高一数学排序

合集下载

高一年级竞赛数学:4.排序不等式与切比雪夫不等式

高一年级竞赛数学:4.排序不等式与切比雪夫不等式

A4.排序不等式与切比雪夫不等式一、基础知识排序不等式:设12n a a a ≤≤≤,12.n b b b ≤≤≤12,,,n j j j 是1,2,,n 的任意一个排列.则1111k nnnk n k k j k k k k k a ba b a b -+===≤≤∑∑∑当且仅当12n a a a ===或12n b b b ===时取等.可简记为反序和≤乱序和≤同序和.切比雪夫不等式:设12n a a a ≤≤≤,12.n b b b ≤≤≤则111()().nnni i i i i i i a b n a b ===≤∑∑∑设12n a a a ≤≤≤,12.n b b b ≥≥≥则111()().n n ni i i i i i i a b n a b ===≥∑∑∑当且仅当12n a a a ===或12n b b b ===时取等.二、典型例题与基本方法1.用排序不等式证明:设12,,,n a a a 是正数,1,nii an=≤∑当且仅当12n a a a ===取等.2.用切比雪夫不等式证明:设12,,,n a a a 是正数,则11,1nii ni ianna==≥∑∑当且仅当12n a a a ===取等.3.已知,,0a b c >,证明:888333111.a b c a b c a b c ++++≤4.设,,a b c 是ABC ∆的三边长,证明:222()()()0.a b a b b c b c c a c a -+-+-≥5.设,,,0,a b c d >且22224,a b c d +++=证明:22224+.3a b c d b c d c d a d a b a b c ++≥++++++++6.设0(1,2,,),i a i n >=且11.ni i a ==∑求122313121111nnnn a a a S a a a a a a a a a -=+++++++++++++++的最小值.7.设,,1,a b c >且满足222111 1.111a b c ++=---证明:1111.111a b c ++≤+++8.设,,0,a b c >证明:2().a b b c c a a b c b c c a a b ab bc ca+++++++≤+++++B4.练习 姓名:1.用切比雪夫不等式证明:设12,,,n a a a 是正数,则1nii an=≤∑当且仅当12n a a a ===取等.2.设,,0,x y z >求证:2222220.z x x y y z x y y z z x---++≥+++3.设12,,,(2)n x x x n ≥都是正数,且11,n i i x ==∑求证:1ni =≥A4.排序不等式与切比雪夫不等式参考解答一、基础知识排序不等式:设12n a a a ≤≤≤,12.n b b b ≤≤≤12,,,n j j j 是1,2,,n 的任意一个排列.则1111k nnnk n k k j k k k k k a ba b a b -+===≤≤∑∑∑当且仅当12n a a a ===或12n b b b ===时取等.可简记为反序和≤乱序和≤同序和.证明:11111111()()(())()kk k i nnnnn kk kkj k k j n k j i j k k k k k k k i a b a ba b b a b b b b a a -+======-=-=-+--∑∑∑∑∑∑111111111111()()()()()0.k i i n nn k k n k kn k j i j k k i j k k k k k i i k i i a b b b b a a b b a a --++=========-+--=--≥∑∑∑∑∑∑∑∑11111111()()(())()kk k i n nn n n kk kkj k k j n k j i j k k k k k k k i a b a ba b b a b b b b a a -+======-=-=-+--∑∑∑∑∑∑.于是11.knnk j k k k k a ba b ==≤∑∑当且仅当12n a a a ===或12n b b b ===时取等.111111111111()()(())()k k k i nn n n n kk n k k j k n k j n n k j n i j k k k k k k k i a ba b a b b a b b b b a a --+-+-+-++======-=-=-+--∑∑∑∑∑∑111111111111111()()()()()0.k i i n n n k k n k kn n k j n i j k k n i j k k k k k i i k i i a b b b b a a b b a a ---+-++-++=========-+--=--≤∑∑∑∑∑∑∑∑于是111.k nnk n k k j k k a ba b -+==≤∑∑当且仅当12n a a a ===或12n b b b ===时取等.切比雪夫不等式:设12n a a a ≤≤≤,12.n b b b ≤≤≤则111()().n n ni i i i i i i a b n a b ===≤∑∑∑设12n a a a ≤≤≤,12.n b b b ≥≥≥则111()().n n ni i i i i i i a b n a b ===≥∑∑∑当且仅当12n a a a ===或12n b b b ===时取等.证明:法1由排序不等式知道1122112212231112212111122n n n n n n n n n n n na b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b -+++=++++++≤++++++≤+++于是121111.nnnniin i i i i i i i a b a b a b n a b ====+++≤∑∑∑∑即111()().nnni i i i i i i a b n a b ===≤∑∑∑当且仅当12n a a a ===或12n b b b ===时取等.法2 11111111111()()()().nnnnnnnnnnni iiii ii ji ii jiiji i i i j i j i j i j na b a b a b a b a b a b a b b ===========-=-=-=-∑∑∑∑∑∑∑∑∑∑∑11111111()()()()().n n n n n n n ni i i i j j j j j j i i i i j j j i j n a b a b n a b a b a b b ========-=-=-∑∑∑∑∑∑∑∑于是1111111112(()())()()()()0.n n n n n n nn ni iiiiijjji i j i j i i i i j i j i j na b a b a b b a bb a a b b =========-=-+-=--≥∑∑∑∑∑∑∑∑∑于是111()().nnniii ii i i a b n a b ===≥∑∑∑当且仅当12n aa a ===或12nb b b ===时取等.二、典型例题与基本方法1.用排序不等式证明:设12,,,n a a a 是正数,1,nii an=≤∑当且仅当12n a a a ===取等.证明:由排序不等式知道12121112111111.nnn n nx x x x x x n x x x x x x -+++≥+++= 即1211.nn n x x x n x x x -+++≥ 令G =12112122,,,.nn na a a a a a x x x G GG===于是1211221211211.nn n n nn a a a a a a GG G n a a a a a a a G G G--+++≥即12.na a a n G GG+++≥ 于是1.nii anG =≤∑1.nii an=∑当且仅当12n a a a ===取等.2.用切比雪夫不等式证明:设12,,,n a a a 是正数,则11,1nii ni ian na ==≥∑∑当且仅当12n a a a ===取等.证明:不妨设120,n a a a ≥≥≥>则12111.na a a ≤≤≤由切比雪夫不等式知211111()().nn ni i i i i i in n a a a a ====⋅≤∑∑∑所以11.1ni i ni ia n n a ==≥∑∑当且仅当12n a a a ===取等.3.已知,,0a b c >,证明:888333111.a b c a b c a b c++++≤ 证明:不妨设0,a b c ≥≥>则555333333111,,a b c bc ca ab b c c a a b≥≥≤≤≥≥由排序不等式知 888555555222333333333333333333.a b c a b c a b c a b c a b c b c c a a b c a a b b c c a b++=++≥++=++又222333111,,a b c a b c ≥≥≤≤于是再使用排序不等式得222222333333111.a b c a b c c a b a b c a b c++≥++=++所以888333111.a b c a b c a b c++++≤4.设,,a b c 是ABC ∆的三边长,证明:222()()()0.a b a b b c b c c a c a -+-+-≥证明:等价于证明333222222.a b b c c a a b b c c a ++≥++再等价于222.a b c ab bc cac a b c a b++≥++(*) 不妨设,a b c ≥≥则111.a b c≤≤ 又,,a b c 是ABC ∆的三边长,所以,a b c +>从而()()().a b a b c a b +-≥-即22.a bc b ac +≥+因为,b c a +>从而()()().b c b c a b c +-≥-即22.b ac c ab +≥+所以222.a bc b ac c ab +≥+≥+由排序不等式知222222.a bc b ac c ab a bc b ac c aba b c c a b++++++++≤++ 即222.bc ac ab a b c a b c c a b++≤++于是(*)得证.从而222()()()0.a b a b b c b c c a c a -+-+-≥5.设,,,0,a b c d >且22224,a b c d +++=证明:22224+.3a b c d b c d c d a d a b a b c ++≥++++++++ 证明:不妨设.a b c d ≥≥≥则22221111,.a b c d b c d c d a d a b a b c≥≥≥≥≥≥++++++++先切比雪夫不等式,再使用柯西不等式,最后使用平均值不等式得2222222211114(+)()(+)a b c d a b c d b c d c d a d a b a b c b c d c d a d a b a b c++≥+++++++++++++++++++++211114(1111)644(+)3()3()b c d c d a d a b a b c a b c d a b c d +++=++≥=++++++++++++++16.3≥=于是22224+.3a b c d b c d c d a d a b a b c ++≥++++++++6.设0(1,2,,),i a i n >=且11.ni i a ==∑求122313121111nnnn a a a S a a a a a a a a a -=+++++++++++++++的最小值.解:1212222nna a aS a a a =+++---. 不妨设1210,n a a a >≥≥≥>则121110.222na a a ≥≥≥>--- 使用切比雪夫不等式有12121211111111()()().222222n n nS a a a na a a n a a a ≥++++++=+++------ 在使用柯西不等式得2121211111(111)()().22222221n n n S n a a a n a a a n +++≥+++≥=----+-++-- 当且仅当121n a a a n ====等号成立.所以S 的最小值为.21nn -7.设,,1,a b c >且满足222111 1.111a b c ++=---证明:111 1.111a b c ++≤+++ 证明:因为2222222221113,111111a b c a b c a b c ++=++-------所以222222 4.111a b c a b c ++=---又22222222211144(),111111a b c a b c a b c ++==++------所以2222224440.111a b c a b c ---++=--- 不妨设,a b c ≥≥于是222222,.111111a b c a b c a b c a b c ---+++≥≥≤≤+++--- 这是因为23()111x f x x x -==-++在(1,)+∞单调递增,23()111x g x x x +==+--在(1,)+∞单调递减. 于是使用切比雪夫不等式得22222244412222220()().1113111111a b c a b c a b c a b c a b c a b c ------+++=++≤++++---+++--- 因为,,1,a b c >所以2220.111a b c a b c +++++>--- 于是2220.111a b c a b c ---++≥+++ 因为22213131311133()0.111111111a b c a b c a b c a b c a b c ---+-+-+-++=++=-++≥+++++++++ 所以1111.111a b c ++≤+++8.设,,0,a b c >证明:2().a b b c c a a b c b c c a a b ab bc ca+++++++≤+++++ 证明:即证2()()().a b b c c aab bc ca a b c b c c a a b+++++++≤+++++ 因为()()().a b a b bcab bc ca a a b b c b c ++++=++++ 同理()()().b c b c caab bc ca b b c c a c a++++=++++ ()()().c a c a ab bc ca ab c c a a b a b++++=++++ 于是()()()()()()()()a b b c c a a b bc b c ca c a abab bc ca a a b b b c c c a b c c a a b b c c a a b++++++++++≤++++++++++++++ 222()()().a b bc b c ca c a aba b c ab bc ca b c c a a b+++=+++++++++++于是只须证明()()().a b bc b c ca c a abab bc ca b c c a a b+++++≤+++++(*)不妨设,a b c ≥≥于是111.a b c ≤≤从而111111.a b b c c a +≤+≤+即.a b c a b c ab ca bc+++≤≤ 所以.ab ca bca b c a b c≥≥+++又.a b a c b c +≥+≥+ 使用排序不等式得()()()()()().a b bc b c ca c a ab ab ca bca b c a b c ab bc ca b c c a a b a b c a b c+++++≤+++++=++++++++于是(*)得证.从而2().a b b c c a a b c b c c a a b ab bc ca+++++++≤+++++B4.练习 姓名:1.用切比雪夫不等式证明:设12,,,n a a a 是正数,则1nii an=≤∑当且仅当12n a a a ===取等.证明:不妨设120.n a a a ≥≥≥>由切比雪夫不等式知2211111()()().nnnnnii i i i i i i i i i nan a a a a a ======⋅≤=∑∑∑∑∑所以1nii an=≤∑当且仅当12n a a a ===取等.2.设,,0,x y z >求证:2222220.z x x y y z x y y z z x---++≥+++证明:所证不等式等价于222222.z x y x y z x y y z x z x y y z z x++≥++++++++(*)不妨设,x y z ≤≤则222111,.x y z x y x z y z≤≤≥≥+++ 使用排序不等式得(*).所以原不等式成立.3.设12,,,(2)n x x x n ≥都是正数,且11,ni i x ==∑求证:1ni =≥证明:不妨设12,n x x x ≥≥≥1x ≥≥≥-使用切比雪夫不等式得1111()(nnn ni i i i x n ===≥=∑使用柯西不等式得1ni n=≤==于是1nni =≥≥。

高中数学教学进度表

高中数学教学进度表

高中数学教学进度表高一上学期教学进度安排如下:1.第1周:集合的含义及其表示;子集、全集、补集;交集、并集;题课。

2.第2周:一元二次不等式的解法。

3.第3周:简单高次不等式及分式不等式的解法。

4.第4周:简单绝对值不等式的解法;复课。

5.第5周:函数的概念和图像;函数的表示方法;函数的简单性质。

6.第6周:函数的简单性质;映射的概念。

7.第7周:函数题课。

8.第8周:二次函数图像、概念和性质;二次函数在给定区间上的最值问题。

9.第9周:分数指数幂;指数函数。

10.第10周:指数函数;对数。

11.第11周:对数;对数函数。

12.第12周:幂函数;题课。

13.第13周:简单复合函数的研究。

14.第14周:二次函数与一元二次方程;用二分法求方程的近似解;函数模型及其应用;题课。

15.第15周:复与期中考试。

16.第16周:任意角;弧度制;题课(角范围的表示)。

高一下学期教学进度安排如下:1.第1周:任意角的三角函数的概念;三角函数线(补充简单的三角不等式)。

2.第2周:同角三角函数的基本关系;同角三角函数的基本关系;诱导公式;题课。

3.第3周:三角函数的周期性;正、余弦函数的图象及五点法;正、余弦函数的性质(补充对称性)。

4.第4周:正、余弦函数的性质题课;正切函数的图象与性质;题课。

5.第5周:函数y=Asin(ωx+φ)的图像;三角函数的应用。

6.第6周:向量的概念及其表示;向量的加法;向量的减法;向量的数乘;题课。

7.第7周:平面向量的基本定理;平面向量的座标表示及运算;向量平行的座标表示;向量的数量的概念。

8.第8周:向量数量积的座标表示;题课;复与小结。

9.第9周:两角和与差的余弦;两角和与差的正弦;题课(补asinx+bcosx的内容);两角和与差的正切;题课。

10.第10周:二倍角的三角函数,明确降幂公式;题课;几个三角恒等式。

11.第11周:三角函数的化简、求值和证明;复与小结。

12.第12周:期末复。

高一数学中的组合数学初步是什么

高一数学中的组合数学初步是什么

高一数学中的组合数学初步是什么在高一数学的学习中,我们会接触到一个新的领域——组合数学初步。

组合数学听起来似乎有些高深莫测,但实际上它与我们的日常生活和许多实际问题都有着紧密的联系。

组合数学简单来说,就是研究如何按照一定的规则安排和选取事物的数学分支。

它关注的是计数、排列和组合等问题。

先来说说计数。

假设我们要从班级里选出一名班长,有 50 名同学可供选择,那么有多少种不同的选法呢?这就是一个简单的计数问题。

再比如,从一副扑克牌中抽取 5 张牌,有多少种可能的组合?这也是组合数学要研究的内容。

排列则是考虑顺序的选取方式。

比如,从 10 个不同的数字中选取 3 个并按照一定的顺序排列,有多少种排列方式?如果我们要给书架上的 5 本书进行排序,又有多少种不同的排列顺序?组合则不考虑顺序。

从 10 个同学中选出 3 个参加比赛,不考虑他们的出场顺序,有多少种选法?组合数学会告诉我们答案。

组合数学在现实生活中有很多实际应用。

比如,在密码学中,为了保证密码的安全性,需要生成复杂的组合;在彩票游戏中,计算中奖的可能性就涉及到组合数学的知识;在计算机科学中,算法的优化、数据的存储和检索等也离不开组合数学。

在高一数学中,我们学习的组合数学初步知识主要包括基本的计数原理、排列组合的公式和应用。

基本的计数原理有两个,分别是分类加法计数原理和分步乘法计数原理。

分类加法计数原理是指,如果完成一件事有 n 类不同的方案,在第1 类方案中有 m1 种不同的方法,在第 2 类方案中有 m2 种不同的方法……在第 n 类方案中有 mn 种不同的方法,那么完成这件事共有 N = m1 + m2 +… + mn 种不同的方法。

比如说,从甲地到乙地,有 3 条陆路可走,2 条水路可走,那么从甲地到乙地共有 3 + 2 = 5 种不同的走法。

分步乘法计数原理是指,如果完成一件事需要 n 个步骤,做第 1 步有 m1 种不同的方法,做第 2 步有 m2 种不同的方法……做第 n 步有mn 种不同的方法,那么完成这件事共有 N =m1 × m2 × … × mn 种不同的方法。

高中数学排列与组合综合测试卷

高中数学排列与组合综合测试卷

高中数学排列与组合综合测试卷(含解析)选修2-3 1.2.2第三课时排列与组合习题课一、选择题1.(2021山东潍坊)6个人分乘两辆不同的汽车,每辆车最多坐4人,则不同的乘车方法数为()A.40B.50C.60D.70[答案]B[解析]先分组再排列,一组2人一组4人有C26=15种不同的分法;两组各3人共有C36A22=10种不同的分法,因此乘车方法数为252=50,故选B.2.有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法有()A.36种B.48种C.72种D.96种[答案]C[解析]恰有两个空座位相邻,相当于两个空位与第三个空位不相邻,先排三个人,然后插空,从而共A33A24=72种排法,故选C.3.只用1,2,3三个数字组成一个四位数,规定这三个数必须同时使用,且同一数字不能相邻显现,如此的四位数有()A.6个B.9个C.18个D.36个[答案]C[解析]注意题中条件的要求,一是三个数字必须全部使用,二是相同的数字不能相邻,选四个数字共有C13=3(种)选法,即1231,1232,1233,而每种选择有A22C23=6(种)排法,因此共有36=18(种)情形,即如此的四位数有18个.4.男女学生共有8人,从男生中选取2人,从女生中选取1人,共有30种不同的选法,其中女生有()A.2人或3人B.3人或4人C.3人D.4人[答案]A[解析]设男生有n人,则女生有(8-n)人,由题意可得C2nC18-n=30,解得n=5或n=6,代入验证,可知女生为2人或3人.5.某幢楼从二楼到三楼的楼梯共10级,上楼能够一步上一级,也能够一步上两级,若规定从二楼到三楼用8步走完,则方法有() A.45种B.36种C.28种D.25种[答案]C[解析]因为108的余数为2,故能够确信一步一个台阶的有6步,一步两个台阶的有2步,那么共有C28=28种走法.6.某公司聘请来8名职员,平均分配给下属的甲、乙两个部门,其中两名英语翻译人员不能分在同一个部门,另外三名电脑编程人员也不能全分在同一个部门,则不同的分配方案共有()A.24种B.36种C.38种D.108种[答案]B[解析]本题考查排列组合的综合应用,据题意可先将两名翻译人员分到两个部门,共有2种方法,第二步将3名电脑编程人员分成两组,一组1人另一组2人,共有C13种分法,然后再分到两部门去共有C13A22种方法,第三步只需将其他3人分成两组,一组1人另一组2人即可,由因此每个部门各4人,故分组后两人所去的部门就已确定,故第三步共有C13种方法,由分步乘法计数原理共有2C13A22C13=36(种).7.组合数Crn(n1,n,rZ)恒等于()A.r+1n+1Cr-1n-1 B.(n+1)(r+1)Cr-1n-1C.nrCr-1n-1 D.nrCr-1n-1[答案]D[解析]∵Crn=n!r!(n-r)!=n(n-1)!r(r-1)![(n-1)-(r-1)]!=nrCr-1n-1,故选D.8.已知集合A={5},B={1,2},C={1,3,4},从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,则确定的不同点的个数为() A.33 B.34C.35 D.36[答案]A[解析]①所得空间直角坐标系中的点的坐标中不含1的有C12A33=12个;②所得空间直角坐标系中的点的坐标中含有1个1的有C12A33+A33=18个;③所得空间直角坐标系中的点的坐标中含有2个1的有C13=3个.故共有符合条件的点的个数为12+18+3=33个,故选A.9.(2021四川理,10)由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是()A.72 B.96C.108 D.144[答案]C[解析]分两类:若1与3相邻,有A22C13A22A23=72(个),若1与3不相邻有A33A33=36(个)故共有72+36=108个.10.(2021北京模拟)假如在一周内(周一至周日)安排三所学校的学生参观某展览馆,每天最多只安排一所学校,要求甲学校连续参观两天,其余学校均只参观一天,那么不同的安排方法有()A.50种B.60种C.120种D.210种[答案]C[解析]先安排甲学校的参观时刻,一周内两天连排的方法一共有6种:(1,2)、(2,3)、(3,4)、(4,5)、(5,6)、(6,7),甲任选一种为C16,然后在剩下的5天中任选2天有序地安排其余两所学校参观,安排方法有A25种,按照分步乘法计数原理可知共有不同的安排方法C16A25=120种,故选C.二、填空题11.安排7位工作人员在5月1日到5月7日值班,每人值班一天,其中甲、乙二人都不能安排在5月1日和2日,不同的安排方法共有_____ ___种.(用数字作答)[答案]2400[解析]先安排甲、乙两人在后5天值班,有A25=20(种)排法,其余5人再进行排列,有A55=120(种)排法,因此共有20210=2400(种)安排方法.12.今有2个红球、3个黄球、4个白球,同色球不加以区分,将这9个球排成一列有________种不同的排法.(用数字作答)[答案]1260[解析]由题意可知,因同色球不加以区分,实际上是一个组合问题,共有C49C25C33=1260(种)排法.13.(2021江西理,14)将6位理想者分成4组,其中两个组各2人,另两个组各1人,分赴世博会的四个不同场馆服务,不同的分配方案有___ _____种(用数字作答).[答案]1080[解析]先将6名理想者分为4组,共有C26C24A22种分法,再将4组人员分到4个不同场馆去,共有A44种分法,故所有分配方案有:C26C 24A22A44=1 080种.14.(2021山东济宁)要在如图所示的花圃中的5个区域中种入4种颜色不同的花,要求相邻区域不同色,有________种不同的种法(用数字作答).[答案]72[解析]5有4种种法,1有3种种法,4有2种种法.若1、3同色,2有2种种法,若1、3不同色,2有1种种法,有432(12+11)=72种.三、解答题15.(1)运算C98100+C199200;(2)求20C5n+5=4(n+4)Cn-1n+3+15A2n+3中n的值.[解析](1)C98100+C199200=C2100+C1200=100992+200=4950+200=5150.(2)20(n+5)!5!n!=4(n+4)(n+3)!(n-1)!4!+15(n+3)(n+2),即(n+5)(n+4)(n+3)(n+2)(n+1)6=(n+4)(n+3)(n+2)(n+1)n6+15(n+3) (n+2),因此(n+5)(n+4)(n+1)-(n+4)(n+1)n=90,即5(n+4)(n+1)=90.因此n2+5n-14=0,即n=2或n=-7.注意到n1且nZ,因此n=2.[点拨]在(1)中应用组合数性质使问题简化,若直截了当应用公式运算,容易发生运算错误,因此,当mn2时,专门是m接近于n时,利用组合数性质1能简化运算.16.(2021东北师大附中模拟)有一排8个发光二极管,每个二极管点亮时可发出红光或绿光,若每次恰有3个二极管点亮,但相邻的两个二极管不能同时点亮,依照这三个点亮的二极管的不同位置和不同颜色来表示不同的信息,求这排二极管能表示的信息种数共有多少种?[解析]因为相邻的两个二极管不能同时点亮,因此需要把3个点亮的二极管插放在未点亮的5个二极管之间及两端的6个空上,共有C36种亮灯方法.然后分步确定每个二极管发光颜色有222=8(种)方法,因此这排二极管能表示的信息种数共有C36222=160(种).17.按下列要求把12个人分成3个小组,各有多少种不同的分法?(1)各组人数分别为2,4,6个;(2)平均分成3个小组;(3)平均分成3个小组,进入3个不同车间.[解析](1)C212C410C66=13 860(种);(2)C412C48C44A33=5 775(种);(3)分两步:第一步平均分三组;第二步让三个小组分别进入三个不同车间,故有C412C48C44A33A33=C412C48C44=34 650(种)不同的分法.18.6男4女站成一排,求满足下列条件的排法共有多少种?(1)任何2名女生都不相邻有多少种排法?(2)男甲不在首位,男乙不在末位,有多少种排法?(3)男生甲、乙、丙排序一定,有多少种排法?(4)男甲在男乙的左边(不一定相邻)有多少种不同的排法?[解析](1)任何2名女生都不相邻,则把女生插空,因此先排男生再让女生插到男生的空中,共有A66A47种不同排法.(2)方法一:甲不在首位,按甲的排法分类,若甲在末位,则有A99种排法,若甲不在末位,则甲有A18种排法,乙有A18种排法,其余有A88种排法,综上共有(A99+A18A18A88)种排法.方法二:无条件排列总数A1010-甲在首,乙在末A88甲在首,乙不在末A99-A88甲不在首,乙在末A99-A88甲不在首乙不在末,共有(A1010-2A99+A88)种排法.(3)10人的所有排列方法有A1010种,其中甲、乙、丙的排序有A33种,又对应甲、乙、丙只有一种排序,因此甲、乙、丙排序一定的排法有A 1010A33种.要练说,得练听。

排列组合方法归纳大全

排列组合方法归纳大全

排列组合方法归纳大全解决排列组合综合性问题的一般过程如下:1。

认真审题弄清要做什么事2。

怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。

3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略一。

特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2。

7人站成一排,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法。

练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为三。

不相邻问题插空策略例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种?练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目。

如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为四。

定序问题倍缩空位插入策略例4.7人排队,其中甲乙丙3人顺序一定共有多少不同的排法练习题:10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法?五.重排问题求幂策略例5。

把6名实习生分配到7个车间实习,共有多少种不同的分法练习题:1.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为2. 某8层大楼一楼电梯上来8名乘客人,他们到各自的一层下电梯,下电梯的方法六.环排问题线排策略例6. 8人围桌而坐,共有多少种坐法? 练习题:6颗颜色不同的钻石,可穿成几种钻石圈七。

多排问题直排策略例7.8人排成前后两排,每排4人,其中甲乙在前排,丙在后排,共有多少排法练习题:有两排座位,前排11个座位,后排12个座位,现安排2人就座规定前排中间的3个座位不能坐,并且这2人不左右相邻,那么不同排法的种数是八.排列组合混合问题先选后排策略例8.有5个不同的小球,装入4个不同的盒内,每盒至少装一个球,共有多少不同的装法。

3.3 排序不等式 课件(人教A选修4-5)

3.3 排序不等式 课件(人教A选修4-5)
3 [答案] 2
点击下图片 进入:
[悟一法]
利用排序不等式证明不等式的关键是构造出不等式 中所需要的带大小顺序的两个数组,由于本题已知a≥b≥c, 所以可直接利用已知构造两个数组.
[通一类]
π 1.已知 0<α<β<γ< ,求证:sin αcos β+sin βcos γ+sin γcos 2 1 α> (sin 2α+sin 2β+sin 2γ). 2 π π 证明:∵0<α<β<γ< ,且 y=sin x 在(0, )为增函数, 2 2 π y=cos x 在(0, )为减函数, 2 ∴0<sin α<sin β<sin γ,cos α>cos β>cos γ>0.
anb1 ≤ a1c1+a2c2+…+ancn ≤
a1b1+a2b2+…+an或 b1=b2=…=bn 时,反序和等
于顺序和.
[小问题· 大思维] 1.排序不等式的本质含义是什么? 提示:排序不等式的本质含义是:两实数序列同方向单 调(同时增或同时减)时所得两两乘积之和最大,反方向 单调(一增一减)时所得两两乘积之和最小,注意等号成 立条件是其中一序列为常数序列.
中地位的对称性,限定一种大小关系.
[通一类]
a1a2 a2a3 a3a1 2.设 a1,a2,a3 为正数,求证: + + ≥a1+a2+a3. a3 a1 a2 证明:不妨设 a1≥a2≥a3>0,于是
1 1 1 ≤ ≤ ,a a ≤a a ≤a1a2, a1 a2 a3 2 3 3 1 由排序不等式:顺序和≥ 乱序和得 a1a2 a3a1 a2a3 1 1 1 + + ≥ ·a+ ·a+ ·a a a a a3 a2 a1 a2 2 3 a3 3 1 a1 1 2 =a3+a1+a2. a1a2 a2a3 a3a1 即 + + ≥a1+a2+a3. a3 a1 a2

2019年春季高一数学竞赛讲义-第七讲-排序不等式-教师版

2019年春季高一数学竞赛讲义-第七讲-排序不等式-教师版

例题精讲【例1】.设12,,,n a a a 是两两不同的正整数,证明:2111n n k k k a k k==≥∑∑解析用排序不等式。

对于任意给定的正整数n ,将12,,,n a a a 按从小到大顺序排列为12n a a a '''≤≤≤ 。

因为2222211111(1)321n n <<<<<- ,据排序不等式得12122222221111111212n n a a a a a a n n '''+++≤+++ ,即22111n n k k k k a a k k =='≥∑∑。

又因为12,,,n a a a''' 为两两不等的正整数,所以k a k '≥(n k ,...2,1=),于是221111n n n k k k k a k k k k ==='≥=∑∑∑,故∑∑==≥nk n k kk k a 1121。

【例2】假设12,,,n b b b 是正数12,,,n a a a 的某一排列,证明:1n i i ianb =≥∑解析由对称性,不妨设120n a a a ≥≥≥> ,则1211111n n a a a a -≥≥≥≥ ,注意到12111,,,n b b b 是12111,,,na a a 的一个排列,故由排序不等式:乱序和大于等于逆序和第7讲排序不等式12121212111111...n n n na a a a a a nb b b a a a ⋅+⋅++⋅≥⋅+⋅++⋅= 即证1212...n na a a nb b b +++≥【例3】若0,1i x i n >≤≤,利用排序不等式,再次证明如下命题:222223112122341n n n n x x x x x x x x x x x x x -+++++≥+++ 思考:本题和第2题有什么不同之处?解析对22212,,,n x x x ,12111,,,nx x x 而言不能直接排序(因为不是对称式).设12,,,n x x x 从小到大的排序是12,,,n a a a ,从而22212n a a a ≤≤≤ ,12111n a a a ≥≥≥ 再设12,,,n b b b 是12,,,n x x x 的任意一个排列,则由排序不等式:乱序和大于等于逆序和,有2222221212111212111111n n n n i i i i n n a a a a a a a x b b b a a a ==⋅+⋅+⋅≥⋅+⋅+⋅==∑∑ 注意到可取i b 为分母2i a 所对应的j x ,则知22222212121223112111n n n nx x x a a a x x x x x x b b b +++=⋅+⋅+⋅≥+++ 【例4】设ABC ∆的三内角,,A B C 所对的边分别为,,a b c ,其周长为1,求证:1113(a b c A B C A B C++≥++解析注意到排序不等式,由对称性,不妨设a b c ≥≥,则有A B C ≥≥,则有111C B A≥≥由排序不等式:乱序和大于等于逆序和,则有1113()a b c a b c a b c A B C A B Ca b c b c a c a b A B C A B C A B C a b c A B C ++++++++=++⎛⎫⎛⎫⎛⎫=++++++++ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭≥++设,,a b c 为正数,求证333a b c a b c bc ac ab++≥++解析方法一:排序不等式不妨设a b c ≥≥,则111bc ac ab ≥≥,a b c bc ac ab≥≥,则由排序不等式:顺序和大于等于乱序和,有222222a b c a b c ab bc ac ac ab bc a b c b c a a b c bc ac ab bc ac ab c a b c a b++≥++=++≥++=++方法二:利用柯西不等式和均值不等式()()()()3334442222223*********a b c a b c bc ac ab abca b c a b c abc abc a b c a b c ++=++⎡⎤≥++≥++⎢⎥⎣⎦=++⋅≥++【例6】设0a b c d e ≤≤≤≤≤,且1a b c d e ++++=,求证15ad dc cb be ea ++++≤解析因为a b c d e ≤≤≤≤,所以d e c e b d a c a b +≥+≥+≥+≥+,利用切比雪夫不等式,有()()()()()12()[()()()()()]55a d ebc e c bd d a ce a b a b c d e d e c e b d a c a b +++++++++≤+++++++++++++=也即22()5ad dc cb be ea ++++≤,因此15ad dc cb be ea ++++≤【例7】将1,2,3(2018)n n ≥ 这n 个正整数任意排列可以得到!n 个不同的数列,问其中是否存在4个数列:123,,,n a a a a ,123,,,n b b b b ,123,,,n c c c c ,23,,,n d d d d 使得11221122332()n n n n a b a b a b c d c d c d c d +++=++++ .解析考虑形如1122n n a b a b a b +++ 的和式的最大值和最小值.由排序不等式,有:2221122112(1)(21)6n n a b a b a b n n n n +++≤+++=++ 11222211112(1)1(1)1(1)(1)(1)(21)26n n n n n k k k a b a b a b n n n n n k n k n k k n n n ===+++≥⋅+⋅-++⋅+=+-=+-=-++∑∑∑ 可知最大值和最小值之比小于2故不存在.(国际数学奥林匹克)设12...n x x x ≤≤≤,12...n y y y ≤≤≤,又12,,...,n z z z 是12,,...,n y y y 的一个排列,求证:2211()()n ni i i i i i x y x z ==-≤-∑∑解析由排序不等式,得11n n i i i i i i x y x z ==≥∑∑,即1122n ni i i i i i x y x z ==-≤-∑∑,但222211()()n ni i i i i i x y x z ==+=+∑∑,所以222211(2)(2)n ni i i i i i i i i i x x y y x x z z ==-+≤-+∑∑,也就是2211()()n ni i i i i i x y x z ==-≤-∑∑【例9】设c b a ,,是三角形的三边长,求证:222()()()3a b c a b c a b c a b c abc +-++-++-≤解析不妨设c b a ≥≥,首先有先得()()()a b c a b c a b c a b c +-≤+-≤+-,由排序不等式,则有222()()()()()()a b c a b c a b c a b c ab c a b bc a b c ca b c a +-++-++-≤+-++-++-以及222()()()()()()a b c a b c a b c a b c ab b c a bc c a b ca a b c +-++-++-≤+-++-++-以上两不等式相加便得.。

高一数学排序不等式知识点

高一数学排序不等式知识点

高一数学排序不等式知识点数学是一门需要逻辑思维和推理能力的学科,其中不等式是数学中重要的一个分支。

排序不等式是在不等式的基础上,对一系列数值进行排序的一种方法。

在高一数学中,掌握排序不等式的知识点对于学生来说是非常重要的。

一、基础概念首先,我们来复习一下不等式的基础概念。

不等式是表示两个数或两个算式的关系的一种数学表达式。

常见的不等式包括大于号(>),小于号(<),大于等于号(≥),小于等于号(≤)等。

二、排序不等式的意义为什么要学习排序不等式?首先,排序不等式是数学中解决实际问题的重要工具。

在现实生活中,我们经常需要对一些数进行排序,例如排名、分数等。

其次,掌握排序不等式可以帮助我们更好地理解数的大小关系。

三、常见排序不等式1. 加减法法则:考虑到加减法运算的性质,对于任意实数a,b,c,有如下排序不等式:- 若a > b,那么a ± c > b ± c;- 若a > b,且c > 0,那么a × c > b × c;- 若a > b,那么a ÷ c > b ÷ c(其中c ≠ 0)。

2. 乘法法则:考虑到乘法运算的性质,对于任意实数a,b,c (其中c > 0),有如下排序不等式:- 若a > b,那么a × c > b × c;- 若a < b,那么a × c < b × c。

3. 幂法则:考虑到幂运算的性质,对于任意实数a,b,c(其中a > 0,b > 0,c > 0),有如下排序不等式:- 若a > b,那么a^c > b^c;- 若a < b,那么a^c < b^c。

四、综合运用了解了常见的排序不等式后,我们来看几个综合的例子,进一步理解排序不等式的应用。

例1:比较两个不等式的大小关系:3 + 5 × 2和6 × 2 - 4。

高一必修三数学知识点笔记梳理

高一必修三数学知识点笔记梳理

高一必修三数学知识点笔记梳理1.高一必修三数学知识点笔记梳理篇一向量的运算加法运算AB+BC=AC,这种计算法则叫做向量加法的三角形法则。

已知两个从同一点O出发的两个向量OA、OB,以OA、OB为邻边作平行四边形OACB,则以O为起点的对角线OC就是向量OA、OB的和,这种计算法则叫做向量加法的平行四边形法则。

对于零向量和任意向量a,有:0+a=a+0=a。

a+b,≤,a,+,b。

向量的加法满足所有的加法运算定律。

减法运算与a长度相等,方向相反的向量,叫做a的相反向量,-(-a)=a,零向量的相反向量仍然是零向量。

(1)a+(-a)=(-a)+a=0(2)a-b=a+(-b)。

数乘运算实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa,λa,=,λ,a,当λ>0时,λa的方向和a的方向相同,当λ<0时,λa的方向和a的方向相反,当λ=0时,λa=0。

设λ、μ是实数,那么:(1)(λμ)a=λ(μa)(2)(λμ)a=λaμa(3)λ(a±b)=λa±λb(4)(-λ)a=-(λa)=λ(-a)。

向量的加法运算、减法运算、数乘运算统称线性运算。

向量的数量积已知两个非零向量a、b,那么,a,b,cosθ叫做a与b的数量积或内积,记作a?b,θ是a与b的夹角,a,cosθ(,b,cosθ)叫做向量a在b方向上(b在a方向上)的投影。

零向量与任意向量的数量积为0。

2.高一必修三数学知识点笔记梳理篇二数列与函数的关系它们的变量都满足函数定义,都是函数。

可以有an=f(n),函数和数列的问题可以相互转化。

函数问题转化成数列问题来解决,就是数列法。

如,先认识数列极限,再认识函数极限。

数列的问题转化成函数问题来解决,就是函数法。

如,用求函数最值的方法来求数列的最值。

数列,是以正整数集(或它的有限子集)为定义域的函数,是一列有序的数。

数列中的每一个数都叫做这个数列的项。

高中数学教案排序方法

高中数学教案排序方法

高中数学教案排序方法教案标题:三角函数的基本概念与性质一、教学目标:1. 理解三角函数的概念,能够准确描述三角函数的定义;2. 掌握正弦函数、余弦函数、正切函数的基本性质;3. 能够运用三角函数的性质解决相关问题。

二、教学内容:1. 三角函数的定义;2. 正弦函数、余弦函数、正切函数的图像特征;3. 三角函数的基本性质;4. 三角函数的相关定理。

三、教学过程:1. 导入新知识(5分钟)- 通过展示一个三角形和一个直角三角形,引出三角函数的概念。

2. 探讨三角函数的定义(15分钟)- 讲解正弦函数、余弦函数、正切函数的定义,并与直角三角形的边长关系进行联系。

3. 探究三角函数的图像特征(20分钟)- 展示正弦函数、余弦函数、正切函数的图像,让学生观察并总结其特征。

4. 学习三角函数的基本性质(20分钟)- 分别介绍正弦函数、余弦函数、正切函数的周期性、奇偶性、单调性等性质,并通过例题进行讲解。

5. 运用三角函数解决问题(20分钟)- 给出一些应用题,让学生运用三角函数的性质解决问题,加深对知识的理解。

6. 总结与作业(10分钟)- 对本节课所学内容进行总结,并布置相关作业,巩固学生的学习成果。

四、教学手段:1. PowerPoint课件;2. 教学板书;3. 视频演示。

五、教学评价:1. 通过课堂讨论、小组合作、解题演示等方式,检验学生对三角函数的理解和掌握程度;2. 汇总学生的作业,分析学生的问题和表现,及时给予帮助和指导。

六、教学反思:1. 教学内容是否清晰易懂;2. 学生学习效果如何;3. 教学方法是否得当,是否能够吸引学生的注意力和积极性。

高一数学排列组合与概率统计问题

高一数学排列组合与概率统计问题
将10个小球串成一串,截为4段有 C93 84
种截断法,对应放到4个盒子里. 因此,不同的分配方案共有84种 .
6.错位法: 编号为1至n的n个小球放入编号为1到 n的n个盒 子里,每个盒子放一个小球.要求小球与盒子的编 号都不同,这种排列称为错位排列. 特别当n=2,3,4,5时的错位数各为1,2,9,44.
A44 A77
种A 排法.
→↑ →↑ ↑ →→→↑ →→ 1 ①2 ②③3 4 5 ④6 7
其中必有四个↑和七个→组成!
所以, 四个↑和七个→一个排序就对应一条路经,
所以从A到B共有
C51 (51)(81)
C141
条不同的路径.
5.剪截法(隔板法):
n个 相同小球放入m(m≤n)个盒子里,要求每个 盒子里至少有一个小球的放法等价于n个相同小球 串成一串从间隙里选m-1个结点剪截成m段. 例5. 某校准备参加今年高中数学联赛,把16个选手 名额分配到高三年级的1-4 个教学班,每班至少一个 名额,则不同的分配方案共有___种.
例4. 5个人站成一排,甲总站在乙的右侧的有多少 种站法?
方法1:将5个人依次站成一排,有 A55 种站法,
然后再消去甲乙之间的顺序数 A22
∴甲总站在乙的右侧的有站法总数为
A55 A22
543
A53
方法2:先让甲乙之外的三人从5个位置选出3个站好,
有 A53 种站法,留下的两个位置自然给甲乙有1种站法
第一步,把甲乙排列(捆绑): 有A22=2种捆法甲 乙
第二步,甲乙两个人的梱看作一个元素与其它的排队:
有A55=120种排法
共有2 120=240种排法
几个元素必须相邻时,先 捆绑成一个元素,再与 其它的进行排列.

5.排列组合讲解

5.排列组合讲解

例3,5名学生和3名老师站成一排照相,3名老师必须站在一起的不同排法共有 种。
[解析]将3名老师捆绑起来看成一个元素,与5名学生排列,有 种排法;而3名老师之间又有 种排法,故满足条件的排法共有 种。
例4,计划展出10幅不同的画,其中一幅水彩画,4幅油画,5幅国画,排成一行陈列,要求同一品种的画必须连在一起,并且水彩画不放在两端,那么不同的陈列方式有多少种?
A、 56种 B、57种 C、58种 D、 60种
[解析]从高位向低位依次考虑,分3类:
①当首位是2时,若千位是4、5,则有 个;若千位是3,百位是4、5,则有 个;若千位是3,百位是1,则只有一个数即23154,故当首位是2时,共有12+4+1=17个。
[解析]先将4名学生平均分成两组(属平均分组),有 = 种分法;再将这两组学生安排到该年级6个班中的两个班有 种。所以不同的安排方法有 ,故选B项。
10,复杂问题——转换法:
对于有些较为复杂的排列、组合问题,若不能用以上方法解决,可以采取等价转换的方法,转化为其它问题然后解决。
例5,有10个学生,其中4人中任意两个不能站在一起,有多少种排列次序?
[解析]先将其余6人进行排列,有 种;再把不相邻的4人分别排在前6人形成的7个空隙中,有 种。所以共有 种排列次序。
例6,有4名男生,3名女生站成一排,任何两名女生彼此不相邻,有多少不同的排法?
[解析]由于要求女生不相邻,应先排男生,有 种;然后在男生形成的5个空隙中分别安排3名女生,有 种,所以共有 种。
师:在上面解题过程中,很好的运用了有条件限制的位置优先的原则,这种解法是直接法还有其他方法吗?
分别在排头、排尾的4种情况.

高一数学上册重点知识点

高一数学上册重点知识点

高一数学上册重点知识点1. 实数的定义和性质实数是由有理数和无理数组成的,具有相对大小和相对位置的性质。

实数集包括整数、有理数和无理数,其中整数和有理数可以用分数和小数来表示。

2. 二次根式二次根式是指形如√a的数,其中a是一个非负实数。

二次根式的性质包括:相同的二次根式相等;任何非负实数的二次根式都是实数;二次根式可以进行加减乘除运算。

3. 幂的运算幂是指形如a^n的数,其中a是底数,n是指数。

幂的运算规则包括:相同底数的幂相乘时,底数不变,指数相加;幂的幂时,指数相乘;0的任何正数次幂等于0,0的0次幂没有意义;1的任何次幂都等于1。

4. 一次函数和二次函数一次函数是指形如y = kx + b的函数,其中k称为斜率,b称为截距。

一次函数的图像是一条直线。

二次函数是指形如y = ax^2 + bx + c的函数,其中a、b、c是常数,且a不等于0。

二次函数的图像是一条抛物线。

5. 三角函数三角函数是指正弦、余弦、正切等函数,是数学中的重要概念。

三角函数与直角三角形的关系密切,其中正弦函数定义为对边与斜边的比值,余弦函数定义为邻边与斜边的比值,正切函数定义为对边与邻边的比值。

6. 平面向量平面向量是指具有大小和方向的量,可以表示为有序数对。

平面向量的运算包括向量的加法、减法、数量乘法和点乘法。

点乘法可以用来计算向量的夹角和向量的长度。

7. 平面解析几何平面解析几何是指用数学的方法研究平面上的几何问题。

平面上的点可以用坐标表示,直线和曲线可以用方程表示。

平面上的距离、中点、斜率等概念可以通过坐标计算得出。

8. 概率与统计概率与统计是数学中的一个重要分支,涉及到随机试验、事件的概率、统计数据的分析和归纳等内容。

概率与统计可以用来对现象进行预测、研究和决策。

9. 排列与组合排列与组合是指对一组元素进行有序或无序排列的数学方法。

排列是指从n个不同元素中挑选r个元素进行排序,组合是指从n个不同元素中挑选r个元素不考虑顺序。

5.4柯西不等式与排序不等式 课件(人教A版选修4-5)

5.4柯西不等式与排序不等式 课件(人教A版选修4-5)
人各拿一只水桶去接水,设水 龙头注满第i(i=1,2,…,10)个人的水桶需 要ti分,假定这些ti各不相同。 问:只有一个水龙头时,应该如何安排10 人的顺序,使他们等候的总时间最少? 这个最少的总时间等于多少?
解:总时间(分)是 10t1+9t2+…+2t9+t10 根据排序不等式,当t1<t2<…<t9<t10时, 总时间取最小值。 即:按水桶的大小由小到大依次接水, 则10人等候的总时间最少。 最少的总时间是: 10t1+9t2+…+2t9+t10
例1.已知a,b为实数,证明:
(a4+b4) (a2+b2)≥ (a3+b3)2
例 2 .求 函 数 y 5
x 1
1 0 2 x的 最 大 值 .
例3.设a,b∈R+,a+b=1,求证
1 a 1 b 4
注意应用公式: ( a b )( 1 a 1 b ) 4
练习:
1 .已 知 2 x 3 y 6 ,
2 2
求证x 2y
11
2 .已 知 a b 1,
2 2
求 证 | a c o s b s in | 1
作业
第37页,第1,5,6题
二 一般形式的 柯西不等式
二维形式的柯西不等式): (a2+b2)(c2+d2)≥(ac+bd)2
又因
1
1
2
2

1
3
2
...
1
n
2
由排序不等式,得: a3 an b3 bn a2 b2 a 1 2 2 ... 2 b1 2 2 ... 2 2 3 n 2 3 n 1 1 1 1 1 1 1 1 2 2 3 2 ... n 2 1 ... 2 3 n 2 3 n

高一数学必修一知识归纳

高一数学必修一知识归纳

高一数学必修一知识归纳高一数学必修一知识归纳一、数据分析1、概念及基本操作:数据分析是分析数据的属性、统计量和关系,以测量和描述数据集中贯穿的结论规律,以决定分析结果的方法。

它可以帮助确定有用的信息,改善实现业务目标的方式和效果,以及从决策中获取有利可图的结果。

其基本操作有:频率统计、分组统计、数据类型识别、排序、最大/小值、相关性等。

2、数据可视化:数据可视化是一种信息可视化技术,通过把数据转换成不同类型的图形,使人们更容易分析和理解数据。

它可以帮助提高数据分析的效率,有助于重现数据,从而使报告可读性更强。

常见的数据可视化形式有折线图、饼图、直方图、柱状图、地图等。

二、函数1、概念及表达:函数是实数集上的某一特定关系,其特点是:每个x 值只能对应一个y值;除加或减两个相同函数外,其他几何操作不可应用于函数之上;把它的定义域的值代入定义式,就可以求得对应的函数值。

函数的表达形式有代数式、函数列、隐函数表示法等。

2、奇偶性:函数在某一定义域上有奇偶性,称相应的函数为奇函数或偶函数,若f(-x)=-f(x)则称f(x)为奇函数;若f(-x)=f(x)则称f(x)为偶函数。

3、参数函数:带参数的函数称为参数函数。

它的特点是:每个参数值对应一个函数,此函数由参数值确定。

参数函数的概念与取值范围有关,不同的参数可以产生不同的函数。

三、代数式1、代数式的种类:代数式有根式、分数式、混合式、一元多项式、二元多项式、二元三角形式等多种。

2、根式:根式是比形如数学里一个种类最为低级的,也是最基本的代数式。

根式形式表示是:√x,其中x为正平方数;也可以表示为x^1/2的形式。

3、分数式:分数式是由分子和分母组成,每个分数都可以用一个有理数来表示,如1/2表示一半;a/b表示a分之b的意思;比如3/5表示3分之5,即3份中的有5份;分子如果是常数,可以用加减乘除法,以及乘方这些方法运算;两个分数可以求对应有现数,或者有理数等。

高一数学排列组合与概率统计问题

高一数学排列组合与概率统计问题
分析: 问题等价于把16个相同小球放入4个盒子 里,每个盒子至少有一个小球的放法种数问题.
将16个小球串成一串,截为4段有 C135 455
种截断法,对应放到4个盒子里.
因此,不同的分配方案共有455种 .
/yhxsyl/
5.剪截法:
n个 相同小球放入m(m≤n)个盒子里,要求每个 盒子里至少有一个小球的放法等价于n个相同小球 串成一串从间隙里选m-1个结点剪截成m段. 变式: 某校准备参加今年高中数学联赛,把16个选 手名额分配到高三年级的1-4 个教学班,每班的名额 不少于该班的序号数,则不同的分配方案共有___种. 分析: 问题等价于先给2班1个,3班2个,4班3个, 再把余下的10个相同小球放入4个盒子里,每个盒子 至少有一个小球的放法种数问题.
将10个小球串成一串,截为4段有 C93 84
种截断法,对应放到4个盒子里. 因此,不同的分配方案共有84种 .
/amyhxsyl/
6.错位法: 编号为1至n的n个小球放入编号为1到 n的n个盒 子里,每个盒子放一个小球.要求小球与盒子的编 号都不同,这种排列称为错位排列. 特别当n=2,3,4,5时的错位数各为1,2,9,44.
7.剔除法 从总体中排除不符合条件的方法数,这是 一种间接解题的方法. 例7.四面体的顶点和各棱中点共10个点,在其 中取4个不共面的点,不同的取法共有__种. 解:本题直接计数很困难,可用间接法,
从10个点中取4个有C140 210 种方法,
剔除四点共面的情况有:
(1)四点在同一表面三角形上的种数为 4C64 60
5.剪截法(隔板法):
n个 相同小球放入m(m≤n)个盒子里,要求每个 盒子里至少有一个小球的放法等价于n个相同小球 串成一串从间隙里选m-1个结点剪截成m段. 例5. 某校准备参加今年高中数学联赛,把16个选手 名额分配到高三年级的1-4 个教学班,每班至少一个 名额,则不同的分配方案共有___种.

高一数学排列组合综合应用试题

高一数学排列组合综合应用试题

高一数学排列组合综合应用试题1.完成一项工作,有两种方法,有5个人只会用第一种方法,另外有4个人只会用第二种方法,从这9个人中选1人完成这项工作,一共有多少种选法?()A.5B.4C.9D.20【答案】C【解析】完成一项用方法一有5种,用方法二有4种,因此共有4+5=9种.【考点】分类加法计数原理.2.从6名班委中选出2人分别担任正、副班长,一共有多少种选法?()A.11B.12C.30D.36【答案】C【解析】第一步从6人中选一人担任正班长,有6种情况;第二步从剩余5人中选一人担任副班长,有5种情况,有分步乘法计数原理得有【考点】步乘法计数原理.3.一个袋中有6个同样大小的黑球,编号为1、2、3、4、5、6,现从中随机取出3个球,以X表示取出球的最大号码. 则X所有可能取值的个数是()A.6B.5C.4D.3【答案】C【解析】随机变量的可能取值为取值个数为4.【考点】离散型随机变量的取值.4.(本题满分10分)从5名男医生、4名女医生中选出3名医生组成一个医疗小分队,要求其中男、女医生都有,则不同的组队方案共有多少种?【答案】70【解析】(1)排列与元素的顺序有关,而组合与顺序无关,如果两个组合中的元素完全相同,那么不管元素的顺序如何,都是相同的组合;只有当两个组合中的元素不完全相同,才是不同的组合;(2)排列、组合的综合问题关键是看准是排列还是组合,复杂的问题往往是先选后排,有时是排中带选,选中带排;(3)对于排列组合的综合题,常采用先组合(选出元素),再排列(将选出的这些元素按要求进行排序)试题解析:第一类,男医生1人,女医生2人,有种,第二类,男医生2人,女医生1人,有种,因此共有30+40=70.【考点】排列组合的综合应用.5.如图所示,将若干个点摆成三角形图案,每条边(包括两个端点)有n(n>1,n∈N*)个点,相应的图案中总的点数记为an ,按上述规律,则a6=_________,an=_________.【答案】,.【解析】由于,因此构成的是公差为3的等差数列,因此..【考点】等差数列的概念和通项公式.6.用0,1,2,3,4这五个数字组成无重复数字的五位数,其中恰有一个偶数夹在两个奇数之间的五位数共有【答案】28【解析】0,1,2,3,4中有3个偶数,2个奇数,分3种情况讨论:①、0被奇数夹在中间,先考虑奇数1、3的顺序,有2种情况;再将1、0、3看成一个整体,与2、4全排列,有A33=6种情况;故0被奇数夹在中间时,有2×6=12种情况;②、2被奇数夹在中间,先考虑奇数1、3的顺序,有2种情况;再将1、0、3看成一个整体,与2、4全排列,有A33=6种情况,其中0在首位的有2种情况,则有6-2=4种排法;故2被奇数夹在中间时,有2×4=8种情况;③、4被奇数夹在中间时,同2被奇数夹在中间的情况,有8种情况,则这样的五位数共有12+8+8=28种;故答案为28.【考点】简单排列组合应用问题,计数原理。

高一数学必修一总结笔记

高一数学必修一总结笔记

高一数学必修一总结笔记一、集合、简易逻辑(14课时,8个)1.集合;2.子集;3.补集;4.交集;5.并集;6.逻辑连结词;7.四种命题;8.充要条件。

二、函数(30课时,12个)1.映射;2.函数;3.函数的单调性;4.反函数;5.互为反函数的函数图象间的关系;6.指数概念的扩充;7.有理指数幂的运算;8.指数函数;9.对数;10.对数的运算性质;11.对数函数.12.函数的应用举例。

三、数列(12课时,5个)1.数列;2.等差数列及其通项公式;3.等差数列前n项和公式;4.等比数列及其通顶公式;5.等比数列前n项和公式。

四、三角函数(46课时,17个)1.角的概念的推广;2.弧度制;3.任意角的三角函数;4.单位圆中的三角函数线;5.同角三角函数的基本关系式;6.正弦、余弦的诱导公式;7.两角和与差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函数、余弦函数的图象和性质;10.周期函数;11.函数的奇偶性;12.函数的图象;13.正切函数的图象和性质;14.已知三角函数值求角;15.正弦定理;16.余弦定理;17.斜三角形解法举例。

五、平面向量(12课时,8个)1.向量;2.向量的加法与减法;3.实数与向量的积;4.平面向量的坐标表示;5.线段的定比分点;6.平面向量的数量积;7.平面两点间的距离;8.平移。

六、不等式(22课时,5个)1.不等式;2.不等式的'基本性质;3.不等式的证明;4.不等式的解法;5.含绝对值的不等式。

七、直线和圆的方程(22课时,12个)1.直线的倾斜角和斜率;2.直线方程的点斜式和两点式;3.直线方程的一般式;4.两条直线平行与垂直的条件;5.两条直线的交角;6.点到直线的距离;7.用二元一次不等式表示平面区域;8.简单线性规划问题;9.曲线与方程的概念;10.由已知条件列出曲线方程;11.圆的标准方程和一般方程;12.圆的参数方程。

八、圆锥曲线(18课时,7个)1.椭圆及其标准方程;2.椭圆的简单几何性质;3.椭圆的参数方程;4.双曲线及其标准方程;5.双曲线的简单几何性质;6.抛物线及其标准方程;7.抛物线的简单几何性质。

高一数学怎么归纳总结知识点

高一数学怎么归纳总结知识点

高一数学怎么归纳总结知识点高一是数学学科知识的积累和扩展的关键阶段。

在这一学段,学生将接触到更多的数学概念和知识点,因此,掌握如何归纳总结知识点是至关重要的。

通过有效的总结和归纳,不仅可以加深对数学知识的理解和记忆,还可以提高解题能力和应用能力。

本文将介绍一些方法和技巧,帮助高一学生归纳总结数学知识点。

首先,归纳总结数学知识点时可以根据不同的章节和主题进行分类。

例如,高一数学主要包括函数与方程、三角函数、立体几何等内容,我们可以将这些内容分成不同的类别,分别进行总结。

在总结时,可以按照章节的顺序或重要程度排序,以便更好地掌握和记忆。

其次,可以运用图表和思维导图的方式来归纳总结知识点。

图表和思维导图可以帮助我们将知识点之间的关系和联系清晰地展示出来,帮助我们更好地理解和记忆。

例如,在函数与方程的学习中,我们可以画出一个表格,列出不同类型的函数及其特点、图像、性质和应用,使不同的函数之间的关系一目了然。

此外,可以使用例题和习题来归纳总结知识点。

通过对一些典型例题和习题的分析和解答,可以帮助我们更好地理解和掌握知识点,同时也可以将常见的解题方法和技巧归纳总结起来,以备后续的学习和应用。

在解答过程中,可以注意将解题思路和关键步骤写下来,这样有助于我们回顾和记忆。

另外,可以利用技术手段来辅助归纳总结知识点。

如今,我们可以使用电子设备和互联网资源来查找和整理数学知识点。

可以使用电子表格软件制作整理表格,使用文字处理软件编写笔记和总结,利用互联网查找和收集相关的例题和习题。

通过技术手段的应用,可以更加便捷和高效地归纳总结知识点。

最后,需要不断复习和巩固所学的知识点。

光靠归纳总结是不够的,合理的复习和巩固才能够真正掌握和应用所学的数学知识。

可以按照一定的计划和时间安排进行复习,做一些针对性的练习题,加深对知识点的理解和记忆。

同时,可以结合课堂讲义和教材,进行有针对性的复习,重点关注易错的知识点和解题方法。

综上所述,归纳总结数学知识点是高一数学学习中至关重要的环节。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
购中,按照采购的标的物划分,不属于招标采购合同的是()。A.工程采购合同B.货物采购合同C.服务采购合同D.项目采购合同 [单选]李某2011年全年的工资情况如下,1至6月份每月工资收入7500元,7至12月每月工资收入8500元;则李某2011年工资薪金应缴纳的个人所得税为()元。A.4440B.7980C.7020D.9900 [单选]300MW机组的火力发电厂,每台机组直流系统采用控制和动力负荷合并供电方式,设两组220kV阀控蓄电池。蓄电池容量为1800Ah,103只。每组蓄电池供电的经常负荷为60A。均衡充电时不与母线相连。在充电设备参数选择计算中下列哪组数据是不正确的()?A.充电装置额定电流满足浮充 [判断题]狭义的银行卡则指由商业银行发行的银行卡。A.正确B.错误 [单选]()是按照是否为《合同法》所规定的合同类型来划分。A.双务合同B.有名合同C.默示合同D.书面合同 [判断题]制图综合程度的大小只受图解尺寸的影响。A.正确B.错误 [单选]某工业企业的下列做法中,不符合会计信息质量可比性要求的是()。A.企业于2007年1月1日执行新企业会计准则B.发出存货的计价方法一经确定,不得随意变更,如需变更需在财务报告附注中说明C.因客户的财务状况好转,将坏账准备的计提比例由应收账款余额的30%降为15%D.鉴 [单选]在母线倒闸操作中,母联断路器的()应拉开。A.跳闸回路B.操作电源C.直流回路D.断路器本体 [单选,A1型题]关于免疫耐受的叙述哪项是正确的()A.产生免疫耐受后对各种抗原均不感受B.免疫耐受无记忆性C.免疫耐受就是免疫抑制D.产生自身耐受是自身免疫病的起因E.对病毒感染免疫耐受的机体易发生该病毒的疾病 [单选,A1型题]妊娠13周行钳刮术,术中夹出黄色脂肪样组织,患者觉剧烈腹痛、恶心呕吐,脉搏110次/分,血压70/50mmHg,首先考虑的诊断为()A.子宫穿孔B.葡萄胎C.异位妊娠D.人流综合征E.羊水栓塞 [多选]累进税率是根据征税对象数额的大小不同,规定不同等级的税率,它可分为()。A.全额累进税率B.超额累进税率C.全率累进税率D.超率累进税率 [填空题]加压后的液氨气化时体积会膨胀(),并大量(),使周围物质的温度()。 [单选]聚合物主链中的取代基有规律的交替排列在中轴分子链的两端的聚合物,称为()。A、定向聚合;B、间规聚合;C、无规聚合;D、本体聚合。 [单选]为了减少和解决女职工在劳动中因()造成的特殊困难,保护女职工健康,制定《女职工劳动保护特别规定》。A、身体状况B、生理特点C、疾病与不适D、性别弱势 [单选]下列不是浸水、漏水紧急事件的处理方法是()。A.通知变压器、配电室和电梯等采取紧急措施B.利用现有的设备工具,排除积水,清理现场C.对现场拍照D.检查排水管道是否畅通,防止淤塞 [单选,B1型题]珠蛋白生成障碍性贫血()A.红细胞渗透脆性试验B.酸溶血试验C.抗人球蛋白试验D.高铁血红蛋白还原试验E.血红蛋白电泳分析 [单选]根据支付结算法律制度的规定,下列票据欺诈行为中,属于伪造票据的是()。A.假冒出票人在票据上签章B.涂改票据号码C.对票据金额进行挖补篡改D.修改票据密押 [单选,A2型题,A1/A2型题]下列化学发光酶免疫分析特点中错误的是()A.属于酶免疫测定范畴B.整个反应无需固相载体参加,完全液态化C.酶标记抗原或抗体结合稳定D.酶催化发光剂发出的光稳定,持续时间长E.最后一步将底物改为发光剂和测定的仪器为光信号检测仪 [单选]修船质量的好坏,关系着船舶的使用寿命和经济性,因此必须抓好修理前的准备、修理时的监修和修理后的()三个主要工作环节,以确保短修期、低修费、高质量的船舶修理。A.试验B.调校C.检查D.验收 [单选,A2型题,A1/A2型题]腺垂体分泌的激素作用不包括()A.促卵泡发育B.促排卵C.促黄体生成D.促泌乳E.促孕卵输送 [单选,A1型题]医疗机构从业人员分为几个类别()A.3个B.4个C.5个D.6个E.7个 [填空题]()认为,人与动物的根本区别在于(),并认为人类的进化过程中,经过了三个依次递进的阶段,即攀树的猿群,正在形成中的人和完全形成的人. [单选]蒺藜不具有的功效是()A.平肝B.疏风C.软坚散结D.祛风明目E.散风止痒 [单选]王某租赁张某一套住房,租赁期间为2009年1月1日至12月31日,约定2009年6月30日之前支付房租,但王某一直未付房租,张某也未催要。根据民事诉讼法律制度关于诉讼时效的规定,张某可以向法院提起诉讼、主张其民事权利的法定期间是()。A.2010年6月30日之前B.2010年12月31日之前 [问答题,案例分析题]男性、32岁,主诉:反复咯血3年,加重2天,就诊。请针对该案例,说明问诊内容与技巧。 [单选]不属再生障碍性贫血的发病机制是()A.造血干细胞损伤B.造血微环境损伤C.免疫性造血抑制DNA合成障碍E.以上均是 [单选]血清结合珠蛋白测定,下列不正确的是()A.电泳法B.酶联免疫法C.比色法D.免疫电泳法E.以上都是 [单选]分区独立运行互不干扰,供水可靠,水泵集中布置便于维护管理,能源消耗较小的给水方式是()。A.并联直接给水方式B.分区并联给水方式C.气压水罐并联给水方式D.分区串联给水方式 [单选,A2型题,A1/A2型题]不属于CT重建方法的有()A.反投影法B.迭代法C.滤波反投影法D.傅立叶重建法E.扫场法 [填空题]普拉提是由()著名康复专家约瑟夫.普拉提创立并推广的。 [单选,A1型题]医疗机构施行特殊治疗,无法取得患者意见又无家属或者关系人在场,或者遇到其他特殊情况时,经治医师应当提出医疗处置方案,在取得()A.病房负责人同意后实施B.科室负责人同意后实施C.医疗机构质监部门负责人批准后实施D.科室全体医师讨论通过后实施E.医疗机构负责 [单选]某施工项目,工程合同价300万元,建设工期6个月。则开工前,建设单位到位资金不得少于()万元。A.90B.100C.150D.300 [判断题]B超检测宫内节育器不论金属或塑料结构均能检出,且可确定在宫内的位置是否适合。A.正确B.错误 [单选]上层建筑甲板上的空气管自甲板至水可能进入下面的那一点的高度至少为()。A、600mmB、760mmC、450mmD、380mm [单选]按《合同法》的规定,合同生效后,当事人就价款或者报酬没有约定的,确定价款或报酬时应按()的顺序履行。A.订立合同时履行地的市场价格、合同有关条款、补充协议B.合同有关条款、补充协议、订立合同时履行地的市场价格C.补充协议、合同有关条款、订立合同时履行地的市场价 [填空题]喷淋装置的作用是液体的()尽可能均匀,以利于气液的()。 [单选,B1型题]丙酮酸激酶缺乏症的诊断()A.Coombs试验B.Ham试验C.Rous试验D.PK活性定量测定E.血红蛋白电泳测定 [单选]下列卵巢粘液性囊腺瘤临床表现与声像图特点,哪一项是错误的A.囊腔内有较多分隔B.分隔呈不均匀性增厚C.不伴有腹水D.增厚的囊壁可向周围浸润E.肿瘤新生血管频谱多普勒测定呈低阻波形 [单选,B1型题]儿童孤独症的主要临床表现()A.多动、冲动、注意力不集中B.简单的发声或运动抽动C.社会交往障碍,兴趣范围狭窄,行为方式刻板单调D.存在幻听、幻触E.手部刻板的扭转动作 [问答题,案例分析题]张先生,34岁。事故中右侧大腿软组织损伤1小时。伤口长6cm,深达肌层,有渗血,并有轻度污染。要求:请为患者行清创术,并单纯间断缝合2针。
相关文档
最新文档