电力系统元件的各序参数和等值电路共28页
电力系统各元件序阻抗和等值电路
PPT文档演模板
电力系统各元件序阻抗和等值电路
三、对称分量法在不对称短路计算中的应用
a相接地的模拟
PPT文档演模板
电力系统各元件序阻抗和等值电路
•
三、对称分量法在不对称短路计算中的应用
将 不 对 称 部 分 用 三 序 分 量 表 示
PPT文档演模板
电力系统各元件序阻抗和等值电路
•
应 用 叠 加 原 理 进 行 分 解
三、变压器的零序电抗及其等值电路
普通变压器的零序阻抗及其等值电路 正序、负序和零序等值电路结构相同。
1 .普通变压器的零序阻抗及其等值电路
漏磁通的路径与所通电流的序别无关,因此变压器的各序等值漏抗 相等。 励磁电抗取决于主磁通路径,正序与负序电流的主磁通路径相同, 负序励磁电抗与正序励磁电抗相等。因此,变压器的正、负序等值 电路参数完全相同。 变压器的零序励磁电抗与变压器的铁心结构相关。
PPT文档演模板
电力系统各元件序阻抗和等值电路
二、序阻抗的概念
序阻抗:元件三相参数对称时,元件两端某一序的电压降与通过该元件的同一 序电流的比值。
•正序阻抗 •负序阻抗 •零序阻抗
PPT文档演模板
电力系统各元件序阻抗和等值电路
三、对称分量法在不对称短路计算中的应用
一台发电机接于空载线路,发电机中性点经阻抗Zn接地。 a相发生单相接地
电力系统各元件序阻抗和等值电路
3.中性点有接地电阻时变压器的零序等值电路
•变压器中性点经电抗接地时的零序等值电 • 中性点经路阻抗接地的YN绕组中,当通过零序电流时,中性点 接地阻抗上将流过三倍零序电流,并产生相应的电压降,使中性 点与地有不同电位。因此,在单相零序等值电路中,应将中性点 阻抗增大为三倍,并与该侧绕组漏抗相串联。如图所示。
电力系统故障分析第三章 电力系统元件序阻抗和等值电路
=〉
U0
Zn
变压器流过正、负序电流时,三相电流之和为零,中性点电位为0, 接地阻 抗无影响。 变压器流过零序电流时,接地支路流经3倍零序电流,所以,等值 电路应以3倍阻抗来表示。
(二)三绕组变压器
在三绕组变压器中,为了消除三次谐波的影响,使变压器的电动 势接近正弦波,一般总有一个绕组接成三角形,所以可以不计 。
I
0
I
0
I
0
各相磁路独立,正序、 零序磁 通都按相在其本身 的铁芯中形成回路。所以, 各序励磁电抗相等。
3I
0
X
m0
(2)、三相四柱式/三相五柱式 零序磁通可以通过没有 绕组的铁芯部分形成回路。
I
0
I
0
I
0
X
m0
(3)、三相三柱式
0
I
I
0
I
0
零序磁通只能通过箱壁构成回 路,所以磁阻较大。
2 2 2 2 2
零序阻抗: 就是当仅有零序电流通过该元件时形成的零序 压降与通过的零序电流之比,设零序电流 I 通 过该元件时形成一相零序电压为 U ,则零序阻 抗 Z U / I 。
0 0 0 0 0
元件各序阻抗的规律:
旋转元件: 如发电机、电动机、同步补偿机等
正序电流通过定子绕组时产生与转子旋转方向相同的旋转磁场; 负序电流通过定子绕组时产生与转子旋转方向相反的旋转磁场; 零序电流通过定子绕组时不产生旋转磁场,只形成各相的漏磁场。 所以旋转元件的正序、负序阻抗和零序阻抗是互不相等的 。
1 1 3 2
jX T1 jX T3 j X T2
第十一章 电力系统各元件的序阻抗和等值电路
对称分量法及元件的序模型与参数Symmetrical Components Method,Sequence ModelAnd Parameters第17讲问题1、计算电力系统三相不对称故障的总体思路?2、如何将相分量分解为正序、负序、零序分量之和?3、正常电力系统如何对正序、负序、零序三序解耦?4、发电机、线路的正序、负序、零序等值参数的定义及等值电路5、中性点上的阻抗对发电机或负荷的正序、负序、零序阻抗有什么影响?6、如何根据变压器的连接组别确定其零序等值电路?如何计算不对称短路故障?1、对于三相短路(对称短路),可用一相代表三相进行计算,采用相量分析方法,非常简单。
2、对于不对称故障,无法用一相代替三相,因而计算复杂,必须寻求新的方法。
单相短路无法用一相代替三相,如何求解?1、对称分量法(Symmetrical Components)•不对称故障后电力系统的特点•对称分量法•正序、负序、零序分量(Positive, Negative and Zero Sequence Components)等值2、各序分量对对称电力系统的作用•正常电力系统元件的对称性;三相参数完全相同三相参数循环(旋转)对称由这些元件连接成的电力系统是三相对称的。
•各序分量电量作用于对称系统的性质各序分量作用于对称系统的性质稳态分析中已有的结论:1、三相对称的网络注入三相正序电流,节点上只产生三相正序电压;三相正序电压施加在三相对称的网络只产生三相正序电流。
发电机正序电压加到电力网上,只产生正序电压与正序电流推测的结论:2、三相对称的网络注入三相负序电流,节点上只产生三相负序电压;三相负序电压施加在三相对称的网络只产生三相负序电流。
3、三相对称的网络注入三相零序电流,节点上只产生三相零序电压;三相零序电压施加在三相对称的网络只产生三相零序电流。
⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++++++=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++++++=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡222222222222222222222)()()(a s n ma m s n a n m s a s a n a m a m a s a n a n a m a s cb a s n mm s n n m s c b a I a Z a Z Z I a Z a Z Z I a Z a Z Z I a Z I a Z I Z I a Z I a Z I Z I a Z I a Z I Z I I I Z Z Z Z Z Z Z Z Z U U U 如对称矩阵加负序电流,产生的电压为所以ac a b U a U U a U ==,2负序电流产生的电压为负序电压!⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++++++=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++++++=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡000000000000000)()()(a s n m a m s n a n m s a s a n a m a m a s a n a n a m a s c b a s n mm s n n m s c b a I Z Z Z I Z Z Z I Z Z Z I Z I Z I Z I Z I Z I Z I Z I Z I Z I I I Z Z Z Z Z Z Z Z Z U U U 对称矩阵加零序电流,产生的电压为所以ab c U U U ==零序电流产生的电压为零序电压!定理2正序量作用于对称系统后只产生正序量;负序量作用于对称系统后只产生负序量;零序量作用于对称系统后只产生零序量;三种分量对对称电力系统相互独立,互相解耦。
电力系统元件的序参数
7.2 电力系统元件的序参数7.2.1 发电机的负序和零序电抗1.同步发电机的负序电抗当电力网络发生了不对称短路,不对称的三相基频短路电流可以分解为正、负、零序电流分量,这些电流分量将产生不同的磁场,其中负序电流产生的磁场将在定、转子绕组中产生许多高次谐波电流,其电磁过程十分复杂,使精确确定发电机的负序阻抗很困难。
在工程上通常忽略发电机定子绕组的电阻,对负序电抗定义为施加在发电机端点的负序电压同步频率分量与流入定子绕组负序电流同步频率分量的比值。
按这样的定义,当短路类型不同,同步发电机的负序电抗有不同的值,如表7-1所示。
表7-1 同步发电机的负序电抗表中,为同步发电机的零序电抗。
从表7-1可见,当,则负序电抗,即同步发电机的负序电抗与短路类型无关。
当同步发电机经外电抗短路时,表7-1中所有各电抗、都应以、代替,发电机转子不对称的影响被削弱。
实际的电力系统,短路大多是发生在输电线路上,所以在不对称短路电流计算中,可以近似认为同步发电机的负序电抗与短路类型无关,其具体的数值一般由制造厂提供,也可按下式估算。
对于汽轮发电机和有阻尼绕组的水轮发电机(7-13)对于无阻尼绕组的水轮发电机(7-14)2.同步发电机的零序电抗同步发电机的零序电抗定义为:施加在发电机端点的零序电压同步频率分量与流入定子绕组的零序电流同步频率分量的比值。
当三相定子绕组通以三相零序电流时,在三相定子绕组中产生大小相等、方向相同、空间相差120o的脉振磁场,它们在气隙中的合成磁场为零。
因此,同步发电机定子绕组中的零序电流只产生定子漏磁通,与此漏磁通相对应的电抗就是零序电抗。
但应注意,零序电流产生的漏磁通与正序电流产生的漏磁通往往不同,其差别和定子绕组的型式有关。
实际上,零序电流产生的漏磁通较正序的要小些,其数值范围大致为(7-15)表7-2列出了不同类型同步电机的和表7-2 国产同步电机的负序、零序电抗平均值序号元件名称1 无阻尼绕组的水轮发电机0.45 0.112 有阻尼绕组的水轮发电机0.215 0.0953 容量为50MW及以下的汽轮发电机0.175 0.0754 100MW及125MW汽轮发电机0.210 0.085 200MW汽轮发电机0.175 0.0856 300MW汽轮发电机0.198 0.0847 同步调相机0.165 0.0858 同步电动机0.160 0.0807.2.2 异步电动机的负序电抗和零序电抗异步电动机的等值电路在电机学已讲过,如图7-5(a)所示。
电力系统元件的各序参数和等值电路
正序等值电路的构建
根据元件的物理特性和工作原理,通 过测量或计算得到正序电阻、正序电 感和正序电容等参数。
根据得到的参数,构建出元件的正序 等值电路,该电路由电阻、电感和电 容等元件组成,能够反映元件的正序 电气特性。
正序等值电路的应用
01
在电力系统稳定分析中,利用正序等值电路可以分 析系统的暂态和稳态运行特性。
03
电力系统元件的正序等 值电路
正序参数的计算
01
02
03
正序电阻
正序电阻是电力系统元件 在正序电压和电流下的阻 抗,它反映了元件的电导 和电感的综合效应。
正序电感
正序电感是电力系统元件 在正序电压和电流下的感 抗,它反映了元件的电感 和电容的效应。
正序电容
正序电容是电力系统元件 在正序电压和电流下的容 抗,它反映了元件的电感 和电导的效应。
零序电感
对于变压器和电动机等设备,由于磁路的对称性,它们的零序电感 通常远大于正序电感。
零序电容
在电力系统中,由于输电线路的不对称或变压器绕组的偏移,会产 生零序电容。
零序等值电路的构建
零序等值电路的构建需要将系统中所有元件的零序参数进行汇总,并按照 实际电路的连接方式进行等效。
在构建零序等值电路时,需要注意元件之间的相互影响,以及元件对地电 容的影响。
03
计算。
THANKS FOR WATCHING
感谢您的观看
负序电感是电力系统元件在负序磁场下的感抗,与 元件的几何尺寸、材料性质和电流频率有关。
负序电容
负序电容是电力系统元件在负序电压下的容 抗,与元件的几何尺寸、电极间距离和材料 性质有关。
负序等值电路的构建
1
根据元件的负序参数,使用电路理论构建负序等 值电路。
电力系统分析基础习题答案-第五张第六章
电力系统分析部分习题答案(参考) 稳态部分第四章复杂电力系统的潮流计算4-1-3解:(1)不考虑非标准变比时:(因为对称,所以只求上三角元素)所以:(2)当考虑非标准变比时,只有变压器两侧的节点的自导纳和这两个节点之间的互导纳有变化。
第五章电力系统的有功功率和频率调整5-1-2解:解得:均未超出发电厂的出力范围,为最优分配方案。
5-1-3解:(1)由耗量特性得到两台发电机的耗量为增率分别为:当负荷为40MW时两台发电机均按下限发电,各承担20MW负荷,相应微增率为因此负荷增加时机组1首先增加负荷,而机组2仍按下限发电,此时综合耗量微增率取决于发电机1。
负荷增加直到时发电机2才增加负荷。
当时此时当负荷大于55MW时才可以按照等耗量为增率准则最优分配负荷。
当负荷为250MW时两台发电机均满发电,此时即按等耗量为增率分配时发电机2就满发,在增加负荷时只有发电机1增加功率,综合耗量微增率仍表现为发电机1的耗量微增率。
时此时所以时按最优分配,综合特性为:得:(2)当负荷为150时按最优分配,代入综合特性为(3)最优分配时解得:平均分配时节省的燃料费用为:5-2-1解:(a)(b)5-2-2解:因为PG3满载,所以只有PG1和PG2能够参加调频(1)(此时PG1和PG2均未满载)(2)此时PG1已经超载,所以应该以发电机2和负荷的调节特性计算频率。
5-2-5解:所以设联络线的功率为Pab,则有解得:Pab=-230.77MW5-2-8解:第六章电力系统无功功率和电压调整6-2-3 思路见P230 6-36-3-2 注意升压变,符号的变化6-3-3 有一台降压变压器,其归算到高压侧的参数为,低压侧的最大、最小负荷表示于图中,高压侧电压波动范围是106.7~113.3kV,如果负荷允许的电压波动范围是6~6.6kV,是否可以选择变压器的分接头以满足电压水平的要求?若可以,试选择之。
若不能,试说明原因。
解:选择110-2×2.5%的分接头校验:最大负荷时:最小负荷时:求电压偏移:所以不能选出合适的变压器分接头满足调压要求6-3-8三串电容器组成,每串串3个,所以6-3-10:解:(1)选用调相机时:最大负荷时:即:最小负荷时解得:k=10.3312 高压侧电压=k*11=113.64kV 所以选择110+2.5%的抽头 k=10.25计算容量(2)当选用电容器时:依据最小负荷时选取变压器的抽头:k=10.75,所以选择电容器的容量为6-3-13:解:设补偿容量为则通过变压器的功率为:所以:所以6-3-17解:依题意,变电所的低压侧要求常调压。
电力系统各元件序阻抗和等值电路
电压分别为
•
Vn
•
,VI (0)
•
,VII (0)
,绕组端点对中性点电压为
•
•
VIn ,VIIn
,于是有:
•
•
•
VI (0) VIn Vn ,
•
•
•
VII (0) VIIn Vn
•
I I(0)
I
II
III
•
I II (0)
Xn
•
•
I I 3( )
I (0)
II (0)
•
I I (0) jx'I
•+ I
三.变压器零序等值电路及参数
3.中性点有接地阻抗时变压器的零序等值电路
中性点经阻抗接地的YN绕组中,当通过零序电流时,中性点 接地阻抗上将流过三倍零序电流,并产生相应的电压降,使中性点 与地有不同电位。因此,在单相零序等值电路中,应将中性点阻抗 增大为三倍,并与该侧绕组漏抗相串联。如下图所示。
•
•
•
U A + zG zL
•
U A + zG zL
序分量分解.ppt
•
UB
+
•
UB
+
•
UC
+
•
UC
+
+ + +
Zn
Zn
•
V fa
•
V fb
•
V fc
一 .对称分量法在不对称故障 中的应用
3.对称分量法在不对称短路计算中的应用
根据各序等值网络,可以列出各序的回路方程如下:
•
•
•
•
•
【国家电网 系统】7 电力系统各元件序阻抗和等值电路
•
有阻尼绕组电机负序电抗应为:
X
" q
X
2
X
" d
•
无阻尼绕组电机负序电抗应为:
X
' d
X2 Xq
7.2 元件的序阻抗
• 不同型式的短路,电机的负序电抗。
单相短路
X2
X
" d
X0 2
X
" q
X0 2
X0 2
两相短路
X2
X d"
X
" q
两相短路接地 X
" d
X
" q
X 2 X2
1 2
Va2
ZG0 ZL0 Ia0
Va0
3Zn
7.1 对称分量法
Z1 Ia1 Va1
E Z2 Ia2 Va2
Z0 Ia0 Va0
序网方程
E0IaI2aZ1Z21VVaa21
0
Ia0Z0
Va0
六个未知量,三个方程, 还需要三个方程------每种故障的故障条件
(边界条件,各种短路不 相同)
各种短路都适用
7.2 元件的序阻抗
Ia0
Zn
Va0
Va0
Va0
(f)
0 Ia0(ZG0 ZL0) (Ia0 Ia0 Ia0)Zn Va0
Ia0 Ia0 Ia0 Ia0 Ib0 Ic0 3Ia0
0 Ia0(ZG0 ZL0) 3Ia0Zn Va0
单线图表示:
ZG1 ZL1 Ia1
Va1
E a
ZG2 ZL2 Ia2
2
1.45
X
' d
• 无确切参数,电机的负序电抗一般取
电力系统的元件序参数及等值电路
jxI
jxII
U(0)
jxm(0)
变压器零序等值电路与外电路的连接-原则
原则1:当外电路向变压器某侧三项绕组施加零序电压时,如 能在该绕组上产生零序电流,则等值电路中该侧绕组端点与外电 路接通;否则,断开。
(只有中性点接地的星形接法绕组YN才能与外电路接通) 原则2:当变压器某侧绕组有零序电势(由另一侧绕组的零序
YN/d接法变压器
U( 0)
II ( 0 )
III ( 0 )
Ia ( 0 ) 0
Ib ( 0 ) 0
Ic ( 0 ) 0
⑴. YN侧零序电流可流通;
⑵. d侧绕组内零序电流相成环流, 电压完全降落在漏抗上;
⑶. d侧外电路中零序电流=0;
表达以上三条的等值电路为:
jxI
jxII
结论2: YN/d 变压器, YN侧与外 U(0)
电流感生的)时,如能将零序电势施加于外电路上并能提供零序 电流的通路,则等值电路中该侧绕组端点与外电路接通;否则, 断开。
(只有中性点接地的星形接法绕组才能与外电路接通,至于能 否在外电路产生零序电流,要看外电路是否有零序电流通路)
原则3:在三角形接法的绕组中,绕组的零序电势虽不能作用 到外电路,但能在三相绕组中形成环流,这时由于零序电势将被 零序环流在绕组漏抗上的压降所平衡,绕组两端电压为零,相当 于变压器绕组短接。此时:在等值电路中,该侧绕组端点接零序 等值中性点。
§7-2 电力系统的元件序参数及等值电路
7.2.1同步发电机的负序电抗
Z X"
G (1)
G
•
•
E E"
Z G(2)
Z G(0)
发电机 正序等值 负序等值 零序等值 对于不同的发电机,其正序、负序、零序参数有不
电力系统暂态分析 对称分量法及元件的各序参数和等值电路
第四章 对称分量法及元件的各序参数和等值电路第一节 对称分量法• 三个不对称相量可用三组对称相量来表示⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡•⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡)0()2()1(2211111a a a c b aF F F a a a a F F F S P F T F •= • 三个不对称相量可以分解为三组对称相量⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡•⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡c b a a a a F F F a a a a F F F 111113122)0()2()1( P S F T F •=-1 特点1:对称分量具有明确的物理意义第二节 在不对称故障分析中的应用一.三相阻抗的对称分量三相静止对称元件:三相对称:scc bb aa z z z z ===,mac bc ab z z z z ===支路电压方程:缩写为: p p p I z U =∆ 作变换: p pp I T T z T U T 111---•=∆ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡∆∆∆c b a s mm m s m m m sc b a cc cb ca bc bb ba ac ab aa c b a I I Iz z z z z z z z z I I I z z z z z z z z z U U U得:s s p I z U =∆其中: ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+--==-m s m s ms p s z z z z z z T z T z 20000001以序分量表示的支路电压方程为:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡•⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡•⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡∆∆∆)0()2()1()0()2()1()0()2()1()0()92)1(0000002000000a a a a a a m s m s ms a a a I I I z z z I I I z z z z z z U U U 三相对称系统对称分量变换为三个互不耦合的正、负、零序系统。
第七章电力系统各元件的序阻抗和等值电路演示文稿
Z(2) Ua(2) / Ia(2)
Z(0) Ua(0) / Ia(0)
第6页,共50页。
三、不对称短路的应用
➢ 一台发电机接于空载线路,发电机中性点经阻抗接地,线路f 点发生单相接地短路,a相对地电压Ua=0,而b、c两相电压不等
于零
➢ 故障点以外系统其余部分是对称的,满足各序的独立性 ➢ 短路点结构参数不对称用运行参数不对称表示
0
1
Ea(1) 3
Ea aEb a2Ec
1 1150 1120115240 1240115120 1150V
3
1
Ea(2) 3
Ea a2Eb aEc
1 1150 1240115240 1120115120
3
1 1150 115120 115240 0V
3
第4页,共50页。
Ⅰ
Ⅱ
Ⅰ
U(+0)
xⅠ
-
Ⅱ
xⅡ
xm(0)
➢ 2.YN,yn(Y0/Y0)接线变压器
变压器一次星形侧流过零序电流,二次侧各绕组中将感应零序电势,如果与二次侧相连
的电路还有一个接地中性点,则二次绕组中有电流,如果没有其他接地中性点,二次绕组 中没有电流
Ⅰ
Ⅱ
Ⅰ
U(+0)
xⅠ
-
Ⅱ
xⅡ
xm(0)
第17页,共50页。
(ZG(0) ZL(0) )Ifa(0) Zn (Ifa(0) Ifb(0) Ifc(0) ) Ufa(0)
(ZG(0) ZL(0) )Ifa(0) 3Zn Ifa(0) (ZG(0) ZL(0) 3Zn )Ifa(0) Ufa(0)
➢ 化简后可得
Ea Zff (1) Ifa(1) Ufa(1) Zff (2) Ifa(2) Ufa(2)
第二章电力网的正序参数和等值电路(精)
• ¼波长时(1500km),两端相位差90°
第二节 变压器的数学模型
一、双绕组变压器
I1
1、理想变压器 u1
n1:n2 I2
u2
I1n1=I2n2 k=n1/n2
I2=k I1
u1/n1=u2/n2 u2= u1/k
特征:无铜损、铁损、漏抗、激磁电流
RT jXT
2、实际变压器
-jBT
SN S3
2
P
' k ( 2 3 )
SN S3
2
电压%未归算
最大短路损耗 归算的电压%
U k (13) % U k (13) %
'
U
k ( 2 3)
% U k ( 2 3)
'
SN % S 3
A B
C
三.绝缘子和金具
要求:足够的电气与机械强度、抗腐蚀 材料:瓷质与玻璃质元件
绝缘子
类型:针式(35KV以下),悬式( 35KV以上)
片树:35KV,110KV,220KV,330KV,500KV 3 7 13 19 24
作用:连接导线和绝缘子 线夹:悬重、耐张 导线接续:接续、联结 保护金具:护线条、预绞线、防震锤、阻尼线 绝缘保护:悬重锤
短路试验求RT、XT
条件:令一个绕组开路,一个绕组短路,而在余下的一个 绕组施加电压,依此得的数据(两两短路试验)
1、由短路损耗求RT 1) 对于第Ⅰ类(100/100/100)
Pk ( 1 2 ) 3 IN RT1 3 IN RT 2 Pk 1 Pk 2
2 2
Pk ( 1 3 ) 3 IN RT1 3 IN RT 3 Pk 1 Pk 3
第七章 电力系统各元件的序阻抗和等值电路
第七章电力系统各元件的序阻抗和等值电路7-1 对称分量法在不对称短路计算中的应用7.1.1 不对称三相量的分解在三相电路中,对于任意一组不对称的三相相量(电流或电压),可以分解为三组三相对称的相量。
当选择a相作为基准相时,三相相量与其对称分量之间的关系(以电流为例)可表示为:7.1.1 不对称三相量的分解a 、b 、c 三相各序分量之间的关系:正序:2(1)(1)(1)(1),b a c a I a I I a I ==i i i i负序:2(2)(2)(2)(2),b ac a I a I I a I ==iiii零序:(0)(0)(0)b c a I I I ==iii7.1.2 不对称三相量的序分量表示a 、b 、c 三相电流用a 相序分量可表示为:(1)(1)21(2)(2)2(0)(0)11111aa ab a ac a a I I I I a a I S I a aI I I −⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ii ii i i i i i7.1.3 序阻抗的概念序阻抗的概念:•各相自阻抗为:Zaa 、Zbb、Zcc•相间互阻抗为:Zab =Zba、Zbc=Zcb、Zac=Zca7.1.3 序阻抗的概念通过不对称电流时:a a aa ab ac b b ba bb bc c c ca cbcc Z Z Z V I V Z Z Z I V I Z Z Z ⎡⎤⎡⎤⎡⎤∆⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥∆=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥∆⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦iii i i i abc abcV ZI ∆=简记为:⇓abc abcS V SZI ∆=⇓1120120120abc sc V SZI SZS I Z I −∆===7.1.3 序阻抗的概念1sc Z SZS −=称为序阻抗矩阵aa bb cc s ab bc ca m Z Z Z Z Z Z Z Z ======当元件结构参数对称时: 令: (1)(2)(0)00000000020s m sc s ms m Z Z Z Z Z Z Z Z Z Z ⎡⎤−⎡⎤⎢⎥⎢⎥=−=⎢⎥⎢⎥⎢⎥⎢⎥+⎣⎦⎣⎦120120sc V Z I ∆=代入,并展开有7.1.3 序阻抗的概念(1)(1)(1)(2)(2)(2)(3)(3)(3)a a a a a a V z I V z I V z I ⎧∆=⎪⎪⎪∆=⎨⎪⎪∆=⎪⎩i ii i i i在三相参数对称的线性电路中,各序对称分量具有独立性。
电力系统元件的各序参数和等值电路
& & − I a 2 Z 2Σ = U a 2
Z0∑
& U ka 2
N2
& & − I a 0 Z 0Σ = U a 0
K0
& I ka0
& U ka0
N0
表明了各种不对称故障时故障点出现的各序电流和电压之间的 相互关系;表示了不对称故障的共性, 与故障类型无关。 相互关系;表示了不对称故障的共性, 与故障类型无关。
I&c = 0
& Uc
I& a
& Ea + & α 2 Ea + & αEa +
ZG ZG ZG
ZL ZL ZL
& Ea
+
ZG ZG ZG + +
ZL ZL ZL
& α 2 Ea & αEa
& & & & U b = U b1 + U b 2 + U b 0
& Ia & Ib
+ & Ub -
& Ic
− I a 0 ( z G 0 + z L 0 + 3z N ) = U a 0
. .
.
.
.
.
.
+
归纳:对任意网络, 归纳:对任意网络,短路点各序电压和电流满足
& & & Ea1Σ − I a1Z1Σ = U a1
& Ea1∑ - +
Z1∑
& I ka1
K1
& U ka1
Z2∑
7-3 电力系统元件的序阻抗和等值网络(2015-12 ) (1)
30
31
z( 0 )
V a (0) I
a ( 0)
各序电抗:发电机端点各序电压的基频分量与
流入定子绕组的各序电流的基频分量的比值。
各序电抗大小取决于定子各序电流产生磁场与转子交链时所 遇到的磁阻。
3
同步发电机不对称短路时磁场变化特点
不对称短路时,定子电流 同样包含基频交流分量和 直流分量。 基频交流分量三相不对称, 分解为正、负、零序分量。
24
说明:
①电缆零序阻抗一般应通过实测确定; ②近似估算中,对于三芯电缆可以采用下面的数值:
r0 10r1 x0 (3.5 ~ 4.6) x1
25
③实用计算中,也可采用表中的电抗平均值
26
3.架空输电线路的各序电纳
输电线路的正序和负序电纳
7.58 b0 10 6 S / km Deq lg req
第七章
电力系统的序阻抗和等值 网络
1
§3.同步电机的序阻抗
不对称短路时,由于发电机转子纵横轴间的
不对称,定、转子绕组都将出现一系列的高次谐
波电流,使电机序参数分析复杂化。
2
同步电机序阻抗的定义
z(1) V a (1) I
a (1)
z( 2 )
V a ( 2) I
a ( 2)
1 x I st
2)计及降压变压器及馈电线路的负序电抗,综合 负荷的负序电抗可取为
X LD2 0.2 0.15 0.35
18
负荷负序阻抗的取值方法
综合负荷(以异步电动机为主)的次暂态参数
0.35, ELD 0.8 X LD
对称分量法(包你明白)
属于不对称短路,短路后短路点的电流、电压、 网架结构都是三相不对称的
不对称短路的求解
思路:把不对称的电压、电流分解为对 称分量的叠加,同时把网络结构也表示 为对称的。进而利用对称短路的方法, 计算短路电流。
方法:对称分量法
第一节 对称分量法
正序三相向量
零序三相向量 负序三相向量
合成
第一节 对称分量法
0
0 zs 2zm 0 0 z0
U U
a a
(1) (2)ቤተ መጻሕፍቲ ባይዱ
z(1) 0
0 z(2)
0 0
Ia Ia
(1) (2)
U
a
(
0)
0
0
z(0)
Ia
(0)
三序分量是相对 独立的。 可以采用叠加法
第一节 对称分量法
零序波形图:
10
a
0
-10 0
10
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 b
0
零序三相向量
-10 0
10
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 c
0
-10 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
1 a2
a
1 a a2
1 1 1
Fa(1) Fa(2) Fa(0)
Fabc TF120
1 T a 2