人教版九年级数学上册《配方法》教案
新人教版九年级数学上册:《配方法》教学案
配方法课题§2.2.3 配方法(三)教学目标(一)教学知识点1.利用方程解决实际问题.2.训练用配方法解题的技能.(二)能力训练要求1.经历列方程解决实际问题的过程,体会一元二次方程是刻画现实世界中数量关系的一个有效数学模型,增强学生的数学应用意识和能力.2.能根据具体问题的实际意义检验结果的合理性.3.进一步训练利用配方法解题的技能.(三)情感与价值观要求通过学生创设解决问题的方案,来培养其数学的应用意识和能力,进而拓宽他们的思维空间,来激发其学习的主动积极性.教学重点利用方程解决实际问题教学难点对于开放性问题的解决,即如何设计方案教学方法分组讨论法教具准备投影片二张第一张:练习(记作投影片§2.2.3 A)第二张:实际问题(记作投影片§2.2.3 B)教学过程Ⅰ.巧设情景问题,引入新课[师]通过上两节课的研究,我们会用配方法来解数字系数的一元二次方程.下面我们通过练习来复习巩固一元二次方程的解法.(出示投影片§2.2.3 A)用配方法解下列一元二次方程:(1)x 2+6x+8=0;(2)x 2-8x+15=0;(3)x 2-3x-7=0;(4)3x 2-8x+4=0;(5)6x 2-11x-10=0;(6)2x 2+21x-11=0.[师]我们分组来做,第一、三、五组的同学做方程(1)、(3)、(5),第二、四、六组的同学做方程(2)、(4)、(6).[师]各组做完了没有?[生齐声]做完了.[师]好,我们来交叉改一下,看看哪位同学批改得仔细,哪位同学的方程解得全对.[生甲]我改的是××同学的,他做的是方程(1)、(3)、(5),方程(1)解对了,答案是x 1=-2,x 2=-4.解方程(3)时,在配方的时候,他配错了,即x 2-3x-7=0,x 2-3x =7,x 2-3x+32=7+32 应为(-23)2. [师]很好,这里一次项-3x 的系数-3是奇数,所以应在方程两边各加上(-3)的一半的平方,那方程(3)的正确答案是多少呢?[生乙]方程(3)的解为x 1=2373,23732-=+x . [师]好,继续.[生丙]方程(5)的二次项系数不为1,所以首先应把方程化为二次项系数是1的形式,然后再应用配方进行求解.××同学解的对,其解为x 1=25,x 2=-23. [生丁]××同学做的是方程(2)、(4)、(6).他解的完全正确,即方程(2)的解:x 1=5,x 2=3,方程(4)的解:x 1=2,x 2=23,方程(6)的解:x l =21,x 2=-11. [师]利用配方法求解方程时,一定要注意:①方程的二次项系数不为1时,首先应把它化为二次项系数是1的形式,这是利用配方法求解方程的前提.②配方法中方程的两边都加上一次项系数一半的平方的前提是方程的二次项系数为1. 另外,大家在利用配方法求解方程时,要有一定的技能.这就需要大家不仅要多练,而且还要动脑.尤其是在解决实际问题中.这节课我们就来解决一个实际问题.Ⅱ.讲授新课[师]看大屏幕.(出示投影片§ 2.2.3B)在一块长16 m ,宽12 m 的矩形荒地上,要建造一个花园,并使花园所占面积为荒地面积的一半,你能给出设计方案吗?[师]大家仔细看题,弄清题意后,分组进行讨论,设计具体方案,并说说你的想法.[生甲]我们组的设计方案如右图所示,其中花园四周是小路,它们的宽度都相等.这样设计既美观又大方,通过列方程、解方程,可以得到小路的宽度为2 m 或12 m .[师]噢,同学们来想一想,甲组的设计符合要求吗?如果符合,请说明是如何列方程,又如何求解方程的;如果不符合,请说明理由.[生乙]甲组的设计符合要求.我们可以假设小路的宽度为x m ,则根据题意,可得方程 (16-2x)(12-2x)=21×16×12, 也就是x 2-14x-24=0.然后利用配方法来求解这个方程,即x 2-14x+24=0,x 2-14x =-24,x 2-14x+72=-24+72,(x-7)2=25,x-7=±5,即x-7=5,x-7=-5.∴x 1=12.x 2=2.因此,小路的宽度为2 m 或12 m .由以上所述知:甲组的设计方案符合要求.[生丙]不对,因为荒地的宽度是12 m ,所以小路的宽度绝对不能为12 m .因此甲组设计的方案不太准确,应更正为:花园四周的小路的宽度只能是2 m .[师]大家来作判断,谁说的合乎实际?[生齐声]丙同学说得有理.[师]好,一般地来说:在解一元一次方程时,只要题目、方程及解法正确,那么得出的根便是所列方程的根,一般也就是所解应用题的解,而一元二次方程有两个根,这些根虽然满足所列的一元二次方程,但未必符合实际问题.因此,解完一元二次方程之后,不要急于下结论,而要按题意来检验这些根是不是实际问题的解.这一点,丙同学做得很好,大家要学习他从多方面考虑问题.接下来,我们来看其他组设计的方案.[生丁]我们组的设计方案如右图.我们是以矩形的四个顶点为圆心,以约5.5 m 长为半径画了四个相同的扇形,则矩形除四个相同的扇形以外的地方就可作为花园的场地.因为四个相同的扇形拼凑在一起正好是一个圆,即四个相同扇形的面积之和恰为一个圆的面积,假设其半径为x m ,根据题意,可得πx 2=21×12×16. 解得x=± 96≈±5.5.因为半径为正数,所以x =-5.5应舍去.因此,由以上所述可知,我们组设计的方案符合要求.[生戊]由丁同学组的启发,我又设计了一个方案,如右图.以矩形的对角线的交点为圆心,以5.5 m 长为半径在矩形中间画一个圆,这个圆也可作为花园的场地.[生己]老师,我也设计了一个方案,图形与戊同学的一样,他是把圆作为花园的场地,而我是把圆以外的荒地作为花园的场地,圆内以备盖房子.[师]同学们设计的方案都很好,并能触类旁通,真棒.其他组怎么样?[生庚]我们组设计的方案如右图.顺次连结矩形各边的中点,所得到的四边形即是作为花园的场地.因为矩形的四个顶点处的直角三角形都全等,每个直角三角形的面积是24 m 2(即21×6×8),所以四个直角三角形的面积之和为96 m 2,则剩下的面积也正好是96 m 2,即等于矩形面积的一半.因此这个设计方案也符合要求.[生辛]我们组设计的方案如下图.图中的阴影部分可作为建花园的场所.因为阴影部分的面积为96 m 2,正好是矩形面积的一半,所以这个设计也符合要求.[生丑]我们组设计的方案如右图.图中的阴影部分可作为建花园的场地.经计算,它符合要求.[生癸]我们组的设计方案如下图.图中的阴影部分是作为建花园的场地.[师]噢,同学们能帮癸组求出图中的x 吗?[生]能,根据题意,可得方程2×21 (16-x)(12-x) =21×16×12, 即x 2-28x+96=0,x 2-28x =-96,x 2-28x+142=-96+142,(x-14)2=100,x-14=±10.∴x 1=24,x 2=4.因为矩形的长为16 m ,所以x 1=24不符合题意.因此图中的x 只能为4 m.[师]同学们真棒,通过大家的努力,设计了这么多在矩形荒地上建花园的方案. 接下来,我们再来看一个设计方案.Ⅲ.课堂练习(一)课本P 55随堂练习 11.小颖的设计方案如图所示,你能帮助她求出图中的x 吗?解:根据题意,得 (16-x)(12-x)=21×16×12, 即x 2-28x+96=0.解这个方程,得x 1=4,x 2=24(舍去).所以x=4.(二)看课本P 53~P 54,然后小结.Ⅳ.课时小结本节课我们通过列方程解决实际问题,进一步了解了一元二次方程是刻画现实世界中数量关系的一个有效数学模型,并且知道在解决实际问题时,要根据具体问题的实际意义检验结果的合理性.另外,还应注意用配方法解题的技能.Ⅴ.课后作业(一)课本P 55习题2.5 1、2(二)1.预习内容:P 56~P 572.预习提纲如何推导一元二次方程的求根公式.Ⅵ.活动与探究汽车在行驶中,由于惯性作用,刹车后还要向前滑行一段距离才能停住,我们称这段距离为“刹车距离”.刹车距离是分析事故的一个重要因素,在一个限速40千米/时以内的弯道上,甲、乙两车相向而行,发现情况不对,同时刹车,但还是相碰了.事后现场测得甲车的刹车距离为12米,乙车的刹车距离超过10米,但小于12米,查有关资料知,甲种车的刹车距离S 甲(米)与车速x(千米/时)之间有下列关系:S 甲=0.1x+0.01x 2;乙种车的刹车距离S 乙(米)与车速x(千米/时)的关系如下图所示.请你就两车的速度方面分析相碰的原因.[过程]通过对本题的研究、探讨,让学生体会数学与现实生活紧密相连. 由甲车的刹车距离和车速的关系式S 甲=0.1x+0.01x 2,又S 甲=12,从而可求得甲 车速度,对乙车而言,从图象上知刹车距离与车速是成正比例函数关系,因而可设为x 乙=kx ,又其过点(60,15),从而得到k 值,由10<s 乙<12,可得乙车车速,进而可确定事故的原因.[结果]解:对于甲车:∵甲车刹车距离为12米,根据题意,得12=0.1x+0.01x 2.解这个方程,得x 1=30或x 2=-40(舍去),即甲车的车速为30千米/时,不超过限速.对于乙车:由图象知,其关系是一个正比例函数,设此函数为x 乙=kx∵经过点(60,15),∴15=60k , ∴k =41,即此函数解析式为S 乙=41x 根据题意,得10<41x<12. ∴40<x<48.∴乙车超过限速40千米/时的规定.∴就速度方面分析,两车相碰的原因在于乙车超速行驶.板书设计§2.2.3 配方法(三) 一、实际问题的设计方案:设计方案一:设计方案二:设计方案三:设计方案四:二、课堂练习三、课时小结四、课后作业。
人教版九年级数学上册《解一元二次方程—配方法》优秀教学设计设计
人教版九年级数学上册《解一元二次方程—配方法》优秀教学设计设计一. 教材分析人教版九年级数学上册《解一元二次方程—配方法》这一节,主要让学生掌握利用配方法解一元二次方程的方法。
教材通过引入具体的一元二次方程,引导学生发现解方程的规律,从而总结出配方法解一元二次方程的一般步骤。
教材内容由浅入深,逐步引导学生掌握解题技巧,培养学生的逻辑思维能力。
二. 学情分析九年级的学生已经具备了一定的数学基础,对一元二次方程有了初步的了解。
但在解一元二次方程方面,部分学生可能还停留在试错阶段,没有形成系统的解题方法。
因此,在教学过程中,需要关注学生的个体差异,引导他们发现解题规律,提高解题效率。
三. 教学目标1.知识与技能:使学生掌握配方法解一元二次方程的基本步骤和方法。
2.过程与方法:通过观察、分析、归纳,培养学生发现解题规律的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养他们勇于探索、积极思考的精神。
四. 教学重难点1.重点:配方法解一元二次方程的步骤及应用。
2.难点:如何引导学生发现配方法的解题规律。
五. 教学方法1.引导发现法:通过设置问题,引导学生观察、分析、归纳,发现解题规律。
2.案例教学法:以具体的一元二次方程为例,演示配方法解题过程。
3.小组合作学习:鼓励学生分组讨论,共同探索解题方法。
六. 教学准备1.准备相关的一元二次方程案例。
2.制作课件,展示解题过程。
3.准备练习题,巩固所学知识。
七. 教学过程1.导入(5分钟)利用一个简单的一元二次方程,引导学生回顾已知的解题方法,为新课的学习做好铺垫。
2.呈现(15分钟)展示一个具体的一元二次方程,让学生尝试利用已知的解题方法进行求解。
在学生解题过程中,教师引导学生观察、分析,发现解题规律。
3.操练(15分钟)让学生分组合作,运用配方法解一元二次方程。
教师巡回指导,解答学生遇到的问题。
4.巩固(10分钟)呈现一组类似的一元二次方程,让学生独立运用配方法进行解答。
人教版九年级数学上册:21.2.1 配方法 教学设计
人教版九年级数学上册:21.2.1 配方法教学设计一. 教材分析人教版九年级数学上册21.2.1配方法是数轴和实数章节的一部分,主要介绍了配方法的基本原理和应用。
通过配方法,学生可以更好地理解实数的性质,特别是平方根的概念。
本节课的内容为后续学习二次函数和方程打下基础。
二. 学情分析九年级的学生已经掌握了实数的基本概念,具备一定的逻辑思维能力。
但部分学生对实数的性质和配方法的理解可能还不够深入。
因此,在教学过程中,需要关注学生的学习情况,针对性地进行讲解和辅导。
三. 教学目标1.让学生理解配方法的原理,掌握配方法的基本步骤。
2.培养学生运用配方法解决实际问题的能力。
3.加深学生对实数性质的认识,为后续学习打下基础。
四. 教学重难点1.配方法的原理和步骤。
2.运用配方法解决实际问题。
五. 教学方法1.讲授法:讲解配方法的原理和步骤,引导学生理解实数的性质。
2.案例分析法:通过具体案例,让学生学会运用配方法解决问题。
3.讨论法:鼓励学生参与课堂讨论,提高学生的逻辑思维能力。
六. 教学准备1.教学课件:制作配方法的动画演示,帮助学生形象地理解原理。
2.案例素材:准备一些实际问题,用于课堂练习和巩固。
3.练习题:设计一些有关配方法的练习题,检验学生对知识点的掌握。
七. 教学过程1.导入(5分钟)利用课件展示实数的性质,引导学生回顾已学知识。
然后提出本节课的主题——配方法,激发学生的学习兴趣。
2.呈现(10分钟)讲解配方法的原理和步骤,让学生跟随教师的讲解,逐步理解实数的性质。
通过动画演示,让学生直观地感受配方法的过程。
3.操练(10分钟)呈现一些实际问题,让学生运用配方法进行解决。
引导学生分组讨论,共同完成任务。
教师巡回辅导,解答学生的疑问。
4.巩固(10分钟)让学生自主完成练习题,检验对配方法的理解。
教师选取部分学生的作业进行点评,总结错误原因,强化知识点。
5.拓展(10分钟)引导学生思考:配方法在实际生活中的应用。
人教版九年级数学上册教案《配方法》
《21.2.1配方法》教学设计第1课时教材分析:本节仍然结合实际问题展开,重点讨论用配方法解一元二次方程.首先课本先讨论了直接开平方法,直接开平方法的依据是求一个数的平方根,另外循序渐进地安排了两类方程:x²=p和(x+n)²=p,后者可以看成是前者的推广.学习完直接开平方法后介绍了配方法,利用配方将一般式转换为可进行直接开平方法的形式,配方法也为后面推到公式法提供了方法依据.教学目标:【知识与能力目标】1.使学生知道形如x2=a(a≥0)的一元二次方程可以用直接开平方法求解;2.使学生知道直接开平方法求一元二次方程的解的依据是数的开平方;3.使学生能够熟练而准确的运用直接开平方法求一元二次方程的解;【过程与方法】1.在学习与探究中使学生体会“化归”“换元”与“分类讨论”的数学思想及运用类比进行学习的方法.2.通过利用数的平方根得到用直接开平方法解一元二次方程,使学生能够解答符合条件的一元二次方程,同时为配方法的学习打好基础.【情感态度与价值观】通过利用直接开平方法解一元二次方程使学生在学习中体会成功感,感受数学学习的价值.教学重难点:【教学重点】使学生能够熟练而准确的运用直接开平方法求一元二次方程的解.【教学难点】探究一元二次方程(x-m)2=a的解的情况,培养分类讨论的意识课前准备:多媒体教学过程:问题1:在运动场正中间搭建一个面积为144平方米的正方形舞台,那么这个正方形舞台的边长是多少米呢?(请设未知数列方程解决)【解】设这个正方形舞台的边长是x米.列方程,得x2=144.根据平方根的意义,得x=±144=±12,∴原方程的解是x1=12,x2=-12.∵边长不能为负数,∴x=12.即这个正方形舞台的边长是12米.【设计意图】用学生身边的实际问题引入新课,激发学生的积极性,同时体现数学来源于生活并用之于生活.问题2:(1)将下列各数的平方根写在旁边的括号里.A:9( ±3),5( ± 5 ),49( ±7);B:8( ±2 2 ),24( ±2 6 ),14( ±14 );C:3( ± 3 ),1.2( ±305),2( ± 2 ).(2).若x2=4,则x=__±2__.【设计意图】通过对平方根的复习为本节课做准备,同时对平方根概念的掌握情况进行教学诊断,起到承上启下的作用.建议:在做第1小题时最好先让学生回顾平方根和算术平方根的概念.对于第2题,根据平方根的概念求解,从而导出新课.(2)追问:什么叫做平方根?平方根具有哪些性质?【结论】一个数x的平方等于a,则这个数叫做a的平方根.性质:正数的平方根有两个,它们是互为相反数;零的平方根是零;负数没有平方根.【设计意图】通过回顾平方根的概念及性质和开平方的意义,有助于学生理解利用直接开平方法解一元二次方程,为学习新知打下基础.问题3:(1)如何解一元二次方程x2=5,m2=16,x2-121=0?(2)你能求出一元二次方程-x2+3=0和x2+1=0的解吗?若能,请写出求解过程;若不能,请说明理由.【解】(1)∵x²=5,∴x=5±.∵m²=16,∴m=±4.∵x²-121=0,即x²=121,∴x=±11.(2)∵-x²+3=0即x²=3,∴x=3±.∵x²+1=0即x²=-1,由负数没有平方根,故方程无实数根.【结论】一般地,对于方程x²=p(※),(1)当p>0时,根据平方根的意义,方程(※)有两个不等的实数根x1=p-,x2==p;(2)当p=0时,方程(※)有两个相等的实数根x1=x2=0;(3)当p<0时,因为对于任意实数x,都有x²≥0,所以方程(※)无实数根.这种解方程的方法叫做直接开平方法.板书课题:直接开平方法解一元二次方程【设计意图】设置问题(1),使学生进一步体验直接开平方法适用的一元二次方程的形式;设置问题(2),通过对一些复杂问题的探究帮助学生更加深入而准确地理解直接开平方法适用的一元二次方程.并为总结出一般的情况作出铺垫.问题4:例1解方程:(x+3)2=5.【解】x+3=5±∴x 1=53-,x 2=53+ . [变式练习]解一元二次方程:(1)2(x -8)2=50;(2)(2x -1)2-32=0.【解】(1)原方程可化为(x-8)²=25∴x-8=±5,∴x 1=13,x 2=3.(2)原方程可化为(2x-1)²=32∴2x-1=24±. ∴x 1=2221-,x 2=2221+.例2 已知x 1,x 2是一元二次方程3(x -1)2=15的两个解,且x 1<x 2,下列说法正确的是( A )A .x 1小于-1,x 2大于3B .x 1小于-2,x 2大于3C .x 1,x 2在-1和3之间D .x 1,x 2都小于3【解】原方程化为(x-1)2=5∴x=1±5即x 1=1-5≈-1.236,x 2=1+5≈3.236故选A.例3 若一元二次方程ax 2=b(ab >0)的两个根分别是m +1与2m -4,则ab = . 【解】:方程的解为ab x ±=, ∴m+1和2m-4是互为相反数,即(m+1)+(2m-4)=0.解得,m=1.∴方程的两个根为2和-2.即2=ab ∴4=a b . 故答案为4.【设计意图】题目的设置采用逐步递进、提升的方式,既巩固了直接开平方法,为学习配方法做好铺垫,又使学生体验到类比、转化、降次的数学思想方法. 通过拓展练习,及时地反馈学生的学习情况,及时地查漏补缺,进一步提升教学效果.问题5:1.课堂总结:(1)本节课主要学习了哪些知识?学习了哪些数学思想和方法?(2)本节课还有哪些疑惑?说一说!2.布置作业:(1)教材第6页练习;(2)教材第16页习题21.2第1题.3.知识结构图:【设计意图】注重课堂小结,激发学生参与的主动性,为每一个学生的发展与表现创造机会.通过构建知识结构图使提纲挈领,重点突出.教学反思:1.在复习回顾环节中,教师应给予充分的时间让学生交流、讨论,平方根是直接开平方运算的依据,所以必须使学生清楚平方根的意义;在课堂训练中,教师点名让学生回答问题,从多个角度进行多人次的提问.2.对于难点问题,教师引导学生注意以下几点:(1)正数的平方根有两个,它们互为相反数,这时方程有两个实根;(2)若一个数的平方为负数,则方程无实根.3.本课时难度较小,重视学生自学能力的提高,教师起到引导、点拨、评价的作用.第2课时教材分析:本节课结合具体方程,通过将方程ax²+bx+c=0(a≠0)配方成为能运用开平方法求解方程的形式,进而求出方程的解.配方法不仅为下节课推导一元二次方程的求根公式做好了知识上的准备,而且也是后续学习二次函数等知识的基础.教学目标:【知识与能力目标】探索利用配方法解一元二次方程的一般步骤;能够利用配方法解一元二次方程.【过程与方法】1.通过用配方法将一元二次方程变形的过程,让学生进一步体会转化的思想方法,并增强他们的数学应用意识和能力.2.通过配方将其转化为可利用直接开平方法解的一元二次方程,向学生渗透数学新知识的学习往往由未知(新知识)向已知(旧知识)转化,这是研究数学问题常用的方法:化未知为已知.【情感态度与价值观】通过学生间的交流、探索,进一步激发学生的学习热情和求知欲望,同时提高小组合作意识和一丝不苟的精神.教学重难点:【教学重点】会用配方法解一元二次方程;【教学难点】能够熟练地进行配方;课前准备:多媒体教学过程:问题1:(1)回顾用直接开平方法解一元二次方程的步骤,解下列方程:①x2=3;②(x+3)2=5;③x2+6x+9=7.(2)图21-2-1中的两个图形各验证了什么公式呢?与同伴交流一下.图21-2-1(3)将下列各式填上适当的项,配成完全平方式(口头回答).①x 2+2x +__1__=(x +__1__)2;②x 2-4x +__4__=(x -__2__)2;③x 2+__12x__+36=(x +6)2;④x 2+10x +__25__=(x +__5__)2.【解】(1)①x=3±,∴x 1=3,x 2=3-.②x+3=5±,∴x 1=53-+,x 2=53--.③(x+3)2=7,∴x+3=7±,∴x 1=73-+,x 2=73--. (2)完全平方公式:(a ±b )2=a 2±2ab+b 2.(3)见题目.追问:要把一个二次项系数为1的二次三项式变成一个完全平方式,常数项该如何变化?学生讨论,发现规律:常数项是一次项系数一半的平方.填空:x 2+b a x +__b 24a __=⎝ ⎛⎭⎪⎫x + b 2a 2. 【设计意图】1.巩固直接开平方法解方程,为配方法打下基础; 2.学会利用完全平方的知识填空,感受配方,为课题的学习做好铺垫.问题2:思考:(1)你会解一元二次方程x 2+4x +4=0吗?(2)会解x 2+6x +4=0吗? 提示:能否将方程x 2+6x +4=0转换为直接开平方法的形式再求解?【解】(1)(x+2)2=0,∴x+2=0,∴x 1=x 2=-2.(2)移项,x 2+6x=-4两边加9,x 2+6x+9=5∴(x+3)2=5.∴x+3=5±∴x 1=53+-,x 2=53--.板书课题:配方法解一元二次方程【设计意图】1.体现启发式教学,每位学生都能参与课堂,循序渐进,充分调动学生的积极性和充满探索的精神;2.学生通过经历观察、思考、讨论、分析的过程,形成把一元二次方程配成完全平方形式来解方程的思想.问题3:例1 解方程:(1)x 2-8x +1=0;(2)3x 2-6x +4=0.【师生活动】教师指导学生观察方程的特点,指导学生阐述做题的思路,然后学生给予书写解题过程,教师做好评价和辅导.解:(1)移项,x 2-8x=-1∴配方,x 2-8x+16=16-1∴(x-4)2=15∴x=154±∴x 1=154+,x 2=154-.(2)移项,3x 2-6x=-4系数化为1,x 2-2x=-34 配方,x 2-2x+1=1-34 ∴(x-1)2=-31 ∴方程无实数根. 变式练习:(1)x 2-10x +9=0;(2)2x 2+1=3x.答案:(1)x 1=9,x 2=1;(2)x 1=1,x 2=21. 【设计意图】1.此题的设置存在梯度,给予学生层次递进的学习过程;2.学生不断质疑、解惑,不但完善了思维也锻炼了能力,使学生形成对知识的总体把握.问题4:例2 用配方法求2x 2-7x +2的最小值;解:2x 2-7x +2=2((x 2-27x )+2 =2(x 2-27x+1649)-849+2=2(x-47)2-833 ∴当x=47时,代数式最小值-833. 变式练习:求-3x 2+5x +1的最大值. 答案:最大值为1237. 【设计意图】学生对已解问题与未解问题的对比分析能力;给予学生一定的时间去思考,充分讨论,争取让学生自己得到解答方法;鼓励学生大胆猜想,发表见解.这里求二次三项式的最值为后续学习二次函数打下基础.问题5:1.课堂总结:(1)本节课主要学习了哪些知识?学习了哪些数学思想和方法?(2)本节课还有哪些疑惑?说一说!师生总结:①移项;②二次项系数化为1;③配方;④开方;⑤得解。
人教版数学九年级上册21.2.2《配方法(1)》教学设计
人教版数学九年级上册21.2.2《配方法(1)》教学设计一. 教材分析《配方法(1)》是人教版数学九年级上册第21.2.2节的内容,主要讲述了配方法的基本概念和应用。
配方法是一种解决二次方程的有效方法,通过将二次方程转化为完全平方形式,从而简化计算和求解过程。
本节内容主要包括配方法的定义、配方法的步骤以及配方法在解决实际问题中的应用。
二. 学情分析九年级的学生已经掌握了二次方程的基本概念和求解方法,具备了一定的数学基础。
但学生在解决实际问题时,往往对这些方法的应用范围和条件把握不清,不能灵活运用。
因此,在教学本节内容时,需要帮助学生巩固已有的知识,并通过实例讲解和练习,让学生理解和掌握配方法的特点和应用。
三. 教学目标1.知识与技能:使学生理解配方法的基本概念和步骤,能够运用配方法解决简单的实际问题。
2.过程与方法:通过实例分析和练习,培养学生运用配方法解决问题的能力,提高学生的数学思维水平。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的自主学习能力和团队合作精神。
四. 教学重难点1.配方法的基本概念和步骤。
2.配方法在解决实际问题中的应用。
五. 教学方法1.讲授法:通过讲解配方法的基本概念和步骤,使学生掌握配方法的理论知识。
2.案例分析法:通过实例分析,让学生了解配方法在解决实际问题中的应用。
3.练习法:通过课堂练习和课后作业,巩固学生对配方法的理解和应用。
4.小组讨论法:鼓励学生分组讨论,培养学生的团队合作精神和数学思维能力。
六. 教学准备1.教材和教辅:准备人教版数学九年级上册教材和相关教辅资料。
2.课件和幻灯片:制作课件和幻灯片,用于课堂讲解和展示。
3.练习题和答案:准备一些配方法的练习题,并准备相应的答案。
七. 教学过程1.导入(5分钟)通过一个实际问题引入本节内容,例如:“某数加上其倒数的和为2,求这个数。
”让学生尝试解决此问题,引发学生对配方法的思考。
2.呈现(15分钟)讲解配方法的基本概念和步骤,并举例说明配方法在解决实际问题中的应用。
人教版数学九年级上册教学设计21.2.1《配方法》
人教版数学九年级上册教学设计21.2.1《配方法》一. 教材分析《配方法》是人教版数学九年级上册第21.2.1节的内容,主要是让学生掌握配方法的原理和步骤,并能够运用配方法解决一些实际问题。
本节课的内容是学生在学习了二次函数的基础上进行学习的,对于学生来说,配方法是一种新的解决问题的方法,对于教师来说,需要引导学生从直观的图形理解配方法,逐步过渡到抽象的数学公式。
二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,对于二次函数的基本概念和性质有一定的了解。
但是,学生在学习过程中,对于一些抽象的数学公式可能会感到困惑,因此,教师需要通过具体的例子,引导学生理解配方法的原理和步骤。
三. 教学目标1.让学生理解配方法的原理和步骤,并能够运用配方法解决一些实际问题。
2.培养学生的逻辑思维能力和抽象思维能力。
3.通过对配方法的学习,培养学生解决问题的能力和创新精神。
四. 教学重难点1.配方法的原理和步骤。
2.如何引导学生从直观的图形理解配方法,逐步过渡到抽象的数学公式。
五. 教学方法1.采用问题驱动的教学方法,通过引导学生解决实际问题,让学生理解配方法的原理和步骤。
2.采用数形结合的教学方法,通过直观的图形,帮助学生理解配方法。
3.采用小组合作的学习方法,培养学生的团队协作能力和解决问题的能力。
六. 教学准备1.准备相关的教学PPT,包括配方法的原理和步骤,以及一些实际问题的例子。
2.准备一些相关的数学题目,用于巩固学生对配方法的理解。
七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考如何解决这个问题,从而引出配方法的概念。
2.呈现(10分钟)通过PPT,向学生介绍配方法的原理和步骤,以及一些相关的例子。
3.操练(10分钟)让学生通过小组合作,解决一些实际问题,从而加深对配方法的理解。
4.巩固(5分钟)通过一些相关的数学题目,巩固学生对配方法的理解。
5.拓展(5分钟)引导学生思考,配方法在实际生活中有哪些应用,从而培养学生的创新精神。
人教版九年级上册数学21.2.1配方法(教案)
5.激发学生对数学学科的兴趣,培养他们勇于探究、积极思考的学习态度,提高数学学科素养。
三、教学难点与重点
1.教学重点
-配方法的定义与原理:确保学生理解配方法是通过添加和减去相同的项,将一元二次方程转化为完全平方公式的过程。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《配方法》这一章节。在开始之前,我想先问大家一个问题:“你们在解一元二次方程时,有没有遇到过特别难解的情况?”例如,当我们面对一个形如x^2 + 6x + 9 = 0的方程时,我们如何快速求解?这个问题与我们将要学习的配方法密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索配方法的奥秘。
4.应用配方法求解一元二次方程的实例。
本节课将结合实际例题,让学生掌握配方法的运用,培养他们解决实际问题的能力。
二、核心素养目标
1.理解并掌握配方法的数学原理,提高学生的逻辑思维能力;
2.能够运用配方法求解一元二次方程,培养解决问题的策略与能力;
3.通过分析实际问题,培养学生将数学知识应用于实际情境的意识,增强数学与现实生活的联系;
2.教学难点
-配方过程的理解:学生可能难以理解为什么要添加和减去一次项系数一半的平方,以及这样做的数学意义。
-完全平方公式的记忆与应用:学生需要记住完全平方公式(a+b)^2 = a^2 + 2ab + b^2,并能够将其应用于配方过程中。
-选择合适的常数项进行配方:学生可能会在选择配方时添加错误的常数项,导致无法正确转化为一元二次方程的完全平方形式。
人教版九年级上册数学21.2.1配方法(教案)
人教版九年级数学上册教案《配方法》人教)
《配方法》方程是刻画现实世界中数量关系的一个有效数学模型,应用比较广泛,而从实际问题中抽象出方程,并求出方程的解是解决问题的关键。
配方法既是解一元二次方程的一种重要方法,同时也是推导公式法的基础。
配方法又是初中数学的重要内容,在二次根式、代数式的变形及二次函数中都有广泛应用。
【知识与能力目标】理解配方法的意义,会用配方法解二次项系数为1的一元二次方程。
【过程与方法目标】通过探索配方法的过程,让学生体会转化的数学思想方法。
【情感态度价值观目标】学生在独立思考和合作探究中感受成功的喜悦,并体验数学的价值,增强学生学习数学的兴趣。
【教学重点】运用配方法解二次项系数为1的一元二次方程。
【教学难点】发现并理解配方的方法。
多媒体课件1、创设情境,引入问题问题1 一桶某种油漆可刷的面积为1 500 dm2,李林用这桶油漆恰好刷完10个同样的正方体形状的盒子的全部外表面,你能算出盒子的棱长吗?师生活动:教师展示问题,学生独立思考列出方程并整理得x 2=25。
教师追问:求方程的解与平方根定义之间有什么关系。
师生活动:回顾以前所学的知识引导学生得出降次的方法。
设计意图:类比消元法得出一元二次方程解法——降次。
2、探索配方法问题2方程x ^2+6x +9=2如何求解学生活动:思考并交流得出:的左边是完全平方形式,这个方程可以化成(x +3)2=2,进行降次,得______________,所以方程的根为x 1=___________,x 2=__________.教师追问:可以总结一般式吗?学生思考,小组讨论并得出解决方法:如果方程能化成的形式,那么可得 教师适当点拨,板书规范几何书写.3、课堂练习师生活动:学生独立思考,完成解题,组内小先生批改,教师巡视、发现问题。
小组汇报完成情况设计意图:熟悉并掌握正确的解题方法。
4、课堂小结左边不含有x 的完全平方形式,•左边是非负数的一元二次方程化为左边是含有x 的完全平)0()(22≥=+=p p n mx p x x mx n =+=()()()()()()()()2222221280; 2953; 3690;43160 5445; 6961 4.x x x x x x x x -=-=+-=--=-+== ; ++方形式,右边是非负数,可以直接降次解方程的方程。
人教版数学九年级上册22.2.2《配方法》教学设计1
人教版数学九年级上册22.2.2《配方法》教学设计1一. 教材分析《配方法》是人教版数学九年级上册第22章第2节的内容,这部分内容是在学生已经掌握了整式的加减、乘除,以及完全平方公式的基础上进行学习的。
配方法是一种解决问题的方法,通过构造完全平方公式,将问题转化为学生已经掌握的知识点,从而解决问题。
配方法在解决二次方程、二次不等式以及函数图像的平移等问题中有着广泛的应用。
二. 学情分析九年级的学生已经具备了一定的数学基础,能够理解和运用整式的加减、乘除以及完全平方公式。
但是,对于配方法的原理和应用,他们可能还不太清楚。
因此,在教学过程中,需要通过具体例子让学生理解配方法的原理,并通过练习让学生掌握配方法的应用。
三. 教学目标1.知识与技能:让学生掌握配方法的原理,并能够运用配方法解决相关问题。
2.过程与方法:通过具体例子,让学生理解配方法的过程,并能够独立完成配方法的操作。
3.情感态度与价值观:培养学生对数学的兴趣,提高学生解决问题的能力。
四. 教学重难点1.配方法的原理理解2.配方法在解决实际问题中的应用五. 教学方法采用讲解法、示范法、练习法、讨论法等教学方法,通过具体例子引导学生理解配方法,并通过练习让学生巩固所学知识。
六. 教学准备1.教学PPT七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考如何解决这类问题。
例如,解决方程x^2 -5x + 6 = 0。
2.呈现(15分钟)讲解配方法的原理,并通过PPT展示配方法的具体步骤。
配方法的步骤如下:(1)将方程写成完全平方的形式;(2)根据完全平方公式,构造出两个相同的因式;(3)将方程转化为两个因式的乘积等于0的形式;(4)根据乘积等于0的性质,解出方程的解。
3.操练(15分钟)让学生独立完成配方法的操作,教师巡回指导。
4.巩固(10分钟)让学生解答一些相关的练习题,检验学生对配方法的理解和掌握程度。
5.拓展(10分钟)讲解配方法在解决二次方程、二次不等式以及函数图像的平移等问题中的应用。
人教版数学九年级上册22.2.1《配方法》教案2
人教版数学九年级上册22.2.1《配方法》教案2一. 教材分析《配方法》是人教版数学九年级上册第22章第2节的一部分,主要介绍了配方法的概念、意义和应用。
配方法是解一元二次方程的一种方法,通过将方程转化为完全平方形式,使方程的解变得简单。
这一节的内容是学生学习一元二次方程解法的重要基础,也是后续学习二次函数和一元二次方程组的基础。
二. 学情分析九年级的学生已经具备了一定的代数基础,能够理解和运用一元一次方程、不等式的解法。
但是,对于一元二次方程,学生可能还存在一定的困难。
因此,在教学过程中,需要引导学生从已有的知识出发,逐步理解和掌握配方法。
三. 教学目标1.让学生理解配方法的概念和意义。
2.引导学生掌握配方法的操作步骤。
3.培养学生运用配方法解决实际问题的能力。
四. 教学重难点1.配方法的概念和意义的理解。
2.配方法的操作步骤的掌握。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过设置问题,引导学生主动探究;通过案例分析,使学生理解配方法的实际应用;通过小组合作,培养学生的合作意识和团队精神。
六. 教学准备1.准备相关的教学案例和练习题。
2.准备教学PPT。
七. 教学过程1.导入(5分钟)利用PPT展示一些实际问题,引导学生思考如何解决这些问题。
例如,一个矩形的长比宽大3,已知矩形的面积为24,求矩形的长和宽。
2.呈现(10分钟)介绍配方法的概念和意义,讲解配方法的操作步骤。
通过PPT和案例,让学生直观地理解配方法的过程和效果。
3.操练(10分钟)让学生独立完成一些配方法的练习题。
在学生练习的过程中,教师进行个别辅导,解答学生的疑问。
4.巩固(10分钟)让学生分组讨论,总结配方法的操作步骤和注意事项。
每组派代表进行汇报,教师进行点评和总结。
5.拓展(10分钟)让学生运用配方法解决一些实际问题。
教师提供问题,学生分组讨论和解答。
6.小结(5分钟)教师引导学生总结本节课的主要内容和收获。
人教版数学九年级上册22.2.2《配方法》教案1
人教版数学九年级上册22.2.2《配方法》教案1一. 教材分析《配方法》是初中数学九年级上册的教学内容,主要目的是让学生掌握配方法的基本原理和应用。
配方法是一种解决二次方程问题的方法,通过将二次方程转化为完全平方形式,从而简化问题的求解过程。
本节课的内容是在学生已经掌握了二次方程的基本概念和求解方法的基础上进行讲解的,为后续学习更复杂的二次方程问题打下基础。
二. 学情分析学生在学习本节课之前,已经掌握了二次方程的基本概念和求解方法,具备了一定的数学基础。
但是,对于配方法的理解和应用还需要进一步的引导和培养。
学生的学习兴趣和学习积极性较高,对于新的学习内容有一定的好奇心和求知欲。
三. 教学目标1.让学生掌握配方法的基本原理和应用。
2.培养学生解决二次方程问题的能力。
3.培养学生的逻辑思维能力和创新思维能力。
四. 教学重难点1.配方法的基本原理的理解和应用。
2.配方法在解决二次方程问题中的应用。
五. 教学方法采用问题驱动的教学方法,通过引导学生自主探究和合作交流,让学生在解决实际问题的过程中掌握配方法的基本原理和应用。
同时,运用案例教学法,结合具体的例子进行讲解,使学生更好地理解和掌握配方法。
六. 教学准备1.准备相关的教学案例和练习题。
2.准备教学课件和教学素材。
七. 教学过程导入(5分钟)通过一个实际问题引入本节课的主题,例如:已知一个二次方程的解为x1=3和x2=4,求原方程。
让学生尝试解决这个问题,引发学生对配方法的好奇心和兴趣。
呈现(10分钟)讲解配方法的基本原理和步骤。
通过具体的例子进行讲解,让学生理解和掌握配方法的基本原理和应用。
同时,引导学生进行思考和讨论,巩固学生的理解。
操练(10分钟)让学生进行配方法的练习。
提供一些配方法的练习题,让学生独立完成。
在学生完成练习的过程中,进行巡视指导和解答学生的疑问。
巩固(10分钟)通过一些综合性的题目,让学生应用配方法解决实际问题。
引导学生进行合作交流,共同解决问题,巩固学生对配方法的理解和应用。
人教版数学九年级上册教案21.2.1《配方法》
人教版数学九年级上册教案21.2.1《配方法》一. 教材分析《配方法》是人教版数学九年级上册第21章第2节的内容,本节课主要让学生掌握配方法的原理和步骤,并能够运用配方法解决一些实际问题。
教材通过引入“完全平方公式”的概念,引导学生探索如何将一个二次多项式转化为完全平方形式,从而引出配方法。
学生在学习过程中,需要理解并掌握配方法的基本步骤,以及如何判断一个多项式是否可以配成完全平方形式。
二. 学情分析学生在学习本节课之前,已经学习了二次方程的解法、完全平方公式等知识,对于二次多项式的基本概念和性质有一定的了解。
但学生在运用配方法解决实际问题时,可能会遇到一些困难,如判断多项式是否可以配成完全平方形式,以及如何正确地进行配方操作。
因此,在教学过程中,教师需要关注学生的学习情况,引导学生积极参与课堂活动,提高学生运用配方法解决问题的能力。
三. 教学目标1.知识与技能目标:使学生掌握配方法的原理和步骤,能够运用配方法将一个二次多项式转化为完全平方形式。
2.过程与方法目标:通过小组合作、讨论交流等学习活动,培养学生探索问题、解决问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的耐心和自信心。
四. 教学重难点1.重点:配方法的原理和步骤。
2.难点:如何判断一个多项式是否可以配成完全平方形式,以及如何正确地进行配方操作。
五. 教学方法1.启发式教学:教师通过提出问题,引导学生思考和探索,激发学生的学习兴趣。
2.小组合作学习:学生分组讨论,共同解决问题,培养学生的团队协作能力。
3.案例教学:教师通过举例子,让学生理解并掌握配方法的运用。
六. 教学准备1.准备相关教案和教学资料。
2.准备多媒体教学设备,如投影仪、电脑等。
3.准备一些实际问题,用于巩固和拓展学生的知识。
七. 教学过程1.导入(5分钟)教师通过提出一个实际问题,引导学生思考如何解决。
例如:已知一个二次多项式 f(x) = x^2 - 6x + 9,请问如何将其转化为完全平方形式?2.呈现(10分钟)教师引导学生回顾二次方程的解法和完全平方公式,然后引导学生探索如何将 f(x) = x^2 - 6x + 9 转化为完全平方形式。
初中数学人教版九年级上册:配方法 教案
21.2.1配方法教学目标(一)教学知识点1.会用配方法解简单的数字系数的一元二次方程.2.了解用配方法解一元二次方程的基本步骤.(二)能力训练要求1.理解配方法;知道“配方”是一种常用的数学方法.2.会用配方法解简单的数字系数的一元二次方程.3.能说出用配方法解一元二次方程的基本步骤.(三)情感与价值观要求通过用配方法将一元二次方程变形的过程,让学生进一步体会转化的思想方法,并增强他们的数学应用意识和能力.教学重点用配方法求解一元二次方程.教学难点理解配方法.教学方法讲练结合法.教学过程我们通过配成完全平方式的方法得到了一元二次方程的根,这种解一元二次方程的方法称为配方法.平方根的意义:如果x 2=a ,那么x=±a.完全平方式:式子a 2±2ab +b 2叫完全平方式,且a 2±2ab +b 2=(a±b)2用配方法解一元二次方程的步骤:移项:把常数项移到方程的右边;配方:方程两边都加上一次项系数绝对值一半的平方;变形:方程左边分解因式,右边合并同类项;开方:根据平方根的意义,方程两边开平方;求解:解一元一次方程;定解:写出原方程的解.探究:一桶油漆可刷的面积为1500dm 2,李林用这桶油漆恰好刷完10个同样的正方体形状的盒子的全部外表面,你能算出盒子的棱长吗?设一个盒子的棱长为xdm ,则它的外表面面积为____,10个这种盒子的外表面面积的和为____,由此你可得到方程为____,你能求出它的解吗?解:26x ,2106x ,21061500x ,整理得225x ,根据平方根的意义,得5x ,可以验证,5和-5是原方程的两个根,因为棱长不能为负值,所以盒子的棱长为5dm ,故5x dm .【归纳结论】一般地,对于方程2x p ,(Ⅰ)(1)当p>0时,根据平方根的意义,方程(Ⅰ)有两个不等的实数根1x,2x 师:(2)当p=0时,方程(Ⅰ)有两个相等的实数根120x x ;(3)当p<0时,因为对任意实数x ,都有20x ,所以方程(Ⅰ)无实数根。
人教版数学九年级上册21.2.2《配方法(2)》教学设计
人教版数学九年级上册21.2.2《配方法(2)》教学设计一. 教材分析《配方法(2)》是人教版数学九年级上册第21章第二节的内容,这一节主要介绍了配方法的进一步应用。
通过前面的学习,学生已经掌握了配方法的基本概念和步骤,本节内容则进一步引导学生运用配方法解决实际问题,提高学生的数学应用能力。
二. 学情分析九年级的学生已经具备了一定的数学基础,对于配方法的基本概念和步骤有一定的了解。
但是,学生在运用配方法解决实际问题时,可能会遇到一些困难,如不知道如何选择合适的配方法,或者在计算过程中出现错误。
因此,在教学过程中,教师需要关注学生的学习情况,及时进行指导和纠正。
三. 教学目标1.知识与技能:使学生掌握配方法的进一步应用,能够灵活运用配方法解决实际问题。
2.过程与方法:通过实例分析,培养学生运用配方法解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的耐心和细心。
四. 教学重难点1.重点:配方法的进一步应用。
2.难点:如何选择合适的配方法,以及在计算过程中避免错误。
五. 教学方法1.实例分析法:通过具体的例子,让学生了解配方法的应用。
2.讨论法:引导学生分组讨论,共同解决问题。
3.练习法:让学生在实践中巩固所学知识。
六. 教学准备1.教学课件:制作课件,展示配方法的应用实例。
2.练习题:准备一些配方法的练习题,用于课堂练习和课后作业。
七. 教学过程1.导入(5分钟)教师通过一个实际问题引入本节内容,让学生思考如何运用配方法解决。
例如,一个长方形的长是10cm,宽是8cm,求这个长方形的对角线长度。
2.呈现(10分钟)教师展示课件,呈现几个配方法的实例,让学生观察和思考。
同时,教师引导学生回顾配方法的基本步骤,巩固所学知识。
3.操练(10分钟)教师让学生分组进行讨论,每组选择一个实例,尝试运用配方法解决问题。
教师在旁边进行指导,帮助学生解决问题。
4.巩固(10分钟)教师选取几组学生的解题过程,进行讲解和分析,指出其中的优点和不足。
九年级数学上册《配方法》教案、教学设计
1.通过导入实际问题,激发学生对配方法的学习兴趣,引导学生主动探究配方法的应用。
2.采用讲解、示范、讨论等教学方法,帮助学生掌握配方法的步骤和要领。
3.设计丰富的例题和练习题,让学生在实际操作中巩固所学知识,提高解题能力。
4.引导学生总结配方法的使用规律,培养学生的抽象思维和归纳能力。
难点:引导学生从实际问题中抽象出一元二次方程,并运用配方法进行求解。
3.重点:通过小组讨论,培养学生的合作意识和团队协作能力。
难点:引导学生学会倾听、表达、交流,形成良好的讨论氛围,提高讨论效果。
(二)教学设想
1.针对重点和难点,采用以下教学策略:
a.讲解与示范:以生动的语言和具体的例题,阐述配方法的原理和应用,让学生在模仿中掌握配方法。
3.引入新课:在学生尝试解决问题的基础上,引入配方法的概念,告诉学生今天我们将学习一种解决这类问题的方法——配方法。
(二)讲授新知
1.配方法的定义:介绍配方法的概念,即通过添加和减去同一个数,使一元二次方程的左边成为一个完全平方公式,从而求解方程。
2.配方法的步骤:
a.将一元二次方程写成标准形式:ax^2 + bx + c = 0。
b.选择一道实际问题时,运用配方法求解,并将解题过程和答案写在作业本上。
c.总结配方法的步骤和要领,以书面形式提交。
2.选做题:
a.完成课后拓展题:根据已学的配方法,尝试解决更复杂的一元二次方程,如含参方程、分式方程等。
b.针对课堂所学,设计一道与实际生活相关的一元二次方程问题,并运用配方法求解。
3.小组合作作业:
b.变式练习:设计不同类型的练习题,让学生在解题过程中灵活运用配方法,巩固所学知识。
最新人教版九年级数学上册《配方法》优质教案
第2课时配方法1.了解配方的概念,掌握运用配方法解一元二次方程的步骤.2.探索直接开平方法和配方法之间的区别和联系,能够熟练地运用配方法解决有关问题.一、情境导入李老师让学生解一元二次方程x2-6x-5=0,同学们都束手无策,学习委员蔡亮考虑了一下,在方程两边同时加上14,再把方程左边用完全平方公式分解因式……,你能按照他的想法求出这个方程的解吗?二、合作探究探究点:配方法【类型一】配方用配方法解一元二次方程x2-4x=5时,此方程可变形为( )A.(x+2)2=1 B.(x-2)2=1C.(x+2)2=9 D.(x-2)2=9解析:由于方程左边关于x的代数式的二次项系数为1,故在方程两边都加上一次项系数一半的平方,然后将方程左边写成完全平方式的形式,右边化简即可.因为x2-4x=5,所以x2-4x+4=5+4,所以(x-2)2=9.故选D.方法总结:用配方法将一元二次方程变形的一般步骤:(1)把常数项移到等号的右边,使方程的左边只留下二次项和一次项;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.【类型二】利用配方法解一元二次方程用配方法解方程:x2-4x+1=0.解析:二次项系数是1时,只要先把常数项移到右边,然后左、右两边同时加上一次项系数一半的平方,把方程配成(x+m)2=n(n≥0)的形式再用直接开平方法求解.解:移项,得x2-4x=-1.配方,得x2-4x+(-2)2=-1+(-2)2.即(x-2)2=3.解这个方程,得x-2=± 3.∴x1=2+3,x2=2- 3.方法总结:用配方法解一元二次方程,实质上就是对一元二次方程变形,转化成开平方所需的形式.【类型三】用配方解决求值问题已知:x2+4x+y2-6y+13=0,求x-2yx2+y2的值.解:原方程可化为(x+2)2+(y-3)2=0,∴(x+2)2=0且(y-3)2=0,∴x=-2且y=3,∴原式=-2-613=-813.【类型四】用配方解决证明问题(1)用配方法证明2x2-4x+7的值恒大于零;(2)由第(1)题的启发,请你再写出三个恒大于零的二次三项式.证明:(1)2x2-4x+7=2(x2-2x)+7=2(x2-2x+1-1)+7=2(x-1)2-2+7=2(x-1)2+5.∵2(x-1)2≥0,∴2(x-1)2+5≥5,即2x2-4x+7≥5,故2x2-4x+7的值恒大于零.(2)x2-2x+3;2x2-2x+5;3x2+6x+8等.【类型五】配方法与不等式知识的综合应用证明关于x的方程(m2-8m+17)x2+2mx+1=0不论m为何值时,都是一元二次方程.解析:要证明“不论m为何值时,方程都是一元二次方程”,只需证明二次项系数m2-8m +17的值不等于0.证明:∵二次项系数m2-8m+17=m2-8m+16+1=(m-4)2+1,又∵(m-4)2≥0,∴(m -4)2+1>0,即m2-8m+17>0.∴不论m为何值时,原方程都是一元二次方程.三、板书设计教学过程中,强调配方法解方程就是将方程左边配成完全平方式的过程.因此需熟练掌握完全平方式的形式.教师寄语同学们,生活让人快乐,学习让人更快乐。
人教版数学九年级上册21.2.2《配方法(2)》教案
人教版数学九年级上册21.2.2《配方法(2)》教案一. 教材分析《配方法(2)》是人教版数学九年级上册第21章第二节的一部分,主要介绍了配方法的进一步应用。
通过本节课的学习,学生能够掌握配方法的步骤和技巧,并能运用配方法解决实际问题。
本节课的内容与生活实际紧密相连,有助于培养学生的数学应用意识。
二. 学情分析九年级的学生已经掌握了配方法的基本概念和步骤,但部分学生在运用配方法解决实际问题时,仍存在一定的困难。
因此,在教学过程中,教师需要关注学生的学习需求,引导学生巩固已学知识,提高学生运用配方法解决实际问题的能力。
三. 教学目标1.知识与技能:掌握配方法的步骤和技巧,能够运用配方法解决实际问题。
2.过程与方法:通过小组合作、讨论交流,培养学生的合作意识和解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生运用数学知识解决实际问题的意识。
四. 教学重难点1.配方法的步骤和技巧。
2.运用配方法解决实际问题。
五. 教学方法1.情境教学法:通过生活实例引入课题,激发学生的学习兴趣。
2.小组合作学习:引导学生分组讨论,培养学生的合作意识和解决问题的能力。
3.引导发现法:教师引导学生发现配方法的步骤和技巧,提高学生的自主学习能力。
六. 教学准备1.教学课件:制作课件,展示配方法的过程和实例。
2.练习题:准备一些配方法的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用生活实例引入课题,如:“小明家有一个长方形菜地,长为8米,宽为6米,他想将菜地改为正方形,请问如何改动?”引发学生的思考,激发学习兴趣。
2.呈现(10分钟)展示配方法的过程,引导学生发现配方法的步骤和技巧。
步骤1:将原式写成完全平方的形式。
步骤2:根据需要,将完全平方形式展开或变形。
步骤3:将展开或变形的式子应用到实际问题中。
3.操练(10分钟)学生分组讨论,尝试运用配方法解决实际问题。
教师巡回指导,解答学生的疑问。
21.2.1第2课时配方法2024-2025学年九年级上册数学配套教学设计(人教版)
x^2 - 5x + 25/4 - 25/4 = 25/4 - 25/4 + 6
x^2 - 5x + 0 = 25/4 - 25/4 + 6
x^2 - 5x = 25/4 - 25/4 + 6
x^2 - 5x = 6
(2)观察:教师应时刻关注学生在课堂上的学习状态,观察他们是否能够积极参与讨论、主动思考问题。对于表现优秀的学生,可以给予表扬和鼓励;对于表现不足的学生,应及时进行个别辅导,帮助他们跟上课堂进度。
(3)测试:在课堂上,可以适时进行一些配方法的小测试,了解学生对知识点的掌握情况。测试结果可以作为评价学生学习效果的重要依据。
(5)参观数学博物馆:如果条件允许,可以组织学生参观数学博物馆,了解数学的历史和发展。
(6)参加数学讲座:邀请数学专家或教师为学生举办数学讲座,让学生了解数学的最新发展和应用。
课堂
1.课堂评价
(1)提问:在课堂上,教师可以通过提问的方式了解学生对配方法的理解情况。针对学生的回答,教师可以及时进行反馈,帮助学生巩固正确答案,纠正错误思路。
本节课的内容与学生的日常生活紧密相连,有利于激发学生的学习兴趣。在教学过程中,教师应注重引导学生通过观察、思考、讨论等方式主动探索配方法的应用,提高学生的数学思维能力和团队合作能力。同时,教师还要关注学生的个体差异,针对不同学生的学习情况给予适当的指导,使他们在原有基础上得到提高。
核心素养目标
本节课的核心素养目标包括:逻辑推理、数学建模、数学交流和问题解决。通过学习配方法的基本步骤和应用,学生能够提高逻辑推理能力,运用数学知识解决实际问题。同时,学生通过观察、思考、讨论等方式,培养数学建模和数学交流的能力。在解决一元二次方程的过程中,学生能够体会到数学在实际生活中的应用,提高问题解决能力。教师应关注学生的个体差异,给予适当的指导,使他们在原有基础上得到提高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《配方法》教案
教学目标:
1.会用配方法解简单的数字系数的一元二次方程.
2.了解用配方法解一元二次方程的基本步骤.
3.通过用配方法将一元二次方程变形的过程,让学生进一步体会转化的思想方法,并增强他们的数学应用意识和能力.
教学重点:
运用配方法解简单的数字系数的一元二次方程.
教学难点:
配方过程中,解一元二次方程的要点的理解.
教学过程:
解下列一元二次方程
5)1(2=x 5)2)(2(2=+x
5)6)(3(2=+x 53612)4(2=++x x
解方程015122=-+x x
解:15122=+x x ,(常数项移到右边)
222)2
12(15)212(12+=++x x (这里的二次项系数必须为1) 51)6(2=+x (整理)
51)6(±=+x (运用两边开平方)
因此方程015122=-+x x 有两个根
6511-=x 6512--=x (不合题意应舍去)
例:
2221810
221333640
.
x x x x
x x -+=+=-+=()()()学生讨论完成
课堂小结:
本节课重点学习了配方法解一元二次方程.当方程形如)0()(2≥=+n n m x 时,可直接用开平方法求解比较简单,但两边同时开平方时,要注意取正负号,不要与求算术平方根混淆.用配方法解一元二次方程首先要注意将方程化成一般形式,如果二次项系数不为1,
要先化二次项系数为1再开始配方,配方时应注意两边同时同上一次项系数一半的平方;最后整理出)0()(2≥=+n n m x 的形式,而后应用开平方求解.。