华师大版二次函数教案

合集下载

华师大二次函数教案

华师大二次函数教案

第二十六章 二次函数[本章知识要点]1. 探索具体问题中的数量关系和变化规律.2. 结合具体情境体会二次函数作为一种数学模型的意义,并了解二次函数的有关概念. 3. 会用描点法画出二次函数的图象,能通过图象和关系式认识二次函数的性质. 4. 会运用配方法确定二次函数图象的顶点、开口方向和对称轴. 5. 会利用二次函数的图象求一元二次方程(组)的近似解.6. 会通过对现实情境的分析,确定二次函数的表达式,并能运用二次函数及其性质解决简单的实际问题.26.1 二次函数[本课知识要点]通过具体问题引入二次函数的概念,在解决问题的过程中体会二次函数的意义. [MM 及创新思维](1)正方形边长为a (cm ),它的面积s (cm 2)是多少?(2)矩形的长是4厘米,宽是3厘米,如果将其长与宽都增加x 厘米,则面积增加y 平方厘米,试写出y 与x 的关系式.请观察上面列出的两个式子,它们是不是函数?为什么?如果是函数,请你结合学习一次函数概念的经验,给它下个定义. [实践与探索]例1. m 取哪些值时,函数)1()(22+++-=m mx x m m y 是以x 为自变量的二次函数? 分析 若函数)1()(22+++-=m mx x m m y 是二次函数,须满足的条件是:02≠-m m .解 若函数)1()(22+++-=m mx x m m y 是二次函数,则 02≠-m m . 解得 0≠m ,且1≠m .因此,当0≠m ,且1≠m 时,函数)1()(22+++-=m mx x m m y 是二次函数. 回顾与反思 形如c bx ax y ++=2的函数只有在0≠a 的条件下才是二次函数.探索 若函数)1()(22+++-=m mx x m m y 是以x 为自变量的一次函数,则m 取哪些值?例2.写出下列各函数关系,并判断它们是什么类型的函数.(1)写出正方体的表面积S (cm 2)与正方体棱长a (cm )之间的函数关系; (2)写出圆的面积y (cm 2)与它的周长x (cm )之间的函数关系;(3)某种储蓄的年利率是1.98%,存入10000元本金,若不计利息,求本息和y (元)与所存年数x 之间的函数关系;(4)菱形的两条对角线的和为26cm ,求菱形的面积S (cm 2)与一对角线长x (cm )之间的函数关系.解 (1)由题意,得 )0(62>=a a S ,其中S 是a 的二次函数;(2)由题意,得 )0(42>=x x y π,其中y 是x 的二次函数; (3)由题意,得 10000%98.110000⋅+=x y (x ≥0且是正整数),其中y 是x 的一次函数; (4)由题意,得 )260(1321)26(212<<+-=-=x x x x x S ,其中S 是x 的二次函数.例3.正方形铁片边长为15cm ,在四个角上各剪去一个边长为x (cm )的小正方形,用余下的部分做成一个无盖的盒子.(1)求盒子的表面积S (cm 2)与小正方形边长x (cm )之间的函数关系式; (2)当小正方形边长为3cm 时,求盒子的表面积. 解 (1))2150(4225415222<<-=-=x x x S ; (2)当x=3cm 时,189342252=⨯-=S (cm 2). [当堂课内练习]1.下列函数中,哪些是二次函数? (1)02=-x y (2)2)1()2)(2(---+=x x x y(3)xx y 12+= (4)322-+=x x y 2.当k 为何值时,函数1)1(2+-=+kkx k y 为二次函数?3.已知正方形的面积为)(2cm y ,周长为x (cm ). (1)请写出y 与x 的函数关系式; (2)判断y 是否为x 的二次函数. [本课课外作业]A 组1. 已知函数72)3(--=mx m y 是二次函数,求m 的值.2. 已知二次函数2ax y =,当x=3时,y= -5,当x= -5时,求y 的值.3. 已知一个圆柱的高为27,底面半径为x ,求圆柱的体积y 与x 的函数关系式.若圆柱的底面半径x 为3,求此时的y .4. 用一根长为40 cm 的铁丝围成一个半径为r 的扇形,求扇形的面积y 与它的半径x 之间的函数关系式.这个函数是二次函数吗?请写出半径r 的取值范围.B 组5.对于任意实数m ,下列函数一定是二次函数的是 ( )A .22)1(x m y -=B .22)1(x m y +=C .22)1(x m y +=D .22)1(x m y -= 6.下列函数关系中,可以看作二次函数c bx ax y ++=2(0≠a )模型的是 ( ) A . 在一定的距离内汽车的行驶速度与行驶时间的关系 B . 我国人口年自然增长率为1%,这样我国人口总数随年份的变化关系 C . 竖直向上发射的信号弹,从发射到落回地面,信号弹的高度与时间的关系(不计空气阻力) D . 圆的周长与圆的半径之间的关系 [本课学习体会]26.2 二次函数的图象与性质(1)[本课知识要点]会用描点法画出二次函数2ax y =的图象,概括出图象的特点及函数的性质. [MM 及创新思维]我们已经知道,一次函数12+=x y ,反比例函数xy 3=的图象分别是 、 ,那么二次函数2x y =的图象是什么呢?(1)描点法画函数2x y =的图象前,想一想,列表时如何合理选值?以什么数为中心?当x 取互为相反数的值时,y 的值如何?(2)观察函数2x y =的图象,你能得出什么结论?[实践与探索]例1.在同一直角坐标系中,画出下列函数的图象,并指出它们有何共同点?有何不同点?(1)22x y = (2)22x y -=解 列表分别描点、连线,画出这两个函数的图象,这两个函数的图象都是抛物线,如图26.2.1.共同点:都以y 轴为对称轴,顶点都在坐标原点.不同点:22x y =的图象开口向上,顶点是抛物线的最低点,在对称轴的左边,曲线自左向右下降;在对称轴的右边,曲线自左向右上升.22x y -=的图象开口向下,顶点是抛物线的最高点,在对称轴的左边,曲线自左向右上升;在对称轴的右边,曲线自左向右下降.回顾与反思 在列表、描点时,要注意合理灵活地取值以及图形的对称性,因为图象是抛物线,因此,要用平滑曲线按自变量从小到大或从大到小的顺序连接. 例2.已知42)2(-++=k kx k y 是二次函数,且当0>x 时,y 随x 的增大而增大.(1)求k 的值;(2)求顶点坐标和对称轴.解 (1)由题意,得⎩⎨⎧>+=-+02242k k k , 解得k=2.(2)二次函数为24x y =,则顶点坐标为(0,0),对称轴为y 轴.例3.已知正方形周长为Ccm ,面积为S cm 2. (1)求S 和C 之间的函数关系式,并画出图象; (2)根据图象,求出S=1 cm 2时,正方形的周长; (3)根据图象,求出C 取何值时,S ≥4 cm 2.分析 此题是二次函数实际应用问题,解这类问题时要注意自变量的取值范围;画图象时,自变量C 的取值应在取值范围内. 解 (1)由题意,得)0(1612>=C C S . 列表:描点、连线,图象如图26.2.2.(2)根据图象得S=1 cm 2时,正方形的周长是4cm . (3)根据图象得,当C ≥8cm 时,S ≥4 cm 2. 回顾与反思(1)此图象原点处为空心点.(2)横轴、纵轴字母应为题中的字母C 、S ,不要习惯地写成x 、y . (3)在自变量取值范围内,图象为抛物线的一部分. [当堂课内练习]1.在同一直角坐标系中,画出下列函数的图象,并分别写出它们的开口方向、对称轴和顶点坐标.(1)23x y = (2)23x y -= (3)231x y =2.(1)函数232x y =的开口 ,对称轴是 ,顶点坐标是 ;(2)函数241x y -=的开口 ,对称轴是 ,顶点坐标是 . 3.已知等边三角形的边长为2x ,请将此三角形的面积S 表示成x 的函数,并画出图象的草图.[本课课外作业]A 组1.在同一直角坐标系中,画出下列函数的图象. (1)24x y -= (2)241x y = 2.填空:(1)抛物线25x y -=,当x= 时,y 有最 值,是 . (2)当m= 时,抛物线mm x m y --=2)1(开口向下.(3)已知函数1222)(--+=k k x k k y 是二次函数,它的图象开口 ,当x 时,y 随x 的增大而增大. 3.已知抛物线102-+=k kkx y 中,当0>x 时,y 随x 的增大而增大.(1)求k 的值; (2)作出函数的图象(草图).4.已知抛物线2ax y =经过点(1,3),求当y=9时,x 的值.B 组5.底面是边长为x 的正方形,高为0.5cm 的长方体的体积为ycm 3.(1)求y 与x 之间的函数关系式;(2)画出函数的图象;(3)根据图象,求出y=8 cm 3时底面边长x 的值;(4)根据图象,求出x 取何值时,y ≥4.5 cm 3.6.二次函数2ax y =与直线32-=x y 交于点P (1,b ).(1)求a 、b 的值;(2)写出二次函数的关系式,并指出x 取何值时,该函数的y 随x 的增大而减小. 7. 一个函数的图象是以原点为顶点,y 轴为对称轴的抛物线,且过M (-2,2). (1)求出这个函数的关系式并画出函数图象;(2)写出抛物线上与点M 关于y 轴对称的点N 的坐标,并求出⊿MON 的面积. [本课学习体会]26.2 二次函数的图象与性质(2)[本课知识要点]会画出k ax y +=2这类函数的图象,通过比较,了解这类函数的性质. [MM 及创新思维]同学们还记得一次函数x y 2=与12+=x y 的图象的关系吗? ,你能由此推测二次函数2x y =与12+=x y 的图象之间的关系吗?,那么2x y =与22-=x y 的图象之间又有何关系? . [实践与探索]例1.在同一直角坐标系中,画出函数22x y =与222+=x y 的图象.回顾与反思 当自变量x 取同一数值时,这两个函数的函数值之间有什么关系?反映在图象上,相应的两个点之间的位置又有什么关系?探索 观察这两个函数,它们的开口方向、对称轴和顶点坐标有那些是相同的?又有哪些不同?你能由此说出函数22x y =与222-=x y 的图象之间的关系吗?例2.在同一直角坐标系中,画出函数12+-=x y 与12--=x y 的图象,并说明,通过怎样的平移,可以由抛物线12+-=x y 得到抛物线12--=x y . 解 列表.描点、连线,画出这两个函数的图象,如图26.2.4所示.可以看出,抛物线12--=x y 是由抛物线12+-=x y 向下平移两个单位得到的. 回顾与反思 抛物线12+-=x y 和抛物线12--=x y 分别是由抛物线2x y -=向上、向下平移一个单位得到的.探索 如果要得到抛物线42+-=x y ,应将抛物线12--=x y 作怎样的平移? 例3.一条抛物线的开口方向、对称轴与221x y =相同,顶点纵坐标是-2,且抛物线经过点(1,1),求这条抛物线的函数关系式.解 由题意可得,所求函数开口向上,对称轴是y 轴,顶点坐标为(0,-2), 因此所求函数关系式可看作)0(22>-=a ax y , 又抛物线经过点(1,1),所以,2112-⋅=a , 解得3=a .故所求函数关系式为232-=x y .回顾与反思 k ax y +=2(a 、k 是常数,a ≠0)的图象的开口方向、对称轴、顶点坐标归纳如下:1. 在同一直角坐标系中,画出下列二次函数的图象:221x y =, 2212+=x y , 2212-=x y . 观察三条抛物线的相互关系,并分别指出它们的开口方向及对称轴、顶点的位置.你能说出抛物线k x y +=221的开口方向及对称轴、顶点的位置吗? 2.抛物线9412-=x y 的开口 ,对称轴是 ,顶点坐标是 ,它可以看作是由抛物线241x y =向 平移 个单位得到的. 3.函数332+-=x y ,当x 时,函数值y 随x 的增大而减小.当x 时,函数取得最 值,最 值y= . [本课课外作业]A 组1.已知函数231x y =, 3312+=x y , 2312-=x y . (1)分别画出它们的图象;(2)说出各个图象的开口方向、对称轴、顶点坐标;(3)试说出函数5312+=x y 的图象的开口方向、对称轴、顶点坐标. 2. 不画图象,说出函数3412+-=x y 的开口方向、对称轴和顶点坐标,并说明它是由函数241x y -=通过怎样的平移得到的.3.若二次函数22+=ax y 的图象经过点(-2,10),求a 的值.这个函数有最大还是最小值?是多少?B 组4.在同一直角坐标系中b ax y +=2与)0,0(≠≠+=b a b ax y 的图象的大致位置是( )5.已知二次函数7)1(82-+--=k x k x y ,当k 为何值时,此二次函数以y 轴为对称轴?写出其函数关系式. [本课学习体会]26.2 二次函数的图象与性质(3)[本课知识要点]会画出2)(h x a y -=这类函数的图象,通过比较,了解这类函数的性质. [MM 及创新思维]我们已经了解到,函数k ax y +=2的图象,可以由函数2ax y =的图象上下平移所得,那么函数2)2(21-=x y 的图象,是否也可以由函数221x y =平移而得呢?画图试一试,你能从中发现什么规律吗?[实践与探索]例1.在同一直角坐标系中,画出下列函数的图象.221x y =,2)2(21+=x y ,2)2(21-=x y ,并指出它们的开口方向、对称轴和顶点坐标.解 列表.它们的开口方向都向上;对称轴分别是y 轴、直线x= -2和直线x=2;顶点坐标分别是 (0,0),(-2,0),(2,0). 回顾与反思 对于抛物线2)2(21+=x y ,当x 时,函数值y 随x 的增大而减小;当x 时,函数值y 随x 的增大而增大;当x 时,函数取得最 值,最 值y= .探索 抛物线2)2(21+=x y 和抛物线2)2(21-=x y 分别是由抛物线221x y =向左、向右平移两个单位得到的.如果要得到抛物线2)4(21-=x y ,应将抛物线221x y =作怎样的平移?例2.不画出图象,你能说明抛物线23x y -=与2)2(3+-=x y 之间的关系吗?解 抛物线23x y -=的顶点坐标为(0,0);抛物线2)2(3+-=x y 的顶点坐标为(-2,0).因此,抛物线23x y -=与2)2(3+-=x y 形状相同,开口方向都向下,对称轴分别是y 轴和直线2-=x .抛物线2)2(3+-=x y 是由23x y -=向左平移2个单位而得的. 回顾与反思 2)(h x a y -=(a 、h 是常数,a ≠0)的图象的开口方向、对称轴、顶点坐标[当堂课内练习]1.画图填空:抛物线2)1(-=x y 的开口 ,对称轴是 ,顶点坐标是 ,它可以看作是由抛物线2x y =向 平移 个单位得到的. 2.在同一直角坐标系中,画出下列函数的图象.22x y -=,2)3(2--=x y ,2)3(2+-=x y ,并指出它们的开口方向、对称轴和顶点坐标.[本课课外作业]A 组1.已知函数221x y -=,2)1(21+-=x y , 2)1(21--=x y . (1)在同一直角坐标系中画出它们的图象;(2)分别说出各个函数图象的开口方向、对称轴和顶点坐标; (3)分别讨论各个函数的性质.2.根据上题的结果,试说明:分别通过怎样的平移,可以由抛物线221x y -=得到抛物线2)1(21+-=x y 和2)1(21--=x y ?3.函数2)1(3+-=x y ,当x 时,函数值y 随x 的增大而减小.当x 时,函数取得最 值,最 值y= .4.不画出图象,请你说明抛物线25x y =与2)4(5-=x y 之间的关系.B 组5.将抛物线2ax y =向左平移后所得新抛物线的顶点横坐标为 -2,且新抛物线经过点 (1,3),求a 的值.[本课学习体会]26.2 二次函数的图象与性质(4)[本课知识要点]1.掌握把抛物线2ax y =平移至2)(h x a y -=+k 的规律;2.会画出2)(h x a y -=+k 这类函数的图象,通过比较,了解这类函数的性质. [MM 及创新思维]由前面的知识,我们知道,函数22x y =的图象,向上平移2个单位,可以得到函数222+=x y 的图象;函数22x y =的图象,向右平移3个单位,可以得到函数2)3(2-=x y 的图象,那么函数22x y =的图象,如何平移,才能得到函数2)3(22+-=x y 的图象呢?[实践与探索]例1.在同一直角坐标系中,画出下列函数的图象.221x y =,2)1(21-=x y ,2)1(212--=x y ,并指出它们的开口方向、对称轴和顶点坐标. 解 列表.描点、连线,画出这三个函数的图象,如图26.2.6所示.它们的开口方向都向 ,对称轴分别为 、 、 ,顶点坐标分别为 、 、 .请同学们完成填空,并观察三个图象之间的关系.回顾与反思 二次函数的图象的上下平移,只影响二次函数2)(h x a y -=+k 中k 的值;左右平移,只影响h 的值,抛物线的形状不变,所以平移时,可根据顶点坐标的改变,确定平移前、后的函数关系式及平移的路径.此外,图象的平移与平移的顺序无关.探索 你能说出函数2)(h x a y -=+k (a 、h 、k 是常数,a ≠0)的图象的开口方向、对称例2.把抛物线c bx x y ++=2向上平移2个单位,再向左平移4个单位,得到抛物线2x y =,求b 、c 的值.分析 抛物线2x y =的顶点为(0,0),只要求出抛物线c bx x y ++=2的顶点,根据顶点坐标的改变,确定平移后的函数关系式,从而求出b 、c 的值.解 c bx x y ++=2c b b bx x +-++=442224)2(22b c b x -++=. 向上平移2个单位,得到24)2(22+-++=b c b x y , 再向左平移4个单位,得到24)42(22+-+++=b c b x y , 其顶点坐标是)24,42(2+---b c b ,而抛物线2x y =的顶点为(0,0),则 ⎪⎪⎩⎪⎪⎨⎧=+-=--0240422b c b解得 ⎩⎨⎧=-=148c b探索 把抛物线c bx x y ++=2向上平移2个单位,再向左平移4个单位,得到抛物线2x y =,也就意味着把抛物线2x y =向下平移2个单位,再向右平移4个单位,得到抛物线c bx x y ++=2.那么,本题还可以用更简洁的方法来解,请你试一试. [当堂课内练习]1.将抛物线1)4(22--=x y 如何平移可得到抛物线22x y = ( ) A .向左平移4个单位,再向上平移1个单位 B .向左平移4个单位,再向下平移1个单位 C .向右平移4个单位,再向上平移1个单位 D .向右平移4个单位,再向下平移1个单位 2.把抛物线223x y -=向左平移3个单位,再向下平移4个单位,所得的抛物线的函数关系式为 . 3.抛物线22121x x y -+=可由抛物线221x y -=向 平移 个单位,再向 平移 个单位而得到. [本课课外作业]A 组1.在同一直角坐标系中,画出下列函数的图象.23x y -=,2)2(3+-=x y ,1)2(32-+-=x y ,并指出它们的开口方向、对称轴和顶点坐标.2.将抛物线522++-=x x y 先向下平移1个单位,再向左平移4个单位,求平移后的抛物线的函数关系式. 3.将抛物线23212++-=x x y 如何平移,可得到抛物线32212++-=x x y ? B 组4.把抛物线c bx x y ++=2向右平移3个单位,再向下平移2个单位,得到抛物线532+-=x x y ,则有 ( )A .b =3,c=7B .b= -9,c= -15C .b=3,c=3D .b= -9,c=215.抛物线c bx x y ++-=23是由抛物线132+--=bx x y 向上平移3个单位,再向左平移2个单位得到的,求b 、c 的值.6.将抛物线)0(2≠=a ax y 向左平移h 个单位,再向上平移k 个单位,其中h >0,k <0,求所得的抛物线的函数关系式.[本课学习体会]26.2 二次函数的图象与性质(5)[本课知识要点]1.能通过配方把二次函数c bx ax y ++=2化成2)(h x a y -=+k 的形式,从而确定开口方向、对称轴和顶点坐标;2.会利用对称性画出二次函数的图象. [MM 及创新思维]我们已经发现,二次函数1)3(22+-=x y 的图象,可以由函数22x y =的图象先向 平移 个单位,再向 平移 个单位得到,因此,可以直接得出:函数1)3(22+-=x y 的开口 ,对称轴是 ,顶点坐标是 .那么,对于任意一个二次函数,如232-+-=x x y ,你能很容易地说出它的开口方向、对称轴和顶点坐标,并画出图象吗?[实践与探索]例1.通过配方,确定抛物线6422++-=x x y 的开口方向、对称轴和顶点坐标,再描点画图.解 6422++-=x x y[]8)1(261)1(26)112(26)2(22222+--=+---=+-+--=+--=x x x x x x因此,抛物线开口向下,对称轴是直线x=1,顶点坐标为(1,8).回顾与反思 (1)列表时选值,应以对称轴x=1为中心,函数值可由对称性得到,.(2)描点画图时,要根据已知抛物线的特点,一般先找出顶点,并用虚线画对称轴,然后再对称描点,最后用平滑曲线顺次连结各点.探索 对于二次函数c bx ax y ++=2,你能用配方法求出它的对称轴和顶点坐标吗?请你完成填空:对称轴 ,顶点坐标 .例2.已知抛物线9)2(2++-=x a x y 的顶点在坐标轴上,求a 的值.分析 顶点在坐标轴上有两种可能:(1)顶点在x 轴上,则顶点的纵坐标等于0;(2)顶点在y 轴上,则顶点的横坐标等于0.解 9)2(2++-=x a x y 4)2(9)22(22+-++-=a a x ,则抛物线的顶点坐标是⎥⎦⎤⎢⎣⎡+-+4)2(9,222a a .当顶点在x 轴上时,有 022=+-a , 解得 2-=a .当顶点在y 轴上时,有 04)2(92=+-a , 解得 4=a 或8-=a .所以,当抛物线9)2(2++-=x a x y 的顶点在坐标轴上时,a 有三个值,分别是 –2,4,8.[当堂课内练习]1.(1)二次函数x x y 22--=的对称轴是 .(2)二次函数1222--=x x y 的图象的顶点是 ,当x 时,y 随x 的增大而减小.(3)抛物线642--=x ax y 的顶点横坐标是-2,则a = .2.抛物线c x ax y ++=22的顶点是)1,31(-,则a 、c 的值是多少?[本课课外作业]A 组1.已知抛物线253212+-=x x y ,求出它的对称轴和顶点坐标,并画出函数的图象. 2.利用配方法,把下列函数写成2)(h x a y -=+k 的形式,并写出它们的图象的开口方向、对称轴和顶点坐标. (1)162++-=x x y(2)4322+-=x x y(3)nx x y +-=2 (4)q px x y ++=23.已知622)2(-++=k kx k y 是二次函数,且当0>x 时,y 随x 的增大而增大.(1)求k 的值;(2)求开口方向、顶点坐标和对称轴.B 组4.当0<a 时,求抛物线22212a ax x y +++=的顶点所在的象限.5. 已知抛物线h x x y +-=42的顶点A 在直线14--=x y 上,求抛物线的顶点坐标.[本课学习体会]26.2 二次函数的图象与性质(6)[本课知识要点]1.会通过配方求出二次函数)0(2≠++=a c bx ax y 的最大或最小值;2.在实际应用中体会二次函数作为一种数学模型的作用,会利用二次函数的性质求实际问题中的最大或最小值. [MM 及创新思维]在实际生活中,我们常常会碰到一些带有“最”字的问题,如问题:某商店将每件进价为80元的某种商品按每件100元出售,一天可销出约100件.该店想通过降低售价、增加销售量的办法来提高利润.经过市场调查,发现这种商品单价每降低1元,其销售量可增加约10件.将这种商品的售价降低多少时,能使销售利润最大? 在这个问题中,设每件商品降价x 元,该商品每天的利润为y 元,则可得函数关系式为二次函数2000100102++-=x x y .那么,此问题可归结为:自变量x 为何值时函数y 取得最大值?你能解决吗? [实践与探索]例1.求下列函数的最大值或最小值.(1)5322--=x x y ; (2)432+--=x x y .分析 由于函数5322--=x x y 和432+--=x x y 的自变量x 的取值范围是全体实数,所以只要确定它们的图象有最高点或最低点,就可以确定函数有最大值或最小值. 解 (1)二次函数5322--=x x y 中的二次项系数2>0, 因此抛物线5322--=x x y 有最低点,即函数有最小值.因为5322--=x x y =849)43(22--x , 所以当43=x 时,函数5322--=x x y 有最小值是849-. (2)二次函数432+--=x x y 中的二次项系数-1<0, 因此抛物线432+--=x x y 有最高点,即函数有最大值. 因为432+--=x x y =425)23(2++-x , 所以当23-=x 时,函数432+--=x x y 有最大值是425. 回顾与反思 最大值或最小值的求法,第一步确定a 的符号,a >0有最小值,a <0有最大值;第二步配方求顶点,顶点的纵坐标即为对应的最大值或最小值.探索 试一试,当2.5≤x ≤3.5时,求二次函数322--=x x y 的最大值或最小值. 例2.某产品每件成本是120元,试销阶段每件产品的销售价x (元)与产品的日销售量y(件)之间关系如下表:若日销售量y 是销售价x 的一次函数,要获得最大销售利润,每件产品的销售价定为多少元?此时每日销售利润是多少?分析 日销售利润=日销售量×每件产品的利润,因此主要是正确表示出这两个量. 解 由表可知x+y=200,因此,所求的一次函数的关系式为200+-=x y . 设每日销售利润为s 元,则有1600)160()120(2+--=-=x x y s .因为0120,0200≥-≥+-x x ,所以200120≤≤x .所以,当每件产品的销售价定为160元时,销售利润最大,最大销售利润为1600元. 回顾与反思 解决实际问题时,应先分析问题中的数量关系,列出函数关系式,再研究所得的函数,得出结果.例3.如图26.2.8,在Rt ⊿ABC 中,∠C=90°,BC=4,AC=8,点D 在斜边AB 上,分别作DE ⊥AC ,DF ⊥BC ,垂足分别为E 、F ,得四边形DECF ,设DE=x ,DF=y . (1)用含y 的代数式表示AE ;(2)求y 与x 之间的函数关系式,并求出x 的取值范围;(3)设四边形DECF 的面积为S ,求S 与x 之间的函数关系,并求出S 的最大值.解 (1)由题意可知,四边形DECF 为矩形,因此y DF AC AE -=-=8.(2)由DE ∥BC ,得AC AE BC DE =,即884yx -=, 所以,x y 28-=,x 的取值范围是40<<x .(3)8)2(282)28(22+--=+-=-==x x x x x xy S , 所以,当x=2时,S 有最大值8.[当堂课内练习]1.对于二次函数m x x y +-=22,当x= 时,y 有最小值.2.已知二次函数b x a y +-=2)1(有最小值 –1,则a 与b 之间的大小关系是 ( ) A .a <b B .a=b C .a >b D .不能确定3.某商场销售一批衬衫,平均每天可售出20件,每件盈利40件,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经过市场调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.(1)若商场平均每天要盈利1200元,每件衬衫应降价多少元? (2)每件衬衫降价多少元时,商场平均每天盈利最多?[本课课外作业]A 组1.求下列函数的最大值或最小值.(1)x x y 22--=; (2)1222+-=x x y .2.已知二次函数m x x y +-=62的最小值为1,求m 的值.,3.心理学家发现,学生对概念的接受能力y 与提出概念所用的时间x (单位:分)之间满足函数关系:)300(436.21.02≤≤++-=x x x y .y 值越大,表示接受能力越强. (1)x 在什么范围内,学生的接受能力逐步增强?x 在什么范围内,学生的接受能力逐步降低?(2)第10分时,学生的接受能力是多少? (3)第几分时,学生的接受能力最强?B 组 4.不论自变量x 取什么数,二次函数m x x y +-=622的函数值总是正值,求m 的取值范围.5.如图,有长为24m 的篱笆,一面利用墙(墙的最大可用长度a 为10m ),围成中间隔有一道篱笆的长方形花圃.设花圃的宽AB 为x m ,面积为S m 2.(1)求S 与x 的函数关系式;(2)如果要围成面积为45 m 2的花圃,AB 的长是多少米?(3)能围成面积比45 m 2更大的花圃吗?如果能,请求出 最大面积,并说明围法;如果不能,请说明理由.6.如图,矩形ABCD 中,AB=3,BC=4,线段EF 在对角线AC 上,EG ⊥AD ,FH ⊥BC ,垂足分别是G 、H ,且EG+FH=EF .(1)求线段EF 的长;(2)设EG=x ,⊿AGE 与⊿CFH 的面积和为S , 写出S 关于x 的函数关系式及自变量x 的取值范围, 并求出S 的最小值. [本课学习体会]26 . 2 二次函数的图象与性质(7)[本课知识要点]会根据不同的条件,利用待定系数法求二次函数的函数关系式. [MM 及创新思维]一般地,函数关系式中有几个独立的系数,那么就需要有相同个数的独立条件才能求出函数关系式.例如:我们在确定一次函数)0(≠+=k b kx y 的关系式时,通常需要两个独立的条件:确定反比例函数)0(≠=k xky 的关系式时,通常只需要一个条件:如果要确定二次函数)0(2≠++=a c bx ax y 的关系式,又需要几个条件呢?[实践与探索]例1.某涵洞是抛物线形,它的截面如图26.2.9所示,现测得水面宽1.6m ,涵洞顶点O 到水面的距离为2.4m ,在图中直角坐标系内,涵洞所在的抛物线的函数关系式是什么?分析 如图,以AB 的垂直平分线为y 轴,以过点O 的y 轴的垂线为x 轴,建立了直角坐标系.这时,涵洞所在的抛物线的顶点在原点,对称轴是y 轴,开口向下,所以可设它的函数关系式是)0(2<=a ax y .此时只需抛物线上的一个点就能求出抛物线的函数关系式.解 由题意,得点B 的坐标为(0.8,-2.4),又因为点B 在抛物线上,将它的坐标代入)0(2<=a ax y ,得28.04.2⨯=-a所以 415-=a . 因此,函数关系式是2415x y -=. 例2.根据下列条件,分别求出对应的二次函数的关系式.(1)已知二次函数的图象经过点A (0,-1)、B (1,0)、C (-1,2); (2)已知抛物线的顶点为(1,-3),且与y 轴交于点(0,1);(3)已知抛物线与x 轴交于点M (-3,0)、(5,0),且与y 轴交于点(0,-3); (4)已知抛物线的顶点为(3,-2),且与x 轴两交点间的距离为4.分析 (1)根据二次函数的图象经过三个已知点,可设函数关系式为c bx ax y ++=2的形式;(2)根据已知抛物线的顶点坐标,可设函数关系式为3)1(2--=x a y ,再根据抛物线与y 轴的交点可求出a 的值;(3)根据抛物线与x 轴的两个交点的坐标,可设函数关系式为)5)(3(-+=x x a y ,再根据抛物线与y 轴的交点可求出a 的值;(4)根据已知抛物线的顶点坐标(3,-2),可设函数关系式为2)3(2--=x a y ,同时可知抛物线的对称轴为x=3,再由与x 轴两交点间的距离为4,可得抛物线与x 轴的两个交点为(1,0)和(5,0),任选一个代入2)3(2--=x a y ,即可求出a 的值.解 (1)设二次函数关系式为c bx ax y ++=2,由已知,这个函数的图象过(0,-1),可以得到c= -1.又由于其图象过点(1,0)、(-1,2)两点,可以得到。

华师大版数学九年级下册《26.1 二次函数》教学设计3

华师大版数学九年级下册《26.1 二次函数》教学设计3

华师大版数学九年级下册《26.1 二次函数》教学设计3一. 教材分析华师大版数学九年级下册《26.1 二次函数》是学生在初中阶段学习二次函数的起始章节,它是在学生已经掌握了函数概念、一次函数和二次方程的基础上进行的。

本节课的主要内容是介绍二次函数的定义、性质和图像,以及二次函数的顶点公式。

教材通过生动的实例和丰富的练习,帮助学生理解和掌握二次函数的知识,为学生进一步学习高中数学打下坚实的基础。

二. 学情分析九年级的学生已经具备了一定的数学基础,对函数概念、一次函数和二次方程有一定的了解。

但二次函数相对于一次函数来说,其图像和性质更加复杂,需要学生通过实例和练习来进一步理解和掌握。

此外,学生的学习兴趣和动机对他们的学习效果有很大影响,因此教师需要设计有趣的教学活动来激发学生的学习兴趣。

三. 教学目标1.知识与技能:使学生理解和掌握二次函数的定义、性质和图像,能够运用二次函数的知识解决实际问题。

2.过程与方法:通过实例和练习,培养学生的观察能力、推理能力和解决问题的能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的合作意识和创新精神。

四. 教学重难点1.重点:二次函数的定义、性质和图像。

2.难点:理解二次函数的顶点公式,并能运用其解决实际问题。

五. 教学方法采用问题驱动法、案例教学法和小组合作法。

通过提出问题,引导学生思考和探索;通过分析具体案例,使学生理解和掌握二次函数的知识;通过小组合作,培养学生的合作意识和解决问题的能力。

六. 教学准备1.准备相关的教学案例和练习题。

2.准备多媒体教学设备,如投影仪和黑板。

3.准备教案和教学笔记。

七. 教学过程1.导入(5分钟)通过提出问题,引导学生思考和探索二次函数的概念。

例如:“什么是二次函数?它与一次函数有什么区别?”2.呈现(10分钟)通过分析具体案例,使学生理解和掌握二次函数的定义、性质和图像。

例如,展示一个二次函数的图像,引导学生观察其特点。

华师大版九下《二次函数》精品教案

华师大版九下《二次函数》精品教案

华师大版九下《二次函数》精品教案一、教学内容本节课选自华师大版九年级下册《二次函数》章节,详细内容包括:二次函数的定义、图像及性质,二次函数的顶点式和一般式,二次函数的图像变换,以及二次函数在实际问题中的应用。

二、教学目标1. 理解二次函数的定义,掌握二次函数的图像及性质。

2. 学会使用顶点式和一般式表示二次函数,并能进行图像变换。

3. 能够运用二次函数解决实际问题,提高数学应用能力。

三、教学难点与重点重点:二次函数的定义、图像及性质,二次函数的顶点式和一般式。

难点:二次函数图像的变换,以及在实际问题中的应用。

四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔。

2. 学具:直尺、圆规、三角板。

五、教学过程1. 实践情景引入:通过展示一个抛物线的运动轨迹,让学生观察并思考,激发兴趣。

2. 知识讲解:a. 引入二次函数的定义,解释二次项、一次项和常数项。

b. 介绍二次函数的图像及性质,通过示例让学生理解并掌握。

c. 讲解二次函数的顶点式和一般式,并进行图像变换的推导。

3. 例题讲解:讲解典型例题,分析解题思路,强调注意事项。

4. 随堂练习:布置一些典型练习题,让学生巩固所学知识。

5. 小组讨论:针对实际问题,让学生分组讨论,提出解决方案。

六、板书设计1. 二次函数的定义、图像及性质。

2. 二次函数的顶点式和一般式。

3. 图像变换的推导过程。

4. 典型例题及解题思路。

七、作业设计1. 作业题目:a. 求下列二次函数的顶点坐标和对称轴:y = x^2 4x + 3。

b. 将二次函数y = (x 1)^2 + 2向左平移3个单位,求新函数的表达式。

c. 某抛物线的顶点坐标为(2, 3),且过点(0, 6),求抛物线的解析式。

2. 答案:a. 顶点坐标:(2, 1),对称轴:x = 2。

b. 新函数的表达式:y = (x 4)^2 + 2。

c. 抛物线的解析式:y = (x 2)^2 3。

八、课后反思及拓展延伸1. 反思:本节课通过实践情景引入、例题讲解和随堂练习,使学生掌握了二次函数的定义、图像及性质。

华师大二次函数教案

华师大二次函数教案

第二十六章 二次函数[本章知识要点]1. 探索具体问题中的数量关系和变化规律.2. 结合具体情境体会二次函数作为一种数学模型的意义,并了解二次函数的有关概念. 3. 会用描点法画出二次函数的图象,能通过图象和关系式认识二次函数的性质. 4. 会运用配方法确定二次函数图象的顶点、开口方向和对称轴. 5. 会利用二次函数的图象求一元二次方程(组)的近似解.6. 会通过对现实情境的分析,确定二次函数的表达式,并能运用二次函数及其性质解决简单的实际问题.26.1 二次函数[本课知识要点]通过具体问题引入二次函数的概念,在解决问题的过程中体会二次函数的意义. [创新思维](1)正方形边长为a (cm ),它的面积s (cm 2)是多少?(2)矩形的长是4厘米,宽是3厘米,如果将其长与宽都增加x 厘米,则面积增加y 平方厘米,试写出y 与x 的关系式.请观察上面列出的两个式子,它们是不是函数?为什么?如果是函数,请你结合学习一次函数概念的经验,给它下个定义. [实践与探索]例1. m 取哪些值时,函数)1()(22+++-=m mx x m m y 是以x 为自变量的二次函数? 分析 若函数)1()(22+++-=m mx x m m y 是二次函数,须满足的条件是:02≠-m m .解 若函数)1()(22+++-=m mx x m m y 是二次函数,则 02≠-m m .解得 0≠m ,且1≠m .因此,当0≠m ,且1≠m 时,函数)1()(22+++-=m mx x m m y 是二次函数. 回顾与反思 形如c bx ax y ++=2的函数只有在0≠a 的条件下才是二次函数.探索 若函数)1()(22+++-=m mx x m m y 是以x 为自变量的一次函数,则m 取哪些值?例2.写出下列各函数关系,并判断它们是什么类型的函数.(1)写出正方体的表面积S (cm 2)与正方体棱长a (cm )之间的函数关系; (2)写出圆的面积y (cm 2)与它的周长x (cm )之间的函数关系;(3)某种储蓄的年利率是1.98%,存入10000元本金,若不计利息,求本息和y (元)与所存年数x 之间的函数关系;(4)菱形的两条对角线的和为26cm ,求菱形的面积S (cm 2)与一对角线长x (cm )之间的函数关系.解 (1)由题意,得 )0(62>=a a S ,其中S 是a 的二次函数;(2)由题意,得 )0(42>=x x y π,其中y 是x 的二次函数; (3)由题意,得 10000%98.110000⋅+=x y (x ≥0且是正整数),其中y 是x 的一次函数; (4)由题意,得 )260(1321)26(212<<+-=-=x x x x x S ,其中S 是x 的二次函数.例3.正方形铁片边长为15cm ,在四个角上各剪去一个边长为x (cm )的小正方形,用余下的部分做成一个无盖的盒子.(1)求盒子的表面积S (cm 2)与小正方形边长x (cm )之间的函数关系式; (2)当小正方形边长为3cm 时,求盒子的表面积. 解 (1))2150(4225415222<<-=-=x x x S ; (2)当x=3cm 时,189342252=⨯-=S (cm 2). [当堂课内练习]1.下列函数中,哪些是二次函数? (1)02=-x y (2)2)1()2)(2(---+=x x x y(3)xx y 12+= (4)322-+=x x y2.当k 为何值时,函数1)1(2+-=+kk x k y 为二次函数?3.已知正方形的面积为)(2cm y ,周长为x (cm ). (1)请写出y 与x 的函数关系式; (2)判断y 是否为x 的二次函数. [本课课外作业]A 组1. 已知函数72)3(--=m x m y 是二次函数,求m 的值.2. 已知二次函数2ax y =,当x=3时,y= -5,当x= -5时,求y 的值.3. 已知一个圆柱的高为27,底面半径为x ,求圆柱的体积y 与x 的函数关系式.若圆柱的底面半径x 为3,求此时的y .B 组5.对于任意实数m ,下列函数一定是二次函数的是 ( )A .22)1(x m y -= B .22)1(x m y += C .22)1(x m y += D .22)1(x m y -= 6.下列函数关系中,可以看作二次函数c bx ax y ++=2(0≠a )模型的是 ( ) A . 在一定的距离内汽车的行驶速度与行驶时间的关系 B . 我国人口年自然增长率为1%,这样我国人口总数随年份的变化关系 C . 竖直向上发射的信号弹,从发射到落回地面,信号弹的高度与时间的关系(不计空气阻力) D . 圆的周长与圆的半径之间的关系 [本课学习体会]26.2 二次函数的图象与性质(1)[本课知识要点]会用描点法画出二次函数2ax y =的图象,概括出图象的特点及函数的性质. [创新思维]我们已经知道,一次函数12+=x y ,反比例函数xy 3=的图象分别是 、 ,那么二次函数2x y =的图象是什么呢?(1)描点法画函数2x y =的图象前,想一想,列表时如何合理选值?以什么数为中心?当x 取互为相反数的值时,y 的值如何?(2)观察函数2x y =的图象,你能得出什么结论?[实践与探索]例1.在同一直角坐标系中,画出下列函数的图象,并指出它们有何共同点?有何不同点?(1)22x y = (2)22x y -=x… -3 -2 -1 0 1 2 3 … 22x y =…18822818…22x y -= …-18 -8 -2 0 -2 -8 -18 …都是抛物线,如图26.2.1.共同点:都以y 轴为对称轴,顶点都在坐标原点.不同点:22x y =的图象开口向上,顶点是抛物线的最低点,在对称轴的左边,曲线自左向右下降;在对称轴的右边,曲线自左向右上升.22x y -=的图象开口向下,顶点是抛物线的最高点,在对称轴的左边,曲线自左向右上升;在对称轴的右边,曲线自左向右下降.回顾与反思 在列表、描点时,要注意合理灵活地取值以及图形的对称性,因为图象是抛物线,因此,要用平滑曲线按自变量从小到大或从大到小的顺序连接. 例2.已知42)2(-++=k kx k y 是二次函数,且当0>x 时,y 随x 的增大而增大.(1)求k 的值;(2)求顶点坐标和对称轴.解 (1)由题意,得⎩⎨⎧>+=-+02242k k k , 解得k=2.(2)二次函数为24x y =,则顶点坐标为(0,0),对称轴为y 轴.例3.已知正方形周长为Ccm ,面积为S cm 2. (1)求S 和C 之间的函数关系式,并画出图象; (2)根据图象,求出S=1 cm 2时,正方形的周长; (3)根据图象,求出C 取何值时,S ≥4 cm 2.分析 此题是二次函数实际应用问题,解这类问题时要注意自变量的取值范围;画图象时,自变量C 的取值应在取值范围内. 解 (1)由题意,得)0(1612>=C C S . 列表:C2 4 68 (2)161C S =41 149 4…描点、连线,图象如图26.2.2.(2)根据图象得S=1 cm 2时,正方形的周长是4cm . (3)根据图象得,当C ≥8cm 时,S ≥4 cm 2. 回顾与反思(1)此图象原点处为空心点.(2)横轴、纵轴字母应为题中的字母C 、S ,不要习惯地写成x 、y . (3)在自变量取值范围内,图象为抛物线的一部分. [当堂课内练习]1.在同一直角坐标系中,画出下列函数的图象,并分别写出它们的开口方向、对称轴和顶点坐标.(1)23x y = (2)23x y -= (3)231x y =2.(1)函数232x y =的开口 ,对称轴是 ,顶点坐标是 ; (2)函数241x y -=的开口 ,对称轴是 ,顶点坐标是 .3.已知等边三角形的边长为2x ,请将此三角形的面积S 表示成x 的函数,并画出图象的草图.[本课课外作业]A 组1.在同一直角坐标系中,画出下列函数的图象. (1)24x y -= (2)241x y = 2.填空:(1)抛物线25x y -=,当x= 时,y 有最 值,是 . (2)当m= 时,抛物线mm x m y --=2)1(开口向下.(3)已知函数1222)(--+=k k x k k y 是二次函数,它的图象开口 ,当x 时,y 随x 的增大而增大. 3.已知抛物线102-+=k kkx y 中,当0>x 时,y 随x 的增大而增大.(1)求k 的值; (2)作出函数的图象(草图).4.已知抛物线2ax y =经过点(1,3),求当y=9时,x 的值.B 组5.底面是边长为x 的正方形,高为0.5cm 的长方体的体积为ycm 3.(1)求y 与x 之间的函数关系式;(2)画出函数的图象;(3)根据图象,求出y=8 cm 3时底面边长x 的值;(4)根据图象,求出x 取何值时,y ≥4.5 cm 3.6.二次函数2ax y =与直线32-=x y 交于点P (1,b ).(1)求a 、b 的值;(2)写出二次函数的关系式,并指出x 取何值时,该函数的y 随x 的增大而减小. 7. 一个函数的图象是以原点为顶点,y 轴为对称轴的抛物线,且过M (-2,2). (1)求出这个函数的关系式并画出函数图象;(2)写出抛物线上与点M 关于y 轴对称的点N 的坐标,并求出⊿MON 的面积. [本课学习体会]26.2 二次函数的图象与性质(2)[本课知识要点]会画出k ax y +=2这类函数的图象,通过比较,了解这类函数的性质. [创新思维]同学们还记得一次函数x y 2=与12+=x y 的图象的关系吗? 你能由此推测二次函数2x y =与12+=x y 的图象之间的关系吗? 那么2x y =与22-=x y 的图象之间又有何关系? [实践与探索]例1.在同一直角坐标系中,画出函数22x y =与222+=x y 的图象.解 列表.描点、连线,画出这两个函数的图象,如图26.2.3所示.回顾与反思 当自变量x 取同一数值时,这两个函数的函数值之间有什么关系?反映在图象上,相应的两个点之间的位置又有什么关系?探索 观察这两个函数,它们的开口方向、对称轴和顶点坐标有那些是相同的?又有哪些不同?你能由此说出函数22x y =与222-=x y 的图象之间的关系吗?例2.在同一直角坐标系中,画出函数12+-=x y 与12--=x y 的图象,并说明,通过怎样的平移,可以由抛物线12+-=x y 得到抛物线12--=x y . 解 列表.x… -3 -2 -1 0 1 2 3 … 22x y = … 18 8 2 0 2 8 18 … 222+=x y…20104241020…描点、连线,画出这两个函数的图象,如图26.2.4所示.可以看出,抛物线12--=x y 是由抛物线12+-=x y 向下平移两个单位得到的. 回顾与反思 抛物线12+-=x y 和抛物线12--=x y 分别是由抛物线2x y -=向上、向下平移一个单位得到的.探索 如果要得到抛物线42+-=x y ,应将抛物线12--=x y 作怎样的平移? 例3.一条抛物线的开口方向、对称轴与221x y =相同,顶点纵坐标是-2,且抛物线经过点(1,1),求这条抛物线的函数关系式.解 由题意可得,所求函数开口向上,对称轴是y 轴,顶点坐标为(0,-2), 因此所求函数关系式可看作)0(22>-=a ax y , 又抛物线经过点(1,1),所以,2112-⋅=a , 解得3=a .故所求函数关系式为232-=x y .回顾与反思 k ax y +=2(a 、k 是常数,a ≠0)的图象的开口方向、对称轴、顶点坐标归k ax y +=2开口方向对称轴顶点坐标0>a0<a[当堂课内练习]1. 在同一直角坐标系中,画出下列二次函数的图象:221x y =, 2212+=x y , 2212-=x y .x … -3 -2 -1 0 1 2 3 … 12+-=x y … -8 -3 0 1 0 -3 -8 … 12--=x y…-10-5-2-1-2-5-10…观察三条抛物线的相互关系,并分别指出它们的开口方向及对称轴、顶点的位置.你能说出抛物线k x y +=221的开口方向及对称轴、顶点的位置吗? 2.抛物线9412-=x y 的开口 ,对称轴是 ,顶点坐标是 ,它可以看作是由抛物线241x y =向 平移 个单位得到的.3.函数332+-=x y ,当x 时,函数值y 随x 的增大而减小.当x 时,函数取得最 值,最 值y= . [本课课外作业]A 组1.已知函数231x y =, 3312+=x y , 2312-=x y . (1)分别画出它们的图象;(2)说出各个图象的开口方向、对称轴、顶点坐标; (3)试说出函数5312+=x y 的图象的开口方向、对称轴、顶点坐标.2. 不画图象,说出函数3412+-=x y 的开口方向、对称轴和顶点坐标,并说明它是由函数241x y -=通过怎样的平移得到的.3. 若二次函数22+=ax y 的图象经过点(-2,10),求a 的值.这个函数有最大还是最小值?是多少?B 组4.在同一直角坐标系中b ax y +=2与)0,0(≠≠+=b a b ax y 的图象的大致位置是( )5.已知二次函数7)1(82-+--=k x k x y ,当k 为何值时,此二次函数以y 轴为对称轴?写出其函数关系式. [本课学习体会]26.2 二次函数的图象与性质(3)[本课知识要点]会画出2)(h x a y -=这类函数的图象,通过比较,了解这类函数的性质. [创新思维]我们已经了解到,函数k ax y +=2的图象,可以由函数2ax y =的图象上下平移所得,那么函数2)2(21-=x y 的图象,是否也可以由函数221x y =平移而得呢?画图试一试,你能从中发现什么规律吗?[实践与探索]例1.在同一直角坐标系中,画出下列函数的图象.221x y =,2)2(21+=x y ,2)2(21-=x y ,并指出它们的开口方向、对称轴和顶点坐标.描点、连线,画出这三个函数的图象,如图26.2.5所示.它们的开口方向都向上;对称轴分别是y 轴、直线x= -2x… -3 -2 -1 0123 …221x y =…29 2 21 0 21 2 29… 2)2(21+=x y (21)0 21 2 225 8 225 … 2)2(21-=x y …225 8 292 210 21…和直线x=2;顶点坐标分别是(0,0),(-2,0),(2,0). 回顾与反思 对于抛物线2)2(21+=x y ,当x 时,函数值y 随x 的增大而减小;当x 时,函数值y 随x 的增大而增大;当x 时,函数取得最 值,最 值y= .探索 抛物线2)2(21+=x y 和抛物线2)2(21-=x y 分别是由抛物线221x y =向左、向右平移两个单位得到的.如果要得到抛物线2)4(21-=x y ,应将抛物线221x y =作怎样的平移?例2.不画出图象,你能说明抛物线23x y -=与2)2(3+-=x y 之间的关系吗?解 抛物线23x y -=的顶点坐标为(0,0);抛物线2)2(3+-=x y 的顶点坐标为(-2,0).因此,抛物线23x y -=与2)2(3+-=x y 形状相同,开口方向都向下,对称轴分别是y 轴和直线2-=x .抛物线2)2(3+-=x y 是由23x y -=向左平移2个单位而得的. 回顾与反思 2)(h x a y -=(a 、h 是常数,a ≠0)的图象的开口方向、对称轴、顶点坐标[当堂课内练习]1.画图填空:抛物线2)1(-=x y 的开口 ,对称轴是 ,顶点坐标是 ,它可以看作是由抛物线2x y =向 平移 个单位得到的. 2.在同一直角坐标系中,画出下列函数的图象.22x y -=,2)3(2--=x y ,2)3(2+-=x y ,并指出它们的开口方向、对称轴和顶点坐标.[本课课外作业]A 组1.已知函数221x y -=,2)1(21+-=x y , 2)1(21--=x y . (1)在同一直角坐标系中画出它们的图象;(2)分别说出各个函数图象的开口方向、对称轴和顶点坐标; (3)分别讨论各个函数的性质.2.根据上题的结果,试说明:分别通过怎样的平移,可以由抛物线221x y -=得到抛物线2)1(21+-=x y 和2)1(21--=x y ?3.函数2)1(3+-=x y ,当x 时,函数值y 随x 的增大而减小.当x 时,函数取得最 值,最 值y= .4.不画出图象,请你说明抛物线25x y =与2)4(5-=x y 之间的关系.B 组5.将抛物线2ax y =向左平移后所得新抛物线的顶点横坐标为 -2,且新抛物线经过点 (1,3),求a 的值.[本课学习体会]26.2 二次函数的图象与性质(4)[本课知识要点]1.掌握把抛物线2ax y =平移至2)(h x a y -=+k 的规律;2.会画出2)(h x a y -=+k 这类函数的图象,通过比较,了解这类函数的性质. [创新思维]由前面的知识,我们知道,函数22x y =的图象,向上平移2个单位,可以得到函数222+=x y 的图象;函数22x y =的图象,向右平移3个单位,可以得到函数2)3(2-=x y 的图象,那么函数22x y =的图象,如何平移,才能得到函数2)3(22+-=x y 的图象呢?[实践与探索]例1.在同一直角坐标系中,画出下列函数的图象.221x y =,2)1(21-=x y ,2)1(212--=x y ,并指出它们的开口方向、对称轴和顶点坐标.描点、连线,画出这三个函数的图象,如图26.2.6所示.它们的开口方向都向 ,对称轴分别为 、 、 ,顶点坐标分别为 、 、 .请同学们完成填空,并观察三个图象之间的关系.回顾与反思 二次函数的图象的上下平移,只影响二次函数2)(h x a y -=+k 中k 的值;左右平移,只影响h 的值,抛物线的形状不变,所以平移时,可根据顶点坐标的改变,确定平移前、后的函数关系式及平移的路径.此外,图象的平移与平移的顺序无关.探索 你能说出函数2)(h x a y -=+k (a 、h 、k 是常数,a ≠0)的图象的开口方向、对称轴和顶点坐标吗?试填写下表.2)(h x a y -=+k 开口方向对称轴顶点坐标0>a0<ax… -3-2 -10 12 3…221x y = (2)9 221 021 229… 2)1(21-=x y … 8 29 2 21 0 21 2 … 2)1(212--=x y …625 023- -223- 0…例2.把抛物线c bx x y ++=2向上平移2个单位,再向左平移4个单位,得到抛物线2x y =,求b 、c 的值.分析 抛物线2x y =的顶点为(0,0),只要求出抛物线c bx x y ++=2的顶点,根据顶点坐标的改变,确定平移后的函数关系式,从而求出b 、c 的值.解 c bx x y ++=2c b b bx x +-++=442224)2(22b c b x -++=. 向上平移2个单位,得到24)2(22+-++=b c b x y , 再向左平移4个单位,得到24)42(22+-+++=b c b x y , 其顶点坐标是)24,42(2+---b c b ,而抛物线2x y =的顶点为(0,0),则 ⎪⎪⎩⎪⎪⎨⎧=+-=--0240422b c b解得 ⎩⎨⎧=-=148c b 探索 把抛物线c bx x y ++=2向上平移2个单位,再向左平移4个单位,得到抛物线2x y =,也就意味着把抛物线2x y =向下平移2个单位,再向右平移4个单位,得到抛物线c bx x y ++=2.那么,本题还可以用更简洁的方法来解,请你试一试. [当堂课内练习]1.将抛物线1)4(22--=x y 如何平移可得到抛物线22x y = ( ) A .向左平移4个单位,再向上平移1个单位B .向左平移4个单位,再向下平移1个单位C .向右平移4个单位,再向上平移1个单位D .向右平移4个单位,再向下平移1个单位 2.把抛物线223x y -=向左平移3个单位,再向下平移4个单位,所得的抛物线的函数关系式为 . 3.抛物线22121x x y -+=可由抛物线221x y -=向 平移 个单位,再向 平移 个单位而得到.[本课课外作业]A 组1.在同一直角坐标系中,画出下列函数的图象.23x y -=,2)2(3+-=x y ,1)2(32-+-=x y ,并指出它们的开口方向、对称轴和顶点坐标.2.将抛物线522++-=x x y 先向下平移1个单位,再向左平移4个单位,求平移后的抛物线的函数关系式.4. 将抛物线23212++-=x x y 如何平移,可得到抛物线32212++-=x x y ?B 组4.把抛物线c bx x y ++=2向右平移3个单位,再向下平移2个单位,得到抛物线532+-=x x y ,则有 ( )A .b =3,c=7B .b= -9,c= -15C .b=3,c=3D .b= -9,c=215.抛物线c bx x y ++-=23是由抛物线132+--=bx x y 向上平移3个单位,再向左平移2个单位得到的,求b 、c 的值.5. 将抛物线)0(2≠=a ax y 向左平移h 个单位,再向上平移k 个单位,其中h >0,k <0,求所得的抛物线的函数关系式.[本课学习体会]26.2 二次函数的图象与性质(5)[本课知识要点]1.能通过配方把二次函数c bx ax y ++=2化成2)(h x a y -=+k 的形式,从而确定开口方向、对称轴和顶点坐标;2.会利用对称性画出二次函数的图象. [创新思维]我们已经发现,二次函数1)3(22+-=x y 的图象,可以由函数22x y =的图象先向 平移 个单位,再向 平移 个单位得到,因此,可以直接得出:函数1)3(22+-=x y 的开口 ,对称轴是 ,顶点坐标是 .那么,对于任意一个二次函数,如232-+-=x x y ,你能很容易地说出它的开口方向、对称轴和顶点坐标,并画出图象吗?[实践与探索]例1.通过配方,确定抛物线6422++-=x x y 的开口方向、对称轴和顶点坐标,再描点画图.解 6422++-=x x y[]8)1(261)1(26)112(26)2(22222+--=+---=+-+--=+--=x x x x x x因此,抛物线开口向下,对称轴是直线x=1,顶点坐标为(1,8).由对称性列表:x… -2 -1 01 2 3 4…6422++-=x x y …-100 686-10… 描点、连线,如图26.2.7所示.回顾与反思 (1)列表时选值,应以对称轴x=1为中心,函数值可由对称性得到,.(2)描点画图时,要根据已知抛物线的特点,一般先找出顶点,并用虚线画对称轴,然后再对称描点,最后用平滑曲线顺次连结各点.探索 对于二次函数c bx ax y ++=2,你能用配方法求出它的对称轴和顶点坐标吗?请你完成填空:对称轴 ,顶点坐标 .例2.已知抛物线9)2(2++-=x a x y 的顶点在坐标轴上,求a 的值.分析 顶点在坐标轴上有两种可能:(1)顶点在x 轴上,则顶点的纵坐标等于0;(2)顶点在y 轴上,则顶点的横坐标等于0.解 9)2(2++-=x a x y 4)2(9)22(22+-++-=a a x , 则抛物线的顶点坐标是⎥⎦⎤⎢⎣⎡+-+4)2(9,222a a .当顶点在x 轴上时,有 022=+-a ,解得 2-=a . 当顶点在y 轴上时,有 04)2(92=+-a ,解得 4=a 或8-=a . 所以,当抛物线9)2(2++-=x a x y 的顶点在坐标轴上时,a 有三个值,分别是 –2,4,8.[当堂课内练习]1.(1)二次函数x x y 22--=的对称轴是 .(2)二次函数1222--=x x y 的图象的顶点是 ,当x 时,y 随x 的增大而减小.(3)抛物线642--=x ax y 的顶点横坐标是-2,则a = . 2.抛物线c x ax y ++=22的顶点是)1,31(-,则a 、c 的值是多少?[本课课外作业]A 组1. 已知抛物线253212+-=x x y ,求出它的对称轴和顶点坐标,并画出函数的图象.2.利用配方法,把下列函数写成2)(h x a y -=+k 的形式,并写出它们的图象的开口方向、对称轴和顶点坐标. (1)162++-=x x y(2)4322+-=x x y(3)nx x y +-=2 (4)q px x y ++=23.已知622)2(-++=k kx k y 是二次函数,且当0>x 时,y 随x 的增大而增大.(1)求k 的值;(2)求开口方向、顶点坐标和对称轴.B 组4. 当0<a 时,求抛物线22212a ax x y +++=的顶点所在的象限.5. 已知抛物线h x x y +-=42的顶点A 在直线14--=x y 上,求抛物线的顶点坐标.[本课学习体会]26.2 二次函数的图象与性质(6)[本课知识要点]1.会通过配方求出二次函数)0(2≠++=a c bx ax y 的最大或最小值;2.在实际应用中体会二次函数作为一种数学模型的作用,会利用二次函数的性质求实际问题中的最大或最小值. [创新思维]在实际生活中,我们常常会碰到一些带有“最”字的问题,如问题:某商店将每件进价为80元的某种商品按每件100元出售,一天可销出约100件.该店想通过降低售价、增加销售量的办法来提高利润.经过市场调查,发现这种商品单价每降低1元,其销售量可增加约10件.将这种商品的售价降低多少时,能使销售利润最大? 在这个问题中,设每件商品降价x 元,该商品每天的利润为y 元,则可得函数关系式为二次函数2000100102++-=x x y .那么,此问题可归结为:自变量x 为何值时函数y 取得最大值?你能解决吗? [实践与探索]例1.求下列函数的最大值或最小值.(1)5322--=x x y ; (2)432+--=x x y .分析 由于函数5322--=x x y 和432+--=x x y 的自变量x 的取值范围是全体实数,所以只要确定它们的图象有最高点或最低点,就可以确定函数有最大值或最小值. 解 (1)二次函数5322--=x x y 中的二次项系数2>0,因此抛物线5322--=x x y 有最低点,即函数有最小值.因为5322--=x x y =849)43(22--x , 所以当43=x 时,函数5322--=x x y 有最小值是849-.(2)二次函数432+--=x x y 中的二次项系数-1<0, 因此抛物线432+--=x x y 有最高点,即函数有最大值.因为432+--=x x y =425)23(2++-x , 所以当23-=x 时,函数432+--=x x y 有最大值是425.回顾与反思 最大值或最小值的求法,第一步确定a 的符号,a >0有最小值,a <0有最大值;第二步配方求顶点,顶点的纵坐标即为对应的最大值或最小值.探索 试一试,当2.5≤x ≤3.5时,求二次函数322--=x x y 的最大值或最小值. 例2.某产品每件成本是120元,试销阶段每件产品的销售价x (元)与产品的日销售量y x (元)130 150 165 y (件) 70 50 35 若日销售量y 是销售价x 的一次函数,要获得最大销售利润,每件产品的销售价定为多少元?此时每日销售利润是多少?分析 日销售利润=日销售量×每件产品的利润,因此主要是正确表示出这两个量. 解 由表可知x+y=200,因此,所求的一次函数的关系式为200+-=x y . 设每日销售利润为s 元,则有1600)160()120(2+--=-=x x y s .因为0120,0200≥-≥+-x x ,所以200120≤≤x .所以,当每件产品的销售价定为160元时,销售利润最大,最大销售利润为1600元. 回顾与反思 解决实际问题时,应先分析问题中的数量关系,列出函数关系式,再研究所得的函数,得出结果.例3.如图26.2.8,在Rt ⊿ABC 中,∠C=90°,BC=4,AC=8,点D 在斜边AB 上,分别作DE ⊥AC ,DF ⊥BC ,垂足分别为E 、F ,得四边形DECF ,设DE=x ,DF=y . (1)用含y 的代数式表示AE ;(2)求y 与x 之间的函数关系式,并求出x 的取值范围;(3)设四边形DECF 的面积为S ,求S 与x 之间的函数关系,并求出S 的最大值.解 (1)由题意可知,四边形DECF 为矩形,因此y DF AC AE -=-=8.(2)由DE ∥BC ,得ACAE BC DE =,即884yx -=, 所以,x y 28-=,x 的取值范围是40<<x .(3)8)2(282)28(22+--=+-=-==x x x x x xy S , 所以,当x=2时,S 有最大值8.[当堂课内练习]1.对于二次函数m x x y +-=22,当x= 时,y 有最小值.2.已知二次函数b x a y +-=2)1(有最小值 –1,则a 与b 之间的大小关系是 ( ) A .a <b B .a=b C .a >b D .不能确定3.某商场销售一批衬衫,平均每天可售出20件,每件盈利40件,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经过市场调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.(1)若商场平均每天要盈利1200元,每件衬衫应降价多少元? (2)每件衬衫降价多少元时,商场平均每天盈利最多?[本课课外作业]A 组1.求下列函数的最大值或最小值.(1)x x y 22--=; (2)1222+-=x x y .2. 已知二次函数m x x y +-=62的最小值为1,求m 的值.,3.心理学家发现,学生对概念的接受能力y 与提出概念所用的时间x (单位:分)之间满足函数关系:)300(436.21.02≤≤++-=x x x y .y 值越大,表示接受能力越强. (1)x 在什么范围内,学生的接受能力逐步增强?x 在什么范围内,学生的接受能力逐步降低?(2)第10分时,学生的接受能力是多少? (3)第几分时,学生的接受能力最强?B 组4.不论自变量x 取什么数,二次函数m x x y +-=622的函数值总是正值,求m 的取值范围.5.如图,有长为24m 的篱笆,一面利用墙(墙的最大可用长度a 为10m ),围成中间隔有一道篱笆的长方形花圃.设花圃的宽AB 为x m ,面积为S m 2. (1)求S 与x 的函数关系式;(2)如果要围成面积为45 m 2的花圃,AB 的长是多少米?(3)能围成面积比45 m 2更大的花圃吗?如果能,请求出 最大面积,并说明围法;如果不能,请说明理由.6.如图,矩形ABCD 中,AB=3,BC=4,线段EF 在对角线AC 上,EG ⊥AD ,FH ⊥BC ,垂足分别是G 、H ,且EG+FH=EF .(1)求线段EF 的长;(2)设EG=x ,⊿AGE 与⊿CFH 的面积和为S , 写出S 关于x 的函数关系式及自变量x 的取值范围, 并求出S 的最小值.[本课学习体会]26 . 2 二次函数的图象与性质(7)[本课知识要点]会根据不同的条件,利用待定系数法求二次函数的函数关系式. [创新思维]一般地,函数关系式中有几个独立的系数,那么就需要有相同个数的独立条件才能求出函数关系式.例如:我们在确定一次函数)0(≠+=k b kx y 的关系式时,通常需要两个独立的条件:确定反比例函数)0(≠=k xky 的关系式时,通常只需要一个条件:如果要确定二次函数)0(2≠++=a c bx ax y 的关系式,又需要几个条件呢?[实践与探索]例1.某涵洞是抛物线形,它的截面如图26.2.9所示,现测得水面宽1.6m ,涵洞顶点O 到水面的距离为2.4m ,在图中直角坐标系内,涵洞所在的抛物线的函数关系式是什么?分析 如图,以AB 的垂直平分线为y 轴,以过点O 的y 轴的垂线为x 轴,建立了直角坐标系.这时,涵洞所在的抛物线的顶点在原点,对称轴是y 轴,开口向下,所以可设它的函数关系式是)0(2<=a ax y .此时只需抛物线上的一个点就能求出抛物线的函数关系式.解 由题意,得点B 的坐标为(0.8,-2.4),又因为点B 在抛物线上,将它的坐标代入)0(2<=a ax y ,得28.04.2⨯=-a所以 415-=a .因此,函数关系式是2415x y -=. 例2.根据下列条件,分别求出对应的二次函数的关系式.(1)已知二次函数的图象经过点A (0,-1)、B (1,0)、C (-1,2); (2) 已知抛物线的顶点为(1,-3),且与y 轴交于点(0,1);(3) 已知抛物线与x 轴交于点M (-3,0)、(5,0),且与y 轴交于点(0,-3); (4)已知抛物线的顶点为(3,-2),且与x 轴两交点间的距离为4.分析 (1)根据二次函数的图象经过三个已知点,可设函数关系式为c bx ax y ++=2的形式;(2)根据已知抛物线的顶点坐标,可设函数关系式为3)1(2--=x a y ,再根据抛物线与y 轴的交点可求出a 的值;(3)根据抛物线与x 轴的两个交点的坐标,可设函数关系式为)5)(3(-+=x x a y ,再根据抛物线与y 轴的交点可求出a 的值;(4)根据已知抛物线的顶点坐标(3,-2),可设函数关系式为2)3(2--=x a y ,同时可知抛物线的对称轴为x=3,再由与x 轴两交点间的距离为4,可得抛物线与x 轴的两个交点为(1,0)和(5,0),任选一个代入2)3(2--=x a y ,即可求出a 的值.解 (1)设二次函数关系式为c bx ax y ++=2,由已知,这个函数的图象过(0,-1),可以得到c= -1.又由于其图象过点(1,0)、(-1,2)两点,可以得到⎩⎨⎧=-=+31b a b a 解这个方程组,得a=2,b= -1.所以,所求二次函数的关系式是1222--=x x y .(2)因为抛物线的顶点为(1,-3),所以设二此函数的关系式为3)1(2--=x a y ,。

华师大版九下《二次函数》教案

华师大版九下《二次函数》教案

华师大版九下《二次函数》教案一、教学内容本节课我们将学习华师大版九年级下册数学教材中第五章《二次函数》的第一小节“二次函数的图像与性质”。

具体内容包括:二次函数的定义、图像、开口方向、顶点坐标、对称轴、最值等概念,以及二次函数图像与性质之间的关系。

二、教学目标1. 让学生掌握二次函数的定义,能够识别并写出一般形式的二次函数表达式。

2. 使学生理解二次函数图像的几何特征,如开口方向、顶点坐标、对称轴和最值等。

3. 培养学生运用二次函数图像与性质解决实际问题的能力。

三、教学难点与重点难点:二次函数图像的绘制及性质的理解。

重点:二次函数的定义、图像与性质的应用。

四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔、直尺、圆规等。

2. 学具:练习本、铅笔、橡皮、直尺、圆规等。

五、教学过程1. 导入:通过展示生活中的抛物线现象(如投篮、拱桥等),引出二次函数的概念。

2. 新课导入:(1)二次函数的定义:让学生回顾一次函数的定义,然后引导他们发现二次函数的定义。

(2)二次函数图像的绘制:讲解二次函数的一般形式,通过实例演示如何绘制二次函数的图像。

3. 例题讲解:(1)求二次函数的顶点坐标、对称轴、最值等。

(2)已知二次函数的部分信息,求解析式。

4. 随堂练习:让学生独立完成教材中的练习题,巩固所学知识。

六、板书设计1. 二次函数定义2. 二次函数图像的绘制方法3. 二次函数的性质开口方向顶点坐标对称轴最值七、作业设计1. 作业题目:(1)求下列二次函数的顶点坐标、对称轴、最值: y = 2x^2 4x + 3y = x^2 + 6x 5(2)已知二次函数的图像开口向上,顶点坐标为(1,3),且过点(0,2),求该二次函数的解析式。

2. 答案:(1)y = 2x^2 4x + 3顶点坐标:(1,1)对称轴:x = 1最小值:1y = x^2 + 6x 5顶点坐标:(3,4)对称轴:x = 3最大值:4(2)y = x^2 2x 1八、课后反思及拓展延伸重点和难点解析1. 教学难点与重点的确定。

2024年华师大版九下《二次函数》教案

2024年华师大版九下《二次函数》教案

2024年华师大版九下《二次函数》教案一、教学内容本节课选自2024年华师大版九年级下册《二次函数》章节。

详细内容包括:二次函数的定义与性质,二次函数的图像,二次函数的顶点式及其应用,二次方程与二次不等式的联系,以及二次函数在实际问题中的应用。

二、教学目标1. 理解二次函数的定义,掌握二次函数的性质及其图像特点。

2. 学会使用二次函数顶点式解析二次函数,并能解决相关问题。

3. 能够建立二次方程与二次不等式之间的关系,运用二次函数解决实际问题。

三、教学难点与重点教学难点:二次函数顶点式的应用,二次方程与二次不等式的联系。

教学重点:二次函数的定义,性质,图像及其在实际问题中的应用。

四、教具与学具准备1. 教具:多媒体教学设备,投影仪,黑板。

2. 学具:直尺,圆规,铅笔,橡皮,草稿纸。

五、教学过程1. 实践情景引入(5分钟)利用多媒体展示二次函数在实际问题中的应用,如抛物线运动,引导学生思考二次函数的基本概念。

2. 基本概念讲解(15分钟)讲解二次函数的定义,性质,图像,让学生掌握二次函数的基本知识。

3. 例题讲解(15分钟)选取典型例题,通过讲解与解析,让学生学会使用二次函数顶点式解决问题。

4. 随堂练习(10分钟)设计相关练习题,让学生及时巩固所学知识。

5. 知识拓展(5分钟)引导学生探讨二次方程与二次不等式之间的关系。

六、板书设计1. 二次函数定义2. 二次函数性质3. 二次函数图像4. 二次函数顶点式5. 二次方程与二次不等式的关系七、作业设计1. 作业题目:(1)求下列二次函数的顶点坐标:y = x^2 4x + 3(2)解下列二次方程:x^2 5x + 6 = 0(3)已知二次函数y = x^2 + 2x + 3,求该函数的最大值。

答案:(1)顶点坐标为(2,1)(2)解为x = 2或x = 3(3)最大值为4八、课后反思及拓展延伸本节课通过实践情景引入,让学生了解二次函数在实际问题中的应用,激发学生的学习兴趣。

华师大版九年级数学下册教案261二次函数

华师大版九年级数学下册教案261二次函数

华师大版九年级数学下册教案261 二次函数一、教学内容本节课选自华师大版九年级数学下册第261页,详细内容包括二次函数的定义、图像与性质,以及二次函数解析式的求解。

具体涉及教材的第四章《函数》第三节《二次函数》。

二、教学目标1. 理解并掌握二次函数的定义,能熟练地表示二次函数的一般形式。

3. 学会求解二次函数的解析式,并能应用于实际问题。

三、教学难点与重点教学难点:二次函数图像与性质的理解及运用,求解二次函数解析式。

教学重点:二次函数定义的掌握,图像与性质的归纳,以及解析式的求解。

四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。

2. 学具:二次函数图像卡片、直尺、圆规。

五、教学过程1. 实践情景引入:展示生活中常见的二次函数实例,如抛物线运动的篮球轨迹,引发学生对二次函数的好奇心。

a. 提问:同学们,你们在生活中见过类似这样的图像吗?b. 学生回答,教师点评。

2. 例题讲解:a. 讲解二次函数的定义,引导学生表示二次函数的一般形式。

c. 示例讲解求解二次函数解析式的方法。

3. 随堂练习:a. 让学生根据性质,判断给定二次函数图像的开口方向、顶点坐标等。

b. 让学生求解给定二次函数的解析式。

4. 知识巩固:b. 分析实际应用中二次函数的求解过程。

六、板书设计1. 二次函数定义2. 二次函数图像与性质3. 求解二次函数解析式的方法七、作业设计1. 作业题目:a. 根据性质,判断下列二次函数图像的开口方向、顶点坐标:(给出具体题目)b. 求解下列二次函数的解析式:(给出具体题目)2. 答案:八、课后反思及拓展延伸1. 反思:本节课学生对二次函数定义及性质的掌握程度,以及求解解析式的熟练程度。

2. 拓展延伸:引入三次函数、四次函数等高次函数,让学生思考它们的性质与求解方法,激发学生对函数学习的兴趣。

重点和难点解析1. 教学目标中关于二次函数性质的理解和应用。

2. 教学难点中求解二次函数解析式的方法。

华师大版九年级数学下册教案261二次函数

华师大版九年级数学下册教案261二次函数

华师大版九年级数学下册教案261 二次函数一、教学内容本节课我们将学习华师大版九年级数学下册第261页的二次函数。

具体内容包括:二次函数的定义、图像、性质及其应用。

我们将详细探讨二次函数的顶点式、标准式和一般式的相互转换,以及二次函数图像的绘制方法。

二、教学目标1. 理解并掌握二次函数的定义,能够用顶点式、标准式和一般式表示二次函数。

2. 学会绘制二次函数的图像,了解二次函数图像的性质。

3. 能够运用二次函数解决实际问题,提高学生的应用能力。

三、教学难点与重点教学难点:二次函数图像的性质及其应用。

教学重点:二次函数的定义、图像的绘制方法及二次函数的性质。

四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔。

2. 学具:直尺、圆规、铅笔、橡皮、草稿纸。

五、教学过程1. 引入:通过实际生活中的抛物线现象,如投篮、抛物线运动等,引入二次函数的概念。

2. 知识讲解:(1) 二次函数的定义及表示方法。

(2) 二次函数图像的绘制方法。

(3) 二次函数图像的性质。

3. 例题讲解:(1) 求给定二次函数的顶点、开口方向及对称轴。

(2) 根据二次函数图像,确定函数的解析式。

4. 随堂练习:完成教材第261页的练习题,巩固所学知识。

5. 小组讨论:探讨二次函数在实际问题中的应用,如最大(小)值问题、面积问题等。

六、板书设计1. 二次函数定义及表示方法。

2. 二次函数图像的绘制方法及性质。

3. 例题解答步骤及关键点。

七、作业设计1. 作业题目:(1) 求函数y=x^22x+1的顶点、开口方向及对称轴。

(2) 已知二次函数的顶点为(1,3),且过点(0,1),求函数的解析式。

2. 答案:(1) 顶点:(1,0),开口向上,对称轴:x=1。

(2) y=(x1)^23。

八、课后反思及拓展延伸1. 反思:本节课学生对二次函数的定义、图像及性质掌握情况,对实际问题的应用能力。

2. 拓展延伸:引导学生思考二次函数与一次函数、反比例函数之间的关系,以及二次函数在高中数学中的应用。

华师大版数学九年级下册《26.1 二次函数》教学设计

华师大版数学九年级下册《26.1 二次函数》教学设计

华师大版数学九年级下册《26.1 二次函数》教学设计一. 教材分析华师大版数学九年级下册《26.1 二次函数》是学生在初中阶段学习函数知识的最后一部份,也是较为重要的一部份。

本节内容主要介绍二次函数的定义、性质及其图象。

二次函数是初中数学中的重要知识,它不仅涉及到方程的解法,还与实际生活中的许多问题密切相关。

学生在学习本节内容时,需要掌握二次函数的基本知识,并能够运用二次函数解决实际问题。

二. 学情分析学生在学习本节内容前,已经学习了初一、初二级的函数知识,对函数的概念、性质有一定的了解。

同时,学生也学习了平面直角坐标系、图象的知识,能够理解和绘制简单的函数图象。

但是,学生对于二次函数的定义、性质及其图象的理解还较为模糊,需要通过本节课的学习进一步掌握。

三. 教学目标1.了解二次函数的定义,掌握二次函数的性质。

2.能够绘制二次函数的图象,理解二次函数图象与系数的关系。

3.能够运用二次函数解决实际问题,提高解决问题的能力。

四. 教学重难点1.二次函数的定义及其性质。

2.二次函数图象的绘制与分析。

3.运用二次函数解决实际问题。

五. 教学方法采用问题驱动法、案例分析法、小组合作法等教学方法,引导学生主动探究、合作交流,培养学生的动手操作能力和解决问题的能力。

六. 教学准备1.教学课件:制作二次函数的定义、性质、图象及其应用的教学课件。

2.教学素材:准备一些关于二次函数的实际问题,用于巩固和拓展学生的知识。

3.学具:为学生准备一些纸张、彩笔等绘画工具,方便学生绘制二次函数的图象。

七. 教学过程1.导入(5分钟)利用生活中的实例,如抛物线形的篮球架、跳水板等,引导学生思考这些实例与数学知识的联系,从而引出二次函数的概念。

2.呈现(10分钟)呈现二次函数的定义、性质及其图象,引导学生理解二次函数的基本知识。

3.操练(10分钟)学生分组合作,绘制一些二次函数的图象,并分析图象的性质。

教师巡回指导,解答学生的问题。

华师大版九下《二次函数》优质教案

华师大版九下《二次函数》优质教案

华师大版九下《二次函数》优质教案一、教学内容1. 二次函数的定义:形如y=ax^2+bx+c(a、b、c为常数,且a≠0)的函数。

2. 二次函数的一般形式:y=ax^2+bx+c。

3. 二次函数的图像:抛物线,开口方向由a的正负决定。

4. 二次函数的性质:对称性、顶点、最值等。

二、教学目标1. 理解并掌握二次函数的定义、一般形式、图像及性质。

2. 能够根据实际问题抽象出二次函数模型,并运用二次函数的性质解决实际问题。

3. 培养学生的观察、分析、概括能力和数形结合的思想。

三、教学难点与重点重点:二次函数的定义、一般形式、图像及性质。

难点:二次函数图像与性质的理解与应用。

四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。

2. 学具:直尺、圆规、量角器。

五、教学过程1. 实践情景引入展示一组实际生活中涉及的二次函数图像(如抛物线形状的拱桥、篮球投篮的轨迹等),引导学生观察并思考:这些图像具有什么共同特征?如何用数学模型来描述这些图像?2. 知识讲解(1)二次函数的定义:引导学生回顾一次函数的定义,进而引出二次函数的定义。

(2)二次函数的一般形式:通过实例,让学生观察二次函数的一般形式,并解释各部分的含义。

(4)二次函数的性质:通过观察图像,引导学生发现二次函数的对称性、顶点、最值等性质。

3. 例题讲解(1)求二次函数的顶点坐标。

(2)已知顶点坐标,求二次函数的解析式。

4. 随堂练习(1)根据图像判断二次函数的开口方向、顶点、最值。

(2)已知顶点坐标,求二次函数的解析式。

六、板书设计1. 二次函数的定义2. 二次函数的一般形式3. 二次函数的图像及性质4. 例题及解答七、作业设计1. 作业题目(2)已知二次函数的顶点坐标为(1,3),且过点(0,1),求该二次函数的解析式。

2. 答案(1)顶点坐标为(1,0)。

(2)解析式为y=(x1)^23。

八、课后反思及拓展延伸1. 反思:本节课学生对二次函数的定义、图像及性质掌握情况,对例题的解答是否到位。

华师大版九下《二次函数》教案

华师大版九下《二次函数》教案

华师大版九下《二次函数》教案一、教学内容本节课选自华师大版九年级下册《二次函数》章节,内容包括:1. 二次函数的定义及其一般形式;2. 二次函数的图像与性质;3. 二次函数的顶点式及其应用;4. 二次函数的判别式及其应用。

二、教学目标1. 知识与技能:掌握二次函数的定义、一般形式、图像与性质,以及顶点式和判别式的应用;3. 情感态度与价值观:激发学生学习兴趣,培养学生合作交流、勇于探索的精神。

三、教学难点与重点重点:二次函数的定义、图像与性质,以及顶点式和判别式的应用。

四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔;2. 学具:直尺、圆规、计算器。

五、教学过程1. 导入新课:通过展示生活中的二次函数实例,引导学生思考二次函数的定义;2. 探索新知:(1)引导学生回顾一次函数的定义,类比得出二次函数的定义;(3)介绍二次函数的顶点式,解释其与一般形式的关系;(4)讲解二次函数的判别式,分析其应用;3. 例题讲解:选取典型例题,讲解解题思路和方法;4. 随堂练习:布置相关练习题,巩固所学知识;6. 布置作业:布置适量的作业,巩固所学知识。

六、板书设计1. 二次函数的定义;2. 二次函数的一般形式;3. 二次函数的图像与性质;4. 二次函数的顶点式;5. 二次函数的判别式;6. 典型例题及解题方法;7. 课堂练习题。

七、作业设计1. 作业题目:(2)已知二次函数的图像开口向上,顶点坐标为(1,3),且经过点(0,1),求二次函数的解析式;(3)已知二次函数的判别式为24,且a=2,求二次函数的解析式。

2. 答案:(1)顶点坐标为(1,0),判别式为0;(2)y = 4(x 1)^2 3;(3)y = 2x^2 + bx + c,其中b^2 4ac = 24,解得b = ±4,c = 6。

八、课后反思及拓展延伸1. 反思:本节课的教学内容较为抽象,需要关注学生的接受程度,适时调整教学进度;2. 拓展延伸:引导学生探索二次函数在生活中的应用,如抛物线运动、拱桥设计等。

华师大版九下《二次函数》教案

华师大版九下《二次函数》教案

华师大版九下《二次函数》教案一、教学内容本节课我们将学习华师大版九年级下册《二次函数》章节的内容。

具体包括:二次函数的定义、图像及性质;二次函数的顶点式和标准式;二次函数图像的平移;二次函数的实际应用。

二、教学目标1. 理解并掌握二次函数的定义,能熟练地用顶点式和标准式表示二次函数。

2. 能够通过分析二次函数的性质,解决实际问题。

3. 培养学生的观察能力、逻辑思维能力和解决问题的能力。

三、教学难点与重点教学难点:二次函数图像的平移,二次函数性质的运用。

教学重点:二次函数的定义,顶点式和标准式的转换,图像的绘制。

四、教具与学具准备教具:多媒体教学设备,黑板,粉笔。

学具:直尺,圆规,计算器。

五、教学过程1. 实践情景引入利用多媒体展示一些生活中的抛物线现象,如抛物线运动,拱桥等,引导学生观察并思考抛物线与二次函数的关系。

2. 教学内容讲解(1)二次函数的定义:回顾一元二次方程,引导学生发现二次函数与一元二次方程的联系,给出二次函数的定义。

(3)二次函数的顶点式和标准式:讲解两种形式的二次函数,并进行转换。

(4)二次函数图像的平移:通过实际操作,让学生感受图像的平移。

3. 例题讲解选择一些具有代表性的例题,讲解解题思路,步骤,并强调注意事项。

4. 随堂练习让学生独立完成一些练习题,巩固所学知识。

5. 小结六、板书设计1. 二次函数的定义2. 二次函数的图像及性质3. 顶点式和标准式的转换4. 图像的平移5. 例题解析七、作业设计1. 作业题目:(1)已知二次函数的图像,求函数的解析式。

(2)已知二次函数的顶点,求函数的解析式。

(3)已知二次函数的图像,判断其开口方向和顶点坐标。

2. 答案:(1)y = x^2 + 2x + 3(2)y = (x 1)^2 + 2(3)开口向上,顶点坐标为(1,2)八、课后反思及拓展延伸1. 反思:本节课学生对二次函数的定义和性质掌握情况,以及图像的绘制和转换能力。

2. 拓展延伸:探讨二次函数与一元二次方程的关系,以及二次函数在实际问题中的应用。

华师大版九年级数学下册教案261二次函数

华师大版九年级数学下册教案261二次函数

华师大版九年级数学下册教案261 二次函数一、教学内容本节课选自华师大版九年级数学下册第261页,主要内容包括:二次函数的定义、图像及性质;二次函数的顶点式和一般式的互化;二次函数图像的平移。

二、教学目标1. 让学生掌握二次函数的定义,能熟练写出二次函数的顶点式和一般式。

2. 让学生了解二次函数的图像特征,能通过顶点式和一般式判断图像的开口方向、顶点位置及对称轴。

3. 培养学生运用二次函数解决实际问题的能力。

三、教学难点与重点重点:二次函数的定义、图像及性质;顶点式和一般式的互化。

难点:二次函数图像的平移;运用二次函数解决实际问题。

四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔。

2. 学具:直尺、圆规、三角板。

五、教学过程1. 实践情景引入通过展示生活中的抛物线现象(如投篮、拱桥等),引导学生思考抛物线与二次函数之间的关系。

2. 知识讲解(1)二次函数的定义(2)二次函数的图像及性质(3)二次函数的顶点式和一般式的互化(4)二次函数图像的平移3. 例题讲解(1)求二次函数的顶点坐标和对称轴(2)根据顶点式和一般式判断图像特征(3)二次函数图像的平移4. 随堂练习(1)完成教材第261页练习题1、2、3(2)讨论并解决生活中的二次函数问题六、板书设计1. 二次函数定义2. 图像及性质3. 顶点式和一般式4. 图像平移七、作业设计1. 作业题目:(1)求函数y=x^24x+3的顶点坐标和对称轴(2)已知二次函数的顶点坐标为(1, 3),且过点(0, 2),求函数解析式(3)将函数y=x^2向左平移2个单位,再向上平移3个单位,得到的新函数解析式是什么?2. 答案:(1)顶点坐标:(2, 1),对称轴:x=2(2)y=(x1)^23(3)y=(x+2)^2+3八、课后反思及拓展延伸1. 反思:关注学生对二次函数图像及性质的理解,对有困难的学生进行个别辅导。

2. 拓展延伸:引入二次函数与不等式的关系,为后续学习抛物线与不等式问题打下基础。

2024年九年级下册数学二次函数全章教案华师大版

2024年九年级下册数学二次函数全章教案华师大版

2024年九年级下册数学二次函数全章教案华师大版一、教学内容本教案依据华师大版《数学》2024年九年级下册教材,围绕第七章“二次函数”展开。

详细内容包括:7.1二次函数的概念与性质,7.2二次函数的图像,7.3二次函数与不等式,7.4二次函数的应用。

二、教学目标1. 理解二次函数的定义,掌握其标准形式和一般形式。

2. 能够分析二次函数的性质,准确绘制二次函数图像。

3. 掌握二次函数与不等式的解法,并能解决实际问题。

三、教学难点与重点教学难点:二次函数图像的绘制,二次函数与不等式的解法。

教学重点:二次函数的定义与性质,二次函数图像的识别,二次函数在实际问题中的应用。

四、教具与学具准备1. 教具:多媒体教学设备,黑板,粉笔。

2. 学具:直尺,圆规,计算器,练习本。

五、教学过程1. 实践情景引入(5分钟):通过展示生活中与二次函数相关的实例,如抛物线运动的篮球,引出二次函数的学习。

2. 知识讲解(15分钟):讲解二次函数的定义、标准形式和一般形式,分析二次函数的性质。

3. 例题讲解(15分钟):讲解如何绘制二次函数图像,分析图像与性质之间的关系。

4. 随堂练习(10分钟):让学生绘制给定二次函数的图像,分析图像的性质。

5. 知识拓展(10分钟):介绍二次函数与不等式的关系,讲解解法。

6. 应用练习(15分钟):解决实际问题,运用二次函数知识。

六、板书设计1. 二次函数定义与性质2. 二次函数图像的绘制方法3. 二次函数与不等式的解法4. 实际问题中的应用七、作业设计1. 作业题目:(1)绘制y=x^2的图像,分析其性质。

(2)解二次不等式2x^24x6>0。

2. 答案:(1)y=x^2的图像为开口向上的抛物线,顶点为原点,对称轴为y轴。

(2)x<1或x>3。

八、课后反思及拓展延伸1. 反思:关注学生对二次函数图像绘制和解二次不等式的掌握程度,及时调整教学方法。

2. 拓展延伸:引导学生探索二次函数与生活实际的其他应用,提高学生的数学素养。

华师大版九年级数学下册精品教案261二次函数

华师大版九年级数学下册精品教案261二次函数

华师大版九年级数学下册精品教案261 二次函数一、教学内容本节课,我们将深入探讨华师大版九年级数学下册第261页二次函数章节。

具体内容包括二次函数定义、图像、性质以及其在实际生活中应用。

我们还会讨论二次函数顶点式和标准式,并学习如何通过配方法将一般式转换为顶点式。

二、教学目标1. 让学生理解二次函数定义,并能够熟练地识别和描述其图像和性质。

2. 培养学生运用二次函数解决实际问题能力。

3. 让学生掌握二次函数顶点式和标准式,并能灵活地在各种形式之间转换。

三、教学难点与重点难点:二次函数图像与性质关系,以及二次函数顶点式推导。

重点:二次函数定义,图像和性质,以及不同形式之间转换。

四、教具与学具准备1. 教具:多媒体课件,演示二次函数图像动态变化。

2. 学具:学生每人准备一本练习册,若干张白纸和笔。

五、教学过程1. 实践情景引入:通过展示一些生活中抛物线现象,如篮球投篮轨迹,引导学生思考抛物线与二次函数关系。

过程细节:播放篮球投篮短片,让学生观察篮球轨迹,提出问题:“这个轨迹符合哪种数学模型?”2. 例题讲解:讲解教材中例题,让学生理解二次函数定义和性质。

过程细节:以y=ax^2+bx+c为例,解释二次函数定义,通过图像展示对称轴、顶点、开口方向等性质。

3. 随堂练习:让学生在白纸上画出给定二次函数图像,并描述其性质。

过程细节:给出几个二次函数,让学生独立完成图像绘制和性质描述,然后进行讲解。

4. 顶点式推导:通过配方法,将一般式转换为顶点式。

过程细节:以y=ax^2+bx+c为例,引导学生利用配方法,推导出顶点式y=a(xh)^2+k。

5. 互动讨论:让学生讨论二次函数在实际生活中应用。

过程细节:鼓励学生分享自己想法,如二次函数在经济学、物理学等领域应用。

六、板书设计1. 二次函数定义、图像和性质。

2. 顶点式和标准式转换。

3. 例题和随堂练习解答。

七、作业设计1. 作业题目:(1) 画出y=2x^24x+3图像,并描述其性质。

2024年九年级下册数学二次函数全章教案华师大版

2024年九年级下册数学二次函数全章教案华师大版

2024年九年级下册数学二次函数全章教案华师大版一、教学内容本节课选自2024年九年级下册数学华师大版教材,主要围绕二次函数全章进行教学。

具体内容包括:二次函数的定义、图像与性质;二次函数的顶点式与解析式的互化;二次函数的图像变换;二次函数的实际应用。

二、教学目标1. 理解二次函数的定义,掌握其图像与性质,能运用顶点式与解析式进行互化。

2. 学会二次函数图像的变换方法,培养空间想象能力。

3. 能运用二次函数解决实际问题,提高解决问题的能力。

三、教学难点与重点难点:二次函数图像的变换、实际应用。

重点:二次函数的定义、图像与性质、顶点式与解析式的互化。

四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。

2. 学具:直尺、圆规、量角器、练习本。

五、教学过程1. 导入:通过展示生活中抛物线的实例,引导学生思考抛物线与二次函数的关系,激发学习兴趣。

2. 新课:(2)介绍顶点式与解析式的互化方法,通过例题讲解,巩固所学知识。

(3)探讨二次函数图像的变换方法,结合实践情景,让学生动手操作,加深理解。

3. 随堂练习:设计有针对性的练习题,让学生及时巩固所学知识。

六、板书设计1. 二次函数的定义、图像与性质。

2. 二次函数的顶点式与解析式的互化。

3. 二次函数图像的变换方法。

4. 实践情景引入、例题讲解、随堂练习。

七、作业设计1. 作业题目:(1)求下列二次函数的顶点坐标、对称轴和开口方向:y = 2x^2 + 4x + 3y = x^2 + 4x + 5(2)已知二次函数的图像如下,求其解析式:y = ax^2 + bx + c2. 答案:(1)顶点坐标、对称轴和开口方向分别为:y = 2x^2 + 4x + 3:顶点坐标为(1,1),对称轴为x=1,开口向上。

y = x^2 + 4x + 5:顶点坐标为(2,9),对称轴为x=2,开口向下。

(2)解析式为:y = 2x^2 4x + 3八、课后反思及拓展延伸1. 反思:本节课学生对二次函数的定义、图像与性质掌握较好,但在图像变换方面还存在一定困难,需要在今后的教学中加强练习。

九年级下册数学二次函数全章教案华师大版

九年级下册数学二次函数全章教案华师大版

九年级下册数学二次函数全章教案华师大版一、教学内容本教案依据华师大版九年级下册数学教材,围绕第六章“二次函数”展开,详细内容包括:6.1二次函数的概念;6.2二次函数的性质;6.3二次函数的图像;6.4二次函数与一元二次方程的关系;6.5二次函数的应用。

二、教学目标1. 理解并掌握二次函数的概念、性质、图像及应用。

2. 学会利用二次函数解决实际问题,提高解决问题的能力。

3. 培养学生的观察能力、逻辑思维能力和空间想象能力。

三、教学难点与重点重点:二次函数的概念、性质、图像;二次函数与一元二次方程的关系。

难点:二次函数图像的平移、压缩、拉伸;二次函数在实际问题中的应用。

四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔。

2. 学具:直尺、圆规、计算器。

五、教学过程1. 引入:(1)通过展示生活中的抛物线现象,如投篮、跳高等,引导学生观察并思考这些现象与二次函数的关系。

(2)回顾一次函数的性质和图像,为新课的学习做好铺垫。

2. 新课内容:(1)6.1二次函数的概念① 通过实例让学生了解二次函数的定义。

② 解释并举例说明二次函数的一般形式。

(2)6.2二次函数的性质① 通过分析二次函数的一般形式,引导学生探讨二次函数的性质。

② 解释二次函数的开口方向、对称轴、顶点等概念。

(3)6.3二次函数的图像① 让学生通过作图,观察二次函数图像的特点。

② 讲解二次函数图像的平移、压缩、拉伸规律。

(4)6.4二次函数与一元二次方程的关系① 解释二次函数与一元二次方程的内在联系。

② 通过实例让学生掌握二次函数与一元二次方程的转化方法。

(5)6.5二次函数的应用① 分析二次函数在实际问题中的应用。

② 让学生学会利用二次函数解决实际问题。

3. 例题讲解:针对每个知识点,选取典型例题进行讲解,让学生掌握解题思路和方法。

4. 随堂练习:设计不同难度的练习题,让学生巩固所学知识,并及时给予反馈。

六、板书设计1. 二次函数的定义、一般形式、性质、图像等。

2024年华师大版九年级数学下册教案261二次函数

2024年华师大版九年级数学下册教案261二次函数

2024年华师大版九年级数学下册教案261 二次函数一、教学内容本节课我们将学习华师大版九年级数学下册第261页的二次函数。

具体内容包括:1. 二次函数的定义与一般形式;2. 二次函数图像的识别与性质;3. 二次函数顶点坐标的求解方法;4. 二次函数与实际问题的联系。

二、教学目标1. 理解二次函数的定义,掌握其一般形式;2. 能够识别二次函数的图像,了解其性质;3. 学会求解二次函数的顶点坐标;4. 能够运用二次函数解决实际问题。

三、教学难点与重点教学难点:二次函数图像的性质及其在实际问题中的应用。

教学重点:二次函数的定义、一般形式、顶点坐标求解方法。

四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔;2. 学具:练习本、铅笔、直尺、橡皮。

五、教学过程1. 实践情景引入(5分钟)通过一个实际情景,如抛物线运动,引导学生了解二次函数与实际问题的联系。

2. 知识讲解(15分钟)(1)讲解二次函数的定义与一般形式;(2)通过示例图像,介绍二次函数图像的性质;(3)教授求解二次函数顶点坐标的方法。

3. 例题讲解(10分钟)讲解两个典型例题,涉及二次函数的定义、图像性质及顶点坐标求解。

4. 随堂练习(15分钟)让学生完成两个练习题,巩固所学知识。

5. 课堂小结(5分钟)六、板书设计1. 二次函数定义与一般形式;2. 二次函数图像性质;3. 求解二次函数顶点坐标方法;4. 典型例题及解答;5. 课堂小结。

七、作业设计1. 作业题目:(2)已知二次函数y = x^2 + 4x + 1的顶点坐标,求该函数的解析式。

2. 答案:(1)顶点坐标:(1,1);(2)解析式:y = (x 2)^2 + 5。

八、课后反思及拓展延伸1. 反思:关注学生对二次函数图像性质的理解,以及顶点坐标求解方法的掌握;2. 拓展延伸:引入二次函数的对称轴、最小值、最大值等概念,为后续学习打下基础。

重点和难点解析1. 教学难点:二次函数图像的性质及其在实际问题中的应用。

2024年华师大版九下《二次函数》教案

2024年华师大版九下《二次函数》教案

2024年华师大版九下《二次函数》教案一、教学内容本节课选自2024年华师大版九年级下册《二次函数》章节。

具体内容包括:二次函数的定义及其图像特征,二次函数的标准式、顶点式和一般式的相互转化,二次函数的性质,以及二次函数在生活中的简单应用。

二、教学目标1. 理解并掌握二次函数的定义,能熟练地识别二次函数;2. 学会二次函数标准式、顶点式和一般式之间的相互转化,并了解二次函数图像的特征;3. 掌握二次函数的性质,能运用二次函数解决实际问题。

三、教学难点与重点难点:二次函数图像的特征及其性质,二次函数在实际问题中的应用。

重点:二次函数的定义,二次函数标准式、顶点式和一般式的相互转化。

四、教具与学具准备教具:黑板、粉笔、教学课件、投影仪。

学具:直尺、圆规、练习本、草稿纸。

五、教学过程1. 实践情景引入通过展示生活中的抛物线现象,如抛物面天线、篮球投篮的轨迹等,引导学生思考抛物线与二次函数之间的关系。

2. 教学新课(1)二次函数的定义:引导学生回顾一次函数的定义,进而引出二次函数的定义。

(2)二次函数的标准式、顶点式和一般式:讲解三种形式的二次函数,并通过实例进行演示。

(3)二次函数图像的特征:通过画图工具,展示二次函数图像的对称性、开口方向和顶点位置等特点。

(4)二次函数的性质:讲解二次函数的增减性、最值等性质。

3. 例题讲解选取具有代表性的例题,讲解解题思路和方法,引导学生运用所学知识解决实际问题。

4. 随堂练习设计具有梯度性的练习题,让学生在课堂上及时巩固所学知识。

六、板书设计1. 二次函数的定义2. 二次函数的标准式、顶点式和一般式3. 二次函数图像的特征4. 二次函数的性质5. 例题及解题步骤6. 随堂练习题目七、作业设计1. 作业题目(1)已知二次函数的标准式,求顶点坐标和对称轴;(2)已知二次函数的一般式,求最大值和最小值;(3)运用二次函数解决实际问题。

答案:见附件。

八、课后反思及拓展延伸1. 反思:本节课学生对二次函数的定义和图像特征掌握较好,但在解决实际问题时还需加强引导。

华师大版九下《二次函数》教案

华师大版九下《二次函数》教案

华师大版九下《二次函数》教案一、教学内容本节课我们将学习华师大版九年级下册《二次函数》的第一章节。

具体内容包括:二次函数的定义、图像与性质,以及二次函数的顶点式和一般式的互化。

我们还将探讨二次函数在生活中的实际应用。

二、教学目标1. 理解二次函数的定义,掌握其图像与性质。

2. 学会二次函数顶点式与一般式的互化方法,并能熟练运用。

3. 能够将二次函数应用于解决实际问题。

三、教学难点与重点教学难点:二次函数图像与性质的理解,顶点式与一般式的互化。

教学重点:二次函数的定义,图像与性质,以及实际应用。

四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔。

2. 学具:直尺、圆规、铅笔、橡皮。

五、教学过程1. 引入:通过展示生活中常见的抛物线现象,如抛物线运动、拱桥等,引导学生思考抛物线与二次函数之间的关系。

2. 新课导入:讲解二次函数的定义,引导学生回顾一元二次方程,为新课打下基础。

a. 二次函数的定义b. 二次函数的图像与性质c. 二次函数顶点式与一般式的互化3. 例题讲解:讲解典型例题,展示解题思路和方法。

4. 随堂练习:布置与例题类似的练习题,让学生巩固所学知识。

六、板书设计1. 二次函数定义2. 图像与性质a. 开口方向b. 顶点坐标c. 对称轴3. 顶点式与一般式的互化4. 例题及解题思路七、作业设计1. 作业题目:a. 求下列二次函数的顶点坐标和对称轴:y = x^2 2x + 1b. 将下列二次函数化为一般式:y = (x 1)^2 + 2c. 某公园的拱桥形状为二次函数图像,已知顶点坐标为(2, 3),开口向上,求该二次函数的解析式。

2. 答案:a. 顶点坐标:(1, 0),对称轴:x = 1b. 一般式:y = x^2 2x + 3c. 二次函数解析式:y = a(x 2)^2 + 3,由于开口向上,a > 0。

八、课后反思及拓展延伸1. 反思:本节课学生对二次函数的定义、图像与性质掌握情况较好,但在顶点式与一般式的互化方面存在一定困难,需要在课后加强练习。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

华师大版二次函数教案 Corporation standardization office #QS8QHH-HHGX8Q8-GNHHJ8第二十六章 二次函数[本章知识要点]1.探索具体问题中的数量关系和变化规律.2.结合具体情境体会二次函数作为一种数学模型的意义,并了解二次函数的有关概念.3.会用描点法画出二次函数的图象,能通过图象和关系式认识二次函数的性质.4.会运用配方法确定二次函数图象的顶点、开口方向和对称轴. 5.会利用二次函数的图象求一元二次方程(组)的近似解.6.会通过对现实情境的分析,确定二次函数的表达式,并能运用二次函数及其性质解决简单的实际问题.26.1 二次函数[本课知识要点]通过具体问题引入二次函数的概念,在解决问题的过程中体会二次函数的意义.[MM 及创新思维](1)正方形边长为a (cm ),它的面积s (cm 2)是多少(2)矩形的长是4厘米,宽是3厘米,如果将其长与宽都增加x 厘米,则面积增加y 平方厘米,试写出y 与x 的关系式.请观察上面列出的两个式子,它们是不是函数为什么如果是函数,请你结合学习一次函数概念的经验,给它下个定义. [实践与探索]例1. m 取哪些值时,函数)1()(22+++-=m mx x m m y 是以x 为自变量的二次函数分析 若函数)1()(22+++-=m mx x m m y 是二次函数,须满足的条件是:02≠-m m .解 若函数)1()(22+++-=m mx x m m y 是二次函数,则 02≠-m m . 解得 0≠m ,且1≠m .因此,当0≠m ,且1≠m 时,函数)1()(22+++-=m mx x m m y 是二次函数. 回顾与反思 形如c bx ax y ++=2的函数只有在0≠a 的条件下才是二次函数. 探索 若函数)1()(22+++-=m mx x m m y 是以x 为自变量的一次函数,则m 取哪些值例2.写出下列各函数关系,并判断它们是什么类型的函数.(1)写出正方体的表面积S (cm 2)与正方体棱长a (cm )之间的函数关系; (2)写出圆的面积y (cm 2)与它的周长x (cm )之间的函数关系;(3)某种储蓄的年利率是%,存入10000元本金,若不计利息,求本息和y (元)与所存年数x 之间的函数关系;(4)菱形的两条对角线的和为26cm ,求菱形的面积S (cm 2)与一对角线长x (cm )之间的函数关系.解 (1)由题意,得 )0(62>=a a S ,其中S 是a 的二次函数;(2)由题意,得 )0(42>=x x y π,其中y 是x 的二次函数; (3)由题意,得 10000%98.110000⋅+=x y (x ≥0且是正整数), 其中y 是x 的一次函数;(4)由题意,得 )260(1321)26(212<<+-=-=x x x x x S ,其中S 是x 的二次函数.例3.正方形铁片边长为15cm ,在四个角上各剪去一个边长为x (cm )的小正方形,用余下的部分做成一个无盖的盒子.(1)求盒子的表面积S (cm 2)与小正方形边长x (cm )之间的函数关系式; (2)当小正方形边长为3cm 时,求盒子的表面积.解 (1))2150(4225415222<<-=-=x x x S ;(2)当x=3cm 时,189342252=⨯-=S (cm 2). [当堂课内练习]1.下列函数中,哪些是二次函数 (1)02=-x y (2)2)1()2)(2(---+=x x x y (3)xx y 12+= (4)322-+=x x y2.当k 为何值时,函数1)1(2+-=+kk x k y 为二次函数3.已知正方形的面积为)(2cm y ,周长为x (cm ). (1)请写出y 与x 的函数关系式; (2)判断y 是否为x 的二次函数. [本课课外作业]A 组1.已知函数72)3(--=mx m y 是二次函数,求m 的值.2.已知二次函数2ax y =,当x=3时,y= -5,当x= -5时,求y 的值.3.已知一个圆柱的高为27,底面半径为x ,求圆柱的体积y 与x 的函数关系式.若圆柱的底面半径x 为3,求此时的y .4.用一根长为40 cm 的铁丝围成一个半径为r 的扇形,求扇形的面积y 与它的半径x 之间的函数关系式.这个函数是二次函数吗请写出半径r 的取值范围.B 组5.对于任意实数m ,下列函数一定是二次函数的是 ( )A .22)1(x m y -=B .22)1(x m y +=C .22)1(x m y +=D .22)1(x m y -=6.下列函数关系中,可以看作二次函数c bx ax y ++=2(0≠a )模型的是 ( )A .在一定的距离内汽车的行驶速度与行驶时间的关系B .我国人口年自然增长率为1%,这样我国人口总数随年份的变化关系C .竖直向上发射的信号弹,从发射到落回地面,信号弹的高度与时间的关系(不计空气阻力)D .圆的周长与圆的半径之间的关系 [本课学习体会]26.2 二次函数的图象与性质(1)[本课知识要点]会用描点法画出二次函数2ax y =的图象,概括出图象的特点及函数的性质. [MM 及创新思维]我们已经知道,一次函数12+=x y ,反比例函数xy 3=的图象分别是 、,那么二次函数2x y =的图象是什么呢 (1)描点法画函数2x y =的图象前,想一想,列表时如何合理选值以什么数为中心当x 取互为相反数的值时,y 的值如何(2)观察函数2x y =的图象,你能得出什么结论 [实践与探索]例1.在同一直角坐标系中,画出下列函数的图象,并指出它们有何共同点有何不同点(1)22x y =(2)22x y -=x… -3 -2 -1 0 1 2 3 … 22x y =…18822818…22x y -= …-18 -8 -2 0 -2 -8 -18… 图26.2.1.共同点:都以y 轴为对称轴,顶点都在坐标原点.不同点:22x y =的图象开口向上,顶点是抛物线的最低点,在对称轴的左边,曲线自左向右下降;在对称轴的右边,曲线自左向右上升.22x y -=的图象开口向下,顶点是抛物线的最高点,在对称轴的左边,曲线自左向右上升;在对称轴的右边,曲线自左向右下降.回顾与反思 在列表、描点时,要注意合理灵活地取值以及图形的对称性,因为图象是抛物线,因此,要用平滑曲线按自变量从小到大或从大到小的顺序连接.例2.已知42)2(-++=k k xk y 是二次函数,且当0>x 时,y 随x 的增大而增大.(1)求k 的值;(2)求顶点坐标和对称轴.解 (1)由题意,得⎩⎨⎧>+=-+02242k k k , 解得k=2.(2)二次函数为24x y =,则顶点坐标为(0,0),对称轴为y 轴. 例3.已知正方形周长为Ccm ,面积为S cm 2. (1)求S 和C 之间的函数关系式,并画出图象; (2)根据图象,求出S=1 cm 2时,正方形的周长; (3)根据图象,求出C 取何值时,S ≥4 cm 2.分析 此题是二次函数实际应用问题,解这类问题时要注意自变量的取值范围;画图象时,自变量C 的取值应在取值范围内.解 (1)由题意,得)0(1612>=C C S .C 2 4 6 8 … 2161C S = 41 1 494 …(2)根据图象得S=1 cm 2时,正方形的周长是4cm .(3)根据图象得,当C ≥8cm 时,S ≥4 cm 2.回顾与反思(1)此图象原点处为空心点.(2)横轴、纵轴字母应为题中的字母C 、S ,不要习惯地写成x 、y . (3)在自变量取值范围内,图象为抛物线的一部分. [当堂课内练习]1.在同一直角坐标系中,画出下列函数的图象,并分别写出它们的开口方向、对称轴和顶点坐标.(1)23x y = (2)23x y -= (3)231x y =2.(1)函数232x y =的开口 ,对称轴是 ,顶点坐标是 ;(2)函数241x y -=的开口 ,对称轴是 ,顶点坐标是 .3.已知等边三角形的边长为2x ,请将此三角形的面积S 表示成x 的函数,并画出图象的草图. [本课课外作业]A 组1.在同一直角坐标系中,画出下列函数的图象.(1)24x y -= (2)241x y =2.填空:(1)抛物线25x y -=,当x= 时,y 有最 值,是 . (2)当m= 时,抛物线mm x m y --=2)1(开口向下.(3)已知函数1222)(--+=k k x k k y 是二次函数,它的图象开口 ,当x时,y 随x 的增大而增大. 3.已知抛物线102-+=k kkx y 中,当0>x 时,y 随x 的增大而增大.(1)求k 的值; (2)作出函数的图象(草图).4.已知抛物线2ax y =经过点(1,3),求当y=9时,x 的值.B 组5.底面是边长为x 的正方形,高为0.5cm 的长方体的体积为ycm 3.(1)求y 与x 之间的函数关系式;(2)画出函数的图象;(3)根据图象,求出y=8 cm 3时底面边长x 的值;(4)根据图象,求出x 取何值时,y ≥4.5 cm 3. 6.二次函数2ax y =与直线32-=x y 交于点P (1,b ).(1)求a 、b 的值;(2)写出二次函数的关系式,并指出x 取何值时,该函数的y 随x 的增大而减小.7.一个函数的图象是以原点为顶点,y 轴为对称轴的抛物线,且过M (-2,2).(1)求出这个函数的关系式并画出函数图象;(2)写出抛物线上与点M 关于y 轴对称的点N 的坐标,并求出⊿MON 的面积. [本课学习体会]26.2 二次函数的图象与性质(2)[本课知识要点]会画出k ax y +=2这类函数的图象,通过比较,了解这类函数的性质. [MM 及创新思维]同学们还记得一次函数x y 2=与12+=x y 的图象的关系吗 ,你能由此推测二次函数2x y =与12+=x y 的图象之间的关系吗 ,那么2x y =与22-=x y 的图象之间又有何关系. [实践与探索]例1.在同一直角坐标系中,画出函数22x y =与222+=x y 的图象.描点、连线,画出这两个函数的图象,如图26.2.3所示.回顾与反思 当自变量x 取同一数值时,这两个函数的函数值之间有什么关系反映在图象上,相应的两个点之间的位置又有什么关系x… -3 -2 -1 0 1 2 3 … 22x y = … 18 8 2 0 2 8 18 … 222+=x y…20104241020…探索 观察这两个函数,它们的开口方向、对称轴和顶点坐标有那些是相同的又有哪些不同你能由此说出函数22x y =与222-=x y 的图象之间的关系吗 例2.在同一直角坐标系中,画出函数12+-=x y 与12--=x y 的图象,并说明,通过怎样的平移,可以由抛物线12+-=x y 得到抛物线12--=x y .描点、连线,画出这两个函数的图象,如图26.2.4所示.可以看出,抛物线12--=x y 是由抛物线12+-=x y 向下平移两个单位得到的.回顾与反思 抛物线12+-=x y 和抛物线12--=x y 分别是由抛物线2x y -=向上、向下平移一个单位得到的.探索 如果要得到抛物线42+-=x y ,应将抛物线12--=x y 作怎样的平移例3.一条抛物线的开口方向、对称轴与221x y =相同,顶点纵坐标是-2,且抛物线经过点(1,1),求这条抛物线的函数关系式.解 由题意可得,所求函数开口向上,对称轴是y 轴,顶点坐标为(0,-2),因此所求函数关系式可看作)0(22>-=a ax y , 又抛物线经过点(1,1), 所以,2112-⋅=a , 解得3=a . 故所求函数关系式为232-=x y .x… -3 -2 -1 0 1 2 3 … 12+-=x y … -8 -3 0 1 0 -3 -8 … 12--=x y…-10-5-2-1-2-5-10…回顾与反思 k ax y +=2(a 、k 是常数,a ≠0)的图象的开口方向、对称轴、1.在同一直角坐标系中,画出下列二次函数的图象:221x y =, 2212+=x y , 2212-=x y .观察三条抛物线的相互关系,并分别指出它们的开口方向及对称轴、顶点的位置.你能说出抛物线k x y +=221的开口方向及对称轴、顶点的位置吗2.抛物线9412-=x y 的开口 ,对称轴是 ,顶点坐标是 ,它可以看作是由抛物线241x y =向 平移 个单位得到的.3.函数332+-=x y ,当x 时,函数值y 随x 的增大而减小.当x 时,函数取得最 值,最 值y= . [本课课外作业]A 组1.已知函数231x y =, 3312+=x y , 2312-=x y .(1)分别画出它们的图象;(2)说出各个图象的开口方向、对称轴、顶点坐标;(3)试说出函数5312+=x y 的图象的开口方向、对称轴、顶点坐标.2.不画图象,说出函数3412+-=x y 的开口方向、对称轴和顶点坐标,并说明它是由函数241x y -=通过怎样的平移得到的.3.若二次函数22+=ax y 的图象经过点(-2,10),求a 的值.这个函数有最大还是最小值是多少B 组4.在同一直角坐标系中b ax y +=2与)0,0(≠≠+=b a b ax y 的图象的大致位置是( )5.已知二次函数7)1(82-+--=k x k x y ,当k 为何值时,此二次函数以y 轴为对称轴写出其函数关系式. [本课学习体会]26.2 二次函数的图象与性质(3)[本课知识要点]会画出2)(h x a y -=这类函数的图象,通过比较,了解这类函数的性质. [MM 及创新思维]我们已经了解到,函数k ax y +=2的图象,可以由函数2ax y =的图象上下平移所得,那么函数2)2(21-=x y 的图象,是否也可以由函数221x y =平移而得呢画图试一试,你能从中发现什么规律吗 [实践与探索]例1.在同一直角坐标系中,画出下列函数的图象.221x y =,2)2(21+=x y ,2)2(21-=x y ,并指出它们的开口方向、对称轴和顶点坐标. 描点、连线,画出这三个函数的图象,如图26.2.5所示.x … -3 -2 -10 1 2 3 …221x y = (29)2 21 0 21 2 29 …2)2(21+=x y …21 0 21 2 225 8 225… 2)2(21-=x y … 225 8 29221 0 21 …它们的开口方向都向上;对称轴分别是y 轴、直线x= -2和直线x=2;顶点坐标分别是(0,0),(-2,0),(2,0).回顾与反思 对于抛物线2)2(21+=x y ,当x 时,函数值y 随x 的增大而减小;当x 时,函数值y 随x 的增大而增大;当x 时,函数取得最 值,最 值y= .探索 抛物线2)2(21+=x y 和抛物线2)2(21-=x y 分别是由抛物线221x y =向左、向右平移两个单位得到的.如果要得到抛物线2)4(21-=x y ,应将抛物线221x y =作怎样的平移例2.不画出图象,你能说明抛物线23x y -=与2)2(3+-=x y 之间的关系吗 解 抛物线23x y -=的顶点坐标为(0,0);抛物线2)2(3+-=x y 的顶点坐标为(-2,0).因此,抛物线23x y -=与2)2(3+-=x y 形状相同,开口方向都向下,对称轴分别是y 轴和直线2-=x .抛物线2)2(3+-=x y 是由23x y -=向左平移2个单位而得的.回顾与反思 2)(h x a y -=(a 、h 是常数,a ≠0)的图象的开口方向、对称[当堂课内练习]1.画图填空:抛物线2)1(-=x y 的开口 ,对称轴是 ,顶点坐标是 ,它可以看作是由抛物线2x y =向 平移 个单位得到的. 2.在同一直角坐标系中,画出下列函数的图象.22x y -=,2)3(2--=x y ,2)3(2+-=x y ,并指出它们的开口方向、对称轴和顶点坐标.[本课课外作业]A 组1.已知函数221x y -=,2)1(21+-=x y , 2)1(21--=x y .(1)在同一直角坐标系中画出它们的图象;(2)分别说出各个函数图象的开口方向、对称轴和顶点坐标; (3)分别讨论各个函数的性质.2.根据上题的结果,试说明:分别通过怎样的平移,可以由抛物线221x y -=得到抛物线2)1(21+-=x y 和2)1(21--=x y3.函数2)1(3+-=x y ,当x 时,函数值y 随x 的增大而减小.当x 时,函数取得最 值,最 值y= .4.不画出图象,请你说明抛物线25x y =与2)4(5-=x y 之间的关系.B 组5.将抛物线2ax y =向左平移后所得新抛物线的顶点横坐标为 -2,且新抛物线经过点(1,3),求a 的值. [本课学习体会]26.2 二次函数的图象与性质(4)[本课知识要点]1.掌握把抛物线2ax y =平移至2)(h x a y -=+k 的规律;2.会画出2)(h x a y -=+k 这类函数的图象,通过比较,了解这类函数的性质.[MM 及创新思维]由前面的知识,我们知道,函数22x y =的图象,向上平移2个单位,可以得到函数222+=x y 的图象;函数22x y =的图象,向右平移3个单位,可以得到函数2)3(2-=x y 的图象,那么函数22x y =的图象,如何平移,才能得到函数2)3(22+-=x y 的图象呢[实践与探索]例1.在同一直角坐标系中,画出下列函数的图象.221x y =,2)1(21-=x y ,2)1(212--=x y ,并指出它们的开口方向、对称轴和顶点坐标.描点、连线,画出这三个函数的图象,如图26.2.6所示.它们的开口方向都向 ,对称轴分别为 、 、 ,顶点坐标分别为 、 、 .请同学们完成填空,并观察三个图象之间的关系.回顾与反思 二次函数的图象的上下平移,只影响二次函数2)(h x a y -=+k 中k 的值;左右平移,只影响h 的值,抛物线的形状不变,所以平移时,可根据顶点坐标的改变,确定平移前、后的函数关系式及平移的路径.此外,图象的平移与平移的顺序无关.探索 你能说出函数2)(h x a y -=+k (a 、h 、k 是常数,a ≠0)的图象的开口方2)(h x a y -=+k 开口方向对称轴顶点坐标0>a0<a例2.把抛物线c bx x y ++=2向上平移2个单位,再向左平移4个单位,得到抛物线2x y =,求b 、c 的值.分析 抛物线2x y =的顶点为(0,0),只要求出抛物线c bx x y ++=2的顶点,根据顶点坐标的改变,确定平移后的函数关系式,从而求出b 、c 的值.解 c bx x y ++=2c b b bx x +-++=442224)2(22b c b x -++=. 221x y = (2)9 221 021 229… 2)1(21-=x y … 8 29 2 21 0 21 2 … 2)1(212--=x y …625 023- -223- 0…向上平移2个单位,得到24)2(22+-++=b c b x y , 再向左平移4个单位,得到24)42(22+-+++=b c b x y , 其顶点坐标是)24,42(2+---b c b ,而抛物线2x y =的顶点为(0,0),则 ⎪⎪⎩⎪⎪⎨⎧=+-=--0240422b c b解得 ⎩⎨⎧=-=148c b探索 把抛物线c bx x y ++=2向上平移2个单位,再向左平移4个单位,得到抛物线2x y =,也就意味着把抛物线2x y =向下平移2个单位,再向右平移4个单位,得到抛物线c bx x y ++=2.那么,本题还可以用更简洁的方法来解,请你试一试. [当堂课内练习]1.将抛物线1)4(22--=x y 如何平移可得到抛物线22x y = ( )A .向左平移4个单位,再向上平移1个单位B .向左平移4个单位,再向下平移1个单位C .向右平移4个单位,再向上平移1个单位D .向右平移4个单位,再向下平移1个单位2.把抛物线223x y -=向左平移3个单位,再向下平移4个单位,所得的抛物线的函数关系式为 .3.抛物线22121x x y -+=可由抛物线221x y -=向 平移 个单位,再向 平移 个单位而得到. [本课课外作业]A 组1.在同一直角坐标系中,画出下列函数的图象.23x y -=,2)2(3+-=x y ,1)2(32-+-=x y ,并指出它们的开口方向、对称轴和顶点坐标.2.将抛物线522++-=x x y 先向下平移1个单位,再向左平移4个单位,求平移后的抛物线的函数关系式.3.将抛物线23212++-=x x y 如何平移,可得到抛物线32212++-=x x yB 组 4.把抛物线c bx x y ++=2向右平移3个单位,再向下平移2个单位,得到抛物线532+-=x x y ,则有 ( )A .b =3,c=7B .b= -9,c= -15C .b=3,c=3D .b= -9,c=21 5.抛物线c bx x y ++-=23是由抛物线132+--=bx x y 向上平移3个单位,再向左平移2个单位得到的,求b 、c 的值.6.将抛物线)0(2≠=a ax y 向左平移h 个单位,再向上平移k 个单位,其中h >0,k <0,求所得的抛物线的函数关系式. [本课学习体会]26.2 二次函数的图象与性质(5)[本课知识要点]1.能通过配方把二次函数c bx ax y ++=2化成2)(h x a y -=+k 的形式,从而确定开口方向、对称轴和顶点坐标;2.会利用对称性画出二次函数的图象. [MM 及创新思维]我们已经发现,二次函数1)3(22+-=x y 的图象,可以由函数22x y =的图象先向 平移 个单位,再向 平移 个单位得到,因此,可以直接得出:函数1)3(22+-=x y 的开口 ,对称轴是 ,顶点坐标是 .那么,对于任意一个二次函数,如232-+-=x x y ,你能很容易地说出它的开口方向、对称轴和顶点坐标,并画出图象吗 [实践与探索]例1.通过配方,确定抛物线6422++-=x x y 的开口方向、对称轴和顶点坐标,再描点画图. 解 6422++-=x x y[]8)1(261)1(26)112(26)2(22222+--=+---=+-+--=+--=x x x x x x因此,抛物线开口向下,对称轴是直线x=1,顶点坐标为(1,8). x … -2 -1 0 1 2 3 4 …6422++-=x x y … -10 0 6 8 6 0 -10…回顾与反思 (1)列表时选值,应以对称轴x=1为中心,函数值可由对称性得到,.(2)描点画图时,要根据已知抛物线的特点,一般先找出顶点,并用虚线画对称轴,然后再对称描点,最后用平滑曲线顺次连结各点.探索 对于二次函数c bx ax y ++=2,你能用配方法求出它的对称轴和顶点坐标吗请你完成填空:对称轴 ,顶点坐标 . 例2.已知抛物线9)2(2++-=x a x y 的顶点在坐标轴上,求a 的值.分析 顶点在坐标轴上有两种可能:(1)顶点在x 轴上,则顶点的纵坐标等于0;(2)顶点在y 轴上,则顶点的横坐标等于0.解 9)2(2++-=x a x y 4)2(9)22(22+-++-=a a x , 则抛物线的顶点坐标是⎥⎦⎤⎢⎣⎡+-+4)2(9,222a a . 当顶点在x 轴上时,有 022=+-a , 解得 2-=a .当顶点在y 轴上时,有 04)2(92=+-a , 解得 4=a 或8-=a .所以,当抛物线9)2(2++-=x a x y 的顶点在坐标轴上时,a 有三个值,分别是 –2,4,8. [当堂课内练习]1.(1)二次函数x x y 22--=的对称轴是 .(2)二次函数1222--=x x y 的图象的顶点是 ,当x 时,y 随x 的增大而减小.(3)抛物线642--=x ax y 的顶点横坐标是-2,则a = .2.抛物线c x ax y ++=22的顶点是)1,31(-,则a 、c 的值是多少[本课课外作业]A 组1.已知抛物线253212+-=x x y ,求出它的对称轴和顶点坐标,并画出函数的图象.2.利用配方法,把下列函数写成2)(h x a y -=+k 的形式,并写出它们的图象的开口方向、对称轴和顶点坐标. (1)162++-=x x y(2)4322+-=x x y(3)nx x y +-=2 (4)q px x y ++=2 3.已知622)2(-++=k kx k y 是二次函数,且当0>x 时,y 随x 的增大而增大.(1)求k 的值;(2)求开口方向、顶点坐标和对称轴.B 组 4.当0<a 时,求抛物线22212a ax x y +++=的顶点所在的象限.5. 已知抛物线h x x y +-=42的顶点A 在直线14--=x y 上,求抛物线的顶点坐标.[本课学习体会]26.2 二次函数的图象与性质(6)[本课知识要点]1.会通过配方求出二次函数)0(2≠++=a c bx ax y 的最大或最小值;2.在实际应用中体会二次函数作为一种数学模型的作用,会利用二次函数的性质求实际问题中的最大或最小值. [MM 及创新思维]在实际生活中,我们常常会碰到一些带有“最”字的问题,如问题:某商店将每件进价为80元的某种商品按每件100元出售,一天可销出约100件.该店想通过降低售价、增加销售量的办法来提高利润.经过市场调查,发现这种商品单价每降低1元,其销售量可增加约10件.将这种商品的售价降低多少时,能使销售利润最大在这个问题中,设每件商品降价x 元,该商品每天的利润为y 元,则可得函数关系式为二次函数2000100102++-=x x y .那么,此问题可归结为:自变量x 为何值时函数y 取得最大值你能解决吗 [实践与探索]例1.求下列函数的最大值或最小值.(1)5322--=x x y ; (2)432+--=x x y .分析 由于函数5322--=x x y 和432+--=x x y 的自变量x 的取值范围是全体实数,所以只要确定它们的图象有最高点或最低点,就可以确定函数有最大值或最小值.解 (1)二次函数5322--=x x y 中的二次项系数2>0, 因此抛物线5322--=x x y 有最低点,即函数有最小值.因为5322--=x x y =849)43(22--x ,所以当43=x 时,函数5322--=x x y 有最小值是849-.(2)二次函数432+--=x x y 中的二次项系数-1<0, 因此抛物线432+--=x x y 有最高点,即函数有最大值.因为432+--=x x y =425)23(2++-x ,所以当23-=x 时,函数432+--=x x y 有最大值是425.回顾与反思 最大值或最小值的求法,第一步确定a 的符号,a >0有最小值,a <0有最大值;第二步配方求顶点,顶点的纵坐标即为对应的最大值或最小值.探索 试一试,当2.5≤x ≤3.5时,求二次函数322--=x x y 的最大值或最小值.例2.某产品每件成本是120元,试销阶段每件产品的销售价x (元)与产品的价定为多少元此时每日销售利润是多少分析 日销售利润=日销售量×每件产品的利润,因此主要是正确表示出这两个量.解 由表可知x+y=200,因此,所求的一次函数的关系式为200+-=x y .设每日销售利润为s 元,则有1600)160()120(2+--=-=x x y s .因为0120,0200≥-≥+-x x ,所以200120≤≤x .所以,当每件产品的销售价定为160元时,销售利润最大,最大销售利润为1600元.回顾与反思 解决实际问题时,应先分析问题中的数量关系,列出函数关系式,再研究所得的函数,得出结果.例3.如图26.2.8,在Rt ⊿ABC 中,∠C=90°,BC=4,AC=8,点D 在斜边AB 上,分别作DE ⊥AC ,DF ⊥BC ,垂足分别为E 、F ,得四边形DECF ,设DE=x ,DF=y .(1)用含y 的代数式表示AE ;(2)求y 与x 之间的函数关系式,并求出x 的取值范围; (3)设四边形DECF 的面积为S ,求S 与x 之间的函数关系,并求出S 的最大值.解 (1)由题意可知,四边形DECF 为矩形,因此y DF AC AE -=-=8.(2)由DE ∥BC ,得AC AE BC DE =,即884yx -=, 所以,x y 28-=,x 的取值范围是40<<x . (3)8)2(282)28(22+--=+-=-==x x x x x xy S , 所以,当x=2时,S 有最大值8.[当堂课内练习]1.对于二次函数m x x y +-=22,当x= 时,y 有最小值.2.已知二次函数b x a y +-=2)1(有最小值 –1,则a 与b 之间的大小关系是 ( )A .a <bB .a=bC .a >bD .不能确定3.某商场销售一批衬衫,平均每天可售出20件,每件盈利40件,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经过市场调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件. (1)若商场平均每天要盈利1200元,每件衬衫应降价多少元 (2)每件衬衫降价多少元时,商场平均每天盈利最多 [本课课外作业]A 组1.求下列函数的最大值或最小值.(1)x x y 22--=; (2)1222+-=x x y . 2.已知二次函数m x x y +-=62的最小值为1,求m 的值.,3.心理学家发现,学生对概念的接受能力y 与提出概念所用的时间x (单位:分)之间满足函数关系:)300(436.21.02≤≤++-=x x x y .y 值越大,表示接受能力越强.(1)x 在什么范围内,学生的接受能力逐步增强x 在什么范围内,学生的接受能力逐步降低(2)第10分时,学生的接受能力是多少 (3)第几分时,学生的接受能力最强B 组 4.不论自变量x 取什么数,二次函数m x x y +-=622的函数值总是正值,求m 的取值范围.5.如图,有长为24m 的篱笆,一面利用墙(墙的最大可用长度a 为10m ),围成中间隔有一道篱笆的长方形花圃.设花圃的宽AB 为x m ,面积为S m 2. (1)求S 与x 的函数关系式;(2)如果要围成面积为45 m 2的花圃,AB 的长是多少米(3)能围成面积比45 m 2更大的花圃吗如果能,请求出最大面积,并说明围法;如果不能,请说明理由.6.如图,矩形ABCD 中,AB=3,BC=4,线段EF 在对角线AC 上,EG ⊥AD ,FH ⊥BC ,垂足分别是G 、H ,且EG+FH=EF .(1)求线段EF 的长;(2)设EG=x ,⊿AGE 与⊿CFH 的面积和为S ,写出S 关于x 的函数关系式及自变量x 的取值范围, 并求出S 的最小值. [本课学习体会]26 . 2 二次函数的图象与性质(7)[本课知识要点]会根据不同的条件,利用待定系数法求二次函数的函数关系式. [MM 及创新思维]一般地,函数关系式中有几个独立的系数,那么就需要有相同个数的独立条件才能求出函数关系式.例如:我们在确定一次函数)0(≠+=k b kx y 的关系式时,通常需要两个独立的条件:确定反比例函数)0(≠=k xky 的关系式时,通常只需要一个条件:如果要确定二次函数)0(2≠++=a c bx ax y 的关系式,又需要几个条件呢[实践与探索]例1.某涵洞是抛物线形,它的截面如图26.2.9所示,现测得水面宽1.6m ,涵洞顶点O 到水面的距离为2.4m ,在图中直角坐标系内,涵洞所在的抛物线的函数关系式是什么分析 如图,以AB 的垂直平分线为y 轴,以过点O 的y 轴的垂线为x 轴,建立了直角坐标系.这时,涵洞所在的抛物线的顶点在原点,对称轴是y 轴,开口向下,所以可设它的函数关系式是)0(2<=a ax y .此时只需抛物线上的一个点就能求出抛物线的函数关系式.解 由题意,得点B 的坐标为(0.8,-2.4),又因为点B 在抛物线上,将它的坐标代入)0(2<=a ax y ,得28.04.2⨯=-a所以 415-=a . 因此,函数关系式是2415x y -=. 例2.根据下列条件,分别求出对应的二次函数的关系式.(1)已知二次函数的图象经过点A (0,-1)、B (1,0)、C (-1,2);(2)已知抛物线的顶点为(1,-3),且与y 轴交于点(0,1);(3)已知抛物线与x 轴交于点M (-3,0)、(5,0),且与y 轴交于点(0,-3);(4)已知抛物线的顶点为(3,-2),且与x 轴两交点间的距离为4.分析 (1)根据二次函数的图象经过三个已知点,可设函数关系式为c bx ax y ++=2的形式;(2)根据已知抛物线的顶点坐标,可设函数关系式为3)1(2--=x a y ,再根据抛物线与y 轴的交点可求出a 的值;(3)根据抛物线与x 轴的两个交点的坐标,可设函数关系式为)5)(3(-+=x x a y ,再根据抛物线与y 轴的交点可求出a 的值;(4)根据已知抛物线的顶点坐标(3,-2),可设函数关系式为2)3(2--=x a y ,同时可知抛物线的对称轴为x=3,再由与x轴两交点间的距离为4,可得抛物线与x 轴的两个交点为(1,0)和(5,0),任选一个代入2)3(2--=x a y ,即可求出a 的值.解 (1)设二次函数关系式为c bx ax y ++=2,由已知,这个函数的图象过(0,-1),可以得到c= -1.又由于其图象过点(1,0)、(-1,2)两点,可以得到⎩⎨⎧=-=+31b a b a 解这个方程组,得。

相关文档
最新文档