选修2_1空间向量知识点归纳总结

合集下载

新人教A版高中数学选修2-1第三章《空间向量与立体几何》知识点汇总及解题方法总计

新人教A版高中数学选修2-1第三章《空间向量与立体几何》知识点汇总及解题方法总计

第三章 空间向量与立体几何单元小结[核心速填]1.空间向量的有关定理和推论(1)共线向量定理:对空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ,使得a =λb .(2)共线向量定理的推论:若OA →,OB →不共线,则P ,A ,B 三点共线的充要条件是OP →=λOA →+μOB →,且λ+μ=1.(3)共面向量定理:如果两个向量a ,b 不共线,那么向量p 与向量a ,b 共面的充要条件是存在惟一的有序实数对(x ,y ),使得p =x a +y b .(4)共面向量定理的推论:已知空间任意一点O 和不共线的三点A ,B ,C ,则P ,A ,B ,C 四点共面的充要条件是OP →=xOA →+yOB →+zOC →(其中x +y +z =1).(5)空间向量基本定理:如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =x a +y b +z c ,其中{a ,b ,c }叫做空间的一个基底.2.空间向量运算的坐标表示设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3). (1)a +b =(a 1+b 1,a 2+b 2,a 3+b 3),a -b =(a 1-b 1,a 2-b 2,a 3-b 3),λa =(λa 1,λa 2,λa 3),a ·b =a 1b 1+a 2b 2+a 3b 3.(2)重要结论:a ∥b ⇔a =λb ⇔a 1=λb 1,a 2=λb 2,a 3=λb 3(λ∈R ); a ⊥b ⇔a ·b =0⇔a 1b 1+a 2b 2+a 3b 3=0.3.模、夹角和距离公式(1)设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则①|a |=a ·a②cos 〈a ,b 〉=a ·b |a ||b |=(2)设A (a 1,b 1,c 1),B (a 2,b 2,c 2),则d AB =|AB →|4.空间向量的结论与线面位置关系的对应关系(1)设直线l 的方向向量是u =(a 1,b 1,c 1),平面α的法向量v =(a 2,b 2,c 2), 则l ∥α⇔u ⊥v ⇔u ·v =0⇔a 1a 2+b 1b 2+c 1c 2=0,l ⊥α⇔u ∥v ⇔u =k v ⇔(a 1,b 1,c 1)=k (a 2,b 2,c 2)⇔a 1=ka 2,b 1=kb 2,c 1=kc 2(k ∈R ).(2)设直线l ,m 的方向向量分别为a ,b ,平面α,β的法向量分别为u ,v ,则l ∥m ⇔a ∥b ⇔a =k b ,k ∈R ; l ⊥m ⇔a ⊥b ⇔a ·b =0; l ∥α⇔a ⊥u ⇔a ·u =0; l ⊥α⇔a ∥u ⇔a =k u ,k ∈R ;α∥β⇔u ∥v ⇔u =k v ,k ∈R ; α⊥β⇔u ⊥v ⇔u ·v =0. 5.空间向量与空间角的关系(1)设异面直线l 1,l 2的方向向量分别为m 1,m 2,则l 1与l 2的夹角θ满足cos θ=|cos 〈m 1,m 2〉|.(2)设直线l 的方向向量和平面α的法向量分别为m ,n ,则直线l 与平面α的夹角θ满足sin θ=|cos 〈m ,n 〉|.(3)求二面角的大小:(ⅰ)如图3­1①,AB ,CD 是二面角α­l ­β的两个半平面α,β内与棱l 垂直的直线,则二面角的大小θ=〈AB →,CD →〉.图3­1(ⅱ)如图3­1②③,n 1,n 2分别是二面角α­l ­β的两个半平面α,β的法向量,则二面角的大小θ满足cos θ=cos 〈n 1,n 2〉或-cos 〈n 1,n 2〉.[体系构建][题型探究]类型一、空间向量的基本概念及运算例1、如图3­2,在四棱锥S ­ABCD 中,底面ABCD 是边长为1的正方形,S 到A 、B 、C 、D 的距离都等于2.给出以下结论:图3­2①SA →+SB →+SC →+SD →=0; ②SA →+SB →-SC →-SD →=0; ③SA →-SB →+SC →-SD →=0; ④SA →·SB →=SC →·SD →; ⑤SA →·SC →=0.其中正确结论的序号是________. 【答案】 ③④【解析】容易推出SA →-SB →+SC →-SD →=BA →+DC →=0,所以③正确;又因为底面ABCD 是边长为1的正方形,SA =SB =SC =SD =2,所以SA →·SB →=2·2·cos∠ASB ,SC →·SD →=2·2·cos ∠CSD ,而∠ASB =∠CSD ,于是SA →·SB →=SC →·SD →,因此④正确,其余三个都不正确,故正确结论的序号是③④.[规律方法] 1.空间向量的线性运算包括加、减及数乘运算,选定空间不共面的三个向量作为基向量,并用它们表示出目标向量,这是用向量法解决立体几何问题的基本要求,解题时可结合已知和所求,根据图形,利用向量运算法则表示所需向量.2.空间向量的数量积(1)空间向量的数量积的定义表达式a ·b =|a |·|b |·cos 〈a ,b 〉及其变式cos 〈a ,b 〉=a ·b|a | ·|b |是两个重要公式. (2)空间向量的数量积的其他变式是解决立体几何问题的重要公式,如a 2=|a |2,a 在b 上的投影a ·b|b |=|a |·cos θ等.[跟踪训练]1.如图3­3,已知ABCD ­A ′B ′C ′D ′是平行六面体.设M 是底面ABCD 的中心,N 是侧面BCC ′B ′对角线BC ′上的34分点,设MN →=αAB →+βAD→+γAA ′→,则α+β+γ=________.图3­3【答案】32[连接BD ,则M 为BD 的中点,MN →=MB →+BN →=12DB →+34BC ′→=12(DA →+AB →)+34(BC →+CC ′→)=12(-AD →+AB →)+34(AD →+AA ′→)=12AB →+14AD →+34AA ′→.∴α=12,β=14,γ=34.∴α+β+γ=32.]类型二、空间向量的坐标运算例2、(1)已知a =(2,3,-4),b =(-4,-3,-2),b =12x -2a ,则x =( )A .(0,3,-6)B .(0,6,-20)C .(0,6,-6)D .(6,6,-6)(2)已知向量a =(x,1,2),b =(1,y ,-2),c =(3,1,z ),a ∥b ,b ⊥C . ①求向量a ,b ,c ;②求a +c 与b +c 所成角的余弦值.【答案】(1)B [由b =12x -2a 得x =4a +2b ,又4a +2b =4(2,3,-4)+2(-4,-3,-2)=(0,6,-20), 所以x =(0,6,-20).](2)①∵向量a =(x,1,2),b =(1,y ,-2),c =(3,1,z ),且a ∥b ,b ⊥c ,∴⎩⎪⎨⎪⎧x 1=1y =2-23+y -2z =0,解得⎩⎪⎨⎪⎧x =-1,y =-1,z =1,∴向量a =(-1,1,2),b =(1,-1,-2),c =(3,1,1). ②∵a +c =(2,2,3),b +c =(4,0,-1), ∴(a +c )·(b +c )=2×4+2×0+3×(-1)=5,|a +c |=22+22+32=17,|b +c |=42+02+(-1)2=17, ∴a +c 与b +c 所成角的余弦值为(a +c )·(b +c )|a +c ||b +c |=517.[规律方法] 熟记空间向量的坐标运算公式 设a =(x 1,y 1,z 1),b =(x 2,y 2,z 2), (1)加减运算:a ±b =(x 1±x 2,y 1±y 2,z 1±z 2). (2)数量积运算:a ·b =x 1x 2+y 1y 2+z 1z 2. (3)向量夹角:cos 〈a ,b 〉=x 1x 2+y 1y 2+z 1z 2x 21+y 21+z 21x 22+y 22+z 22. (4)向量长度:设M 1(x 1,y 1,z 1),M 2(x 2,y 2,z 2),则|M 1M 2→|=(x 1-x 2)2+(y 1-y 2)2+(z 1-z 2)2. 提醒:在利用坐标运算公式时注意先对向量式子进行化简再运算. [跟踪训练]2.在空间直角坐标系中,已知点A (1,-2,11),B (4,2,3),C (6,-1,4),则△ABC 一定是( )A .等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形【答案】C [∵AB →=(3,4,-8),AC →=(5,1,-7),BC →=(2,-3,1),∴|AB →|=32+42+(-8)2=89,|AC →|=52+12+(-7)2=75,|BC →|=22+(-3)2+1=14,∴|AC →|2+|BC →|2=|AB →|2,∴△ABC 一定为直角三角形.]类型三、利用空间向量证明平行、垂直问题例3、 在四棱锥P ­ABCD 中,AB ⊥AD ,CD ⊥AD ,PA ⊥底面ABCD ,PA =AD =CD =2AB =2,M 为PC 的中点.(1)求证:BM ∥平面PAD ;(2)平面PAD 内是否存在一点N ,使MN ⊥平面PBD ?若存在,确定N 的位置;若不存在,说明理由.[思路探究] (1)证明向量BM →垂直于平面PAD 的一个法向量即可;(2)假设存在点N ,设出其坐标,利用MN →⊥BD →,MN →⊥PB →,列方程求其坐标即可. 【答案】以A 为原点,以AB ,AD ,AP 分别为x 轴、y 轴、z 轴建立空间直角坐标系如图所示,则B (1,0,0),D (0,2,0),P (0,0,2),C (2,2,0),M (1,1,1),(1)证明:∵BM →=(0,1,1),平面PAD 的一个法向量为n =(1,0,0), ∴BM →·n =0,即BM →⊥n ,又BM ⊄平面PAD ,∴BM ∥平面PAD . (2)BD →=(-1,2,0),PB →=(1,0,-2), 假设平面PAD 内存在一点N ,使MN ⊥平面PBD . 设N (0,y ,z ),则MN →=(-1,y -1,z -1), 从而MN ⊥BD ,MN ⊥PB , ∴⎩⎪⎨⎪⎧MN →·BD →=0,MN →·PB →=0,即⎩⎪⎨⎪⎧1+2(y -1)=0,-1-2(z -1)=0,∴⎩⎪⎨⎪⎧y =12,z =12,∴N ⎝ ⎛⎭⎪⎫0,12,12,∴在平面PAD 内存在一点N ⎝ ⎛⎭⎪⎫0,12,12,使MN ⊥平面PBD .[规律方法]利用空间向量证明空间中的位置关系(1)线线平行:证明两条直线平行,只需证明两条直线的方向向量是共线向量. (2)线线垂直:证明两条直线垂直,只需证明两直线的方向向量垂直. (3)线面平行:①证明直线的方向向量与平面的法向量垂直;②证明可在平面内找到一个向量与直线的方向向量是共线向量;③利用共面向量定理,即证明直线的方向向量可用平面内两不共线向量线性表示.(4)线面垂直:①证明直线的方向向量与平面的法向量平行;②利用线面垂直的判定定理转化为线线垂直问题.(5)面面平行:①证明两个平面的法向量平行(即是共线向量);②转化为线面平行、线线平行问题.(6)面面垂直:①证明两个平面的法向量互相垂直;②转化为线面垂直、线线垂直问题.[跟踪训练]3.如图3­4,长方体ABCD­A1B1C1D1中,点M,N分别在BB1,DD1上,且AM⊥A1B,AN⊥A1D.图3­4(1)求证:A1C⊥平面AMN.(2)当AB=2,AD=2,A1A=3时,问在线段AA1上是否存在一点P使得C1P∥平面AMN,若存在,试确定P的位置.【答案】(1)证明:因为CB⊥平面AA1B1B,AM⊂平面AA1B1B,所以CB⊥AM,又因为AM⊥A1B,A1B∩CB=B,所以AM⊥平面A1BC,所以A1C⊥AM,同理可证A1C⊥AN,又AM∩AN=A,所以A1C⊥平面AMN.(2)以C 为原点,CD 所在直线为x 轴,CB 所在直线为y 轴,CC 1所在直线为z 轴,建立空间直角坐标系,因为AB =2,AD =2,A 1A =3,所以C (0,0,0),A 1(2,2,3),C 1(0,0,3),CA 1→=(2,2,3), 由(1)知CA 1⊥平面AMN ,故平面AMN 的一个法向量为CA 1→=(2,2,3).设线段AA 1上存在一点P (2,2,t ),使得C 1P ∥平面AMN ,则C 1P →=(2,2,t -3), 因为C 1P ∥平面AMN ,所以C 1P →·CA 1→=4+4+3t -9=0, 解得t =13.所以P ⎝⎛⎭⎪⎫2,2,13, 所以线段AA 1上存在一点P ⎝ ⎛⎭⎪⎫2,2,13,使得C 1P ∥平面AMN .类型四、利用空间向量求空间角例4、如图3­5,在等腰直角三角形ABC 中,∠A =90°,BC =6,D ,E 分别是AC ,AB 上的点,CD =BE =2,O 为BC 的中点.将△ADE 沿DE 折起,得到如图(2)所示的四棱锥A ′­BCDE ,其中A ′O = 3.(1) (2)图3­5(1)证明:A ′O ⊥平面BCDE ;(2)求二面角A ′­CD ­B 的平面角的余弦值.[思路探究] (1)利用勾股定理可证A ′O ⊥OD ,A ′O ⊥OE ,从而证得A ′O ⊥平面BCDE ;(2)用“三垂线”法作二面角的平面角后求解或用向量法求两个平面的法向量的夹角.【答案】(1)证明:由题意,得OC =3,AC =32,AD =2 2. 如图,连接OD ,OE ,在△OCD 中,由余弦定理,得OD =OC 2+CD 2-2OC ·CD cos 45°= 5.由翻折不变性,知A ′D =22,所以A ′O 2+OD 2=A ′D 2,所以A ′O ⊥OD . 同理可证A ′O ⊥OE .又因为OD ∩OE =O ,所以A ′O ⊥平面BCDE .(2)如图,过点O 作OH ⊥CD 交CD 的延长线于点H ,连接A ′H .因为A ′O ⊥平面BCDE ,OH ⊥CD , 所以A ′H ⊥CD .所以∠A ′HO 为二面角A ′­CD ­B 的平面角. 结合图(1)可知,H 为AC 的中点,故OH =322,从而A ′H =OH 2+A ′O 2=302. 所以cos ∠A ′HO =OH A ′H =155. 所以二面角A ′­CD ­B 的平面角的余弦值为155. [规律方法] 用向量法求空间角的注意点(1)异面直线所成角:两异面直线所成角的范围为0°<θ≤90°,需找到两异面直线的方向向量,借助方向向量所成角求解.(2)直线与平面所成的角:要求直线a 与平面α所成的角θ,先求这个平面α的法向量n 与直线a 的方向向量a 夹角的余弦cos 〈n ,a 〉,易知θ=〈n ,a 〉-π2或者π2-〈n ,a 〉.(3)二面角:如图3­6,有两个平面α与β,分别作这两个平面的法向量n 1与n 2,则平面α与β所成的角跟法向量n 1与n 2所成的角相等或互补,所以首先应判断二面角是锐角还是钝角.图3­6[跟踪训练]4.在如图3­7所示的圆台中,AC 是下底面圆O 的直径,EF 是上底面圆O ′的直径,FB是圆台的一条母线.图3­7(1)已知G ,H 分别为EC ,FB 的中点,求证:GH ∥平面ABC . (2)已知EF =FB =12AC =23,AB =BC ,求二面角F ­BC ­A 的余弦值.【答案】 (1)证明:设CF 的中点为I ,连接GI ,HI .在△CEF 中,因为点G ,I 分别是CE ,CF 的中点, 所以GI ∥EF .又EF ∥OB ,所以GI ∥OB .在△CFB 中,因为H ,I 分别是FB ,CF 的中点, 所以HI ∥BC .又HI ∩GI =I ,BC ∩OB =B , 所以平面GHI ∥平面ABC . 因为GH ⊂平面GHI , 所以GH ∥平面ABC .(2)连接OO ′,则OO ′⊥平面ABC .又AB =BC ,且AC 是圆O 的直径, 所以BO ⊥AC .以O 为坐标原点,建立如图所示的空间直角坐标系. 由题意得B (0,23,0),C (-23,0,0). 过点F 作FM ⊥OB 于点M , 所以FM =FB 2-BM 2=3, 可得F (0,3,3).11 故BC →=(-23,-23,0),BF →=(0,-3,3). 设m =(x ,y ,z )是平面BCF 的法向量.由⎩⎪⎨⎪⎧m ·BC →=0,m ·BF →=0可得⎩⎨⎧ -23x -23y =0,-3y +3z =0.可得平面BCF 的一个法向量m =⎝ ⎛⎭⎪⎫-1,1,33.因为平面ABC 的一个法向量n =(0,0,1), 所以cos 〈m ,n 〉=m ·n|m |·|n |=77,所以二面角F ­BC ­A 的余弦值为77.。

选修2-1第三章空间向量与立体几何归纳整合

选修2-1第三章空间向量与立体几何归纳整合

→ →
→ →
网络构建
专题归纳
高考真题
【例3】 在棱长为1的正方体ABCD-A1B1C1D1中,E为棱BC的 中点,点F是棱CD上的动点,试确定点F的位置,使得
D1E⊥平面AB1F.
解 如图建立空间直角坐标系: 则 A(1,0,0), B1(1, 1, 1), 1 D1(0, 0, 1), E( , 1, 0). 2 设 F(0,y,0),则AB1=(0, 1, 1), 1 AF= (-1,y,0),D1E= ( ,1,-1), 2



网络构建
专题归纳
高考真题
要使 D1E⊥平面 AB1F,
→ → 1- 1= 0, D1E·AB1=0, 1 只需 即 即 y= . 1 2 → → - +y=0, D1E·AF= 0, 2
∴当 F 为 CD 中点时,有 D1E⊥平面 AB1F.
网络构建
专题归纳




如图所示, 用 a, b, c 分别代表棱OA、

OB、OC上的三个单位向量, 则f1=a,f2=2b,f3=3c,


则f=f1+f2+f3=a+2b+3c,
∴|f|2=(a+2b+3c)(a+2b+3c)
=|a|2+4|b|2+9|c|2+4a· b+6a· c+12b· c =14+4cos 60°+6cos 60°+12cos 60° =14+2+3+6=25, ∴|f|=5,即所求合力的大小为5.
算类似,是平面向量的拓展,主要考查空间向量的共线与
共面以及数量积运算,是用向量法求解立体几何问题的基
础.
网络构建
专题归纳
高考真题
【例1】沿着正四面体 O-ABC 的三条棱OA、OB、OC的方向有大

高中数学 第三章第1节空间向量及其运算知识精讲 理 新人教版A版选修2-1

高中数学 第三章第1节空间向量及其运算知识精讲 理 新人教版A版选修2-1

高二数学选修2-1第三章第1节空间向量及其运算人教新课标A 版(理)一、学习目标:1. 理解空间向量的概念,了解共线或平行向量的概念,掌握其表示方法;会用图形说明空间向量的加法、减法、数乘向量及它们的运算律;能用空间向量的运算意义及运算律解决简单的立体几何中的问题.2. 理解共线向量的定理及其推论.3. 掌握空间向量的夹角和模的概念及其表示方法;掌握两个向量数量积的概念、性质和计算方法及运算律;掌握两个向量数量积的主要用途,会用它解决立体几何中的一些简单问题.4. 掌握空间向量的正交分解,空间向量的基本定理及其坐标表示;掌握空间向量的坐标运算的规律;会根据向量的坐标,判断两个向量共线或垂直.二、重点、难点:重点:空间向量的加减与数乘运算及运算律,空间直线、平面的向量参数方程及线段中点的向量公式,点在已知平面内的充要条件,两个向量的数量积的计算方法及其应用,空间向量的基本定理、向量的坐标运算.难点:由平面向量类比学习空间向量,对点在已知平面内的充要条件的理解与运用,向量运算在几何证明与计算中的应用,理解空间向量的基本定理.三、考点分析:本讲知识主要为由平面向量类比学习空间向量的概念及其基本运算,涉及到空间向量中的共线向量和共面向量,以及空间向量的基本定理和空间向量的坐标运算.数量积的运用,是我们学习的重点.一、空间向量的概念:模(或长度)为0的向量称为零向量;模为1的向量称为单位向量.与向量a 长度相等且方向相反的向量称为a 的相反向量,记作a -.方向相同且模相等的向量称为相等向量.二、空间向量的加法和减法、数乘运算1. 求两个向量和的运算称为向量的加法,它遵循平行四边形法则.2. 求两个向量差的运算称为向量的减法,它遵循三角形法则.3. 实数λ与空间向量a 的乘积a λ是一个向量,称为向量的数乘运算.当0λ>时,a λ与a 方向相同;当0λ<时,a λ与a 方向相反;当0λ=时,a λ为零向量,记为0.a λ的长度是a 的长度的λ倍.三、共线向量与共面向量1. 向量共线的充要条件:对于空间任意两个向量a ,()0b b ≠,//a b 的充要条件是存在实数λ,使a b λ=.2. 向量共面定理:平行与同一平面的向量是共面向量.四、向量的数量积1. 已知两个非零向量a 和b ,在空间任取一点O ,作a OA =,b OB =,则∠AOB 称为向量a ,b 的夹角,记作,a b 〈〉.两个向量夹角的取值范围是:[],0,a b π〈〉∈.2. 对于两个非零向量a 和b ,若,2a b π〈〉=,则向量a ,b 互相垂直,记作a b ⊥.3. 已知两个非零向量a 和b ,则cos ,a b a b 〈〉称为a ,b 的数量积,记作a b ⋅.即cos ,a b a b a b ⋅=〈〉.零向量与任何向量的数量积为0.五、空间向量的坐标表示和运算设()111,,a x y z =,()222,,b x y z =,则 1. ()121212,,a b x x y y z z +=+++. 2. ()121212,,a b x x y y z z -=---. 3. ()111,,a x y z λλλλ=. 4. 121212a b x x y y z z ⋅=++.5. 若a 、b 为非零向量,则12121200a b a b x x y y z z ⊥⇔⋅=⇔++=.6. 若0b ≠,则121212//,,a b a b x x y y z z λλλλ⇔=⇔===.7. 222111a a a x y z =⋅=++.8. 121212222222111222cos ,a b a b a bx y z x y z⋅〈〉==++⋅++.9. ()111,,x y z A ,()222,,x y z B ,则()()()222212121d x x y y z z AB =AB =-+-+-知识点一 空间向量的概念的运用例1、与向量(1,3,2)a =-平行的一个向量的坐标是( )A .(31,1,1) B .(-1,-3,2) C .(-21,23,-1)D .(2,-3,-22)思路分析:1)题意分析:本题主要考查共线向量的概念的运用.2)解题思路:利用共线向量的概念,如果b a b a b λ=⇔≠//,0,那么说向量→→b a ,共线.也可观察坐标的系数是不是成比例.解答过程:解析:向量的共线和平行是一样的,可利用空间向量共线定理写成数乘的形式. 即b a b a b λ=⇔≠//,0,因为(1,3,2)a =-=-2(-21,23,-1),故答案为C . 解题后的思考:对于空间共线向量的判定,要么利用坐标对应成比例,要么利用向量的线性关系来判定.例2、在平行六面体ABCD —A 1B 1C 1D 1中,M 为AC 与BD 的交点,若11B A =a ,11D A =b ,A A 1=c ,则下列向量中与MB 1相等的向量是( )A .++-2121B .++2121 C .c b a +-2121D .c b a +--2121思路分析:1)题意分析:本题考查的是基本的向量相等与向量的加法,考查学生的空间想象能力. 2)解题思路:把未知向量表示为已知向量,可利用三角形或平行四边形法则解决.用向量的方法处理立体几何问题,使复杂的线面空间关系代数化.解答过程:解析:)(21111BC BA A A BM B B MB ++=+==+21(-+)=-21+21+.故选A . 解题后的思考:对于空间向量的线性表示,我们本着把所求的向量与已知向量尽量放在一个封闭图形中的原则,再结合向量的加法得到.例3、在下列条件中,使M 与A 、B 、C 一定共面的是 ( )A .OM --=2B .213151++=C .=++MC MB MA 0D .=+++OC OB OA OM 0 思路分析:1)题意分析:本题主要考查共面向量的概念的运用.2)解题思路:空间的四点P 、A 、B 、C 共面只需满足,OC z OB y OA x OP ++=且1=++z y x 即可,或者AC y AB x AP +=.解答过程:由于空间的四点P 、A 、B 、C 共面只需满足,OC z OB y OA x OP ++=且1=++z y x 即可,首先判定A ,B ,D 项都不符合题意,由排除法可知只有选C .利用向量的加法和减法我们可以把+-+-=++)()(OM OB OM OA MC MB MA03)()(=-++=-OM OC OB OA OM OC ,)(31++=,显然满足题意. 解题后的思考:对空间向量的共面问题,我们只需利用课本中的两个结论判定即可.,z y x ++=且1=++z y x 或,y x +=都可判定P ,A ,B ,C 共面.例4、①如果向量,a b 与任何向量都不能构成空间向量的一组基底,那么,a b 的关系是不共线;②,,,O A B C 为空间四点,且向量,,OA OB OC 不构成空间的一个基底,那么点,,,O A B C 一定共面;③已知向量,,a b c 是空间的一个基底,则向量,,a b a b c +-也是空间的一个基底. 其中正确的命题是( )A .①②B .①③C .②③D .①②③ 思路分析:1)题意分析:本题考查空间向量的基底.2)解题思路:结合空间向量基底的概念,我们逐一的判定.解答过程:命题①中,由于,a b 与任何向量都共面,说明,a b 是共线向量.因此①是错误的.命题②中,由四点确定的、共起点的三个向量不能构成基底,说明了这四点是共面的,因此②是正确的.命题③中,要判定三个向量是否可构成基底,关键是看这三个向量是不是不共面,共面与是共面的,,→→→→→→-+b a b a b a ,因此③是正确的.选C .解题后的思考:理解空间向量的基底是由不共面的四点,或者说不共面的三个向量构成的.知识点二 空间向量的坐标运算的运用例5、在ΔABC 中,已知)0,4,2(=AB ,)0,3,1(-=BC ,则∠ABC =___.思路分析:1)题意分析:本题考查用向量数量积求夹角.2)解题思路:首先要注意夹角的概念,是共起点,因此在求角的时候,要注意向量的方向,否则容易出错.解答过程:(2,4,0),(1,3,0),BA BC =--=-2cos ,2||||2510BA BC BA BC BA BC ⋅∴===-⋅ ∴∠ABC =145°解题后的思考:向量夹角的求解是高考中的常考题型,因此,同学们要注意准确运用.例6、已知空间三点A (0,2,3),B (-2,1,6),C (1,-1,5). ⑴求以向量AC AB ,为一组邻边的平行四边形的面积S ;⑵若向量a 分别与向量AC AB ,垂直,且|a |=3,求向量a 的坐标思路分析:1)题意分析:本题综合运用向量的数量积来判定垂直,求解夹角.2)解题思路:首先分析平行四边形的面积实际上是三角形面积的2倍,于是可转化为求三角形的面积,需先结合数量积求出夹角的余弦值,然后得到夹角的正弦值,再求面积;求向量的坐标,一般是先设出其坐标,然后结合已知条件,列出关系式,进而求解.解答过程:⑴21||||cos ),2,3,1(),3,1,2(==∠∴-=--=AC AB AC AB BAC AC AB . ∴∠BAC =60°,3760sin ||||==∴ AC AB S . ⑵设a =(x ,y ,z ),则,032=+--⇒⊥z y x AB a33||,023222=++⇒==+-⇒⊥z y x a z y x AC a解得x =y =z =1或x =y =z =-1,∴a =(1,1,1)或a =(-1,-1,-1).解题后的思考:向量的数量积是高考中的一个热点话题,出题形式较灵活,只要同学们抓住数量积解决的问题一般是有关夹角、距离的问题这个本质即可.例7、如图所示,直三棱柱ABC —A 1B 1C 1中,CA =CB =1,∠BCA =90°,棱AA 1=2,M 、N 分别是A 1B 1、A 1A 的中点.(1)求的长;(2)求cos<11,CB BA >的值; (3)求证:M C B A 11⊥思路分析:1)题意分析:本题主要考查空间向量的概念及其运算的基本知识.考查空间两向量垂直的充要条件.2)解题思路:先建立空间直角坐标系,然后写出坐标,利用坐标的运算进行求解. 解答过程:如图,建立空间直角坐标系O -xyz .(1)解:依题意得B (0,1,0)、N (1,0,1) ∴|BN |=3)01()10()01(222=-+-+-.(2)解:依题意得A 1(1,0,2)、B (0,1,0)、C (0,0,0)、B 1(0,1,2) ∴1BA ={1,-1,2},1CB ={0,1,2},1BA ·1CB =3,|1BA |=6,|1CB |=5∴cos<1BA ,1CB >=30101||||1111=⋅⋅CB BA CB BA .(3)证明:依题意,得C 1(0,0,2)、M (21,21,2),B A 1={-1,1,-2},MC 1={21,21,0}.∴B A 1·M C 1=-2121++0=0,∴B A 1⊥M C 1.解题后的思考:对于空间中的角和垂直的判定,如果不能直接利用定义,我们可以运用代数的方法,结合坐标运算进行.例8、已知正方体''''ABCD A B C D -的棱长为a ,M 为'BD 的中点,点N 在'A C '上,且|'|3|'|A N NC =,试求MN 的长.思路分析:1)题意分析:本题考查向量的概念及向量的坐标运算,求解有关距离的问题.2)解题思路:对于空间向量的距离的求解,可借助于向量的数量积的性质来解,也可利用坐标运算进行求解.解答过程: 以D 为原点,建立如图所示的空间直角坐标系.因为正方体棱长为a ,所以B (a ,a ,0),A'(a ,0,a ),'C (0,a ,a ),'D (0,0,a ).由于M 为'BD 的中点,取''A C 的中点O',所以M (2a ,2a ,2a ),O'(2a ,2a,a ).因为|'|3|'|A N NC =,所以N 为''A C 的四等分点,从而N 为''O C 的中点,故N (4a ,34a ,a ).根据空间两点间的距离公式,可得22236||()()()242424a a a a a MN a a =-+-+-=.解题后的思考:本题是求解空间几何体中距离的问题,我们一般利用坐标的运算进行求解.解题关键是能把坐标准确地表示出来.小结:通过以上的典型例题,同学们应熟练掌握以下基本概念:共线向量与共面向量,空间向量的基底,以及运用向量的坐标运算解决有关的距离和夹角问题.注意处理以上问题的两个方法:向量法与坐标法.空间向量及其运算是解决立体几何的一种重要工具,同学们要理解基本概念,并能对比平面向量进行加、减运算和数乘运算及数量积的运算和应用.数量积问题是向量问题中经常考查的知识点,要能灵活解决有关的夹角和距离问题,从而为后面的学习打下坚实的基础.一、预习新知本讲学习了空间向量的概念及其基本运算,那么能否利用向量解决空间中有关角与距离的问题呢?二、预习点拨探究与反思:探究任务一:用空间向量解决立体几何中有关角的问题 【反思】(1)如何用向量表示线面角、二面角及异面直线所成的角 (2)具体的求角的公式应如何怎么表示?探究任务二:用空间向量解决立体几何中有关距离的问题 【反思】(1)如何用空间向量表示空间的点线的距离、异面直线的距离、线面的距离、面面的距离?(2)求解距离的具体的计算公式是什么?(答题时间:50分钟)一、选择题1.下列命题正确的是( )A .若a 与b 共线,b 与c 共线,则a 与c 共线B .向量,,a b c 共面就是它们所在的直线共面C .零向量没有确定的方向D .若//a b ,则存在唯一的实数λ使得a b λ=2. 已知A (-1,-2,6),B (1,2,-6),O 为坐标原点,则向量OA OB 与的夹角是( )A .0B .2πC .πD .32π 3. 已知空间四边形ABCO 中,c OC ,b OB ,a OA ===,点M 在OA 上,且OM =2MA ,N 为BC 中点,则MN =( )A .c b a 213221+- B .c b a 212132++- C .c b a 212121-+ D .c b a 213232-+4. 设A 、B 、C 、D 是空间不共面的四点,且满足000=⋅=⋅=⋅AD AB ,AD AC ,AC AB ,则△BCD 是( )A .钝角三角形B .锐角三角形C .直角三角形D .不确定5. 空间四边形OABC 中,OB =OC ,∠AOB =∠AOC =60°,则cos BC ,OA =( ) A .21B .22C .-21D .06. 已知A (1,1,1)、B (2,2,2)、C (3,2,4),则△ABC 的面积为( ) A .3B .32C .6D .267. 已知),,2(),,1,1(t t b t t t a =--=,则||b a -的最小值为( ) A .55 B .555 C .553 D .511二、填空题8.若)1,3,2(-=a ,)3,1,2(-=b ,则以b a ,为邻边的平行四边形的面积为 . 9.已知空间四边形OABC ,其对角线为OB 、AC ,M 、N 分别是对边OA 、BC 的中点,点G 在线段MN 上,且GN MG 2=,现用基组{}OC OB OA ,,表示向量OG ,有OG =x OC z OB y OA ++,则x 、y 、z 的值分别为 .10.已知点A (1,-2,11)、B (4,2,3),C (6,-1,4),则△ABC 的形状是 . 11.已知向量)0,3,2(-=a ,)3,0,(k b =,若b a ,成120°的角,则k = .三、解答题12.如图,在空间直角坐标系中BC =2,原点O 是BC 的中点,点A 的坐标是(21,23,0),点D 在平面yOz 上,且∠BDC =90°,∠DCB =30°.(1)求向量OD 的坐标;(2)设向量AD 和BC 的夹角为θ,求cos θ的值13.四棱锥P -ABCD 中,底面ABCD 是一个平行四边形,AB =(2,-1,-4),AD =(4,2,0),AP =(-1,2,-1). (1)求证:PA ⊥底面ABCD ; (2)求四棱锥P -ABCD 的体积;(3)对于向量a =(x 1,y 1,z 1),b =(x 2,y 2,z 2),c =(x 3,y 3,z 3),定义一种运算:(a ×b )·c =x 1y 2z 3+x 2y 3z 1+x 3y 1z 2-x 1y 3z 2-x 2y 1z 3-x 3y 2z 1,试计算(AB ×AD )·AP 的绝对值的值;说明其与四棱锥P -ABCD 体积的关系,并由此猜想向量这一运算(AB ×AD )·AP 的绝对值的几何意义.14.若四面体对应棱的中点间的距离都相等,证明这个四面体的对棱两两垂直.1.C ;解析:由于选项A 中当b =→0时,就不符合题意,因此A 错误.选项B ,向量共面,但向量所在的直线不一定共面,可以是平行.选项D ,应说明b ≠→0. 2.C ;解析:||||cos b a ⋅=θ,计算结果为-1.3.B ;解析:显然OA OC OB OM ON MN 32)(21-+=-=. 4.B ;解析:过点A 的棱两两垂直,通过设棱长、应用余弦定理可得△BCD 为锐角三角形. 5.D ;解析:先建立一组基向量OC OB OA ,,,再处理⋅的值. 6.D ;解析:应用向量的运算,显然><⇒>=<AC AB AC AB ,sin ,cos ,从而得><=S ,sin ||||21. 7.C ;解析:利用向量数量积的性质求解模的平方的最小值,然后再开方即可得到. 8.56;解析:72||||,cos -=>=<b a ,得753,sin >=<b a ,从而可得结果.9.313161、、; 解析:OM ON OA MN OA MG OM OG 313161]21)(21[3221)(32213221++=-++=-+=+=+= 10.直角三角形;解析:利用空间两点间的距离公式得:222||||||AC BC AB +=.11.39-;解析:219132,cos 2-=+=>=<k k b a ,得39±=k . 12.解:(1)过D 作DE ⊥BC ,垂足为E ,在Rt △BDC 中,由∠BDC =90°,∠DCB =30°,BC =2,得BD =1,CD =3,∴DE =CD ·sin30°=23. OE =OB -BE =OB -BD ·cos60°=1-2121=. ∴D 点坐标为(0,-23,21),即向量的坐标为(0,-23,21). (2)依题意:)()()(0,1,0,0,1,0,0,21,23=-==, 所以)()(0,2,0,23,1,23=-=--=-=OB OC BC OA OD AD .设向量和BC 的夹角为θ,则cos θ222222020)23()1()23(0232)1(023||||++⋅+-+-⨯+⨯-+⨯-=⋅BC AD BC AD 1051-=. 13.(1)证明:∵AB AP ⋅=-2-2+4=0,∴AP ⊥AB . 又∵AD AP ⋅=-4+4+0=0,∴AP ⊥AD .∵AB 、AD 是底面ABCD 上的两条相交直线,∴PA ⊥底面ABCD . (2)解:设AB 与AD 的夹角为θ,则 cos θ1053416161428||||=+⋅++-=⋅AD AB AD ABABCD P V -=31|AB |·|AD |·sin θ·|AP |=161411059110532=++⋅-⋅ (3)解:|(AB ×AD )·AP |=|-4-32-4-8|=48,它是四棱锥P -ABCD 体积的3倍.猜测:|(AB ×AD )·AP |在几何上可表示以AB 、AD 、AP 为棱的平行六面体的体积(或以AB 、AD 、AP 为棱的直四棱柱的体积). 14.证明:如图,设321,,r SC r SB r SA ===,则SN SM SH SG SF SE ,,,,,分别为121r ,)(2132r r +,)(2121r r +,321r ,)(2131r r +,221r ,由条件EF =GH =MN 得: 223123212132)2()2()2(r r r r r r r r r -+=-+=-+展开得313221r r r r r r ⋅=⋅=⋅∴0)(231=-⋅r r r ,∵1r ≠,23r r -≠, ∴1r ⊥(23r r -),即SA ⊥BC .同理可证SB ⊥AC ,SC ⊥AB .。

空间向量知识点归纳总结

空间向量知识点归纳总结

空间向量知识点归纳总结知识要点;1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量;注:1向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量;2空间的两个向量可用同一平面内的两条有向线段来表示;2. 空间向量的运算;定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下如图;OB OA AB a b =+=+;BA OA OB a b =-=-;()OP a R λλ=∈运算律:⑴加法交换律:a b b a+=+ ⑵加法结合律:)()(c b a c b a++=++⑶数乘分配律:b a b aλλλ+=+)(3. 共线向量;1如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,a 平行于b ,记作b a//;当我们说向量a 、b 共线或a b a b a b b 0 a b a b共面向量 1定义:一般地,能平移到同一平面内的向量叫做共面向量;说明:空间任意的两向量都是共面的;2共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y 使p xa yb =+;5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++;若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底;推论:设,,,O A B C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数,,x y z ,使OP xOA yOB zOC =++;6. 空间向量的直角坐标系:1空间直角坐标系中的坐标:在空间直角坐标系O xyz -中,对空间任一点A ,存在唯一的有序实数组(,,)x y z ,使zk yi xi OA ++=,有序实数组(,,)x y z 叫作向量A 在空间直角坐标系O xyz -中的坐标,记作(,,)A x y z ,x 叫横坐标,y 叫纵坐标,z 叫竖坐标;2若空间的一个基底的三个基向量互相垂直,且长为1,这个基底叫单位正交基底,用{,,}i j k 表示;3空间向量的直角坐标运算律:①若123(,,)a a a a =,123(,,)b b b b =,则112233(,,)a b a b a b a b +=+++,112233(,,)a b a b a b a b -=---,123(,,)()a a a a R λλλλλ=∈,112233a b a b a b a b ⋅=++,112233//,,()a b a b a b a b R λλλλ⇔===∈,1122330a b a b a b a b ⊥⇔++=;②若111(,,)A x y z ,222(,,)B x y z ,则212121(,,)AB x x y y z z =---;一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标;4模长公式:若123(,,)a a a a =,123(,,)b b b b =,则21||a a a a =⋅=+21||b b b b =⋅=+5夹角公式:21cos ||||a ba b a b a ⋅⋅==⋅+6两点间的距离公式:若111(,,)A x y z ,222(,,)B x y z ,则2||(AB AB ==,或,A B d = 7. 空间向量的数量积;1空间向量的夹角及其表示:已知两非零向量,a b ,在空间任取一点O ,作,OA a OB b ==,则AOB ∠叫做向量a 与b 的夹角,记作,a b <>;且规定0,a b π≤<>≤,显然有,,a b b a <>=<>;若,2a b π<>=,则称a 与b 互相垂直,记作:a b ⊥;2向量的模:设OA a =,则有向线段OA 的长度叫做向量a 的长度或模,记作:||a ;3向量的数量积:已知向量,a b ,则||||cos ,a b a b ⋅⋅<>叫做,a b 的数量积,记作a b ⋅,即a b ⋅=||||cos ,a b a b ⋅⋅<>;4空间向量数量积的性质:①||cos ,a e a a e ⋅=<>;②0a b a b ⊥⇔⋅=;③2||a a a =⋅;5空间向量数量积运算律:①()()()a b a b a b λλλ⋅=⋅=⋅;②a b b a ⋅=⋅交换律;③()a b c a b a c ⋅+=⋅+⋅分配律;6:空间向量的坐标运算:1.向量的直角坐标运算设a =123(,,)a a a ,b =123(,,)b b b 则1 a +b =112233(,,)a b a b a b +++;2 a -b =112233(,,)a b a b a b ---;3λa =123(,,)a a a λλλ λ∈R ; 4 a ·b =112233a b a b a b ++;2.设A 111(,,)x y z ,B 222(,,)x y z ,则AB OB OA =-= 212121(,,)x x y y z z ---.3、设111(,,)a x y z =,222(,,)b x y z =,则a b ⇔(0)a b b λ=≠; a b ⊥⇔0a b ⋅=⇔1212120x x y y z z ++=.4.夹角公式 设a =123(,,)a a a ,b =123(,,)b b b ,则112233222222123123cos ,a b a b a b a b a a ab b b++<>=++++.5.异面直线所成角cos |cos ,|a b θ==121212222222111222||||||||x x y y z z a b a b x y z x y z ++⋅=⋅++⋅++.6.平面外一点p 到平面α的距离已知AB 为平面α的一条斜线,n 为平面α的一个法向量,A 到平面α的距离为:||||AB n d n •=典型例题例1. 已知平行六面体ABCD -D C B A '''',化简下列向量表达式,标出化简结果的向量;⑴AB BC +; ⑵AB AD AA '++;⑶12AB AD CC '++; ⑷1()3AB AD AA '++;例2. 对空间任一点O 和不共线的三点,,A B C ,问满足向量式:OP xOA yOB zOC =++其中1x y z ++=的四点,,,P A B C 是否共面例 3. 已知空间四边形OABC ,其对角线,OB AC ,,M N 分别是对边,OA BC 的中点,点G 在线段MN 上,且2MG GN =,用基底向量,,OA OB OC 表示向量OG ;BAαnGMC'B'A'D'DABC例 4. 如图,在空间四边形OABC中,8OA =,6AB =,4AC =,5BC =,45OAC ∠=,60OAB ∠=,求OA 与BC 的夹角的余弦值;说明:由图形知向量的夹角易出错,如,135OA AC <>=易错写成,45OA AC <>=,切记例 5. 长方体1111ABCD A B C D -中,4AB BC ==,E 为11AC 与11B D 的交点,F 为1BC 与1B C 的交点,又AF BE ⊥,求长方体的高1BB ;空间向量与立体几何练习题一、选择题1.如图,棱长为2的正方体1111ABCD A B C D -在空间直角坐标系中,若,E F 分别是1,BC DD 中点,则EF 的坐标为A.(1,2,1)- B (1,2,1)--C.(1,2,1)--D.(1,2,1)--2.如图,ABCD —A 1B 1C 1D 1是正方体,B 1E 1=D 1F 1=411B A ,则BE 1与DF 1所成角的余弦值是A .1715 B .21 C .178 D .23 yxzFE C 1D 1C D(O)B 1A 1AB图OAB C3.在四棱锥P ABCD -中,底面ABCD 是正方形,E 为PD 中点,若PA a =,PB b =,PC c =,则BE =A.111222a b c -+ B 111222a b c -- C.131222a b c -+ D.113222a b c -+ 二、填空题4.若点(1,2,3)A ,(3,2,7)B -,且0AC BC +=,则点C 的坐标为______.5.在正方体1111ABCD A B C D -中,直线AD 与平面11A BC 夹角的余弦值为_____.三、解答题1、在正四棱柱ABCD-A 1B 1C 1D 1中, AB 1与底面ABCD 所成的角为4π, 1求证11AB C BD ⊥面2求二面角1B AC B --的正切值 2.在三棱锥P ABC -中,3AB AC ==4AP =,PA ABC ⊥面,90BAC ∠=︒, D 是PA 中点,点E 在BC 上,且2BE CE =,1求证:AC BD ⊥;2求直线DE 与PC 夹角θ的余弦值;3求点A 到平面BDE 的距离d 的值.3.在四棱锥P —ABCD 中,底面ABCD 是一直角梯形,∠BAD =90°,AD ∥BC ,AB =BC =a ,AD =2a ,且PA ⊥底面ABCD ,PD 与底面成30°角. 1若AE ⊥PD ,E 为垂足,求证:BE ⊥PD ;DACBPE图2求异面直线AE与CD所成角的余弦值.4、已知棱长为1的正方体A C1,E、F分别是B1C1、C1D的中点.1求证:E、F、D、B共面;2求点A1到平面的B DEF的距离;3求直线A1D与平面B DEF所成的角.5、已知正方体ABCD -A 1B 1C 1D 1的棱长为2,点E 为棱AB 的中点,求: ⅠD 1E 与平面BC 1D 所成角的大小;Ⅱ二面角D -BC 1-C 的大小;模拟试题1. 已知空间四边形ABCD ,连结,AC BD ,设,M G 分别是,BC CD 的中点,化简下列各表达式,并标出化简结果向量:1AB BC CD ++; 21()2AB BD BC ++;31()2AG AB AC -+;2. 已知平行四边形ABCD ,从平面AC 外一点O 引向量;,,,OE kOA OF kOB OG kOC OH kOD ====;1求证:四点,,,E F G H 共面;2平面AC //平面EG ;3. 如图正方体1111ABCD A B C D -中,11111114B E D F A B ==, 求1BE 与1DF 所成角的余弦;4. 已知空间三点A0,2,3,B -2,1,6,C1,-1,5;⑴求以向量,AB AC 为一组邻边的平行四边形的面积S ;⑵若向量a 分别与向量,AB AC 垂直,且|a |=3,求向量a 的坐标;5.已知平行六面体ABCD A B C D ''''-中,4,3,5,90AB AD AA BAD '===∠=,60BAA DAA ''∠=∠=,求AC '的长;参考答案1. 解:如图,1AB BC CD AC CD AD++=+=;2111()222AB BD BC AB BC BD ++=++; AB BM MG AG=++=;31()2AG AB AC AG AM MG -+=-=;2. 解:1证明:∵四边形ABCD是平行四边形,∴AC AB AD=+,∵EG OG OE=-,∴,,,E F G H共面;2解:∵()EF OF OE k OB OA k AB=-=-=⋅,又∵EG k AC=⋅,∴//,//EF AB EG AC;所以,平面//AC平面EG;3.解:不妨设正方体棱长为1,建立空间直角坐标系O xyz-,则(1,1,0)B,13 (1,,1)4E,(0,0,0)D,11 (0,,1)4F,∴11(0,,1)4BE =-,11(0,,1)4DF =, ∴11174BE DF ==, 11111500()114416BE DF ⋅=⨯+-⨯+⨯=;111515cos ,17BE DF ==; 4. 分析:⑴1(2,1,3),(1,3,2),cos 2||||AB AC AB AC BAC AB AC ⋅=--=-∴∠== ∴∠BAC =60°,||||sin 6073S AB AC ∴==⑵设a =x,y,z,则230,a AB x y z ⊥⇒--+= 解得x =y =z =1或x =y =z =-1,∴a =1,1,1或a =-1,-1,-1;5. 解:22||()AC AB AD AA ''=++所以,||85AC '=。

高二数学选修2-1知识点

高二数学选修2-1知识点
高二数学选修 2-1 知识点 第一章 常用逻辑用语 1、命题:形式: “若 p ,则 q ” 四种命题的真假性之间的关系: 1 两个命题互为逆否命题,它们有相同的真假性;
第二章 空间向量与立体几何 1. 空间向量及其运算
1 2 3
a a a x12 y12 z12 d , 共线向量定理: a / /b a b (b 0)
2 AB 1 k 2 x1 x2 (1 k 2 ) ( x1 x2 ) 4 x1 x2 1
离心率
1 y1 y2 k2
e=1
p 2
② 直线斜率不存在,则 AB y1 y 2 . (3)有关对称垂直问题,要注意运用斜率关系及韦达定理,设而不求,简化运算。 考查三个方面:A 存在性(相交) ;B 中点;C 垂直( k1k2 1 ) 注: 1.圆锥曲线,一要重视定义,这是学好圆锥曲线最重要的思想方法,二要数形结合,既熟练掌握 方程组理论,又关注图形的几何性质,以简化运算。 2.当涉及到弦的中点时,通常有两种处理方法:一是韦达定理;二是点差法. 3.圆锥曲线中参数取值范围问题通常从两个途径思考:一是建立函数, 用求值域的方法求范围; 二是建 立不等式,通过解不等式求范围。 4.注意向量在解析几何中的应用(数量积解决垂直、距离、夹角等) (4)求曲线轨迹常见做法:定义法、直接法(步骤:建—设—现(限)—代—化) 、代入法(利用动 点与已知轨迹上动点之间的关系) 、点差法(适用求弦中点轨迹) 、参数2、充分条件与必要条件 p 是 q 的充要条件: p q p 是 q 的充分不必要条件: p q, q ¿ p p 是 q 的必要不充分条件: q p, p ¿ q p 是 q 的既充分不必要条件: p 靠 q, q p 3.逻辑联结词 (1)命题中的“且”“或”“非”叫做逻辑联结词. (2)简单复合命题的真值表: p 真 假 真 假 q 真 真 假 假 p∧q 真 p∨q ¬p 假 真 假 真

空间向量的知识点归纳的总结(经典)

空间向量的知识点归纳的总结(经典)

空间向量与立体几何知识点归纳总结一.知识要点。

1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。

注:(1同向等长的有向线段表示同一或相等的向量。

(2)向量具有平移不变性2. 空间向量的运算。

定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。

OB OA AB a b =+=+;BA OA OB a b =-=-;()OP a R λλ=∈运算律:⑴加法交换律:a b b a +=+⑵加法结合律:)()(c b a c b a++=++⑶数乘分配律:b a b aλλλ+=+)(运算法则:三角形法则、平行四边形法则、平行六面体法则 3. 共线向量。

(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,a平行于b ,记作b a //。

(2)共线向量定理:空间任意两个向量a、b(b ≠0 ),a //b 存在实数λ,使a =λb 。

(3)三点共线:A 、B 、C 三点共线<=>λ=<=>)1(=++=y x OB y OA x OC 其中(4)与a共线的单位向量为±4. 共面向量(1)定义:一般地,能平移到同一平面内的向量叫做共面向量。

说明:空间任意的两向量都是共面的。

(2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y 使p xa yb =+。

(3)四点共面:若A 、B 、C 、P 四点共面<=>AC y AB x AP +=<=>)1(=++++=z y x OC z OB y OA x OP 其中5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++。

若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。

空间向量知识点总结

空间向量知识点总结

空间向量知识点总结空间向量是高中数学中一个重要的概念,它在解决立体几何问题时具有独特的优势。

以下是对空间向量知识点的详细总结。

一、空间向量的基本概念1、空间向量的定义空间向量是既有大小又有方向的量。

与平面向量类似,但所处的空间维度更高。

2、空间向量的表示可以用有向线段表示,其起点和终点分别表示向量的起点和终点。

也可以用坐标表示,如在空间直角坐标系中,向量\(\overrightarrow{AB}\)的坐标为\((x_B x_A, y_B y_A, z_B z_A)\)。

3、空间向量的模空间向量的模长计算公式为\(\vert\overrightarrow{a}\vert =\sqrt{x^2 + y^2 + z^2}\),其中\(\overrightarrow{a} =(x, y, z)\)。

4、单位向量模长为 1 的向量称为单位向量。

对于向量\(\overrightarrow{a}\),其单位向量为\(\frac{\overrightarrow{a}}{\vert\overrightarrow{a}\vert}\)。

5、零向量模长为 0 的向量称为零向量,其方向任意。

二、空间向量的运算1、加法和减法空间向量的加法和减法满足三角形法则和平行四边形法则。

\(\overrightarrow{a} +\overrightarrow{b} =(x_a + x_b, y_a + y_b, z_a + z_b)\),\(\overrightarrow{a} \overrightarrow{b} =(x_a x_b, y_a y_b, z_a z_b)\)。

2、数乘运算实数\(λ\)与空间向量\(\overrightarrow{a}\)的乘积是一个空间向量,记作\(λ\overrightarrow{a}\)。

\(λ\overrightarrow{a} =(λx_a, λy_a, λz_a)\)。

3、数量积(点积)\(\overrightarrow{a} \cdot \overrightarrow{b} =\vert\overrightarrow{a}\vert \vert\overrightarrow{b}\vert \cos <\overrightarrow{a},\overrightarrow{b} >\)。

空间向量相关知识点总结

空间向量相关知识点总结

空间向量相关知识点总结一、空间向量的定义和基本概念1. 空间向量的定义空间向量是指在三维空间中的一种特殊的向量,它可以用有向线段表示,也可以用坐标表示。

空间向量具有大小和方向,是空间中的一个几何概念。

2. 空间向量的基本概念(1)长度:空间向量的长度也称为模,它表示向量的大小,一般用|AB|表示,其中A和B分别表示向量的起点和终点。

(2)方向:空间向量的方向是指向量的指向,可以用一组坐标表示,也可以用夹角表示。

(3)共线:如果两个向量的方向相同或者相反,则它们是共线的。

(4)共面:如果三个向量在同一个平面内,则它们是共面的。

二、空间向量的运算1. 空间向量的加减法(1)几何法:向量的加法就是将两个向量的起点相接,然后将两个向量的终点相连,新的向量就是两个向量的和向量;向量的减法就是将减数的起点和被减数的终点相接,然后将减数的终点和被减数的起点相连,新的向量就是两个向量的差向量。

(2)坐标法:向量的加减法也可以用坐标表示,对应坐标相加或者相减即可。

2. 数乘向量的数乘即将向量与一个常数相乘,结果是一个新的向量,其大小是原向量的模与常数的乘积,方向与原向量的方向一致(如果是负数,则方向相反)。

3. 空间向量的数量积和向量积(1)数量积:也称为点积或内积,即将两个向量的对应坐标相乘再相加,结果是一个标量。

(2)向量积:也称为叉积或外积,即将两个向量的叉乘结果是一个新的向量,其大小是原向量所构成的平行四边形的面积,方向垂直于原向量所构成的平面。

三、空间向量的几何应用1. 向量的方向余弦(1)定义:设向量a=(x, y, z),则a的方向余弦分别为l=x/|a|,m=y/|a|,n=z/|a|,它们互为方向余弦。

(2)性质:方向余弦l、m、n满足l²+m²+n²=1。

(3)应用:方向余弦可用于求向量的夹角、判断向量的共线性等。

2. 向量的投影(1)定义:设向量a和b不共线,a在b上的投影为向量a在b方向上的分量,记为prj_b a。

(word完整版)选修2-1-第三章-空间向量及其运算知识点,文档.docx

(word完整版)选修2-1-第三章-空间向量及其运算知识点,文档.docx

3.1 空间向量及其运算知识点1. 空间向量的有关概念(1)空间向量:在空间中,具有大小和方向的量叫做空间向量. (2)单位向量:模为 1 的向量称为单位向量 (3)相等向量:方向相同且模相等的向量.(4)共线向量:表示空间向量的有向线段所在的直线互相平行或重合的向量. (5)共面向量:平行于同一个平面的向量. 2.空间向量的加法、减法与数乘运算向量的加减法满足平行四边形法则和三角形法则向量加法的多边形法则:首尾相接的若干向量之和,等于由起始向量的始点指向末尾向量的终点的向量uuur uuur uuuur uuuur uuuuur OA n =OA 1+A 1 A 2+ A 2 A 3+ +A n -1 A .n运算律:①加法交换律: a + b = b + a ②加法结合律: (a + b)+ c = a + (b +c) ③数乘分配律: λ(a + b)= λa+ λb.3.共线向量、共面向量定理和空间向量基本定理 (1)共线向量定理对空间任意两个向量 a , b(b ≠ 0), a ∥b 的充要条件是存在实数 λ,使得 a = λb .推论: 点 P 在直线 AB 上的充要条件 是:uuuruuur存在实数 λ,使得 APAB ①uuuruuur uur或对空间任意一点O,有 OP OAAB ②uuur uur uuur或对空间任意一点O ,有 OPxOA yOB 其中 x + y = 1 ③uuur uur uuur uur uuur uuur uuruuur 【推论③推导过程:OP OA AB OA (AO OB) (1)OAOB 】(2)共面向量定理如果两个向量 a ,b 不共线,那么 p 与 a ,b 共面的充要条件是存在唯一有序实数对 (x,y )使 p = xa + yb推论: 空间一点 P 位于平面 ABC 内的充要条件 是uuur uuur uuur存在唯一有序实数对 (x,y )使 AP xAB yAC ,uuur uur uuur uuur或对空间任意一点 O ,有 OP OA xAB yACuuur uur uuur uuur或对空间任意一点 O ,有 OP xOA yOB zOC ,其中 x + y + z = 1【推论③推导过程:(3)空间向量基本定理uuur uur uuur uuur uur uuuruuur OP OA xAByAC (1 x y)OA xOByOC 】如果三个向量 a , b , c 不共面,那么对空间任一向量 p ,存在有序实数组 { x , y ,z} ,使得 p = xa + yb + zc 基底:把 { a , b , c} 叫做空间的一个基底,空间任何三个不共面的向量都可以构成空间的一个基底.4. 空间向量的数量积及运算律(1)数量积及相关概念→ →①两向量的夹角: 已知两个非零向量 a ,b ,在空间任取一点O ,作 OA = a ,OB = b ,则∠ AOB 叫做向量 a 与 b 的夹π角,记作〈 a ,b 〉,其范围是 0≤〈 a , b 〉≤ π,若〈 a , b 〉= 2,则称 a 与 b 互相垂直,记作 a ⊥b. ②两向量的数量积: 已知空间两个非零向量 a ,b ,向量 a , b 的数量积记作 a ·b ,且 a ·b = |a||b|cos 〈 a , b 〉.(2)空间向量数量积的运算律:①结合律: (λa) ·b = λ(a ·b); ②交换律: a ·b = b ·a ; ③分配律: a ·(b + c)= a ·b + a ·c.5. 空间向量的坐标表示及应用设 a = (a 1,a 2,a 3) ,b = (b 1, b 2, b 3)(1)数量积的坐标运算: a ·b =a 1 b 1+ a 2b 2+ a 3 b 3. (2)共线与垂直的坐标表示:(3)模、夹角和距离公式:|a|= a ·a = 222a 1+ a 2+ a 3,a ·b = a 1b 1+ a 2b 2 +a 3b 3 cos 〈 a ,b 〉= |a||b| 2 2 22 2 2 .1 2 3 1 2 3→设 A(a 1, b 1, c 1), B(a 2, b 2, c 2),则 d AB = |AB|=6. 用空间向量解决几何问题的一般步骤:(1) 适当的选取基底 { a , b , c} ;(2) 用 a , b , c 表示相关向量;(3) 通过运算完成证明或计算问题.).a 2- a 1 2+b 2 -b 1 2+c 2- c 1 2 .题型一 空间向量的线性运算用已知向量来表示未知向量,应结合图形,将已知向量和未知向量转化至三角形或平行四边形中,表示为其他向量的和与差的形式,进而寻找这些向量与基向量的关系.例 1:三棱锥 O — ABC 中, M , N 分别是 OA , BC 的中点, G 是△ ABC 的重心,用基向量 → → →→OA , OB , OC 表示 MG ,→ .OG1 →2 → 1 → 2 → →1 →2 1 → →→1 → 1 → 1 → →→ →解析: MG =MA + AG =OA +AN = OA + (ON - OA)= OA +3 [ (OB + OC)- OA] =-6OA +OB + OC.23 2 322 33→→→→→ →→→→ →OG =OM + MG =1OA -1OA +1OB + 1OC =1OA +1OB +1OC.2633 333 uuur uuur uuur uuur→ 1 → →→, 例 2:如图所示, ABCD - A 1B 1C 1D 1 中,ABCD 是平行四边形. 若 AE = EC ,A 1F = 2FD ,且 EF =x AB+y AD+z AA2 1 试求 x 、 y 、 z 的值..解→ → →→ 1 → 1→ →连接 AF ,EF =EA +AF .∵ EA =-3 AC =-( AB + AD )3→→ → → → → 1 →→ 1 →→2 uuur 1uuur→ → → 1 uuur 1 uuur 1 uuurAF = AD + DF = AD -FD = AD -1 = AD - ( A 1+ AD )=3 AD3A 1A∴ EF = EA + AF =3 AD3AA13 AB3A D3A题型二共线定理应用向量共线问题: 充分利用空间向量运算法则,用空间中的向量表示 a 与 b ,化简得出 a =b ,从而得出 a ∥ b ,即a 与b 共线.→ →点共线问题 :证明点共线问题可转化为证明向量共线问题,如证明A 、B 、C 三点共线,即证明AB 与 AC 共线.a ⊥b? a ·b =0? a 1b 1+ a 2b 2+ a 3b 3= 0(a , b 均为非零向量a ∥b? a = λb? a 1= λb 1,a 2 =λb 2, a 3= λb 3(λ∈ R),→→例 3:如图所示,四边形 ABCD , ABEF 都是平行四边形且不共面,M ,N 分别是 AC , BF 的中点,判断 CE 与 MN是否共线?uur uur uur CE CB BE∵uuur uuur uuruuur1 uuur uur 1 uur uur1 uuur uur uur 1 uur1 uur1 uurMNMCCBBNAC CB2( BA BE)2( AC BA) CBBECBBE2222→ → → → → →∴ CE = 2MN ,∴ CE ∥MN ,即 CE 与MN 共线.→→→例 4:如图所示,在正方体ABCD - A 1 B 1C 1D 1 中, E 在 A 1D 1 上,且 A 1E = 2ED 1, F 在对角线 A 1C 上,且 A 1F = 2F C .3求证: E , F , B 三点共线.→→→证明: 设 AB = a , AD = b , AA 1= c.→→ → = 2 →→→→ → → → →∴ A 1 = 2ED 1=2 1 =2 FC = 212 (AC -AA 1 2 (AB + AD - AA 1 2 2 2 c35 3 3 5 55 5 5 → → → 2 4 2 2 2 → → → → 2 2 = A 1 - A 1 = =EA 1+ A 1 + AB =-∴ E F 5a - 15b -5c = 5a - b - c3b -c + a = a -3b - c , F E 3 , EBA →→2∴ EF = 5EB.所以 E , F , B 三点共线.题型三共面定理应用→→点共面问题 :证明点共面问题可转化为证明向量共面问题,如要证明→ → → → → → →P 、A 、B 、 C 四点共面,只要能证明 → → PA = xPB+ yPC ,或对空间任一点 O ,有 OP =OA + xPB + yPC 或 OP = xOA + yOB + zOC(x +y + z = 1)即可→2→→→例 5:已知 A 、 B 、C 三点不共线,对于平面 ABC 外一点 O ,若 OP =125OA + OB + OC ,则点 P 是否与 A 、 B 、C55一定共面?试说明理由.1 uur2 uuuruuur uur 1uuur 2 uur1 uur2 uuuruuur 2 uur2 uuur uur 2 uuur uuur 解析: ∵ OPOAOBOC5 (OP+PA)(OP+PB)3(OP+ PC)=OP+ PA+PB+PC5 5 3 55 5 3→→→12∴ AP = 5AB + 5AC ,故 A 、 B 、C 、 P 四点共面 .例 6:如图所示,已知P 是平行四边形 ABCD 所在平面外一点,连结PA 、PB 、PC 、PD ,点 E 、F 、 G 、H 分别为△ PAB 、△ PBC 、△ PCD 、△ PDA 的重心,应用向量共面定理证明:E 、F 、G 、H 四点共面.证明:分别延长 PE 、 PF 、 PG 、 PH 交对边于 M 、 N 、 Q 、 R.∵ E 、 F 、 G 、H 分别是所在三角形的重心,∴ M 、 N 、 Q 、 R 为所在边的中点→ → →→ →→ →→顺次连结 M 、 N 、 Q 、 R ,所得四边形为平行四边形,且有222 2PE = PM, PF = PN,PG = PQ , PH = PR.333 3→ → → 2 →2 → 2 →2 → → 2 → → 2 → → 23 → 3 → 2 3 → 3 → ∴ EG =PG - PE = PQ -PM = MQ = ( MN + MR)= (PN - PM)+ (PR - PM)=( PF - PE)+ ( PH - 2 PE)3333333 223 2→ →= EF + EH . ∴由共面向量定理得E 、F 、G 、H 四点共面 .→ → →例 7:正方体 ABCD - A 1 B 1C 1 D 1 中, E , F 分别是 BB 1 和 A 1D 1 的中点,求证向量 A 1B , B 1C , EF 是共面向量.→→→→ → → → →→→ → →=1 - A + 1 = 1 +BC = 1- A 证明: 如图所示, EF = EB + BA + A(B 1B )-A 1B 1B.2 222→ → →由向量共面的充要条件知A 1B ,B 1C , EF 是共面向量.题型四 空间向量数量积的应用例 8:①如图所示,平行六面体ABCD — A 1B 1C 1D 1 中,以顶点 A 为端点的三条棱长都为1,且两两夹角为 60°.(1) 求 AC 1 的长;(2) 求 BD 1 与 AC 夹角的余弦值.解析: → → →(1)记 AB = a ,AD = b ,AA 1= c ,则 |a|= |b|= |c|= 1,〈 a ,b 〉=〈 b ,c 〉=〈 c , a 〉= 60°, ∴ a ·b = b ·c = c ·a = 1.2→2(a ·b + b ·c + c ·a)= 1+ 1+ 1+ 2×1 1 1→|= 6,|AC 1|2= ( a + b + c)2= a 2+ b 2+ c 2+2 + +2= 6, ∴ |AC 12即 AC 1 的长为 6. → → → (2)BD 1= b + c - a , AC = a + b ,∴ |BD 1|=→ → → → 6 BD ·AC∴ cos 〈BD 1,AC 〉= 1= 6 .∴ AC → → |BD 1||AC|→ → →2, |AC|= 3, BD 1·AC = (b + c - a) ·(a + b)= b 2- a 2+ a ·+cb ·=c 1. 6 与 BD 1 夹角的余弦值为6 .→ →②已知空间四边形ABCD的每条边和对角线的长都等于a ,点E 、F分别是BC 、AD的中点,则AE ·AF 的值为()2A .a B.1a 22C.1a 24D.3a 24→→ →解析: 设 AB = a , AC = b ,AD = c ,则 |a|= |b|= |c|= a ,且 a , b , c 三向量两两夹角为 60°.→→ → →1 1 1 1 1 1 1AE =(a + b), AF = c ,∴ AE ·AF =(a + b) ·c = (a ·c + b ·c)= (a 2cos60°+ a 2cos60 °)= a 2.22 2 2 4 4 4题型五 空间向量坐标运算例 9:如图所示, PD 垂直于正方形→ →3 ABCD 所在平面, AB = 2, E 为 PB 的中点, cos 〈 DP , AE 〉=,若以 DA ,3DC , DP 所在直线分别为 x , y , z 轴建立空间直角坐标系,则点 E 的坐标为 ()A . (1,1,1) B. 1, 1, 1 C. 1, 1, 3D . (1,1,2)2 2设 PD = a (a>0) ,则 A(2,0,0) , B(2,2,0) ,P(0,0, a), E 1, 1,a2 ,→ → a → →3, ∴ a 2 2+ a 2 3, ∴ a = 2.∴ E 的坐标为 (1,1,1) .∴ DP = (0,0, a), AE = - 1, 1,2 , cos 〈DP , AE 〉=3= a 4 ·23例 10:已知 a = (2,- 1,3), b =(- 1,4,- 2),c = (7,5, λ).若 a , b , c 三向量共面,则实数 λ=________________33 t = 7,7= 2t - μ,17,解析:由题意得 c = ta + μb =(2t - μ,- t + 4μ, 3t - 2μ),∴ 5=- t +4μ,∴ μ=7λ=3t -2μ. 65λ= 7.例 11:已知△ ABC 的顶点 A(1,1,1) , B(2,2,2) , C(3,2,4) ,试求△ ABC 的面积→→→→→ →AB =(1,1,1) , AC = (2,1,3) , |AB|= 3, |AC|= 14, AB ·AC = 2+1+ 3= 6,→ → 6 6 36= 1∴ cosA = cos 〈 AB , AC 〉= = .∴ sinA = 1- .3· 14 42 427→ → 1 1 61 = × 3× 14× =∴ S △ABC = |AB| |AC ·| sinA · 27.2 2例 12:已知 a = (λ+ 1,0,2), b =(6,2μ- 1,2λ),若 a ∥ b ,则 λ与 μ的值可以是 ()A . 2,1B .- 1,1C .- 3,2D . 2,223 2λ+ 1= 2 ,λ= 2,λ=- 3,解析 由题意知:62λ解得1或 12μ- 1= 0,μ=2μ=2.例 13:已知空间中三点→ →A(- 2,0,2) , B(- 1,1,2) , C(-3,0,4) ,设 a = AB , b = AC.,若 ka + b 与 ka - 2b 互相垂直,求实数 k 的值.方法一 ∵ ka +b = (k - 1,k,2) .ka - 2b = (k +2, k ,- 4),且 ka + b 与 ka - 2b 互相垂直,∴ (k - 1, k,2) ·(k + 2, k ,- 4)= (k - 1)(k + 2)+ k 2- 8= 0, ∴ k =2 或- 5, 2方法二由 (2) 知 |a|= 2,|b|= 5,a ·b =- 1,∴( ka +b) ·(ka - 2b)= k 2a 2- ka ·b - 2b 2= 2k25 + k - 10= 0,得 k =2 或- .2例 14:已知空间三点 A (0,2,3), B (- 2,1,6),C(1,- 1,5).→ →(1)求以 AB , AC 为边的平行四边形的面积;(2)若 |a|= → →3,且 a 分别与 AB , AC 垂直,求向量 a 的坐标.→ → - 2+ 3+67 1 → →3→ →AB ·AC解 (1)cos 〈 AB , AC 〉= → →=14× 14 = 14=2.∴ sin 〈AB , AC 〉=2,|AB||AC|→ →1 → → → → 3 3.∴ 以 AB , AC 为边的平行四边形的面积为S = 2× |AB | |AC ·| ·sin 〈 AB , AC 〉= 14×= 7 22x 2+ y 2+z 2= 3x =1 x =- 1( 2)设 a = (x , y ,z),由题意得 - 2x - y + 3z =0 ,解得y = 1 或 y =- 1 ,x - 3y + 2z = 0z = 1z =- 12 1例 15:如图所示, 在正方体 ABCD —A 1B 1C 1D 1 中,E 、F 分别在 A 1D 、AC 上,且 A 1E = A 1D ,AF = AC ,则 ()3 3A . EF 至多与 A 1D 、 AC 之一垂直B . EF 与 A 1D 、 AC 都垂直 C .EF 与 BD 1 相交D . EF 与 BD 1 异面解析: 设 AB =1,以 D 为原点, DA 所在直线为 x 轴, DC 所在直线为 y 轴, DD 1 所在直线为z 轴建立空间直角坐标11 2 1 →系,则 A 1(1,0,1) ,D (0,0,0) ,A(1,0,0) ,C(0,1,0) ,E 3, 0,3 ,F3,3, 0 , B(1,1,0) ,D 1 (0,0,1) ,A 1D =(- 1,0,- 1),→ → 1 11 → →1 → → → → →AC = (- 1,1,0),EF = 3, 3,-3,BD 1=(-1,-1,1),EF=-3BD 1,A 1D ·EF =AC ·EF =0,从而EF∥BD 1,EF⊥ A 1D,EF ⊥ AC.→ →例 16:已知 O(0,0,0), A (1,2,3) , B(2,1,2) , P(1,1,2),点 Q 在直线 OP 上运动,当 QA ·QB 取最小值时,点 Q 的坐标是 __________.→ → → →解析: 设 OQ =λOP = (λ, λ, 2λ),则 QA = (1- λ,2- λ, 3- 2λ), QB = (2- λ, 1- λ,2- 2λ).→ →42∴ QA ·QB = (1- λ)(2- λ)+ (2- λ)(1 - λ)+ (3-2λ)(2- 2λ)= 6λ2- 16λ+ 10=6( λ- 3)2- 3.→ → →4 4 8 4 2∴当 λ=3时, QA ·QB 取最小值为- 3.此时, OQ = ( 3, 3,3),综合练习一、选择题1、下列命题:其中不正确 的所有命题的序号为 __________....①若 A 、 B 、 C 、D 是空间任意四点,则有 → → → → = 0; ② |a|- |b|= |a + b|是 a 、 b 共线的充要条件;AB + BC + CD + DA ③若 a 、 b 共线,则 a 与 b 所在直线平行;④对空间任意一点 → → → →O 与不共线的三点 A 、 B 、 C ,若 OP = xOA + yOB + zOC (x 、 y 、z ∈ R ),则 P 、 A 、 B 、C 四点共 面. ⑤设命题 p : a , b , c 是三个非零向量;命题q : { a , b , c} 为空间的一个基底,则命题 p 是命题 q 的充要条件解析:选②③④⑤,①中四点恰好围成一封闭图形,正确;②中当a 、b 同向时,应有 | a | + | | =| + | ;③中 a 、ba bb 所在直线可能重合;④中需满足x + y + z = 1,才有 P 、 A 、B 、 C 四点共面;⑤只有不共面的三个非零向量才能作为空间的一个基底,应改为必要不充分条件2、有下列命题:其中真命题的个数是 ( ) ①若 p = xa + yb ,则 p 与 a , b 共面; ②若 p 与 a ,b 共面,则 p = xa +yb ;→ → →→ → → ③若 MP = xMA + yMB ,则 P , M , A 、 B 共面; ④若 P , M , A , B 共面,则 MP = xMA + yMB. A . 1 B . 2 C . 3 D .4 解析 其中 ①③ 为真命题. ② 中,若 a , b 共线,则 p ≠xa + yb ;→ → → 3、已知 A(1,0,0), B(0,- 1,1),OA + λOB 与 OB 的夹角为 120°,则 λ的值为 ()6 6 6A . ±6 B. 6 C .- 6 D . ± 6→ → λ+ λ 1 666 解析: OA + λOB = (1,- λ,λ),cos120°= ,得 λ= ±不合题意, 舍去, ∴ λ=-=- 2 6.经检验 λ=66 .1+ 22λ· 24、 如图所示,已知 PA ⊥平面 ABC ,∠ ABC = 120 °,PA = AB = BC =6,则 PC 等于( )A .6 2B . 6C .12D . 144→ 2→ → → 2→ 2 → 2 → 2→ →→解析 PC = (PA + AB + BC) =PA + AB + BC + 2AB ·BC =36+ 36 +36+ 2× 36cos 60 °= 144∴ |PC |= 12→→ →→ → → → 3 → 1 311c , 证明 设 AB = a ,AC =b , AD = c ,则 BG = BA + AG = BA + AM =- a + (a + b + c)=-4 a + b + → → → → 1 → →11 4 → 444 4→ →,即 B 、G 、N 三点共线.BN = BA + AN = BA + (AC + AD )=- a +b +c = BG.∴ BN ∥BG33335、正方体 ABCD — A 1B 1C→ 1 →→1D 1 的棱长为 a ,点 M 在 AC 1 上且 AM = MC 1, N 为 B 1B 的中点,则 |MN |为 ()2A.21 6 aB.6 6 aC.15 6 aD.15 3a解析以 D 为原点建立如图所示的空间直角坐标系Dxyz ,则 A(a,0,0),C 1a , a ,a2.(0,a ,a),N设 M(x , y , z). ∵ 点 M 在 AC 1 → 1 →1上且 AM =MC 1, ∴ (x -a , y , z)= (- x , a - y , a - z)222 a a 2a a a, ∴→2 a2+a - a 2= 21∴ x = a ,y = , z = .∴M, , 3|MN |=a - a 2+ a -3 2 3 a.3333336π→→6、如图所示,已知空间四边形OABC ,OB = OC ,且∠ AOB =∠ AOC = 3,则 cos 〈 OA , BC 〉的值为 ()1 32A . 0B. 2C. 2D. 2解析→ → →π设 OA = a ,OB = b , OC = c ,由已知条件〈a ,b 〉=〈 a ,c 〉= ,且 |b|= |c|,1 13→ →→ →OA ·BC = a ·(c - b)=a ·c - a ·b = |a||c|- |a||b|= 0,∴ cos 〈 OA , BC 〉= 0.227、如图所示,在平行六面体ABCD — A 1B 1C 1D 1 中, M 为 A 1C 1 与 B 1D 1→ → →的交点.若 AB =a , AD = b , AA 1= c ,则下列→)向量中与 BM 相等的向量是 (.1 1 1 11 1 1 1A - 2a + 2b + c B. 2a +2b + c C .- 2a - 2b +c D. 2a - 2b + c解析 →→→→ 1 → →1 (b - a)=- 1 a + 1 b +c. BM = BB 1+ B 1M = AA 1+ (AD - AB)= c +2 22 28、平行六面体 → → → 60°,且 →→ → ABCD - A 1B 1 C 1D 1 中,向量 AB ,AD ,AA 1两两的夹角均为 |AB|= 1,|AD|= 2,|AA 1|=3,则 → )[|AC 1|等于 ( A .5 B . 6 C .4 D . 8 → → → → → →设 AB = a , AD = b , AA 1= c ,则 AC 1= a + b + c , AC 12= a 2+ b 2+ c 2+ 2a ·+b 2b ·+c 2c ·=a 25, |AC 1|= 5.9、在下列条件中,使 M 与 A 、 B 、 C 一定共面的是 ( )→→→ → →→ → →→ → →→→ →→A. OM = 3OA - 2OB - OC B .OM +OA + OB + OC = 0C . MA + MB + MC = 0D .OM =1OB - OA +1OC42→ → →解析:C 中 MA =- MB - MC .故 M 、 A 、 B 、C 四点共面.二、填空题10、同时垂直于 a = (2,2,1) 和 b = (4,5,3) 的单位向量是 ____________________ .解析 设与 a =(2,2,1) 和 b =(4,5,3) 同时垂直 b 单位向量是 c = (p , q ,r ),则11p 2+ q 2+ r 2= 1,p =3,p =- 3,2,2,1,- 2, 2或 - 1, 2,- 22p + 2q + r = 0, 解得或所求向量为q =- 3q = 33 3 3 3 3 3 .4p + 5q + 3r =0,2,2,r = 3r =- 311. 若向量 a = (1,λ, 2), b = (2,- 1,2)且 a 与 b 的夹角的余弦值为 8,则 λ= ________.9解析 由已知得 8 a ·b = 2- λ+ 4 , ∴ 8 2-λ),解得 λ=- 2 或 λ= 2 .=5+ λ=3(655212. 在空间直角坐标系中,以点 A(4,1,9)、 B(10,- 1,6)、C(x,4,3)为顶点的△ ABC 是以 BC 为斜边的等腰直角三角形,则实数 x 的值为 ________.解析 由题意知 → → → →AB ·AC = 0, |AB|= |AC|,可解得 x = 2.13. 已知 a +3b 与 7a -5b 垂直,且 a - 4b 与 7a -2b 垂直,则〈 a , b 〉= ________.解析 由条件知 (a + 3b) ·(7a - 5b)= 7|a|2+ 16a ·b - 15|b|2= 0,及 (a -4b) ·(7a -2b)= 7|a|2+ 8|b|2- 30a ·b =0.1两式相减,得 46a ·b = 23|b|2,∴ a ·b = |b|2.21代入上面两个式子中的任意一个,即可得到|a|= |b|.∴ cos 〈 a , b 〉= a ·b2|b|21= 2 =.∴ 〈a , b 〉= 60°.|a||b| |b| 2π, 2, ⊥ , ⊥ , 在平面 内, 在 上, 14. 如图所示,已知二面角 α— l — β的平面角为 0AB BC BC CD AB BC l θ θ βCD 在平面 α内,若 AB = BC = CD = 1,则 AD 的长为 ________.→→ → →2=→→→→ →→ →→ →π- θ=) 3- 2cos θ.解析 :AD 2= (AB + BC +CD ) AB 2+ BC 2+ CD 2+ 2AB ·CD + 2AB ·BC + 2BC ·CD = 1+ 1+ 1+2cos(15. 已知 a =(1- t,1- t , t), b =(2, t ,t),则 |b - a|的最小值为 ________.19 1 3 5解析 b -a = (1+ t,2t - 1,0),∴ |b -a|=1+ t 2+ 2t - 1 2=5 t -5 2+ 5 ,∴当 t = 5 时,|b -a|取得最小值 5.三、解答题16、如图所示,在各个面都是平行四边形的四棱柱ABCD — A 1B 1C 1D 1 中, P 是 CA 1 的中点, M 是 CD 1 的中点, N 是→ → →C 1D 1 的中点,点 Q 在 CA 1 上,且 CQ ∶QA 1= 4∶ 1,设 AB = a , AD = b ,AA 1= c ,用基底 { a , b , c} 表示以下向量:→ → → → (1)AP ; (2) AM ; (3)AN ; (4) AQ.→ 1 → →1 → →→1(a + b + c).(1) AP = (AC + AA1)= (AB +AD + AA1)= 222→=1→→1→→→1(2) AM+ AD+ 2AD+AA222→ 1 →→1→ →→→ → 1 →→→11a+ b+ c.(3) AN=(AC1+ AD1)=[( AB+ AD +AA1)+(AD+AA1)]=(AB+2AD+2AA1)=(a+ 2b+2c)=22222→ → → → 4 →→1 → 4 → 1 → 1 → 4 → 114(4) AQ= AC+CQ= AC+(AA1-AC)= AC + AA 1=AB+AD + AA1=a+ b+ c55555555517、如图,已知M、 N 分别为四面体ABCD 的面 BCD 与面 ACD 的重心,且G 为 AM 上一点,且GM ∶GA= 1∶ 3.求证: B、 G、 N 三点共线.18. (13 分 )直三棱柱ABC—A′ B′ C′中,AC= BC= AA′,∠ ACB= 90°,D 、E 分别为 AB 、BB′的中点.(1)求证: CE⊥ A′D ;(2)求异面直线 CE 与 AC′所成角的余弦值.→→→(1)证明:设 CA= a,CB=b,CC′=c,根据题意, |a|= |b|= |c|且 a·b=b·c→1→11→→11→ →,即∴ CE= b+ c, A′ D=- c+b-a.∴CE· A′ D=-c2+b2= 0,∴ CE⊥A′D22222=c·a= 0. CE⊥A′D.→→→5→→112=12,(2) AC′=- a+ c,∴ |AC′|=2|a|, |CE|=|a |.AC′· CE= (- a+ c) ·c2 12222→→2|a|=1010∴ cos〈 AC′,CE〉=510.即异面直线 CE 与 AC′所成角的余弦值为10.2·2 |a|2。

选修2-1:空间向量

选修2-1:空间向量
3
∴ m 3 ∴AP︰PC1=3︰16
19
变式训练 4:已知空间四边形 OABC 中,M 为 BC 的中点,N 为 AC 的中点,P 为 OA 的 中点,Q 为 OB 的中点,若 AB=OC,求证 PM QN .
证明:法一: OM 1 (OB OC)
2
ON 1 (OA OC) 2
AD BC (AB BD) (BD DC) 0 .
所以 AD⊥BC.
(2) 设 E、F 各为 BC 和 CD 的中点.欲证 GH∥BD,只需证 GH∥EF, GH GA AH = 2
3
( EA AF )= 2 EF .
3
变式训练 3:已知平行六面体 ABCD A1B1C1D1 ,E、F、G、H 分别为棱 A1D1, D1C1, C1C和AB 的中点.求证:E、F、G、H 四点共面.
(3) a·b=

(4) a∥b
;a b
(5) 设 A (x1, y1, z1), B (x2 , y2 , z2 )
则 AB =
, AB
AB 的中点 M 的坐标为
典型例题

. .
例 1. 若 a =(1,5,-1), b =(-2,3,5)
(1)若(k a + b )∥( a -3 b ),求实数 k 的值;
2
min 2
例 3. 已知四面体 ABCD 中,AB⊥CD,AC⊥BD, G、H 分别是△ABC 和△ACD 的重
心.
求证:(1) AD⊥BC; (2) GH∥BD.
证明:(1) AD⊥BC AD BC 0 .因为 AB CD AB CD 0 , AC BD AC BD 0 ,而

高二数学选修2-1 空间向量的运算及空间向量的基本定理(精品)知识精讲

高二数学选修2-1 空间向量的运算及空间向量的基本定理(精品)知识精讲

高二数学选修2-1 空间向量的运算及空间向量的基本定理 北师大版(理) 【本讲教育信息】 一、教学内容:选修2-1 空间向量的运算及空间向量的基本定理二、教学目标:1. 理解并掌握空间两个向量的夹角、直线的方向向量、平面的法向量、共面向量等基本概念。

2. 熟练地掌握空间向量的加减运算、数乘运算、空间向量坐标运算的运算法则、运算律及空间向量的数量积的几何意义及性质。

3. 熟练地掌握共线向量定理、空间向量的基本定理,并能利用它们讨论证明空间的线面关系。

4. 体会用类比的数学思想、方程的数学思想、等价转化的数学思想解决问题。

三、知识要点分析:(一)平面向量与空间向量的相同点:1. 向量夹角:过空间一点O 作AOB ,OB b ,OA a ∠==则是向量a 与向量b 的夹角。

X 围:[0,]π2. 加减运算:加减运算法则:向量的平行四边形法则(三角形法则) 运算律:结合律:)()(c b a c b a ++=++,交换律:a b b a +=+3. 数乘运算法则:向量a 与实数λ的乘积是一个向量,记作:a λ,满足(i )||||λλ=a ||a ,(ii )当0>λ时,a λ与a 方向相同,反之,相反。

0a 0=λ=λ时,。

运算律:(i )).(,R a a ∈=λλλ(ii ))R ,(,a a a )(,b a )b a (∈μλμ+λ=μ+λλ+λ=+λ.(iii )),(),()(R a a ∈=μλμλλμ4. 空间向量的数量积:θ⋅=⋅cos |b ||a |b a 。

θ>=<b a ,。

运算律:交换律:a b b a ⋅=⋅分配律:c a b a )c b (a ⋅+⋅=+⋅,(λ)b a ⋅=b )a (⋅λ)b (a λ⋅=性质:(1)a a |a |⋅,(2)0b a b a =⋅⇔⊥,(3)|b ||a ||b a |⋅≤⋅注:向量的数量积运算不满足乘法的结合律。

选修2-1-第三章-空间向量及其运算知识点

选修2-1-第三章-空间向量及其运算知识点

空间向量及其运算知识点1.空间向量的有关概念⑴空间向量:在空间中,具有大小和方向的量叫做空间向量.(2)单位向量:模为1的向量称为单位向量(3)相等向量:方向相同且模相等的向量.(4)共线向量:表示空间向量的有向线段所在的直线互相平行或重合的向量.(5)共面向量:平行于同一个平面的向量.2•空间向量的加法、减法与数乘运算向量的加减法满足平行四边形法则和三角形法则向量加法的多边形法则:首尾相接的若干向量之和,等于由起始向量的始点指向末尾向量的终点的向量uuu uuu uuuu uuuu uuuuuOAn=OA+A| A2+ A2A g+ + An—i A n•运算律:①加法交换律: a + b= b + a ②加法结合律:(a+ b) + c= a + (b + c)③数乘分配律:入(+ b)=入a入b.3.共线向量、共面向量定理和空间向量基本定理(1)共线向量定理对空间任意两个向量 a, b(b丰0) a II b的充要条件是存在实数人使得a =^b推论:|点P在直线 AB上的充要条件是:uuu um存在实数人使得AP AB ①uuu uir uur或对空间任意一点O,有OP OA AB ②um uur urn或对空间任意一点O, 有OP xOA yOB其中x+ y= 1 ③urn uur um uir uuu uur uur uur【推论③推导过程: OP OA AB OA (AO OB) (1 )OA OB】(2)共面向量定理如果两个向量a, b不共线,那么p与a, b共面的充要条件是存在唯一有序实数对(x,y)使p = xa+ yb推论:|空间一点P位于平面 ABC内的充要条件|是uur uur uur存在唯一有序实数对(x,y)使AP xAB yAC ,uin uir uur uuu或对空间任意一点O, 有OP OA xAB yACurn uur uur uuu或对空间任意一点O, 有OP xOA yOB zOC,其中x+ y+ z= 1uur uur uuu uuu uur uur uuu【推论③推导过程呈:OP OA xAB yAC (1 x y)OA xOB yOC】(3)空间向量基本定理如果三个向量a, b, c不共面,那么对空间任一向量p,存在有序实数组{x, y, z},使得p = xa+ yb+ zc基底:把{a, b, c}叫做空间的一个基底,空间任何三个不共面的向量都可以构成空间的一个基底.4.空间向量的数量积及运算律(1)数量积及相关概念①两向量的夹角:已知两个非零向量 a , b,在空间任取一点 0,作OA= a, Ofe= b,则/ AOB叫做向量a与b的夹角,记作〈a, b >,其范围是0w〈 a, b >三爭若〈a, b〉=寸,则称a与b互相垂直,记作a丄b.②两向量的数量积:已知空间两个非零向量a, b,向量a, b的数量积记作a b,且a b= | a||b |cos〈 a, b >.(2)空间向量数量积的运算律:①结合律:(扫)b=?(ab);②交换律:a b = b a;③分配律:a ( b+ c)= a b + a c.5.空间向量的坐标表示及应用(1)数量积的坐标运算:a(2) 共线与垂直的坐标表示:b = a 1b 1 + a 2b 2+ a 3b 3.a / b? a= ?b? a 1 =入 b, a 2=入 2, a 3=入 3 (入€ R),a 丄b? a b= 0? a 1b 1+ a 2b 2+ a 3b 3= 0(a, b 均为非零向量). (3)模、夹角和距离公式: | a| = .'a a = 'a ! + a 2 + a 3,a b a 1b 1 + a 2b 2+ a 3b 3C0S a,b |a||b|.'a 2+ a 2+ a 3 • b 1 + b 2 +.设 A(a 1, b 1, C 1), B(a 2, b 2,⑵,贝U d AB = | AB| = : a 2 — a 1 2+b 2— b 1 2+Q —C 1 26. 用空间向量解决几何问题的一般步骤:(1) 适当的选取基底{a, b, c}; (2) 用a ,b ,c 表示相关向量; (3) 通过运算完成证明或计算问题.题型一 空间向量的线性运算 用已知向量来表示未知向量,应结合图形,将已知向量和未知向量转化至三角形或平行四边形中,表示为其他向量 的和与差的形式,进而寻找这些向量与基向量的关系.例1:三棱锥 O —ABC 中,M, N 分别是OA, BC 的中点,G 是厶ABC 的重心,用基向量 OA, OB, OC 表示MG , OG解析:M G = M A + AG= 2O A+ 3AN= ^OA+ |(O N —O A)=苏+f[2(OB+ OC)—OA]= — |O A+ 3<5B + ^OCC )G = O M + M G = ?OA- 6<5A +|<5B +1(5C = £O A+ |OB + 扌OC〉1 T T —urn uu n uuu uuu例 2:如图所示,ABCD — A 1B 1C 1D 1 中,ABCD 是平行四边形.若 AE= |EC A*= 2FD,且 EF =x AB+y AD+zAA ,题型二共线定理应用 向量共线问题: 充分利用空间向量运算法则,用空间中的向量表示 a 与b 共线.点共线问题:证明点共线问题可转化为证明向量共线问题,如证明 例3:如图所示,四边形 ABCD, ABEF 都是平行四边形且不共面,1 1•/ E A = — 3心-3( AB+ AD) 1 1 2 uuu A F = AD+ DF= AD — F D= A D — A 1D= A D —; (A 1A+ AD)= — AD 3331 uuu 1 uuu AA EF= EA+ AF= AD3 3 1 uuu AA 31 uuu AB 3a 与b ,化简得出a = b ,从而得出a// b,即A 、B 、C 三点共线,即证明 AB 与AC 共线.M , N 分别是AC, BF 的中点,判断CE 与 MN 是否连接 AF, EF= EA+ A F.ABCD- A 1B 1C 1D 1 中,E 在 A 1D 1 上,且 A 1E= 2EDi,AA 1= c.2 2 2 2 2 2 2 A 1 F= §FC= 5A 1 C=5(AC — AA 1) = 5(AB + AD — AA 1) =5a + £b — £c42 2 2 TTTT2 215b — §c= 5 a — 3b — c , EB= EA + A 1A+ AB= — 3b — c+ a= a — 3b — c,T T2•- EF= 5EB •所以E, F, B 三点共线.题型三共面定理应用yPC,或对空间任一点 O,有 OP= OA+ xPB+ yPC 或 OP= xOA+ yOB+ zOC(x+ y+ z= 1)即可uur CE uir CBuur BE uuu MNuuu MC uir CB uuu BN 1 uuu — AC 2TMN , uir i uu uur 1 uuu uu CB (BA BE) (AC BA)uir CB 1 uur 1 uir2BE"CB1 uur BE 2••• CE= 2MN ,••• CE// 即CE 与MN 共线.例5 :已知A 、B 、2C 三点不共线,对于平面 ABC 外一点O,若OP= 5ITT1 2OA+ 5OB+ 5OC,则点P 是否与A 、B 、C定共面试说明理由. 2 UUU 解析:••• OP 5 1TULT OA 2T1 uu u — OB 52 uuu -OC3 2 uuu uir -(OP + PA) 5 1 uuu uir —(OP + PB) 5 2 uu u uuu uiu 2 uir 1 uir 2 uu —(OP + PC)=OP + —PA+— PB + — PC 3 5 5 3• AP=;AB+;AC,故 A 、B 、C P 四点共面•F 在对角线A 1C 上,且心託点共面问题:证明点共面问题可转化为证明向量共面问题,如要证明P 、A 、B 、C 四点共面,只要能证明 PA= xPB+例4:如图所示,在正方体2 T例6:如图所示,已知P 是平行四边形 ABCD 所在平面外一点, 连结PA 、PB PC PD,点E 、F 、G 、H 分别为△ PAB△ PBC △ PCD △ PDA 的重心,应用向量共面定理证明:E 、F 、G 、H 四点共面.证明:分别延长PE 、 ••• E、F 、G 、H 分别是所在三角形的重心,•f f f例7:正方体ABCD- A 1B 1C 1D 1中,E, F 分别是BBi 和A 1D 1的中点,求证向量 A 1B, BQ, EF 是共面向量.Dy Ci157i1 11 1证明:如图所示,EF= EB+ BA i + A 1F = 2B i B-A i B+ 尹1。

选修2-1-第三章-空间向量及其运算知识点.docx

选修2-1-第三章-空间向量及其运算知识点.docx

3.1 空间向量及其运算知识点1. 空间向量的有关概念⑴空间向量:在空间中,具有大小和方向的量叫做空间向量.⑵单位向量:模为1的向量称为单位向量⑶相等向量:方向相同且模相等的向量.⑷共线向量:表示空间向量的有向线段所在的直线互相平行或重合的向量.⑸共面向量:平行于同一个平面的向量.2. 空间向量的加法、减法与数乘运算向量的加减法满足平行四边形法则和三角形法则向量加法的多边形法则:首尾相接的若干向量之和,等于由起始向量的始点指向末尾向量的终点的向量UUU UuU UUIrJ UUllU UUUIrJOA I=OA+AIA2+ A2A3+…+ A n-1A n-运算律:①加法交换律:a+ b= b+ a ②加法结合律:(a+ b) + C= a+ (b + C)③数乘分配律:λ (+ b)= λ a λ b.3. 共线向量、共面向量定理和空间向量基本定理(1) 共线向量定理对空间任意两个向量a, b(b≠ 0), a// b的充要条件是存在实数λ使得a= λb推论:I点P在直线AB上的充要条件I是:UJlI UUI存在实数λ使得AP = AAB ①UIU UUr UUJ或对空间任意一点0,有OP=OA AB ②UIU UUr UUr或对空间任意一点0,有OP=XOA yOB其中X + y= 1③UUJ UUr UlU IUr UIU UlU UUr UIU【推论③推导过程:OP =OA ∙AB =OA ■ (AO OB)=(I- ∙)OA ■ OB】(2) 共面向量定理如果两个向量a, b不共线,那么P与a, b共面的充要条件是存在唯一有序实数对(x,y)使P= xa+ yb推论:空间一点P位于平面ABC内的充要条件是UUJ UUJ UUU存在唯一有序实数对(x,y)使AP=XAB yAC ,UiU UUr UUJ UUU或对空间任意一点0,有OP=OA ∙XAB yACUlU UUr UlU UlU或对空间任意一点0,有OP=XOA yOB ■ ZOC ,其中X + y+ Z= 1UUJ UUr UIU UUU UIr UUJ Uui【推论③推导过程:OP=OA XAB yAC = (1 - x - y)OA XOB yOC 】(3) 空间向量基本定理如果三个向量a, b, C不共面,那么对空间任一向量p,存在有序实数组{X, y, z},使得P= x a+ y b+ Z C基底:把{a, b, c}叫做空间的一个基底,空间任何三个不共面的向量都可以构成空间的一个基底.4. 空间向量的数量积及运算律(1)数量积及相关概念①两向量的夹角:已知两个非零向量a, b,在空间任取一点0,作OA= a, OB = b,则∠AQB叫做向量a与b的夹角,记作〈a, b>,其范围是0≤< a, b>≤∏若〈a , b>= ∏,则称a与b互相垂直,记作a⊥b.②两向量的数量积:已知空间两个非零向量a, b,向量a, b的数量积记作a b,且a b= ∣a∣∣b∣cos < a, b>.⑵空间向量数量积的运算律:①结合律:(λι)b = λa b);②交换律:a b= b a;③分配律:a (b+ C)= a b + a c.→ →5.空间向量的坐标表示及应用 设 a = (a ι, a 2, a 3), b = (b i , b 2, b 3) (1)数量积的坐标运算:a b = a 1b 1 + a 2b 2+ a 3b 3. (2)共线与垂直的坐标表示:a /b ? a = λ? a i = λ 1, a ? = λ b a 3= λ 3 (λ∈ R ), a ⊥b ? a b = 0? a i b i + a 2b 2+ a 3b 3= 0(a , b 均为非零向量). (3)模、夹角和距离公式: ∣a ∣= '∙.F a a = ■:J a i + a 2+ a 3, a b a i b i + a ?b 2 + a 3b 3C0S 〈a ,b 〉 IaIlbl a 2+ a 2+ a 2 ∙ b 2+ b 2+ b 3 .设 A(a i , b i , C i ), B(a 2, b 2, C 2),贝U d AB =l →B ∣= . a 2— a i 2+ b 2 — g 2+ c ?— C i 2.6.用空间向量解决几何问题的一般步骤: (1) 适当的选取基底{ a , b , c }; (2) 用a , b , C 表示相关向量; (3) 通过运算完成证明或计算问题. 题型一 空间向量的线性运算 用已知向量来表示未知向量,应结合图形,将已知向量和未知向量转化至三角形或平行四边形中,表示为其他向量 的和与差的形式,进而寻找这些向量与基向量的关系. M , N 分别是OA , BC 的中点,G 是厶ABC 的重心,用基向量(DA , OB , OC 表示MG , → → → i → 2 → i → 2 → → i → 2 i → → → i → i → i → 解析:MG = MA + AG = ^OA + 3AN = ?OA + §(ON — OA) = ?0A + ^(OB + OC) — OA] = — §0A + §0B + §0C. → → → 1 → 1 → 1 → 1 → 1 → 1 → 1 → OG = OM + MG = ^OA — 6OA + §0B + 3OC = ^OA + -OB + §OC. → I → → → UiU UUD UUIU UUIU例 2:如图所示,ABCD — A 1B i C i D i 中,ABCD 是平行四边形.若AE = -EC , A →F = 2FD ,且 EF=XAB+y AD+zAA 1 , 试求X 、y 、Z 的值. J3∣ -→ -→ -→ -→ i -→ i -→ -→ •解 连接 AF , EF = EA + AF. ∙.∙ EA =— 3AC = — ^ (AB + AD ) →→→→→→ i → → i → → 2 UUU AF = AD + DF = AD — FD = AD — ^A i D = AD 一(( A i A + AD ) = — AD 3 33 i UUr → → → i UUIU i UUU i UUir A i A EF = EA + AF = AD AA i AB 3 3 3 3 题型二共线定理应用 向量共线问题: 充分利用空间向量运算法则,用空间中的向量表示 a 与b 共线. a 与b ,化简得出a = ■ b ,从而得出a // b ,即 点共线问题:证明点共线问题可转化为证明向量共线问题,如证明 → → A 、B 、C 三点共线,即证明 AB 与AC 共线.M , N 分别是 AC , BF 的中点,判断 CE 与MNUUr UIr UUr CE=CB BE τ UUU UUU UIrUUIU ι UUIU UIr 1 UIrUUr 1 UIlU UurUIr 1 UUr 1 UIr 1 UUr MN=MC CB BN AC CB (BA BE) (AC BA) CB BECB BE2 2 2 2 2 2→ →→ →→ →∙∙∙ CE = 2MN ,∙∙∙ CE // MN ,即 CE 与MN 共线.→ → →2E 在 A i D i 上,且 A i E = 2ED ι,F 在对角线 A i C 上,且 A i F =^FC. 3→ →• EF = 2EB.所以E , F , B 三点共线.题型三共面定理应用→ → 点共面问题:证明点共面问题可转化为证明向量共面问题,如要证明 P 、A 、B 、C 四点共面,只要能证明 PA = XPB →→→→→→ → →O ,有 OP = OA + XPB + yPC 或OP = XOA + yOB + ZOC(X + y + Z = 1)即可→ → → →2 i 2例5:已知 A 、B 、C 三点不共线,对于平面 ABC 外一点0,若OP = - OA + -OB + ;0C ,则点P 是否与 A 、B 、C 5 5 5 一定共面?试说明理由.U 2 Ulr IUIU 2 UUU 2 UUl UIr 1 UU U Ulr 2 UU UUr UIU 2 UIr 1 Ulr 2 UU U解析:∙∙∙ OP =— OA+—OB +-OC =—(OP + PA)+-(OP+PB)+-(OP+PC)=OP + -PA+- PB+— PC 5 5 3 5 53 5 5 3例4:如图所示,在正方体 ABCD — A I B I C I D I 中,5_________________ β E7f{C l → 设 AB = a , → → 证明: → 2 2 • ∙ A I E = 2ED 1=3AD = 3 → → -→ 2 •EF = A 1 F — A 1E = ;a — 5→AD = b , → A 1F = T FC = T A I C=I(AC →AA 1 = c . → → →2 2 _ 2 _ 3~ 5''~ 54 2 2 二 15b — 5c =5 a — 3b —→ → → → 2 2 2 2 -AA I )= 5 (AB + AD - AA I ) = 5a + - b — 5c → → → → 2 2 2 3二 C , EB = EA 1 + A 1A + AB = — ~b — c + a = a —3b — c ,→+ yPC ,或对空间任一点求证:E , F , B 三点共线.→ →→ → →1 2∙∙∙ AP=EAB +7AC ,故 A 、B 、C P 四点共面∙5 5例6:如图所示,已知 P 是平行四边形 ABCD 所在平面外一点,连结 PA 、PB 、PC 、PD ,点E 、F 、G 、H 分别为 △ PAB 、△ PBC 、△ PCD 、△ PDA 的重心,应用向量共面定理证明: E 、F 、G 、H 四点共面.→ → → → → → → →2 2 2 2 顺次连结M 、N 、Q 、R ,所得四边形为平行四边形,且有 PE = -PM , PF = §PN , PG = -PQ , PH = ~PR.→→→→→→ →→ →→ →→ →→ →→2222 2 2 23 3 23 3.∙. EG = PG - PE = 3PQ -3PM = 3MQ = 3(MN + MR) = 3(PN -PM) + §(PR — PM) = 3(?PF -^PE) + ^(-PH —2PE)→ →=EF + EH. ∙由共面向量定理得 E 、F 、G 、H 四点共面.→ → →例7:正方体 ABCD - A I B I C I D I 中,E , F 分别是BB i 和A i D i 的中点,求证向量 A i B , B i C , EF 是共面向量.→→→ → → →→→→→-→1 —→ 11 1证明:女口图所示,EF = EB + BA j + A J F = ^B 1B - "B + ^A J D J = -(B 1B + BC) - A 1B = ^B j C - A j B.→ → →由向量共面的充要条件知 A j B , B j C , EF 是共面向量.题型四空间向量数量积的应用 ABCD — A i B i C i D i 中,以顶点A 为端点的三条棱长都为 i ,且两两夹角为 60°⑴求AC i 的长;(2)求BD i 与AC 夹角的余弦值.解析:(J)记AB = a , AD = b , AA J = c ,则 I a l = I b l = I C l = J ,〈a , b 〉=〈 b , c > = < c , a > = 60° 」」 J ∙ ab = b C = ca =;2'∣AC J f = (a + b + c )? = a + b + C + 2(a b + b c + C a ) = J + J + J + 2 × ? + ? + ? = 6, ∙ |AC j I=V 6,即AC J 的长为::::;;6.(2)BD J = b + C -a , AC = a + b , ∙∙ IB D J I = 2, ∣Aθ∣=.3, B D J AC = (b + C - a ) (a + b ) = b 2-a 2+ a c + b C = J. ∙ cos <B D j , AC > = BDJ AC例8:①如图所示,平行六面体证明:分别延长 PE PR PG PH 交对边于 M N QR.∙∙∙ E 、F 、G H 分别是所在三角形的重心,∙∙∙ M 、N 、Q 、R 为所在边的中点=二6.∙AC 与BD J 夹角的余弦值为二6→ → 6 6IBD J IIACI→ →②已知空间四边形 ABCD 的每条边和对角线的长都等于 a ,点E 、F 分别是BC 、AD 的中点,则AE AF 的值为()A . a 2B.;a 2 C ;a 2 D^a 2→ → →解析:设AB = a , AC = b , A D = c ,则I a l =I b l =I C l = a ,且a , b , C 三向量两两夹角为 60°→ → → →1 1 1 1 1 12 2 1 2 AE = 2(a + b ), AF =尹二 AE AF = 2(a + b ) ^c = 4(a C + b C ) = 4(a cos60 ° a cos60 ) = 4a .题型五 空间向量坐标运算DC , DP 所在直线分别为X , y , Z 轴建立空间直角坐标系,则点 E 的坐标为()A . (1,1,1)B∙Q , 1, 1)C.(1, 1 , 3) D . (1,1,2)例 10:已知 a = (2,— 1,3), b = (— 1,4 , - 2) , C = (7,5 , λ∙若 a , b , C 三向量共面,则实数例 11:已知△ ABC 的顶点 A(1,1,1), B(2,2,2),→ → → → → →AB = (1,1,1) , AC = (2,1,3) , |AB|= 3 , |AC|= 14 , AB AC = 2+ 1 + 3= 6 , ∙ cos A = 8S 〈AB , AC >= 36l 4= ζ.∙ SinA =I -;;='| |AC| ∙nA = 1×.3× 帀×* =于.例9:如图所示,PD 垂直于正方形 ABCD 所在平面,AB = 2, E 为PB 的中点,COS 〈 DP ,AE 〉=于,若以DA,设 PD = a (a>0),则 A(2,0,0), B(2,2,0), P(0,0, a), E 1, 1, 1, 2 , cos 〈 DP , AE >=于,∙∙∙ a = 2.∙∙∙ E 的坐标为(1,1,1).t =337 = 2t — μ解析:由题意得 C = t a + (Jo= (2t — μ, — t + 4 μ, 3t — 2 μ , ∙ =— t + 4μ,λ= — μ7' 17 μ= 7 , 65l λ= 65.C(3,2,4),试求△ ABC 的面积DP = (0,0, a), A E =2.a_ '2品∙3,.∙ S ∆ABC =例12:已知a= ( λ÷ 1,0,2), b= (6,2 μ—1,2 λ,若a// b,贝U λ与μ的值可以是()A. 2 ,12B.—1 13,2C.—3,2D. 2,2λ+ 12 f λ= 2 ,'λ=—3 ,解析由题意知:6=2λ,解得1或1 2—1= 0 ,μ= 2尸例13:已知空间中三点A( —2,0,2), B( —1,1,2), C( —3,0,4),设a= →, b= AC.,若ka+ b 与ka—2b 互相垂直,求实数k的值.方法一一k a+ b= (k—1, k,2). k a —2b= (k+ 2, k, —4),且k a + b 与k a —2b 互相垂直,•••(k—1, k,2) (k+ 2, k,—4) = (k—1)(k+ 2)+ k2—8= 0, ∕∙ k= 2 或一5, 方法二由⑵知|a∣=^2, ∣b∣=承,a b=—1, • (k a + b) (k a —2b)= k2a2—k a b—2b2= 2k2+ k—10= 0,得k= 2 或一∣.例14:已知空间三点A(0,2,3), B( —2,1,6), C(1, —1,5).(1)求以AB, →C为边的平行四边形的面积;⑵若I a I= ,3,且a分别与AB, AC垂直,求向量a的坐标.解(1)cos〈AB, AC〉= == 3筲=-7-= 1∙.∙. Sin〈AB,心=写,∣→∣Ac∣14 2 2•以AB, AC为边的平行四边形的面积为S= 2× 1∣A→| |A CISin〈A B, AC>= 14×^3= 7,3.X2+ y2+ z2= 3 X= 1 x=—1(2)设a= (x, y, Z),由题意得2x—y+ 3z= 0 ,解得f y= 1 或f y=— 1 ,以—3y+ 2z= 0 L= 1 [z=—12 1例15:如图所示,在正方体ABCD —A1B1C1D1中,E、F分别在A Q、AC上,且A p E= 3A1D, AF = -AC ,贝U ( ) A. EF至多与A1D、AC之一垂直 B . EF与A1D、AC都垂直C . EF与BD p相交 D . EF与BD j异面解析:设AB = 1,以D为原点,DA所在直线为X轴,DC所在直线为y轴,DD 1所在直线为Z轴建立空间直角坐标(1 1 伦 1 ∖→系,贝y A1(1,0,1), D(0,0,0), A(1,0,0), C(0,1,0), E 3, 0,3,F 3, 3 0, B(1,1,0), D1(0,0,1) , A1D = (—1,0 , —1), AC= (—1,1,0) ,EF = 1, 3 —1,B→1= (—1 , —1, 1) ,EF = —3B→1, A→D EF = AC EF = 0,从而EF // BD1,EF 丄AQ, EF 丄AC.→ →例16:已知0(0,0,0), A(1,2,3), B(2,1,2), P(1,1,2),点Q在直线OP上运动,当QA QB取最小值时,点Q的坐标是.→ → → →解析:设OQ = QP = (λ, λ 2λ,贝U QA = (1 —人2—λ 3— 2 λ, QB= (2 —λ 1 —λ 2 — 2 λ .∙∙∙ QAQB = (I - ^2-λ÷(2-如-λ+(3-叩-2 λ= 6 λ- 16λ÷ 10 = 6( λ-$— 2→ → →二当λ=4时,QAQB 取最小值为-此时,OQ =(4,3,3),综合练习、选择题1、下列命题:其中不正确.的所有命题的序号为 _____________ • ①若A 、B 、C 、D 是空间任意四点,则有 AB ÷ BC + CD ÷ DA = 0; ②I a H b = |a ÷ b ∣是a 、b 共线的充要条件;③ 若a 、b 共线,则a 与b 所在直线平行;④ 对空间任意一点 O 与不共线的三点 A 、B 、C ,若OP = XOA ÷ yOB ÷ ZOC (x 、y 、z ∈ R ),贝U P 、A 、B 、C 四点共面.⑤ 设命题P : a , b , C 是三个非零向量;命题 q : {a , b , c }为空间的一个基底,则命题 P 是命题q 的充要条件解析:选②③④⑤,①中四点恰好围成一封闭图形,正确;②中当 a 、b 同向时,应有| a | ÷ | b | = | a ÷ b | ;③中a 、 b 所在直线可能重合;④中需满足 x ÷ y ÷ Z = 1,才有P A 、B C 四点共面;⑤只有不共面的三个非零向量才能作 为空间的一个基底,应改为必要不充分条件2、有下列命题:其中真命题的个数是 ()①若P = X a ÷ y b,贝U P 与a , b 共面;③若 MIP = XMjA ÷ yM →B ,贝y P , M , A 、B 共面; A . 1 B . 2C . 3②若P 与a , b 共面,则P = X a ÷ y b ; ④若 P , M , A , B 共面,则 MjP = XMlA ÷ yM →B. D . 4贝U ≠÷ ;3、已知 A(1,0,0), B(0,- 1,1),BjC .OA ÷ QB 与OB 的夹角为120°贝U λ的值为( —普 D . ±6 → →解析:OA ÷ λOB = (1 ,- λ λ,cos120° =λ÷ λ.'1÷ 2λ • 22,得λ= ±66.经检验入=¥不合题意,舍去,λ=-4、 如图所示,已知 FA 丄平面 ABC , ∠ ABC = 120 ° PA = AB = BC = 6,贝U PC 等于 ()C . 12D . 144=(PA ÷ AB ÷ BC) =PA 2÷ AB 2÷ BC 2÷ 2AB BC = 36÷ 36 ÷ 36÷ 2 × 36cos 60 O = 144 ∕∙ |PC|= 12 证明设AB = a , AC = b , AD = c ,则 BG = BA ÷ AG = BA ÷ 3AM = — a ÷ 1(a ÷ b ÷ c )= — 3a ÷ 1b ÷~.c ,4 4' ,4 4 4 BN = B A ÷ AN = BA ÷ 3(AC ÷ AD)=— a ÷ f b ÷ f c =IBG.∕∙ BN ^ BG ,即 B 、G 、N 三点共线.5、正方体ABCD — A 1B 1C 1D 1的棱长为a ,点M 在A®上且AM = IM C 1, N 为B 1B 的中点,贝U IMNI 为()2解析 以D 为原点建立如图所示的空间直角坐标系 DXyZ ,则A (a,0,0),C*0,a , a ),N a .T 点 M 在 AC 1 上且 AM = 2MC 1, ∙ (x — a , y , Z) = *( — x , a — y , a — Z) A 寻IZB∙far . 15 DpaA L设 M(x , 2∙∙X = 3a ,y = 3Z=3. ∙M 伶 3 3) ∙ IMN =∖/ (I —3a )÷l 2a -!2÷ a -32=甲已知空间四边形 OABC , OB = OC ,且∠ AOB = ∠ AOC = ∏,贝U CoS 〈C)A , C 乎腭BC 〉的值为( 设OA = a , OB = b , OC = c ,由已知条件〈a , b 〉=〈 a , c >= ∏3-→ -→ 1 1 -→ -→OA BC = a (c — b ) = a C — a b = 2I a||c — 2I a ∣∣b = 0, ∙ CoS且 I b l =I C =0.7、如图所示,在平行六面体 ABCD — A 1B 1C 1D 1中,M 为A 1C 1与B 1D 1的交点.若AB = a , AD = b, AA i = c , 则下列1 1D.^a — ?b + Cc +如-a ) = — 2 a + 2 b + c .ABCD — A 1B 1C 1D 1 中,向量 A B , AD , AA 1 两两的夹角均为 60°,且 IABI = 1, ∣AD ∣= 2, IA A I I = 3,则IAC i 等于()[A . 5B . 6C . 4D . 8|[ 设AB = a , AD = b , AA 1 = c ,则 AC 1= a ÷ b ÷ c , AC 12= a 2÷ b 2÷ c 2÷ 2a b ÷ 2b c ÷ 2C a = 25, IAC 1I = 5」9、 在下列条件中,使 M 与A 、B 、C 一定共面的是()- - - - - - - - - - - - - - -1 1A.OM = 3OA — 2OB — OC B . OM ÷ OA ÷ OB ÷ OC = 0 C . MA ÷ MB ÷ MC = 0 D . OM = 4OB — OA ÷^OC— — —解析: C 中MA = — MB — MC.故M 、A 、B 、C 四点共面. 二、填空题10、 同时垂直于 a = (2,2,1)和b = (4,5,3)的单位向量是 ______________________ .6、如图所示, A . 01 2向量中与BM 相等的向量是 (-→ 1 -→ -→ =AA 1+ 2(AD — AB) =C . — I a — 2b + C88、平行六面体解析 设与a = (2,2,1)和b = (4,5,3)同时垂直b 单位向量是C = (P , q , r),则11. 若向量a = (1, λ 2), b = (2, — 1,2)且 a 与b 的夹角的余弦值为 鲁,则λ=12.在空间直角坐标系中,以点 A(4,1,9)∖ B(10 , — 1,6)、C(x,4,3)为顶点的厶ABC 是以BC 为斜边的等腰直角三角 形,则实数X 的值为 _________解析 由题意知AB AC = O , IAiBl =ACI ,可解得X = 2.13. 已知 a + 3b 与 7a — 5b 垂直,且 a — 4b 与 7a — 2b 垂直,则〈a , b>= ________ I解析 由条件知(a + 3b ) (7a — 5b ) = 7|a |2+ 16a b — 15|b |2= 0 ,及(a —4b ) (7a — 2b ) = 7|a |2+ 8|b |2— 30a b = 0. 两式相减,得 46a b = 23|b |2,二 a b = 2|b |2.14. 如图所示,已知二面…l —e 的平面角为θθ∈ 0,Π, AB ⊥BC , BC ⊥CD , AB 在平面β内,BC 在I 上,CD 在平面 α内,若 AB = BC = CD = 1,贝U AD 的长为 __________ —→ 2 —→ —→ —→ 2= —→ 2 —→ 2—→ 2—→ —→ —→ —→ —→ —→ 解析:AD 2= (AB + BC + CD) AB 2 + BC 2+ CD 2+ 2AB CD + 2AB BC + 2BC CD = 1+ 1+ 1 + 2cos( — θ)= 3— 2cos θ 15. ____________________________________________________________ 已知 a = (1 —1,1 — t , t), b = (2, t , t),则 |b — a |的最小值为 ____________________________________________________ .解析 b — a = (1 + t,2t - 1,0), •• |b — a |=^ (1 + tf+( 2t — 1 Y = ^^ 5 [^t — 5 / + 5 ,•当 t = 5 时,|b — a 取得最小值 .三、解答题16、如图所示,在各个面都是平行四边形的四棱柱 ABCD — A 1B 1C 1D 1中,P 是CA 1的中点,M 是CD 1的中点,N 是 C 1 D 1的中点,点 Q 在CA 1上,且CQ : QA 1 = 4 : 1,设AB = a , AD = b , A A I = C 用基底{a , b , c }表示以下向量: 1 →→ 1 → → 1 2(AC + AA 1)= 2(A B + AD + A A 〔)= 2(a + b + C ).p 2+ q 2+ r 2= 1, 2p + 2q + r = 0, 4p + 5q + 3r = 0,1 P = 3,— 2 解得q =— £,I 2 r = 3, 1 P = — 3, 或q = |, 所求向量为3,— 3, 3或—3,3,— 3 . 8 解析由已知得8=a b 2— λ+ 4 Iailb = √5+λ2∙9,「8√5+λ = 3(6- λ,解得—2 或 λ=盒. 代入上面两个式子中的任意一个,即可得到 |a |= |b |. ••• CoS 〈 a , b > 1 2 a b 1|b | 1— 2 = .. IaIIb I |b | 2 a , b >= 60°2 (1)AP =-→ 1 -→ -→ 1 -→ -→ -→ 1 (2)AM = 2(AC + AD 1)= 2(AB + 2AD + AA” = ?(a + 2b + C ). 17、如图,已知 M 、N 分别为四面体 ABCD 的面BCD 与面ACD 的重心,且 G 为AM 上一点,且 GM : GA = 1 : 3. =Ca = 0. ⑴证明:设 CA = a , CB = b , CC ' = c ,根据题意,|a I =I b I =I C l 且 a b = b C ∙∙∙ CE = b + ∣C , A →D = — C +1 b - 2a .ΛCE ∙ A →D = — ∣c 2 +1b 2= 0,∙'∙ CE 丄At),即 CE 丄AD. b + 2 C = 2 C 2=∙2∣a ∣2,⑵A →' =— a + c,∙∙∙ |A C' I = 2|a |, 品=^^∣A →' ∙ CE = (— a + C ) 1∣ f ∙ CoS 〈 A C' , CE > = 一匕了一 = 穹•即异面直线CE 与AC 所成角的余弦值为 密. 2 ∙ 25I a I 2-- 1 -- -- 1 -- -- -- -- -- 1 -- -- -- 1 1 (3) AN = 2(AC 1 + AD 1) = 2[(AB + AD + AA” + (AD + AAj = 2( AB + 2AD + 2AA” = q(a + 2b + 2 C ) = q a + b + C . ⑷ AQ = AC + CQ = AC + 4(AA 1- AC) = I AC + 5A --1 = 1A B + 如 + 彳品=* a + ⅛ + IC求证:B 、G 、N 三点共线. 18. (13分)直三棱柱 ABC — A B ' C '中,AC = BC = AA ' , ∠ ACB =90° (2)求异面直线CE 与AC '所成角的余弦值. D 、E 分别为AB 、BB '的中点.(1)求证:CE ⊥ A ' D ;。

空间向量知识点总结

空间向量知识点总结

空间向量知识点总结空间向量是数学中一个重要的概念,它在解析几何、物理学、工程学等多个领域中都有广泛的应用。

以下是空间向量的一些基础知识点总结:1. 空间向量的定义:空间向量是具有大小和方向的量,通常用一个箭头表示,箭头的起点和终点分别代表向量的起点和终点。

2. 空间向量的表示:空间向量可以用有序的三个实数来表示,即(x, y, z),其中x、y、z分别代表向量在三个正交坐标轴上的分量。

3. 空间向量的运算:- 向量加法:两个向量相加,其结果向量的方向由第一个向量的起点指向第二个向量的终点,分量相加。

- 向量减法:向量减去另一个向量,结果向量的方向由第一个向量的起点指向第二个向量的起点,分量相减。

- 数量乘法:一个向量乘以一个实数,结果向量的方向不变,其长度按实数的倍数缩放。

4. 向量的模:向量的模是向量长度的大小,可以通过勾股定理计算得出,即模长= √(x² + y² + z²)。

5. 向量的单位化:将一个向量除以其模,得到一个长度为1的单位向量。

6. 向量的点积(内积):两个向量的点积是一个标量,其值等于两个向量对应分量乘积的和,即a·b = |a||b|cosθ,其中θ是两个向量之间的夹角。

7. 向量的叉积(外积):两个向量的叉积是一个向量,其方向垂直于原来的两个向量,其大小等于原来两个向量构成的平行四边形的面积,计算公式为a×b = (a_yb_z - a_zb_y, a_zb_x - a_xb_z, a_xb_y -a_yb_x)。

8. 空间向量的坐标变换:在不同的坐标系下,同一个向量的坐标表示可能会不同,坐标变换可以通过旋转矩阵或者变换矩阵来实现。

9. 向量的投影:一个向量在另一个向量上的投影是一个新的向量,其方向与被投影的向量相同,长度是原向量在被投影向量方向上的分量。

10. 向量的线性相关与无关:如果一组向量可以通过线性组合得到零向量,则这些向量是线性相关的;反之,如果无法得到零向量,则这些向量是线性无关的。

选修2-1空间向量考点(全)

选修2-1空间向量考点(全)

空间向量考点1、空间向量的坐标及基本运算空间向量的坐标:空间直角坐标系的x 轴是横轴(对应为横坐标),y 轴是纵轴(对应为纵坐标),z 轴是竖轴(对应为竖坐标).a =(a 1,a 2,a 3),),,(321b b b b =,),,(332211b a b a b a b a ±±±=+,))(,,(321R a a a a ∈=λλλλλ,332211b a b a b a b a ++=⋅ ,向量平行:a ∥)(,,332211R b a b a b a b ∈===⇔λλλλ332211b a b a b a ==⇔ 。

向量垂直:0332211=++⇔⊥b a b a b a b a 。

向量的模:222321a a a a a a ++=∙=特例:向量模与向量之间的转化:a a a a a a ∙=⇒∙=2空间两个向量的夹角公式:232221232221332211||||,cos bb b a a a b a b a b a b a ba b a ++⋅++++=⋅∙>=<空间两点的距离公式:212212212)()()(z z y y x x d -+-+-=. 2、法向量若向量a 所在直线垂直于平面α,则称这个向量垂直于平面α,记作α⊥a ,如果α⊥a 那么向量a 叫做平面α的法向量. 3、向量的应用①利用法向量求点到面的距离定理:如图,设n 是平面α的法向量,AB 是平面α的一条射线,其中α∈A ,则点B 到平面α的距离为||||n n AB ∙.②.利用向量求异面直线间的距离nn CD d ∙=(12,l l 是两异面直线,其公垂向量为n ,C D 、分别是12,l l 上任一点,d 为12,l l 间的距离).③.利用向量求直线AB 与平面所成角sin||||AB marc AB m β⋅=(m 为平面α的法向量).④.利用法向量求二面角的平面角定理 21,n n 分别是二面设角βα--l 中平面βα,的法21,n n 所成的角就向量,则是所求二面角的平面角或其补角大小(21,n n 方向相同,则为补角,21,n n 反方,则为其夹角).二面角l αβ--的平面角cos||||m n arc m n θ⋅=或cos ||||m narc m n π⋅-(m ,n 为平面α,β的法向量).⑤.证直线和平面平行定理已知直线⊄a 平面α,α∈∈D C a B A ,,,,且C 、D 、E 三点不共线,则a ∥α的充要条件是存在有序实数对μλ,使CE CD AB μλ+=.(常设CE CD AB μλ+=求解μλ,若μλ,存在即证毕,若μλ,不存在,则直线AB 与平面相交). 4、向量的基本概念(1) 共线向量共线向量亦称平行向量,指空间向量的有向线段所在直线互相平行或重合. 注:①若a 与b 共线,b 与c 共线,则a 与c 共线.(×) [当0=b 时,不成立] ②向量c b a ,,共面即它们所在直线共面.(×) [可能异面]③若a ∥b ,则存在小任一实数λ,使b a λ=.(×)[与0=b 不成立] ④若a 为非零向量,则00=a .(√)[这里用到)0(≠b b λ之积仍为向量](2) 共线向量定理α▲nBCAαβ▲n 2n 1αCED AB对空间任意两个向量)0(,≠b b a ,a ∥b 的充要条件是存在实数λ(具有唯一性),使b a λ=. (3) 共面向量:若向量a 使之平行于平面α或a 在α内,则a 与α的关系是平行,记作a ∥α.(4) 证明四点共面的常用方法.①共面向量定理:如果两个向量b a ,不共线,则向量P 与向量b a ,共面的充要条件是存在实数对x 、y 使b y a x P +=.②空间任一点...O .和不共线三点......A .、.B .、.C .,则)1(=++++=z y x OC z OB y OA x OP 是PABC四点共面的充要条件.(证:→+==++--=AC z AB y AP OC z OB y OA z y OP )1(P 、A 、B 、C 四点共面)4、向量的基本定理如果三个向量....c b a ,,不共面...,那么对空间任一向量P ,存在一个唯一的有序实数组x 、y 、z ,使c z b y a x p ++=.推论:设O 、A 、B 、C 是不共面的四点,则对空间任一点P , 都存在唯一的有序实数组x 、y 、z 使 OC z OB y OA x OP ++=(这里隐含x+y+z≠1).注:设四面体ABCD 的三条棱,,,,d AD c AC b AB ===其中Q 是△BCD 的重心,则向量)(31c b a AQ ++=用MQ AM AQ +=即证.对空间任一点O 和不共线的三点A 、B 、C ,满足OP xOA yOB zOC =++, 则四点P 、A 、B 、C 是共面⇔1x y z ++=OABCD。

空间向量知识点总结

空间向量知识点总结

空间向量知识点总结空间向量是高中数学中的重要内容,它为解决立体几何问题提供了一种全新的思路和方法。

下面我们来对空间向量的相关知识点进行一个系统的总结。

一、空间向量的基本概念1、空间向量的定义在空间中,具有大小和方向的量称为空间向量。

2、空间向量的表示空间向量可以用有向线段来表示,有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向。

向量通常用小写字母加箭头表示,如\(\vec{a}\)。

3、空间向量的模空间向量\(\vec{a}\)的模(长度)记作\(|\vec{a}|\),其计算公式为\(|\vec{a}|=\sqrt{a_1^2 + a_2^2 + a_3^2}\)(假设\(\vec{a} =(a_1, a_2, a_3)\))。

4、零向量长度为\(0\)的向量称为零向量,记作\(\vec{0}\),其方向是任意的。

5、单位向量模为\(1\)的向量称为单位向量。

若\(\vec{a}\)是非零向量,则与\(\vec{a}\)同向的单位向量为\(\frac{\vec{a}}{|\vec{a}|}\)。

6、相等向量长度相等且方向相同的向量称为相等向量。

7、相反向量长度相等但方向相反的向量称为相反向量。

二、空间向量的运算1、加法空间向量的加法满足三角形法则和平行四边形法则。

设\(\vec{a}\)、\(\vec{b}\)为两个空间向量,则它们的和向量\(\vec{c} =\vec{a} +\vec{b}\)。

2、减法空间向量的减法是加法的逆运算,\(\vec{a} \vec{b} =\vec{a} +(\vec{b})\)。

3、数乘运算实数\(\lambda\)与空间向量\(\vec{a}\)的乘积\(\lambda\vec{a}\)仍然是一个向量。

当\(\lambda > 0\)时,\(\lambda\vec{a}\)与\(\vec{a}\)同向;当\(\lambda < 0\)时,\(\lambda\vec{a}\)与\(\vec{a}\)反向;当\(\lambda =0\)时,\(\lambda\vec{a} =\vec{0}\)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2) 右手直角坐标系:右手握住z轴,当右手的四指从正向x轴以90°角度转向正向y轴时,大拇指的指向就是z轴的正向;
(3)若空间的一个基底的三个基向量互相垂直,且长为 ,这个基底叫单位正交基底,用 表示。
(4)空间向量的直角坐标运算律:
①若 , ,则

, ,



②若 , ,则 。
一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。
(2)证明 ,即证明 ,也就是证明
(3)证明 (平面)(或在面),即证明 垂直于平面的法向量或证明 与平面的基底共面;
(4)证明 ,即证明 平行于平面的法向量或证明 垂直于平面的两条相交的直线所对应的向量;
(5)证明两平面 (或两面重合),即证明两平面的法向量平行或一个面的法向量垂直于另一个平面;
(6)证明两平面 ,即证明两平面的法向量垂直或一个面的法向量在另一个面。
直线 与平面 所成的角为 ( ), = ;
(3)二面角:
1方向向量法:
2法向量法:
法向量的方向:
一进一出,二面角等于法向量夹角;
同进同出,二面角等于法向量夹角的补角
12. 利用“方向向量”与“法向量”来解决距离问题.
(1)点与直线的距离:
(2)点到平面的距离:d= .
如图A 空间一点P到平面 的距离为d,已知平面 的一个法向量为 ,且 与 不共线,
(5)模长公式:若 , ,
则 ,
(6)夹角公式: 。
(7)两点间的距离公式:若 , ,
则 ,

(8)空间线段 的中点 的坐标:
(9)球面方程:
8. 空间向量的数量积。
(1)空间向量的夹角及其表示:已知两非零向量 ,在空间任取一点 ,作 ,则 叫做向量 与 的夹角,记作 ;且规定 ,显然有 ;若 ,则称 与 互相垂直,记作: 。
; ;
运算律:⑴加法交换律:
⑵加法结合律:
⑶数乘分配律:
3. 共线向量。
(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量, 平行于 ,记作 。
当我们说向量 、 共线(或 // )时,表示 、 的有向线段所在的直线可能是同一直线,也可能是平行直线。
(2)共线向量定理:空间任意两个向量 、 ( ≠ ), // 存在实数λ,使 =λ 。
3平面与平面的距离(转化为点到平面的距离)
13.补充:
(1) 三余弦定理
设AC是α的任一条直线,且BC⊥AC,垂足为C,又设AO与AB所成的角为 , AB与AC所成的角为 ,AO与AC所成的角为 .则 .
(2)三射线定理
若夹在平面角为 的二面角间的线段与二面角的两个半平面所成的角是 , ,与二面角的棱所成的角是θ,则有 ;
(2)向量的模:设 ,则有向线段 的长度叫做向量 的长度或模,记作: 。
(3)向量的数量积:已知向量 ,则 叫做 的数量积,记作 ,即 。
(4)空间向量数量积的性质:
① 。② 。③ = ,
(5)空间向量数量积运算律:
① 。
② (交换律)。
③ (分配律)。
9、空间向量在立体几何证明中的应用:
(1)证明 ,即证明 ,也就是证明 或
第3章空间向量与立体几何
1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。
注:(1)向量一般用有向线段表示 同向等长的有向线段表示同一或相等的向量。
(2)空间的两个向量可用同一平面的两条有向线段来表示。
2. 空间向量的运算。
定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。
.
(立体几何中长方体对角线长的公式是其特例).
(7)面积射影定理
.
(平面多边形及其射影的面积分别是 、 ,它们所在平面所成锐二面角的为 ).
(8)斜棱柱的直截面
已知斜棱柱的侧棱长是 ,侧面积和体积分别是 和 ,它的直截面的周长和面积分别是 和 ,则
① .
② .
(E和面数F).
分析:过P作PO⊥ 于O,连结OA.
则d=| |=
∵ ⊥ , ∴ ∥ .
∴cos∠APO=|cos |.
∴d=| ||cos |= .
(3)异面直线间的距离:
已知a,b是异面直线,CD为a,b的公垂线,A,B分别在直线a,b上
(4)其它距离问题:
1平行线的距离(转化为点到直线的距离)
2直线与平面的距离(转化为点到平面的距离)
推论:设 是不共面的四点,则对空间任一点 ,都存在唯一的三个有序实数 ,使 。
6.空间两向量的夹角:已知两个非零向量、,在空间任取一点O,作,(两个向量的起点一定要相同),则叫做向量与的夹角,记作,且。
7. 空间向量的直角坐标系:
(1)空间直角坐标系中的坐标:
在空间直角坐标系 中,对空间任一点 ,存在唯一的有序实数组 ,使 ,有序实数组 叫作向量 在空间直角坐标系 中的坐标,记作 , 叫横坐标, 叫纵坐标, 叫竖坐标。
(当且仅当 时等号成立).
(3)点 到直线 距离
(点 在直线 上,直线 的方向向量a= ,向量b= ).
(4)异面直线上两点距离公式
.
.
( ).
(两条异面直线a、b所成的角为θ,其公垂线段 的长度为h.在直线a、b上分别取两点E、F, , , ).
(5)三个向量和的平方公式
(6)长度为 的线段在三条两两互相垂直的直线上的射影长分别为 ,夹角分别为 ,则有
1 =各面多边形边数和的一半.特别地,若每个面的边数为 的多边形,则面数F与棱数E的关系:
2若每个顶点引出的棱数为 ,则顶点数V与棱数E的关系:.
10. 运用向量的坐标运算解题的步骤:
(1)建坐标系,求相关点的坐标
(2)求相关向量的坐标
(3)运用向量运算解题
11. 用向量方法来解决立体几何中的空间角的问题:
(1)两条直线的夹角:
设直线 的方向向量分别为 ,
两直线 , 所成的角为 ( ), =
(2)直线与平面的夹角:
设直线 的方向向量分别为 ,平面 的法向量分别为 ,
4. 共面向量
(1)定义:一般地,能平移到同一平面的向量叫做共面向量。
说明:空间任意的两向量都是共面的。
(2)共面向量定理:如果两个向量 不共线, 与向量 共面的条件是存在实数 使 。
5.空间向量基本定理:如果三个向量 不共面,那么对空间任一向量 ,存在一个唯一的有序实数组 ,使 。
若三向量 不共面,我们把 叫做空间的一个基底, 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。
相关文档
最新文档