三角形内角和定理 公开课获奖教案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7.5 三角形内角和定理
第1课时三角形内角和定理
第一环节:情境引入
活动内容:(1)用折纸的方法验证三角形内角和定理.
实验1:先将纸片三角形一角折向其对边,使顶点落在对边上,折线与对边平行(图6-38(1))然后把另外两角相向对折,使其顶点与已折角的顶点相嵌合(图(2)、(3)),最后得图(4)所示的结果
(1)(2)(3)(4)
试用自己的语言说明这一结论的证明思路。想一想,还有其它折法吗?(2)实验2:将纸片三角形三顶角剪下,随意将它们拼凑在一起。
试用自己的语言说明这一结论的证明思路。想一想,如果只剪下一个角呢?活动目的:
对比过去撕纸等探索过程,体会思维实验和符号化的理性作用。将自己的操作转化为符号语言对于学生来说还存在一定困难,因此需要一个台阶,使学生逐步过渡到严格的证明.
教学效果:
说理过程是学生所熟悉的,因此,学生能比较熟练地说出用撕纸的方法可以验证三角形内角和定理的原因。
第二环节:探索新知
活动内容:
①用严谨的证明来论证三角形内角和定理.
②看哪个同学想的方法最多?
A
D E
A
B C E
D
方法一:过A点作DE∥BC
∵DE∥BC
∴∠DAB=∠B,∠EAC=∠C(两直线平行,内错角相等)
∵∠DAB+∠BAC+∠EAC=180°
∴∠BAC+∠B+∠C=180°(等量代换)
方法二:作BC的延长线CD,过点C作射线CE∥BA.
∵CE∥BA
∴∠B=∠ECD(两直线平行,同位角相等)
∠A=∠ACE(两直线平行,内错角相等)
∵∠BCA+∠ACE+∠ECD=180°
∴∠A+∠B+∠ACB=180°(等量代换)
活动目的:
用平行线的判定定理及性质定理来推导出新的定理,让学生再次体会几何证明的严密性和数学的严谨,培养学生的逻辑推理能力。
教学效果:
添辅助线不是盲目的,而是为了证明某一结论,需要引用某个定义、公理、定理,但原图形不具备直接使用它们的条件,这时就需要添辅助线创造条件,以达到证明的目的.
第三环节:反馈练习
活动内容:
(1)△ABC中可以有3个锐角吗?3个直角呢?2个直角呢?若有1个直角另外两角有什么特点?
(2)△ABC中,∠C=90°,∠A=30°,∠B=?
(3)∠A=50°,∠B=∠C,则△ABC中∠B=?
(4)三角形的三个内角中,只能有____个直角或____个钝角.
(5)任何一个三角形中,至少有____个锐角;至多有____个锐角.
(6)三角形中三角之比为1∶2∶3,则三个角各为多少度?
(7)已知:△ABC中,∠C=∠B=2∠A。
(a)求∠B的度数;
(b)若BD是AC边上的高,求∠DBC的度数?
活动目的:
通过学生的反馈练习,使教师能全面了解学生对三角形内角和定理的概念是否清楚,能否灵活运用三角形内角和定理,以便教师能及时地进行查缺补漏.教学效果:
学生对于三角形内角和定理的掌握是非常熟练,因此,学生能较好地解决与三角形内角和定理相关的问题。
第四环节:课堂小结
活动内容:
①证明三角形内角和定理有哪几种方法?
②辅助线的作法技巧.
③三角形内角和定理的简单应用.
活动目的:
复习巩固本课知识,提高学生的掌握程度.
教学效果:
学生对于三角形内角和定理的几种不同的证明方法的理解比较深刻,并能熟练运用三角形内角和定理进行相关证明.
课后练习:随堂练习;习题7.5第1,2,3题
教学反思
三角形的有关知识是“空间与图形”中最为核心、最为重要的内容,它不仅是最基本的直线型平面图形,而且几乎是研究所有其它图形的工具和基础.而三角形内角和定理又是三角形中最为基础的知识,也是学生最为熟悉且能与小学、中学知识相关联的知识,看似简单,但如果处理不好,会导致学生有厌烦心理,
为此,本节课的设计力图实现以下特点:
(1)通过折纸与剪纸等操作让学生获得直接经验,然后从学生的直接经验出发,逐步转到符号化处理,最后达到推理论证的要求。
(2)充分展示学生的个性,体现“学生是学习的主人”这一主题。
(3)添加辅助线是教学中的一个难点,如何添加辅助线则应允许学生展开思考并争论,展示学生的思维过程,然后在老师的引导下达成共识。
4.4一次函数的应用
第1课时确定一次函数的表达式
1.会确定正比例函数的表达式;(重点)
2.会确定一次函数的表达式.(重点)
一、情境导入
某农场租用播种机播种小麦,在甲播种机播种2天后,又调来乙播种机参与播种,直至完成800亩的播种任务,播种亩数与天数之间的函数关系如图.你能通过图象提供的信息求出y与x之间的关系式吗?你知道乙播种机参与播种的天数是多少呢?学习了本节的内容,你就知道了.
二、合作探究
探究点一:确定正比例函数的表达式
求正比例函数y=(m-4)m2-15的表达式.
解析:本题是利用正比例函数的定义来确定表达式的,即自变量的指数为1,系数不为0,这种类型简称为定义式.
解:由正比例函数的定义知m2-15=1且m-4≠0,∴m=-4,∴y=-8x.
方法总结:利用正比例函数的定义确定表达式:自变量的指数为1,系数不为0. 探究点二:确定一次函数的表达式
【类型一】 根据给定的点确定一次函数的表达式
已知一次函数的图象经过(0,5)、(2,-5)两点,求一次函数的表达式.
解析:先设一次函数的表达式为y =kx +b ,因为它的图象经过(0,5)、(2,-5)两点,所以当x =0时,y =5;当x =2时,y =-5.由此可以得到两个关于k 、b 的方程,通过解方程即可求出待定系数k 和b 的值,再代回原设即可.
解:设一次函数的表达式为y =kx +b ,根据题意得,
∴⎩⎪⎨⎪⎧5=b ,-5=2k +b.解得⎩
⎪⎨⎪⎧k =-5,b =5.∴一次函数的表达式为y =-5x +5. 方法总结:“两点式”是求一次函数表达式的基本题型.二次函数y =kx +b 中有两个待定系数k 、b ,因而需要知道两个点的坐标才能确定函数的关系式.
【类型二】 根据图象确定一次函数的表达式
正比例函数与一次函数的图象如图所示,它们的交点为A(4,3),B 为一次函数的
图象与y 轴的交点,且OA =2OB.求正比例函数与一次函数的表达式.
解析:根据A(4,3)可以求出正比例函数表达式,利用勾股定理可以求出OA 的长,从而可以求出点B 的坐标,根据A 、B 两点的坐标可以求出一次函数的表达式.
解:设正比例函数的表达式为y 1=k 1x ,一次函数的表达式为y 2=k 2x +b.∵点A(4,3)
是它们的交点,∴代入上述表达式中,得3=4k 1,3=4k 2+b.∴k 1=34
,即正比例函数的表达式为y =34x.∵OA =32+42=5,且OA =2OB ,∴OB =52
.∵点B 在y 轴的负半轴上,∴B 点的坐标为(0,-52).又∵点B 在一次函数y 2=k 2x +b 的图象上,∴-52
=b ,代入3=4k 2+b 中,得k 2=118.∴一次函数的表达式为y 2=118x -52
. 方法总结:根据图象确定一次函数的表达式的方法:从图象上选取两个已知点的坐标,然后运用待定系数法将两点的横、纵坐标代入所设表达式中求出待定系数,从而求出函数的表达式.
【类型三】 根据实际问题确定一次函数的表达式
某商店售货时,在进价的基础上加一定利润,其数量x 与售价y 的关系如下表所
示,请你根据表中所提供的信息,列出售价y(元)与数量x(千克)的函数关系式,并求出当数量是2.5千克时的售价.