千米,约为631米,方法二:设BC=x千米,CD=y千米,(x,y∈R+),在△BCD中,由,得x2+y2+xy﹣40000=0所以(x+y)2﹣40000=xy又由x+y≥2,得xy≤(x+y)2,当且仅当x=y时等号成立所(x+y)2﹣40000≤(x+y)2,故x+y≤,所以围成该施工区域所需的板材长度最长为千米,约为631米21.对于数列{a n},设数列{a n}的前n项和为S n,若存在正整数k,使得恰好为数列{a n}的一项,则称数列{a n}为“P(k)数列”.(1)已知数列1,2,3,x为“P(2)数到”,求实数x的值;(2)已知数列{a n}的通项公式为a n=,试问数列{a n}是否是“P(k)数列”?若是,求出所有满足条件的正整数k;若不是,请说明理由.【分析】(1)为新定义题,由“P(2)数列”得恰为数列中一项,S4=6+x,S3=6,即可求x(2)根据题意先将给表示出来,得到比值小于等于三,而易知数列{a n}是一个正向数列,奇数项和偶数项分别都是递增数列,所以若为{a n}中的某一项只能为a1,a2,a3,依次验证即可.【解答】(1)由题意,为数列{a n}中的项,①,②,③,④,即实数x的值为;(2)=,,,若为{a n}中的某一项只能为a1,a2,a3,a1=1,a2=2,a3=3,其中①时,即3﹣=1,即3k﹣1=0无解;②,即3﹣=2,即3k﹣1=k2﹣1得k=2;③=3时,即k2﹣1=0,又因为k为正整数,得k=1;综上所述,k=1或k=2.。
2018-2019学年上海市上海中学高一下学期期末数学试题(解析版)
2018-2019学年上海市上海中学高一下学期期末数学试题一、单选题1.已知等差数列{}n a 的公差为2,前n 项和为n S ,且10100S =,则7a 的值为 A .11 B .12C .13D .14【答案】C【解析】利用等差数列通项公式及前n 项和公式,即可得到结果. 【详解】∵等差数列{}n a 的公差为2,且10100S =, ∴1011091021002S a ⨯=+⨯= ∴11a =∴()7171213a =+-⨯=. 故选:C 【点睛】本题考查了等差数列的通项公式及前n 项和公式,考查计算能力,属于基础题. 2.等比数列的前项和为,已知,,则( ) A . B .C .D .【答案】C【解析】由题意可知,,,解得:,,求得,故选C.3.设等差数列{}n a 的前n 项和为n S ,若112,0,3m m m S S S -+=-==,则m =( ) A .3 B .4C .5D .6【答案】C【解析】由0m S =()112m m m a a S S -⇒=-=--=-又113m m m a S S ++=-=,可得公差11m m d a a +=-=,从而可得结果. 【详解】{}n a 是等差数列()102ms m m a a S +∴==()112m m m a a S S -⇒=-=--=-又113m m m a S S ++=-=, ∴公差11m m d a a +=-=,11325m a a m m m +==+=-+⇒=,故选C .【点睛】本题主要考查等差数列的通项公式与求和公式的应用,意在考查灵活应用所学知识解答问题的能力,属于中档题. 4.设02πα<<,若11sin ,(sin )(1,2,3,)n x n x x n αα+===,则数列{}n x 是( )A .递增数列B .递减数列C .奇数项递增,偶数项递减的数列D .偶数项递增,奇数项递减的数列【答案】C【解析】根据题意,由三角函数的性质分析可得0sin 1a <<,进而可得函数(sin )xy a =为减函数,结合函数与数列的关系分析可得答案。
2018-2019学年上海市高一第二学期期末复习卷数学试题(解析版)
2018-2019学年上海市高一第二学期期末复习卷数学试题一、单选题1.在ABC ∆中A B >是cos cos A B <的 ( ) A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既非充分又非必要条件 【答案】C 【解析】略2.记等差数列{}n a 前n 项和n S ,如果已知521a a +的值,我们可以求得( ) A .23S 的值 B .24S 的值C .25S 的值D .26S 的值【答案】C【解析】设等差数列{a n }的首项为a 1,公差为d ,由a 5+a 21=2a 1+24d 的值为已知,再利用等差数列的求和公式,即可得出结论. 【详解】设等差数列{a n }的首项为a 1,公差为d ,∵已知a 5+a 21的值, ∴2a 1+24d 的值为已知,∴a 1+12d 的值为已知,∵()251125242525122S a d a d ⨯=+=+ ∴我们可以求得S 25的值. 故选:C . 【点睛】本题考查等差数列的通项公式与求和公式的应用,考查学生的计算能力,属于中档题. 3.若数列{}n a 对任意2()n n N ≥∈满足()()11220n n n n a a a a -----=,下面给出关于数列{}n a 的四个命题:①{}n a 可以是等差数列,②{}n a 可以是等比数列;③{}n a 可以既是等差又是等比数列;④{}n a 可以既不是等差又不是等比数列;则上述命题中,正确的个数为( ) A .1个 B .2个C .3个D .4个【答案】B【解析】由已知可得a n ﹣a n ﹣1=2,或a n =2a n ﹣1,结合等差数列和等比数列的定义,可得答案. 【详解】∵数列{a n }对任意n≥2(n ∈N )满足(a n ﹣a n ﹣1﹣2)(a n ﹣2a n ﹣1)=0,∴a n ﹣a n ﹣1=2,或a n =2a n ﹣1,∴①{a n }可以是公差为2的等差数列,正确; ②{a n }可以是公比为2的等比数列,正确;③若{a n }既是等差又是等比数列,即此时公差为0,公比为1,由①②得,③错误; ④{a n }可以既不是等差又不是等比数列,错误; 故选:B . 【点睛】本题以命题的真假判断与应用为载体,考查了等差,等比数列的相关内容,属于中档题. 4.有穷数列1232015,,;a a a a 中的每一项都是-1,0,1这三个数中的某一个数,1232015425a a a a +++⋯+=,且()211a ++()221a +()()2232015113870a a +++++=,则有穷数列1232015,,,a a a a 中值为0的项数是( )A .1000B .1010C .1015D .1030【答案】B【解析】把(a 1+1)2+(a 2+1)2+(a 3+1)2+…+(a 2015+1)2=3870展开,将a 1+a 2+a 3+…+a 2015=425,代入化简得:222122015a a a +++=1005,由于数列a 1,a 2,a 3,…,a 2015中的每一项都是﹣1,0,1这三个数中的某一个数,即可得出. 【详解】(a 1+1)2+(a 2+1)2+(a 3+1)2+…+(a 2015+1)2=3870, 展开可得:222122015a a a ++++2(a 1+a 2+…+a 2015)+2015=3870,把a 1+a 2+a 3+…+a 2015=425,代入化简可得:222122015a a a +++=1005,∵数列a 1,a 2,a 3,…,a 2015中的每一项都是﹣1,0,1这三个数中的某一个数, ∴有穷数列a 1,a 2,a 3,…,a 2015中值为0的项数等于2015﹣1005=1010. 故选:B . 【点睛】本题考查了乘法公式化简求值、数列求和,考查了推理能力与计算能力,属于中档题.二、填空题5.在等差数列{}n a 中,己知12a =,24a =-,则4a =______.【答案】-16【解析】设等差数列{}n a 的公差为d ,利用通项公式求出即可. 【详解】设等差数列{}n a 的公差为d ,得216d a a =-=-,则()41323616a a d =+=+⨯-=-.故答案为:16- 【点睛】本题考查了等差数列通项公式的应用,属于基础题.6.已知{}n a 为等差数列,135a =,2d =-,0n S =,则n =______. 【答案】36【解析】由等差数列的前n 项和公式()1n 12n n S na d -=+,代入计算即可. 【详解】已知{}n a 为等差数列,且135a =,2d =-,所以()1102n n n S na d -=+=, 解得36n =或0n =(舍) 故答案为:36 【点睛】本题考查了等差数列前n 项和公式的应用,属于基础题.7.在等比数列{}n a 中,338131024a a a =,2910a a 的值为______.【答案】4【解析】由等比中项,结合338131024a a a =得84a =,化简29810a a a =即可. 【详解】由等比中项得35103813810242a a a a ===,得84a =,设等比数列{}n a 的公比为q ,化简22982102884q a a a a a q===. 故答案为:4 【点睛】本题考查了等比中项的性质,通项公式的应用,属于基础题. 8.己知{}n a 是等差数列,n S 是其前n 项和,11334S π=,则6tan a =______. 【答案】-1【解析】由等差数列的()11111113324S a a π⨯+==,得11162a a a +=,代入计算即可. 【详解】己知{}n a 是等差数列,n S 是其前n 项和,所以()11111113324S a a π⨯+==, 得11132a a π+=,由等差中项得634a π=,所以6tan a =3tan14π=-. 故答案为:-1 【点睛】本题考查了等差数列前n 项和公式和等差中项的应用,属于基础题. 9.函数arccos y x =在11,2x ⎡⎤∈--⎢⎥⎣⎦的值域是______.【答案】2,3ππ⎡⎤⎢⎥⎣⎦【解析】由函数y =arccos x 在11,2⎡⎤--⎢⎥⎣⎦为减函数,代入即可得值域. 【详解】已知函数arccos y x =在11,2⎡⎤--⎢⎥⎣⎦为减函数, 则当x =-1时,函数取最大值arccos (-1),即函数取最da 值为π,当12x =-时,函数取最小值arccos (﹣12),即函数取最小值为23π,故答案为:2,3ππ⎡⎤⎢⎥⎣⎦【点睛】本题考查了反三角余弦函数单调性的应用,属于基础题.10.数列{}n a 中,11a =,22a =,21n n n a a a ++=-,则{}n a 的前2018项和为______. 【答案】3【解析】直接利用递推关系式和数列的周期求出结果即可. 【详解】数列{a n }中,a 1=1,a 2=2,a n+2=a n+1﹣a n ,则:a 3=a 2﹣a 1=1,a 4=a 3﹣a 2=﹣1,a 5=a 4﹣a 3=﹣2,a 6=a 5﹣a 4=﹣1, a 7=a 6﹣a 5=1,…所以:数列的周期为6.a 1+a 2+a 3+a 4+a 5+a 6=0, 数列{a n }的前2018项和为:(a 1+a 2+a 3+a 4+a 5+a 6)+…+(a 2011+a 2012+a 2013+a 2014+a 2015+a 2016)+a 2017+a 2018, =0+0+…+0+(a 1+a 2) =3. 故答案为:3 【点睛】本题考查的知识要点:数列的递推关系式的应用,数列的周期的应用,主要考查学生的运算能力和转化能力,属于基础题. 11.已知函数()arcsin(2)2f x x π=+,则13f π-⎛⎫= ⎪⎝⎭______. 【答案】14-【解析】根据题意令f (x )=3π,求出x 的值,即可得出f ﹣1(3π)的值. 【详解】令f (x )=2π+arcsin (2x )=3π,得arcsin (2x )=﹣6π,∴2x =﹣12,解得x =﹣14,∴f ﹣1(3π)=﹣14.故答案为:﹣14.【点睛】本题考查了反函数以及反正弦函数的应用问题,属于基础题.12.己知数列{}n a 前n 项和22n S n =,则该数列的通项公式n a =______.【答案】42n a n =-【解析】由22n S n =,再写一式,两式相减,可得{a n }的通项公式;【详解】∵S n =2n 2(n ∈N ),∴n =1时,a 1=S 1=2;n≥2时,a n =S n ﹣S n ﹣1=4n ﹣2,a 1=2也满足上式,∴a n =4n ﹣2 故答案为:42n a n =- 【点睛】本题考查数列的递推式,考查数列的通项,属于基础题. 13.若3x π=是方程2cos()1x α+=的解,其中(0,2)απ∈,则α=______.【答案】43π 【解析】把3x π=代入方程2cos (x +α)=1,化简根据α∈(0,2π),确定函数值的范围,求出α即可. 【详解】 ∵3x π=是方程2cos (x+α)=1的解,∴2cos (3π+α)=1,即cos (3π+α)=12. 又α∈(0,2π),∴3π+α∈(3π,73π).∴3π+α=53π.∴α=43π. 故答案为:43π 【点睛】本题考查三角函数值的符号,三角函数的定义域,考查逻辑思维能力,属于基础题. 14.若数列{}n a 满足12a =,21a =,1111n n n n n n a a a a a a -+-+--=(2)n ≥,则20a =______.【答案】110【解析】由1111n n n n n n a a a a a a -+-+--=(2)n ≥,化简得11211n n n a a a -+=+(2)n ≥,则1n a ⎧⎫⎨⎬⎩⎭为等差数列,结合已知条件得20a . 【详解】由1111n n n n n n a a a a a a -+-+--=(2)n ≥,化简得11211n n n a a a -+=+(2)n ≥,且12a =,21a =, 得211112d a a =-=,所以1n a ⎧⎫⎨⎬⎩⎭是以12为首项,以12为公差的等差数列,所以201111119191022d a a ⎛⎫=+=+⨯= ⎪⎝⎭,即20110a = 故答案为:110【点睛】本题考查了数列的递推式,考查了判断数列是等差数列的方法,属于中档题.15.分形几何学是美籍法国数学家伯努瓦.B .曼德尔布罗特在20世纪70年代创立的一门新学科,它的创立,为解决传统科学众多领域的难题提供了全新的思路,如图是按照一定的分形规律生产成一个数形图,则第13行的实心圆点的个数是______.【答案】144【解析】本题是一个探究型的题,可以看到第四行起每一行实心圆点的个数都是前两行实心圆点个数的和,由此可以得到一个递推关系,利用此递推关系求解即可得答案.【详解】由题意及图形知不妨构造这样一个数列{a n}表示实心圆点的个数变化规律,令a1=1,a2=1,n≥3时,a n=a n﹣1+a n﹣2,本数列中的n对应着图形中的第n+1行中实心圆点的个数.由此知a11即所求:故各行中实心圆点的个数依次为1,1,2,3,5,8,13,21,34,55,89,144;即第13项为144.故答案为:144【点睛】本题考查归纳推理的应用,涉及数列的递推公式,是一个新定义的题,此类题关键是从定义中找出其规律来,构造出相应的数学模型,属于中档题.16.已知数列满足:(m为正整数),若,则m所有可能的取值为__________。
2019年徐汇中学高一期末
徐汇中学高一期末数学试卷2019.06一. 填空题1. 计算:222lim 31n n n n →∞--=+ 2. 已知复数z 满足i 1i z ⋅=+(i 为虚数单位),则z =3. 在等比数列{}n a 中,34a =,516a =,则7a =4. 若复数i(2i)z =-(i 为虚数单位),则z 的共轭复数z =5. 已知数列{}n a 满足11a =,121n n a a +=+(*n ∈N ),则5a =6. 设n S 为等差数列{}n a 的前n 项和,若510S =,105S =-,则公差为7. 数列{}n a 是等比数列,47512a a ⋅=-,38124a a +=,且公比q 为整数,则10a 的值为8. 关于x 的方程240x x m ++=(m ∈R )的两虚根为α、β,且||2αβ-=,则实数m 的值是9. 若{}n a 是等差数列,首项10a >,200620070a a +>,200620070a a ⋅<,则使前n 项和n S 最 大的自然数n 是10. 设等比数列{}n a 中,首项10a <,若{}n a 是递增数列,则公比q 的取值范围是11. 若首项为1a ,公比为q (1q ≠)的等比数列{}n a 满足21123lim()2n n a q a a →∞-=+,则1a 的 取值范围是12. 数列{}n a 的前n 项和为n S ,12a =,且1323n n a S ++=(*n ∈N ),记12n S a a a =++⋅⋅⋅++⋅⋅⋅,则S 的值是13. 把正整数排列成如图甲三角形数阵,然后擦去第偶数行中的奇数和第奇数行中的偶数,得到如图乙的三角形数阵,再把图乙中的数按从小到大的顺序排成一列,得到一个数列{}n a ,若2019n a =,则n =1 12 3 4 2 4 5 6 7 8 9 5 7 910 11 12 13 14 15 16 10 12 14 16 17 18 19 20 21 22 23 24 25 17 19 21 23 25 26 27 28 29 30 31 32 33 34 35 36 26 28 30 32 34 36 ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ 图甲 图乙二. 选择题14. 用数学归纳法证明32331n n n >++这一不等式时,应注意n 必须为( )A. *n ∈NB. *n ∈N ,2n ≥C. *n ∈N ,3n ≥D. *n ∈N ,4n ≥15. 设*n ∈N ,则“数列{}n a 为等比数列”是“数列{}n a 满足312n n n n a a a a +++⋅=⋅”的( )A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分也非必要条件16. 设z 是复数,从z ,z ,z ,2||z ,2||z ,2||z ,z z ⋅中选取若干对象组成集合,则这样的集合最多有( )A. 3个元素B. 4个元素C. 5个元素D. 6个元素17. 已知数列12:,,,n A a a a ⋅⋅⋅(120n a a a ≤<<⋅⋅⋅<,3n ≥)具有性质P :对任意i 、j (1i j n ≤≤≤),j i a a +与j i a a -两数中至少有一个是该数列中的一项,对于命题: ① 若数列A 具有性质P ,则10a =;② 若数列1a ,2a ,3a (1230a a a ≤<<)具有性质P ,则1322a a a +=;下列判断正确的是( )A. ①和②均为真命题B. ①和②均为假命题C. ①为真命题,②为假命题D. ①为假命题,②为真命题三. 解答题18.(1)已知数列{}n a 的前n 项和n S 满足21n n S =-,求数列{}n a 的通项公式;(2)数列{}n a 满足11a =,1n n a n a -=+(2n ≥),求数列{}n a 的通项公式.19. 已知方程21000x kx -+=,k C ∈.(1)若1i +是它的一个根,求k 的值;(2)若*k ∈N ,求满足方程的所有虚数的和.20. 2016年A 市政府投资8千万元启动休闲体育新乡村旅游项目,规划从2017年起,在今后的若干年内,每年继续投资2千万元用于此项目,2016年该项目的净收入为5百万元,并预测在相当长的年份里,每年的净收入均在上一年的基础上增长50%,记2016年为第1年,()f n 为第1年至此后第n (*n ∈N )年的累积利润(注:含第n 年,累积利润=累积净收入-累积投入,单位:千万元),且当()f n 为正值时,认为该项目赢利.(1)试求()f n 的表达式;(2)根据预测,该项目从哪一年开始并持续赢利?请说明理由.21. 已知数列{}n a 前n 项和211122n S n n =+(*n ∈N ),数列{}n b 等差,且满足311b =, 前9项和为153.(1)求数列{}n a 、{}n b 的通项公式;(2)设3(211)(21)n n n c a b =--,数列{}n c 的前n 项和为n T ,求n T 及使不等式2019n k T <对 一切*n ∈N 都成立的最小正整数k 的值;(3)设**21()()2()n na n l l f nb n l l ⎧=-∈=⎨=∈⎩N N ,问是否存在*m ∈N ,使得(15)5()f m f m +=成立? 若存在,求出m 的值;若不存在,请说明理由.参考答案一. 填空题 1. 132. 1i -3. 644. 12i -5. 316. 5-7. 5128. 59. 2006 10. (0,1) 11. 33(0,)(,3)22U 12. 3 13. 1032二. 选择题14. D 15. A 16. A 17. A三. 解答题18.(1)12n n a -=;(2)22n n na +=.19.(1)5149i -;(2)190.20.(1)3()()272n f n n =--;(2)第8年,即2023年.21.(1)5n a n =+,32n b n =+;(2)21n nT n =+,min 1010k =;(3)11.。
2018~2019学年度高一下学期数学期末试卷(含答案)
2018~2019学年度高一下学期数学期末试卷(含答案)一、选择题(本大题共12小题,共60分)1.若角α的终边经过点(1,−√3),则sinα=()A. −12B. −√32C. 12D. √322.已知a⃗=(1,x)和b⃗ =(2x+3,−3),若a⃗⊥b⃗ ,则|a⃗+b⃗ |=()A. 10B. 8C. √10D. 643.已知sin(α+π6)=2√55,则cos(π3−α)=()A. √55B. −√55C. 2√55D. −2√554.函数f(x)=sin(2x+φ)的图象向右平移π6个单位后所得的图象关于原点对称,则φ可以是()A. π6B. π3C. π4D. 2π35.已知直线3x−y+1=0的倾斜角为α,则12sin2α+cos2α=()A. 25B. −15C. 14D. −1206.某班统计一次数学测验的平均分与方差,计算完毕以后才发现有位同学的卷子还未登分,只好重算一次.已知原平均分和原方差分别为x−、s2,新平均分和新方差分别为x1−、s12,若此同学的得分恰好为x−,则()A. x−=x1−,s2=s12B. x−=x1−,s2<s12C. x−=x1−,s2>s12D. ,s2=s127.某班运动队由足球运动员18人、篮球运动员12人、乒乓球运动员6人组成,现从这些运动员中抽取1个容量为n的样本,若分别采用系统抽样和分层抽样,则都不用剔除个体;当样本容量为n+1个时,若采用系统抽样,则需要剔除1个个体,那么样本容量n为()A. 5B. 6C. 12D. 188.执行如图的程序框图.若输入A=3,则输出i的值为()A. 3B. 4C. 5D. 69. 已知△ABC 满足AB ⃗⃗⃗⃗⃗ 2=AB ⃗⃗⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ +BA ⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ +CA ⃗⃗⃗⃗⃗ ⋅CB ⃗⃗⃗⃗⃗ ,则△ABC 是( )A. 等边三角形B. 锐角三角形C. 直角三角形D. 钝角三角形10. “勾股定理”在西方被称为“华达哥拉斯定理”,三国时期吴国的数学家赵爽创制了一幅“勾股圆方图”,用数形结合的方法给出了勾股定理的详细证明.如图所示的“勾股圆方图”中,四个相同的直角三角形与中间的小正方形拼成一个边长为4的大正方形,若直角三角形中较小的锐角α=15°,现在向该大正方形区域内随机地投掷一枚飞镖,飞镖落在图中区域1或区域2内的概率是( )A. 12B. 58C. 34D. 7811. 函数f(x)=Asin(ωx +φ)(A >0,ω>0,0<ϕ<π2)的部分图象如图所示,则f(0)的值是( )A. √32B. √34C. √62D. √6412. 已知a ⃗ =(sin ω2x,sinωx),b ⃗ =(sin ω2x,12),其中ω>0,若函数f(x)=a ⃗ ⋅b ⃗ −12在区间(π,2π)内没有零点,则ω的取值范围是( ) A. (0,18]B. (0,58]C. (0,18]∪[58,1]D. (0,18]∪[14,58]二、填空题(本大题共4小题,共20分)13. 甲、乙两人在相同的条件下各射击10次,它们的环数方差分别为s 甲2=2.1,s 乙2=2.6,则射击稳定程度较高的是______(填甲或乙).14. 执行如图的程序框图,若输入的x =2,则输出的y =______.15. 《九章算术》是中国古代数学名著,其对扇形田面积给出“以径乘周四而一”的算法与现代数学的算法一致,根据这一算法解决下列问题:现有一扇形田,下周长(弧长)为20米,径长(两段半径的和)为24米,则该扇形田的面积为______平方米.16. 已知点P(4m,−3m)(m <0)在角α的终边上,则2sinα+cosα=______.三、解答题(本大题共6小题,共70分)17.2018年3月19日,世界上最后一头雄性北方白犀牛“苏丹”在肯尼亚去世,从此北方白犀牛种群仅剩2头雌性,北方白犀牛种群正式进入灭绝倒计时.某校一动物保护协会的成员在这一事件后,在全校学生中组织了一次关于濒危物种犀牛保护知识的问卷调查活动.已知该校有高一学生1200人,高二1300人,高三学生1000人.采用分层抽样从学生中抽70人进行问卷调查,结果如下:完全不知道知道但未采取措施知道且采取措施高一8x y高二z133高三712m在进行问卷调查的70名学生中随机抽取一名“知道但未采取措施”的高一学生的概率是0.2.(Ⅰ)求x,y,z,m;(Ⅱ)从“知道且采取措施”的学生中随机选2名学生进行座谈,求恰好有1名高一学生,1名高二学生的概率.18.为增强学生体质,提升学生锻炼意识,我市某学校高一年级外出“研学”期间举行跳绳比赛,共有160名同学报名参赛.参赛同学一分钟内跳绳次数都在区间[90,150]内,其频率直方图如右下图所示,已知区间[130,140),[140,150]上的频率分别为0.15和0.05,区间[90,100),[100,110),[110,120),[120,130)上的频率依次成等差数列.(Ⅰ)分别求出区间[90,100),[100,110),[110,120)上的频率;(Ⅱ)将所有人的数据按从小到大排列,并依次编号1,2,3,4…160,现采用等距抽样的方法抽取32人样本,若抽取的第四个的编号为18.(ⅰ)求第一个编号大小;(ⅰ)从此32人中随机选出一人,则此人的跳绳次数在区间[110,130)上的概率是多少?19.已知a⃗=(1,2),b⃗ =(−3,4).(1)若|k a⃗+b⃗ |=5,求k的值;(2)求a⃗+b⃗ 与a⃗−b⃗ 的夹角.,且α为第二象限角.20.已知sinα=35(1)求sin2α的值;)的值.(2)求tan(α+π4)(x∈R).21.设函数f(x)=4cosx⋅sin(x+π6(1)求函数y=f(x)的最小正周期和单调递增区间;]时,求函数f(x)的最大值.(2)当x∈[0,π2),f(0)=0,且函数f(x) 22.已知f(x)=sin(ωx+φ)+cos(ωx+φ)(ω>0,0<|φ|<π2.图象上的任意两条对称轴之间距离的最小值是π2)的值;(1)求f(π8(2)将函数y=f(x)的图象向右平移π个单位后,得到函数y=g(x)的图象,求函数6g(x)的解析式,并求g(x)在x∈[π6,π2]上的最值.答案和解析1.【答案】B【解析】解:角α的终边经过点(1,−√3),则sinα=yr =−√32.故选:B.直接利用任意角的三角函数的定义,求解即可.本题考查任意角的三角函数的定义,考查计算能力.2.【答案】A【解析】解:a⃗=(1,x)和b⃗ =(2x+3,−3),若a⃗⊥b⃗ ,可得:2x+3−3x=0,解得x=3,所以a⃗+b⃗ =(10,0),所以|a⃗+b⃗ |=10.故选:A.利用向量的垂直,求出x,然后求解向量的模.本题考查向量的数量积以及向量的模的求法,向量的垂直条件的应用,是基本知识的考查.3.【答案】C【解析】解:∵已知sin(α+π6)=2√55,∴cos(π3−α)=cos[π2−(α+π6)]=sin(α+π6)=2√55,故选:C.由条件利用诱导公式进行化简所给的式子,可得结果.本题主要考查利用诱导公式进行化简三角函数式,属于基础题.4.【答案】B【解析】解:函数f(x)=sin(2x+φ)的图象向右平移π6个单位后,可得y=sin(2x−π3+φ),∵图象关于原点对称,∴φ−π3=kπ,k∈Z,可得:φ=kπ+π3.当k=0时,可得φ=π3.故选:B.根据图象变换规律,可得解析式,图象关于原点对称,建立关系,即可求解φ值.本题主要考查函数y=Asin(ωx+φ)的图象变换规律和对称问题,属于基础题.5.【答案】A【解析】解:∵直线3x −y +1=0的倾斜角为α,∴tanα=3, ∴12sin2α+cos 2α=12⋅2sinαcosα+cos 2α=sinαcosα+cos 2αsin 2α+cos 2α=tanα+1tan 2α+1=3+19+1=25,故选:A .由题意利用直线的倾斜角和斜率求出tanα的值,再利用三角恒等变换,求出要求式子的值.本题主要考查直线的倾斜角和斜率,三角恒等变换,属于中档题. 6.【答案】C【解析】解:设这个班有n 个同学,数据分别是a 1,a 2,…,a i,…,a n , 第i 个同学没登分,第一次计算时总分是(n −1)x −,方差是s 2=1n−1[(a 1−x −)2+⋯+(a i−1−x −)2+(a i+1−x −)2+⋯+(a n −x −)2]第二次计算时,x 1−=(n−1)x −+x−n=x −,方差s 12=1n [(a 1−x −)2+⋯(a i−1−x −)2+(x −x)2+(a i+1−x −)2+⋯+(a n −x −)2]=n−1ns 2, 故s 2>s 12, 故选:C .根据平均数和方差的公式计算比较即可.本题考查了求平均数和方差的公式,是一道基础题. 7.【答案】B【解析】解:由题意知采用系统抽样和分层抽样方法抽取,不用剔除个体; 如果样本容量增加一个,则在采用系统抽样时, 需要在总体中先剔除1个个体, ∵总体容量为6+12+18=36.当样本容量是n 时,由题意知,系统抽样的间隔为36n , 分层抽样的比例是n36,抽取的乒乓球运动员人数为n36⋅6=n6, 篮球运动员人数为n36⋅12=n3,足球运动员人数为n36⋅18=n2, ∵n 应是6的倍数,36的约数, 即n =6,12,18.当样本容量为(n +1)时,总体容量是35人, 系统抽样的间隔为35n+1, ∵35n+1必须是整数,∴n 只能取6.即样本容量n =6. 故选:B .由题意知采用系统抽样和分层抽样方法抽取,不用剔除个体;如果样本容量增加一个,则在采用系统抽样时,需要在总体中先剔除1个个体,算出总体个数,根据分层抽样的比例和抽取的乒乓球运动员人数得到n 应是6的倍数,36的约数,由系统抽样得到35n+1必须是整数,验证出n 的值.本题考查分层抽样和系统抽样,是一个用来认识这两种抽样的一个题目,把两种抽样放在一个题目中考查,加以区分,是一个好题. 8.【答案】C【解析】解:运行步骤为:i =1,A =7 i =2,A =15; i =3,A =31; i =4,A =63; i =5,A =127; 故输出i 值为5, 故选:C .根据已知的程序语句可得,该程序的功能是利用循环结构计算并输出变量i 的值,模拟程序的运行过程,可得答案.本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题. 9.【答案】C【解析】【分析】本题考查了向量的加减法则,数量积的运算性质,三角形形状的判断,属于中档题.根据向量的加减运算法则,将已知化简得AB ⃗⃗⃗⃗⃗ 2=AB ⃗⃗⃗⃗⃗ 2+CA ⃗⃗⃗⃗⃗ ⋅CB⃗⃗⃗⃗⃗ ,得CA ⃗⃗⃗⃗⃗ ⋅CB ⃗⃗⃗⃗⃗ =0.结合向量数量积的运算性质,可得CA ⊥CB ,得△ABC 是直角三角形.【解答】解:∵△ABC 中,AB ⃗⃗⃗⃗⃗ 2=AB ⃗⃗⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ +BA ⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ +CA ⃗⃗⃗⃗⃗ ⋅CB⃗⃗⃗⃗⃗ , ∴AB ⃗⃗⃗⃗⃗ 2=AB ⃗⃗⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ +CA ⃗⃗⃗⃗⃗ ⋅CB ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ ⋅(AC ⃗⃗⃗⃗⃗ −BC ⃗⃗⃗⃗⃗ )+CA ⃗⃗⃗⃗⃗ ⋅CB⃗⃗⃗⃗⃗ =AB⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ +CA ⃗⃗⃗⃗⃗ ⋅CB ⃗⃗⃗⃗⃗ , 即AB ⃗⃗⃗⃗⃗ 2=AB ⃗⃗⃗⃗⃗ 2+CA ⃗⃗⃗⃗⃗ ⋅CB⃗⃗⃗⃗⃗ , ∴CA ⃗⃗⃗⃗⃗ ⋅CB ⃗⃗⃗⃗⃗ =0, ∴CA ⃗⃗⃗⃗⃗ ⊥CB⃗⃗⃗⃗⃗ ,即CA ⊥CB , ∴△ABC 是直角三角形, 故选C . 10.【答案】B【解析】解:小正方形的边长为4sin750−4cos750=(√6+√2)−(√6−√2)=2√2, 故小正方形与大正方形的面积之比为(2√24)2=12,因此剩下的每个直角三角形的面积与大正方形的面积之比为12÷4=18, ∴飞镖落在区域1或区域2的概率为12+18=58. 故选:B .由已知求出小正方形的边长,得到小正方形及直角三角形与大正方形的面积比,则答案可求.本题考查几何概型概率的求法,求出小正方形及直角三角形与大正方形的面积比是关键,是中档题.11.【答案】C【解析】解:由图知,A=√2,又ω>0,T 4=7π12−π3=π4,∴T=2πω=π,∴ω=2,∴π3×2+φ=2kπ+π(k∈Z),∴φ=2kπ+π3(k∈Z),∵0<ϕ<π2,∴φ=π3,∴f(x)=√2sin(2x+π3),∴f(0)=√2sinπ3=√62.故选:C.由图知,A=√2,由T4=π4,可求得ω,π3ω+φ=2kπ+π(k∈Z),0<ϕ<π2可求得φ,从而可得f(x)的解析式,于是可求f(0)的值.本题考查由y=Asin(ωx+φ)的部分图象确定其解析式,求得φ是难点,考查识图能力,属于中档题.12.【答案】D【解析】解:a⃗=(sinω2x,sinωx),b⃗ =(sinω2x,12),其中ω>0,则函数f(x)=a⃗⋅b⃗ −12=sin2(ω2x)+12sinωx−12=12−12cosωx+12sinωx−12=√2sin(ωx−π4),可得T=2πω≥π,0<ω≤2,f(x)在区间(π,2π)内没有零点,结合三角函数可得,{πω−π4≥02πω−π4≤π或{πω−π4≥−π2πω−π4≤0,解得14≤ω≤58或0<ω≤18,故选:D.利用两角和与差的三角函数化简函数的解析式,利用函数的零点以及函数的周期,列出不等式求解即可.本题考查函数的零点个数的判断,三角函数的化简求值,考查计算能力.13.【答案】甲【解析】解:方差越小越稳定,s 甲2=2.1<s 乙2=2.6,故答案为:甲.根据方差的大小判断即可.本题考查了方差的意义,掌握方差越小越稳定是解决本题的关键,是一道基础题. 14.【答案】7【解析】解:由已知中的程序框图可知:该程序的功能是计算并输出y ={2x x >23x +1x ≤2的值,∵输入结果为2,∴y =3×2+1=7. 故答案为:7.由已知中的程序框图可知:该程序的功能是计算并输出y ={2x x >23x +1x ≤2的值,由已知代入计算即可得解.本题主要考查选择结构的程序框图的应用,关键是判断出输入的值是否满足判断框中的条件,属于基础题. 15.【答案】120【解析】解:由题意可得:弧长l =20,半径r =12, 扇形面积S =12lr =12×20×12=120(平方米),故答案为:120.利用扇形面积计算公式即可得出.本题考查了扇形面积计算公式,考查了推理能力与计算能力,属于基础题.16.【答案】25【解析】解:点P(4m,−3m)(m <0)在角α的终边上,∴x =4m ,y =−3m ,r =|OP|=√16m 2+9m 2=−5m , ∴sinα=y r=35,cosα=x r =−45,∴2sinα+cosα=65−45=25,故答案为:25.由题意利用任意角的三角函数的定义,求得sinα和cosα的值,可得2sinα+cosα的值. 本题主要考查任意角的三角函数的定义,属于基础题.17.【答案】解:(Ⅰ)采用分层抽样从3500名学生中抽70人,则高一学生抽24人,高二学生抽26人, 高三学生抽20人.“知道但未采取措施”的高一学生的概率=x70=0.2, ∴x =14,∴y =24−14−8=2,z=26−13−3=10,m=20−12−7=1,∴x=14,y=2,z=10,m=1;(Ⅱ)“知道且采取措施”的学生中高一学生2名用A,B表示,高二学生3名用C,D,E表示,高三学生1名用F表示.则从这6名学生中随机抽取2名的情况有:(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F)共15种,其中恰好1名高一学生1名高二学生的有6种.∴P=615=25,即恰好有1名高一学生,1名高二学生的概率为25.【解析】(Ⅰ)根据分层抽样先求出x,即可求出y,z,m.(Ⅱ)知道且采取措施”的学生中高一学生2名用A,B表示,高二学生3名用C,D,E 表示,高三学生1名用F表示.根据古典概率公式计算即可.本题考查等可能事件的概率,古典概型概率计算公式等知识,属于中档题.18.【答案】解:(Ⅰ)[90,100),[100,110),[110,120)上的频率之和为:1−10×0.035−0.15−0.05=0.45,且前三个频率成等差数列(设公差为d),故[100,110)上的频率为:0.453=0.15,从而2d=0.35−0.15=0.2,解得d=0.1,∴[90,100),[100,110),[110,120)上的频率分别为0.05,0.15,0.25.……(5分) (Ⅱ)(ⅰ)从160人中抽取32人,样本距为5,故第一个编号为18−3×5=3.……(7分) (ⅰ)抽取的32人的编号依次成等差数列,首项为3,公差为5,设第n个编号为a n,则a n=3+(n−1)×5=5n−2,……(9分)由(1)可知区间[90,100),[100,110)上的总人数为160×(0.05+0.15)=32人,[110,120),[120,130)上的总人数为160×(0.25+0.35)=96人,[90,130)共有128人,令33≤a n≤128,解得7≤n≤26,∴在[110,120),[120,130)上抽取的样本有20人,……(11分)故从此32人中随机选出一人,则此人的跳绳次数在区间[110,130)的概率是p=2032=58.……(12分)【解析】(Ⅰ)先求出[90,100),[100,110),[110,120)上的频率之和,再由前三个频率成等差数列,得[100,110)上的频率为0.15,由此能求出[90,100),[100,110),[110,120)上的频率.(Ⅱ)(ⅰ)从160人中抽取32人,样本距为5,由此能求出第一个编号.(ⅰ)抽取的32人的编号依次成等差数列,首项为3,公差为5,设第n个编号为a n,则a n=3+(n−1)×5=5n−2,由此能求出从此32人中随机选出一人,则此人的跳绳次数在区间[110,130)的概率.本题考查频率的求法,考查第一个编号、概率的求法,考查频率分布直方图的性质等基础知识,考查运算求解能力,考查数形结合思想,是基础题.19.【答案】解:(1)根据题意,k a⃗+b⃗ =k(1,2)+(−3,4)=(k−3,2k+4),由|k a ⃗ +b ⃗ |=5,得√(k −3)2+(2k +4)2=5,解得:k =0或k =−2;(2)根据题意,设a ⃗ +b ⃗ 与a ⃗ −b ⃗ 的夹角为θ,a ⃗ =(1,2),b ⃗ =(−3,4),则a ⃗ +b ⃗ =(−2,6),a ⃗ −b ⃗ =(4,−2);∴cosθ=40×20=−√22, ∵θ∈[0,π];∴a ⃗ +b ⃗ 与a ⃗ −b ⃗ 夹角为3π4.【解析】(1)根据题意,求出k a ⃗ +b⃗ 的坐标,进而由向量模的计算公式可得√(k −3)2+(2k +4)2=5,解可得k 的值,即可得答案;(2)设a ⃗ +b ⃗ 与a ⃗ −b ⃗ 的夹角为θ,求出a ⃗ +b ⃗ 与a ⃗ −b ⃗ 的坐标,由向量数量积的计算公式可得cosθ的值,结合θ的范围计算可得答案.本题考查向量数量积的坐标计算,关键是掌握向量数量积、模的计算公式. 20.【答案】解:(1)∵sinα=35,且α为第二象限角,∴cosα=−√1−sin 2α=−45, ∴sin2α=2sinαcosα=2×35×(−45)=−2425;(2)由(1)知tanα=sinαcosα=−34, ∴tan(α+π4)=tanα+tan π41−tanαtan π4=−34+11−(−34)=17.【解析】(1)由已知利用平方关系求得cosα,再由二倍角公式求得sin2α的值;(2)由(1)求出tanα,展开两角和的正切求得tan(α+π4)的值.本题考查同角三角函数基本关系式的应用,考查两角和的正切,是基础的计算题. 21.【答案】解:(1)f(x)=4cosx ⋅sin(x +π6)=2√3sinxcosx +2cos 2x=√3sin2x +cos2x +1=2sin(2x +π6)+1,∴函数f(x)的周期T =π,∴当2kπ−π2≤2x +π6≤2kπ+π2时,即kπ−π3≤x ≤kπ+π6,k ∈Z ,函数单调增, ∴函数的单调递增区间为[kπ−π3,kπ+π6](k ∈Z); (2)当x ∈[0,π2]时,2x +π6∈[π6,7π6], ∴sin(2x +π6)∈[−12,1],∴当sin(2x +π6)=1,f(x)max =3.【解析】(1)对f(x)化简,然后利用周期公式求出周期,再利用整体法求出单调增区间; (2)当x ∈[0,π2]时,sin(2x +π6)∈[−12,1],然后可得f(x)的最大值.本题考查了三角函数的化简求值和三角函数的图象与性质,考查了整体思想和数形结合思想,属基础题.22.【答案】解:(1)f(x)=sin(ωx+φ)+cos(ωx+φ)=√2sin(ωx+φ+π4),故2πω=2×π2,求得ω=2.再根据f(0)=sin(φ+π4)=0,0<|φ|<π2,可得φ=−π4,故f(x)=√2sin2x,f(π8)=√2sinπ4=1.(2)将函数y=f(x)的图象向右平移π6个单位后,得到函数y=g(x)=√2sin2(x−π6)=√2sin(2x−π3)的图象.∵x∈[π6,π2],∴2x−π3∈[0,2π3],当2x−π3=π2时,g(x)=√2sin(2x−π3)取得最大值为√2;当2x−π3=0时,g(x)=√2sin(2x−π3)取得最小值为0.【解析】(1)由条件利用两角和差的正弦公式化简f(x)的解析式,由周期求出ω,由f(0)= 0求出φ的值,可得f(x)的解析式,从而求得f(π8)的值.(2)由条件利用函数y=Asin(ωx+φ)的图象变换规律求得g(x)的解析式,再根据正弦函数的定义域和值域求得g(x)在x∈[π6,π2]上的最值.本题主要考查两角和差的正弦公式,由函数y=Asin(ωx+φ)的部分图象求解析式,由周期求出ω,由f(0)=0求出φ的值,可得f(x)的解析式;函数y=Asin(ωx+φ)的图象变换规律,正弦函数的定义域和值域,属于中档题.。
2018-2019学年上海市徐汇中学高一下学期期末数学试题(解析版)
2018-2019学年上海市徐汇中学高一下学期期末数学试题一、单选题1.用数学归纳法证明32331n n n >++这一不等式时,应注意n 必须为( ) A .*n N ∈ B .*n N ∈,2n ≥ C .*n N ∈,3n ≥D *n N ∈,4n ≥ 【答案】D【解析】根据题意验证1n =,2n =,3n =时,不等式不成立,当4n =时,不等式成立,即可得出答案. 【详解】解:当1n =,2n =,3n =时,显然不等式不成立, 当4n =时,6461>不等式成立,故用数学归纳法证明32331n n n >++这一不等式时,应注意n 必须为4n ≥,*n N ∈ 故选:D . 【点睛】本题考查数学归纳法的应用,属于基础题.2.设*n N ∈,则“数列{}n a 为等比数列”是“数列{}n a 满足312n n n n a a a a +++⋅=⋅”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分也非必要条件【答案】A【解析】“数列{}n a 为等比数列”,则132n n n n a a q a a +++==,⇒数列{}n a 满足312n n n n a a a a +++=.反之不能推出,可以举出反例.【详解】解:“数列{}n a 为等比数列”,则132n n n n a a q a a +++==,⇒数列{}n a 满足312n n n n a a a a +++=.充分性成立;反之不能推出,例如0n a =,数列{}n a 满足312n n n n a a a a +++⋅=⋅,但数列不是等比数列,即必要性不成立;故“数列{}n a 为等比数列”是“数列{}n a 满足312n n n n a a a a +++⋅=⋅”的充分非必要条件 故选:A . 【点睛】本题考查了等比数列的定义、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.3.设z 是复数,从z ,z ,z ,2||z ,2||z ,2||z ,z z ⋅中选取若干对象组成集合,则这样的集合最多有( ) A .3个元素 B .4个元素 C .5个元素 D .6个元素【答案】A【解析】设复数z a bi =+(),a b R ∈分别计算出以上式子,根据集合的元素互异性,可判断答案. 【详解】解:设复数z a bi =+(),a b R ∈ z a bi ∴=-(),a b R ∈,z a bi z =+=(),a b R ∈,||222z a b =+,222||z a b =+,()()22z z a bi a bi a b ⋅=+-=+()22222z a bi a b abi =+=-+222222z a b abi a b ∴=-+==+故由以上的数组成的集合最多有a bi +,a bi -,22a b +这3个元素, 故选:A 【点睛】本题考查复数的运算及相关概念,属于中档题.4.已知数列12:,,,n A a a a ⋅⋅⋅(120n a a a ≤<<⋅⋅⋅<,3n ≥)具有性质P :对任意i 、j (1i j n ≤≤≤),j i a a +与j i a a -两数中至少有一个是该数列中的一项,对于命题: ① 若数列A 具有性质P ,则10a =;② 若数列1a ,2a ,3a (1230a a a ≤<<)具有性质P ,则1322a a a +=; 下列判断正确的是( ) A .①和②均为真命题 B .①和②均为假命题 C .①为真命题,②为假命题 D .①为假命题,②为真命题【答案】A【解析】本题是一种重新定义问题,要我们理解题目中所给的条件,解决后面的问题,把后面的问题挨个验证. 【详解】解:①若数列{}n a 具有性质P ,取数列{}n a 中最大项n a ,则2n n n a a a +=与0n n a a -=两数中至少有一个是该数列中的一项,而2n a 不是该数列中的项, 0∴是该数列中的项, 又由120n a a a ⋯剟?, 10a ∴=;故①正确;②数列1a ,2a ,3a 具有性质P ,1230a a a <<…,13a a ∴+与31a a -至少有一个是该数列中的一项,且10a =,1︒若13a a +是该数列中的一项,则133a a a +=, 10a ∴=,易知23a a +不是该数列的项322a a a ∴-=,1322a a a ∴+=.2︒若31a a -是该数列中的一项,则311a a a -=或2a 或3a ,a 、若313a a a -=同1︒,b 、若312a a a -=,则32a a =,与23a a <矛盾,c 、311a a a -=,则312a a =, 综上1322a a a +=.故②正确. 故选:A . 【点睛】考查数列的综合应用,此题能很好的考查学生的应用知识分析、解决问题的能力,侧重于对能力的考查,属中档题.二、填空题5.计算:222lim 31n n n n →∞--=+__________.【答案】13【解析】分子分母同除以2n ,即可求出结果. 【详解】因为22222222212121limlim lim 1313133n n n n n n n n n n n n n n →∞→∞→∞------===+++. 故答案为13【点睛】本题主要考查“∞∞”型的极限计算,熟记常用做法即可,属于基础题型. 6.若复数z 满足1iz i =+(i 为虚数单位),则z =__________.【答案】1i -【解析】分析:由复数的除法运算可得解. 详解:由1iz i =+,得()1111i ii z i i ++===--. 故答案为:1i -.点睛:本题考查了复数的除法运算,属于基础题.7.在等比数列{}n a 中,34a =,516a =,则7a =________. 【答案】64【解析】根据等比数列下标和性质解得。
2018-2019学年高一数学下学期期末考试试题(含解析)_34
2018-2019学年高一数学下学期期末考试试题(含解析)一、选择题(本大题共10小题,每小题4分,共40分.在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填涂在答题卡相应位置上)1.l:的斜率为A. ﹣2B. 2C.D.【答案】B【解析】【分析】先化成直线的斜截式方程即得直线的斜率.【详解】由题得直线的方程为y=2x,所以直线的斜率为2.故选:B【点睛】本题主要考查直线斜率的求法,意在考查学生对该知识的理解掌握水平和分析推理能力.2.△ABC中,若A+C=3B,则cosB的值为A. B. C. D.【答案】D【解析】【分析】先求出B,再求cosB.【详解】由题得,所以.故选:D【点睛】本题主要考查特殊角的三角函数值,意在考查学生对该知识的理解掌握水平和分析推理能力.3.l:与两坐标轴所围成的三角形的面积为A. 6B. 1C.D. 3【答案】D【解析】【分析】先求出直线与坐标轴的交点,再求三角形的面积得解.【详解】当x=0时,y=2,当y=0时,x=3,所以三角形的面积为.故选:D【点睛】本题主要考查直线与坐标轴的交点的坐标的求法,意在考查学生对该知识的理解掌握水平和分析推理能力.4.区间[0,5]上任意取一个实数x,则满足x[0,1]概率为A. B. C. D.【答案】A【解析】【分析】利用几何概型求解即可.【详解】由几何概型的概率公式得满足x[0,1]的概率为.故选:A【点睛】本题主要考查几何概型的概率的求法,意在考查学生对该知识的理解掌握水平和分析推理能力.5.组数据,,…,的平均值为3,则,,…,的平均值为A. 3B. 6C. 5D. 2【答案】B【解析】分析】直接利用平均数的公式求解.【详解】由题得,所以,,…,的平均值为.故选:B【点睛】本题主要考查平均数的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.6.三条线段的长分别为5,6,8,则用这三条线段A. 能组成直角三角形B. 能组成锐角三角形C. 能组成钝角三角形D. 不能组成三角形【答案】C【解析】【分析】先求最大角的余弦,再得到三角形是钝角三角形.【详解】设最大角为,所以,所以三角形是钝角三角形.故选:C【点睛】本题主要考查余弦定理,意在考查学生对该知识的理解掌握水平和分析推理能力.7.一个正四棱锥的底面边长为2,高为,则该正四棱锥的全面积为A. 8B. 12C. 16D. 20【答案】B【解析】【分析】先求侧面三角形的斜高,再求该正四棱锥的全面积.【详解】由题得侧面三角形的斜高为,所以该四棱锥的全面积为.故选:B【点睛】本题主要考查几何体的边长的计算和全面积的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.8.直线l:与圆C:交于A,B两点,则当弦AB最短时直线l的方程为C. D.【答案】A【解析】【分析】先求出直线经过的定点,再求出弦AB最短时直线l的方程.【详解】由题得,所以直线l过定点P.当CP⊥l时,弦AB最短.由题得,所以.所以直线l的方程为.故选:A【点睛】本题主要考查直线过定点问题,考查直线方程的求法,考查直线和圆的位置关系,意在考查学生对这些知识的理解掌握水平和分析推理能力.9.直三棱柱ABC—A1B1C1中,BB1中点为M,BC中点为N,∠ABC=120°,AB=2,BC=CC1=1,则异面直线AB1A. 1B.C.D. 0【答案】D【解析】【分析】先找到直线异面直线AB1与MN所成角为∠,再通过解三角形求出它的余弦值.【详解】由题得,所以∠就是异面直线AB1与MN所成角或补角.由题得,,因为,所以异面直线AB1与MN所成角的余弦值为0.故选:D【点睛】本题主要考查异面直线所成的角的求法,考查余弦定理解三角形,意在考查学生对这些知识的理解掌握水平和分析推理能力.10.直角坐标系xOy中,已知点P(2﹣t,2t﹣2),点Q(﹣2,1),直线l:.若对任意的t R,点P到直线l的距离为定值,则点Q关于直线l对称点Q′的坐标为A. (0,2)B. (2,3)C. (,)D. (,3)【答案】C【解析】【分析】先求出点P的轨迹和直线l的方程,再求点Q关于直线l对称点Q′的坐标.【详解】设点P(x,y),所以所以点P的轨迹方程为2x+y-2=0.对任意的t R,点P到直线l的距离为定值,所以直线l的方程为2x+y=0.设点点Q关于直线l对称点Q′的坐标为,所以.故选:C【点睛】本题主要考查动点的轨迹方程的求法,考查点线点对称问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.二、填空题(本大题共6小题,每小题6分,共计36分.不11.,,若,则实数的值为_______.【答案】1【解析】【分析】由题得,解方程即得的值.【详解】由题得,解之得=1.当=1时两直线平行.故答案为:112.高一、高二、高三三个年级共有学生1500人,其中高一共有学生600人,现用分层抽样的方法抽取30人作为样本,则应抽取高一学生数为_______.【答案】12【解析】【分析】由题得高一学生数为,计算即得解.【详解】由题得高一学生数为.故答案为:12【点睛】本题主要考查分层抽样,意在考查学生对该知识的理解掌握水平和分析推理能力.13.已知ABC中,A,,则= .【答案】2【解析】试题分析:由正弦定理得==考点:本题考查了正弦定理的运用点评:熟练运用正弦定理及变形是解决此类问题的关键,属基础题14.一个长方体的三个面的面积分别是,,,则这个长方体的体积为______.【答案】.【解析】【分析】利用三个面的面积构造出方程组,三式相乘即可求得三条棱的乘积,从而求得体积.【详解】设长方体中同顶点的三条棱的长分别为则可设:,三式相乘可知本题正确结果:【点睛】本题考查长方体体积的求解问题,属于基础题.15.圆上总存在两点到坐标原点的距离为1,则实数a的取值范围是_______.【答案】【解析】因为圆(x-a)2+(y-a)2=8和圆x2+y2=1相交,两圆圆心距大于两圆半径之差、小于两圆半径之和,可知结论为16.△ABC中,角A,B,C所对的边分别为a,b,c,若acosB=5bcosA,asinA﹣bsinB=2sinC,则边c的值为_______.【答案】3【解析】【分析】由acosB=5bcosA得,由asinA﹣bsinB=2sinC得,解方程得解.【详解】由acosB=5bcosA得.由asinA﹣bsinB=2sinC得,所以.故答案:3【点睛】本题主要考查正弦定理和余弦定理解三角形,意在考查学生对这些知识的理解掌握水平和分析推理能力.三、解答题(本大题共5小题,共计74分.请在答题纸指定区域内作答,解答应写出文字说明,证明过程或演算步骤.)17.已知三点A(5,0),B(﹣3,﹣2),C(0,2).(1)求直线AB的方程;(2)求BC的中点到直线AB的距离.【答案】(1)x-4y-5=0;(2).【解析】【分析】(1)利用直线的点斜式方程求直线AB的方程;(2)利用点到直线的距离求BC的中点到直线AB的距离.【详解】(1)由题得,所以直线AB的方程为.(2)由题得BC的中点为,所以BC中点到直线AB的距离为.【点睛】本题主要考查直线方程的求法,考查点到直线的距离的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.18.如图,在△ABC中,B=30°,D是BC边上一点,AD=,CD=7,AC=5.(1)求∠ADC的大小;(2)求AB的长.【答案】(1)【解析】【分析】(1)利用余弦定理求∠ADC的大小;(2)利用正弦定理求AB 的长.【详解】(1)由余弦定理得.(2)由题得∠ADB=由正弦定理得.【点睛】本题主要考查正弦定理余弦定理解三角形,意在考查学生对这些知识的理解掌握水平和分析推理能力.19.甲乙两名篮球运动员分别在各自不同的5场比赛所得篮板球数的茎叶图如图所示,已知两名运动员在各自5场比赛所得平均篮板球数均为10.(1)求x,y的值;(2)求甲乙所得篮板球数的方差和,并指出哪位运动员篮板球水平更稳定;(3)教练员要对甲乙两名运动员篮板球的整体水平进行评估.现在甲乙各自的5场比赛中各选一场进行评估,则两名运动员所得篮板球之和小于18的概率.【答案】(1)x=2,y=9;(2),乙更稳定;(3).【解析】【分析】(1)利用平均数求出x,y值;(2)求出甲乙所得篮板球数的方差和,判断哪位运动员篮板球水平更稳定;(3)利用古典概型的概率求两名运动员所得篮板球之和小于18的概率.【详解】(1)由题得,.(2)由题得,.因为,所以乙运动员的水平更稳定.(3)由题得所有的基本事件有(8,8),(8,9),(8,10),(8,11),(8,12),(7,8),(7,9),(7,10),(7,11),(7,12),(10,8),(10,9),(10,10),(10,11),(10,12),(12,8),(12,9),(12,10),(12,11),(12,12),(13,8),(13,9),(13,10),(13,11),(13,12).共25个.两名运动员所得篮板球之和小于18的基本事件有(8,8),(8,9),(7,8),(7,9),(7,10),共5个,由古典概型的概率公式得两名运动员所得篮板球之和小于18的概率为.【点睛】本题主要考查平均数的计算和方差的计算,考查古典概型的概率的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力.20.如图,在三棱锥P—ABC中,△PBC为等边三角形,点为BC的中点,AC⊥PB,平面PBC⊥平面ABC.(1)求直线PB和平面ABC所成的角的大小;(2)求证:平面PAC⊥平面PBC;(3)已知E为的中点,F是AB上的点,AF=AB.若EF∥平面PAC,求的值.【答案】(1);(2)证明见解析;(3)【解析】【分析】(1)先找到直线PB与平面ABC所成的角为,再求其大小;(2)先证明,再证明平面PAC⊥平面PBC;(3)取CO的中点G,连接EG,过点G作FG||AC,再求出的值.【详解】(1)因平面PBC⊥平面ABC,PO⊥BC,平面PBC∩平面ABC=BC,,所以PO⊥平面ABC,所以直线PB与平面ABC所成的角为,因为,所以直线PB与平面ABC所成角为. (2)因为PO⊥平面ABC,所以,因为AC⊥PB,,所以AC⊥平面PBC,因为平面PAC,所以平面PAC⊥平面PBC.(3)取CO的中点G,连接EG,过点G作FG||AC,由题得EG||PC,所以EG||平面APC,因为FG||AC,所以FG||平面PAC,EG,FG平面EFO,EG∩FG=G,所以平面EFO||平面PAC,因为EF平面EFO,所以EF||平面PAC.此时AF=.【点睛】本题主要考查空间几何元素垂直关系的证明,考查线面角的求法,考查空间几何中的探究性问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.21.如图,圆C与x轴相切于点T(2,0),与y轴的正半轴相交于A,B两点(A在B的上方),且AB=3.(1)求圆C的方程;(2)直线BT上是否存在点P满足PA2+PB2+PT2=12,若存在,求出点P的坐标,若不存在,请说明理由;(3)如果圆C上存在E,F两点,使得射线AB平分∠EAF,求证:直线EF的斜率为定值.【答案】(1);(2)点P坐标为.(3)见解析.【解析】【分析】(1)求出圆C的半径为,即得圆C的方程;(2)先求出直线BT的方程为x+2y-2=0.设P(2-2y,y),根据PA2+PB2+PT2=12 求出点P的坐标;(3)由题得,即EF⊥BC,再求EF的斜率.【详解】(1)由题得,所以圆C的半径为.所以圆C的方程为.(2)在中,令x=0,则y=1或y=4.所以A(0,4),B(0,1).所以直线BT的方程为x+2y-2=0.设P(2-2y,y),因为PA2+PB2+PT2=12,所以,由题得因为,所以方程无解.所以不存在这样的点P.(3)由题得,所以,所以.所以直线EF的斜率为定值.【点睛】本题主要考查圆的方程的求法,考查直线和圆的位置关系,考查圆中的定值问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.2018-2019学年高一数学下学期期末考试试题(含解析)一、选择题(本大题共10小题,每小题4分,共40分.在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填涂在答题卡相应位置上)1.l:的斜率为A. ﹣2B. 2C.D.【答案】B【解析】【分析】先化成直线的斜截式方程即得直线的斜率.【详解】由题得直线的方程为y=2x,所以直线的斜率为2.故选:B【点睛】本题主要考查直线斜率的求法,意在考查学生对该知识的理解掌握水平和分析推理能力.2.△ABC中,若A+C=3B,则cosB的值为A. B. C. D.【答案】D【解析】【分析】先求出B,再求cosB.【详解】由题得,所以.故选:D【点睛】本题主要考查特殊角的三角函数值,意在考查学生对该知识的理解掌握水平和分析推理能力.3.l:与两坐标轴所围成的三角形的面积为A. 6B. 1C.D. 3【答案】D【解析】【分析】先求出直线与坐标轴的交点,再求三角形的面积得解.【详解】当x=0时,y=2,当y=0时,x=3,所以三角形的面积为.故选:D【点睛】本题主要考查直线与坐标轴的交点的坐标的求法,意在考查学生对该知识的理解掌握水平和分析推理能力.4.区间[0,5]上任意取一个实数x,则满足x[0,1]概率为A. B. C. D.【答案】A【解析】【分析】利用几何概型求解即可.【详解】由几何概型的概率公式得满足x[0,1]的概率为.故选:A【点睛】本题主要考查几何概型的概率的求法,意在考查学生对该知识的理解掌握水平和分析推理能力.5.组数据,,…,的平均值为3,则,,…,的平均值为A. 3B. 6C. 5D. 2【答案】B【解析】分析】直接利用平均数的公式求解.【详解】由题得,所以,,…,的平均值为.故选:B【点睛】本题主要考查平均数的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.6.三条线段的长分别为5,6,8,则用这三条线段A. 能组成直角三角形B. 能组成锐角三角形C. 能组成钝角三角形D. 不能组成三角形【答案】C【解析】【分析】先求最大角的余弦,再得到三角形是钝角三角形.【详解】设最大角为,所以,所以三角形是钝角三角形.故选:C【点睛】本题主要考查余弦定理,意在考查学生对该知识的理解掌握水平和分析推理能力.7.一个正四棱锥的底面边长为2,高为,则该正四棱锥的全面积为A. 8B. 12C. 16D. 20【答案】B【解析】【分析】先求侧面三角形的斜高,再求该正四棱锥的全面积.【详解】由题得侧面三角形的斜高为,所以该四棱锥的全面积为.故选:B【点睛】本题主要考查几何体的边长的计算和全面积的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.8.直线l:与圆C:交于A,B两点,则当弦AB最短时直线l的方程为A. B.C. D.【答案】A【解析】【分析】先求出直线经过的定点,再求出弦AB最短时直线l的方程.【详解】由题得,所以直线l过定点P.当CP⊥l时,弦AB最短.由题得,所以.所以直线l的方程为.故选:A【点睛】本题主要考查直线过定点问题,考查直线方程的求法,考查直线和圆的位置关系,意在考查学生对这些知识的理解掌握水平和分析推理能力.9.直三棱柱ABC—A1B1C1中,BB1中点为M,BC中点为N,∠ABC=120°,AB=2,BC=CC1=1,则异面直线AB1与MN所成角的余弦值为A. 1B.C.D. 0【答案】D【解析】【分析】先找到直线异面直线AB1与MN所成角为∠,再通过解三角形求出它的余弦值.【详解】由题得,所以∠就是异面直线AB1与MN所成角或补角.由题得,,因为,所以异面直线AB1与MN所成角的余弦值为0.故选:D【点睛】本题主要考查异面直线所成的角的求法,考查余弦定理解三角形,意在考查学生对这些知识的理解掌握水平和分析推理能力.10.直角坐标系xOy中,已知点P(2﹣t,2t﹣2),点Q(﹣2,1),直线l:.若对任意的t R,点P到直线l的距离为定值,则点Q关于直线l对称点Q′的坐标为A. (0,2)B. (2,3)C. (,)D. (,3)【答案】C【解析】【分析】先求出点P的轨迹和直线l的方程,再求点Q关于直线l对称点Q′的坐标.【详解】设点P(x,y),所以所以点P的轨迹方程为2x+y-2=0.对任意的t R,点P到直线l的距离为定值,所以直线l的方程为2x+y=0.设点点Q关于直线l对称点Q′的坐标为,所以.故选:C【点睛】本题主要考查动点的轨迹方程的求法,考查点线点对称问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.二、填空题(本大题共6小题,每小题6分,共计36分.不需要写出解答过程,请将答案填写在答题卡相应的位置上.)11.,,若,则实数的值为_______.【答案】1【解析】【分析】由题得,解方程即得的值.【详解】由题得,解之得=1.当=1时两直线平行.故答案为:112.高一、高二、高三三个年级共有学生1500人,其中高一共有学生600人,现用分层抽样的方法抽取30人作为样本,则应抽取高一学生数为_______.【答案】12【解析】【分析】由题得高一学生数为,计算即得解.【详解】由题得高一学生数为.故答案为:12【点睛】本题主要考查分层抽样,意在考查学生对该知识的理解掌握水平和分析推理能力.13.已知ABC中,A,,则= .【答案】2【解析】试题分析:由正弦定理得==考点:本题考查了正弦定理的运用点评:熟练运用正弦定理及变形是解决此类问题的关键,属基础题14.一个长方体的三个面的面积分别是,,,则这个长方体的体积为______.【答案】.【解析】【分析】利用三个面的面积构造出方程组,三式相乘即可求得三条棱的乘积,从而求得体积.【详解】设长方体中同顶点的三条棱的长分别为则可设:,三式相乘可知长方体的体积:本题正确结果:【点睛】本题考查长方体体积的求解问题,属于基础题.15.圆上总存在两点到坐标原点的距离为1,则实数a的取值范围是_______.【答案】【解析】因为圆(x-a)2+(y-a)2=8和圆x2+y2=1相交,两圆圆心距大于两圆半径之差、小于两圆半径之和,可知结论为16.△ABC中,角A,B,C所对的边分别为a,b,c,若acosB=5bcosA,asinA﹣bsinB=2sinC,则边c的值为_______.【答案】3【解析】【分析】由acosB=5bcosA得,由asinA﹣bsinB=2sinC得,解方程得解.【详解】由acosB=5bcosA得.由asinA﹣bsinB=2sinC得,所以.故答案:3【点睛】本题主要考查正弦定理和余弦定理解三角形,意在考查学生对这些知识的理解掌握水平和分析推理能力.三、解答题(本大题共5小题,共计74分.请在答题纸指定区域内作答,解答应写出文字说明,证明过程或演算步骤.)17.已知三点A(5,0),B(﹣3,﹣2),C(0,2).(1)求直线AB的方程;(2)求BC的中点到直线AB的距离.【答案】(1)x-4y-5=0;(2).【解析】【分析】(1)利用直线的点斜式方程求直线AB的方程;(2)利用点到直线的距离求BC的中点到直线AB的距离.【详解】(1)由题得,所以直线AB的方程为.(2)由题得BC的中点为,所以BC中点到直线AB的距离为.【点睛】本题主要考查直线方程的求法,考查点到直线的距离的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.18.如图,在△ABC中,B=30°,D是BC边上一点,AD=,CD=7,AC=5.(1)求∠ADC的大小;(2)求AB的长.【答案】(1)【解析】【分析】(1)利用余弦定理求∠ADC的大小;(2)利用正弦定理求AB的长.【详解】(1)由余弦定理得.(2)由题得∠ADB=由正弦定理得.【点睛】本题主要考查正弦定理余弦定理解三角形,意在考查学生对这些知识的理解掌握水平和分析推理能力.19.甲乙两名篮球运动员分别在各自不同的5场比赛所得篮板球数的茎叶图如图所示,已知两名运动员在各自5场比赛所得平均篮板球数均为10.(1)求x,y的值;(2)求甲乙所得篮板球数的方差和,并指出哪位运动员篮板球水平更稳定;(3)教练员要对甲乙两名运动员篮板球的整体水平进行评估.现在甲乙各自的5场比赛中各选一场进行评估,则两名运动员所得篮板球之和小于18的概率.【答案】(1)x=2,y=9;(2),乙更稳定;(3).【解析】【分析】(1)利用平均数求出x,y值;(2)求出甲乙所得篮板球数的方差和,判断哪位运动员篮板球水平更稳定;(3)利用古典概型的概率求两名运动员所得篮板球之和小于18的概率.【详解】(1)由题得,.(2)由题得,.因为,所以乙运动员的水平更稳定.(3)由题得所有的基本事件有(8,8),(8,9),(8,10),(8,11),(8,12),(7,8),(7,9),(7,10),(7,11),(7,12),(10,8),(10,9),(10,10),(10,11),(10,12),(12,8),(12,9),(12,10),(12,11),(12,12),(13,8),(13,9),(13,10),(13,11),(13,12).共25个.两名运动员所得篮板球之和小于18的基本事件有(8,8),(8,9),(7,8),(7,9),(7,10),共5个,由古典概型的概率公式得两名运动员所得篮板球之和小于18的概率为.【点睛】本题主要考查平均数的计算和方差的计算,考查古典概型的概率的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力.20.如图,在三棱锥P—ABC中,△PBC为等边三角形,点为BC的中点,AC⊥PB,平面PBC⊥平面ABC.(1)求直线PB和平面ABC所成的角的大小;(2)求证:平面PAC⊥平面PBC;(3)已知E为的中点,F是AB上的点,AF=AB.若EF∥平面PAC,求的值.【答案】(1);(2)证明见解析;(3)【解析】【分析】(1)先找到直线PB与平面ABC所成的角为,再求其大小;(2)先证明,再证明平面PAC⊥平面PBC;(3)取CO的中点G,连接EG,过点G作FG||AC,再求出的值.【详解】(1)因平面PBC⊥平面ABC,PO⊥BC,平面PBC∩平面ABC=BC,,所以PO⊥平面ABC,所以直线PB与平面ABC所成的角为,因为,所以直线PB与平面ABC所成角为.(2)因为PO⊥平面ABC,所以,因为AC⊥PB,,所以AC⊥平面PBC,因为平面PAC,所以平面PAC⊥平面PBC.(3)取CO的中点G,连接EG,过点G作FG||AC,由题得EG||PC,所以EG||平面APC,因为FG||AC,所以FG||平面PAC,EG,FG平面EFO,EG∩FG=G,所以平面EFO||平面PAC,因为EF平面EFO,所以EF||平面PAC.此时AF=.【点睛】本题主要考查空间几何元素垂直关系的证明,考查线面角的求法,考查空间几何中的探究性问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.21.如图,圆C与x轴相切于点T(2,0),与y轴的正半轴相交于A,B两点(A在B的上方),且AB=3.(1)求圆C的方程;(2)直线BT上是否存在点P满足PA2+PB2+PT2=12,若存在,求出点P的坐标,若不存在,请说明理由;(3)如果圆C上存在E,F两点,使得射线AB平分∠EAF,求证:直线EF的斜率为定值.【答案】(1);(2)点P坐标为.(3)见解析.【解析】【分析】(1)求出圆C的半径为,即得圆C的方程;(2)先求出直线BT的方程为x+2y-2=0.设P(2-2y,y),根据PA2+PB2+PT2=12 求出点P的坐标;(3)由题得,即EF⊥BC,再求EF的斜率.【详解】(1)由题得,所以圆C的半径为.所以圆C的方程为.(2)在中,令x=0,则y=1或y=4.所以A(0,4),B(0,1).所以直线BT的方程为x+2y-2=0.设P(2-2y,y),因为PA2+PB2+PT2=12,所以,由题得因为,所以方程无解.所以不存在这样的点P.(3)由题得,所以,所以.所以直线EF的斜率为定值.【点睛】本题主要考查圆的方程的求法,考查直线和圆的位置关系,考查圆中的定值问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.。
2018-2019学年高一数学下学期期末考试试题理(含解析)_1
2018-2019学年高一数学下学期期末考试试题理(含解析)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.的值等于( )A. B. C. D.【答案】A【解析】= ,选A.2.已知在中,,且,则的值为()A. B. C. D.【答案】C【解析】【分析】先确定D位置,根据向量的三角形法则,将用,表示出来得到答案.【详解】故答案选C【点睛】本题考查了向量的加减,没有注意向量方向是容易犯的错误.3.计算:的结果为()A. 1B. 2C. -1D. -2【答案】B【解析】【分析】利用恒等变换公式化简得的答案.【详解】故答案选B【点睛】本题考查了三角恒等变换,意在考查学生的计算能力.4.若某程序框图如图所示,则该程序运行后输出的值是()A. 3B. 4C. 5D. 6【答案】C【解析】【分析】根据程序框图依次计算得到答案.【详解】根据程序框图依次计算得到结束故答案为C【点睛】本题考查了程序框图,意在考查学生对于程序框图的理解能力和计算能力.5.某单位共有老年人180人,中年人540人,青年人人,为调查身体健康状况,需要从中抽取一个容量为的样本,用分层抽样方法抽取进行调查,样本中的中年人为6人,则和的值不可以是下列四个选项中的哪组()A. B.C. D.【答案】B【解析】【分析】根据分层抽样的规律,计算和的关系为:,将选项代入判断不符合的得到答案.【详解】某单位共有老年人180人,中年人540人,青年人人,样本中的中年人为6人,则老年人为:青年人为:代入选项计算,B不符合故答案为B【点睛】本题考查了分层抽样,意在考查学生的计算能力.6.已知平面向量满足:,,,若,则的值为()A. B. C. 1 D. -1【答案】C【解析】【分析】将代入,化简得到答案.【详解】故答案选C【点睛】本题考查了向量的运算,意在考查学生的计算能力.7.若直线与函数的图象相邻的两个交点之间的距离为1,则函数图象的对称中心为()A. B. C. D.【答案】A【解析】【分析】先计算周期得到,得到函数表达式,再根据中心对称公式得到答案.【详解】直线与函数的图象相邻的两个交点之间的距离为1则的对称中心横坐标为:对称中心为故答案选A【点睛】本题考查了函数的周期,对称中心,意在考查学生综合应用能力.8.一组数平均数是,方差是,则另一组数,平均数和方差分别是()A. B.C. D.【答案】B【解析】【分析】直接利用公式:平均值方差为,则的平均值和方差为:得到答案.【详解】平均数是,方差是,的平均数为:方差为:故答案选B【点睛】本题考查了平均数和方差的计算:平均数是,方差是,则的平均值和方差为:.9.已知角满足,,且,,则的值为()A. B. C. D.【答案】D【解析】【分析】根据角度范围先计算和,再通过展开得到答案.【详解】,,故答案选D【点睛】本题考查了三角函数恒等变换,将是解题的关键.10.已知函数的值域为,且图象在同一周期内过两点,则的值分别为()A. B.C. D.【答案】C【解析】【分析】根据值域先求,再代入数据得到最大值和最小值对应相差得到答案.【详解】函数的值域为即,图象在同一周期内过两点故答案选C【点睛】本题考查了三角函数的最大值最小值,周期,意在考查学生对于三角函数公式和性质的灵活运用和计算能力.11.在中,已知角的对边分别为,若,,,,且,则的最小角的正切值为()A. B. C. D.【答案】D【解析】【分析】根据大角对大边判断最小角为,利用正弦定理得到,代入余弦定理计算得到,最后得到.【详解】根据大角对大边判断最小角为根据正弦定理知:根据余弦定理:化简得:故答案选D【点睛】本题考查了正弦定理,余弦定理,意在考查学生的计算能力.12.若关于的方程有两个不同解,则实数的取值范围为()A. B. C. D.【答案】D【解析】【分析】换元设,将原函数变为,根据函数图像得到答案.【详解】设,则,单调递增,则如图:数的取值范围为故答案选D【点睛】本题考查了换元法,参数分离,函数图像,参数分离和换元法可以简化运算,是解题的关键.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知扇形的面积为,圆心角为,则该扇形半径为__________.【答案】2【解析】【分析】将圆心角化为弧度制,再利用扇形面积得到答案.【详解】圆心角为扇形的面积为故答案为2【点睛】本题考查了扇形的面积公式,属于简单题.14.住在同一城市的甲、乙两位合伙人,约定在当天下午4.00-5:00间在某个咖啡馆相见商谈合作事宜,他们约好当其中一人先到后最多等对方10分钟,若等不到则可以离去,则这两人能相见的概率为__________.【答案】【解析】【分析】将甲、乙到达时间设为(以为0时刻,单位为分钟).则相见需要满足:画出图像,根据几何概型公式得到答案.【详解】根据题意:将甲、乙到达时间设为(以为0时刻,单位为分钟)则相见需要满足:画出图像:根据几何概型公式:【点睛】本题考查了几何概型应用,意在考查学生解决问题的能力.15.在中,已知角的对边分别为,且,,,若有两解,则的取值范围是__________.【答案】【解析】【分析】利用正弦定理得到,再根据有两解得到,计算得到答案.【详解】由正弦定理得:若有两解:故答案为【点睛】本题考查了正弦定理,有两解,意在考查学生的计算能力.16.已知当时,函数(且)取得最小值,则时,的值为__________.【答案】3【解析】【分析】先根据计算,化简函数,再根据当时,函数取得最小值,代入计算得到答案.【详解】或当时,函数取得最小值:或(舍去)故答案为3【点睛】本题考查了三角函数的化简,辅助角公式,函数的最值,综合性较强,意在考查学生的综合应用能力和计算能力.三、解答题:本大题共6个小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知函数,作如下变换:.(1)分别求出函数对称中心和单调增区间;(2)写出函数的解析式、值域和最小正周期.【答案】(1),;(2),,.【解析】【分析】(1)由,直接利用对称中心和增区间公式得到答案.(2)根据变换得到函数的解析式为,再求值域和最小正周期.【详解】由题意知:(1)由得对称中心,由,得:单调增区间为,(2)所求解析式为:0值域:最小正周期:.【点睛】本题考查了三角函数的对称中心,单调区间,函数变换,周期,值域,综合性强,意在考查学生对于三角函数公式和性质的灵活运用.18.在中,已知角的对边分别为,且.(1)求角的大小;(2)若,是的中点,且,求的面积.【答案】(1);(2).【解析】【分析】(1)利用正弦定理和和差公式计算得到答案.(2)利用代入余弦定理公式得到,计算面积得到答案.【详解】(1)∵是的内角,∴且又由正弦定理:和已知条件得:化简得:,又∵∴;(2)∵,是的中点,且,,,∴由余弦定理得:,代入化简得:又,即,可得:故所求的面积为.【点睛】本题考查了余弦定理,正弦定理,面积公式,意在考查学生的计算能力.19.为了调查家庭的月收入与月储蓄的情况,某居民区的物业工作人员随机抽取该小区20个家庭,获得第个家庭的月收入(单位:千元)与月储蓄(单位:千元)的数据资料,计算得:,,,,.(1)求家庭的月储蓄对月收入的线性回归方程;(2)指出(1)中所求出方程的系数,并判断变量与之间是正相关还是负相关;(3)若该居民区某家庭月收入为9千元,预测该家庭的月储蓄.【答案】(1);(2)正相关;(3)2.2千元.【解析】【分析】(1)直接利用公式计算回归方程为:.(2)由(1),故正相关.(3)把代入得:.【详解】(1)∵,,样本中心点为:∴由公式得:把代入得:所求回归方程为:;(2)由(1)知,所求出方程的系数为:,,∵,∴与之间是正相关.(3)把代入得:(千元)即该居民区某家庭月收入为9千元时,预测该家庭的月储蓄为2.2千元.【点睛】本题考查了回归方程的计算和预测,意在考查学生的计算能力.20.已知向量,,.(1)若,求的值;(2)设,若恒成立,求的取值范围.【答案】(1);(2).【解析】【分析】(1)根据得到计算得到答案.(2)先求出函数表达式为,再求函数的最大值得到答案.【详解】(1)∵,且,,,∴,即,又∵,∴(2)易知,∵,∴,,当时,,取得最大值:,又恒成立,即故.【点睛】本题考查了向量平行,函数的最大值,将恒成立问题转化为最值问题是解题的关键.21.驻马店市政府委托市电视台进行“创建森林城市”知识问答活动,市电视台随机对该市15~65岁的人群抽取了人,绘制出如图1所示的频率分布直方图,回答问题的统计结果如表2所示.(1)分别求出的值;(2)从第二、三、四、五组回答正确的人中用分层抽样的方法抽取7人,则从第二、三、四、五组每组回答正确的人中应各抽取多少人?(3)在(2)的条件下,电视台决定在所抽取的7人中随机选2人颁发幸运奖,求所抽取的人中第二组至少有1人获得幸运奖的概率.【答案】(1),,,;(2)2人,3人,1人,1人;(3).【解析】【分析】(1)先计算出总人数为1000人,再根据公式依次计算的值.(2)根据分层抽样规律得到从第二、三、四、五组每组回答正确的人中应分别抽取:2人,3人,1人,1人(3)排出所有可能和满足条件的情况,得到概率.【详解】(1)依题和图表:由得:,由得:,由得:,由得:,由得:,故所求,,,.(2)由以上知:第二、三、四、五组回答正确人数分别为:180人,270人,90人,90人用分层抽样抽取7人,则:从第二组回答正确的人中应该抽取: 人,从第三组回答正确的人中应该抽取:人,从第四组回答正确的人中应该抽取: 人,从第五组回答正确的人中应该抽取: 人,故从第二、三、四、五组每组回答正确人中应分别抽取:2人,3人,1人,1人;(3)设从第二组回答正确的人抽取的2人为: ,从第三组回答正确的人抽取的3人为:从第四组回答正确的人抽取的1人为:从第五组回答正确的人抽取的1人为:随机抽取2人,所有可能的结果有: ,,,,,,,,,,,,,,,,,,,,,共21个基本事件,其中第二组至少有1人被抽中的有:,,,,,,,,,,共这11个基本事件.故抽取的人中第二组至少有1人获得幸运奖的概率为:.【点睛】本题考查了频率直方图,分层抽样,概率的计算,意在考查学生的应用能力和计算能力.22.已知函数.(1)求函数的值域和单调减区间;(2)已知为的三个内角,且,,求的值.【答案】(1),;(2).【解析】【分析】(1)将函数化简,利用三角函数的取值范围的单调性得到答案.(2)通过函数计算,,再计算代入数据得到答案.【详解】(1)∵且∴故所求值域为由得:所求减区间:;(2)∵是的三个内角,,∴∴又,即又∵,∴,故,故.【点睛】本题考查了三角函数的最值,单调性,角度的大小,意在考查学生对于三角函数公式性质的灵活运用.2018-2019学年高一数学下学期期末考试试题理(含解析)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.的值等于( )A. B. C. D.【答案】A【解析】= ,选A.2.已知在中,,且,则的值为()A. B. C. D.【答案】C【解析】【分析】先确定D位置,根据向量的三角形法则,将用,表示出来得到答案.【详解】故答案选C【点睛】本题考查了向量的加减,没有注意向量方向是容易犯的错误.3.计算:的结果为()A. 1B. 2C. -1D. -2【答案】B【解析】【分析】利用恒等变换公式化简得的答案.【详解】故答案选B【点睛】本题考查了三角恒等变换,意在考查学生的计算能力.4.若某程序框图如图所示,则该程序运行后输出的值是()A. 3B. 4C. 5D. 6【答案】C【解析】【分析】根据程序框图依次计算得到答案.【详解】根据程序框图依次计算得到结束故答案为C【点睛】本题考查了程序框图,意在考查学生对于程序框图的理解能力和计算能力.5.某单位共有老年人180人,中年人540人,青年人人,为调查身体健康状况,需要从中抽取一个容量为的样本,用分层抽样方法抽取进行调查,样本中的中年人为6人,则和的值不可以是下列四个选项中的哪组()A. B.C. D.【答案】B【解析】【分析】根据分层抽样的规律,计算和的关系为:,将选项代入判断不符合的得到答案.【详解】某单位共有老年人180人,中年人540人,青年人人,样本中的中年人为6人,则老年人为:青年人为:代入选项计算,B不符合故答案为B【点睛】本题考查了分层抽样,意在考查学生的计算能力.6.已知平面向量满足:,,,若,则的值为()A. B. C. 1 D. -1【答案】C【解析】【分析】将代入,化简得到答案.【详解】故答案选C【点睛】本题考查了向量的运算,意在考查学生的计算能力.7.若直线与函数的图象相邻的两个交点之间的距离为1,则函数图象的对称中心为()A. B. C. D.【答案】A【解析】【分析】先计算周期得到,得到函数表达式,再根据中心对称公式得到答案.【详解】直线与函数的图象相邻的两个交点之间的距离为1则的对称中心横坐标为:对称中心为故答案选A【点睛】本题考查了函数的周期,对称中心,意在考查学生综合应用能力.8.一组数平均数是,方差是,则另一组数,平均数和方差分别是()A. B.C. D.【答案】B【解析】【分析】直接利用公式:平均值方差为,则的平均值和方差为:得到答案.【详解】平均数是,方差是,的平均数为:方差为:故答案选B【点睛】本题考查了平均数和方差的计算:平均数是,方差是,则的平均值和方差为:.9.已知角满足,,且,,则的值为()A. B. C. D.【答案】D【解析】【分析】根据角度范围先计算和,再通过展开得到答案.【详解】,,故答案选D【点睛】本题考查了三角函数恒等变换,将是解题的关键.10.已知函数的值域为,且图象在同一周期内过两点,则的值分别为()A. B.C. D.【答案】C【解析】【分析】根据值域先求,再代入数据得到最大值和最小值对应相差得到答案.【详解】函数的值域为即,图象在同一周期内过两点故答案选C【点睛】本题考查了三角函数的最大值最小值,周期,意在考查学生对于三角函数公式和性质的灵活运用和计算能力.11.在中,已知角的对边分别为,若,,,,且,则的最小角的正切值为()A. B. C. D.【答案】D【解析】【分析】根据大角对大边判断最小角为,利用正弦定理得到,代入余弦定理计算得到,最后得到.【详解】根据大角对大边判断最小角为根据正弦定理知:根据余弦定理:化简得:故答案选D【点睛】本题考查了正弦定理,余弦定理,意在考查学生的计算能力.12.若关于的方程有两个不同解,则实数的取值范围为()A. B. C. D.【答案】D【解析】【分析】换元设,将原函数变为,根据函数图像得到答案.【详解】设,则,单调递增,则如图:数的取值范围为故答案选D【点睛】本题考查了换元法,参数分离,函数图像,参数分离和换元法可以简化运算,是解题的关键.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知扇形的面积为,圆心角为,则该扇形半径为__________.【答案】2【解析】【分析】将圆心角化为弧度制,再利用扇形面积得到答案.【详解】圆心角为扇形的面积为故答案为2【点睛】本题考查了扇形的面积公式,属于简单题.14.住在同一城市的甲、乙两位合伙人,约定在当天下午4.00-5:00间在某个咖啡馆相见商谈合作事宜,他们约好当其中一人先到后最多等对方10分钟,若等不到则可以离去,则这两人能相见的概率为__________.【答案】【解析】【分析】将甲、乙到达时间设为(以为0时刻,单位为分钟).则相见需要满足:画出图像,根据几何概型公式得到答案.【详解】根据题意:将甲、乙到达时间设为(以为0时刻,单位为分钟)则相见需要满足:画出图像:根据几何概型公式:【点睛】本题考查了几何概型应用,意在考查学生解决问题的能力.15.在中,已知角的对边分别为,且,,,若有两解,则的取值范围是__________.【答案】【解析】【分析】利用正弦定理得到,再根据有两解得到,计算得到答案.【详解】由正弦定理得:若有两解:故答案为【点睛】本题考查了正弦定理,有两解,意在考查学生的计算能力.16.已知当时,函数(且)取得最小值,则时,的值为__________.【答案】3【解析】【分析】先根据计算,化简函数,再根据当时,函数取得最小值,代入计算得到答案.【详解】或当时,函数取得最小值:或(舍去)故答案为3【点睛】本题考查了三角函数的化简,辅助角公式,函数的最值,综合性较强,意在考查学生的综合应用能力和计算能力.三、解答题:本大题共6个小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知函数,作如下变换:.(1)分别求出函数对称中心和单调增区间;(2)写出函数的解析式、值域和最小正周期.【答案】(1),;(2),,.【解析】【分析】(1)由,直接利用对称中心和增区间公式得到答案.(2)根据变换得到函数的解析式为,再求值域和最小正周期.【详解】由题意知:(1)由得对称中心,由,得:单调增区间为,(2)所求解析式为:0值域:最小正周期:.【点睛】本题考查了三角函数的对称中心,单调区间,函数变换,周期,值域,综合性强,意在考查学生对于三角函数公式和性质的灵活运用.18.在中,已知角的对边分别为,且.(1)求角的大小;(2)若,是的中点,且,求的面积.【答案】(1);(2).【解析】【分析】(1)利用正弦定理和和差公式计算得到答案.(2)利用代入余弦定理公式得到,计算面积得到答案.【详解】(1)∵是的内角,∴且又由正弦定理:和已知条件得:化简得:,又∵∴;(2)∵,是的中点,且,,,∴由余弦定理得:,代入化简得:又,即,可得:故所求的面积为.【点睛】本题考查了余弦定理,正弦定理,面积公式,意在考查学生的计算能力.19.为了调查家庭的月收入与月储蓄的情况,某居民区的物业工作人员随机抽取该小区20个家庭,获得第个家庭的月收入(单位:千元)与月储蓄(单位:千元)的数据资料,计算得:,,,,.(1)求家庭的月储蓄对月收入的线性回归方程;(2)指出(1)中所求出方程的系数,并判断变量与之间是正相关还是负相关;(3)若该居民区某家庭月收入为9千元,预测该家庭的月储蓄.【答案】(1);(2)正相关;(3)2.2千元.【解析】【分析】(1)直接利用公式计算回归方程为:.(2)由(1),故正相关.(3)把代入得:.【详解】(1)∵,,样本中心点为:∴由公式得:把代入得:所求回归方程为:;(2)由(1)知,所求出方程的系数为:,,∵,∴与之间是正相关.(3)把代入得:(千元)即该居民区某家庭月收入为9千元时,预测该家庭的月储蓄为2.2千元.【点睛】本题考查了回归方程的计算和预测,意在考查学生的计算能力.20.已知向量,,.(1)若,求的值;(2)设,若恒成立,求的取值范围.【答案】(1);(2).【解析】【分析】(1)根据得到计算得到答案.(2)先求出函数表达式为,再求函数的最大值得到答案.【详解】(1)∵,且,,,∴,即,又∵,∴(2)易知,∵,∴,,当时,,取得最大值:,又恒成立,即故.【点睛】本题考查了向量平行,函数的最大值,将恒成立问题转化为最值问题是解题的关键.21.驻马店市政府委托市电视台进行“创建森林城市”知识问答活动,市电视台随机对该市15~65岁的人群抽取了人,绘制出如图1所示的频率分布直方图,回答问题的统计结果如表2所示.(1)分别求出的值;(2)从第二、三、四、五组回答正确的人中用分层抽样的方法抽取7人,则从第二、三、四、五组每组回答正确的人中应各抽取多少人?(3)在(2)的条件下,电视台决定在所抽取的7人中随机选2人颁发幸运奖,求所抽取的人中第二组至少有1人获得幸运奖的概率.【答案】(1),,,;(2)2人,3人,1人,1人;(3).【解析】【分析】(1)先计算出总人数为1000人,再根据公式依次计算的值.(2)根据分层抽样规律得到从第二、三、四、五组每组回答正确的人中应分别抽取:2人,3人,1人,1人(3)排出所有可能和满足条件的情况,得到概率.【详解】(1)依题和图表:由得:,由得:,由得:,由得:,由得:,故所求,,,.(2)由以上知:第二、三、四、五组回答正确人数分别为:180人,270人,90人,90人用分层抽样抽取7人,则:从第二组回答正确的人中应该抽取: 人,从第三组回答正确的人中应该抽取:人,从第四组回答正确的人中应该抽取: 人,从第五组回答正确的人中应该抽取: 人,故从第二、三、四、五组每组回答正确人中应分别抽取:2人,3人,1人,1人;(3)设从第二组回答正确的人抽取的2人为: ,从第三组回答正确的人抽取的3人为:从第四组回答正确的人抽取的1人为:从第五组回答正确的人抽取的1人为:随机抽取2人,所有可能的结果有: ,,,,,,,,,,,,,,,,,,,,,共21个基本事件,其中第二组至少有1人被抽中的有:,,,,,,,,,,共这11个基本事件.故抽取的人中第二组至少有1人获得幸运奖的概率为:.【点睛】本题考查了频率直方图,分层抽样,概率的计算,意在考查学生的应用能力和计算能力.22.已知函数.(1)求函数的值域和单调减区间;(2)已知为的三个内角,且,,求的值.【答案】(1),;(2).【解析】【分析】(1)将函数化简,利用三角函数的取值范围的单调性得到答案.(2)通过函数计算,,再计算代入数据得到答案.【详解】(1)∵且∴故所求值域为由得:所求减区间:;(2)∵是的三个内角,,∴∴又,即又∵,∴,故,故.【点睛】本题考查了三角函数的最值,单调性,角度的大小,意在考查学生对于三角函数公式性质的灵活运用.。
2019学年上海市高一下学期期末考试数学试卷【含答案及解析】
2019学年上海市高一下学期期末考试数学试卷【含答案及解析】姓名____________ 班级_______________ 分数____________一、填空题1. 计算: ------- :—"~*亚4对+ 12. 已知数列;一「为等差数列,•―- ■-,贝V二3. 在等比数列,中,二y - m ,则—的值为4. 已知;;是等差数列,是其前*项和,•,则45. 函数 -■- 在上「一1」.的值域是6. 数列■:中,込一;,,一二,“;一,.一心“ ■-監,贝V :的前2015项和= ----------------------- ----7. 在数列.「中,已知广二」..二1* ,且数列•化+菇是等比数列,则9.函数v = sin —+ cos —在f —hT-"\内的单调递增区间为J7争rr10. 在厶'、、、;、中,已知,贝「1, 的取值范围是11. 在等腰直角 中, ,-一 i ,形,如图所示,若正方形的面积依次为 -.八,则•’•‘12.已知数列{nJ 满足q ・-1勺 >斫.匕灼-他卜严⑷「V*),若数列 ;单调递减,数列;’ 单调递增,则数列罠「;■的通项公式为-=8. 执行右边的程序框图,若 「二、 ,则输出的X1BC 中排列着内接正方(从大到小),其中、选择题) 本题共有2个小题,第1小题4分,第2小题4分.A B.C 的对边分别为 门、氏匸.已知c =C,-EU11 A •C . 钝角三角形D .不能确定14.利用数学归纳法证明“ 1 +灯一小 4-L + /' =■|芒 1、 n e A ) ”,在验1 一证 -,成立时,等号左边是()A .B .C .D .1十亓+打】15.在等差数列打 中, 若且的前•项和有最小值, 则使得 |的最小 值 n 为(A .11B .19C .D16. 有穷数列, CT, , …,- 中的每一项都是一 II , 0 ,1这三个数中的某一个数,若 灯1+ +…+ =425,且 i 一 1 r+・+'+…+■ = 3870 ,则有穷数列■- , ■ ■ ■ ■ ,:: ,中值为0的项数是()A ..■. C B .;门$.1010D . 1030三、 解答题)在 ^中,右,则一宀的形状是()锐角三角形________________ B .直角三角形13. A .(本题满分8分ZU2?C 中,内角 17.在 (1 )求.;,的大小;(2 )若-7.7 ,求 _;;的面积.18. (本题满分8分) 本题共有2个小题,第1小题4分,第2小题4分.已知;[、::|| . ^ ^ 一■; .■'|| — ,■,且函数’图象上的任意两条对称轴之间距离的最小值是—•(1 )求的值;(2)将函数= _■/-,,>>的图像向右平移— 个单位后,得到函数■ = 的图像,6 求函数•的解析式,并求 • 在——-上的最值.19. (本题满分10分) 本题共有2个小题,第1小题4分,第2小题6分已知数列;.:的首项.■ .「 「.(1 )求证:数列;—-J.为等比数列;•%」(2) 记「;-」--[* ,若| ,求最大正整数坏 %6本题共有2个小题,第1小题6分,第2小题6分-公司开拓国际市场,基本形成了市场规模个月(20 14年1月为第一个月)产品的 内销量、出口量和销售总量(销售总量=内销量斗出口量)分别为人 、 和•. (单位:万件),依据销售统计数据发现形成如下营销趋势:.-,■1 T 1Ifl匚-匚广;广叮(其中为常数,卄二严),已知 一万件,• 一 万件,. -万件• (1 )求的值,并写出•-与满足的关系式;(2)证明:逐月递增且控制在2万件内•21. (本题满分14分) 本题共有3个小题,第1小题4分,第2小题5分,第3小题5分•设等比数列..’的前.项的和为 ,公比为,亩戏口 (1 )若 成等差数列,求证:.成等差数列;(2 )若 ..(-为互不相等的正整数)成等差数列,试问数列I 〕中是20. (本题满分12分)在上海自贸区的利好刺激下 自20 14年1月以来的第否存在不同的三项成等差数列?若存在,写出两组这三项;若不存在,请说明理由; (3)若:.为大于的正整数•试问.:中是否存在一项,使得恰好可以表示为该数列中连续两项的和?请说明理由.参考答案及解析第1题【答案】【解析】第2题【答案】【解析】试题分析;由等差数列求和公式£ =即吗十— d 0 = 3 5 ??+戈匕_ x (-2 )/_n = 362 2第3题【答案】 4【解析】--- —Z -- — 一 2 4阳一 1 2试题分析:试题分析:= 102+flj = 1024 =4第4题【答案】-1【解析】第5题【答案】[討]【解析】第6题【答案】1【解析】试题分析:由递推公式应-可得各项依次为12X-1-Z-1J.2,所決周期为d,前6项和 为°,所以电町二珂_込+气+丐+%二“第7题【答案】2 3^-re【解析】试题分折:数列⑺号对第二项込十2-6 ,第三项◎十3二1& ,等比数列公比対3/.心 十 M 二& 3,1~-二心 二 2 3:'-1- n第8题【答案】试题分析;- 1T-CCOE ; A试题分析;s n A【解析】H5:程序执行中的费据变怙尸〃士46 = 2”击.27®二丄十丄L 6<7J 7 = 7,J -—+ —+L +—7<7不成立,输岀 2x3 3><4 2«3 3 如 7«81 】q 丄1 1 1 3二; -- 十 ---- -T [ 十 ---- 二一一一二一 2凉 A4 7^8 2 8 S第9题【答案】【解析】Q r e (~2^r,2^) : 乂亡乂+ 乞214第10题【答案】试题分析:过A 作血)丄EC 于D 」B = 60". C = 2, B[1<1 = 1 0寸、mC 二1』当取=4时 试题分析:严 响吟+遇于三』5血-+ - 匕4丿(35e — /T, —/r I 4 4令三畀 2托714€72'2、增区间为卜寻&・所a sin c 的取值范围是[£i]At【解析】此A 寸=第11题【答案】92【解析】x3 —迸试题分析;设第一个正方形的边长为知贝恼相佩三角册可得= S产4再宙ffilU三角形可得卅丄比L构成4为首项,扌为公比的等比数列,S 4 9■■魚⑶+ S/L ^^)=^-=—=-9第12题【答案】E-L【解析】试题分析;采用列举法得刊=-g =1*理=-3心=5•码=—1血二21L 、然后从数字的变化上找规律,得%广碣二(T厂2” •「①=(外亠%JH為叫卄叽)+L卡@十的)=(—1丫05(Typr+L ±2U2T-1 (-2)^-1 | (-2?-1■■«■-J ■■ 电第13题【答案】【解析】试题分析:由正弦翹里可将迪Ur in诂“血C诗化为R > 丁/nf—十h】一F,7F _LcosC=——; ----- >OAC<-,由已知A,B角的范围不确定,因此形状不能确定2ab2第14题【答案】C【解析】试题分析:n = l时等号左恻卫的最高次数为為所以所边为"卄亍第15题【答案】C【解析】试题分析:M的前斤项和必有最小倩,所以豹列单调递增,且首项巧<o•:加—1二%<0^n>0 且%+知>0.兀二WSjqJ二旧%丸虽二沙匹)二10(佝旳,所以使得\>0的最小1削—--第16题【答案】【解析】试题分析!(巧十1)' +0 +1)]丰他寸1尸+'" + (%手+1)J=3E7OR开得佃+L +d■审”)+2&十碣*L +«;0]j )+2015 = 3870 ”-&+卅4|_ +咗严E0S ・所以7 ,1共W1E硕,刪,值为0啊I页骚是血0天第17题【答案】(1)R = —(2)M 或需【解析】试题分析;⑴ 由关系式刘1^4$)*诚/_£) =wA・结合两角和差的正弦展开式化简可求得8汕的值,得到B角大小£⑵ 由B甬和方疋边利坪余弦定理可求得静边长,结合三角形面积公式S = —^c s-iii *求得面积2试题解析:(1)2&111.4^0£5= SAH A => eos5 -—或虹n 勺兰0(雋)f/. B28 = a2?良卩口' -6^ + S = 0 、二&二2站二4当(? = 2 时,S ——CC sin R 二3 迟;当/T= 4 B寸:S ——crc&in R — 6爲第18题【答案】⑴1⑵sM^ = n ,厭工)碍二运【解析】试题分析;⑴由对称轴的距蛊求得函数周期,进而得到血IB,代入7(0)-0可戒得倂角:从而确JT 7T 定函数解析式,将自变量“亍代入求解的值,⑵由平移规律得到函数y=^W的解析式h 4咖二岳inp■勻,由工的范围得到"■彳的范围,进而结合单调性求得函数最值试题解析:(1) /M=^2sin(^4^+-)_7 = ^ A,■*'- VFsmpx)…'/(彳)-JJsdil 二-14第19题【答案】详见解析(2)99【解析】试西并析:CD证明数列是等比数列需证明数列相邻两项的比值为常数,井且首项不为①本题中通过数列& }的递推公式入手将其变形1冋j⑵借助于(1)的结论求得数列S }的的通项公比进而得到数列]三]的通项公式」结合特点采用分组拥闻W比数列求和公式可得到爲的表达式,解不孝武可求得:值’T ⑴Q土中护亡-1说乜,且Q「“.右I"”⑵由⑴可求得于第20题【答案】(1)应二Lb二"g, g] =2屯档士/ C3详见解析A£【解析】试题分析;(1)依蛊意:口―】=■巾+】=吗+內+占如';将諏1,2;构建方程组丿冃卩可求得S b的値,从而可得為巧芍町满足的关系式』⑵先证明3“為-如/"*6_2卄少2 , 于是供<2 .再用作差法证明久亡弘,从而可得结论;试题解析:Ci)依ffiiS:口“二矗齐十£卄]二“%十口,,、 3 *.\ 0\ —皿】丄诃十5CT*,「*阿+1十H寸一“ ........ ① 又立* —+ t7r卄by jI r j ■■■■u Ji IA -£7+- + ^! -V=- .................. ②解①②得<7=1,6 = -2 2 (2 丿8 2从而口m二2口厂十「(2)由于码T = 2珂厂+口;=一片(臥一2)】十2$2・但碍・1工2・否贝」可推得% =匹=2矛盾・故孝&偽・严2 ,于ftn, < 2 .又旳〒1_码=_*V・2码-q =-斗码(码・2):>0 ,所決為勺卜仇,从而<2 .第21题【答案】(1)详见解析(2)心+].dg.q.] (3)不存在【解析】试题分析:⑴ 根据%%爲成等差数列,q^l,可得2几=2 +耳,化简可得,进而可以证明如.%你成等差数列,(2)根据凡・片$ 51为互不相等的正整数)成等差数列、可得2S#二几4Sr ;化简可得2叩「4珂7‘ ;从而可得%“叶知成尊差数列,即可得出结论,<3)设存在一项①,使得丑・恰好可以表示/该数列中连续两项的和,设冷=6斗%] )可得斤>"} q s'n =1+(?,从而可得结论试题解析:(1)若Z,咼成等差数列,则2S宀览,即2円(1一/;) _ 竹(1-/> | 呵(1-扌)\・q '■ q \-q+ ” …:靳二1 + / ,又2弧- (% +a u) = 2如7 -(a}q9 + qg") = qg°(2/ T -『)=0|.・2<7|g = CT]。
徐汇区高一数学下学期期末考试试题含解析
上海市徐汇区2019-2020学年高一数学下学期期末考试试题(含解析)一、填空题1。
函数()sin f x x π=的最小正周期为____________. 【答案】2 【解析】 【分析】利用()sin y A x b ωϕ=++的最小正周期为2πω,即可得出结论. 【详解】解:函数()sin f x xπ=的最小正周期为:22ππ=。
故答案:2。
【点睛】本题主要考查三角函数的周期性,利用了()sin y A x b ωϕ=++的最小正周期为2πω,属于容易题. 2.计算:22320lim n n n n→∞+=+____________.【答案】3 【解析】 【分析】对分式分子分母同除以2n ,即可得到所求极限;【详解】解:22220332030lim lim 31101n n n n n n n→∞→∞+++===+++ 故答案为:3【点睛】本题考查数列的极限的求法,属于基础题.-1+1的等比中项是________.【答案】1±【解析】【分析】根据等比数列的等比中项即可求解。
+1-1的等比中项是1=±.【点睛】本题主要考查了等比数列的等比中项,属于容易题。
4。
函数()arcsin1y x=+的定义域是______。
【答案】[]2,0-【解析】【分析】根据反正弦函数的定义域列不等式可解得结果。
【详解】由111x-≤+≤得20x-≤≤,所以函数()arcsin1y x=+的定义域是[]2,0-.故答案为:[]2,0-【点睛】本题考查了反正弦函数的定义域,属于基础题.5。
若tan3α=,则tan()4πα-=____________.【答案】12-【解析】【分析】利用两角差的正切公式计算可得;【详解】解:因为tan3α=,所以tan tan1314tan()411321tan tan4παπαπα---===-+⨯+故答案为:12-【点睛】本题考查两角差的正切公式的应用,属于基础题.6。
2018-2019学年高一数学下学期期末考试测试试题(含解析)
2018-2019学年高一数学下学期期末考试测试试题(含解析)本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页,满分为150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自已的姓名、考试科目、班级和考生号等信息填写在答题卡上,并用2B 铅笔将考号在答题卡相关的区域内涂黑。
2.选择题每小题选出答案后,用2B铅笔把答题卡对应的答案符号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.考生必须保持答题卡的整洁,考试结束后,将答题卡答卷交给监考老师。
第Ⅰ卷(选择题共60分)一、选择题(本题共12小题,每小题5分,共60分,四个选项中,只有一项符合要求)1.直线的倾斜角的大小为().A. B. C. D.【答案】B【解析】由直线方程可知直线的斜率,设直线的倾斜角为,则,又,所以,故选.2.下列四个图各反映了两个变量的某种关系,其中可以看作具有较强线性相关关系的是()A. ①③B. ①④C. ②③D. ①②【答案】B【解析】试题分析::∵两个变量的散点图,若样本点成带状分布,则两个变量具有线性相关关系,∴两个变量具有线性相关关系的图是①和④.考点:变量间的相关关系3.已知某地区中小学生人数和近视情况分别如图1和图2所示.为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取4%的学生进行调查,则样本容量和抽取的高中生近视人数分别为( )A. 400,40B. 200,10C. 400,80D. 200,20【答案】A【解析】【分析】由扇形图能得到总数,利用抽样比较能求出样本容量;由分层抽样和条形图能求出抽取的高中生近视人数.【详解】用分层抽样的方法抽取的学生进行调查,样本容量为:,抽取的高中生近视人数为:,故选A.【点睛】该题考查的是有关概率统计的问题,涉及到的知识点有扇形图与条形图的应用,以及分层抽样的性质,注意对基础知识的灵活应用,属于简单题目.4.直线与直线平行,则=()A. B. C. -7 D. 5【答案】D【解析】【分析】由两直线平行的条件计算.【详解】由题意,解得.故选D.【点睛】本题考查两直线平行的条件,直线与平行的条件是:在均不为零时,,若中有0,则条件可表示为.5.若圆和圆相切,则等于( )A. 6B. 7C. 8D. 9【答案】C【解析】【分析】根据的圆标准方程求得两圆的圆心与半径,再根据两圆内切、外切的条件,分别求得的值并验证即可得结果.【详解】圆的圆心,半径为5;圆的圆心,半径为r.若它们相内切,则圆心距等于半径之差,即=|r-5|,求得r=18或-8,不满足5<r<10.若它们相外切,则圆心距等于半径之和,即=|r+5|,求得r=8或-18(舍去),故选C.【点睛】本题主要考查圆的方程以及圆与圆的位置关系,属于基础题. 两圆半径为,两圆心间的距离为,比较与及与的大小,即可得到两圆的位置关系.6.△ABC的内角A、B、C的对边分别为a、b、c.已知,,,则b=A. B. C. 2 D. 3【答案】D【解析】试题分析:由余弦定理得,解得(舍去),选D.【考点】余弦定理【名师点睛】本题属于基础题,考查内容单一,根据余弦定理整理出关于b的一元二次方程,再通过解方程求b.运算失误是基础题失分的主要原因,请考生切记!7.中,角所对的边分别为,若,则为( )A. 直角三角形B. 钝角三角形C. 锐角三角形D. 等边三角形【答案】B【解析】【分析】由已知结合正弦定理可得sinC<sinBcosA利用三角形的内角和及诱导公式可得,sin(A+B)<sinBcosA整理可得sinAcosB+sinBcosA<0从而有sinAcosB<0结合三角形的性质可求.【详解】∵A是△ABC的一个内角,0<A<π,∴sinA>0.∵<cosA,由正弦定理可得,sinC<sinBcosA∴sin(A+B)<sinBcosA∴sinAcosB+sinBcosA<sinBcosA∴sinAcosB<0 又sinA>0∴cosB<0 即B为钝角故选:B.8.甲、乙两名运动员,在某项测试中的8次成绩如茎叶图所示,分别表示甲、乙两名运动员这项测试成绩的平均数,,分别表示甲、乙两名运动员这项测试成绩的标准差,则有()A. B.C. D.【答案】B【解析】【分析】根据茎叶图看出两组数据,先求出两组数据的平均数,再求出两组数据的方差,比较两组数据的方差的大小就可以得到两组数据的标准差的大小.【详解】由茎叶图可看出甲的平均数是,乙的平均数是,两组数据的平均数相等.甲的方差是乙的方差是甲的标准差小于乙的标准差,故选:B.【点睛】本题考查两组数据平均数和方差的意义,是一个基础题,解题时注意平均数是反映数据的平均水平,而标准差反映波动的大小,波动越小数据越稳定.9.对于平面、、和直线、、、,下列命题中真命题是( )A. 若,则B. 若,则C. 若则D. 若,则【答案】C【解析】试题分析:对于平面、、和直线、,真命题是“若,,,则”.考点:考查直线与直线,直线与平面,平面与平面的位置关系.10.圆柱形容器内盛有高度为6 cm的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球,如图所示.则球的半径是( )A. 1 cmB. 2 cmC. 3 cmD. 4 cm【答案】C【解析】【分析】设出球的半径,根据题意得三个球的体积和水的体积之和,等于柱体的体积,结合体积公式求解即可.【详解】设球半径为,则由,可得,解得,故选C.【点睛】本题主要考查了几何体的体积公式的应用,考查学生空间想象能力以及计算能力,是基础题.11.已知PA,PB是圆C:的两条切线(A,B是切点),其中P是直线上的动点,那么四边形PACB的面积的最小值为( )A. B. C. D.【答案】C【解析】【分析】配方得圆心坐标,圆的半径为1,由切线性质知,而的最小值为C点到的距离,由此可得结论.【详解】由题意圆的标准方程为,∴圆心为,半径为.又,到直线的距离为,∴.故选C.【点睛】本题考查圆切线的性质,考查面积的最小值,解题关键是把四边形面积用表示出来,而的最小值为圆心到直线的距离,从而易得解.12.我国古代数学名著九章算术中有这样一些数学用语,“堑堵”意指底面为直角三角形,且侧棱垂直于底面的三棱柱,而“阳马”指底面为矩形且有一侧棱垂直于底面的四棱锥现有一如图所示的堑堵,,,当堑堵的外接球的体积为时,则阳马体积的最大值为A. 2B. 4C.D.【答案】D【解析】【分析】由已知求出三棱柱外接球的半径,得到,进一步求得AB,再由棱锥体积公式结合基本不等式求最值.【详解】解:堑堵的外接球的体积为,其外接球的半径,即,又,.则..即阳马体积的最大值为.故选:D.【点睛】本题考查多面体的体积、均值定理等基础知识,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力,是中档题.第Ⅱ卷(非选择题共90分)二、填空题(本题共4小题,每小题5分,共20分)13.现采用随机模拟的方法估计某运动员射击4次,至少击中3次的概率:先由计算器给出0到9之间取整数值的随机数,指定0,1表示没有击中目标,2,3,4,5,6,7,8,9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了20组随机数:根据以上数据估计该射击运动员射击4次至少击中3次的概率为_______.【答案】0.75【解析】【分析】根据随机模拟的方法,先找到20组数据中至少含有2,3,4,5,6,7,8,9中的3个数字的组数,然后根据古典概型求出概率.【详解】由题意知模拟射击4次的结果,经随机模拟产生了如下20组随机数,在20组随机数中表示射击4次击中3次的有:7527,0293,9857,0347,4373,8636,6947,4698,6233,2616,8045 ,3661,9597,7424,4281,共15组随机数,所以所求概率为.【点睛】本题考查随机模拟的应用,考查理解能力和运用能力,解题时读懂题意是解题的关键,然后在此基础上确定基本事件总数和所求概率的事件包含的基本事件的个数,再根据古典概型的概率公式求解.14.若某圆锥的轴截面是面积为的等边三角形,则这个圆锥的侧面积是__________.【答案】【解析】【分析】由轴截面面积求得轴截面边长,从而得圆锥的底面半径和母线长.【详解】设轴截面等边三角形边长为,则,,∴.故答案为.【点睛】本题考查圆锥的侧面积,掌握侧面积计算公式是解题基础.15.已知直线与圆相交于A、B两点,则∠AOB大小为________.【答案】60°【解析】【分析】由垂径定理求得相交弦长,然后在等腰三角形中求解.【详解】圆心到直线的距离为,圆心半径为,∴,∴为等边三角形,.【点睛】本题考查直线与圆相交弦长问题.求直线与圆相交弦长一般用垂径定理求解,即求出弦心距,则有.16.在正四棱锥P-ABCD中,PA=2,直线PA与平面ABCD所成角为60°,E为PC的中点,则异面直线PA与BE所成角的大小为___________.【答案】45°【解析】【分析】先确定直线PA与平面ABCD所成的角,然后作两异面直线PA和BE所成的角,最后求解.【详解】∵四棱锥P-ABCD是正四棱锥,∴就是直线PA 与平面ABCD所成的角,即=60°,∴是等边三角形,AC=PA=2,设BD与AC交于点O,连接OE,则OE是的中位线,即,且,∴是异面直线PA与BE所成的角,正四棱锥P-ABCD中易证平面PAC,∴,中,,∴是等腰直角三角形,∴=45°.∴异面直线PA与BE所成的角是45°.故答案为45°.【点睛】本题考查异面直线所成的角,考查直线与平面所成的角,考查正四棱锥的性质.要注意在求空间角时,必须作出其“平面角”并证明,然后再计算.三、解答题:17.已知的三个顶点为,为的中点.求:(1)所在直线的方程;(2)边上中线所在直线的方程;(3)边上的垂直平分线的方程.【答案】(1)x+2y-4=0.(2)2x-3y+6=0.(3)y=2x+2.【解析】试题分析:(1)直线方程的两点式求出所在直线的方程;(2)先求BC的中点D坐标为(0,2),由直线方程的截距式求出AD所在直线方程;(3)求出直线)BC的斜率,由两直线垂直的条件求出直线DE的斜率,再由截距式求出DE的方程。
上海市上海中学2018-2019学年高一下学期期末数学试题
上海中学2019学年第二学期期终考试数学试题一、选择题:1. .1lim 1n n →∞⎛⎫-= ⎪⎝⎭2.等差数列中,若,则 .{}n a 13,21,2n a a d ===n =3.数列中,已知,50为第 项.{}n a *41322,n n n a n N =-+∈•4. 为等比数列,若,则 .{}n a 1234126,52a a a a a ++=-=n a =5.用数学归纳法证明时,从“到”,()*(1)(2)()213(21)n n n n n n n N +++=-∈ ••n k =1n k =+左边需增乘的代数式是 .6. 数列满足,则等于 .{}n a 1211,3,(2)(1,2,)n n a a a n a n λ+===-= 3a 7. 数列满足,则 .{}n x *1112,2,,,n n n x x x n n N x a x b +-=-≥∈==2019x =8. 数列满足下列条件:,且对于任意正整数,恒有,则 .{}n a 11a =n 2n n a a n =+512a =9. 数列定义为,则 .{}n a 11cos ,sin cos ,1n n a a a n n θθθ+=+=+≥21n S +=10.已知数列是正项数列,是数列的前项和,且满足.若,{}n a n S {}n a n 112n n n S a a ⎛⎫=+ ⎪⎝⎭11n nn n a b S S ++=是数列的前项和,则 .n T {}n b n 99T =11. 一个三角形的三边成等比数列,则公比的范围是 .q 12. 数列满足,当时,,则{}n a 123451,2,3,4,5a a a a a =====5n ≥1121n n a a a a +=- •••是否存在不小于2的正整数,使成立?若存在,则在横线处直接填写m 2221212nv na a a a a a =+++ ••的值;若不存在,就填写“不存在” .m 二、选择题(每题3分)13.已知等差数列的公差为2,前项和为,且,则的值为( ){}n a n n S 10100S =7aA .11B .12 C. 13 D .1414.等比数列的前项和为,已知,则( ){}n a n n S 321510,9S a a a =+=1a =A .B . C. D .1313-1919-15.设等差数列的前项和为,则( ){}n a n 11,2,0,3n m m m S S S S -+=-==m =A .3 B .4 C. 5 D .616.设,若,则数列是( )02πα<<11sin ,(sin )(1,2,3,)n x n x x n αα+=== {}n x A .递增数列 B .递减数列C. 奇数项递增,偶数项递减的数列 D .偶数项递增,奇数项递减的数列三、解答题17. 等差数列的前项和为,求数列前项和.{}n a n 46,62,75n S S S =-=-{||}n a n 18. 已知数列的前项和{}n a n ()2*21n S n n n N =-+∈(1)求的通项公式;{}n a (2)若数列满足:,求的前项和(结果需化简){}n b ()*133log log n n a n b n N ++=∈{}n b n n T 19.某产品具有一定的时效性,在这个时效期内,由市场调查可知,在不作广告宣传且每件获得元的前提a 下,可卖出件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018-2019 学年上海市徐汇中学高一下学期期末数学试题一、单选题1.用数学归纳法证明n33n23n 1这一不等式时,应注意n 必须为()A.n N*B.n N*,n 2 C.n N*,n 3D n N*,n 4【答案】D【解析】根据题意验证n 1,n 2,n 3时,不等式不成立,当n 4时,不等式成立,即可得出答案.【详解】解:当n 1,n 2,n 3时,显然不等式不成立,当n 4 时,64 61 不等式成立,故用数学归纳法证明n33n23n 1这一不等式时,应注意n必须为n 4,n N* 故选:D.【点睛】本题考查数学归纳法的应用,属于基础题.2.设n N *,则“数列{ a n}为等比数列”是“数列{ a n}满足a n a n 3 a n 1 a n 2”的()A .充分非必要条件B.必要非充分条件C .充要条件D .既非充分也非必要条件【答案】Aa n 1 a n 3【解析】“数列{a n}为等比数列”,则n1 n 3 q,数列{ a n}满足a n a n 2a n a n 3 a n 1 a n 2 .反之不能推出,可以举出反例.【详解】a n 1 a n 3解:“数列{a n}为等比数列”,则q,数列{a n}满足a n a n 3 a n 1 a n 2.充a n a n 2分性成立;反之不能推出,例如a n 0,数列{ a n }满足a n a n 3 a n 1 a n 2 ,但数列不是等比数列,即必要性不成立;故“数列{a n }为等比数列 ”是“数列{ a n }满足a n a n 3 a n 1 a n 2 ”的充分非必要条件 故选: A .【点睛】 本题考查了等比数列的定义、简易逻辑的判定方法,考查了推理能力与计算能力,属于 中档题.3.设 z 是复数,从 z ,z ,z ,|z|2,|z 2 |,|z|2, z z 中选取若干对象组成集合,则 这样的集合最多有( )A .3 个元素B .4个元素C .5个元素D .6个元素【答案】 A【解析】设复数 z a bi a,b R 分别计算出以上式子,根据集合的元素互异性, 可判断答案 . 【详解】解:设复数 z a bi a,b Rz a bi a,b R , z a bi z a,b R ,2 2 2| z| a b ,22z z a bi a bi a 2b 2z 2 a bia 2b 2 2abi故选: A 【点睛】本题考查复数的运算及相关概念,属于中档题4.已知数列 A:a 1,a 2, ,a n (0 a 1 a 2a n ,n 3)具有性质 P :对任意 i 、 j1 i j n ),a j a i 与a j a i 两数中至少有一个是该数列中的一项,对于命题: ① 若数列 A 具有性质 P ,则 a 1 0; ② 若数列 a 1,a 2, a 3(0 a 1 a2 a3 )具有性质 P ,则 a 1 a 3 2a 2;下列判断正确的是( )A .①和 ②均为真命题B .①和 ②均为假命题C . ①为真命题, ② 为假命题D . ① 为假命题, ② 为真命题【答案】 A 【解析】本题是一种重新定义问题,要我们理解题目中所给的条件,解决后面22| z|ab 2z 2 a 2 b 22abia 2b 2 2ab a 2 b 2 a 2 b 2故由以上的数组成的集合最多有 a bi , a bi , a 2 b 2 这 3 个元素,的问题,把后面的问题挨个验证.【详解】解:①若数列{ a n}具有性质P,取数列{ a n}中最大项a n,则a n a n 2a n 与a n a n 0 两数中至少有一个是该数列中的一项,而2a n 不是该数列中的项,0是该数列中的项,又由0剟a1 a2 ? a n ,a1 0;故① 正确;② 数列a1,a2 ,a3具有性质P,0, a1 a2 a3,a1 a3 与a3 a1至少有一个是该数列中的一项,且a1 0 ,1 若a1 + a3是该数列中的一项,则a1 a3 a3 ,a1 0 ,易知a2 a3不是该数列的项a3 a2 a2 ,a1 a3 2a2 .2 若a3 a1是该数列中的一项,则a3 a1 a1或a2或a3,a、若a3 a1 a3 同1 ,b 、若a3 a1 a2 ,则a3 a2 ,与a2 a3 矛盾,c、a3 a1 a1,则a3 2a1 ,综上a1 a3 2a2.故②正确.故选:A .【点睛】考查数列的综合应用,此题能很好的考查学生的应用知识分析、解决问题的能力,侧重于对能力的考查,属中档题.、填空题25.计算: lim n 2n 2n3n 2 1答案】 136.若复数 z 满足 iz 1 i ( i 为虚数单位) ,则 z答案】 1 i解析】分析:由复数的除法运算可得解1 i 1 i i详解:由 iz 1 i ,得 z 1 i 1 i .i1故答案为: 1 i . 点睛:本题考查了复数的除法运算,属于基础题 .7.在等比数列 {a n } 中, a 3 4,a 5 16,则 a 7 _____________【答案】 64【解析】根据等比数列下标和性质解得。
【详解】解:因为数列 {a n } 是等比数列, a 3 4 , a 5 162 a 5 a3 a 7即 162 4a 7 解得 a 7 64 故答案为: 64 点睛】本题考查等比数列的性质若 m n p q ,则 a m a n a p a q ,属于基础题 . 8.若复数 z i (2i ) ( i 为虚数单位) ,则 z 的共轭复数 z ______________________解析】分子分母同除以 n2,即可求出结果 .详解】n 2n 2因为 limnn 2n 2 3n 2limn2n 3n 2 1 2 n11lim n n 2 2 n3 n 12n故答案为点睛】本题主要考查”型的极限计算,熟记常用做法即可,属于基础题型【答案】1 2i 【解析】利用复数代数形式的乘除运算化简,再由共轭复数的概念得答案.【详解】由z=i (2﹣i)=1+2i,得z 1 2i .故答案为:1﹣2i.【点睛】本题考查复数代数形式的乘除运算,考查共轭复数的基本概念,是基础题.9.已知数列{a n}满足a1 1,a n 1 2a n 1(n N*),则a5 _________________ .【答案】31【解析】根据数列的首项及递推公式依次求出a2、a3、⋯⋯a5即可.【详解】解:a1 1 ,a n 1 2a n 1a2 2a1 1 3a32a2 1 7a42a3 1 15a5 2a4 1 31故答案为:31【点睛】本题考查利用递推公式求出数列的项,属于基础题.10.设S n是等差数列a n 的前n项和,若S5 10,S10 5,则公差d (___).【答案】1【解析】根据两个和的关系得到公差条件,解得结果.【详解】由题意可知,S10 S5 5 10 15 ,即a6 a7 a8 a9 a10 15 ,又a1 a2 a3 a4 a5 10 ,两式相减得25d 25,d 1.【点睛】本题考查等差数列和项的性质,考查基本分析求解能力,属基础题.11.若a n 是等比数列,a4a7 512 ,a3 a8 124 ,且公比q为整数,则a10 _____________【答案】512【解析】由题设条件知a3和a8是方程x2 124x 512 0 的两个实数根,解方程x2 124x 512 0 并由公比q 为整数,知a3 4 ,a8 128 ,由此能够求出公比,从而得到a10 .【详解】a n 是等比数列,a4a7 512,a3 a8 124,a3a8 512,a3 a8 124 ,a3 和a8是方程x2 124x 512 0 的两个实数根,解方程x2 124x 512 0 ,得x1 128 ,x2 4 ,公比q 为整数,a3 4 ,a8 128 ,54q5 128 ,解得q 2,2a10 a8 ( 2) 2 128 4 512 .故答案为:512【点睛】本题考查等比数列的通项公式的求法,利用了等比数列下标和的性质,是基础题.解题时要认真审题,仔细解答,注意合理地进行等价转化.12.关于x的方程x24x m 0( m R)的两虚根为、,且| | 2,则实数m 的值是.【答案】5【解析】关于x方程x24x m 0 两数根为与,由根与系数的关系得:4,ab =m,由| | 2及与互为共轭复数可得答案.【详解】解:Q 与是方程x24x m 0 的两根由根与系数的关系得:4,ab = m,由与为虚数根得:4 4m 16i,4 4m 16i,22则| | | 4m 16i| 2 ,解得m 5 ,经验证,符合要求,故答案为:5 .【点睛】本题考查根与系数的关系的应用.求解是要注意与为虚数根情形,否则漏解,属于基础题.13.若{a n} 是等差数列,首项a1 0 ,a2006 a2007 0,a2006 a2007 0,则使前n 项和S n 最大的自然数n 是 _________________ .【答案】4012【解析】由已知条件推导出a2006 0,a2007 0 ,由此能求出使前n 项和S n 0成立的最大自然数n 的值.【详解】解:等差数列{a n},首项a1 0 ,a2006 a2007 0,a2006 a2007 0,a2006 0,a2007 0.如若不然,a2006 0 a2007 ,则d 0 ,而a1 0 ,得a2006 a1 2005d 0,矛盾,故不可能.a1 a4012 4012 a2006 a2007 4012S4012 = 022a1 a4013 4013S4013 =4013a2007 02使前n项和S n 0成立的最大自然数n为4012 .故答案为:4012 .【点睛】本题考查等差数列的前n项和取最大值时n的值的求法,是中档题,解题时要认真审题,第7 页共15 页注意等差数列的通项公式的合理运用.{a n }是递增数列,则满足条件的 q 的取值范围是答案】(0,1)考点】等比数列的性质的取值范围是 答案】 (0,32) (23,3)解析】由题意可得 q 1且 q 0,即 1 q 1且 q 0, a1 a2详解】33 化简可得 a 123 23q30 a 1 3且 a 12即 a 1 (0, 23) ( 23,3)33故答案为: (0,3) (3,3)22点睛】 本题考查数列极限以及不等式的性质,属于中档题16.数列{ a n }的前 n 项和为 S n ,a 1 2,且 3a n 1 2S n 3(n N *),记S a 1 a 2 a n ,则 S 的值是14.等比数列 {a n }中, a 1<0, 解析】试题分析:由题意可得a2a 1q a 1 a3 a 11 11,∴{ 112 ,解得 0<q <1 a 1q a 1q 2a215.若首项为 a 1,公比为 q ( q 1 ) 的等比数列 {a n }满足 l n im (2a 1a 1 a 2q n ) 23,则 a 12 a 132 ,化简可得33a 132 32q 由不等式的性质可得a 1 的取值范围 .解: lim(n2a 1 a 1 a 2q n ) 322a 1 lim na 1 a 2lim q nn故有 1 q 1且 q 0,2 a1a 1 a 2【答案】 31【解析】由已知条件推导出 {a n } 是首项为 2,公比为 的等比数列,由此能求出 S 的 3 值.【详解】 解:因为数列 {a n }的前 n 项和为 S n ,a 1 2,且3a n 1 2S n 3(n N * ),3a n 2S n 1 3, n 2.1 {a n } 是首项为2 ,公比为 1的等比数列,题.17.把正整数排列成如图甲所示的三角形数阵,然后擦去偶数行中的奇数和奇数行中的偶数,得到如图乙所示的三角形数阵,再把图乙中的数按从小到大的顺序排成 一列,得到一个数列 {a n } ,若 a n 2019 ,则 n ___________________3a n 1 a n 0 即an 1 a n113, n 2.21 3n112 1 n Sn2 13n S n113S a 1 a 2a nS limS n lim nn2 1 1n213n2 311331 13故答案为: 3点睛】本题考查数列的前 n 项和的求法,解题时要注意等比数列的性质的合理应用, 属于中档答案】 1032解析】 由图乙可得:第 k 行有 k 个数,且第 k 行最后的一个数为 k 2 ,从第三行开始每 一行的数从左到右都是公差为 2的等差数列,注意到 442 1936 , 452 2025 ,据此 确定 n 的值即可 . 【详解】分析图乙,可得 ①第k 行有 k 个数,则前 k 行共有 k(k 1)个数, ②第k 行最后的一个 2数为 k 2 ,③从第三行开始每一行的数从左到右都是公差为 2的等差数列,又由442 1936 , 452 2025 ,则 442 2019 452,则 2019出现在第 45行,第 45行990 个数,则 2019 为第 990 42 1032 个数.故填 1032 .点睛】 归纳推理是由部分到整体、由特殊到一般的推理,由归纳推理所得的结论不一定正确, 通常归纳的个体数目越多,越具有代表性,那么推广的一般性命题也会越可靠,它是一 种发现一般性规律的重要方法.三、解答题18.(1)已知数列 {a n }的前 n 项和 S n 满足 S n 2n 1,求数列 { a n }的通项公式;(2)数列 {a n } 满足 a 1 1,a n n a n1(n 2 ),求数列 {a n } 的通项公式 . 答案】 ( 1) a n =2n- 1;(2)a n2 n n .2S nn1 解析】 (1)利用 a n求出数列 {a n } 的通项公式;S n Sn 1n22)利用累加法求数列 {a n } 的通项公式; 详解】 解:( 1) S n 2n 1①当 n 1 时, S 1 2 1 1 即 a 1 1 当 n 2 时, S n 1 2n 1 1② ①减②得a n 2n 2n 1 2n 1n- 1经检验 n 1时, a n = 2n- 1成立 故 a n = 2n- 1( 2) a n n a n 1 ( n 2 )a n a n 1 n a 4 a 3 4a 3 a 2 a 2 a 1 2将上述式相加可得 a n a 1 2 3 4 L n第一个数为 4421 1937 ,这行中第2019 193721 42个数为 2019,前 44 行共44 45 2a a2 n n 1 an a12a 1 1n2nan2【点睛】本题考查作差法求数列的通项公式以及累加法求数列的通项公式,属于基础题 .219.已知方程 x 2 kx 100 0, k C .( 1)若 1 i 是它的一个根,求 k 的值; ( 2)若 k N * ,求满足方程的所有虚数的和 . 【答案】(1) 51 49i ;( 2) 190.【解析】(1)先设出 k 的代数形式,把 1 i 代入所给的方程,化简后由实部和虚部对应 相等进行求值;2)由方程由虚根的条件,求出 k 的所有的取值,再由方程虚根成对出现的特 点,求出所有虚根之和.【详解】 解:( 1)设 k a bi (a,b R ) , 1 i 是 x 2 kx 100 0的一个根,2(1 i)2 (a bi)(1 i) 100 0 , b a 100 (2 a b)i 0,2)方程 x 2 kx 100 0有虚根, k 2 4 100 0,解得 20k20 ,k N* , k 1,2,3 19,又 虚根是成对出现的, 所有的虚根之和为 1 2 19 190 .【点睛】 本题是复数的综合题,考查了复数相等条件的应用,方程有虚根的等价条件,以及方程 中虚根的特点,属于中档题.20 .2016 年崇明区政府投资 8 千万元启动休闲体育新乡村旅游项目. 规划从 2017 年 起,在今后的若干年内,每年继续投资 2 千万元用于此项目 .2016 年该项目的净收入 为 5 百万元,并预测在相当长的年份里,每年的净收入均为上一年的基础上增长50 00.记 2016 年为第 1 年, f n 为第 1 年至此后第 n n N 年的累计利润注:含第 n 年,累计利润 =累计净收入﹣累计投入,单位:千万元) ,且当 f n 为 正值时,认为该项目赢利.1)试求 f n 的表达式;2)根据预测,该项目将从哪一年开始并持续赢利?请说明理由.12 12 3212 32...21 23,利用等比数列数列的求和公式可得 f n ;(2) b a 100 0 2ab0解得 a 51 , b 49 , k 51 49i ,答案】 (1)2n 7;(2) 2023.解析】试题分析: ( 1)由题意知,第一年至此后第 n n N 年的累计投入为利用指数函数的单调性即可得出23n8 2 n 1 (千万元),第 1年至此后第 n n N 年的累计净收入为1f n 1 f n 12千万元),﹣4], ∴当 n ≤3时, f ( n+1)﹣ f (n )<0,故当 n ≤4时, f ( n )递减; 当 n ≥4时, f (n+1)﹣f (n )> 0,故当 n ≥4时, f (n )递增. 又 f ( 1)=﹣ <0,f (7) ﹣ 23=2 >0. ∴ 该项目将从第 8 年开始并持续赢利. 答:该项目将从 2023 年开始并持续赢利; 方法二:设 f (x ) =﹣2x﹣7(x ≥1),从而当 x ∈[1,4)时, f' (x )< 0, f (x )递减;当 x ∈(4,+∞)时, f'(x )> 0,f (x )递增.﹣ 23=2 >0.∴ 该项目将从第 8 年开始并持续赢利. 答:该项目将从 2023 年开始并持续赢利.1 2 1121.已知数列 {a n }前n 项和 S n n 2n (n N * ),数列{ b n }等差,且满足 b 3 11,22前 9 项和为 153.1)求数列 {a n } 、{b n } 的通项公式;试题解析:(1)由题意知,第 1年至此后第 n (n ∈ N )年的累计投入为 8+2( n ﹣1)=2n+6第 1年至此后第 n (n ∈ N )年的累计净收入为++千万元).﹣( 2n+6) =﹣ 2)方法一:∵f (n+1)﹣f (n )=[∴f (n )= 2n ﹣ 7(千万元).﹣ 2( n+1 )﹣ 7]﹣ [ 则 f ′( x ) ===又 f ( 1)=﹣ <0,f (7) =≈ 5×21=﹣2)设 c n3(2a n 11)(2b n1),数列 {c n }的前n 项和为 T n ,求T n 及使不等式× +×+⋯+ ×﹣ 2n ﹣ 7]= [﹣ 21=﹣ <0,f (8)= ﹣≈令 f'( x )=0,得 =5, ∴≈4.<0,f (8)=23≈25k *T n 2019对一切 n N * 都成立的最小正整数 k 的值;a n 2l 1( l )N *(3)设 f (n)an n 2l 1( l )N * ,问是否存在 m N *,使得 f(m 15) 5 f(m)b n n 2l(l N *)成立?若存在,求出 m 的值;若不存在,请说明理由 .【答案】(1) a n n 5,b n 3n 2 ;(2) T n 2n n 1,k min 1010 ;( 3) 11.【解析】(1)由数列的前 n 项和结合 a n S n S n 1(n ⋯2)求得数列 {a n }的通项公式,再 由b n 2 2b n 1 b n 0,可得 { b n }为等差数列,由已知求出公差,代入等差数列的通 项公式得答案;3( 2)把数列 {a n } ,{b n } 的通项公式代入 c n,然后利用裂项相消n n(2a n 11)(2 b n 1)k法求和,可得使不等式 T nk对一切 n 都成立的最小正整数 k 的值;n2019(3)分 m 为偶数和奇数分类分析得答案. 【详解】1 11解:( 1)由 S n 1n 2 11n.221 2 11 1 2 11故当 n ⋯2时, a n S n S n 1 ( n 2n) [ (n 1)2 (n 1)] n 5. 2 2 2 2n 1 时, a 1 S 1 6,而当 n 1时, n 5 6 ,a n n 5(n N * ) ,又 b n 2 2b n 1 b n 0 ,即 b n 2 b n 1 b n 1b n (n N * ) ,{b n } 为等差数列,于是9(b 3 b 7)153 . 2 23 11而 b 3 11,故 b 7 23, d23 113,3 77 3因此, b n b 3 3(n 3) 3n 2 ,即 b n 3n 2(n N * );3[2( n 5) 11][(2(3 n 2) 1]1 1 1 1(2n 1)(2n 1) 2(2n 1 2n 1)T n c 1 c 2 c n 1[(1 1) (1 1) (1 1)( 1 1)] 1(1 1)n 1 2 n2 3 3 5 5 7 2n 1 2n 1 2 2n 12)3(2a n 11)(2b n 1)n 2n 1n 5,(n 2l 1,l N ) f(n)* 3n 2,(n 2l,l N * ).①当 m 为奇数时, m 15为偶数.此时 f (m 15) 3(m 15) 2 3m 47, 5f(m) 5(m 5) 5m 25 ,3m 47 5m 25, m 11.②当 m 为偶数时, m 15为奇数.此时 f (m 15) m 15 5 m 20 , 5f(m) 5(3m 2) 15m 10 .m 20 15m 10 , 5*m 7 N * (舍去).综上,存在唯一正整数 m 11,使得 f (m 15) 5f (m) 成立. 【点睛】本题考查数列递推式,考查了等差关系的确定,训练了裂项相消法求数列的和,考查数 列的函数特性,体现了分类讨论的数学思想方法,是中档题.易知 T n 单调递增,k 1由T n 2019,得k 2019T n,而T n 2,故k⋯1095.k min1010 ;3)。