高中数学第二章圆锥曲线与方程...抛物线轨迹方程及实际应用课件北师大版

合集下载

高中数学第二章圆锥曲线与方程2.3.2双曲线的简单几何性质省公开课一等奖新名师优质课获奖PPT课件

高中数学第二章圆锥曲线与方程2.3.2双曲线的简单几何性质省公开课一等奖新名师优质课获奖PPT课件
7/66
知识点二 双曲线顶点
思索
(1)双曲线顶点就是双曲线与坐标轴交点,你认为对吗?为何?
答案
不对,双曲线顶点是双曲线与其对称轴交点,只有在标准形式 下,坐标轴才是双曲线对称轴,此时双曲线与坐标轴交点是双 曲线顶点.
8/66
思索
(2)双曲线是否只有两个顶点?双曲线顶点和焦点能在虚轴上吗?
答案
是,只有两个顶点.双曲线顶点和焦点都不能在虚轴上,只能在 实轴上.
第二章 §2.3 双曲线
2.3.2 双曲线简单几何性质
1/66
学习目标
1.了解双曲线简单几何性质(范围、对称性、顶点、实轴长和虚 轴长等). 2.了解离心率定义、取值范围和渐近线方程. 3.掌握标准方程中a,b,c,e 间关系. 4.能用双曲线简单几何性质处理一些简单问题.
2/66
内容索引
问题导学 题型探究 当堂训练
跟踪训练 4 若双曲线ax22-by22=1(a>0,b>0)的两条渐近线互相垂直,则双
曲线的离心率 e 为 答案 解析
A. 2
B.2
C. 3
D. 5
依据等轴双曲线性质,得e= .2
37/66
类型四 直线与双曲线位置关系 命题角度1 直线与双曲线位置关系判定与交点问题 例5 已知直线y=kx-1与双曲线x2-y2=4. (1)若直线与双曲线没有公共点,求k取值范围; 解答
33/66
跟踪训练 3 与双曲线x92-1y62 =1 有共同渐近线,且过点(-3,2 3)的双
y42-x92=1 曲线的共轭双曲线的方程为_____4____. 答案 解析
设所求双曲线的方程为x92-1y62 =λ(λ≠0).
将点(-3,2 3)的坐标代入,得 λ=14, 所以双曲线的方程为x92-1y62 =14,即x92-y42=1.

高中数学北师大版选修1-1课件:第二章 1.1 椭圆及其标准方程

高中数学北师大版选修1-1课件:第二章 1.1 椭圆及其标准方程


由①-②得到|PF1||PF2|=4.
故△F1PF2 的面积为 S△F1PF2=12|PF1||PF2|sin60°= 3.
[答案] B
题目类型三、椭圆定义的应用
例 3 已知 B、C 是两个定点,|BC|=8,且△ABC 的周长 等于 18,求这个三角形的顶点 A 的轨迹方程.
[分析] 由△ABC 的周长等于 18,|BC|=8,可知点 A 到 B、 C 两个定点的距离之和是 10,所以点 A 的轨迹是以 B、C 为焦 点的椭圆,但点 A 与点 B、C 不能在同一直线上.适当建立平 面直角坐标系,可以求出这个椭圆的标准方程.
牛刀小试
1.已知F1、F2是两点,|F1F2|=8, (1)动点M满足|MF1|+|MF2|=10,则点M的轨迹是 ____________. (2)动点M满足|MF1|+|MF2|=8,则点M的轨迹是__________.
[解析] (1)因为|F1F2|=8且动点M满足|MF1|+|MF2|=10>8=|F1F2|, 由椭圆定义知,动点M的轨迹是以F1、F2为焦点,焦距为8的椭圆. (2)因为|MF1|+|MF2|=8=|F1F2|,所以动点M的轨迹是线段F1F2. [答案] 以F1、F2为焦点,焦距为8的椭圆 线段F1F2
∵椭圆过 A(0,2),B12,

3.

∴m401m++4n=3n=11
,解得nm==41 ,
即所求椭圆方程为 x2+y42=1. [答案] (1)x2+y42=1 (2)1x02 +=1
(2)∵椭圆 9x2+4y2=36 的焦点为(0,± 5),则可设所求椭 圆方程为xm2+m+y2 5=1(m>0),
[解析] 本题考查了充分必要条件及椭圆的标准方程的 形式,由 mn>0,若 m=n,则方程 mx2+ny2=1 表示圆,故 mn>0⇒/ 方程 mx2+ny2=1 表示椭圆,若 mx2+ny2=1 表示椭圆 ⇒mn>0,故 mn>0 是方程表示椭圆的必要不充分条件.

北师大版选修1-1高中数学第2章《圆锥曲线与方程》2.2抛物线习题导学案

北师大版选修1-1高中数学第2章《圆锥曲线与方程》2.2抛物线习题导学案

高中数学 第2章《圆锥曲线与方程》2.2抛物线习题导学案北师大版选修1-1学习目标:1.使学生理解并掌握抛物线的几何性质,并能从抛物线的标准方程出发,推导这些性质.2.从抛物线的标准方程出发,推导抛物线的性质,从而培养学生分析、归纳、推理等能力重点、难点:理解并掌握抛物线的几何性质;能从抛物线的标准方程出发,推导这些性质。

练习反馈 一、选择题1.已知抛物线的准线方程是x=-7,则抛物线的标准方程是 ( ) A.x 2=-28yB.y 2=-28yC.y 2=28xD.x 2=28x 2.若是定直线 外的一定点,则过与 相切圆的圆心轨迹是( )A .圆B .椭圆C .双曲线一支D .抛物线 3.抛物线2(0)x ay a =≠的焦点坐标为( ) A .1(,0)a B .1(,0)2a C .1(,0)4a D .0a > 时为1(,0)4a ,0a < 时为1(,0)4a- 4.若点到点(4,0)F 的距离比它到直线50x +=的距离小1,则点的轨迹方程是( )A .216y x =- B .232y x =- C .216y x = D .232y x = 5.抛物线20x y += 的焦点位于( )A . 轴的负半轴上B . 轴的正半轴上C .轴的负半轴上 D .轴的正半轴上6.与椭圆224520x y += 有相同的焦点,且顶点在原点的抛物线方程是( )A .24y x =B .24y x =±C .24x y =D .24x y =± 7.抛物线y 2=ax (a ≠0)的准线方程是 ( )(A )4a x =-;(B)x =4a ;(C)||4a x =- ;(D)x =||4a10. 一动圆的圆心在抛物线28y x =上,且动圆恒与直线20x +=相切,则动圆必过定点( ) A. (4,0) B. (2,0) C.(0,2) D. (0,-2)11. 已知F 为抛物线22y x =的焦点,定点Q (2,1)点P 在抛物线上,要使||PQ PF +的值最小,点P 的坐标为( )A. (0,0)B. 112⎛⎫⎪⎝⎭, C.()22, D. (2,2)12、抛物线y=ax 2的准线方程是y=2,则a 的值为( ) A 、18 B 、18- C 、8 D 、-8 13、已知M 为抛物线x y 42=上一动点,F 为抛物线的焦点,定点()1,3P ,则||||MF MP +的最小值为( )(A )3 (B )4 (C )5 (D )614、抛物线y=4x 2上的一点M 到焦点的距离为1,则点M 的纵坐标是( ) A 、1716 B 、1516 C 、78D 、0 15、在抛物线y 2=2px 上,横坐标为4的点到焦点的距离为5,则P 的值为( ) A 、12B 、1C 、2D 、418 设AB 为过抛物线)0(22>=p px y 的焦点的弦,则AB 的最小值为( )A2pB pC p 2D 无法确定 19.已知直线y kx k =-及抛物线22y px =(0p >)则( )A .直线与抛物线有一个公共点B .直线与抛物线有两个公共点C .直线与抛物线有一个或两个公共点 D .直线与抛物线可能没公共点 20﹑与直线240x y -+=平行的抛物线2y x =的切线方程为( )A. 230x y -+=B. 230x y --=C. 210x y -+=D. 210x y --=21、过抛物线x y 42=的焦点作直线交抛物线于()11,y x A ,()22,y x B 两点,如果621=+x x ,那么||AB =( )(A )10 (B )8 (C )6 (D )422.过点(-3,2)的直线与抛物线24y x =只有一个公共点,求此直线方程。

高中数学课件-圆锥曲线与方程2

高中数学课件-圆锥曲线与方程2

数学 选修1-1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
方法二:设所求双曲线的方程为 mx2+ny2=1(mn<0). 将点 M(1,1),N(-2,5)代入上述方程,得
m+n=1, 4m+25n=1,
解得mn==-87,17.
所以所求双曲线的标准方程为x72-y72=1. 8
合作探究 课堂互动
高效测评 知能提升
程. 题.
1.理解双曲线的定义、几何图形和原则方程的推导过
2.掌握双曲线的原则方程. 3.会运用双曲线的定义和原则方程解决简朴的应用问
数学 选修1-1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
我海军“马鞍山”舰和“千岛湖”舰构成第四批护航编 队远赴亚丁湾,在索马里流域执行护航任务.
数学 选修1-1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
(3)当且仅当双曲线的中心在原点,其焦点在坐标轴上时,双 曲线的方程才具有标准形式.
(4)双曲线的标准形式的特征是数xⅠ2 +数yⅡ2 =1,数Ⅰ与数Ⅱ 异号,因此双曲线的方程又可写为 mx2+ny2=1(m·n<0),这种形 式是焦点所在的坐标轴不易判断时的统一写法.
数学 选修1-1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
(2)由已知得 c=6,且焦点在 y 轴上,因为点 A(-5,6)在双 曲线上,所以点 A 与两焦点的距离的差的绝对值是常数 2a,即 2a=| -5-02+6+62- -5-02+6-62|

抛物线及其标准方程 课件

抛物线及其标准方程 课件
第二章 圆锥曲线与方程
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·选修2-1
[解析] (1)设所求的抛物线方程为 y2=-2px(p>0)或 x2= 2py(p>0),
∵过点(-3,2),∴4=-2p·(-3)或 9=2p·2. ∴p=23或 p=94. 故所求的抛物线方程为 y2=-43x 或 x2=92y, 对应的准线方程分别为 x=13,y=-98.
第二章 圆锥曲线与方程
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·选修2-1
[方法规律总结] 利用抛物线的定义可以将抛物线上的点 到焦点的距离转化为到准线的距离,这一相互转化关系会给解 题带来方便.要注意灵活运用定义解题.
第二章 圆锥曲线与方程
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·选修2-1
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·选修2-1
抛物线及其标准方程
第二章 圆锥曲线与方程
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·选修2-1
抛物线的定义及标准方程 思维导航 1.我们已知二次函数的图象为抛物线,生产生活中我们 也见过许多抛物线的实例,如跳绳时绳子的弧线、探照灯的纵 截面,那么抛物线是怎样定义的?有什么特点?如何画出抛物 线?
__F__(0_,__-__p2_) __y_=__p2_____ x_2=__-__2_p_y_(_p_>_0_)
第二章 圆锥曲线与方程
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·选修2-1
5.过抛物线焦点的直线与抛物线相交,被抛物线所截得的 线段,称为抛物线的__焦__点__弦____.
[分析] 图(2)是图(1)中位于直线O′P右边的部分,故O′B为 水池的半径,以抛物线的顶点为原点,对称轴为y轴建立平面 直角坐标系,则易得P点坐标,再由P在抛物线上求出抛物线方 程,再由B点纵坐标求出B点的横坐标即可获解.

第2章《圆锥曲线与方程》章综合(北师大版选修1-1)

第2章《圆锥曲线与方程》章综合(北师大版选修1-1)

第二章 圆锥曲线与方程
在直角三角形 PF1F2 中, |PF1|· |PF2|=|F1F2|· y=32, 16 3 41 所以 y= 5 ,代入双曲线的方程,得 x= 5 , 即点 P
3 在第一象限的坐标是
41 16 ,再根据双曲线的对 , 5 5
称性得点 P 的坐标还可以是
2
3 同时 b = . 4
2
4 2 故所求双曲线方程为 4x -3y =1
2
第二章 圆锥曲线与方程
四、直线与圆锥曲线的位置关系 直线与圆锥曲线的位置关系,涉及函数、方程、平面几何 等诸多方面的知识,形成了求轨迹、最值、对称范围、线段的
长度等多种问题,是解析几何部分综合性较强问题,也是以往
高考的重点和热点问题.高考中,大多是以解答题的形式出现 且难度较大,往往成为体现试题区分度的题目.
第二章 圆锥曲线与方程
二、圆锥曲线定义的应用 对于圆锥曲线的有关问题,要有运用圆锥曲线定义解题的 意识,“回归定义”是一种重要的解题策略.如: (1) 在求轨迹
方程时,若所求轨迹符合某种圆锥曲线的定义,则根据圆锥曲
线的定义,写出所求的轨迹方程; (2) 涉及椭圆、双曲线上的点 与两个焦点构成的三角形问题时,常用定义结合解三角形的知 识来解决; (3) 在求有关抛物线的最值问题时,常利用定义把到 焦点的距离转化为到准线的距离,结合几何图形,利用几何意
第二章 圆锥曲线与方程
(2)设直线与椭圆交于 A(x1,y1),B(x2,y2), 由(1)知,5x2+2mx+m2-1=0, 2m 1 2 由韦达定理,得 x1+x2=- ,x1x2= (m -1). 5 5 所以 d= x1-x22+y1-y22= 2x1-x22 = 2[x1+x22-4x1x2] =

新教材北师大版高中数学选择性必修第一册第二章圆锥曲线 知识点考点重点难点解题规律归纳总结

新教材北师大版高中数学选择性必修第一册第二章圆锥曲线 知识点考点重点难点解题规律归纳总结

第二章 圆锥曲线1 椭圆 ........................................................................................................................... - 1 -1.1 椭圆及其标准方程 ......................................................................................... - 1 - 1.2 椭圆的简单几何性质 ..................................................................................... - 6 - 2 双曲线 ..................................................................................................................... - 11 -2.1 双曲线及其标准方程 ................................................................................... - 11 - 2.2 双曲线的简单几何性质 ............................................................................... - 15 - 3 抛物线 ..................................................................................................................... - 19 -3.1 抛物线及其标准方程 ................................................................................... - 19 - 3.2 抛物线的简单几何性质 ............................................................................... - 23 - 4 直线与圆锥曲线的位置关系 .................................................................................. - 28 -4.1 直线与圆锥曲线的交点 ............................................................................... - 28 - 4.2 直线与圆锥曲线的综合问题 ....................................................................... - 28 -1 椭圆1.1 椭圆及其标准方程1.椭圆的定义平面内到两个定点F 1,F 2的距离之和等于常数(大于|F 1F 2|)的点的集合(或轨迹)叫作椭圆.这两个定点叫作椭圆的焦点,两焦点间的距离叫作椭圆的焦距.1.椭圆定义中,将“大于|F 1F 2|”改为“等于|F 1F 2|”或“小于|F 1F 2|”,其他条件不变,点的轨迹是什么?[提示] 当距离之和等于|F 1F 2|时,动点的轨迹就是线段F 1F 2;当距离之和小于|F 1F 2|时,动点的轨迹不存在.2.椭圆的标准方程焦点在x 轴上 焦点在y 轴上 标准方程 x 2a 2+y 2b 2=1 (a >b >0) y 2a 2+x 2b 2=1 (a >b >0) 焦点 (-c ,0),(c ,0)(0,-c ),(0,c )a 、b 、c 的关系c 2=a 2-b 22.椭圆x 29+y 216=1的焦点是在x 轴上,还是在y 轴上?[提示] 椭圆x 29+y 216=1的焦点在y 轴上.疑难问题类型1 椭圆定义及应用【例1】 (1)椭圆x 225+y 29=1上一点A 到焦点F 的距离为2,B 为AF 的中点,O 为坐标原点,则|OB |的值为( )A .8B .4C .2D .32(2)已知B (-5,0)、C (5,0),且△ABC 的周长等于24,则顶点A 的轨迹方程为________.(3)已知F 1,F 2是椭圆x 2a 2+y 2b 2=1(a >b >0)的焦点,过F 1的直线AB 与椭圆交于A 、B 两点,则△ABF 2的周长为________.(1)B (2)x 249+y 224=1(y ≠0) (3)4a [(1)设F ′为椭圆的另一焦点,则|AF |+|AF ′|=2a =10,∴|AF ′|=8,∵O ,B 分别为FF ′,AF 的中点.∴|OB |=12|AF ′|=4.(2)由已知得,|AB |+|AC |=14,由椭圆的定义可知,顶点A 的轨迹是椭圆, 又2c =10,2a =14,即c =5,a =7, 所以b 2=a 2-c 2=24.当点A 在直线BC 上,即y =0时,A 、B 、C 三点不能构成三角形,所以点A 的轨迹方程是x 249+y 224=1(y ≠0).(3)∵|AF1|+|AF2|=2a,|BF1|+|BF2|=2a,∴△ABF2的周长=|AB|+|AF2|+|BF2|=|AF1|+|BF1|+|AF2|+|BF2|=2a+2a=4a.]由椭圆定义可知,椭圆上任一点到椭圆的两个焦点距离之和为定值,所以椭圆定义有以下应用:(1)实现两个焦半径之间的相互转化;,(2)将两个焦半径之和看成一个整体,求解定值问题.类型2求椭圆的标准方程[探究问题]1.同一椭圆在不同坐标系下的方程相同吗?[提示]不同.2.在椭圆标准方程的推导过程中,为什么令b2=a2-c2,b>0?[提示]令b2=a2-c2可以使方程变得简单整齐,在今后讨论椭圆的几何性质时,b还有明确的几何意义.3.椭圆x2a2+y2b2=1和y2a2+x2b2=1(a>b>0)有何异同点?[提示]因为椭圆标准方程中的两个参数a,b确定了椭圆的形状、大小,所以椭圆x2a2+y2b2=1和y2a2+x2b2=1(a>b>0)的形状、大小相同,但这两个椭圆的位置不同,焦点坐标也不同.【例2】写出适合下列条件的椭圆的标准方程:(1)焦点坐标为(-4,0),(4,0),并且过点(-5,3);(2)经过点P1(6,1),P2(-3,-2).[思路点拨](1)设出相应焦点位置的椭圆方程,利用关系式b2=a2-c2及点(-5,3)在椭圆上求待定系数;(2)由于焦点位置不明确,可将其设成Ax 2+By 2=1(A >0,B >0)的形式,再进一步确定A ,B .[解] (1)依题意知椭圆的焦点在x 轴上,可设它的标准方程为x 2a 2+y 2b 2=1(a >b >0).由已知得c =4,所以a 2-b 2=16.①因为点(-5,3)在椭圆上,所以(-5)2a 2+(3)2b 2=1,即5a 2+3b 2=1.② 由①②得a 2=20,b 2=4.因此,所求椭圆的标准方程为x 220+y 24=1.(2)设椭圆的方程为Ax 2+By 2=1(A >0,B >0),由已知得 ⎩⎨⎧6A +B =13A +2B =1, 解得A =19,B =13.∴所求的椭圆的标准方程为x 29+y 23=1.1.求椭圆标准方程的方法(1)定义法:根据椭圆的定义,判断出轨迹是椭圆,然后写出其方程. (2)待定系数法:设出椭圆的标准方程,再依据条件确定a 2、b 2的值,其一般步骤是:①定位:确定椭圆的焦点在x 轴还是y 轴上,从而设出相应的标准方程的形式. ②定量:根据已知条件,建立关于a 、b 、c 的方程组,求出a 2、b 2,从而写出椭圆的标准方程.2.椭圆的标准方程在形式上可统一为Ax 2+By 2=1,其中A 、B 是不等的正常数.类型3 椭圆标准方程的简单应用【例3】 (1)已知方程x 25-2m +y 2|m |-1=1表示焦点在y 轴上的椭圆,则实数m的取值范围为________.(2)已知椭圆方程为kx 2+3y 2-6k =0,焦距为4,则k 的值为________. (1)⎝ ⎛⎭⎪⎫2,52 (2)1或5 [(1)∵椭圆焦点在y 轴上,∴其标准方程应为y 2a 2+x 2b 2=1(a >b >0),∴|m |-1>5-2m >0,解得2<m <52,∴m 的取值范围为2<m <52.(2)将方程kx 2+3y 2-6k =0化为x 26+y 22k =1.∵焦距为4,∴2c =4,即c =2.当焦点在x 轴上时,6-2k =4,解得k =1; 当焦点在y 轴上时,2k -6=4,解得k =5. 综上,k =1或5.]1.判断焦点所在坐标轴的依据是看x 2项,y 2项的分母哪个大,焦点在分母大的对应的坐标轴上.2.对于方程x 2m +y 2n =1(m >0,n >0),当m >n >0时,方程表示焦点在x 轴上的椭圆;当n >m >0时,方程表示焦点在y 轴上的椭圆.特别地,当n =m >0时,方程表示圆心在原点的圆.归纳总结1.平面内到两定点F 1,F 2的距离之和为常数,即|MF 1|+|MF 2|=2a , 当2a >|F 1F 2|时,轨迹是椭圆;当2a =|F 1F 2|时,轨迹是一条线段F 1F 2; 当2a <|F 1F 2|时,轨迹不存在.2.涉及椭圆的焦点三角形问题,可结合椭圆的定义列出|PF 1|+|PF 2|=2a 求解,回归定义是求解椭圆的焦点三角形问题的常用方法.3.用待定系数法求椭圆的标准方程时,若已知焦点的位置,可直接设出标准方程;若焦点位置不确定,可分两种情况求解,也可设Ax 2+By 2=1(A >0,B >0,A ≠B )求解,避免分类讨论.1.2椭圆的简单几何性质椭圆的几何性质焦点的位置焦点在x轴上焦点在y轴上图形标准方程x2a2+y2b2=1(a>b>0)y2a2+x2b2=1(a>b>0)对称性对称轴x轴和y轴,对称中心(0,0)范围-a≤x≤a且-b≤y≤b -b≤x≤b且-a≤y≤a顶点A1(-a,0)、A2(a,0),B1(0,-b)、B2(0,b)A1(0,-a)、A2(0,a),B1(-b,0)、B2(b,0)轴长短轴长=2b,长轴长=2a焦点F1(-c,0)、F2(c,0)F1(0,-c)、F2(0,c)焦距|F1F2|=2c离心率e=ca(0<e<1)(1)椭圆方程x2a2+y2b2=1(a>b>0)中,a,b,c的几何意义是什么?(2)椭圆上的点到焦点的最大距离与最小距离分别是什么?[提示](1)在方程x2a2+y2b2=1(a>b>0)中,a,b,c的几何意义如图所示.即a,b,c正好构成了一个以对称中心,一个焦点、一个短轴顶点构成的直角三角形.(2)最大距离:a+c;最小距离:a-c.疑难问题类型1 椭圆的几何性质 [探究问题]1.椭圆x 2a 2+y 2b 2=1(a >b >0)上,到中心O 和焦点F 1(-c ,0)的距离最近和最远的点分别在什么位置?[提示] 椭圆上,到中心O 的距离最近的点是短轴端点B 1和B 2;到中心O 的距离最远的点是长轴端点A 1和A 2.点(a ,0),(-a ,0)与焦点F 1(-c ,0)的距离,分别是椭圆上的点与焦点F 1的最远距离和最近距离.2.利用椭圆方程如何判断点P (x 0,y 0)与椭圆x 2a 2+y 2b 2=1(a >b >0)的位置关系? [提示] 点P (x 0,y 0)与椭圆x 2a 2+y 2b 2=1(a >b >0)的位置关系: 点P 在椭圆上⇔x 20a 2+y 20b 2=1; 点P 在椭圆内部⇔x 20a 2+y 20b 2<1; 点P 在椭圆外部⇔x 20a 2+y 20b 2>1.3.椭圆的离心率是如何刻画椭圆的扁平程度的? [提示] e 的大小决定了椭圆的扁圆程度. 因为a 2=b 2+c 2,所以ba =1-e 2,因此,当e 越趋近于1时,ba 越接近于0,椭圆越扁; 当e 越趋近于0时,ba越接近于1,椭圆越接近于圆.【例1】 (1)椭圆x 225+y 29=1与x 29-k +y 225-k =1(0<k <9)的( )A .长轴长相等B .短轴长相等C .离心率相等D .焦距相等(2)已知椭圆的标准方程为x 2100+y 264=1,O 为坐标原点,则椭圆上的点P 到椭圆中心|OP |的范围为( )A .[6,10]B .[6,8]C .[8,10]D .[16,20](3)(一题两空)椭圆4x 2+9y 2=36的长轴长为________,短轴长为________. (1)D (2)C (3)6 4 [(1)椭圆x 225+y 29=1中c 21=25-9=16,椭圆x 29-k +y 225-k=1中c 22=25-k -(9-k )=16,∴两椭圆焦距相等.(2)设P (x 0,y 0),则|OP |=x 20+y 20.由椭圆的范围,知|x 0|≤a =10,|y 0|≤b =8, 又∵P 在椭圆上,∴x 20100+y 2064=1, ∴y 20=64-1625x 20,∴|OP |=925x 20+64.∵0≤x 20≤100,∴64≤925x 20+64≤100,∴8≤|OP |≤10.(3)把已知方程化为椭圆的标准方程为:x 29+y 24=1,∴a =3,b =2,∴长轴长为2a =6,短轴长为2b =4.]用标准方程研究几何性质的步骤 (1)将椭圆方程化为标准形式.(2)确定焦点位置.(焦点位置不确定的要分类讨论) (3)求出a ,b ,c . (4)写出椭圆的几何性质.类型2 由椭圆的简单性质求方程【例2】 求适合下列条件的椭圆的标准方程: (1)焦点在y 轴上,a =2,离心率e =12;(2)一焦点坐标为(-3,0),一顶点坐标为(0,5); (3)过点(3,0),离心率e =63.[思路点拨](1)由a=2,e=ca=12,易得c,代入b2=a2-c2可求得b2,此时可写出焦点在y轴上的椭圆方程;(2)由已知可以确定焦点在x轴上及c,b的值,从而可写出椭圆的标准方程;(3)不能确定焦点所在的坐标轴,需分类讨论.[解](1)由a=2,e=12,可得a2=4,且c2=12,即c=1,所以b2=a2-c2=4-1=3.已知椭圆的焦点在y轴上,所以所求的标准方程为y24+x23=1.(2)由椭圆的一个焦点坐标为(-3,0),可知椭圆的焦点在x轴上,且c=3.又由一顶点坐标为(0,5),可得b=5,所以a2=b2+c2=25+9=34.因此所求的标准方程为x234+y225=1.(3)当椭圆的焦点在x轴上时,因为a=3,e=63,所以c=6,从而b2=a2-c2=3,所以椭圆的标准方程为x29+y23=1;当椭圆的焦点在y轴上时,因为b=3,e=63,所以a2-b2a=63,所以a2=27,所以椭圆的标准方程为y227+x29=1.综上,所求椭圆的标准方程为x29+y23=1或y227+x29=1.已知椭圆的简单性质求标准方程:(1)先看题目的条件能否确定焦点所在的坐标轴,当不能确定焦点所在的坐标轴时,需分焦点在x轴上或在y轴上进行讨论.(2)然后依据关系式e=ca,b2=a2-c2确定a,b的值,从而求出椭圆的标准方程.类型3求椭圆的离心率【例3】已知F1,F2是椭圆的两个焦点,过F1且与椭圆长轴垂直的直线交椭圆于A,B两点,若△ABF2是正三角形,求该椭圆的离心率.[思路点拨]根据已知条件得出a、c的关系即可.[解]不妨设椭圆的焦点在x轴上,因为AB⊥F1F2,且△ABF2为正三角形,所以在Rt△AF1F2中,∠AF2F1=30°,令|AF1|=x,则|AF2|=2x,所以|F1F2|=|AF2|2-|AF1|2=3x=2c,由椭圆的定义,可知|AF1|+|AF2|=2a=3x,∴e=2c2a=3x3x=33.求椭圆的离心率通常有两种方法:(1)若给定椭圆的方程,则根据焦点位置先求a2、b2,再求出a、c的值,利用公式e=ca直接求解;(2)若椭圆的方程未知,则根据条件建立a、b、c之间的关系式,化为关于a、c的齐次方程,再将方程两边同除以a的最高次幂,得到e的方程,解方程求得e.归纳总结1.已知椭圆的方程讨论椭圆的性质时,若不是标准形式,应先化成标准形式.2.根据椭圆的几何性质,可以求椭圆的标准方程,其基本思路是“先定位,再定量”,常用的方法是待定系数法.3.椭圆的范围给出了椭圆上的点的横坐标、纵坐标的取值范围,常用来求解与椭圆有关的最值与范围问题.4.椭圆的对称性是椭圆的重要几何性质,在解题时,恰当使用对称性能简化求解过程.2双曲线2.1双曲线及其标准方程1.双曲线的定义平面内到两个定点F1,F2的距离之差的绝对值等于常数(大于零且小于|F1F2|)的点的集合(或轨迹)叫作双曲线.这两个定点叫作双曲线的焦点,两个焦点间的距离叫作双曲线的焦距.1.双曲线定义中,将“小于|F1F2|”改为“等于|F1F2|”或“大于|F1F2|”的常数,其他条件不变,点的轨迹是什么?[提示]当距离之差等于|F1F2|时,动点的轨迹就是两条射线,端点分别是F1、F2,当距离之差大于|F1F2|时,动点的轨迹不存在.2.双曲线定义中,将“差的绝对值”改为“差”,其他条件不变,点的轨迹是什么?[提示]动点的轨迹是双曲线的一支.2.双曲线的标准方程焦点在x轴上焦点在y轴上标准方程x2a2-y2b2=1(a>0,b>0)y2a2-x2b2=1(a>0,b>0)焦点F1(-c,0),F2(c,0)F1(0,-c),F2(0,c)焦距|F1F2|=2ca、b、c的关系c2=a2+b23.确定双曲线的标准方程需要知道哪些量?[提示]a,b的值及焦点所在的位置.疑难问题类型1双曲线的定义及应用双曲线中,焦点三角形的面积问题【例1】 已知双曲线x 29-y 216=1的左,右焦点分别是F 1,F 2,若双曲线上一点P 使得∠F 1PF 2=60°,求△F 1PF 2的面积.[解] 由x 29-y 216=1,得a =3,b =4,c =5.由定义和余弦定理得|PF 1|-|PF 2|=±6,|F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|cos 60°,所以102=(|PF 1|-|PF 2|)2+|PF 1|·|PF 2|, 所以|PF 1|·|PF 2|=64,所以S △F 1PF 2=12|PF 1|·|PF 2|·sin ∠F 1PF 2=12×64×32=163.利用双曲线定义求点的轨迹方程【例2】 已知定点A (0,7),B (0,-7),C (12,2),以C 为一个焦点作过A ,B 的椭圆,求另一焦点F 的轨迹方程.[思路点拨] 考查点F 的几何性质,利用双曲线的定义求解. [解] 设F (x ,y )为轨迹上的任意一点, 因为A ,B 两点在以C ,F 为焦点的椭圆上,所以|F A |+|CA |=2a ,|FB |+|CB |=2a (其中a 表示椭圆的长半轴长). 所以|F A |+|CA |=|FB |+|CB |.所以|F A |-|FB |=|CB |-|CA |=122+92-122+(-5)2=2,即|F A |-|FB |=2. 由双曲线的定义知,F 点在以A ,B 为焦点,2为实轴长的双曲线的下半支上.所以点F 的轨迹方程是y 2-x248=1(y ≤-1).1.利用双曲线的定义解决与焦点有关的问题,一是要注意||PF 1|-|PF 2||=2a 的变形使用,特别是与|PF 1|2+|PF 2|2,|PF 1|·|PF 2|间的关系.2.利用双曲线的定义求曲线的轨迹方程, 其基本步骤为 ①寻求动点M 与定点F 1,F 2 之间的关系;②根据题目的条件计算是否满足||MF 1|-|MF 2||=2a (常数,a >0);③判断:若2a <2c =|F 1F 2|,满足定义,则动点M 的轨迹就是双曲线,且2c =|F 1F 2|,b 2=c 2-a 2,进而求出相应a ,b ,c ;④根据F 1,F 2所在的坐标轴写出双曲线的标准方程.类型2 求双曲线的标准方程【例3】 (1)已知双曲线过点(3,-42)和⎝ ⎛⎭⎪⎫94,5,求双曲线的标准方程;(2)求与双曲线x 216-y 24=1有公共焦点,且过点(32,2)的双曲线方程. [思路点拨] 用待定系数法求解.[解] (1)设所求双曲线方程为Ax 2-By 2=1()AB >0, 则⎩⎪⎨⎪⎧9A -32B =1,8116A -25B =1, 解得⎩⎪⎨⎪⎧A =-19,B =-116,∴双曲线的标准方程为y 216-x 29=1.(2)法一:设所求双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0), 由题意易求得c =25.又双曲线过点(32,2), ∴(32)2a 2-4b 2=1.又∵a 2+b 2=(25)2, ∴a 2=12,b 2=8.故所求双曲线方程为x 212-y 28=1.法二:设双曲线方程为x 216-k -y 24+k =1(-4<k <16),将点(32,2)代入得k =4, ∴所求双曲线方程为x 212-y 28=1.待定系数法求双曲线方程的步骤类型3曲线类型的判定【例4】已知曲线C:x2t2+y2t2-1=1(t≠0,t≠±1).(1)求t为何值时,曲线C分别为椭圆、双曲线;(2)求证:不论t为何值,曲线C有相同的焦点.[思路点拨]方程Ax2+By2=1表示的轨迹是由参数A,B的值及符号确定,因此要确定轨迹,需对A,B进行讨论.[解](1)当|t|>1时,t2>0,t2-1>0,且t2≠t2-1,曲线C为椭圆;当|t|<1时,t2>0,t2-1<0,曲线C为双曲线.(2)证明:当|t|>1时,曲线C是椭圆,且t2>t2-1,因此c2=a2-b2=t2-(t2-1)=1,∴焦点为F1(-1,0),F2(1,0).当|t|<1时,双曲线C的方程为x2t2-y21-t2=1,∵c2=a2+b2=t2+1-t2=1,∴焦点为F1(-1,0),F2(1,0).综上所述,无论t为何值,曲线C有相同的焦点.方程Ax2+By2=1(A,B≠0)表示双曲线的充要条件为AB<0,若A<0,B>0,则方程表示焦点在y轴上的双曲线;若B<0,A>0,则方程表示焦点在x轴上的双曲线.即双曲线的焦点位置是由x2,y2的系数的正负决定的.归纳总结1.对双曲线定义的理解(1)定义中距离的差要加绝对值,否则只为双曲线的一支.设F1,F2表示双曲线的左,右焦点,若|MF1|-|MF2|=2a,则点M在右支上;若|MF2|-|MF1|=2a,则点M在左支上.(2)双曲线定义的应用:①若||MF1|-|MF2||=2a(0<2a<|F1F2|),则动点M的轨迹为双曲线.②若动点M在双曲线上,则||MF1|-|MF2||=2a.2.求双曲线标准方程的步骤(1)定位:在标准方程的前提下,确定焦点位于哪条坐标轴上,以确定方程的形式.(2)定量:确定a2,b2的数值.提醒:若焦点的位置不明确,应注意分类讨论,也可以设双曲线方程为mx2+ny2=1的形式,其中mn<0.2.2双曲线的简单几何性质双曲线的性质标准方程x2a2-y2b2=1(a>0,b>0)y2a2-x2b2=1(a>0,b>0)图形性质焦点F1(-c,0),F2(c,0)F1(0,-c),F2(0,c)焦距|F1F2|=2c范围x≥a或x≤-a,y∈R y≥a或y≤-a,x∈R 顶点(-a,0),(a,0)(0,-a),(0,a)对称性对称轴:x轴、y轴;对称中心:坐标原点轴长实轴长=2a,虚轴长=2b渐近线xa±yb=0或y=±ba xxb±ya=0或y=±ab x离心率e=ca(e>1)(1)渐近线相同的双曲线是同一条双曲线吗?(2)双曲线的离心率和渐近线的斜率有怎样的关系?[提示](1)渐近线相同的双曲线有无数条,但它们实轴与虚轴的长的比值相同.(2)e2=c2a2=1+b2a2,ba是渐近线的斜率或其倒数.疑难问题类型1双曲线的简单性质【例1】求双曲线9y2-4x2=-36的顶点坐标、焦点坐标、实轴长、虚轴长、离心率和渐近线方程.[思路点拨]先将双曲线的形式化为标准方程,再研究其性质.[解]双曲线的方程化为标准形式是x29-y24=1,∴a2=9,b2=4,∴a=3,b=2,c=13.又曲线的焦点在x轴上,∴顶点坐标为(-3,0),(3,0),焦点坐标为(-13,0),(13,0),实轴长2a=6,虚轴长2b=4,离心率e=ca=133,渐近线方程为y=±23x.1.由双曲线方程探究其简单几何性质时,需先看所给方程是否为标准方程,若不是,需先把方程化为标准方程,这是依据方程求参数a,b,c值的关键.2.写顶点坐标、焦点坐标、渐近线方程时,需先由方程确定焦点所在的坐标轴,否则易出错,需注意双曲线方程与渐近线方程的对应关系.类型2利用双曲线的性质求双曲线方程【例2】求适合下列条件的双曲线的标准方程.(1)实轴长为16,离心率为5 4;(2)双曲线C的右焦点为(2,0),右顶点为(3,0).[思路点拨]由双曲线的几何性质,列出关于a,b,c的方程,求出a,b,c 的值.[解](1)设双曲线的标准方程为x2a2-y2b2=1或y2a2-x2b2=1(a>0,b>0).由题意知2a=16,ca=54,c2=a2+b2,解得c=10,a=8,b=6,所以双曲线的标准方程为x264-y236=1或y264-x236=1.(2)设双曲线方程为x2a2-y2b2=1(a>0,b>0).由已知得a=3,c=2,∴b2=c2-a2=1.∴双曲线的标准方程为x23-y2=1.1.求双曲线方程,关键是求a,b的值,在解题过程中应熟悉a,b,c,e等元素的几何意义及它们之间的联系,并注意方程思想的应用.2.若已知双曲线的渐近线方程ax±by=0,可设双曲线方程为a2x2-b2y2=λ.类型3双曲线的离心率【例3】已知以双曲线C的两个焦点及虚轴的两个端点为顶点的四边形中,有一个内角为60°,求双曲线C的离心率.[思路点拨]确定四边形中为60°的内角,通过解三角形得a,b,c的关系,进而求出离心率.[解]设双曲线方程为x2a2-y2b2=1(a>0,b>0),如图所示,由于在双曲线中c>b,故在Rt△OF1B2中,只能是∠OF1B2=30°,所以bc=tan 30°,c=3b,所以a=2b,离心率e=ca=32=62.求双曲线离心率的两种方法(1)直接法:若已知a,c可直接利用e=ca求解.(2)方程法:若无法求出a,b,c的具体值,但根据条件可确定a,b,c之间的关系,可通过b2=c2-a2,将关系式转化为关于a,c的齐次方程,借助于e=ca,转化为关于e的n次方程求解.归纳总结1.由已知双曲线的方程求双曲线的几何性质时,注意首先应将方程化为标准形式,并要特别注意焦点所在的位置,防止将焦点坐标和渐近线方程写错.2.注意双曲线性质间的联系,尤其是双曲线的渐近线斜率与离心率之间的联系,并注意数形结合,从直观入手.3.椭圆、双曲线的标准方程都可写成Ax2+By2=1的形式,当A>0,B>0且A≠B 时表示椭圆,当AB<0时表示双曲线.3 抛物线3.1 抛物线及其标准方程1.抛物线的定义平面内与一个定点F 和一条定直线l (l 不经过点F )的距离相等的点的集合(或轨迹)叫作抛物线,定点F 叫作抛物线的焦点,定直线l 叫作抛物线的准线.1.抛物线的定义中,若点F 在直线l 上,那么动点的轨迹是什么? [提示] 点的轨迹是过点F 且垂直于直线l 的直线. 2.抛物线的标准方程 图形标准 方程 y 2=2px (p >0) y 2=-2px(p >0) x 2=2py (p >0) x 2=-2py (p >0) 焦点 坐标 ⎝ ⎛⎭⎪⎫p 2,0 ⎝ ⎛⎭⎪⎫-p 2,0 ⎝ ⎛⎭⎪⎫0,p 2 ⎝ ⎛⎭⎪⎫0,-p 2 准线 方程x =-p 2x =p 2y =-p 2y =p 22.抛物线的标准方程y 2=2px (p >0)中p 的几何意义是什么? [提示] 焦点到准线的距离.3.已知抛物线的标准方程,怎样确定抛物线的焦点位置和开口方向? [提示] 一次项变量为x (或y ),则焦点在x 轴(或y 轴)上;若系数为正,则焦点在正半轴上;系数为负,则焦点在负半轴上.焦点确定,开口方向也随之确定.疑难问题类型1 抛物线的定义【例1】 已知F 是抛物线y 2=x 的焦点,A ,B 是该抛物线上的两点,|AF |+|BF |=3,则线段AB 的中点到y 轴的距离为( )A .34B .1C .54D .74[思路点拨] 如图,过A 、B 分别作准线l 的垂线AD ,BC ,垂足分别为D ,C ,M 是线段AB 的中点,MN 垂直准线l 于N ,由于MN 是梯形ABCD 的中位线,所以|MN |=|AD |+|BC |2.C [由抛物线的定义知|AD |+|BC |=|AF |+|BF |=3,所以|MN |=32,又由于准线l 的方程为x =-14,所以线段AB 中点到y 轴的距离为32-14=54,故选C .]1.解答本题的关键是利用抛物线的定义把到焦点的距离转化为到准线的距离.2.与抛物线有关的问题中,涉及到焦点的距离或到准线的距离时,一般是利用定义对两个距离进行相互转化.类型2 求抛物线的标准方程求抛物线的焦点坐标或准线方程【例2】 求下列抛物线的焦点坐标和准线方程. (1)y 2=40x ;(2)4x 2=y ;(3)6y 2+11x =0.[解] (1)焦点坐标为(10,0),准线方程为x =-10. (2)由4x 2=y 得x 2=14y . ∵2p =14,∴p =18.∴焦点坐标为(0,116),准线方程为y =-116.(3)由6y 2+11x =0,得y 2=-116x , 故焦点坐标为(-1124,0),准线方程为x =1124.求抛物线的标准方程【例3】 求满足下列条件的抛物线的标准方程.(1)过点(-3,2); (2)已知抛物线焦点在y 轴上,焦点到准线的距离为3.[思路点拨] 确定p 的值和抛物线的开口方向,写出标准方程.[解] (1)设所求的抛物线方程为y 2=-2p 1x (p 1>0)或x 2=2p 2y (p 2>0),∵过点(-3,2),∴4=-2p 1×(-3)或9=2p 2×2.∴p 1=23或p 2=94.故所求的抛物线方程为y 2=-43x 或x 2=92y .(2)由题意知,抛物线标准方程为x 2=2py (p >0)或x 2=-2py (p >0)且p =3, ∴抛物线标准方程为x 2=6y 或x 2=-6y .1.根据抛物线方程求准线方程或焦点坐标时,应先把抛物线的方程化为标准方程,这样才能准确写出抛物线的准线方程.2.求抛物线方程的主要方法是待定系数法,若已知抛物线的焦点位置,则可设出抛物线的标准方程,求出p 值即可,若抛物线的焦点位置不确定,则要分情况讨论,另外,焦点在x 轴上的抛物线方程可统一设成y 2=ax (a ≠0),焦点在y 轴上的抛物线方程可统一设成x 2=ay (a ≠0).类型3 抛物线的实际应用【例4】 一辆卡车高3 m ,宽1.6 m ,欲通过断面为抛物线型的隧道,已知拱口宽恰好是拱高的4倍,若拱口宽为a m ,求使卡车通过的a 的最小整数值.[思路点拨] 解答本题首先建系,转化成抛物线的问题,再利用抛物线的方程解决问题.[解] 以隧道顶点为原点,拱高所在直线为y 轴建立直角坐标系,则点B 的坐标为⎝ ⎛⎭⎪⎫a 2,-a 4,如图所示.设隧道所在抛物线方程为x 2=my ,则⎝ ⎛⎭⎪⎫a 22=m ·⎝ ⎛⎭⎪⎫-a 4,∴m =-a .即抛物线方程为x 2=-ay . 将(0.8,y )代入抛物线方程,得0.82=-ay ,即y =-0.82a . 欲使卡车通过隧道,应有y -⎝ ⎛⎭⎪⎫-a 4>3,即a 4-0.82a >3. ∵a >0,∴a >12.21.∴a 应取13.1.解答本题的关键是把实际问题转化为数学问题,利用数学模型,通过数学语言(文字、符号、图形、字母等)表达、分析、解决问题.2.在建立抛物线的标准方程时,以抛物线的顶点为坐标原点,对称轴为一条坐标轴建立坐标系.这样可使得标准方程不仅具有对称性,而且曲线过原点,方程不含常数项,形式更为简单,便于应用.归纳总结1.焦点在x 轴上的抛物线,其标准方程可以统设为y 2=mx (m ≠0),此时焦点为F ⎝ ⎛⎭⎪⎫m 4,0,准线方程为x =-m 4;焦点在y 轴上的抛物线,其标准方程可以统设为x 2=my (m ≠0),此时焦点为F ⎝ ⎛⎭⎪⎫0,m 4,准线方程为y =-m 4. 2.设M (x 0,y 0)是抛物线y 2=2px (p >0)上一点,焦点为F ,则根据抛物线的定义,抛物线的焦半径|MF |=x 0+p 2.3.对于抛物线上的点,利用定义可以把其到焦点的距离与到准线的距离相互转化.4.对于抛物线的四种形式的标准方程,应准确把握、熟练应用,能利用图形分析性质,学习时应能根据一种类型归纳出另外三种的相关性质,注意数形结合思想的应用.3.2 抛物线的简单几何性质1.抛物线的几何性质 标准方程 y 2=2px (p >0) y 2=-2px (p >0)x 2=2py (p >0) x 2=-2py (p >0) 图形性质 范围x ≥0,y ∈R x ≤0,y ∈R y ≥0,x ∈R y ≤0,x ∈R 对称轴 x 轴 y 轴顶点(0,0) 离心率e =1 2.过焦点的弦若直线过抛物线y 2=2px (p >0)的焦点F ,与抛物线交于A (x 1,y 1)、B (x 2,y 2)两点,则(1)抛物线的焦半径|AF |=x 1+p 2,|BF |=x 2+p 2;(2)过焦点的弦|AB |=x 1+x 2+p ;(3)当直线AB 垂直于抛物线的对称轴时,弦AB 叫作抛物线的通径,它的长为2p ,通径是过焦点最短的弦.直线与抛物线只有一个公共点,那么直线与抛物线一定相切吗?[提示] 可能相切,也可能相交,当直线与抛物线的对称轴平行或重合时,直线与抛物线相交且只有一个公共点.疑难问题类型1抛物线几何性质的应用【例1】正三角形的一个顶点位于坐标原点,另外两个顶点在抛物线y2=2px(p>0)上.求这个正三角形的边长.[思路点拨]正三角形及抛物线都是轴对称图形,如果能证明x轴是它们的公共对称轴,则容易求出等边三角形的边长.[解]设正三角形OAB的顶点A,B在抛物线上,且坐标分别为(x1,y1),(x2,y2),则y21=2px1,y22=2px2.由|OA|=|OB|,得x21+y21=x22+y22,即(x1+x2)(x1-x2)=2px2-2px1.∴(x1-x2)(x1+x2+2p)=0.∵x1>0,x2>0,2p>0,∴x1-x2=0,即x1=x2.由此可知|y1|=|y2|,即点A、B关于x轴对称,∴AB⊥x轴,且∠AOx=30°,∴y1x1=tan 30°=33.∵x1=y212p,∴y1=23p,|AB|=2y1=43p.∴这个正三角形的边长为43p.抛物线各元素间的关系,抛物线的焦点在其对称轴上,顶点就是抛物线与对称轴的交点,准线与对称轴垂直,准线与对称轴的交点和焦点关于顶点对称,顶点到焦点的距离与顶点到准线的距离均为p 2.类型2与中点弦、焦点弦有关的问题【例2】 (1)过点Q (4,1)作抛物线y 2=8x 的弦AB ,恰被点Q 所平分,则AB 所在直线的方程为________.(2)已知过抛物线y 2=2px (p >0)的焦点,斜率为22的直线交抛物线于A ,B 两点,且|AB |=9.则该抛物线的方程为________.[思路点拨] (1)法一:设A (x 1,y 1),B (x 2,y 2),用点差法求k AB ;法二:设直线AB 的方程,建立方程求解.(2)设出直线方程,直线方程与抛物线方程联立,根据焦点弦长公式求解.(1)4x -y -15=0 (2)y 2=8x [(1)法一:设以Q 为中点的弦AB 的端点坐标为A (x 1,y 1),B (x 2,y 2),则有y 21=8x 1,y 22=8x 2,∴(y 1+y 2)(y 1-y 2)=8(x 1-x 2).又y 1+y 2=2,∴y 1-y 2=4(x 1-x 2),即4=y 1-y 2x 1-x 2, ∴k =4.∴所求弦AB 所在直线的方程为y -1=4(x -4),即4x -y -15=0.法二:设弦AB 所在直线的方程为y =k (x -4)+1.联立⎩⎨⎧ y 2=8x ,y =k (x -4)+1,消去x ,得ky 2-8y -32k +8=0, 设A (x 1,y 1),B (x 2,y 2)(x 1<x 2),由根与系数的关系得y 1+y 2=8k .又y 1+y 2=2,∴k =4.∴所求弦AB 所在直线的方程为4x -y -15=0.(2)设直线AB 的方程为y =22⎝ ⎛⎭⎪⎫x -p 2, 联立⎩⎪⎨⎪⎧ y 2=2px ,y =22⎝ ⎛⎭⎪⎫x -p 2,化简得4x 2-5px +p 2=0,∴x 1+x 2=5p 4,∵|AB |=9=x 1+x 2+p ,∴5p 4+p =9,∴p =4,∴抛物线的方程为y 2=8x .]直线与抛物线相交的弦长问题直线和抛物线相交于A(x1,y1),B(x2,y2)两点,直线的斜率为k.(1)一般的弦长公式:|AB|=1+k2|x1-x2|.(2)焦点弦长公式:当直线经过抛物线y2=2px(p>0)的焦点时,弦长|AB|=x1+x2+p.(3)“中点弦”问题解题策略两种方法类型3抛物线中的最值问题【例3】已知抛物线y2=2x的焦点是F,点P是抛物线上的动点,又有点A(3,2),求|P A|+|PF|的最小值,并求出取最小值时点P的坐标.[思路点拨]利用抛物线的定义可将|PF|转化为P到准线的距离来考虑.[解]由定义知,抛物线上点P到焦点F的距离等于点P到准线l的距离d,则|P A|+|PF|=|P A|+d.将x=3代入抛物线方程y2=2x,得y=±6.∵6>2,∴点A在抛物线内部.由图可知,当P A⊥l时,|P A|+d最小,最小值为7 2,即|P A|+|PF|的最小值为7 2,此时点P纵坐标为2,代入y2=2x,得x=2.∴此时点P坐标为(2,2).1.本题若设P(x,y),利用两点间的距离公式建模求解,难以得到答案,而由抛物线的定义将|PF|转化为点P到准线的距离,则当P,A,Q三点共线时,|P A|+|PF|取得最小值,从而使问题迎刃而解.2.解决这类题,就是用抛物线的定义与平面几何的知识把折线段变为直线段,即知最小值.归纳总结1.抛物线只有一个焦点,一个顶点,一条对称轴,一条准线,无对称中心.2.抛物线上一点与焦点F的连线的线段叫做焦半径,设抛物线y2=2px(p>0)上任一点A(x0,y0),则|AF|=x0+p 2.3.抛物线的顶点也在抛物线上,作为抛物线上的一个特殊点,它到焦点的距离也等于到准线的距离,解题时注意应用.4.直线与抛物线有一个交点,是直线与抛物线相切的必要不充分条件.。

高中数学第二章圆锥曲线与方程2.4.2抛物线的几何性质课件4新人教B版选修2_1

高中数学第二章圆锥曲线与方程2.4.2抛物线的几何性质课件4新人教B版选修2_1
抛物线的几何性质
复习:
一、抛物线的定义
平面内与一个定点F和一条定直线l 的
距离相等的点的轨迹叫做抛物线。
l
定点F叫做抛物线的焦点。
N
定直线l 叫做抛物线的准线。
M· ·F
即:
若︳︳MMNF
︳ ︳ 1,
则点M的轨迹是抛物线。
二、抛物线的标准方程
{ 焦点在x 轴上 y2 mx(m 0)
y2 = 2px(p>0) y2 = -2px(p>0)
A4
B -2
C 4或-4
D 12或-2
2、设A为抛物线y2 = 4x上一点,点B(1,0)且 AB 1,则A横 坐标值为(B)
A -2
B0
C -2或0
D -2或2
3、已知F是抛物线y2 = x的焦点,A、B是该抛物线上的两 点,AF BF 3,则AB中点到y轴距离为(C)
3
5
7
A4
B1
C4
D4
2
抛物线的标准方程和几何性质
标准方程
图形
焦点 准线 范围 对称轴 顶点 离心率
y2 2 px( p 0) y2 2 px( p 0) x2 2 py( p 0) x2 2 py( p 0)
. .
y
F
o
x
y F ox
y
F
x o
y
o
x
F
F( p ,0) 2
x p 2
F ( p ,0) 2
的顶点。
由y2 = 2px (p>0)当 y=0时,x=0, 因此抛物线的顶 点就是坐标原点(0,0)。
y P(x,y)
o F( p ,0) x
2
4、离心率

21圆锥曲线省公开课获奖课件市赛课比赛一等奖课件

21圆锥曲线省公开课获奖课件市赛课比赛一等奖课件

2.1
探究点二 :双曲线旳定义
思考 5 已知定点 A、B,且 AB=4,动点 P 满足 PA-PB=3,则 P 点的轨迹形状 为_双__曲__线__旳__一__支___.
解析 由动点 P 满足 PA-PB=3<4=AB,结合双曲线的定义及右图可知:点 P 的 轨迹是以 A、B 为焦点的双曲线的一支.
2.经过对圆锥曲线性质旳研究,感受数形结合旳基本 思想和了解代数措施研究几何性质旳优越性.
明目标、知重点
填要点、记疑点
主目录
探要点、究所然
当堂测、查疑缺
填要点、记疑点
2.1
1.椭圆的定义 平面内与 两个定点F1,F2旳距离旳和 叫做椭圆,两个定点 F1,F2 叫做椭圆的 圆的 焦距 .
等于常数(大于 F1F2)的点的轨迹 焦点 .两焦点间的距离叫做椭
明目标、知重点
填要点、记疑点
主目录
探要点、究所然
当堂测、查疑缺
探要点、究所然
2.1
探究点二 :双曲线旳定义
思考 2 取一条拉链,拉开它的一部分,在拉开的两边上各选择一点,分别固定在 点 F1,F2 上,把笔尖放在点 M 处,拉开闭拢拉链,笔尖经过的点可画出一条曲 线,思考曲线满足什么条件? 答 如图,曲线上的点满足条件:MF1-MF2=常数;如果 改变一下位置,使 MF2-MF1=常数,可得到另一条曲线.
第2章 圆锥曲线与方程
§2.1 圆锥曲线
本节知识目录
2.1
明目的、知要点
圆锥曲线
填要点、记疑点 探要点、究所然 当堂测、查疑缺
探究点一 椭圆旳定义 探究点二 双曲线旳定义 探究点三 抛物线旳定义
明目标、知重点
填要点、记疑点
主目录

2017年高中数学第2讲参数方程第2节直线和圆锥曲线的参数方程第3课时椭圆的参数方程课件北师大版选修4-4

2017年高中数学第2讲参数方程第2节直线和圆锥曲线的参数方程第3课时椭圆的参数方程课件北师大版选修4-4

1.椭圆的参数方程
普通方程 ax22+by22=1 (a>b>0) ay22+bx22=1 (a>b>0)
参数方程
x= acos φ y= bsin φ
(φ为参数)
x=bcos φ y=asin φ
(φ为参数)
2.椭圆中参数φ的意义与圆中参数θ的意义的区别是点M所 对应的圆的半径OA(或OB)的____旋__转__角_,称为____离__心__角_,不 是OM的_____旋__转__角_.
(2)利用asin θ+bcos θ= a2+b2sin(θ+φ)化简,运用三角 函数的有界性求最值.
[变式训练]
1.求椭圆
x2 9

y2 4
=1的内接矩形中,面积最大
的矩形的长和宽及其最大面积.(如图)
解析:
已知椭圆
x2 9
+y42
=1的参数方程为
x=3cosφ, y=2sinφ

消去参数θ得到x-422+(y-1)2=1.
[规律方法] 本题的解法体现了椭圆的参数方程对于解决 相关问题的优越性,运用参数方程显得很简单,运算更简便.
[变式训练] 2.已知线段AB=4,直线l垂直平分AB,垂足 为点O,在属于l并且以O为起点的同一射线上取两点P,Q,使 OP·OQ=9,求直线AP与直线BQ的交点M的轨迹方程.
第三课时 椭圆的参数方程
[学习目标]
1.掌握椭圆的参数方程,并解决一些长度、面积问题. 2.掌握利用椭圆的性质来解决实际问题. 3.通过对具体问题的解决,体会运用数形结合的思想方 法去分析问题和解决问题.
[学法指要]
1.理解椭圆参数方程的意义.(重点) 2.常与方程、三角函数和圆锥曲线结合命题.(难点)

圆锥曲线与方程 课件 (共59张PPT)

圆锥曲线与方程 课件 (共59张PPT)

(2) 、已知点 M 到点 F(4,0)的距离比它到直线 l:x+5=0 的距离小 1,求点 M 的轨迹方程.
解析: 如图, 设点 M 的坐标为(x, y), 由于点 M 到点 F(4,0) 的距离比它到直线 l:x+5 =0 的距离小 1,则点 M 到点 F(4,0) 的距离与它到直线 l′:x+4=0 的距离相等,根据抛物线的定 义可知点 M 的轨迹是以 F 为焦点,直线 l′为准线的抛物线, p 且 =4,即 p=8. ∴点 M 的轨迹方程为 y2=16x. 2
归纳总结
求轨迹方程时,如果能够准确把握一些曲线的定义,先判断 曲线类型再求方程,往往对解题起到事半功倍的效果.
学以致用
x2 y2 P 是椭圆上任 F2 是椭圆 2+ 2=1(a>b>0)的两焦点, (1)F1、 a b 垂足为点 Q, 从任一焦点引∠F1PF2 的外角平分线的垂线, 一点, 则点 Q 的轨迹为( A.圆 C.双曲线 ) B.椭圆 D.抛物线
问题探究 探究2: 直线与圆锥曲线的位置关系
例 2、 (1)设直线 l :y =kx +1,抛物线 C:y2=4x,当 k 为何值时,l 与 C 相切、相交、相离.
y=kx+1 解析 联立方程组 2 y =4x 整理得 k2x2+(2k-4)x+1=0. 当 k≠0 时,方程 k2x2+(2k-4)x+1=0 为一元二次方程. ∴Δ=(2k-4)2-4k2=16(1-k). ,消去 y,
∵|BC|=6,∴|BM|+|CM|=6. 又∵动圆过点 A,∴|CM|=|AM|,则|BM|+|AM|=6>4. 根据椭圆的定义知,点 M 的轨迹是以点 B(-2,0) 和点 A(2,0)为 焦点的椭圆,其中,2a=6,2c=4,∴a=3,c=2. ∴b2=a2-c2=5. x2 y2 故所求圆心的轨迹方程为 + =1. 9 5

第二章圆锥曲线与方程 章末归纳整合 课件

第二章圆锥曲线与方程 章末归纳整合 课件

之间的关系式.
(3)定义法:如果所给几何条件正好符合圆、椭圆、双曲线、抛物线等曲线 的定义,则可直接利用这些已知曲线的方程写出动点的轨迹方程.
(4)参数法:当很难找到形成曲线的动点P(x,y)的坐标x,
y所满足的关系式时,借助第三个变量t,建立t和x,t和y的关 系式x=φ(t),y=φ(t),再通过一些条件消掉t就间接地找到了x 和y所满足的方程,从而求出动点P(x,y)所形成的曲线的普通 方程. (5)交轨法:有些情况下,所求的曲线是由两条动直线的 交点P(x,y)所形成的,既然是动直线,那么这两条直线的方程 就必然含有变动的参数,通过解两直线方程所组成的方程组,
就能将交点P(x,y)的坐标用这些参数表达出来,也就求出了动
点P(x,y)所形成的曲线的参数方程,消掉参数就得到了动点 P(x,y)所形成的曲线的普通方程.
专题三
求曲线的方程
求曲线方程是解析几何的基本问题之一,其基本方法有:
(1)直接法:建立适当的坐标系,设动点为(x,y),根据几何条件直接寻求x、 y之间的关系式. (2)代入法:利用所求曲线上的动点与某一已知曲线上的动点的关系,把所 求动点转换为已知动点.具体地说,就是用所求动点的坐标x、y来表示已知动 点的坐标并代入已知动点满足的曲线的方程,由此即可求得所求动点坐标x、y
【例 1】 如图所示,已知双曲线的焦点 在 x 轴上,离心率为 2,F1,F2 为左、右焦 点.P 为双曲线上一点,且∠F1PF2=60° , S PF1F2 =12 3,求双曲线的标准方程.
x2 y2 解:设双曲线的标准方程为a2-b2=1(a>0,b>0). c ∵ e=a=2,∴ c=2a. 由双曲线的定义有||PF1|-|PF2||=2a=c, 在△ PF1F2 中,由余弦定理,得|F1F2|2=|PF1|2+|PF2|2 -2|PF1||PF2|cos 60° =(|PF1|-|PF2|)2+2|PF1|· |PF2|· (1-cos 60° ), 即 4c2=c2+|PF1||PF2|.① 又 S PF1F2 =12 3 1 所以2|PF1||PF2|sin 60° =12 3,即|PF1||PF2|=48② 由①②得,c2=16,c=4,则 a=2,b2=c2-a2=12. x2 y2 所以所求的双曲线的标准方程为 4 -12=1.

高中数学_圆锥曲线的方程与性质教学课件设计

高中数学_圆锥曲线的方程与性质教学课件设计
因为 cos 2θ=1-2sin2θ,所以13=1-21a2,得 a2=3. 又 c2=1,所以 b2=a2-c2=2,椭圆 C 的方程为x32+y22=1,故选 B.
2.(2018·全国Ⅱ,文,11)已知F1,F2是椭圆C的两个焦点,P是C上的一点.若PF1⊥PF2, 且∠PF2F1=60°,则C的离心率为
值范围是
√A.[ 5, 6]
C.54,32
B.
25,
6
2
D.52,3
x+y=1, 解析 联立ax22+by22=1, 得(a2+b2)x2-2a2x+a2-a2b2=0, 设P(x1,y1),Q(x2,y2), Δ=4a4-4(a2+b2)(a2-a2b2)>0,化为a2+b2>1. x1+x2=a22+a2b2,x1x2=aa2-2+ab2b2 2. ∵OP⊥OQ, ∴O→P·O→Q=x1x2+y1y2=x1x2+(x1-1)(x2-1)=2x1x2-(x1+x2)+1=0,
∴椭圆长轴的取值范围是[ 5, 6].
跟踪演练 3 (1)(2019·合肥质检)已知椭圆ax22+by22=1(a>b>0)的左、右焦点分别为 F1,
F2,右顶点为 A,上顶点为 B,以线段 F1A 为直径的圆交线段 F1B 的延长线于点 P,
若 F2B∥AP,则该椭圆的离心率是
3 A. 3
2 B. 3
当直线AB的斜率不存在时,2t1+2t2=0,此时t1=-t2, 则 AB 的方程为 x=2,焦点 F 到直线 AB 的距离为 2-12=32, ∵kAB=22tt112--22tt222=t1+1 t2,得直线 AB 的方程为 y-2t1=t1+1 t2(x-2t21). 即x-(t1+t2)y-2=0. 令y=0,解得x=2. ∴直线AB恒过定点D(2,0). ∴抛物线的焦点 F 到直线 AB 的距离小于32, 综上,焦点 F 到直线 AB 距离的最大值为32.

北师大版选修1-1高中数学第2章《圆锥曲线与方程》2.1.1椭圆及其标准方程导学案

北师大版选修1-1高中数学第2章《圆锥曲线与方程》2.1.1椭圆及其标准方程导学案

高中数学 第2章《圆锥曲线与方程》2.1.1椭圆及其标准方程导学案
北师大版选修1-1
学习目标:1、理解椭圆的概念,掌握椭圆的定义、会用椭圆的定义解决实际问题;
2、理解椭圆标准方程的推导过程及化简无理方程的常用的方法;
3、了解求椭圆的动点的伴随点的轨迹方程的一般方法.
重点、难点:理解椭圆的概念,掌握椭圆的定义;理解椭圆标准方程的推导过程及化简无理方程的
常用的方法
自主学习
合作探究 1.椭圆标准方程的推导过程(见教材):
思考:(1)已知图形,建立直角坐标系的一般性要求是什么?第一、充分利用图形的对称性;第二、注意图形的特殊性和一般性关系.
(2)无理方程的化简过程是教学的难点,注意无理方程的两次移项、平方整理.
(3)设参量b 的意义:第一、便于写出椭圆的标准方程;第二、c b a ,,的关系有明显的几何意义.
(4)类比:写出焦点在轴上,中心在原点的椭圆的标准方程()0122
22>>=+b a b
x a y .
2.如何用几何图形解释 b2=a2-c2 ?在椭圆中分别表示哪些线段的长?
3.已知椭圆两个焦点的坐标分别是,,并且经过点,求它的标准方程.
练习反馈
1.如图,设,的坐标分别为,.直线,相交于点,且它们的斜率之积为,求点的轨迹方程.
图2-1-1
2.在圆上任取一点,过点作轴的垂线段,为垂足.当点在圆上运动时,线段的中点的轨迹是什么?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档