分式方程专项练习题优秀4篇

合集下载

分式方程计算题100道及答案

分式方程计算题100道及答案

分式方程计算题100道及答案篇1:分式方程练习题及答案分式方程练习题及答案分式方程练习题及答案一选择1.下面是分式方程的是()a. b.c. d.2.若得值为-1,则x等于( )a. b. c. d.3.一列客车已晚点6分钟,如果将速度每小时加快10千米,那么继续行驶20千米便可正点运行,如果设客车原来行驶的速度是x千米/小时,可列出分式方程为()a. b.c. d.4.分式方程的解为()a.2b.1c.-1d.-25.若分式方程的解为2,则a的值为()a.4b.1c.0d.26.分式方程的解是()a.无解b.x=2c. x=-2d. x=2或x=-27.如果关于x的方程无解,则m等于()a.3b. 4c.-3d.58.解方程时,去分母得( )a.(x-1)(x-3)+2=x+5b. 1+2(x-3)=(x-5)(x-1)c. (x-1)(x-3)+2(x-3)=(x-5)(x-1)d.(x-3)+2(x-3)=x-5二、填空9.已知关于的分式方程的根大于零,那么a的取值范围是 .10.关于的分式方程有增根 =-2,那么k= .11.若关于的方程产生增根,那么m的值是 .12.当m= 时,方程的解与方程的解互为相反数.13.为改善生态环境,防止水土流失,某村拟定在荒坡地上种植960棵树,由于青年团员的支援,每日比原计划多种20课,结果提前4天完成任务,原计划每天种植多少棵树?设原计划每天种植x棵树,根据题意列方程为 .14.如果,则a= ;b= .三、解答题15.解分式方程16.已知关于的方程无解,求a的值?17.已知与的.解相同,求m的值?18.近年来,由于受国际石油市场的影响,汽油价格不断上涨.下面是小明与爸爸的对话:小明:“爸爸,听说今年5月份的汽油价格上涨了不少啊!”爸爸:“是啊,今年5月份每升汽油的价格是去年5月份的倍,用元给汽车加的油量比去年少升.”小明:“今年5月份每升汽油的价格是多少呢?”聪明的你,根据上面的对话帮小明计算一下今年5月份每升汽油的价格?19.武汉一桥维修工程中,拟由甲、乙两各工程队共同完成某项目,从两个工程队的资料可以知道,若两个工程队合作24天恰好完成,若两个工程队合作18天后,甲工程队再单独做10天,也恰好完成,请问:⑴甲、乙两工程队完成此项目各需多少天?⑵又已知甲工程队每天的施工费用是0.6万元,乙工程队每天的施工费用是0.35万元,要使该项目总的施工费用不超过22万元,则乙工程队至少施工多少天?参考答案一、选择1.d2.c3.b4.a5.a6.b7.a8.c二、填空9.a<2 10.1 11.1 12.m=-3 13. 14.3, 2三、解答题15.⑴ 解:方程变形为两边同时乘以(x2-9)得,x-3+2x+6=12,x=3,经检验x=3是原方程的增根,故原方程无解.⑵ 解:两边同时乘以(x2-4)得x(x+2)-(x+14)=2x(x-2)-(x2-4);整理得,5x=18, ,经检验是原方程的解.(3)解:方程两边同时乘以想x(x2-1)得,5x-2=3x,x=1,经检验x=1是原方程的增根,故原方程无解.(4).解:两边同乘以(2x+3)(2x-3)得2x(2x+3)-(2x-3)=(2x-3)(2x+3)整理得4x=-12,x=-3,经检验x=-3是原方程的根.16.解:因为原方程无解,所以最简公分母x(x-2)=0,x=2或x=0;原方程去分母并整理得a(x-2)-4=0;将x=0代入得a(0-2)-4=0,a=-2;将x=2代入得a0-4 =0,a无解,故综上所述a=-2.17. 解:,x=2,经检验x=2是原方程的解,由题意可知两个方程的解相同,所以把x=2代入第二个方程得,故m=10.18. 解:设去年5月份汽油的价格为x元/升,则今年5月份的价格为1.6x元/升,依题意可列方程为,解得x=3,经检验x=3是原方程的解也符合题意,所以1.6x=4.8,故今年5月份汽油的价格是4.8元/升.19.解:⑴设甲工程队单独完成该项目需要天,乙单独完成该项目需要天,依题意可列方程组为解得,经检验是原方程组的解,也符合题意.⑵设甲、乙两工程队分别施工a天、b天,由于总施工费用不超过22万元,可得,解得,b取最小值为40.故⑴甲、乙两工程队单独完成此项目分别需40天、60天.⑵乙工程度至少要施工40天.篇2:分式方程应用题及答案分式方程应用题及答案一、a、b两地相距48千米,一艘轮船从a地顺流航行至b 地,又立即从b地逆流返回a地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x千米/时,则可列方程求解。

(完整版)解分式方程专项练习200题(精心整理有答案)

(完整版)解分式方程专项练习200题(精心整理有答案)
(135)
(136) .
(137) +2=
(138) = ﹣ .
(139) .
(140) .
(141) .
(142) .
(143) .
(144)
(145) .
(146)
(147)
(148) ﹣ =1﹣ .
(149)
(150) .
(151) ;
(152) .
(153)
(154)
(155) .
(156)
移项合并得:2x=2,
解得:x=1,
经检验x=1是增根,分式方程无解
(17)去分母得:3(x﹣5)=2x,
去括号得:3x﹣15=2x,
移项得:3x﹣2x=15,
解得:x=15,
检验:当x=15时,3(x﹣5)≠0,
则原分式方程的解为x=15;
(18)去分母得:3(5x﹣4)+3(x﹣2)=4x+10,
(157) .
(158) ;
(159) ;
(160) ;
(161) .
(162) ;
(163) .
(164) ;
(165) .
(166) ;
(167) .
(168) + = + .
(169) ﹣ = ﹣ .
(170)
(171) .
(172) ;
(173) =0.
(174)
(175) .
(176)
(177) .
解得:x=2,
经检验x=2是增根,分式方程无解;
(14)去分母得:2x﹣2+3x+3=6,
移项合并得:5x=5,
解得:x=1,
经检验x=1是增根,分式方程无解

分式方程练习题精选(含答案)【优质】

分式方程练习题精选(含答案)【优质】

分式方程练习题精选一、选择题:1.以下是方程211x x x-=-去分母的结果,其中正确的是 A .2(1)1x x --= B .2221x x --= C .2222x x x x --=-D .2222x x x x -+=-2.在下列方程中,关于x的分式方程的个数有 .①0432212=+-x x ②.4=ax③;4=x a④.;1392=+-x x ⑤;621=+x⑥211=-+-a x a x .A.2个B.3个C.4个D.5个 3.分式25m +的值为1时,m 的值是 . A .2 B .-2 C .-3 D .34.不解下列方程,判断下列哪个数是方程21311323x x x x =+++--的解 .A .x=1B .x=-1C .x=3D .x=-3 6.若分式x 2-12(x+1) 的值等于0,则x 的值为 . A 、1 B 、±1 C 、12 D 、-18.关于x 的方程2354ax a x+=-的根为x=2,则a 应取值 . A.1B.3C.-2D.-37.赵强同学借了一本书,共280页,要在两周借期内读完,当他读了一半时,发现平时每天要多读21页才能在借期内读完.他读了前一半时,平均每天读多少页?如果设读前一半时,平均每天读x 页,则下列方程中,正确的是 .A 、1421140140=-+x x B 、1421280280=++x x C 、1211010=++x x D 、1421140140=++x x8.关于x 的方程2354ax a x +=-的根为x =2,则a 应取值 . A.1 B.3 C.-2 D.-39.在正数范围内定义一种运算☆,其规则为a ☆b =ba 11+,根据这个规则x ☆23)1(=+x 的解为 . A .32=x B .1=xC .32-=x 或1D .32=x 或1-10.“五一”江北水城文化旅游节期间,几名同学包租一辆面包车前去旅游,面包车的租价为180元,出发时又增加了两名同学,结果每个同学比原来少摊了3元钱车费,设参加游览的同学共x 人,则所列方程为 .A .32180180=+-x xB .31802180=-+xxC .32180180=--x xD .31802180=--xx11.李老师在黑板上出示了如下题目:“已知方程012=++kx x ,试添加一个条件,使方程的解是x=-1”后,小颖的回答是:“添加k=0的条件”;小亮的回答是:“添加k=2的条件”,则你认为 .A 、只有小颖的回答正确B 、小亮、小颖的回答都正确C 、只有小亮的回答正确D 、小亮、小颖的回答都不正确 12.某工地调来72人挖土和运土,已知3人挖出的土1人恰好能全部运走,怎样调配劳动力才使挖掘出来的土能及时运走,且不窝工,解决此问题,可设派x人挖土,其它人运土,列方程:①723x x -=②723xx -=③372x x +=④372xx =-上述所列方程,正确的有 .A .1个B .2个C .3个D .4个 二、填空题:13.若分式11--x x 的值为0,则x 的值等于14.若分式方程xmx x -=--2524无解,那么m 的值应为 15.某项工程限期完成,甲单独做提前1天完成,乙单独做延期2天完工,现两人合作1天后,余下的工程由乙队单独做,恰好按期完工,求该工程限期 天.16.阅读材料: 方程1111123x x x x -=-+--的解为1x =, 方程1111134x x x x -=----的解为x=2,方程11111245x x x x -=-----的解为3x =,… 请写出能反映上述方程一般规律的方程,并直 接写出这个方程的解是 . 三、 解答题:17.解方程)2)(1(311+-=--x x x x18.先化简代数式1121112-÷⎪⎭⎫ ⎝⎛+-+-+x x x x x x ,然后选取一个使你喜欢的x 的值代入求值.19.若方程122-=-+x ax 的解是正数,求a 的取值范围。

分式方程实际问题专项提升经典练习题无答案

分式方程实际问题专项提升经典练习题无答案

《分式方程实际问题》专项提升经典练习题一.选择:1.某工厂现在平均每天比原计划多生产40台机器,现在生产600台机器所需的 时间与原计划生产480台机器所用的时间相同,设原计划每天生产x 台机器, 根据题意,下面列出的方程正确的是()A 600 _480 %-40 xB 600 480%+40 x C 600 480x %+40D 600 480 x %-402 .某工厂原计划在x 天内完成120个零件,采用新技术后,每天可多生产2个 零件,结果提前3天完成.可列方程()3 . 2017年,在创建文明城市的进程中,乌鲁木齐市为美化城市环境,计划种植 树木30万棵,由于志愿者的加入,实际每天植树比原计划多20%,结果提前5天完成任务,设原计划每天植树x 万棵,可列方程是() 4 .西宁市创建全国文明城市已经进入倒计时!某环卫公司为清理卫生死角内的 垃圾,调用甲车3小时只清理了一半垃圾,为了加快进度,再调用乙车,两车 合作1.2小时清理完另一半垃圾.设乙车单独清理全部垃圾的时间为x 小时,根 据题意可列出方程为() A. L -2+I .2=1B . 2^+1_2=1 6 x 6x2120-120 +3B. 120-120 +3 %-2 x x %+2C.望+3= X120 %+2 D. 120 120 +3 x %-2 A.迎—-J=5% (1+20%)% B.”&5 x 20%%C 30 +5=30・ 20%% % n 30 _30-c • (1+20%)% %C. 9+^=1D.必+^=13 M 2 3 M5 .十一期间,几名同学共同包租一辆中巴车去红海滩游玩,中巴车的租价为480 元,出发时又有4名学生参加进来,结果每位同学比原来少分摊4元车费.设原 来游玩的同学有x 名,则可得方程( )6 .某市开发区在一项工程招标时,接到甲、乙两个工程队的投标书,工程领导 小组根据甲、乙两队的投标书测算,共有三种施工方案:①甲队单独完成这项 工程,刚好如期完工;②乙队单独完成此项工程要比规定工期多用5天; ③二^^,剩下的工程由乙队单独做,也正好如期完工.某同学设规定的工期 为X 天,根据题意列出了方程:生+上=1,则方案③中被墨水污染的部分应该是x %+57 .某校美术社团为练习素描,他们第一次用120元买了若干本资料,第二次用 240元在同一商家买同样的资料,这次商家每本优惠4元,结果比上次多买了 20本.求第一次买了多少本资料?若设第一次买了*本资料,列方程正确的是 240 120 ।B, G - T=48 .某服装店用10 000元购进一批某品牌夏季衬衫若干件,很快售完;该店又用 14 700元钱购进第二批这种衬衫,所进件数比第一批多40%,每件衬衫的进价 比第一批每件衬衫的进价多10元,求第一批购进多少件衬衫?设第一批购进x件衬衫,则所列方程为() 10 000 10=14 700 (1-40%) %%A 48£_480=4%+4 x 480 480 IB . 丁H 4C 480-480=4%-4 x D 480_480=4 x x+4 A.甲、乙合作了4天B.甲先做了 4天C.甲先做了工程的工 D.甲、乙合作了工程的工200 120 । -- - --- 4 120 240 4 C . - - --- 4 120 240 AD . 1-G 4A. 10 000-10= 14 700% (1+40%)% B. 10 000+10= 14 700 % (1+40%)% D 10 000 +10=14 700, (1-40%) x % C.9.甲、乙二人做某种机械零件,已知甲每小时比乙多做4个,甲做60个所用的时间与乙做40个所用的时间相等,则乙每小时所做的零件的个数为.10.甲、乙工程队分别承接了 160米、200米的管道铺设任务,已知乙比甲每天多铺设5米,甲、乙完成铺设任务的时间相同,问甲每天铺设多少米?设甲每天铺设x米,根据题意可列出方程: .11.有一项工程,若甲队单独做,恰好在规定日期完成,若乙队单独做要超过规定日期3天完成;现在先由甲、乙两队合做2天后,剩下的工程再由乙队单独做,也刚好在规定日期完成,则规定日期为____ 天.12.为了推广高效节能电器,某地实施了财政补贴条例支持高效节能电器的推广使用,某款定速空调在条例实施后,客户每购买一台可获财政补贴200元,若同样用1万元所购买的此款空调台数,条例实施后比条例实施前多10%,则条例实施前此款空调的售价为____ 元.13.济宁市“五城同创”活动中,一项绿化工程由甲、乙两工程队承担.已知甲工程队单独完成这项工作需120天,甲工程队单独工作30天后,乙工程队参与合作,两队又共同工作了 36天完成.乙工程队单独完成这项工作需要天.14.据报道,清明节期间,晋江消防大队出警多次.其中有一次是发生火灾的地方离晋江消防大队有15千米,消防大队接到报警后马上出发,先经过市区3千米,然后直接驶向火灾发生地,共用了;小时,已知消防车驶出市区后的速度是它在市区速度的2倍,则消防车在市区行驶的速度为千米/时.15.杭州到北京的铁路长1 487 km,动车的原平均速度为x km/h,提速后平均速度增加了 70 km/h,由杭州到北京的行驶时间缩短了 3 h,则可列方程为一三.解答16.甲、乙两个工程队均参与某筑路工程,先由甲队筑路60公里,再由乙队完成剩下的筑路工程,已知乙队筑路总公里数是甲队筑路总公里数的邑倍,甲队比3乙队多筑路20天.(1)求乙队筑路的总公里数.(2)若甲、乙两队平均每天筑路公里数之比为5:8,求乙队平均每天筑路多少公里.17.甲、乙两个工程队计划修建一条长15千米的乡村公路,已知甲工程队每天比乙工程队多修路0.5千米,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数的1.5倍.(1)求甲、乙两个工程队每天各修路多少千米?(2)若甲工程队每天的修路费用为0.5万元,乙工程队每天的修路费用为0.4万元,要使两个工程队修路总费用不超过5.2万元,甲工程队至少修路多少天?18.今年我市某公司分两次采购了一批大蒜,第一次花费40万元,第二次花费60万元.已知第一次采购时每吨大蒜的价格比去年的平均价格上涨了 500元.第二次采购时每吨大蒜的价格比去年的平均价格下降了500元,第二次采购的数量是第一次采购数量的两倍.(1)试问去年每吨大蒜的平均价格是多少元?(2)该公司将大蒜加工成蒜粉或蒜片,若单独加工成蒜粉,每天可加工8吨大蒜,每吨大蒜获利1 000元;若单独加工成蒜片,每天可加工12吨,每吨大蒜获利600元.为出口需要,所有采购的大蒜必须在30天内加工完毕,且加工蒜粉的大蒜数量不少于加工蒜片的大蒜数量的一半,为获得最大利润,应将多少吨大蒜加工成蒜粉?最大利润为多少?19.某工程队准备修建一条长1 200 m的道路,由于采用新的施工方式,实际每天修建道路的速度比原计划快20%,结果提前2天完成任务.求实际每天修建道路的长度.20.某人驾车从A地到B地,出发2小时后车子出了点毛病,耽搁了半小时修车,为了弥补耽搁的时间他将车速增加到原来的1.6倍,结果按时到达,已知A,B 两地相距100千米,求某人原来驾车的速度.。

解分式方程专项练习200题(有答案)资料讲解

解分式方程专项练习200题(有答案)资料讲解

解分式方程专项练习 200题(有答案)(8)(4) +2=_-(9)A 】1 J-24时1 ~ 1x-1x 2-l(5)(10)=0.(11) —La - 1 x+1 辽2 — ]JL 』咒 (13)- +3=—X-22-X(19)'; -一=一 =1覆-2 x 2 - 4(12)(X-L )(x-2)^FT =1'二 + = 6 时 1 K - 1x 2-l(14)(15)(20)(18)5a- 4x _ 2 3x _ 6(21)3K__2K_2K-541=0(26)s-i_ ie xH 工+i /_]-疋_](22)$亠一X_1x2-l(24)4 .5 _ 10-I2.3丈K+1(29)(30) - 1 =1 .工―1 F-1(31)x-5 5-x 2 (32)LR「"33)—匚■. - :: 24 _ SX£+2I x2 - 4(38) (36)(47)1 - it 7^21=12(43)''K- 1(48)□ 1(49)d l . ■-'(45)—£ 一X 工一(50)(56) ■12K- 4 y-2 2(57)2 12(58)(54)(55)^-4_2x+5 _JL2K- 4=3x - 6 1丄+ .2 :=1/-9+!- x s+3(61)(67) (65) (70)(76)(73)(72) (79)(77)-2-2K(75)(81)(82)2_361+lT 1 - K*\2-l(88)(84)x+2_ 16H+2x - 2 s£ - 4(89)(85)x _37^2(90)K - 2x+2丄丄3 ___________(97) •;(91)—x-1_2_=1x+1(94)(95)5 工一4 4 英+10x - 2 =3K -6x+1K-l x2=1;(100)对4x+1(92)(101)(x-D (x+2) _ 7^1=° 1 _ 2 :-_ x+1 1 - z| p-i(106) (104) (102) (103)2x+l 对L(108)工+22+K(109)(105)(iii )二j 一二一L 一2X-11-2X(116) ■'■ - 1- _ ■况 T?-1盘 _ ]g _________ 3_亠(耳+2) ( x _ 1) x _ 1(113) - - -■ -=1 .a_ 1a £-2a+l am 9 I 7 m 2 一 3+7m 15(115)(112) (117)(114)汀3- 4 S 2-6H9 点 5(119)(121)- - __ ;K+33 _ - 9(126)(122)(127)(123)2^+93x-9= \-3 2(128)(124)(129)2x+2 (125) (130)(131)(136)(13「— 1 4 —疋(137) 「+2=—x - 3 3 _K(133)(138) 1235(134) (139)X 2X_1_2X£-(140)(141) 2 _ 3 _ 6巫 ]_门_/(147)買+2 _工+£__/+临_工+£ x+1 工+3 x+5 工+7 (143)掘吃时5二时3兀+4(148)=1 - K+1 K+4-it+2 K+3(144) (149)(145) (150)(156)(152) 1 1 _®T5 K +3+6- 2r"2x 2 -18(157)+1(153)g 十2时? 丁 4i 2 -8 1_2亶(158) '■x _ 2 x+2(155)(154) (159)(160)x-2工+216x+2 x _ 2 / 一 q(161)3000 _ go二3000x (1+2C%)工(166)(162)——-4x- 3 3i-6(167)x 43x 『「9 / —乱(163) (165)2 1(164)1 五_ 2K+2工工 -2(168)(169)(170)a _ 3 z~7x _0 x _2+ 二 +x+2 x-h3 y+6 x+7竺=^K-3K-3l96_2x-l _3^-l *工2 _r+4 4 _ x3(175) ——K 2+2I K 2 — 2i(173)號吟寻=。

分式方程练习题及答案

分式方程练习题及答案

分式方程练习题及答案1. 问题描述分式方程是一种含有分数的方程,方程中包含有未知数,并且未知数是作为分式的存在。

解分式方程通常需要使用到一些分式方程的性质以及灵活运用运算法则。

本文将提供一些分式方程的练习题,并附上答案及解析,希望能帮助读者更好地掌握分式方程的解题方法。

2. 练习题题目 1解方程:$$\\frac{x}{2} + \\frac{x}{3} = 4$$题目 2解方程:$$\\frac{2}{x} + \\frac{3}{x+1} = \\frac{5}{x^2 + x}$$题目 3解方程:$$\\frac{x}{4} - \\frac{x+1}{3} = \\frac{x-2}{6}$$题目 4解方程:$$\\frac{1}{2x-1} + \\frac{1}{3} = \\frac{4x+1}{6x-3}$$ 题目 5解方程:$$\\frac{1}{x} + \\frac{1}{x-2} = \\frac{3}{x-1}$$3. 答案与解析题目 1解方程:$$\\frac{x}{2} + \\frac{x}{3} = 4$$解析:首先,我们可以将方程中的分数进行通分,得到$$\\frac{3x}{6} + \\frac{2x}{6} = 4$$。

将分数相加,得到$$\\frac{5x}{6} = 4$$接下来,我们可以将方程两边都乘以6,消去分母的值,得到5x=24。

最后,将方程两边都除以5,得到解$$x = \\frac{24}{5}$$。

所以,方程的解为$$x = \\frac{24}{5}$$。

题目 2解方程:$$\\frac{2}{x} + \\frac{3}{x+1} = \\frac{5}{x^2 + x}$$解析:首先,我们可以将方程中的分数进行通分,得到$$\\frac{2(x+1)}{x(x+1)} + \\frac{3x}{x(x+1)} = \\frac{5}{x^2 + x}$$将分数相加并合并同类项,得到$$\\frac{2(x+1) + 3x}{x(x+1)} = \\frac{5}{x^2 + x}$$。

分式方程专项试题精选(含答案解析)

分式方程专项试题精选(含答案解析)

分式方程专项测试题一、选择题1.某市高校举行运动会,从商场购买一定数量的笔袋和笔记本作为奖品.若每个笔袋的价格比每个笔记本的价格多3元,且用200元购买笔记本的数量与用350元购买笔袋的数量相同.设每个笔记本的价格为x元,则下列所列方程正确的是()A. =B. =C. =D. =2.九年级学生去距学校10km的博物馆参观,一部分学生骑自行车先走,过了20min后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.设骑车学生的速度为xkm/h,则所列方程正确的是()A. =﹣ B. =﹣20 C. =+D. =+203.张三和李四两人加工同一种零件,每小时张三比李四多加工5个零件,张三加工120个这种零件与李四加工100个这种零件所用时间相等,求张三和李四每小时各加工多少个这种零件?若设张三每小时经过这种零件x个,则下面列出的方程正确的是()A. =B. =C. =D. =4.为迎接“六一”儿童节,某儿童品牌玩具专卖店购进了A、B两类玩具,其中A类玩具的进价比B类玩具的进价每个多3元,经调查:用900元购进A类玩具的数量与用750元购进B类玩具的数量相同.设A类玩具的进价为m元/个,根据题意可列分式方程为()A.B.C.D.5.某生态示范园,计划种植一批核桃,原计划总产量达36万千克,为了满足市场需求,现决定改良核桃品种,改良后平均每亩产量是原计划的1.5倍,总产量比原计划增加了9万千克,种植亩数减少了20亩,则原计划和改良后平均每亩产量各多少万千克?设原计划每亩平均产量x万千克,则改良后平均每亩产量为1.5x万千克,根据题意列方程为()A.﹣=20 B.﹣=20C.﹣=20 D. +=206.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是()A. =B. =C. =D. =7.某商店销售一种玩具,每件售价90元,可获利15%,求这种玩具的成本价.设这种玩具的成本价为x元,依题意列方程,正确的是()A. =15% B. =15% C.90﹣x=15% D.x=90×15%8.关于x的分式方程+3=有增根,则增根为()A.x=1 B.x=﹣1 C.x=3 D.x=﹣39.甲乙两地相距420千米,新修的高速公路开通后,在甲、乙两地行驶的长途客运车平均速度是原来的1.5倍,进而从甲地到乙地的时间缩短了2小时.设原来的平均速度为x千米/时,可列方程为()A. +=2 B.﹣=2C. +=D.﹣=10.甲种污水处理器处理25吨的污水与乙种污水处理器处理35吨的污水所用时间相同,已知乙种污水处理器每小时比甲种污水处理器多处理20吨的污水,求两种污水处理器的污水处理效率.设甲种污水处理器的污水处理效率为x吨/小时,依题意列方程正确的是()A.B.C.D.11.已知A、C两地相距40千米,B、C两地相距50千米,甲乙两车分别从A、B两地同时出发到C 地.若乙车每小时比甲车多行驶12千米,则两车同时到达C地.设乙车的速度为x千米/小时,依题意列方程正确的是()A.B.C.D.12.某工厂计划生产210个零件,由于采用新技术,实际每天生产零件的数量是原计划的1.5倍,因此提前5天完成任务.设原计划每天生产零件x个,依题意列方程为()A.﹣=5 B.﹣=5C.﹣=5 D.13.某校为了丰富学生的校园生活,准备购买一批陶笛,已知A型陶笛比B型陶笛的单价低20元,用2700元购买A型陶笛与用4500购买B型陶笛的数量相同,设A型陶笛的单价为x元,依题意,下面所列方程正确的是()A. =B. =C. =D. =14.货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x千米/小时,依题意列方程正确的是()A.B.C.D.15.若关于x的分式方程+=2有增根,则m的值是()A.m=﹣1 B.m=0 C.m=3 D.m=0或m=316.某次列车平均提速vkm/h,用相同的时间,列车提速前行驶skm,提速后比提速前多行驶50km.设提速前列车的平均速度为xkm/h,则列方程是()A. =B. =C. =D. =17.甲、乙两人加工一批零件,甲完成120个与乙完成100个所用的时间相同,已知甲比乙每天多完成4个.设甲每天完成x个零件,依题意下面所列方程正确的是()A. =B. =C. =D. =18.从甲地到乙地有两条公路,一条是全长450公里的普通公路,一条是全长330公里的高速公路,某客车在高速公路上行驶的平均速度比在普通公路上快35公里/小时,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半.如果设该客车由高速公路从甲地到乙地所需时间为x小时,那么x满足的分式方程是()A. =×2 B. =﹣35C.﹣=35 D.﹣=3519.小明上月在某文具店正好用20元钱买了几本笔记本,本月再去买时,恰遇此文具店搞优惠酬宾活动,同样的笔记本,每本比上月便宜1元,结果小明只比上次多用了4元钱,却比上次多买了2本.若设他上月买了x本笔记本,则根据题意可列方程()A. =1 B. =1 C. =1 D. =120.今年我市工业试验区投资50760万元开发了多个项目,今后还将投资106960万元开发多个新项目,每个新项目平均投资比今年每个项目平均投资多500万元,并且新增项目数量比今年多20个.假设今年每个项目平均投资是x万元,那么下列方程符合题意的是()A.﹣=20 B.﹣=20C.﹣=500 D.﹣=500二、填空题21.某市为处理污水,需要铺设一条长为5000m的管道,为了尽量减少施工对交通所造成的影响,实际施工时每天比原计划多铺设20m,结果提前15天完成任务.设原计划每天铺设管道x m,则可得方程.22.制作某种机器零件,小明做220个零件与小芳做180个零件所用的时间相同,已知小明每小时比小芳多做20个零件.设小芳每小时做x个零件,则可列方程为.23.A、B两地相距60千米,若骑摩托车走完全程可比骑自行车少用小时,已知摩托车的速度是自行车速度的2倍,求自行车的速度.设骑自行车的速度为x千米/时,根据题意可列方程为.24.若分式方程﹣=2有增根,则这个增根是.25.若关于x的方程﹣1=0有增根,则a的值为.26.小明上周三在超市恰好用10元钱买了几袋牛奶,周日再去买时,恰遇超市搞优惠酬宾活动,同样的牛奶,每袋比周三便宜0.5元,结果小明只比上次多用了2元钱,却比上次多买了2袋牛奶.若设他上周三买了x袋牛奶,则根据题意列得方程为.27.分式方程的解x= .28.分式方程=的解为.三、解答题29.解分式方程:.30.解方程组和分式方程:(1)(2).参考答案与试题解析一、选择题1.某市高校举行运动会,从商场购买一定数量的笔袋和笔记本作为奖品.若每个笔袋的价格比每个笔记本的价格多3元,且用200元购买笔记本的数量与用350元购买笔袋的数量相同.设每个笔记本的价格为x元,则下列所列方程正确的是()A. =B. =C. =D. =【考点】由实际问题抽象出分式方程.【分析】设每个笔记本的价格为x元,根据“用200元购买笔记本的数量与用350元购买笔袋的数量相同”这一等量关系列出方程即可.【解答】解:设每个笔记本的价格为x元,则每个笔袋的价格为(x+3)元,根据题意得: =,故选B.【点评】本题考查了由实际问题抽象出分式方程的知识,解题的关键是能够找到概括题目全部含义的等量关系,难度不大.2.九年级学生去距学校10km的博物馆参观,一部分学生骑自行车先走,过了20min后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.设骑车学生的速度为xkm/h,则所列方程正确的是()A. =﹣ B. =﹣20 C. =+D. =+20【考点】由实际问题抽象出分式方程.【分析】表示出汽车的速度,然后根据汽车行驶的时间等于骑车行驶的时间减去时间差列方程即可.【解答】解:设骑车学生的速度为xkm/h,则汽车的速度为2xkm/h,由题意得, =+.故选C.【点评】本题考查了实际问题抽象出分式方程,读懂题目信息,理解两种行驶方式的时间的关系是解题的关键.3.张三和李四两人加工同一种零件,每小时张三比李四多加工5个零件,张三加工120个这种零件与李四加工100个这种零件所用时间相等,求张三和李四每小时各加工多少个这种零件?若设张三每小时经过这种零件x个,则下面列出的方程正确的是()A. =B. =C. =D. =【考点】由实际问题抽象出分式方程.【分析】根据每小时张三比李四多加工5个零件和张三每小时加工这种零件x个,可知李四每小时加工这种零件的个数,根据张三加工120个这种零件与李四加工100个这种零件所用时间相等,列出方程即可.【解答】解:设张三每小时加工这种零件x个,则李四每小时加工这种零件(x﹣5)个,由题意得, =,故选B.【点评】本题考查的是列分式方程解应用题,根据题意准确找出等量关系是解题的关键.4.为迎接“六一”儿童节,某儿童品牌玩具专卖店购进了A、B两类玩具,其中A类玩具的进价比B类玩具的进价每个多3元,经调查:用900元购进A类玩具的数量与用750元购进B类玩具的数量相同.设A类玩具的进价为m元/个,根据题意可列分式方程为()A.B.C.D.【考点】由实际问题抽象出分式方程.【分析】根据题意B类玩具的进价为(m﹣3)元/个,根据用900元购进A类玩具的数量与用750元购进B类玩具的数量相同这个等量关系列出方程即可.【解答】解:设A类玩具的进价为m元/个,则B类玩具的进价为(m﹣3)元/个,由题意得, =,故选:C.【点评】本题考查的是列分式方程解应用题,找到等量关系是解决问题的关键.5.某生态示范园,计划种植一批核桃,原计划总产量达36万千克,为了满足市场需求,现决定改良核桃品种,改良后平均每亩产量是原计划的1.5倍,总产量比原计划增加了9万千克,种植亩数减少了20亩,则原计划和改良后平均每亩产量各多少万千克?设原计划每亩平均产量x万千克,则改良后平均每亩产量为1.5x万千克,根据题意列方程为()A.﹣=20 B.﹣=20C.﹣=20 D. +=20【考点】由实际问题抽象出分式方程.【分析】根据题意可得等量关系:原计划种植的亩数﹣改良后种植的亩数=20亩,根据等量关系列出方程即可.【解答】解:设原计划每亩平均产量x万千克,由题意得:﹣=20,故选:A.【点评】此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系.6.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是()A. =B. =C. =D. =【考点】由实际问题抽象出分式方程.【分析】根据现在生产600台机器的时间与原计划生产450台机器的时间相同,所以可得等量关系为:现在生产600台机器时间=原计划生产450台时间.【解答】解:设原计划每天生产x台机器,则现在可生产(x+50)台.依题意得: =.故选:A.【点评】此题主要考查了列分式方程应用,利用本题中“现在平均每天比原计划多生产50台机器”这一个隐含条件,进而得出等式方程是解题关键.7.某商店销售一种玩具,每件售价90元,可获利15%,求这种玩具的成本价.设这种玩具的成本价为x元,依题意列方程,正确的是()A. =15% B. =15% C.90﹣x=15% D.x=90×15%【考点】由实际问题抽象出分式方程.【分析】设这种玩具的成本价为x元,根据每件售价90元,可获利15%,可列方程求解.【解答】解:设这种玩具的成本价为x元,根据题意得=15%.故选A.【点评】本题考查由实际问题抽象出分式方程,关键是设出未知数,根据利润率=(售价﹣成本)÷成本列方程.8.关于x的分式方程+3=有增根,则增根为()A.x=1 B.x=﹣1 C.x=3 D.x=﹣3【考点】分式方程的增根.【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母(x﹣1)=0,得到x=1,然后代入化为整式方程的方程,检验是否符合题意.【解答】解:方程两边都乘(x﹣1),得7+3(x﹣1)=m,∵原方程有增根,∴最简公分母x﹣1=0,解得x=1,当x=1时,m=7,这是可能的,符合题意.故选:A.【点评】本题考查了分式方程的增根,关于增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程,检验是否符合题意.9.甲乙两地相距420千米,新修的高速公路开通后,在甲、乙两地行驶的长途客运车平均速度是原来的1.5倍,进而从甲地到乙地的时间缩短了2小时.设原来的平均速度为x千米/时,可列方程为()A. +=2 B.﹣=2C. +=D.﹣=【考点】由实际问题抽象出分式方程.【专题】行程问题.【分析】设原来的平均速度为x千米/时,高速公路开通后平均速度为1.5x千米/时,根据走过相同的距离时间缩短了2小时,列方程即可.【解答】解:设原来的平均速度为x千米/时,由题意得,﹣=2.故选:B.【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.10.甲种污水处理器处理25吨的污水与乙种污水处理器处理35吨的污水所用时间相同,已知乙种污水处理器每小时比甲种污水处理器多处理20吨的污水,求两种污水处理器的污水处理效率.设甲种污水处理器的污水处理效率为x吨/小时,依题意列方程正确的是()A.B.C.D.【考点】由实际问题抽象出分式方程.【专题】工程问题.【分析】设甲种污水处理器的污水处理效率为x吨/小时,则乙种污水处理器的污水处理效率为(x+20)吨/小时,根据甲种污水处理器处理25吨的污水与乙种污水处理器处理35吨的污水所用时间相同,列出方程.【解答】解:设甲种污水处理器的污水处理效率为x吨/小时,则乙种污水处理器的污水处理效率为(x+20)吨/小时,由题意得, =.故选:B.【点评】本题考查了由实际问题抽象出分式方程,关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.11.已知A、C两地相距40千米,B、C两地相距50千米,甲乙两车分别从A、B两地同时出发到C 地.若乙车每小时比甲车多行驶12千米,则两车同时到达C地.设乙车的速度为x千米/小时,依题意列方程正确的是()A.B.C.D.【考点】由实际问题抽象出分式方程.【专题】行程问题.【分析】设乙车的速度为x千米/小时,则甲车的速度为(x﹣12)千米/小时,根据用相同的时间甲走40千米,乙走50千米,列出方程.【解答】解:设乙车的速度为x千米/小时,则甲车的速度为(x﹣12)千米/小时,由题意得, =.故选:B.【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.12.某工厂计划生产210个零件,由于采用新技术,实际每天生产零件的数量是原计划的1.5倍,因此提前5天完成任务.设原计划每天生产零件x个,依题意列方程为()A.﹣=5 B.﹣=5C.﹣=5 D.【考点】由实际问题抽象出分式方程.【分析】设原计划每天生产零件x个,则实际每天生产零件为1.5x个,根据提前5天完成任务,列方程即可.【解答】解:设原计划每天生产零件x个,则实际每天生产零件为1.5x个,由题意得,﹣=5.故选:A.【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程即可.13.某校为了丰富学生的校园生活,准备购买一批陶笛,已知A型陶笛比B型陶笛的单价低20元,用2700元购买A型陶笛与用4500购买B型陶笛的数量相同,设A型陶笛的单价为x元,依题意,下面所列方程正确的是()A. =B. =C. =D. =【考点】由实际问题抽象出分式方程.【专题】销售问题.【分析】设A型陶笛的单价为x元,则B型陶笛的单价为(x+20)元,根据用2700元购买A型陶笛与用4500购买B型陶笛的数量相同,列方程即可.【解答】解:设A型陶笛的单价为x元,则B型陶笛的单价为(x+20)元,由题意得, =.故选:D.【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.14.货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x千米/小时,依题意列方程正确的是()A.B.C.D.【考点】由实际问题抽象出分式方程.【分析】题中等量关系:货车行驶25千米与小车行驶35千米所用时间相同,列出关系式.【解答】解:根据题意,得.故选:C.【点评】理解题意是解答应用题的关键,找出题中的等量关系,列出关系式.15.若关于x的分式方程+=2有增根,则m的值是()A.m=﹣1 B.m=0 C.m=3 D.m=0或m=3【考点】分式方程的增根.【分析】方程两边都乘以最简公分母(x﹣3),把分式方程化为整式方程,再根据分式方程的增根就是使最简公分母等于0的未知数的值求出x的值,然后代入进行计算即可求出m的值.【解答】解:方程两边都乘以(x﹣3)得,2﹣x﹣m=2(x﹣3),∵分式方程有增根,∴x﹣3=0,解得x=3,∴2﹣3﹣m=2(3﹣3),解得m=﹣1.故选A.【点评】本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.16.某次列车平均提速vkm/h,用相同的时间,列车提速前行驶skm,提速后比提速前多行驶50km.设提速前列车的平均速度为xkm/h,则列方程是()A. =B. =C. =D. =【考点】由实际问题抽象出分式方程.【分析】首先根据行程问题中速度、时间、路程的关系:时间=路程÷速度,用列车提速前行驶的路程除以提速前的速度,求出列车提速前行驶skm用的时间是多少;然后用列车提速后行驶的路程除以提速后的速度,求出列车提速后行驶s+50km用的时间是多少;最后根据列车提速前行驶skm和列车提速后行驶s+50km时间相同,列出方程即可.【解答】解:列车提速前行驶skm用的时间是小时,列车提速后行驶s+50km用的时间是小时,因为列车提速前行驶skm和列车提速后行驶s+50km时间相同,所以列方程是=.故选:A.【点评】此题主要考查了由实际问题抽象出分式方程问题,解答此类问题的关键是分析题意找出相等关系,(1)在确定相等关系时,一是要理解一些常用的数量关系和一些基本做法,如行程问题中的相遇问题和追击问题,最重要的是相遇的时间相等、追击的时间相等.(2)列分式方程解应用题要多思、细想、深思,寻求多种解法思路.17.甲、乙两人加工一批零件,甲完成120个与乙完成100个所用的时间相同,已知甲比乙每天多完成4个.设甲每天完成x个零件,依题意下面所列方程正确的是()A. =B. =C. =D. =【考点】由实际问题抽象出分式方程.【分析】根据题意设出未知数,根据甲所用时间=乙所用时间列出分式方程即可.【解答】解:设甲每天完成x个零件,则乙每天完成(x﹣4)个,由题意得, =,故选:A.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.18.从甲地到乙地有两条公路,一条是全长450公里的普通公路,一条是全长330公里的高速公路,某客车在高速公路上行驶的平均速度比在普通公路上快35公里/小时,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半.如果设该客车由高速公路从甲地到乙地所需时间为x小时,那么x满足的分式方程是()A. =×2 B. =﹣35C.﹣=35 D.﹣=35【考点】由实际问题抽象出分式方程.【分析】设出未知数,根据客车在高速公路上行驶的平均速度比在普通公路上快35公里/小时,列出方程即可.【解答】解:设该客车由高速公路从甲地到乙地所需时间为x小时,那么由普通公路从甲地到乙地所需时间为2x,由题意得,﹣=35,故选:D.【点评】本题考查的是列分式方程解应用题,正确设出未知数、找出合适的等量关系是解题的关键.19.小明上月在某文具店正好用20元钱买了几本笔记本,本月再去买时,恰遇此文具店搞优惠酬宾活动,同样的笔记本,每本比上月便宜1元,结果小明只比上次多用了4元钱,却比上次多买了2本.若设他上月买了x本笔记本,则根据题意可列方程()A. =1 B. =1 C. =1 D. =1【考点】由实际问题抽象出分式方程.【分析】由设他上月买了x本笔记本,则这次买了(x+2)本,然后可求得两次每本笔记本的价格,由等量关系:每本比上月便宜1元,即可得到方程.【解答】解:设他上月买了x本笔记本,则这次买了(x+2)本,根据题意得:﹣=1,即:﹣=1.故选B.【点评】此题考查了分式方程的应用.注意准确找到等量关系是关键.20.今年我市工业试验区投资50760万元开发了多个项目,今后还将投资106960万元开发多个新项目,每个新项目平均投资比今年每个项目平均投资多500万元,并且新增项目数量比今年多20个.假设今年每个项目平均投资是x万元,那么下列方程符合题意的是()A.﹣=20 B.﹣=20C.﹣=500 D.﹣=500【考点】由实际问题抽象出分式方程.【分析】根据“今后项目的数量﹣今年项目的数量=20”得到分式方程.【解答】解:∵今后项目的数量﹣今年的数量=20,∴﹣=20.故选:A.【点评】本题考查了由实际问题抽象出分式方程.找到关键描述语,找到等量关系是解决问题的关键.二、填空题21.某市为处理污水,需要铺设一条长为5000m的管道,为了尽量减少施工对交通所造成的影响,实际施工时每天比原计划多铺设20m,结果提前15天完成任务.设原计划每天铺设管道x m,则可得方程﹣=15 .【考点】由实际问题抽象出分式方程.【分析】设原计划每天铺设管道x m,则实际每天铺设管道(x+20)m,根据题意可得,实际比原计划少用15天完成任务,据此列方程即可.【解答】解:设原计划每天铺设管道x m,则实际每天铺设管道(x+20)m,由题意得,﹣=15.故答案为:﹣=15.【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.22.制作某种机器零件,小明做220个零件与小芳做180个零件所用的时间相同,已知小明每小时比小芳多做20个零件.设小芳每小时做x个零件,则可列方程为=.【考点】由实际问题抽象出分式方程.【分析】设小芳每小时做x个零件,则小明每小时做(x+20)个零件,根据小明做220个零件与小芳做180个零件所用的时间相同,列方程即可.【解答】解:设小芳每小时做x个零件,则小明每小时做(x+20)个零件,由题意得, =.故答案为: =.【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.23. A、B两地相距60千米,若骑摩托车走完全程可比骑自行车少用小时,已知摩托车的速度是自行车速度的2倍,求自行车的速度.设骑自行车的速度为x千米/时,根据题意可列方程为﹣=.【考点】由实际问题抽象出分式方程.【分析】设骑自行车的速度为x千米/时,则摩托车的速度为2x千米/小时,根据骑摩托车走完全程可比骑自行车少用小时,列方程即可.【解答】解:设骑自行车的速度为x千米/时,则摩托车的速度为2x千米/小时,由题意得,﹣=.故答案为:﹣=.【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.24.若分式方程﹣=2有增根,则这个增根是x=1 .【考点】分式方程的增根.【专题】计算题.【分析】根据分式方程有增根,让最简公分母为0确定增根,得到x﹣1=0,求出x的值.【解答】解:根据分式方程有增根,得到x﹣1=0,即x=1,则方程的增根为x=1.故答案为:x=1【点评】此题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.25.(2014•天水)若关于x的方程﹣1=0有增根,则a的值为﹣1 .【考点】分式方程的增根.【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x﹣1=0,得到x=1,然后代入化为整式方程的方程算出未知字母的值.【解答】解:方程两边都乘(x﹣1),得。

分式方程练习题精选(含答案)

分式方程练习题精选(含答案)

分式圆程训练题之阳早格格创做一、 采用题:1.以下是圆程211x x x -=-去分母的截止,其中精确的是. 2.A .2(1)1x x --= B .2221x x --= C .2222x x x x --=- D .2222x x x x -+=-2.正在下列圆程中,闭于x 的分式圆程的个数有. ①0432212=+-x x ②.4=a x ③;4=x a ④.;1392=+-x x ⑤;621=+x ⑥211=-+-a x a x .3.分式25m +的值为1时,m 的值是.A .2 B .-2 C .-3D .34.没有解下列圆程,推断下列哪个数是圆程21311323x x x x =+++--的解.A .x=1B .x=-1C .x=3D .x=-35.若闭于x 的圆程122x m x x +=++有删根,则m 的值为.A .1B .-1C .-2D .26.若分式x2-12(x+1)的值等于0,则x 的值为 A 、1 B 、±1 C 、12D 、-17.赵强共教借了一本书籍,共280页,要正在二周借期内读完,当他读了一半时,创造通常每天要多读21页才搞正在借期内读完.他读了前一半时,仄衡每天读几页?如果设读前一半时,仄衡每天读x 页,则下列圆程中,精确的是.A 、1421140140=-+x xB 、1421280280=++x x c 、1211010=++x x D 、1421140140=++x x8.闭于x 的圆程2354ax a x +=-的根为x =2,则a 应与值.A.1B.3 C.-2D.-39.正在正数范畴内定义一种运算☆,其准则为a ☆b =b a 11+,根据那个准则x ☆23)1(=+x 的解为.A .32=x B .1=x C .32-=x 或者1D .32=x 或者1-10.“五一”江北火乡文化旅游节功夫,几名共教包租一辆里包车前去旅游,里包车的租价为180元,出收时又减少了二名共教,截止每个共教比本去少摊了3元钱车费,设介进游览的共教共x 人,则所列圆程为A .32180180=+-x xB .31802180=-+x xC .32180180=--x xD .31802180=--x x11.李教授正在乌板上出示了如下题目:“已知圆程012=++k x x ,试增加一个条件,使圆程的解是x=-1”后,小颖的回问是:“增加k=0的条件”;小明的回问是:“增加k=2的条件”,则您认为.A 、惟有小颖的回问精确B 、小明、小颖的回问皆精确C 惟有小明的回问精确D 小明、小颖的回问皆没有精确12.某工天调去72人掘土战运土,已知3人掘出的土1人恰佳能局部运走,何如调配劳能源才使掘掘出去的土能即时运走,且没有窝工,办理此问题,可设派x 人掘土,其余人运土,列圆程:①723x x -=②723x x -=③372x x +=④372x x =-上述所列圆程,精确的有.A .1个 B .2个 C .3个 D .4个二挖空题:13.若分式11--x x 的值为0,则x 的值等于14.若分式圆程x m x x -=--2524无解,那么m 的值应为15.某项工程克日完毕,甲单独搞提前1天完毕,乙单独搞改期2天完工,现二人合做1天后,余下的工程由乙队单独搞,恰佳定期完工,供该工程克日天.16.阅读资料:圆程1111123x x x x -=-+--的解为1x =,圆程1111134x x x x -=----的解为x=2, 圆程11111245x x x x -=-----的解为3x =,…请写出能反映上述圆程普遍顺序的圆程,并曲 交写出那个圆程的解是.解问题:17.解圆程)2)(1(311+-=--x x x x 18.先化简代数式1121112-÷⎪⎭⎫ ⎝⎛+-+-+x x x x x x ,而后采用一个使您喜欢的x 的值代进供值.19若圆程122-=-+x a x 的解是正数,供a 的与值范畴.20.若解闭于x 的分式圆程234222+=-+-x x mx x 会爆收删根,供m 的值.21.A 、B 二天的距离是80公里,一辆大众汽车从A 天驶出3小时后,一辆小汽车也从A 天出收,它的速度是大众汽车的3倍,截止小汽车比大众汽车早20分钟到达B 天,供二车的速度.22.华联商厦进货员正在苏州创造一种应季衬衫,预料能滞销商场,便用80000元买进所有衬衫,还慢需2倍那种衬衫,经人介绍又正在上海用了176000元买进所需衬衫,不过单价比苏州贵4元,商厦按每件58元出卖,销路很佳,末尾剩下的150件按八合出卖,很快出卖完,问商厦那笔死意赢利几元?参照问案1-12:DBCABAACCAAB13.x=-114.m=-815.x=416.11112112x n x n x n x n -=--+-+---- x=n17.X=-118.1xx -19.a<2且a ≠-420.m=-4或者m=621.小汽车战大众汽车的速度是60公里/时战20公里/时.22.设衬衫的单价为x元,则8000017600024x x⨯=+,得x=40, 商厦那笔死意赢利90260元。

分式方程计算题100道及答案优秀7篇

分式方程计算题100道及答案优秀7篇

分式方程计算题100道及答案优秀7篇智力题推荐【51-60 篇一71 李先生到16层楼去谈生意,但他只乘电梯到14层楼,然后再步行爬楼梯上去,为什么?李先生个子太矮,按不到16楼的电梯按键72 一个小孩和一个大人在漆黑的夜晚走路,小孩是大人的儿子,大人却不是小孩的父亲,请问为什么?因为他们是母子关系73 什么字全世界通用?阿拉伯数字74 一个人的前面放了一本又厚又宽的大书,他想跨过去可怎么也跨不过去,你知道这是什么原因吗?因为书就放在墙角75 人的长寿秘诀是什么?保持呼吸,不要断气76 什么时候看到的月亮最大?登上月球时77 什么人一年中只工作一天?圣诞老人78 什么事睁一只眼闭一只眼比较好?射击79 为什么刚出生的小孩只有一只左眼睛?人本来就只有一只左眼睛80 哪颗牙最后长出来?假牙分式方程应用题答案篇二初中化学计算题1. 用氯酸钾和二氧化锰的混合物16g,加热制取氧气,待完全反应,冷却后称量,得到11.2g固体物质,计算原混合物中二氧化锰的质量(计算结果保留二位小数)。

1.解:设原混合物中KClO3质量为x,依题意可知完全反应后生成氧气的质量为:16g-11.2g=4.8g(1分)MnO2由2KClO3=====2KCl+3O2↑ (1分)△2.(5分)由硫元素和铜元素组成的一种化合物(硫化物)4.0g,高温条件下在空气中充分煅烧,只得到气体SO2和4.0g固体CuO 。

(1)要使煅烧后的固体CuO完全溶解,可加入适量稀硫酸。

计算至少需要溶质质量分数为10%的稀硫酸多少克?(要求写出计算所需的化学方程式)(2)运用所学知识和上述数据进行分析,这种硫化物的化学式为。

(1)解:设质量为x的这种稀硫酸可与4.0gCuO恰好完全反应CuO + H2SO4 = CuSO4 + H2O80 984.0g 10% xx =49g答:完全溶解这些固体产物至少需要溶质质量分数为10%的稀硫酸49g 。

(2)Cu2S3.侯德榜是我国著名的化学家。

最新解分式方程专项练习200题(精心整理有答案)

最新解分式方程专项练习200题(精心整理有答案)

解分式方程专项练习200题(有答案)(1)=1﹣;(2)+=1.(3)+=1;(4)+2=.(5)+=(6)+=﹣3.(7)(8).(9)(10)﹣=0.(11)(12).(13)+3=(14)+=.(15)=;(16).(17)(18).(19)﹣=1 (20)=+1.(21);(22).(23)=1;(24).(25);(26).(27);(28).(29)=;(30)﹣=1.(31);(32).(33);(34).(35)=(36)=.(37)(38)(39)(40)(41);(42).(43)=(44).(45)(46)=1﹣.(47);(48).(49)(50).(51)=;(52)=1﹣.(53)(54).(55).(56);(57).(58)=;(59).(60)﹣1=(61)+=.(62)(63).(64)(65).(66).(67)﹣=.(68);(69).(70)(71).(72)(73).(74);(75).(76)(77).(78).(79)(80).(81)(82).(83)(84).(85)(86).(87);(88).(89)﹣1=;(90)﹣=.(91)﹣=1;(92)﹣1=.(93);(94).(95)﹣=1;(96)+=1.(97).(98).(99).(100)+=.(101).(102).(103)+2=.(104).(105)(106)﹣=.(107)+=1.(108)=+3.(109)(110)﹣=1(111)(112).(113)=1.(114)(115)=﹣.(116).(117).(118).(119).(120).(121);(122).(123)(124)(125).(126)(127)+=(128)(129);(130).(131)(132)(133)(134)(135)(136).(137)+2=(138)=﹣.(139).(140).(141).(142).(143).(144)(145).(146)(147)(148)﹣=1﹣.(149)(150).(151);(152).(153)(154)(155).(156)(157).(158);(159);(160);(161).(162);(163).(164);(165).(166);(167).(168)+=+.(169)﹣=﹣.(170)(171).(172);(173)=0.(174)(175).(176)(177).(178)(179).(180)(181).(182).(183)=;(184).(185)=;(186)=.(187);6yue28 (188);(189);(190).(191)=;(192).(193)=1;(194).(195)+=(196)=1;(197)(198)﹣=;(199)﹣=0(m≠n).(200)+=0;(201)+=﹣2.参考答案:(1)去分母得:2x=x﹣2+1,解得:x=﹣1,经检验x=﹣1是分式方程的解;(2)去分母得:x2﹣4x+4+4=x2﹣4,解得:x=﹣3,经检验x=﹣3是分式方程的解3.解方程:(3)去分母得:x﹣5=2x﹣5,解得:x=0,经检验x=0是分式方程的解;(4)去分母得:1﹣x+2x﹣4=﹣1,解得:x=2,经检验x=2是增根,分式方程无解(5)去分母得:x﹣1+2x+2=4,移项合并得:3x=3,解得:x=1,经检验x=1是增根,原分式方程无解;(6)去分母得:1﹣x+1=﹣3x+6,移项合并得:2x=4,解得:x=2,经检验x=2是增根,原分式方程无解(7)由原方程,得1﹣x﹣6+3x=﹣1,即2x=4,解得x=2.经检验x=2是增根.所以,原方程无解.(8)由原方程,得7(x﹣1)+(x+1)=6x,即2x=6,解得x=3.经检验x=3是原方程的根.所以,原方程的解为:x=3(9)方程两边同乘(x﹣2)(x+2),得x(x+2)+2=(x﹣2)(x+2),解得x=﹣3,检验:当x=﹣3时,(x﹣2)(x+2)≠0,所以x=﹣3是原分式方程的解;(10)方程两边同乘x(x﹣1),得3x﹣(x+2)=0,解得x=1,检验:当x=1时,x(x﹣1)=0,x=1是原分式方程的增根.所以,原方程无解(11)去分母额:x+1﹣2(x﹣1)=4,去括号得:x+1﹣2x+2=4,移项合并得:﹣x=1,解得:x=﹣1,经检验x=﹣1是增根,分式方程无解;(12)去分母得:3+x(x﹣2)=(x﹣1)(x﹣2),整理得:﹣2x+3x=2﹣3,精品文档解得:x=﹣1,经检验x=﹣1是分式方程的解(13)去分母得:1+3x﹣6=x﹣1,移项合并得:2x=4,解得:x=2,经检验x=2是增根,分式方程无解;(14)去分母得:2x﹣2+3x+3=6,移项合并得:5x=5,解得:x=1,经检验x=1是增根,分式方程无解(15)去分母得:2x=3x﹣9,解得:x=9,经检验x=9是分式方程的解;(16)去分母得:(x+1)2﹣4=x2﹣1,去括号得:x2+2x+1﹣4=x2﹣1,移项合并得:2x=2,解得:x=1,经检验x=1是增根,分式方程无解(17)去分母得:3(x﹣5)=2x,去括号得:3x﹣15=2x,移项得:3x﹣2x=15,解得:x=15,检验:当x=15时,3(x﹣5)≠0,则原分式方程的解为x=15;(18)去分母得:3(5x﹣4)+3(x﹣2)=4x+10,去括号得:15x﹣12+3x﹣6﹣4x=10,移项合并得:14x=28,解得:x=2,检验:当x=2时,3(x﹣2)=0,则原分式方程无解(19)去分母得:x(x+2)﹣1=x2﹣4,即x2+2x﹣1=x2﹣4,移项合并得:2x=﹣3,解得:x=﹣,经检验是分式方程的解;(20)去分母得:2x=4+x﹣2,移项合并得:x=2,经检验x=2是增根,分式方程无解(21)去分母得:6x﹣15﹣4x2﹣10x+4x2﹣25=0,移项合并得:﹣4x=40,解得:x=﹣10,经检验x=﹣10是分式方程的解;(22)去分母得:(x+1)2﹣4=x2﹣1,整理得:x2+2x+1﹣4=x2﹣1,移项合并得:2x=2,解得:x=1,经检验x=1是增根,分式方程无解(23)去分母得:x(x+2)+6(x﹣2)=x2﹣4,去括号得:x2+2x+6x﹣12=x2﹣4,移项合并得:8x=8,解得:x=1,经检验x=1是分式方程的解;(24)去分母得:4x﹣4+5x+5=10,移项合并得:9x=9,解得:x=1,经检验x=1是增根,分式方程无解(25)方程两边都乘以x﹣2得:x﹣1+2(x﹣2)=1,解方程得:x=2,∵经检验x=2是原方程的增根,∴原方程无解;(26)方程两边都乘以(x+1)(x﹣1)得:(x﹣1)2﹣16=(x+1)2,解得:x=﹣4,∵经检验x=﹣4是原方程的解,∴原方程的解是x=﹣4(27)解:两边同乘x﹣2,得:3+x=﹣2(x﹣2),去括号得:3+x=﹣2x+4,移项合并得:3x=1,解得:x=,经检验,x=是原方程的解;(28)两边同乘(x﹣1)(x+1),得:(x+1)2﹣4=x2﹣1,去括号得:x2+2x+1﹣4=x2﹣1,移项合并得:2x=2,解得:x=1,经检验,x=1是原方程的增根,则原方程无解(29)去分母得:2(x+1)=3x,去括号得:2x+2=3x,解得:x=2,经检验:x=2是原方程的解;(30)去分母得:(x+1)2﹣4=x2﹣1,去括号得:x2+2x+1﹣4=x2﹣1,解得:x=1,经检验:x=1 是原方程的增根,原方程无解(31)去分母得:2(x﹣9)+6=x﹣5,去括号得:2x﹣18+6=x﹣5,解得:x=7;(32)去分母得:3x+15+4x﹣20=2,移项合并得:7x=7,解得:x=1精品文档(33)去分母得:2x﹣18+6=x﹣5,移项合并得:x=7;(34)去分母得:5(x+2)﹣4(x﹣2)=3x,去括号得:5x+10﹣4x+8=3x,移项合并得:2x=18,解得:x=9(35)去分母得:6x=3x+3﹣x,移项合并得:4x=3,解得:x=,经检验x=是原方程的根;(36)去分母得:6x+x(x+1)=(x+4)(x+1),去括号得:6x+x2+x=x2+5x+4,移项合并得:2x=4,解得:x=2,经检验x=2是原方程的根(37)方程两边同乘(x﹣1)(x+1),得:2(x﹣1)﹣x=0,整理解得x=2.经检验x=2是原方程的解.(38)方程两边同乘(x﹣3)(x+3),得:3(x+3)=12,整理解得x=1.经检验x=1是原方程的解(39)方程两边同乘(x+1)(x﹣1),得:(x+1)2﹣4=(x+1)(x﹣1),整理解得x=1.检验x=1是原方程的增根.故原方程无解.(40)方程两边同乘x﹣5,得:3+x+2=3(x﹣5),解得x=10.经检验:x=10是原方程的解(41)方程两边同乘(x﹣3),得:2﹣x﹣1=x﹣3,整理解得x=2,经检验x=2是原方程的解;(42)方程两边同乘2(x﹣1),得:3﹣2=6x﹣6,解得x=,经检验x=是方程的根(43)原方程变形得2x=x﹣1,解得x=﹣1,经检验x=﹣1是原方程的根.∴原方程的解为x=﹣1.(44)两边同时乘以(x2﹣4),得,x(x﹣2)﹣(x+2)2=8,解得x=﹣2.经检验x=﹣2是原方程的增根.∴原分式方程无解(45)方程两边同乘(x﹣2),得:x﹣1﹣3(x﹣2)=1,整理解得x=2.经检验x=2是原方程的增根.∴原方程无解;(46)方程两边同乘(3x﹣8),得:6=3x﹣8+4x﹣7,解得x=3.经检验x=3是方程的根(47)方程两边同乘以(x﹣2),得1﹣x+2(x﹣2)=1,解得x=4,将x=4代入x﹣2=2≠0,所以原方程的解为:x=4;(48)方程两边同乘以(2x+3)(2x﹣3),得﹣2x﹣3+2x﹣3=4x,解得x=﹣,将x=﹣代入(2x+3)(2x﹣3)=0,是增根.所以原方程的解为无解(49)方程两边同乘以(x﹣1)(x+1)得,2(x﹣1)﹣(x+1)=0,解得x=3,经检验x=3是原方程的解,所以原方程的解为x=3;(50)方程两边同乘以(x﹣2)(x+2)得,(x﹣2)2﹣(x﹣2)(x+2)=16,解得x=﹣2,经检验x=﹣2是原方程的增根,所以原方程无解(51)方程两边同乘x(x+1),得5x+2=3x,解得:x=﹣1.检验:将x=﹣1代入x(x+1)=0,所以x=﹣1是原方程的增根,故原方程无解;(52)方程两边同乘(2x﹣5),得x=2x﹣5+5,解得:x=0.检验:将x=0代入(2x﹣5)≠0,故x=0是原方程的解(53)方程两边同乘以(x﹣3)(x+3),精品文档得x﹣3+2(x+3)=12,解得x=3.检验:当x=3时,(x﹣3)(x+3)=0.∴原方程无解;(54)方程的两边同乘(x﹣2),得1﹣2x=2(x﹣2),解得x=.检验:当x=时,(x﹣2)=﹣≠0.∴原方程的解为:x=(55).(55)方程的两边同乘(x+1)(x﹣1),得1﹣3x+3(x2﹣1)=﹣(x+1),3x2﹣2x﹣1=0,(4分)解得:.经检验,x1=1是原方程的增根,是原方程的解.∴原方程的解为x2=﹣.(56);(57).(56)方程两边同乘2(x﹣2),得:3﹣2x=x﹣2,解得x=.检验:当x=时,2(x﹣2)=﹣≠0,故原方程的解为x=;(57)方程两边同乘3(x﹣2),得:3(5x﹣4)=4x+10﹣3(x﹣2),解得x=2.检验:当x=2时,3(x﹣2)=0,所以x=2是原方程的增根(58)=;(59).(58)方程两边同乘以(2x+3)(x﹣1),得5(x﹣1)=3(2x+3)解得:x=﹣14,检验:当x=﹣14时,(2x+3)(x﹣1)≠0所以,x=﹣14是原方程的解;(59)方程两边同乘以2(x﹣1),得2x=3﹣4(x﹣1)解得:,检验:当时,2(x﹣1)≠0∴是原方程的解(60)方程两边都乘以2(3x﹣1)得:4﹣2(3x﹣1)=3,解这个方程得:x=,检验:∵把x=代入2(3x﹣1)≠0,∴x=是原方程的解;(61)原方程化为﹣=,方程两边都乘以(x+3)(x﹣3)得:12﹣2(x+3)=x ﹣3解这个方程得:x=3,检验:∵把x=3代入(x+3)(x﹣3))=0,∴x=3是原方程的增根,即原方程无解(62)方程的两边同乘(x﹣3),得2﹣x﹣1=x﹣3,解得x=2.检验:把x=2代入(x﹣3)=﹣1≠0.∴原方程的解为:x=2.(63)方程的两边同乘6(x﹣2),得3(x﹣4)=2(2x+5)﹣3(x﹣2),解得x=14.检验:把x=14代入6(x﹣2)=72≠0.∴原方程的解为:x=14(64)方程的两边同乘2(3x﹣1),得﹣2﹣3(3x﹣1)=4,解得x=﹣.检验:把x=﹣代入2(3x﹣1)=﹣4≠0.∴原方程的解为:x=﹣;(65)方程两边同乘以(x+2)(x﹣2),得x(x﹣2)﹣(x+2)2=8,精品文档x2﹣2x﹣x2﹣4x﹣4=8,解得x=﹣2,将x=﹣2代入(x+2)(x﹣2)=0,所以原方程无解(66)方程两边同乘以(x﹣2)得:1+(1﹣x)=﹣3(x ﹣2),解得:x=2,检验:把x=2代入(x﹣2)=0,即x=2不是原分式方程的解,则原分式方程的解为:x=2;(67)解:方程两边同乘以(x+1)(x﹣1)得:(x+1)﹣2(x﹣1)=1解得:x=2,检验:当x=2时,(x+1)(x﹣1)≠0,即x=2是原分式方程的解,则原分式方程的解为:x=2(68)方程的两边同乘2(x﹣2),得:1+(x﹣2)=﹣6,解得:x=﹣5.检验:把x=﹣5代入2(x﹣2)=﹣14≠0,即x=﹣5是原分式方程的解,则原方程的解为:x=﹣5.(69)方程的两边同乘x(x﹣1),得:x﹣1+2x=2,解得:x=1.检验:把x=1代入x(x﹣1)=0,即x=1不是原分式方程的解;则原方程无解(70)方程的两边同乘(2x+1)(2x﹣1),得:2(2x+1)=4,解得x=.检验:把x=代入(2x+1)(2x﹣1)=0,即x=不是原分式方程的解.则原分式方程无解.(71)方程的两边同乘(2x+5)(2x﹣5),得:2x(2x+5)﹣2(2x﹣5)=(2x+5)(2x﹣5),解得x=﹣.检验:把x=﹣代入(2x+5)(2x﹣5)≠0.则原方程的解为:x=﹣(72)原式两边同时乘(x+2)(x﹣2),得2x(x﹣2)﹣3(x+2)=2(x+2)(x﹣2),2x2﹣4x﹣3x﹣6=2x2﹣8,﹣7x=﹣2,x=.经检验x=是原方程的根.(73)原式两边同时乘(x2﹣x),得3(x﹣1)+6x=7,3x﹣3+6x=7,9x=10,x=.经检验x=是原方程的根(74)方程两边都乘以(x+1)(x﹣1)得,3(x+1)﹣(x+3)=0,解得x=0,检验:当x=0时,(x+1)(x﹣1)=(0+1)(0﹣1)=﹣1≠0,所以,原分式方程的解是x=0;(75)方程两边都乘以2(x﹣2)得,3﹣2x=x﹣2,解得x=,检验:当x=时,2(x﹣2)=2(﹣2)≠0,所以,原分式方程的解是x=(76)最简公分母为x(x﹣1),去分母得:3x﹣(x+2)=0,去括号合并得:2x=2,解得:x=1,将x=1代入得:x(x﹣1)=0,则x=1为增根,原分式方程无解;(77)方程变形为﹣=1,最简公分母为x﹣3,去分母得:2﹣x﹣1=x﹣3,解得:x=2,将x=2代入得:x﹣3=2﹣3=﹣1≠0,则分式方程的解为x=2(78)去分母得:1﹣x=﹣1﹣2(x﹣2),去括号得:1﹣x=﹣1﹣2x+4,解得:x=2,经检验x=2是增根,原分式方程无解(79)去分母得:x2﹣6=x2﹣2x,解得:x=3,经检验x=3是分式方程的解;精品文档(80)去分母得:x﹣6=2x﹣5,解得:x=﹣1,经检验x=﹣1是分式方程的解(81)去分母得:x=3x﹣6,移项合并得:2x=6,解得:x=3,经检验x=3是分式方程的解;(82)去分母得:(x﹣2)2﹣x2+4=16,整理得:﹣4x+4+4=16,移项合并得:﹣4x=8,解得:x=﹣2,经检验x=﹣2是增根,原分式方程无解(83)方程两边同时乘以y(y﹣1)得,2y2+y(y﹣1)=(3y﹣1)(y﹣1),解得y=.检验:将y=代入y(y﹣1)得,(﹣1)=﹣符合要求,故y=是原方程的根;(84)方程两边同时乘以x2﹣4得,(x﹣2)2﹣(x+2)2=16,解得x=﹣2,检验:将x=2代入x2﹣4得,4﹣4=0.故x=2是原方程的增根,原方程无解(85)去分母得:x﹣3+x﹣2=﹣3,整理得:2x=2,解得:x=1,经检验x=1是分式方程的解;(86)去分母得:x(x﹣1)=(x+3)(x﹣1)+2(x+3),去括号得:x2﹣x=x2﹣x+3x﹣3+2x+6,移项合并得:﹣5x=3,解得:x=﹣,经检验x=﹣是分式方程的解(87)原方程可化为:,方程的两边同乘(2x﹣4),得1+x﹣2=﹣6,解得x=﹣5.检验:把x=﹣5代入(2x﹣4)=﹣14≠0.∴原方程的解为:x=﹣5.(88)原方程可化为:,方程的两边同乘(x2﹣1),得2(x﹣1)+3(x+1)=6,解得x=1.检验:把x=1代入(x2﹣1)=0.∴x=1不是原方程的解,∴原方程无解.(89)去分母得:x(x+1)﹣x2+1=2,去括号得:x2+x﹣x2+1=2,解得:x=1,经检验x=1是增根,分式方程无解;(90)去分母得:(x﹣2)2﹣16=(x+2)2,去括号得:x2﹣4x+4﹣16=x2+4x+4,移项合并得:8x=﹣8,解得:x=﹣1,经检验x=﹣1是分式方程的解(91)去分母得:x(x+1)﹣2(x﹣1)=x2﹣1,去括号得:x2+x﹣2x+2=x2﹣1,解得:x=3,经检验x=是分式方程的解;(92)去分母得:x(x+2)﹣(x+2)(x﹣1)=3,去括号得:x2+2x﹣x2﹣x+2=3,解得:x=1,经检验x=1是增根,原方程无解(93)去分母得:3﹣2=6x﹣6,解得:x=,经检验是分式方程的解;(94)去分母得:15x﹣12=4x+10﹣3x+6,移项合并得:14x=28,解得:x=2,经检验x=2是增根,分式方程无解(95)去分母得:(x+1)2﹣4=x2﹣1,去括号得:x2+2x+1﹣4=x2﹣1,移项合并得:2x=2,解得:x=1,经检验x=1是增根,分式方程无解;(96)去分母得:x﹣5=2x﹣5,解得:x=0,经检验x=0是分式方程的解(97)解:方程的两边同乘(x+2)(x﹣2),得x+2+x﹣2=3,解得x=.检验:把x=代入(x+2)(x﹣2)=﹣≠0.∴原方程的解为:x=(98)去分母两边同时乘以x(x﹣2),精品文档得:4+(x﹣2)=3x,去括号得:4+x﹣2=3x,移项得:x﹣3x=2﹣4,合并同类项得:﹣2x=﹣2,系数化为1得:x=1.把x=1代入x(x﹣2)=﹣1≠0,∴原方程的解是:x=1(99)去分母得:x2﹣9=x2+3x﹣3,移项合并得:3x=﹣6,解得:x=﹣2,经检验x=﹣2是分式方程的解(100)方程的两边同乘(x+1)(x﹣1),得6x+x(x+1)=(x+4)(x﹣1),解得x=﹣1.检验:把x=﹣1代入(x+1)(x﹣1)=0.∴原方程无解(101)方程两边都乘以(x﹣1)(x+2)得,3﹣x(x+2)+(x+2)(x﹣1)=0,解得x=1,检验:当x=1时,(x﹣1)(x+2)=0,所以,x=1是原方程的增根,故原方程无解(102方程两边同时乘以(x+2)(x﹣2),得x(x﹣2)﹣3(x+2)(x﹣2)=8,整理,得x2+x﹣2=0,∴x1=﹣2,x2=1.经检验x1=﹣2是增根,x2=1是原方程的解,∴原方程的解为x2=1(103)方程两边都乘以x(x+1)去分母得:1+2x2+2x=2x2+x,解得x=﹣1,检验:当x=﹣1时,x(x+1)=﹣1×(﹣1+1)=0,所以,x=﹣1不是原方程的解,所以,原分式方程无解(104)原方程可化为:﹣=1,方程的两边同乘(2x﹣5),得x﹣6=2x﹣5,解得x=﹣1.检验:把x=﹣1代入(2x﹣5)=﹣7≠0.∴原方程的解为:x=﹣1(105)方程两边同乘(x﹣1)(x+2),得:x(x+2)=(x﹣1)(x+2)+3化简得2x=x﹣2+3,解得x=1.经检验x=1时,(x﹣1)(x+2)=0,1不是原方程的解,∴原分式方程无解(106)去分母得:x﹣1+2(x+1)=1,去括号得:x﹣1+2x+2=1,移项合并得:3x=0,解得:x=0,经检验x=0是分式方程的解(107)解:去分母得:x2+5x+2=x2﹣x,移项合并得:6x=﹣2,解得:x=﹣,经检验是分式方程的解(108)解:去分母得:x﹣1=3﹣x+3x+6,解得:x=﹣10,经检验x=﹣10是分式方程的解(109)解:去分母得:2(x+1)﹣4=5(x﹣1),2x+2﹣4﹣5x+5=0,﹣3x=﹣3,∴x=1,经检验x=1是增根舍去,所以原方程无解(110)解:﹣=1 ﹣=1(4分)=1,∴a=2.经检验a=2是原方程的解,故此方程的根为:a=2(111)解:原方程可化为:=1+,方程的两边同乘(2x﹣1),得x﹣1=2x﹣1+2,解得x=﹣2.检验:把x=﹣2代入(2x﹣1)=﹣5≠0.∴原方程的解为x=﹣2(112)解:.=,=,(x﹣1)2+9=3(x+2)x2﹣5x+4=0,x1=4,x2=1检验:把x1=4分别代入(x+2)(x﹣1)=18≠0,精品文档∴x1=4是原方程的解;把x2=1分别代入(x+2)(x﹣1)=0,∴x2=1不是原方程的解,∴x=4是原方程的解(113)解:原方程可化为:﹣=1,方程的两边同乘(a﹣1)2,得(a﹣1)(a+1)﹣a2=(a﹣1)2,﹣1=(a﹣1)2,因为(a﹣1)2是非负数,故原方程的无解(114)解:原方程化为:+=﹣,去分母,得5(x+3)+5(x﹣3)=﹣4(x+3)(x﹣3),去括号,整理,得2x2+5x﹣18=0,即(2x+9)(x﹣2)=0,解得x1=﹣,x2=2,经检验,当x=﹣或2时,5(x+3)(x﹣3)≠0,所以,原方程的解为x1=﹣,x2=2(115)解:方程的两边同乘15(m2﹣3+7m),得15(m﹣9)=﹣7(m2﹣3+7m),整理,得7m2+64m﹣156=0,解得m1=2,m2=﹣.检验:把m1=2代入15(m2﹣3+7m)≠0,则m1=2是原方程的根;把m2=﹣代入15(m2﹣3+7m)≠0,则m2=﹣是原方程的根.故原方程的解为:m1=2,m2=﹣(116)解:方程两边同乘以(x+1)(x﹣1),得(x+1)2﹣12=(x+1)(x﹣1),x2+2x+1﹣12=x2﹣1x2+2x﹣11﹣x2+1=0,2x﹣10=02x=10x=5,经检验:x=5是原分式方程的解,所以原方程的解为x=5(117)解:原方程可化为:﹣+=0,方程的两边同乘x2﹣4得:﹣6+2(x+2)=0,解得x=1.检验:把x=1代入x2﹣4=﹣3≠0,方程成立,∴原方程的解为:x=1(118)方程两边同乘最简公分母x(x﹣1),得x+4=3x,解得x=2,检验:当x=2时,x(x﹣1)=2×(2﹣1)=2≠0,∴x=2是原方程的根,故原分式方程的解为x=2(119)方程两边都乘以(x﹣1)(x+1)得,(x﹣2)(x+1)+3(x﹣1)=(x﹣1)(x+1),x2﹣x﹣2+3x﹣3=x2﹣1,2x=4,x=2,检验:当x=2时,(x﹣1)(x+1)≠0,所以,原分式方程的解x=2(120)方程的两边同乘2(x﹣2)(x+2),得3(x+2)﹣2x(x﹣2)=(x﹣2)(x+2),3x+6﹣2x2+4x=x2﹣4,3x2﹣7x﹣10=0,解得x1=﹣1,x2=.经检验:x1=﹣1,x2=是原方程的解(121)去分母得:x﹣3+2(x+3)=12,去括号得:x﹣3+2x+6=12,移项合并得:3x=9,解得:x=3,经检验x=3是增根,分式方程无解;(122)去分母得:x(x+2)﹣x﹣14=2x(x﹣2)﹣x2+4,去括号得:x2+2x﹣x﹣14=2x2﹣4x﹣x2+4,移项合并得:5x=18,解得:x=3.6,经检验x=3.6是分式方程的解(123)解:方程两边同乘3(x﹣3)得2x+9=3(4x﹣7)+6(x﹣3)解得x=3经检验x=3是原方程增根,∴原方程无解(124)方程两边同乘6(x﹣2),得3(5x﹣4)+3(x﹣2)=2(2x+5),整理得:15x﹣12+3x﹣6=4x+10,解得:x=2.检验:将x=2代入6(x﹣2)=6(2﹣2)=0.∴可得x=2是增根,原方程无解.(125)方程化为:=+1,方程两边都乘以(x+3)(x﹣1)得:x+3=4+(x+3)(x﹣1),整理得:x2+x﹣2=0,(x+2)(x﹣1)=0,精品文档解得:x1=﹣2,x2=1,检验:当x=1时,(x+3)(x﹣1)=0,即x=1是增根;当x=﹣2时(x+3)(x﹣1)≠0,即x=﹣2是方程的根,即原方程的解是x=﹣2.(126)方程两边同乘以x(x﹣1)得3(x﹣1)+2x=x+5,3x﹣3+2x=x+5,4x=8,x=2,经检验知:x=2是原方程的解(127).+=x2+2x+5(x+1)=(x+4)(x﹣1)4x=﹣9x=﹣检验:x=﹣时,(x+1)(x﹣1)≠0,所以x=﹣是原分式方程的解(128)解:原方程变形为,,,,∴x2﹣13x+42=x2﹣9x+20,∴x=,检验知x=是方程的根(129)方程的两边同乘x(x+1),得x2+x(x+1)=(2x+2)(x+1),解得x=﹣.检验:把x=﹣代入x(x+1)=﹣≠0.∴原方程的解为:x=﹣;(130)方程的两边同乘(x+1)(x﹣1),得2(x﹣1)+3(x+1)=﹣5,解得x=﹣.检验:把x=﹣代入(x+1)(x﹣1)=≠0.∴原方程的解为:x=﹣(131)方程的两边同乘2(x﹣3),得2(x﹣2)=x﹣3+2,解得x=3.检验:把x=3代入2(x﹣3)=0.x=3是原方程的增根,∴原方程无解.(132)方程的两边同乘(x﹣4),得5﹣x﹣1=x﹣4,解得x=4.检验:把x=4代入(x﹣4)=0.x=4是原方程的增根,∴原方程无解.(133)方程的两边同乘(x+1)(x﹣1),得2(x﹣1)+3(x+1)=6,解得x=1.检验:把x=1代入(x+1)(x﹣1)=0.x=1是原方程的增根,∴原方程无解.(134)方程的两边同乘(x+2)(x﹣2),得(x﹣2)2﹣16=(x+2)2,解得x=﹣2.检验:把x=﹣2代入(x+2)(x﹣2)=0.x=﹣2是原方程的增根,∴原方程无解.(135)方程的两边同乘x(x﹣1),得6x+3(x﹣1)=x+5,解得x=1.检验:把x=1代入x(x﹣1)=0.x=1是原方程的增根,∴原方程无解.(136)方程的两边同乘x(x﹣1),得x2﹣2(x﹣1)=x(x﹣1),解得x=2.检验:把x=2代入x(x﹣1)=2≠0.∴原方程的解为:x=2(137)去分母得:1+2x﹣6=x﹣4,解得:x=1,经检验x=1是分式方程的解;(138)去分母得:15x﹣12=4x+10﹣3(x﹣2),去括号得:15x﹣12=4x+10﹣3x+6,移项合并得:14x=28,解得:x=2,经检验x=2是增根,分式方程无解精品文档(139)解:去分母得:6x﹣3+5x=x+27,移项合并得:10x=30,解得:x=3.经检验x=3是分式方程的解(140)去分母得:3(x﹣2)﹣2(x﹣2)=2,即x﹣2=2,解得:x=4,经检验x=4是分式方程的解(141)解:去分母得:2﹣2x﹣3x﹣3=6,移项合并得:﹣5x=7,解得:x=﹣,经检验是分式方程的解(142)方程两边都乘以x(x+1)得,2(x+1)+6x=15,2x+2+6x=15,8x=13,x=,检验:当x=时,x(x+1)=×(+1)≠0,所以x=是分式方程的解,因此,原分式方程的解释x=(143)﹣=﹣,==方程两边都乘以(x+1)(x+2)(x+3)(x+4)得:(x+3)(x+4)=(x+1)(x+2)解方程得:x=﹣,经检验x=﹣是原方程的解,即原方程的解为x=﹣(144)原方程可化为:+2=,方程的两边同乘x﹣3,得1+2(x﹣3)=x﹣4,解得x=1.检验:把x=1代入x﹣3=﹣2≠0.∴原方程的解为:x=1;(145)方程的两边同乘(x+2)(x﹣2),得4+(x+2)(x+3)=(x﹣1)(x﹣2),解得x=﹣1.检验:把x=﹣1代入(x+2)(x﹣2)=﹣3≠0.∴原方程的解为:x=﹣1(146)方程两边同乘以(x+1)(2﹣x),得:(2﹣x)+3(x+1)=0;整理,得:2x+5=0,解得:x=﹣2.5;经检验,x=﹣2.5是原方程的解.(147)原方程可化为:(1+)﹣(1+)=(1+)﹣(1+),整理得:=,去分母得:(x+5)(x+7)=(x+1)(x+3),即:x2+12x+35=x2+4x+3,解得x=﹣4;经检验,x=﹣4是原方程的解(148)去分母得:7(x﹣1)+3(x+1)=x(x2﹣1)﹣x(x2﹣7),去括号得:7x﹣7+3x+3=x3﹣x﹣x3+7x,移项合并得:4x=4,解得:x=1,经检验x=1是增根,原分式方程无解(149)方程的两边同乘(2x﹣3),得:x﹣5=4(2x﹣3),解得:x=1.检验:把x=1代入(2x﹣3)=﹣1≠0,即x=1是原分式方程的解.则原方程的解为:x=1.(150)方程的两边同乘(x+2)(x﹣2),得:x(x﹣2)﹣(x+2)2=8,解得:x=﹣2.检验:把x=﹣2代入(x+2)(x﹣2)=0,即x=﹣2不是原分式方程的解.则原方程无解(151)方程的两边同乘(2x﹣1)(x﹣2),得2x(x﹣2)+(x﹣1)(2x﹣1)=2(2x﹣1)(x﹣2),解得x=3.检验:把x=﹣1代入(2x﹣1)(x﹣2)=5≠0.∴原方程的解为:x=3.(152)方程的两边同乘2(x+3)(x﹣3),得2(x﹣3)﹣(x+3)=3x﹣5,解得x=﹣2.检验:把x=﹣2代入2(x+3)(x﹣3)=﹣10≠0.∴原方程的解为:x=﹣2精品文档(153)方程的两边同乘(4x2﹣8)(1﹣2x),得:8(1﹣2x)+(2x+3)(4x2﹣8)=﹣(4x2﹣8)(1﹣2x),即2x2﹣2x﹣3=0,解得:x=.检验:把x=代入(4x2﹣8)(1﹣2x)≠0,故原方程的解为:x=.(154)方程的两边同乘x(x﹣1),得:3(x﹣1)+6x=7,解得:x=.检验:把x=代入x(x﹣1)=≠0,即x=是原分式方程的解,则原方程的解为:x=.(155)方程的两边同乘(3x﹣8),得:6=3x﹣8+(4x ﹣7),解得:x=3.检验:把x=3代入(3x﹣8)=1≠0,即x=3是原分式方程的解,则原方程的解为:x=3(156)去分母得:x(x﹣2)﹣(x+2)2=8,去括号得:x2﹣2x﹣x2﹣4x﹣4=8,即﹣6x=12,解得:x=﹣2,经检验x=﹣2是增根,原分式方程无解;(157)去分母得:3x=2x+3x+3,移项合并得:2x=﹣3,解得:x=﹣,经检验x=﹣是原分式方程的解(158)方程的两边同乘(x+2)(x﹣2)得3(x+2)=2(x﹣2),解得x=﹣10.检验:把x=﹣10代入(x+2)(x﹣2)=96≠0.∴原方程的解为:x=﹣10.(159)方程的两边同乘(y﹣2),得1=y﹣1﹣3(y﹣2),解得y=2.检验:把y=2代入(y﹣2)=0.y=2是原方程的增根,∴原方程无解.(160)方程的两边同乘(x+2)(x﹣2)得(x﹣2)2﹣(x+2)2=16,解得x=﹣2.检验:把x=﹣2代入(x+2)(x﹣2)=0.∴x=﹣2是原方程的增根,∴原方程无解.(161)原方程可化为:﹣20=,方程的两边同乘x,得3000﹣20x=2500,解得x=25.经检验:x不为0,x=25是原方程的解(162)方程两边都乘以(4x﹣8)(3x﹣6)得:9x﹣18=4x﹣8,9x﹣4x=﹣8+18,5x=10,x=2,检验:把x=2代入(4x﹣8)(3x﹣6)=0,即x=2是增根,即原方程无解.(163)原方程化为:+=1﹣,方程的两边都乘以(x﹣1)(x﹣3)得:﹣2(x﹣3)+x(x﹣1)=x2﹣4x+3﹣(2x﹣1),去括号得:﹣2x+6+x2﹣x=x2﹣4x+3﹣2x+1,整理得:3x=﹣2,x=﹣,检验:把x=﹣代入(x﹣1)(x﹣3)≠0,即x=﹣是原方程的解(164)方程两边都乘以2(x﹣2)得,1+x﹣2=6,解得x=7,检验:当x=7时,2(x﹣2)=2×(7﹣2)=10≠0,所以x=7是分式方程的解,故原分式方程的解是x=7;(165)方程两边都乘以(x+2)(x﹣2)得,x﹣2+4x=2(x+2),解得x=2,检验:当x=2时,(x+2)(x﹣2)=(2+2)(2﹣2)=0,所以x=2不是分式方程的解,是增根,故原分式方程无解(166)方程变形得:﹣3=,去分母得:1﹣3(x﹣2)=1﹣x,精品文档去括号得:1﹣3x+6=1﹣x,移项合并得:﹣2x=﹣6,解得:x=3,将x=3代入检验是分式方程的解;(167)最简公分母为x(x+3)(x﹣3),去分母得:x﹣3=2x+x+3,移项合并得:2x=﹣6,解得:x=﹣3,将x=﹣3代入得:x(x+3)(x﹣3)=0,则x=﹣3是增根,原分式方程无解(168)方程变形得:+=+,即1﹣+1﹣=1﹣+1﹣,整理得:+=+,即﹣=﹣,化简得:=,可得x2﹣3x+2=x2﹣13x+42,解得:x=4,经检验x=4是分式方程的解(169)方程变形得:﹣=﹣,即1﹣﹣1+=1﹣﹣1+,整理得:﹣=﹣,即=,整理得:=,去分母得:x2+5x+6=x2+13x+42,解得:x=﹣4.5,经检验是分式方程的解(170)方程的两边同乘(x﹣3),得2x+1=4x﹣5+2(x﹣3),解得x=3.检验:把x=3代入(x﹣3)=0.x=3是原方程的增根,∴原方程无解.(171)方程的两边同乘(x﹣1)2,得x2﹣3x﹣(x+1)(x﹣1)=2(x﹣1),解得x=.检验:把x=代入(x﹣1)2=≠0.∴原方程的解为:x=(172)方程的两边同乘(x+3)(x﹣3),得x﹣3﹣2(x+3)=12,解得x=﹣21.检验:把x=﹣21代入(x+3)(x﹣3)≠0.∴原方程的解为:x=﹣21.(173)方程的两边同乘(x2﹣1),得x2﹣3x+2(x2﹣1)﹣3x(x+1)=0,解得x=﹣.检验:把x=﹣代入(x2﹣1)=﹣≠0.∴原方程的解为:x=﹣(174)方程两边同乘3(x+1),得:3x=2x+3x+3,解得:x=﹣1.5.检验:把x=﹣1.5代入3(x+1)=﹣1.5≠0.所以原方程的解为:x=﹣1.5;(175)方程两边同乘x(x+2)(x﹣2),得:3(x﹣2)﹣(x+2)=0,解得x=4.检验:把x=4代入x(x+2)(x﹣2)=48≠0,故原方程的解为:x=4(176)方程的两边同乘(x﹣2),得1=x﹣1﹣3(x﹣2),解得x=2.检验:把x=2代入(x﹣2)=0.∴x=2是原方程的解为增根解,∴原方程无解;(177)方程的两边同乘(x+4)(x﹣4),得5(x+4)(x﹣4)+96=(2x﹣1)(x﹣4)+(3x﹣1)(x+4),解得x=8.检验:把x=8代入(x+4)(x﹣4)=48≠0.∴原方程的解为:x=8(178)(179).(178)方程两边同时乘以x﹣4得:x﹣4+(x﹣5)=1,则x﹣4+x﹣5=1精品文档解得:x=5,检验:当x=5时,x﹣4=1≠0,则方程的解是x=5.(179)原方程即:+=,方程两边同时乘以6(x﹣2)得:3(5x﹣4)+3=2(2x+5)解得:x=,检验:当x=时,6(x﹣2)≠0,则方程的解是:x=(180)(181).(180)去分母得:10x﹣5=4x﹣2,移项合并得:6x=3,解得:x=0.5,经检验x=0.5是分式方程的解;(181)去分母得:5x2﹣80+96=(2x﹣1)(x﹣4)+(3x ﹣1)(x+4),去括号得:5x2﹣80+96=5x2+2x,移项合并得:2x=16,解得:x=8,经检验x=8是分式方程的解(182)原方程可化为:+=1+方程两边乘x(x+1)(x﹣1)得,7(x﹣1)+3(x+1)=x(x+1)(x﹣1)+x(7﹣x2)化简得,4x=4∴x=1检验:把x=1代入x(x+1)(x﹣1)=0∴x=1是原方程的增根.∴原方程无解(183)去分母得:5x+2=3x,移项合并得:2x=﹣2,解得:x=﹣1,经检验x=﹣1是增根,分式方程无解;(184)去分母得:2x2﹣4x﹣x2﹣2x=x2﹣4﹣x﹣11,移项合并得:﹣5x=﹣15,解得:x=3,经检验x=3是分式方程的解(185)去分母得:3﹣2x=x+1,移项合并得:3x=2,解得:x=;(186)去分母得:(x﹣1)2﹣x(x+2)=9,整理得:﹣4x=8,解得:x=﹣2,经检验x=﹣2是增根,分式方程无解(187)方程两边都乘(x+4)(x﹣4),得x+4=4解得x=0.检验:当x=0时,(x+4)(x﹣4)≠0.∴x=0是原方程的解.(188)方程两边都乘x(x﹣1),得3x﹣(x+2)=0,解得x=1.检验:当x=1时,x(x﹣1)=0.∴原方程无解.(189)方程两边都乘(x﹣3),得2﹣x﹣1=3(x﹣3),解得x=.检验:当x=时,x﹣3≠0.∴x=是原方程的解.(190)方程两边都乘6(x﹣2),得3(5x﹣4)=2(2x+5)﹣3×6(x﹣2),解得x=2.检验:当x=2时,6(x﹣2)≠0.∴x=2是原方程的解(191)原方程可化为:,方程两边都乘(x﹣2)(x﹣3),得:x(x﹣3)﹣(1﹣x2)=2x(x﹣2),解得x=1检验:当x=1时,(x﹣2)(x﹣3)≠0,∴x=1是原方程的解.(192)原方程可化为:,方程两边都乘(x+3)(x﹣2)(x﹣4),得5x(x﹣4)+(2x﹣5)(x﹣2)=(7x﹣10)(x+3),精品文档解得x=1.检验:当x=1时,(x+3)(x﹣2)(x﹣4)≠0.∴x=1是原方程的解(193)=1,方程两边同乘以(1﹣x)(3﹣x),得2(3﹣x)﹣x(1﹣x)+(2x﹣1)=(1﹣x)(3﹣x),去括号,得6﹣2x﹣x+x2+2x﹣1=3﹣3x﹣x+x2,整理,得3x=﹣2,解得:x=﹣.检验:当x=﹣时,(1﹣x)(3﹣x)≠0,∴x=﹣是原方程的解.(194),原方程可化为,约分,得,方程两边同乘以(x+3)(x﹣4),得:3(x﹣4)=4(x+3),3x﹣12=4x+12,﹣x=24,∴x=﹣24,检验:当x=﹣24时,(x+3)(x﹣4)≠0,∴x=﹣24是原方程的解(195)方程两边都乘(1+3x)(1﹣3x),得:(1﹣3x)2﹣(1+3x)2=12,解得x=﹣1.检验:当x=﹣1时,(1+3x)(1﹣3x)≠0∴x=﹣1是原方程的解(196)方程两边都乘(x+1)(x﹣1),得(x+1)2﹣4=(x+1)(x﹣1),解得x=1.检验:当x=1时,(x+1)(x﹣1)=0.∴原方程无解.(197)方程两边都乘(3x﹣5)(2x﹣3),得(3x+4)(2x﹣3)+(3x﹣5)(2x﹣3)=(4x+1)(3x ﹣5),解得x=.检验:当x=时,(3x﹣5)(2x﹣3)≠0.∴x=是原方程的解(198)解:两边同乘以2(3x﹣1),得3(3x﹣1)﹣2=5,解得.经检验,是原方程的解.(199)解:两边同乘以x(x+1),得m(x+1)﹣nx=0,解得:.经检验是方程的解(200)方程两边同乘(x+1)(1﹣2x),得(x﹣1)(1﹣2x)+2x(x+1)=0,整理解得:x=.经检验:x=是原方程的解.(201)方程两边同乘(x﹣2),得3﹣x=﹣2(x﹣2),解得:x=1.经检验:x=1是原方程的解精品文档。

分式方程练习题精选(含答案)

分式方程练习题精选(含答案)

分式方程练习题精选(含答案)一、 选择题:1.以下是方程211x x x -=-去分母的结果,其中正确的是 . A .2(1)1x x --= B .2221x x --= C .2222x x x x --=- D .2222x x x x -+=-2.在下列方程中,关于x 的分式方程的个数有 . ①0432212=+-x x ②.4=a x ③;4=x a ④.;1392=+-x x ⑤;621=+x ⑥211=-+-a x a x . A.2个 B.3个 C.4个 D.5个3.分式25m +的值为1时,m 的值是 . A .2 B .-2 C .-3 D .34.不解下列方程,判断下列哪个数是方程21311323x x x x =+++--的解 . A .x=1 B .x=-1 C .x=3 D .x=-35.若关于x 的方程122x m x x +=++有增根,则m 的值为 . A .1 B .-1 C .-2 D .26.若分式x 2-12(x+1) 的值等于0,则x 的值为 .A 、1B 、±1C 、12D 、-17.赵强同学借了一本书,共280页,要在两周借期内读完,当他读了一半时,发现平时每天要多读21页才能在借期内读完.他读了前一半时,平均每天读多少页?如果设读前一半时,平均每天读x 页,则下列方程中,正确的是 .A 、1421140140=-+x xB 、1421280280=++x x B 、1211010=++x x D 、1421140140=++x x8.关于x 的方程2354ax a x +=-的根为x =2,则a 应取值 . A.1B.3C.-2D.-39.在正数范围内定义一种运算☆,其规则为a ☆b =ba 11+,根据这个规则x ☆23)1(=+x 的解为 . A .32=x B .1=x C .32-=x 或1 D .32=x 或1- 10.“五一”江北水城文化旅游节期间,几名同学包租一辆面包车前去旅游,面包车的租价为180元,出发时又增加了两名同学,结果每个同学比原来少摊了3元钱车费,设参加游览的同学共x 人,则所列方程为 .A .32180180=+-x x B .31802180=-+x x C .32180180=--x x D .31802180=--x x 11.李老师在黑板上出示了如下题目:“已知方程012=++kx x ,试添加一个条件,使方程的解是x=-1”后,小颖的回答是:“添加k=0的条件”;小亮的回答是:“添加k=2的条件”,则你认为 .A 、只有小颖的回答正确B 、小亮、小颖的回答都正确C 、只有小亮的回答正确D 、小亮、小颖的回答都不正确12.某工地调来72人挖土和运土,已知3人挖出的土1人恰好能全部运走,怎样调配劳动力才使挖掘出来的土能及时运走,且不窝工,解决此问题,可设派x 人挖土,其它人运土,列方程:①723x x -=②723x x -=③372x x +=④372x x=-上述所列方程,正确的有 .A .1个B .2个C .3个D .4个二、 填空题: 13.若分式11--x x 的值为0,则x 的值等于14.若分式方程xm x x -=--2524无解,那么m 的值应为 15.某项工程限期完成,甲单独做提前1天完成,乙单独做延期2天完工,现两人合作1天后,余下的工程由乙队单独做,恰好按期完工,求该工程限期 天.16.阅读材料: 方程1111123x x x x -=-+--的解为1x =, 方程1111134x x x x -=----的解为x=2, 方程11111245x x x x -=-----的解为3x =,… 请写出能反映上述方程一般规律的方程,并直 接写出这个方程的解是 .三、 解答题:17.解方程)2)(1(311+-=--x x x x18.先化简代数式1121112-÷⎪⎭⎫⎝⎛+-+-+x x x x x x ,然后选取一个使你喜欢的x 的值代入求值.19.若方程122-=-+x a x 的解是正数,求a 的取值范围。

分式方程专项练习50题(有答案)

分式方程专项练习50题(有答案)

分式方程专项练习50题(有答案)1.$\frac{x}{x+2}=\frac{2}{x-1}$,改写为$x(x-1)=2(x+2)$。

2.$\frac{5x-3}{x^2}=0$,当 $5x-3=0$ 时成立,即$x=\frac{3}{5}$。

3.$\frac{x}{x}+\frac{1}{x}=1$,当 $x\neq 0$ 时成立。

4.$x^2+2x=0$,当 $x=0$ 或 $x=-2$ 时成立。

5.$\frac{13}{x(x-2)}=\frac{1}{x-1}$,改写为 $13(x-1)=x(x-2)$。

6.$\frac{1}{x-1}-\frac{2}{x+1}=\frac{1}{2}$,改写为$3x^2-2x-5=0$,当 $x=\frac{1}{3}$ 或 $x=-\frac{5}{3}$ 时成立。

7.$\frac{x+1}{x-1}=\frac{x}{x+1}$,改写为 $x^2-1=0$,当 $x=1$ 或 $x=-1$ 时成立。

8.$\frac{2x-5}{3-x}=\frac{2x-2}{x+1}$,改写为 $4x^2-13x+7=0$,当 $x=1$ 或 $x=\frac{7}{4}$ 时成立。

9.$\frac{2x-5}{x-2}-\frac{1}{x+2}=x$,改写为 $3x^2-4x-3=0$,当 $x=\frac{1\pm\sqrt{13}}{3}$ 时成立。

10.$\frac{2x-1}{x+1}=1-\frac{1}{x+1}$,改写为 $x^2+3x-2=0$,当 $x=-3+\sqrt{11}$ 或 $x=-3-\sqrt{11}$ 时成立。

11.$\frac{x}{x+1}+\frac{x}{x-1}=2$,改写为 $2x^2-2x-1=0$,当 $x=\frac{1\pm\sqrt{3}}{2}$ 时成立。

12.$\frac{1}{x-1}+\frac{1}{x+1}=\frac{4}{x^2-1}$,改写为 $3x^4-8x^2-5=0$,当 $x=\pm\sqrt{\frac{5}{3}}$ 或$x=\pm\sqrt{\frac{8}{3}}$ 时成立。

分式方程专项练习题优秀4篇

分式方程专项练习题优秀4篇

分式方程专项练习题优秀4篇分式是表示分子,分母有未知数。

如果分子,分母都是常数,那这个分式就是分数了。

以下内容是小编为您带来的4篇《分式方程专项练习题》,希望能为您的思路提供一些参考。

分式加减法练习题篇一分式加减法练习题一、选择题:(每小题4分,共8分)1.下列各式计算正确的是A.B.C.D.2.化简+1等于()A.B.C.D.3.若a-b=2ab,则的值为()A.B.-C.2D.-24.若,则M、N的值分别为()A.M=-1,N=-2B.M=-2,N=-1C.M=1,N=2D.M=2,N=15.若_2+_-2=0,则_2+_-的值为()A.B.C.2D.-二、填空题:(每小题4分,共8分)1.计算:=________.2.已知_≠0,=________.3.化简:_+=________.4.如果m+n=2,mn=-4,那么的值为________.5.甲、乙两地相距S千米,汽车从甲地到乙地按每小时v千米的速度行驶,可按时到达;若每小时多行驶a千米,则可提前________小时到达(保留最简结果).三、解答题:(共50分)1.(4_5=20)计算:(1)a+b+(2)(3)(4)(_+1-)÷2.(10分)化简求值:(2+)÷(a-)其中a=2.3.(10分)已知,求的值。

4.(10分)一项工程,甲工程队单独完成需要m天,乙工程队单独完成比甲队单独完成多需要n天时间,那么甲、乙工程队合做需要多少天能够完成此项工程?八年级数学分式练习题篇二数学八年级分式的运算练习题同步一、选择题:(每小题5分,共30分)1、计算的结果为()A.1B._+1C.D.2、下列分式中,最简分式是()A.B.C.D.3、已知_为整数,且分式的值为整数,则_可取的值有()A.1个B.2个C.3个D.4个4、化简的结果是()A.1B.C.D.-15、当_=时,代数式的值是()A.B.C.D.二、填空题:(每小题6分,共30分)6、计算的结果是____________.7、计算a2÷b÷÷c_÷d_的结果是__________.8、若代数式有意义,则_的取值范围是__________.9、化简的结果是___________.10、若,则M=___________.11、公路全长s千米,骑车t小时可到达,要提前40分钟到达,每小时应多走____千米。

分式方程常考经典练习题(6套)附带详细的答案

分式方程常考经典练习题(6套)附带详细的答案

练习(一)1.1.((2008安徽)分式方程112x x =+的解是(的解是() A . x=1 B . x =-1 C . x=2 D . x =-2 2.2.((2008荆州)方程21011x x x-+=--的解是(的解是() A .2 B .0 C .1 D .3 3.3.((2008西宁)“5·12”汶川大地震导致某铁路隧道被严重破坏.为抢修其中一段120米的铁路,施工队每天比原计划多修5米,结果提前4天开通了列车.问原计划每天修多少米?某原计划每天修米,所列方程正确的是(米,所列方程正确的是( )A .B .C .D .4.4.((2008襄樊)当m = 时,关于x 的分式方程213x mx +=--无解.无解.5.5.((2008大连)轮船顺水航行40千米所需的时间和逆水航行30千米所需的时间相同.已知水流速度为3千米/时,设轮船在静水中的速度为x 千米/时,可列方程为_________________________________.6.6.((2008泰州)方程22123=-+--xx x 的解是=x __________. 7.7.解方程:解方程:解方程: (1)(2008赤峰)(2)(2008南京)22011x x x -=+-8.8.((2008咸宁)咸宁) A 、B 两种机器人都被用来搬运化工原料,A 型机器人比B 型机器人每小时多搬运20千克,A 型机器人搬运1000千克所用时间与B 型机器人搬运800千克所用时间相等,两种机器人每小时分别搬运多少化工原料?间相等,两种机器人每小时分别搬运多少化工原料? 9.9.((2008镇江)汶川大地震发生以后,全国人民众志成城.首长到帐篷厂视察,布置赈灾生产任务,下面是首长与厂长的一段对话:生产任务,下面是首长与厂长的一段对话:首长:为了支援灾区人民,组织上要求你们完成12000顶帐篷的生产任务. 厂长:为了尽快支援灾区人民,我们准备每天的生产量比原来多一半.x 12012045x x -=+12012045x x -=+12012045x x-=-12012045x x -=-2112323x x x -=-+首长:这样能提前几天完成任务?厂长:请首长放心!保证提前4天完成任务! 根据两人对话,问该厂原来每天生产多少顶帐篷?根据两人对话,问该厂原来每天生产多少顶帐篷?10.10.((2008山西)某文化用品商店用2000元购进一批学生书包,面市后发现供不应求,商店又购进第二批同样的书包,店又购进第二批同样的书包,所购数量是第一批购进数量的所购数量是第一批购进数量的3倍,但单价贵了4元,结果第二批用了6300元。

初中数学分式方程精选试题(含答案和解析)

初中数学分式方程精选试题(含答案和解析)

初中数学分式方程精选试题一.选择题1. (2018·湖南怀化·4分)一艘轮船在静水中的最大航速为30km/h.它以最大航速沿江顺流航行100km所用时间.与以最大航速逆流航行80km所用时间相等.设江水的流速为v km/h.则可列方程为()A.=B.=C.=D.=【分析】根据“以最大航速沿江顺流航行100km所用时间.与以最大航速逆流航行80km所用时间相等.”建立方程即可得出结论.【解答】解:江水的流速为v km/h.则以最大航速沿江顺流航行的速度为(30+v)km/h.以最大航速逆流航行的速度为(30﹣v)km/h. 根据题意得..故选:C.【点评】此题是由实际问题抽象出分式方程.主要考查了水流问题.找到相等关系是解本题的关键.2.(2018•临安•3分)下列各式计算正确的是()A.a12÷a6=a2 B.(x+y)2=x2+y2C.D.【分析】此类题目难度不大.可用验算法解答.【解答】解:A.a12÷a6是同底数幂的除法.指数相减而不是相除.所以a12÷a6=a6.错误;B.(x+y)2为完全平方公式.应该等于x2+y2+2xy.错误;C.===﹣.错误;D.正确.故选:D.【点评】正确理解二次根式乘法、积的算术平方根等概念是解答问题的关键.运算法则:①a m÷a n=a m﹣n.②÷=(a≥0.b>0).3.(2018•金华、丽水•3分)若分式的值为0.则x的值是()A. 3B.C. 3或D. 0【解析】【解答】解:若分式的值为0.则.解得.故答案为:A.【分析】分式指的是分母是含字母的整式且分母的值不为0的代数式;当分式为0时.则分子为零.分母不能为0.5.(2018·黑龙江哈尔滨·3分)方程=的解为()A.x=﹣1 B.x=0 C.x=D.x=1【分析】分式方程去分母转化为整式方程.求出整式方程的解得到x 的值.经检验即可得到分式方程的解.【解答】解:去分母得:x+3=4x.解得:x=1.经检验x=1是分式方程的解.故选:D.【点评】此题考查了解分式方程.利用了转化的思想.解分式方程注意要检验.6.(2018·黑龙江龙东地区·3分)已知关于x的分式方程=1的解是负数.则m的取值范围是()A.m≤3B.m≤3且m≠2 C.m<3 D.m<3且m≠2【分析】直接解方程得出分式的分母为零.再利用x≠﹣1求出答案.【解答】解:=1解得:x=m﹣3.∵关于x的分式方程=1的解是负数.∴m﹣3<0.解得:m<3.当x=m﹣3=﹣1时.方程无解.则m≠2.故m的取值范围是:m<3且m≠2.故选:D.【点评】此题主要考查了分式方程的解.正确得出分母不为零是解题关键.7.(2018•贵州黔西南州•4分)施工队要铺设1000米的管道.因在中考期间需停工2天.每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x米.所列方程正确的是()A.=2 B.=2C.=2 D.=2【分析】设原计划每天施工x米.则实际每天施工(x+30)米.根据:原计划所用时间﹣实际所用时间=2.列出方程即可.【解答】解:设原计划每天施工x米.则实际每天施工(x+30)米. 根据题意.可列方程:﹣=2.故选:A.【点评】本题考查了由实际问题抽象出分式方程.关键是读懂题意.找出合适的等量关系.列出方程.8.(2018•海南•3分)分式方程=0的解是()A.﹣1 B.1 C.±1D.无解【分析】根据解分式方程的步骤计算可得.【解答】解:两边都乘以x+1.得:x2﹣1=0.解得:x=1或x=﹣1.当x=1时.x+1≠0.是方程的解;当x=﹣1时.x+1=0.是方程的增根.舍去;所以原分式方程的解为x=1.故选:B.【点评】本题主要考查分式方程的解.解题的关键是熟练掌握解分式方程的步骤.9.(2018湖南张家界3.00分)若关于x的分式方程=1的解为x=2.则m的值为()A.5 B.4 C.3 D.2【分析】直接解分式方程进而得出答案.【解答】解:∵关于x的分式方程=1的解为x=2.∴x=m﹣2=2.解得:m=4.故选:B.【点评】此题主要考查了分式方程的解.正确解方程是解题关键.二.填空题1. (2018·湖北襄阳·3分)计算﹣的结果是.【分析】根据同分母分式加减运算法则计算即可.最后要注意将结果化为最简分式.【解答】解:原式===.故答案为:.【点评】本题考查了分式的加减.归纳提炼:分式的加减运算中.如果是同分母分式.那么分母不变.把分子直接相加减即可;如果是异分母分式.则必须先通分.把异分母分式化为同分母分式.然后再相加减.2. (2018•达州•3分)若关于x的分式方程=2a无解.则a 的值为.【分析】直接解分式方程.再利用当1﹣2a=0时.当1﹣2a≠0时.分别得出答案.【解答】解:去分母得:x﹣3a=2a(x﹣3).整理得:(1﹣2a)x=﹣3a.当1﹣2a=0时.方程无解.故a=;当1﹣2a≠0时.x==3时.分式方程无解.则a=1.故关于x的分式方程=2a无解.则a的值为:1或.故答案为:1或.【点评】此题主要考查了分式方程的解.正确分类讨论是解题关键.3. (2018•遂宁•4分)A.B两市相距200千米.甲车从A市到B市.乙车从B市到A市.两车同时出发.已知甲车速度比乙车速度快15千米/小时.且甲车比乙车早半小时到达目的地.若设乙车的速度是x千米/小时.则根据题意.可列方程.【分析】直接利用甲车比乙车早半小时到达目的地得出等式即可.【解答】解:设乙车的速度是x千米/小时.则根据题意.可列方程:﹣=.故答案为:﹣=.【点评】此题主要考查了由实际问题抽象出分式方程.正确表示出两车所用时间是解题关键.4. (2018•湖州•4分)当x=1时.分式的值是.【分析】将x=1代入分式.按照分式要求的运算顺序计算可得.【解答】解:当x=1时.原式==.故答案为:.【点评】本题主要考查分式的值.在解答时应从已知条件和所求问题的特点出发.通过适当的变形、转化.才能发现解题的捷径.5. (2018•嘉兴•4分.)甲、乙两个机器人检测零件,甲比乙每小时多检测20个,甲检测300个比乙检测200个所用的时间少10%.若设甲每小时检测个.则根据题意,可列出方程:________.【答案】【解析】【分析】若设甲每小时检测个.检测时间为.乙每小时检测个.检测时间为.根据甲检测300个比乙检测200个所用的时间少.列出方程即可.【解答】若设甲每小时检测个.检测时间为.乙每小时检测个.检测时间为.根据题意有:.故答案为:【点评】考查分式方程的应用.解题的关键是找出题目中的等量关系.7.(2018·黑龙江哈尔滨·3分)函数y=中.自变量x的取值范围是x≠4.【分析】根据分式分母不为0列出不等式.解不等式即可.【解答】解:由题意得.x﹣4≠0.解得.x≠4.故答案为:x≠4.【点评】本题考查的是函数自变量的取值范围.掌握分式分母不为0是解题的关键.8.(2018·黑龙江齐齐哈尔·3分)若关于x的方程+=无解.则m的值为﹣1或5或﹣.【分析】直接解方程再利用一元一次方程无解和分式方程无解分别分析得出答案.【解答】解:去分母得:x+4+m(x﹣4)=m+3.可得:(m+1)x=5m﹣1.当m+1=0时.一元一次方程无解.此时m=﹣1.当m+1≠0时.则x==±4.解得:m=5或﹣.综上所述:m=﹣1或5或﹣.故答案为:﹣1或5或﹣.【点评】此题主要考查了分式方程的解.正确分类讨论是解题关键.9.(2018•广西贵港•3分)若分式的值不存在.则x的值为﹣1 .【分析】直接利用分是有意义的条件得出x的值.进而得出答案.【解答】解:若分式的值不存在.则x+1=0.解得:x=﹣1.故答案为:﹣1.【点评】此题主要考查了分式有意义的条件.正确把握分式有意义的条件:分式有意义的条件是分母不等于零是解题关键.11.(2018•贵州铜仁•4分)分式方程=4的解是x= ﹣9 .【分析】分式方程去分母转化为整式方程.求出整式方程的解得到x 的值.经检验即可得到分式方程的解.【解答】解:去分母得:3x﹣1=4x+8.解得:x=﹣9.经检验x=﹣9是分式方程的解.故答案为:﹣912. (2018湖南长沙3.00分)化简:= 1 .【分析】根据分式的加减法法则:同分母分式加减法法则:同分母的分式想加减.分母不变.把分子相加减计算即可.【解答】解:原式==1.故答案为:1.【点评】本题考查了分式的加减法法则.解题时牢记定义是关键.13.(2018湖南湘西州4.00分)要使分式有意义.则x的取值范围为x≠﹣2 .【分析】根据根式有意义的条件即可求出答案.【解答】解:由题意可知:x+2≠0.∴x≠﹣2故答案为:x≠﹣2【点评】本题考查分式有意义的条件.解题的关键是正确理解分式有意义的条件.本题属于基础题型.14. (2018•达州•3分)若关于x的分式方程=2a无解.则a 的值为.【分析】直接解分式方程.再利用当1﹣2a=0时.当1﹣2a≠0时.分别得出答案.【解答】解:去分母得:x﹣3a=2a(x﹣3).整理得:(1﹣2a)x=﹣3a.当1﹣2a=0时.方程无解.故a=;当1﹣2a≠0时.x==3时.分式方程无解.则a=1.故关于x的分式方程=2a无解.则a的值为:1或.故答案为:1或.【点评】此题主要考查了分式方程的解.正确分类讨论是解题关键.15. (2018•遂宁•4分)A.B两市相距200千米.甲车从A市到B市.乙车从B市到A市.两车同时出发.已知甲车速度比乙车速度快15千米/小时.且甲车比乙车早半小时到达目的地.若设乙车的速度是x千米/小时.则根据题意.可列方程.【分析】直接利用甲车比乙车早半小时到达目的地得出等式即可.【解答】解:设乙车的速度是x千米/小时.则根据题意.可列方程:﹣=.故答案为:﹣=.【点评】此题主要考查了由实际问题抽象出分式方程.正确表示出两车所用时间是解题关键.三.解答题1. (2018·湖北江汉油田、潜江市、天门市、仙桃市·5分)化简:•.【分析】先将分子、分母因式分解.再约分即可得.【解答】解:原式=•=.【点评】本题主要考查分式的乘除法.解题的关键是掌握分式乘除运算顺序和运算法则.2. (2018·湖北随州·6分)先化简.再求值:.其中x为整数且满足不等式组.【分析】根据分式的除法和加法可以化简题目中的式子.由x为整数且满足不等式组可以求得x的值.从而可以解答本题.【解答】解:===.由得.2<x≤3.∵x是整数.∴x=3.∴原式=.【点评】本题考查分式的化简求值、解一元一次不等式组、一元一次不等式组的整数解.解答本题的关键是明确分式的化简求值的计算方法.3. (2018·湖北襄阳·6分)正在建设的“汉十高铁”竣工通车后.若襄阳至武汉段路程与当前动车行驶的路程相等.约为325千米.且高铁行驶的速度是当前动车行驶速度的2.5倍.则从襄阳到武汉乘坐高铁比动车所用时间少1.5小时.求高铁的速度.【分析】设高铁的速度为x千米/小时.则动车速度为0.4x千米/小时.根据题意列出方程.求出方程的解即可.【解答】解:设高铁的速度为x千米/小时.则动车速度为0.4x千米/小时.根据题意得:﹣=1.5.解得:x=325.经检验x=325是分式方程的解.且符合题意.则高铁的速度是325千米/小时.【点评】此题考查了分式方程的应用.弄清题中的等量关系是解本题的关键.4.(2018•内蒙古包头市•3分)化简;÷(﹣1)= ﹣.【分析】根据分式混合运算顺序和运算法则计算可得.【解答】解:原式=÷(﹣)=÷=•=﹣.故答案为:﹣.【点评】本题主要考查分式的混合运算.解题的关键是掌握分式混合运算顺序和运算法则.2.(2018•内蒙古包头市•10分)某商店以固定进价一次性购进一种商品.3月份按一定售价销售.销售额为2400元.为扩大销量.减少库存.4月份在3月份售价基础上打9折销售.结果销售量增加30件.销售额增加840元.(1)求该商店3月份这种商品的售价是多少元?(2)如果该商店3月份销售这种商品的利润为900元.那么该商店4月份销售这种商品的利润是多少元?【分析】(1)设该商店3月份这种商品的售价为x元.则4月份这种商品的售价为0.9x元.根据数量=总价÷单价结合4月份比3月份多销售30件.即可得出关于x的分式方程.解之经检验即可得出结论;(2)设该商品的进价为y元.根据销售利润=每件的利润×销售数量.即可得出关于y的一元一次方程.解之即可得出该商品的进价.再利用4月份的利润=每件的利润×销售数量.即可求出结论.【解答】解:(1)设该商店3月份这种商品的售价为x元.则4月份这种商品的售价为0.9x元.根据题意得:=﹣30.解得:x=40.经检验.x=40是原分式方程的解.答:该商店3月份这种商品的售价是40元.(2)设该商品的进价为y元.根据题意得:(40﹣a)×=900.解得:a=25.∴(40×0.9﹣25)×=990(元).答:该商店4月份销售这种商品的利润是990元.【点评】本题考查了分式方程的应用以及一元一次方程的应用.解题的关键是:(1)找准等量关系.正确列出分式方程;(2)找准等量关系.正确列出一元一次方程.6.(2018•山东烟台市•6分)先化简.再求值:(1+)÷.其中x满足x2﹣2x﹣5=0.【分析】原式括号中两项通分并利用同分母分式的加法法则计算.同时利用除法法则变形.约分得到最简结果.把已知等式变形后代入计算即可求出值.【解答】解:原式=•=•=x(x﹣2)=x2﹣2x.由x2﹣2x﹣5=0.得到x2﹣2x=5.则原式=5.【点评】此题考查了分式的化简求值.熟练掌握运算法则是解本题的关键.7.(2018•山东东营市•8分)小明和小刚相约周末到雪莲大剧院看演出.他们的家分别距离剧院1200m和2000m.两人分别从家中同时出发.已知小明和小刚的速度比是3:4.结果小明比小刚提前4min到达剧院.求两人的速度.【分析】设小明的速度为3x米/分.则小刚的速度为4x米/分.根据时间=路程÷速度结合小明比小刚提前4min到达剧院.即可得出关于x 的分式方程.解之经检验后即可得出结论.【解答】解:设小明的速度为3x米/分.则小刚的速度为4x米/分. 根据题意得:﹣=4.解得:x=25.经检验.x=25是分式方程的根.且符合题意.∴3x=75.4x=100.答:小明的速度是75米/分.小刚的速度是100米/分.【点评】本题考查了分式方程的应用.找准等量关系.正确列出分式方程是解题的关键.8.(2018•山东济宁市•7分)先化简.再求值:﹣÷(﹣).其中a=﹣.【分析】首先计算括号里面的减法.然后再计算除法.最后再计算减法.化简后.再代入a的值可得答案.【解答】解:原式=﹣÷[﹣].=﹣÷[﹣].=﹣÷.=﹣•.=﹣.=﹣.当a=﹣时.原式=﹣=﹣4.【点评】此题主要考查了分式的化简求值.关键是掌握化简求值.一般是先化简为最简分式或整式.再代入求值.9. (2018•达州•6分)化简代数式:.再从不等式组的解集中取一个合适的整数值代入.求出代数式的值.【分析】直接将=去括号利用分式混合运算法则化简.再解不等式组.进而得出x的值.即可计算得出答案.【解答】解:原式=×﹣×=3(x+1)﹣(x﹣1)=2x+4..解①得:x≤1.解②得:x>﹣3.故不等式组的解集为:﹣3<x≤1.把x=﹣2代入得:原式=0.【点评】此题主要考查了分式的化简求值以及不等式组解法.正确掌握分式的混合运算法则是解题关键.10. (2018•遂宁•8分)先化简.再求值•+.(其中x=1.y=2)【分析】根据分式的运算法则即可求出答案.【解答】解:当x=1.y=2时.原式=•+=+==﹣3【点评】本题考查分式的运算.解题的关键是熟练运用分式的运算法则.本题属于基础题型.11.(2018•资阳•7分)先化简.再求值:÷(﹣a).其中a=﹣1.b=1.【分析】先根据分式混合运算顺序和运算法则化简原式.再将A.b的值代入计算可得.【解答】解:原式=÷=•=.当a=﹣1.b=1时.原式====2+.【点评】本题主要考查分式的化简求值.解题的关键是掌握分式混合运算顺序和运算法则.12.(2018•乌鲁木齐•10分)某校组织学生去9km外的郊区游玩.一部分学生骑自行车先走.半小时后.其他学生乘公共汽车出发.结果他们同时到达.己知公共汽车的速度是自行车速度的3倍.求自行车的速度和公共汽车的速度分别是多少?【分析】设自行车的速度为xkm/h.则公共汽车的速度为3xkm/h.根据时间=路程÷速度结合乘公共汽车比骑自行车少用小时.即可得出关于x的分式方程.解之经检验即可得出结论.【解答】解:设自行车的速度为xkm/h.则公共汽车的速度为3xkm/h. 根据题意得:﹣=.解得:x=12.经检验.x=12是原分式方程的解.∴3x=36.答:自行车的速度是12km/h.公共汽车的速度是36km/h.【点评】本题考查了分式方程的应用.找准等量关系.正确列出分式方程是解题的关键.13.(2018•临安•6分)(1)化简÷(x﹣).(2)解方程:+=3.【分析】(1)先计算括号内分式的减法.再计算除法即可得;(2)先去分母化分式方程为整式方程.解整式方程求解的x值.检验即可得.【解答】解:(1)原式=÷(﹣)=÷=•=;(2)两边都乘以2x﹣1.得:2x﹣5=3(2x﹣1).解得:x=﹣.检验:当x=﹣时.2x﹣1=﹣2≠0.所以分式方程的解为x=﹣.【点评】本题主要考查分式的混合运算与解分式方程.解题的关键是掌握解分式方程和分式混合运算的步骤.14.(2018•嘉兴•4分)化简并求值()•.其中a=1.b=2.【答案】原式= =a-b当a=1.b=2时.原式=1-2=-1【考点】利用分式运算化简求值【解析】分式的化简当中.可先运算括号里的.或都运用乘法分配律计算都可16. (2018•贵州安顺•10分)先化简.再求值:.其中.【答案】..【解析】分析:先化简括号内的式子.再根据分式的除法进行计算即可化简原式.然后将x=-2代入化简后的式子即可解答本题.详解:原式=.∵.∴.舍.当时.原式.点睛:本题考查分式的化简求值.解题的关键是明确分式化简求值的方法.17.(2018•广西桂林•8分)某校利用暑假进行田径场的改造维修.项目承包单位派遣一号施工队进场施工.计划用40天时间完成整个工程:当一号施工队工作5天后.承包单位接到通知.有一大型活动要在该田径场举行.要求比原计划提前14天完成整个工程.于是承包单位派遣二号与一号施工队共同完成剩余工程.结果按通知要求如期完成整个工程.(1)若二号施工队单独施工.完成整个工程需要多少天?(2)若此项工程一号、二号施工队同时进场施工.完成整个工程需要多少天?【答案】(1)60天;(2)24天.【解析】分析:(1)设二号施工队单独施工需要x天.根据题意可知一号施工队5天工作总量与一号施工队和二号施工队合作工作总量之和=1列出方程求解即可;(2)根据工作总量÷工作效率=工作时间求解即可.详解:(1)设二号施工队单独施工需要x天.依题可得解得x=60.经检验.x=60是原分式方程的解.∴由二号施工队单独施工.完成整个工期需要60天.(2)由题可得(天).∴若由一、二号施工队同时进场施工.完成整个工程需要24天.点睛:本题考查了列分式方程解应用题.灵活运用和掌握工作总量÷工作效率=工作时间是解题关键.18.(2018•广西南宁•6分)解分式方程:﹣1=.【分析】根据解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论依次计算可得.【解答】解:两边都乘以3(x﹣1).得:3x﹣3(x﹣1)=2x.解得:x=1.5.检验:x=1.5时.3(x﹣1)=1.5≠0.所以分式方程的解为x=1.5.【点评】本题主要考查解分式方程.解题的关键是掌握解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.19. 2018·黑龙江大庆·4分)解方程:﹣=1.【分析】方程两边都乘以x(x+3)得出方程x﹣1+2x=2.求出方程的解.再代入x(x+3)进行检验即可.【解答】解:两边都乘以x(x+3).得:x2﹣(x+3)=x(x+3).解得:x=﹣.检验:当x=﹣时.x(x+3)=﹣≠0.所以分式方程的解为x=﹣.20. (2018·黑龙江哈尔滨·7分)先化简.再求代数式(1﹣)÷的值.其中a=4cos30°+3tan45°.【分析】根据分式的运算法则即可求出答案.【解答】解:当a=4cos30°+3tan45°时.所以a=2+3原式=•=【点评】本题考查分式的运算.解题的关键是熟练运用分式的运算法则.本题属于基础题型.21(2018·黑龙江龙东地区·5分)先化简.再求值:(1﹣)÷.其中a=sin30°.【分析】根据分式的运算法则即可求出答案.【解答】解:当a=sin30°时.所以a=原式=•=•==﹣1【点评】本题考查分式的运算.解题的关键是熟练运用分式的运算法则.本题属于基础题型.22..(2018·湖北省恩施·8分)先化简.再求值:•(1+)÷.其中x=2﹣1.【分析】直接分解因式.再利用分式的混合运算法则计算得出答案.【解答】解:•(1+)÷=••把x=2﹣1代入得.原式===.【点评】此题主要考查了分式的化简求值.正确进行分式的混合运算是解题关键.23.(2018•福建A卷•8分)先化简.再求值:(﹣1)÷.其中m=+1.【分析】根据分式的减法和除法可以化简题目中的式子.然后将m的值代入即可解答本题.【解答】解:(﹣1)÷===.当m=+1时.原式=.【点评】本题考查分式的化简求值.解答本题的关键是明确分式化简求值的方法.24.(2018•福建B卷•8分)先化简.再求值:(﹣1)÷.其中m=+1.【分析】根据分式的减法和除法可以化简题目中的式子.然后将m的值代入即可解答本题.【解答】解:(﹣1)÷===.当m=+1时.原式=.【点评】本题考查分式的化简求值.解答本题的关键是明确分式化简求值的方法.25.(2018•广东•6分)先化简.再求值:•.其中a=.【分析】原式先因式分解.再约分即可化简.继而将a的值代入计算.【解答】解:原式=•=2a.当a=时.原式=2×=.【点评】本题主要考查分式的化简求值.解题的关键是熟练掌握分式混合运算顺序和运算法则.26.(2018•广东•7分)某公司购买了一批A.B型芯片.其中A型芯片的单价比B型芯片的单价少9元.已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.(1)求该公司购买的A.B型芯片的单价各是多少元?(2)若两种芯片共购买了200条.且购买的总费用为6280元.求购买了多少条A型芯片?【分析】(1)设B型芯片的单价为x元/条.则A型芯片的单价为(x ﹣9)元/条.根据数量=总价÷单价结合用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.即可得出关于x的分式方程.解之经检验后即可得出结论;(2)设购买a条A型芯片.则购买(200﹣a)条B型芯片.根据总价=单价×数量.即可得出关于a的一元一次方程.解之即可得出结论.【解答】解:(1)设B型芯片的单价为x元/条.则A型芯片的单价为(x﹣9)元/条.根据题意得:=.解得:x=35.经检验.x=35是原方程的解.∴x﹣9=26.答:A型芯片的单价为26元/条.B型芯片的单价为35元/条.(2)设购买a条A型芯片.则购买(200﹣a)条B型芯片.根据题意得:26a+35(200﹣a)=6280.解得:a=80.答:购买了80条A型芯片.【点评】本题考查了分式方程的应用以及一元一次方程的应用.解题的关键是:(1)找准等量关系.正确列出分式方程;(2)找准等量关系.正确列出一元一次方程.27.(2018•广西北海•6分)解分式方程:【答案】 x = 1.5【考点】解分式方程【解答】解:方程左右两边同乘3(x -1).得3x - 3(x -1) = 2x3x - 3x + 3 = 2x2x = 3x = 1.5检验:当x = 1.5时 . 3(x -1) ≠ 0所以.原分式方程的解为 x = 1.5 .【点评】根据解分式的一般步骤进行去分母.然后解一元一次方程,最后记得检验即可.28.(2018•广西贵港•10分)(1)计算:|3﹣5|﹣(π﹣3.14)0+(﹣2)﹣1+sin30°;(2)解分式方程:+1=.【分析】(1)先计算绝对值、零指数幂、负整数指数幂、代入三角函数值.再计算加减可得;(2)分式方程去分母转化为整式方程.求出整式方程的解得到x的值.经检验即可得到分式方程的解.【解答】解:(1)原式=5﹣3﹣1﹣+=1;(2)方程两边都乘以(x+2)(x﹣2).得:4+(x+2)(x﹣2)=x+2. 整理.得:x2﹣x﹣2=0.解得:x1=﹣1.x2=2.检验:当x=﹣1时.(x+2)(x﹣2)=﹣3≠0.当x=2时.(x+2)(x﹣2)=0.所以分式方程的解为x=﹣1.【点评】此题考查了实数的运算与解分式方程.解分式方程的基本思想是“转化思想”.把分式方程转化为整式方程求解.解分式方程一定注意要验根.29.(2018•贵州黔西南州•12分)(2)先化简(1﹣)•.再在1.2.3中选取一个适当的数代入求值.【分析】(2)根据分式的减法和乘法可以化简题目中的式子.再从1.2.3中选取一个使得原分式有意义的值代入化简后的式子即可解答本题.【解答】解:(2)(1﹣)•===. 当x=2时.原式=.【点评】本题考查分式的化简求值.解答本题的关键是明确它们各自的计算方法.31.(2018年湖南省娄底市)先化简.再求值:( +)÷.其中x=.【分析】原式括号中两项通分并利用同分母分式的加法法则计算.同时利用除法法则变形.约分得到最简结果.把x的值代入计算即可求出值.【解答】解:原式=•=.当x=时.原式==3+2.【点评】此题考查了分式的化简求值.熟练掌握运算法则是解本题的关键.31.(2018湖南省邵阳市)(8分)某公司计划购买A.B两种型号的机器人搬运材料.已知A型机器人比B型机器人每小时多搬运30kg材料.且A型机器人搬运1000kg材料所用的时间与B型机器人搬运800kg材料所用的时间相同.(1)求A.B两种型号的机器人每小时分别搬运多少材料;(2)该公司计划采购A.B两种型号的机器人共20台.要求每小时搬运材料不得少于2800kg.则至少购进A型机器人多少台?【分析】(1)设B型机器人每小时搬运x千克材料.则A型机器人每小时搬运(x+30)千克材料.根据A型机器人搬运1000kg材料所用的时间与B型机器人搬运800kg材料所用的时间相同建立方程求出其解就可以得出结论.(2)设购进A型机器人a台.根据每小时搬运材料不得少于2800kg 列出不等式并解答.【解答】解:(1)设B型机器人每小时搬运x千克材料.则A型机器人每小时搬运(x+30)千克材料.根据题意.得=.解得x=120.经检验.x=120是所列方程的解.当x=120时.x+30=150.答:A型机器人每小时搬运150千克材料.B型机器人每小时搬运120千克材料;(2)设购进A型机器人a台.则购进B型机器人(20﹣a)台.根据题意.得150a+120(20﹣a)≥2800.解得a≥.∵a是整数.∴a≥14.答:至少购进A型机器人14台.【点评】本题考查了分式方程的运用.一元一次不等式的运用.解决问题的关键是读懂题意.找到关键描述语.进而找到所求的量的数量关。

分式方程练习题(含答案)

分式方程练习题(含答案)

分式方程精华练习题一.选择题1.在下列方程中,关于x 的分式方程的个数(a 为常数)有( ) ①0432212=+-x x ②.4=a x ③.;4=x a ④.;1392=+-x x ⑤;621=+x ⑥211=-+-ax a x . A.2个 B.3个 C.4个 D.5个2. 关于x 的分式方程15m x =-,下列说法正确的是( ) A .方程的解是5x m =+ B .5m >-时,方程的解是正数C .5m <-时,方程的解为负数D .无法确定3.方程x x x-=++-1315112的根是( ) A.x =1 B.x =-1 C.x =83 D.x =2 4.,04412=+-x x 那么x 2的值是( ) A.2 B.1 C.-2 D.-15.下列分式方程去分母后所得结果正确的是( ) A.11211-++=-x x x 去分母得,1)2)(1(1-+-=+x x x ; B.125552=-+-xx x ,去分母得,525-=+x x ; C.242222-=-+-+-x x x x x x ,去分母得,)2(2)2(2+=+--x x x x ; D.,1132-=+x x 去分母得,23)1(+=-x x ; 6. .赵强同学借了一本书,共280页,要在两周借期内读完.当他读了一半书时,发现平均每天要多读21页才能在借期内读完.他读前一半时,平均每天读多少页?如果设读前一半时,平均每天读x 页,则下面所列方程中,正确的是( ) A.21140140-+x x =14 B.21280280++x x =14 C.21140140++x x =14 D.211010++x x =1 7.若关于x 的方程0111=----x x x m ,有增根,则m 的值是( ) A.3 B.2 C.1 D.-18.若方程,)4)(3(1243+-+=++-x x x x B x A 那么A 、B 的值为( )A.2,1B.1,2C.1,1D.-1,-19.如果,0,1≠≠=b b a x 那么=+-ba b a ( ) A.1-x 1 B.11+-x x C.x x 1- D.11+-x x 10.使分式442-x 与6526322+++-+x x x x 的值相等的x 等于( ) A.-4 B.-3 C.1 D.10二.填空题11. 满足方程:2211-=-x x 的x 的值是________. 12. 当x =________时,分式xx ++51的值等于21. 13.分式方程0222=--x x x 的增根是 . 14. 一汽车从甲地开往乙地,每小时行驶v 1千米,t 小时可到达,如果每小时多行驶v 2千米,那么可提前到达________小时.15. 农机厂职工到距工厂15千米的某地检修农机,一部分人骑自行车先走40分钟后,其余人乘汽车出发,结果他们同时到达,已知汽车速度为自行车速度的3倍,若设自行车的速度为x 千米/时,则所列方程为 .16.已知,54=y x 则=-+2222yx y x . 17.=a 时,关于x 的方程53221+-=-+a a x x 的解为零. 18.飞机从A 到B 的速度是,1v ,返回的速度是2v ,往返一次的平均速度是 .19.当=m 时,关于x 的方程313292-=++-x x x m 有增根. 20. 某市在旧城改造过程中,需要整修一段全长2400m 的道路.为了尽量减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修路x m ,则根据题意可得方程 .三.计算21. .解下列方程 (1)x x x --=+-34231 (2) 2123442+-=-++-x x x x x (3)21124x x x -=--.四.解答题22.10年前父亲的年龄是女儿的7倍,15年后父亲的年龄是女儿的2倍,现在父亲的年龄有多大?23.两个人同走一段路,甲每小时走4250米,乙每小时走3000米,甲比乙少用2.5小时走完这段路,求这段路有多长?24.修一条公路,未修长度是已修长度的3倍,如果再修300米,未修长度就是已修的2倍,这条公路长多少米?、25.某制衣厂加工一批定货服装,按计划完成天数生产,如果每天均生产20套,就比定货任务少100套;如果每天生产23套服装,就可超过定货任务20套,问这批服装的订货任务是多少?原计划几天完成?25. 有一项工程,若甲队单独做,恰好在规定日期完成,若乙队单独做要超过规定日期3天完成;现在先由甲、乙两队合做2天后,剩下的工程再由乙队单独做,也刚好在规定日期完成,问规定日期多少天?26.小兰的妈妈在供销大厦用12.50元买了若干瓶酸奶,但她在百货商场食品自选室内发现,同样的酸奶,这里要比供销大厦每瓶便宜0.2元钱,因此,当第二次买酸奶时,便到百货商场去买,结果用去18.40元钱,买的瓶数比第一次买的瓶数多53倍,问她第一次在供销大厦买了几瓶酸奶?答案一、1.B ,2.C 3.C ;4.B ,5.D ,6.C , 7.B ,8.C9.B ,10.D ;二、11.0;12.3,13.2=x ;14. 212v v t v +;15. 3215315-=x x ;16.941-. 17.51=a ;18.21212v v v v +;19.6或12,20. ()240024008120%x x-=+; 三、21.(1)无解(2)x = -1;(3)方程两边同乘(x-2)(x+2),得x(x+2)-(x 2-4)=1, 化简,得2x=-3,x= 32- 经检验,x=32-是原方程的根. 22.6天,24.解;5=x。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分式方程专项练习题优秀4篇
分式加减法练习题篇一
分式加减法练习题
一、选择题:(每小题4分,共8分)
1.下列各式计算正确的是
A.B.C.D.
2.化简+1等于()
A.B.C.D.
3.若a-b=2ab,则的值为()
A.B.-C.2D.-2
4.若,则M、N的值分别为()
A.M=-1,N=-2
B.M=-2,N=-1
C.M=1,N=2
D.M=2,N=1
5.若x2+x-2=0,则x2+x-的值为()
A.B.C.2D.-
二、填空题:(每小题4分,共8分)
1.计算:=________.
2.已知x≠0,=________.
3.化简:x+=________.
4.如果m+n=2,mn=-4,那么的值为________.
5.甲、乙两地相距S千米,汽车从甲地到乙地按每小时v千米的速度行驶,可按时到达;若每小时多行驶a千米,则可提前________小时到达(保留最简结果).
三、解答题:(共50分)
1.(4×5=20)计算:(1)a+b+(2)
(3)(4)(x+1-)÷
2.(10分)化简求值:(2+)÷(a-)其中a=2.
3.(10分)已知,求的值。

4.(10分)一项工程,甲工程队单独完成需要m天,乙工程队单独完成比甲队单独完成多需要n天时间,那么甲、乙工程队合做需要多少天能够完成此项工程?
八年级数学分式练习题篇二
数学八年级分式的运算练习题同步
一、选择题:(每小题5分,共30分)
1、计算的结果为()
A.1
B.x+1
C.
D.
2、下列分式中,最简分式是()
A.B.C.D.
3、已知x为整数,且分式的值为整数,则x可取的值有()
A.1个
B.2个
C.3个
D.4个
4、化简的结果是()
A.1
B.
C.
D.-1
5、当x=时,代数式的值是()
A.B.C.D.
二、填空题:(每小题6分,共30分)
6、计算的结果是____________.
7、计算a2÷b÷÷c×÷d×的结果是__________.
8、若代数式有意义,则x的取值范围是__________.
9、化简的结果是___________.
10、若,则M=___________.
11、公路全长s千米,骑车t小时可到达,要提前40分钟到达,每小时应多走____千米。

三、解答题:(每小题10分,共20分)
12、阅读下列题目的计算过程:

=x-3-2(x-1)②
=x-3-2x+2③
=-x-1④
(1)上述计算过程,从哪一步开始出现错误?请写出该步的代号:______.
(2)错误的原因是__________.
(3)本题目的正确结论是__________.
13、已知x为整数,且为整数,求所有符合条件的x值的和。

分式方程专项练习题篇三
一、填空:
1、当x时,分式有意义;当x时,分式无意义。

2、分式:当x______时分式的值为零。

3、的最简公分母是_________。

4、;;
5、;。

6、已知,则。

7、一件工作,甲单独做小时完成,乙单独做小时完成,则甲、乙合作小时完成。

8、若分式方程的一个解是,则。

9、当,时,计算。

10、若分式13-x的值为整数,则整数x=。

11、不改变分式的值,把下列各式的分子、分母中的各项系数都化为整数:
①23x-32y56x+y=;②0.3a-2b-a+0.7b=。

12、已知x=1是方程的一个增根,则k=_______。

13、若分式的值为负数,则x的取值范围是__。

14、约分:①_______,②______。

15、一项工程,甲单独做x小时完成,乙单独做y小时完成,则两人一起完成这项工程需要______________小时。

16、若关于x的分式方程无解,则m的值为__________。

17、若__________。

18、①;②。

19、如果=2,则=____________。

20、在等号成立时,右边填上适当的符号:=____________。

21、已知a+b=5,ab=3,则_______。

22、某工厂库存原材料x吨,原计划每天用a吨,若现在每天少用b吨,则可以多用天。

23、某商场降价销售一批服装,打8折后售价为120元,则原销售价是元。

24、已知,则B=_______。

25、甲、乙两人从两地同时出发,若相向而行,则a小时相遇;若同向而行,则b小时
甲追上乙,那么甲的速度是乙的速度的________倍。

二、选择题
1、下列各式中,分式有()个
A、1个
B、2个
C、3个
D、4个
2、如果把分式中的和都扩大3倍,那么分式的值()
A、扩大3倍
B、缩小3倍
C、缩小6倍
D、不变
3、下列约分结果正确的是()
A、;
B、;
C、;
D、
4、计算:,结果为()
A、1
B、-1
C、
D、
5、某农场开挖一条480米的渠道,开工后,每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖米,那么求时所列方程正确的是()
A、B、
C、D、
6、下列说法正确的是()
(A)形如AB的式子叫分式(B)分母不等于零,分式有意义
(C)分式的值等于零,分式无意义(D)分子等于零,分式的值就等于零
7、与分式-x+yx+y相等的是()
(A)x+yx-y(B)x-yx+y(C)-x-yx+y(D)x+y-x-y
8、下列分式一定有意义的是()
(A)__2+1(B)x+2x2(C)-__2-2(D)x2x+3
分式方程专项练习题篇四
1、分式的定义:_________________________________。

2、分式的___________________时有意义;_____________时值为零。

(注意分式与分数的关系)
3、分式的基本性质:;
用字母表示为:
(其中)。

(注意分式基本性质的应用,如改变分子、分母、分式本身的符号,化分子、分母的系数为整数等等)。

4、分式的约分:。

(思考:公因式的确定方法)。

5、最简分式:____________________________________。

6、分式的通分:。

7、最简公分母:。

8、分式加减法法则:_____。

(加减法的结果应化成)
9、分式乘除法则:。

10、分式混合运算的顺序:。

11、分式方程的定义:。

12、解分式方程的基本思想:____;如何实现:。

13、方程的增根:。

14、解分式方程的步骤:
________________________________。

15、用分式方程解决实际问题的步骤:。

相关文档
最新文档