以下代码实现了最简单的Roberts算子边缘检测
基于Matlab的图像边缘检测算法的实现及应用汇总
目录摘要 (1)引言 (2)第一章绪论 (3)1.1 课程设计选题的背景及意义 (3)1.2 图像边缘检测的发展现状 (4)第二章边缘检测的基本原理 (5)2.1 基于一阶导数的边缘检测 (8)2.2 基于二阶导的边缘检测 (9)第三章边缘检测算子 (10)3.1 Canny算子 (10)3.2 Roberts梯度算子 (11)3.3 Prewitt算子 (12)3.4 Sobel算子 (13)3.5 Log算子 (14)第四章MATLAB简介 (15)4.1 基本功能 (15)4.2 应用领域 (16)第五章编程和调试 (17)5.1 edge函数 (17)5.2 边缘检测的编程实现 (17)第六章总结与体会 (20)参考文献 (21)摘要边缘是图像最基本的特征,包含图像中用于识别的有用信息,边缘检测是数字图像处理中基础而又重要的内容。
该课程设计具体考察了5种经典常用的边缘检测算子,并运用Matlab进行图像处理结果比较。
梯度算子简单有效,LOG 算法和Canny 边缘检测器能产生较细的边缘。
边缘检测的目的是标识数字图像中灰度变化明显的点,而导函数正好能反映图像灰度变化的显著程度,因而许多方法利用导数来检测边缘。
在分析其算法思想和流程的基础上,利用MATLAB对这5种算法进行了仿真实验,分析了各自的性能和算法特点,比较边缘检测效果并给出了各自的适用范围。
关键词:边缘检测;图像处理;MATLAB仿真引言边缘检测在图像处理系统中占有重要的作用,其效果直接影响着后续图像处理效果的好坏。
许多数字图像处理直接或间接地依靠边缘检测算法的性能,并且在模式识别、机器人视觉、图像分割、特征提取、图像压缩等方面都把边缘检测作为最基本的工具。
但实际图像中的边缘往往是各种类型的边缘以及它们模糊化后结果的组合,并且在实际图像中存在着不同程度的噪声,各种类型的图像边缘检测算法不断涌现。
早在1965 年就有人提出边缘检测算子,边缘检测的传统方法包括Kirsch,Prewitt,Sobel,Roberts,Robins,Mar-Hildreth 边缘检测方法以及Laplacian-Gaussian(LOG)算子方法和Canny 最优算子方法等。
数字图像处理matlab代码
一、编写程序完成不同滤波器的图像频域降噪和边缘增强的算法并进行比较,得出结论。
1、不同滤波器的频域降噪1.1 理想低通滤波器(ILPF)I1=imread('eight.tif'); %读取图像I2=im2double(I1);I3=imnoise(I2,'gaussian',0.01);I4=imnoise(I3,'salt & pepper',0.01);figure,subplot(1,3,1);imshow(I2) %显示灰度图像title('原始图像'); %为图像添加标题subplot(1,3,2);imshow(I4) %加入混合躁声后显示图像title('加噪后的图像');s=fftshift(fft2(I4)); %将灰度图像的二维不连续Fourier 变换的零频率成分移到频谱的中心[M,N]=size(s); %分别返回s的行数到M中,列数到N中n1=floor(M/2); %对M/2进行取整n2=floor(N/2); %对N/2进行取整d0=40; %初始化d0for i=1:Mfor j=1:Nd=sqrt((i-n1)^2+(j-n2)^2); %点(i,j)到傅立叶变换中心的距离 if d<=d0 %点(i,j)在通带内的情况h=1; %通带变换函数else %点(i,j)在阻带内的情况h=0; %阻带变换函数ends(i,j)=h*s(i,j); %ILPF滤波后的频域表示endends=ifftshift(s); %对s进行反FFT移动s=im2uint8(real(ifft2(s))); %对s进行二维反离散的Fourier变换后,取复数的实部转化为无符号8位整数subplot(1,3,3); %创建图形图像对象imshow(s); %显示ILPF滤波后的图像title('ILPF滤波后的图像(d=40)');运行结果:1.2 二阶巴特沃斯低通滤波器(BLPF)I1=imread('eight.tif'); %读取图像I2=im2double(I1);I3=imnoise(I2,'gaussian',0.01);I4=imnoise(I3,'salt & pepper',0.01);figure,subplot(1,3,1);imshow(I2) %显示灰度图像title('原始图像'); %为图像添加标题subplot(1,3,2);imshow(I4) %加入混合躁声后显示图像title('加噪后的图像');s=fftshift(fft2(I4));%将灰度图像的二维不连续Fourier 变换的零频率成分移到频谱的中心[M,N]=size(s); %分别返回s的行数到M中,列数到N中n=2; %对n赋初值n1=floor(M/2); %对M/2进行取整n2=floor(N/2); %对N/2进行取整d0=40; %初始化d0for i=1:Mfor j=1:Nd=sqrt((i-n1)^2+(j-n2)^2); %点(i,j)到傅立叶变换中心的距离 h=1/(1+(d/d0)^(2*n)); %BLPF滤波函数s(i,j)=h*s(i,j); %ILPF滤波后的频域表示endends=ifftshift(s); %对s进行反FFT移动s=im2uint8(real(ifft2(s))); %对s进行二维反离散的Fourier变换后,取复数的实部转化为无符号8位整数subplot(1,3,3); %创建图形图像对象imshow(s); %显示ILPF滤波后的图像title('BLPF滤波后的图像(d=40)');实验结果:1.3 指数型低通滤波器(ELPF)I1=imread('eight.tif'); %读取图像I2=im2double(I1);I3=imnoise(I2,'gaussian',0.01);I4=imnoise(I3,'salt & pepper',0.01);figure,subplot(1,3,1);imshow(I2) %显示灰度图像title('原始图像'); %为图像添加标题subplot(1,3,2);imshow(I4) %加入混合躁声后显示图像title('加噪后的图像');s=fftshift(fft2(I4));%将灰度图像的二维不连续Fourier 变换的零频率成分移到频谱的中心[M,N]=size(s); %分别返回s的行数到M中,列数到N中n1=floor(M/2); %对M/2进行取整n2=floor(N/2); %对N/2进行取整d0=40;for i=1:Mfor j=1:Nd=sqrt((i-n1)^2+(j-n2)^2); %点(i,j)到傅立叶变换中心的距离 h=exp(log(1/sqrt(2))*(d/d0)^2);s(i,j)=h*s(i,j); %ILPF滤波后的频域表示endends=ifftshift(s); %对s进行反FFT移动s=im2uint8(real(ifft2(s))); %对s进行二维反离散的Fourier变换后,取复数的实部转化为无符号8位整数subplot(1,3,3); %创建图形图像对象imshow(s); %显示ILPF滤波后的图像title('ELPF滤波后的图像(d=40)');运行结果:1.4 梯形低通滤波器(TLPF)I1=imread('eight.tif'); %读取图像I2=im2double(I1);I3=imnoise(I2,'gaussian',0.01);I4=imnoise(I3,'salt & pepper',0.01);figure,subplot(1,3,1);imshow(I2) %显示灰度图像title('原始图像'); %为图像添加标题subplot(1,3,2);imshow(I4) %加入混合躁声后显示图像title('加噪后的图像');s=fftshift(fft2(I4));%将灰度图像的二维不连续Fourier 变换的零频率成分移到频谱的中心[M,N]=size(s); %分别返回s的行数到M中,列数到N中n1=floor(M/2); %对M/2进行取整n2=floor(N/2); %对N/2进行取整d0=10;d1=160;for i=1:Mfor j=1:Nd=sqrt((i-n1)^2+(j-n2)^2); %点(i,j)到傅立叶变换中心的距离 if (d<=d0)h=1;else if (d0<=d1)h=(d-d1)/(d0-d1);else h=0;endends(i,j)=h*s(i,j); %ILPF滤波后的频域表示endends=ifftshift(s); %对s进行反FFT移动s=im2uint8(real(ifft2(s))); %对s进行二维反离散的Fourier变换后,取复数的实部转化为无符号8位整数subplot(1,3,3); %创建图形图像对象imshow(s); %显示ILPF滤波后的图像title('TLPF滤波后的图像'); %为图像添加标题运行结果:1.5 高斯低通滤波器(GLPF)I1=imread('eight.tif'); %读取图像I2=im2double(I1);I3=imnoise(I2,'gaussian',0.01);I4=imnoise(I3,'salt & pepper',0.01);figure,subplot(1,3,1);imshow(I2) %显示灰度图像title('原始图像'); %为图像添加标题subplot(1,3,2);imshow(I4) %加入混合躁声后显示图像title('加噪后的图像');s=fftshift(fft2(I4));%将灰度图像的二维不连续Fourier 变换的零频率成分移到频谱的中心[M,N]=size(s); %分别返回s的行数到M中,列数到N中n1=floor(M/2); %对M/2进行取整n2=floor(N/2); %对N/2进行取整d0=40;for i=1:Mfor j=1:Nd=sqrt((i-n1)^2+(j-n2)^2); %点(i,j)到傅立叶变换中心的距离 h=1*exp(-1/2*(d^2/d0^2)); %GLPF滤波函数s(i,j)=h*s(i,j); %ILPF滤波后的频域表示endends=ifftshift(s); %对s进行反FFT移动s=im2uint8(real(ifft2(s))); %对s进行二维反离散的Fourier变换后,取复数的实部转化为无符号8位整数subplot(1,3,3); %创建图形图像对象imshow(s); %显示ILPF滤波后的图像title('GLPF滤波后的图像(d=40)');运行结果:1.6 维纳滤波器[B,Cmap]=imread('eight.tif'); %读取MATLAB中的名为eight的图像I1=im2double(B);I2=imnoise(I1,'gaussian',0.01);I3=imnoise(I2,'salt & pepper',0.01);figure,subplot(1,3,1);imshow(I1) %显示灰度图像title('原始图像'); %为图像添加标题subplot(1,3,2);imshow(I3) %加入混合躁声后显示图像title('加噪后的图像');I4=wiener2(I3);subplot(1,3,3);imshow(I4); %显示wiener滤波后的图像title('wiener滤波后的图像');运行结果:结论:理想低通滤波器,虽然有陡峭的截止频率,却不能产生良好的效果,图像由于高频分量的滤除而变得模糊,同时还产生振铃效应。
边缘检测
边缘检测算子图像配准的方法7.4.1 基于特征的图像配准基于特征的图像配准首先提取图像信息的特征,然后以这些特征为模型进行配准。
特征提取的结果是一含有特征的表和对图像的描述,每个特征由一组属性表示,对属性的进一步描述包括边缘的定向和弧度、区域的大小等。
局部特征之间存在着相互关系,如几何关系、辐射度量关系、拓扑关系等。
可以用这些局部特征之间的关系描述全局特征。
通常基于局部特征配准大多都是基于点、线或边缘的,而全局特征的配准则是利用局部特征之间的关系进行配准的方法。
由于图像的特征点比图像的像素点要少很多,因此大大减少了配准过程的计算量,但特征提取方法的计算代价通常较大,不便于实时应用。
特征点的配准度量值对位置的变化比较敏感,可以大大提高配准的精确程度。
对于纹理较少的图像区域提取的特征的密度通常比较稀少,局部特征的提取就比较困难。
特征点的提取过程可以减少噪声的影响,对灰度变化、图像形变和遮挡等都有较好的适应能力。
因此,在图像配准领域得到了广泛应用。
基于特征的图像配准方法有两个重要环节:特征提取和特征配准。
7.4.2 基于互信息的图像配准医学图像配准技术从基于特征的配准方法发展到基于统计的配准方法有其突破性的意义。
与基于特征的配准方法相比,基于统计的配准方法的突出优点为鲁棒性好、配准精度高、人工干预少。
基于统计的配准方法通常是指最大互信息的图像配准方法。
基于互信息的图像配准是用两幅图像的联合概率分布与完全独立时的概率分布的广义距离来估计互信息,并作为多模态医学图像配准的测度。
当两幅基于共同的解剖结构的图像达到最佳配准时,它们的对应像素的灰度互信息应为最大。
由于基于互信息的配准对噪声比较敏感,首先,通过滤波和分割等方法对图像进行预处理。
然后进行采样、变换、插值、优化从而达到配准的目的。
基于互信息的配准技术属于基于像素相似性的方法。
它基于图像中所有的像素进行配准,基于互信息的图像配准引入了信息论中的概念,如熵、边缘熵、联合熵和互信息等,可使配准精度达到亚像素级的高精度。
(完整版)基于数字图像处理的车牌识别本科毕业论文
本科生毕业论文(设计)题目:基于数字图像处理的车牌识别设计**: ***学院: 数理与信息工程学院专业: 电子信息工程班级: 111学号:指导教师:刘纯利职称: 教授2014 年12 月24 日安徽科技学院教务处制目录摘要 ....................................................................关键词 ..................................................................1、设计目的 .............................................................2、设计原理: ............................................................3、设计步骤: ............................................................4、实行方案 .............................................................4.1. 总体实行方案:...................................................4.2. 各模块的实现:...................................................4.2.1输入待处理的原始图像: .......................................4.2.2图像的灰度化并绘制直方图: ...................................4.2.3 边缘检测....................................................4.2.4图像的腐蚀操作:............................................4.2.5平滑图像....................................................4.2.6除去二值图像的小对象 ........................................4.3车牌定位 .........................................................4.4字符的分割与识别..................................................4.4.1.车牌的再处理................................................4.4.2字符分割....................................................4.5车牌识别:........................................................5、总结: ................................................................6、致谢 .................................................................7、参考文献: ............................................................基于数字图像处理的车牌识别设计电子信息工程专业学生周金鑫指导教师刘纯利摘要:车牌识别在人类社会交通系统中担当重要角色,一个设计优良的车牌识别系统会给人们生活带来极大的方便,本文通过运用matlab和数字图像处理的一些知识简单通过图像预处理,车牌定位,字符分割,采用模板匹配法实现车牌字符的识别。
Python图像处理OpenCV(12):Roberts算子、Prewitt算子、Sobe。。。
Python 图像处理OpenCV (12):Roberts 算⼦、Prewitt 算⼦、Sobe。
前⽂传送门:引⾔前⽂介绍了 Canny 算⼦边缘检测,本篇继续介绍 Roberts 算⼦、 Prewitt 算⼦、 Sobel 算⼦和 Laplacian 算⼦等常⽤边缘检测技术。
Roberts 算⼦Roberts 算⼦,⼜称罗伯茨算⼦,是⼀种最简单的算⼦,是⼀种利⽤局部差分算⼦寻找边缘的算⼦。
他采⽤对⾓线⽅向相邻两象素之差近似梯度幅值检测边缘。
检测垂直边缘的效果好于斜向边缘,定位精度⾼,对噪声敏感,⽆法抑制噪声的影响。
1963年, Roberts 提出了这种寻找边缘的算⼦。
Roberts 边缘算⼦是⼀个 2x2 的模版,采⽤的是对⾓⽅向相邻的两个像素之差。
Roberts 算⼦的模板分为⽔平⽅向和垂直⽅向,如下所⽰,从其模板可以看出, Roberts 算⼦能较好的增强正负 45 度的图像边缘。
dx =−1001dy =0−11Roberts 算⼦在⽔平⽅向和垂直⽅向的计算公式如下:d x (i ,j )=f (i +1,j +1)−f (i ,j )d y (i ,j )=f (i ,j +1)−f (i +1,j )Roberts 算⼦像素的最终计算公式如下:S =d x (i ,j )2+dy (i ,j )2今天的公式都是⼩学⽣⽔平,千万别再说看不懂了。
实现 Roberts 算⼦,我们主要通过 OpenCV 中的 filter2D() 这个函数,这个函数的主要功能是通过卷积核实现对图像的卷积运算:def filter2D(src, ddepth, kernel, dst=None, anchor=None, delta=None, borderType=None)src: 输⼊图像ddepth: ⽬标图像所需的深度kernel: 卷积核接下来开始写代码,⾸先是图像的读取,并把这个图像转化成灰度图像,这个没啥好说的:# 读取图像img = cv.imread('maliao.jpg', cv.COLOR_BGR2GRAY)[][]√rgb_img = cv.cvtColor(img, cv.COLOR_BGR2RGB)# 灰度化处理图像grayImage = cv.cvtColor(img, cv.COLOR_BGR2GRAY)然后是使⽤ Numpy 构建卷积核,并对灰度图像在 x 和 y 的⽅向上做⼀次卷积运算:# Roberts 算⼦kernelx = np.array([[-1, 0], [0, 1]], dtype=int)kernely = np.array([[0, -1], [1, 0]], dtype=int)x = cv.filter2D(grayImage, cv.CV_16S, kernelx)y = cv.filter2D(grayImage, cv.CV_16S, kernely)注意:在进⾏了 Roberts 算⼦处理之后,还需要调⽤convertScaleAbs()函数计算绝对值,并将图像转换为8位图进⾏显⽰,然后才能进⾏图像融合:# 转 uint8 ,图像融合absX = cv.convertScaleAbs(x)absY = cv.convertScaleAbs(y)Roberts = cv.addWeighted(absX, 0.5, absY, 0.5, 0)最后是通过 pyplot 将图像显⽰出来:# 显⽰图形titles = ['原始图像', 'Roberts 算⼦']images = [rgb_img, Roberts]for i in range(2):plt.subplot(1, 2, i + 1), plt.imshow(images[i], 'gray') plt.title(titles[i])plt.xticks([]), plt.yticks([])plt.show()最终结果如下:Prewitt 算⼦Prewitt 算⼦是⼀种⼀阶微分算⼦的边缘检测,利⽤像素点上下、左右邻点的灰度差,在边缘处达到极值检测边缘,去掉部分伪边缘,对噪声具有平滑作⽤。
roberts梯度算子的matlab程序
在机器学习和图像处理领域,Roberts梯度算子是一种常用的边缘检测算法。
它可以帮助我们在图像中快速准确地找到边缘位置,对于图像分割和特征提取等任务非常有用。
在本文中,我将重点介绍Roberts梯度算子的matlab程序,以及它在图像处理中的应用。
1. Roberts梯度算子的原理Roberts梯度算子是一种基于差分的边缘检测方法,它利用了图像中像素点的灰度值之间的变化来检测边缘。
具体来说,Roberts算子使用了两个3x3的卷积核:$$\begin{bmatrix}1 & 0 & 0\\0 & -1 & 0\\0 & 0 & 0\end{bmatrix}和\begin{bmatrix}0 & 1 & 0\\-1 & 0 & 0\\0 & 0 & 0\end{bmatrix}$$分别对图像进行卷积运算,然后将它们的平方和再开方得到边缘检测结果。
这种方法可以很好地捕捉到图像灰度值的变化,从而找到图像中的边缘。
2. Roberts梯度算子的matlab程序下面是一个简单的Roberts梯度算子的matlab程序示例:```matlabfunction [edge_image] = roberts_edge_detection(image)[m, n] = size(image);edge_image = zeros(m, n);for i = 1 : m - 1for j = 1 : n - 1% 对图像进行卷积运算edge_image(i, j) = abs(image(i, j) - image(i+1, j+1)) + abs(image(i, j+1) - image(i+1, j));endendend```这段matlab代码实现了对图像的Roberts边缘检测。
首先读入图像,然后对每个像素点进行Roberts算子的卷积运算,最后得到一个边缘图像。
Canny边缘检测
Canny边缘检测图象的边缘是指图象局部区域亮度变化显著的部分,该区域的灰度剖面一般可以看作是一个阶跃,既从一个灰度值在很小的缓冲区域内急剧变化到另一个灰度相差较大的灰度值。
图象的边缘部分集中了图象的大部分信息,图象边缘的确定与提取对于整个图象场景的识别与理解是非常重要的,同时也是图象分割所依赖的重要特征,边缘检测主要是图象的灰度变化的度量、检测和定位,自从1959提出边缘检测以来,经过五十多年的发展,已有许多中不同的边缘检测方法。
根据作者的理解和实践,本文对边缘检测的原理进行了描述,在此基础上着重对Canny检测算法的实现进行详述。
本文所述内容均由编程验证而来,在实现过程中,有任何错误或者不足之处大家共同讨论(本文不讲述枯燥的理论证明和数学推导,仅仅从算法的实现以及改进上进行原理性和工程化的描述)。
1、边缘检测原理及步骤在之前的博文中,作者从一维函数的跃变检测开始,循序渐进的对二维图像边缘检测的基本原理进行了通俗化的描述。
结论是:实现图像的边缘检测,就是要用离散化梯度逼近函数根据二维灰度矩阵梯度向量来寻找图像灰度矩阵的灰度跃变位置,然后在图像中将这些位置的点连起来就构成了所谓的图像边缘(图像边缘在这里是一个统称,包括了二维图像上的边缘、角点、纹理等基元图)。
在实际情况中理想的灰度阶跃及其线条边缘图像是很少见到的,同时大多数的传感器件具有低频滤波特性,这样会使得阶跃边缘变为斜坡性边缘,看起来其中的强度变化不是瞬间的,而是跨越了一定的距离。
这就使得在边缘检测中首先要进行的工作是滤波。
1)滤波:边缘检测的算法主要是基于图像强度的一阶和二阶导数,但导数通常对噪声很敏感,因此必须采用滤波器来改善与噪声有关的边缘检测器的性能。
常见的滤波方法主要有高斯滤波,即采用离散化的高斯函数产生一组归一化的高斯核(具体见“高斯滤波原理及其编程离散化实现方法”一文),然后基于高斯核函数对图像灰度矩阵的每一点进行加权求和(具体程序实现见下文)。
毕业设计论文-基于蚁群算法的图像边缘检测-附代码
毕业设计论文-基于蚁群算法的图像边缘检测-附代码上海工程技术大学毕业设计(论文) 基于蚁群算法的图像边缘检测目录摘要 ...............................................................1 ABSTRACT .............................................................2 1 绪论 (3)1.1 研究背景 ...........................................................31.2 研究现状和发展方向 (4)6 1.3 研究目的和意义 .....................................................2 图像边缘检测概述 ..................................................... 7 2.1 边缘的定义及类型 ................................................... 8 2.2 常用的边缘检测方法 (10)2.3 其他边缘检测方法 .................................................. 15 2.3.1 基于小波变换的边缘检测 .......................................... 15 2.3.2 基于数学形态学的边缘检测 (16)17 2.4 传统边缘检测的不足 ................................................3 蚁群算法 ............................................................ 17 3.1蚁群算法的基本原理 (18)3.2 基于蚁群算法的图像边缘检测 ........................................21 4 实验结果及分析 ...................................................... 22 4.1 基于蚁群算法的图像边缘检测流程 .................................... 22 4.2 实验结果与性能分析 (26)4.2.1 参数对边缘检测的影响 ............................................ 294.2.2 与传统方法的比较 ................................................ 35 5 总结与展望 .......................................................... 37 参考文献 .............................................................. 39 附录 ................................................. 错误~未定义书签。
sobel边缘检测算法代码python
sobel边缘检测算法代码python Sobel边缘检测算法是一种常用的数字图像处理方法,用于在图像中检测出边界。
其原理是利用图像灰度值的变化来确定图像边缘的位置。
Sobel算法是一种简单而有效的边缘检测算法,可以在Python中快速实现。
Sobel算法的本质可以视为一种滤波器。
它使用一组水平和垂直的像素值累加器,将卷积运算应用于图像中的像素。
该算法对像素值的变化率进行计算,就可以检测出物体的边缘。
通常,Sobel算法用于物体边缘和轮廓的识别,通过滤波器之后,灰度值大的像素就会变得更加亮,而灰度值低的像素则会变得更加暗。
Python中Sobel算法的实现相对简单,以下是一个基本步骤:1.导入必要库:opencv-python, numpy``` import cv2 import numpy as np ```2.读取图像文件并转换成灰度图``` img = cv2.imread('path/to/image',cv2.IMREAD_GRAYSCALE) ```3.应用Sobel算子:可以应用两个权重矩阵,分别代表水平和垂直方向的边缘变化。
可以使用OpenCV的cv2.Sobel()函数来进行计算,其中参数1代表应用的输入图像,参数2代表深度,通常值为-1,参数3和参数4代表权重矩阵。
``` sobelHorizontal = cv2.Sobel(img,cv2.CV_64F, 1, 0) ``` ``` sobelVertical =cv2.Sobel(img, cv2.CV_64F, 0, 1) ```4.以合适的形式呈现边缘图像:边缘检测图像通常需要处理掉噪声,并调整颜色和对比度。
这一步骤有多种方式实现,例如使用cv2.convertScaleAbs()函数将数据类型转换为8位无符号整数,并将其转换为灰度格式的边缘图像。
``` magnitudeImage =cv2.convertScaleAbs(np.sqrt(np.power(sobelHorizonta l, 2) + np.power(sobelVertical, 2))) ```以上是一个基本的代码实现,可以生成一张带有高亮边缘的图像。
图像增强与边缘检测
数字图像处理作业----第三次1、 什么是图像增强?常见算法有哪些?典型算法的程序实现,其优缺点?结果对比。
1.1图像增强的定义为了改善视觉效果或者便于人和机器对图像的理解和分析,根据图像的特点或存在的问题采取的简单改善方法或者加强特征的措施称为图像增强。
一般情况下,图像增强是按特定的需要突出一幅图像中的某些信息,同时削弱或去除某些不需要的信息的处理方法,也是提高图像质量的过程。
图像增强的目的是使图像的某些特性方面更加鲜明、突出,使处理后的图像更适合人眼视觉特性或机器分析,以便于实现对图像的更高级的处理和分析。
图像增强的过程往往也是一个矛盾的过程:图像增强希望既去除噪声又增强边缘。
但是,增强边缘的同时会同时增强噪声,而滤去噪声又会使边缘在一定程度上模糊,因此,在图像增强的时候,往往是将这两部分进行折中,找到一个好的代价函数达到需要的增强目的。
传统的图像增强算法在确定转换函数时常是基于整个图像的统计量,如:ST转换,直方图均衡,中值滤波,微分锐化,高通滤波等等。
这样对应于某些局部区域的细节在计算整幅图的变换时其影响因为其值较小而常常被忽略掉,从而局部区域的增强效果常常不够理想,噪声滤波和边缘增强这两者的矛盾较难得到解决。
1.2 图像增强的分类及方法图像增强可分成两大类:频率域法和空间域法。
前者把图像看成一种二维信号,对其进行基于二维傅里叶变换的信号增强。
采用低通滤波(即只让低频信号通过)法,可去掉图中的噪声;采用高通滤波法,则可增强边缘等高频信号,使模糊的图片变得清晰。
具有代表性的空间域算法有局部求平均值法和中值滤波(取局部邻域中的中间像素值)法等,它们可用于去除或减弱噪声。
图像增强的方法是通过一定手段对原图像附加一些信息或变换数据,有选择地突出图像中感兴趣的特征或者抑制(掩盖)图像中某些不需要的特征,使图像与视觉响应特性相匹配。
在图像增强过程中,不分析图像降质的原因,处理后的图像不一定逼近原始图像。
图像边缘检测各种算子MATLAB实现以及实际应用
《图像处理中的数学方法》实验报告学生姓名:***教师姓名:曾理学院:数学与统计学院专业:信息与计算科学学号:********联系方式:139****1645梯度和拉普拉斯算子在图像边缘检测中的应用一、数学方法边缘检测最通用的方法是检测灰度值的不连续性,这种不连续性用一阶和二阶导数来检测。
1.(1)一阶导数:一阶导数即为梯度,对于平面上的图像来说,我们只需用到二维函数的梯度,即:∇f=[g xg y]=[ðf ðxðfðy],该向量的幅值:∇f=mag(∇f)=[g x2+g y2]1/2= [(ðf/ðx)2+(ðf/ðy)2]1/2,为简化计算,省略上式平方根,得到近似值∇f≈g x2+g y2;或通过取绝对值来近似,得到:∇f≈|g x|+|g y|。
(2)二阶导数:二阶导数通常用拉普拉斯算子来计算,由二阶微分构成:∇2f(x,y)=ð2f(x,y)ðx2+ð2f(x,y)ðy22.边缘检测的基本思想:(1)寻找灰度的一阶导数的幅度大于某个指定阈值的位置;(2)寻找灰度的二阶导数有零交叉的位置。
3.几种方法简介(1)Sobel边缘检测器:以差分来代替一阶导数。
Sobel边缘检测器使用一个3×3邻域的行和列之间的离散差来计算梯度,其中,每行或每列的中心像素用2来加权,以提供平滑效果。
∇f=[g x2+g y2]1/2={[(z7+2z8+z9)−(z1+2z2+z3)]2+[(z3+2z6+z9)−(z1+2z4+z7)]2}1/2(2)Prewitt边缘检测器:使用下图所示模板来数字化地近似一阶导数。
与Sobel检测器相比,计算上简单一些,但产生的结果中噪声可能会稍微大一些。
g x=(z7+z8+z9)−(z1+z2+z3)g y=(z3+z6+z9)−(z1−z4−z7)(3)Roberts边缘检测器:使用下图所示模板来数字化地将一阶导数近似为相邻像素之间的差,它与前述检测器相比功能有限(非对称,且不能检测多种45°倍数的边缘)。
边缘检测原理(内含三种算法)
边缘检测原理的论述摘要数字图像处理技术是信息科学中近几十年来发展最为迅速的学科之一。
图像边缘是图像最基本的一种特征,边缘在图像的分析中起着重要的作用。
边缘作为图像的一种基本特征,在图像识别、图像分割、图像增强以及图像压缩等的领域中有较为广泛的应用,其目的就是精确定位边缘,同时更好地抑制噪声。
目前,数字图像处理技术被广泛应用于航空航天、通信、医学及工业生产等领域中。
图像边缘提取的手段多种多样,本文主要通过MATLAB语言编程分别用不同的算子例如Roberts算子、Prewitt算子、Sobel算子、Kirsch算子、Laplacian算子、Log算子和Canny算子等来实现静态图像的边缘检测,并且和检测加入高斯噪声的图像进行对比。
阐述了不同算子在进行图像边缘提取的特点,并在此基础上提出利用小波变换来实现静态图像的边缘检测。
【关键字】图像边缘数字图像边缘检测小波变换背景图像处理就是对图像信息加工以满足人的视觉心理或应用需求的方法。
图像处理方法有光学方法和电子学方法。
从20世纪60年代起随着电子计算机和计算技术的不断提高和普及,数字图像处理进入了高速发展时期,而数字图像处理就是利用数字计算机或其它的硬件设备对图像信息转换而得到的电信号进行某些数学处理以提高图像的实用性。
计算机进行图像处理一般有两个目的:(1)产生更适合人观察和识别的图像。
(2)希望能由计算机自动识别和理解图像。
数字图像的边缘检测是图像分割、目标区域的识别、区域形状提取等图像分析领域的重要基础,图像处理和分析的第一步往往就是边缘检测。
边缘是图象最基本的特征.边缘检测在计算机视觉、图象分析等应用中起着重要的作用,是图象分析与识别的重要环节,这是因为子图象的边缘包含了用于识别的有用信息.所以边缘检测是图像分析和模式识别的主要特征提取手段。
所谓边缘是指其周围像素灰度后阶变化或屋顶状变化的那些像素的集合,它存在于目标与背景、目标与目标、区域与区域,基元与基元之间。
数字图像处理 实验报告(完整版)
数字图像处理实验一 MATLAB数字图像处理初步一、显示图像1.利用imread( )函数读取一幅图像,假设其名为lily.tif,存入一个数组中;2.利用whos 命令提取该读入图像flower.tif的基本信息;3.利用imshow()函数来显示这幅图像;实验结果如下图:源代码:>>I=imread('lily.tif')>> whos I>> imshow(I)二、压缩图像4.利用imfinfo函数来获取图像文件的压缩,颜色等等其他的详细信息;5.利用imwrite()函数来压缩这幅图象,将其保存为一幅压缩了像素的jpg文件,设为lily.jpg;语法:imwrite(原图像,新图像,‘quality’,q), q取0-100。
6.同样利用imwrite()函数将最初读入的tif图象另存为一幅bmp图像,设为flily.bmp。
7.用imread()读入图像Sunset.jpg和Winter.jpg;8.用imfinfo()获取图像Sunset.jpg和Winter.jpg的大小;9.用figure,imshow()分别将Sunset.jpg和Winter.jpg显示出来,观察两幅图像的质量。
其中9的实验结果如下图:源代码:4~6(接上面两个) >>I=imread('lily.tif')>> imfinfo 'lily.tif';>> imwrite(I,'lily.jpg','quality',20);>> imwrite(I,'lily.bmp');7~9 >>I=imread('Sunset.jpg');>>J=imread('Winter.jpg')>>imfinfo 'Sunset.jpg'>> imfinfo 'Winter.jpg'>>figure(1),imshow('Sunset.jpg')>>figure(2),imshow('Winter.jpg')三、二值化图像10.用im2bw将一幅灰度图像转化为二值图像,并且用imshow显示出来观察图像的特征。
2019年整理基于MATLAB边缘检测与提取的几种方法的比较精品资料
基于MATLAB边缘检测与提取的几种方法的比较数字图像边缘检测(Digital Image Processing)又称为计算机图像边缘检测,它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。
由于图像边缘是图像最基本的特征之一,往往携带着一幅图像的大部分信息。
而边缘存在于图像的不规则结构和不平稳现象中,也即存在于信号的突变点处,这些点给出了图像轮廓的位置,这些轮廓常常是我们在图像边缘检测时所需要的非常重要的一些特征条件,这就需要我们对一幅图像检测并提取出它的边缘。
在通常情况下,我们可以将信号中的奇异点和突变点认为是图像中的边缘点,其附近灰度的变化情况可从它相邻像素灰度分布的梯度来反映。
根据这一特点,提出了多种边缘检测算子:如Robert算子、Sobel 算子、Prewitt 算子、Laplacian 算子,Canny算子等。
这些方法多是以待处理像素为中心的邻域作为进行灰度分析的基础,实现对图像边缘的提取并已经取得了较好的处理效果。
经典的边界提取技术大都基于微分运算。
首先通过平滑来滤除图像中的噪声,然后进行一阶微分或二阶微分运算,求得梯度最大值或二阶导数的过零点,最后选取适当的阈值来提取边界。
本文主要介绍几种经典的边缘提取算法,选取两种用MATLAB语言编程实现,对提取结果进行比较和分析。
图像边缘检测的基本步骤:(1)滤波。
边缘检测主要基于导数计算,但受噪声影响。
但滤波器在降低噪声的同时也导致边缘强度的损失。
(2)增强。
增强算法将邻域中灰度有显著变化的点突出显示。
一般通过计算梯度幅值完成。
(3)检测。
但在有些图像中梯度幅值较大的并不是边缘点。
最简单的边缘检测是梯度幅值阈值判定。
(4)定位。
精确确定边缘的位置。
几种边缘算子的比较以柚子的图片为例1、Roberts算子是一种利用局部差分算子寻找边缘的算子,Roberts算子边缘定位准,但是对噪声敏感。
适用于边缘明显而且噪声较少的图像分割,在应用中经常用Roberts算子来提取道路。
(完整版)车牌识别系统的设计
车牌识别系统的设计1.摘要:汽车牌照自动识别系统是制约道路交通智能化的重要因素,包括车牌定位、字符分割和字符识别三个主要部分。
本文首先确定车辆牌照在原始图像中的水平位置和垂直位置,从而定位车辆牌照,然后采用局部投影进行字符分割。
在字符识别部分,提出了在无特征提取情况下基于支持向量机的车牌字符识别方法。
实验结果表明,本文提出的方法具有良好的识别性能。
随着公路逐渐普及,我国的公路交通事业发展迅速,所以人工管理方式已经不能满着实际的需要,微电子、通信和计算机技术在交通领域的应用极大地提高了交通管理效率。
汽车牌照的自动识别技术已经得到了广泛应用。
2.设计目的:1、使学生在巩固理论课上知识的同时,加强实践能力的提高,理论联系实践。
2、激发学生的研究潜能,提高学生的协作精神,锻炼学生的动手能力。
3.设计原理由于车辆牌照是机动车唯一的管理标识符号,在交通管理中具有不可替代的作用,因此车辆牌照识别系统应具有很高的识别正确率,对环境光照条件、拍摄位置和车辆行驶速度等因素的影响应有较大的容阈,并且要求满足实时性要求。
图1 牌照识别系统原理图该系统是计算机图像处理与字符识别技术在智能化交通管理系统中的应用,它主要由图像的采集和预处理、牌照区域的定位和提取、牌照字符的分割和识别等几个部分组成,如图1 所示。
其基本工作过程如下:(1)当行驶的车辆经过时,触发埋设在固定位置的传感器,系统被唤醒处于工作状态;一旦连接摄像头光快门的光电传感器被触发,设置在车辆前方、后方和侧面的相机同时拍摄下车辆图像;(2)由摄像机或CCD 摄像头拍摄的含有车辆牌照的图像通视频卡输入计算机进行预处理,图像预处理包括图像转换、图像增强、滤波和水平较正等;(3)由检索模块进行牌照搜索与检测,定位并分割出包含牌照字符号码的矩形区域;(4)对牌照字符进行二值化并分割出单个字符,经归一化后输入字符识别系统进行识别。
4.详细设计步骤4.1 提出总体设计方案。
robert边缘检测算子的计算题
文章标题:深度解析Robert边缘检测算子的计算题一、引言在数字图像处理中,边缘检测是一项非常重要的任务。
而Robert 边缘检测算子是一种经典的边缘检测算法,它能够有效地检测图像中的边缘信息。
在本文中,我们将深入探讨Robert边缘检测算子的计算题,通过具体的案例和计算,帮助读者更好地理解这一算法的原理和实现。
二、Robert边缘检测算子简介Robert边缘检测算子是一种基于差分的边缘检测方法。
其原理是利用局部像素之间的差值来确定边缘的位置。
具体来说,Robert算子是由两个2*2的模板组成的,分别为:Gx = [[1, 0], [0, -1]]Gy = [[0, 1], [-1. 0]]其中,Gx和Gy分别表示水平方向和垂直方向的边缘检测模板。
通过与图像进行卷积运算,可以得到图像在水平和垂直方向上的边缘响应值,进而确定边缘的位置。
三、Robert边缘检测算子的计算题接下来,我们来通过一个具体的案例,深入理解Robert边缘检测算子的计算过程。
假设我们有一幅大小为3*3的灰度图像I,其像素值矩阵为:I = [[5, 8, 3],[6, 2, 1],[7, 4, 9]]我们分别对I与Gx和Gy进行卷积运算,以求得边缘响应值。
对于Gx模板,其卷积运算过程如下:I * Gx = 5*1 + 8*0 + 6*0 + 2*(-1) = 36*1 + 2*0 + 7*0 + 4*(-1) = -28*1 + 3*0 + 2*0 + 1*(-1) = 5 同理,对于Gy模板,其卷积运算过程如下:I * Gy = 5*0 + 8*1 + 6*(-1) + 2*0 = 27*0 + 4*1 + 8*(-1) + 3*0 = -46*0 + 2*1 + 7*(-1) + 9*0 = 1 通过以上计算,我们得到了图像I在水平和垂直方向上的边缘响应值分别为3和2。
四、总结与回顾通过上述计算题的实例,我们对Robert边缘检测算子的计算过程有了更深入的理解。
[Python图像处理]十一.图像锐化与边缘检测之Roberts算子、Prewitt算子、。。。
[Python图像处理]⼗⼀.图像锐化与边缘检测之Roberts算⼦、Prewitt算⼦、。
Roberts算⼦Roberts算⼦即为交叉微分算法,它是基于交叉差分的梯度算法,通过局部差分计算检测边缘线条。
常⽤来处理具有陡峭的第噪声图像,当图像边缘接近于正45度或负45度时,该算法处理效果更理想,其缺点时对边缘的定位不太准确,提取的边缘线条较粗。
在Python中,Roberts算⼦主要是通过Numpy定义模板,再调⽤OpenCV的filter2D()函数实现边缘提取。
该函数主要是利⽤内核实现对图像的卷积运算,其函数原型如下:dst = filter2D(src, ddepth, kernel, dts, anchor,delta, borderType)src:表⽰输⼊图像ddepth: 表⽰⽬标图像所需的深度kernel: 表⽰卷积核,⼀个单通道浮点型矩阵anchor:表⽰内核的基准点,其默认值为(-1, -1),位于中⼼位置delta:表⽰在存储⽬标图像前可选的添加到像素的值,默认值为0borderType:表⽰边框模式import cv2import numpy as npimport matplotlib.pyplot as pltimg = cv2.imread("src.png")img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)grayImage = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)# Roberts算⼦kernelx = np.array([[-1, 0], [0, 1]], dtype=int)kernely = np.array([[0, -1], [1, 0]], dtype=int)x = cv2.filter2D(grayImage, cv2.CV_16S, kernelx)y = cv2.filter2D(grayImage, cv2.CV_16S, kernely)# 转转成uint8absX = cv2.convertScaleAbs(x)absY = cv2.convertScaleAbs(y)Roberts = cv2.addWeighted(absX, 0.5, absY, 0.5, 0)# 正常显⽰中⽂标签plt.rcParams["font.sans-serif"] = ["SimHei"]# 显⽰图形titles = ["原始图像", "Roberts算⼦"]images = [img, Roberts]for i in range(2):plt.subplot(1, 2, i+1)plt.imshow(images[i], "gray")plt.title(titles[i])plt.xticks([])plt.yticks([])plt.show()效果如下:Prewitt算⼦Prewitt是⼀种图像边缘检测的微分算⼦,其原理是利⽤特定区域内像素值产⽣的差分实现边缘检测。
robert算子边缘检测matlab代码
robert算子边缘检测matlab代码罗伯特(Roberts)算子是一种边缘检测算子,用于检测图像中的边缘。
以下是一个简单的MATLAB代码示例,用于应用罗伯特算子进行边缘检测:```matlab%读取图像originalImage=imread('lena.jpg');%请替换成你的图像文件路径%将图像转换为灰度图grayImage=rgb2gray(originalImage);%罗伯特算子边缘检测robertsX=[10;0-1];robertsY=[01;-10];%使用卷积进行边缘检测edgeX=conv2(double(grayImage),robertsX,'same');edgeY=conv2(double(grayImage),robertsY,'same');%计算边缘强度edgeMagnitude=sqrt(edgeX.^2+edgeY.^2);%显示结果figure;subplot(2,2,1),imshow(originalImage),title('原始图像');subplot(2,2,2),imshow(grayImage),title('灰度图');subplot(2,2,3),imshow(edgeMagnitude,[]),title('罗伯特算子边缘检测结果');subplot(2,2,4),imshowpair(edgeX,edgeY,'montage'),title('X方向和Y方向边缘');%设置图像标题suptitle('罗伯特算子边缘检测');```请确保将`'lena.jpg'`替换为你实际使用的图像文件路径。
这个代码使用了罗伯特算子的卷积核进行水平(X方向)和垂直(Y方向)方向的边缘检测,然后计算了边缘强度,并显示了原始图像、灰度图和边缘检测结果。
opencv——边缘检测算法(总结)
opencv——边缘检测算法(总结)前⾔耐⼼看完⼀定会有收获的,⼤部分内容也会在代码中体现,结合理论知识和代码进⾏理解会更有效。
代码⽤opencv4.5.1(c++)版实现⼀、边缘检测算法边缘检测算法是指利⽤灰度值的不连续性质,以灰度突变为基础分割出⽬标区域。
对铝铸件表⾯进⾏成像后会产⽣⼀些带缺陷的区域,这些区域的灰度值⽐较低,与背景图像相⽐在灰度上会有突变,这是由于这些区域对光线产⽣散射所引起的。
因此边缘检测算⼦可以⽤来对特征的提取。
1、⼀阶算⼦⼀种是基于⼀阶微分的算⼦,也称基于搜索的算⼦,⾸先通过⼀阶导数计算边缘强度,然后采⽤梯度的⽅向来对边缘的局部⽅向进⾏寻找,同时根据该⽅向来寻找出局部梯度模的最⼤值,由此定位边缘,如Roberts Cross算⼦,Prewitt算⼦Sobel算⼦,Kirsch算⼦,Canny算⼦,罗盘算⼦等;图像中的边缘区域,像素值会发⽣“跳跃”,对这些像素求导,在其⼀阶导数在边缘位置为极值,这就是Sobel算⼦使⽤的原理——极值处就是边缘。
2、⼆阶算⼦另⼀种是基于⼆阶微分的算⼦,也称基于零交叉的算⼦,通过寻找由图像得到的⼆阶导数的过零点来定位检测边缘,如Marr-Hildreth算⼦,Laplacian算⼦,LOG算⼦等。
如果对像素值求⼆阶导数,会发现边缘处的导数值为0。
⼆、⼀阶算⼦分析⼀阶微分算⼦进⾏边缘检测的思路⼤致就是通过指定⼤⼩的核(kernal)(也称为算⼦)与图像进⾏卷积,将得到的梯度进⾏平⽅和或者最⼤值作为新的梯度赋值给对应的像素点,不同的⼀阶微分算⼦主要的不同在于其算⼦即核的元素不同以及核的⼤⼩不⼀样以下是连续函数的⼀阶导数求导公式:因为图像是⼀个⾯,就相当于是灰度值关于x,y两个⽅向的函数,要求某⼀点的导数,则是各个⽅向的偏导数的平⽅和再进⾏开⽅运算。
离散函数的⼀阶导数公式:y'=[y(x0+h)-y(x0-h)]/(2h);这是⼀维函数的⼀阶求导,h是步长,在图像处理中⼀般为1⾸先复习⼀下什么是卷积?卷积就是对应的元素相乘再进⾏累加的过程实例图⽚:1、Roberts算⼦Robert算⼦是⽤于求解对⾓线⽅向的梯度,因为根据算⼦GX和GY的元素设置可以看到,只有对⾓线上的元素⾮零,其本质就是以对⾓线作为差分的⽅向来检测。
opencv边缘检测算法c语言
边缘检测是计算机视觉和图像处理中的常见任务之一,用于检测图像中物体的边界或轮廓。
OpenCV(Open Source Computer Vision Library)提供了多种边缘检测算法,其中包括基于C 语言的实现。
在这里,我将介绍几种常见的OpenCV边缘检测算法的C语言实现。
### 1. Sobel算子边缘检测:Sobel算子是一种常见的边缘检测算子,它使用卷积操作对图像进行处理。
以下是使用OpenCV进行Sobel算子边缘检测的C语言示例:```c#include <opencv2/opencv.hpp>#include <opencv2/highgui/highgui_c.h>int main() {// 读取图像IplImage* image = cvLoadImage("your_image.jpg", CV_LOAD_IMAGE_GRAYSCALE);// 定义输出图像IplImage* edges = cvCreateImage(cvGetSize(image), IPL_DEPTH_8U, 1);// 使用Sobel算子进行边缘检测cvSobel(image, edges, 1, 0, 3); // 1表示对x方向求导数,0表示对y方向求导数,3表示Sobel核大小// 显示原始图像和边缘检测结果cvNamedWindow("Original Image", CV_WINDOW_AUTOSIZE);cvNamedWindow("Sobel Edges", CV_WINDOW_AUTOSIZE);cvShowImage("Original Image", image);cvShowImage("Sobel Edges", edges);cvWaitKey(0);// 释放内存cvReleaseImage(&image);cvReleaseImage(&edges);cvDestroyAllWindows();return 0;}```### 2. Canny边缘检测:Canny边缘检测是一种多阶段的边缘检测算法,包括高斯滤波、梯度计算、非极大值抑制和双阈值边缘跟踪。