2020年中考数学复习——圆 练习题
2020年中考数学试题《圆》试题精编含答案
(1)求证:直线DC是⊙O的切线;
(2)若BC=2,∠CAB=30°,求图中阴影部分的面积(结果保留π).
24.(2020•临沂)已知⊙O1的半径为r1,⊙O2的半径为r2.以O1为圆心,以r1+r2的长为半径画弧,再以线段O1O2的中点P为圆心,以 O1O2的长为半径画弧,两弧交于点A,连接O1A,O2A,O1A交⊙O1于点B,过点B作O2A的平行线BC交O1O2于点C.
(1)求证:△ABD≌△ACD;
(2)判断直线DE与⊙O的位置关系,并说明理由.
27.(2020•深圳)如图,AB为⊙O的直径,点C在⊙O上,AD与过点C的切线互相垂直,垂足为D.连接BC并延长,交AD的延长线于点E.
(1)求证:AE=AB;
(2)若AB=10,BC=6,求CD的长.
28.(2020•咸宁)如图,在Rt△ABC中,∠C=90°,点O在AC上,以OA为半径的半圆O交AB于点D,交AC于点E,过点D作半圆O的切线DF,交BC于点F.
1.【解答】解:(1)证明:连接OC,如图,
∵CD与⊙O相切于点C,
∴∠OCD=90°,
∴∠ACD+∠ACO=90°,
∵AD⊥DC,
∴∠ADC=90°,
∴∠ACD+∠DAC=90°,
∴∠ACO=∠DAC,∵O Nhomakorabea=OC,
∴∠OAC=∠OCA,
∴∠DAC=∠OAC,
∴AC是∠DAB的角平分线;
(2)∵AB是⊙O的直径,
(1)求证:BF=DF;
(2)若AC=4,BC=3,CF=1,求半圆O的半径长.
2020届九年级中考数学圆综合题专题复习题(含答案)
2020届九年级中考数学圆综合题专题复习题1、如图,AB ,BC ,CD 分别与⊙O 相切于点E ,F ,G ,且AB∥CD,BO =6 cm ,CO =8 cm.(1)求证:BO⊥CO;(2)求BE 和CG 的长.解:(1)证明:∵AB∥CD,∴∠ABC+∠DCB=180°.∵AB,BC ,CD 分别与⊙O 相切于点E ,F ,G ,∴BO 平分∠ABC,CO 平分∠DCB.∴∠OBC=12∠ABC,∠OCB=12∠DCB.∴∠OBC+∠OCB=12(∠ABC+∠DCB)=12×180°=90°.∴∠BOC=90°.∴BO⊥CO.(2)连结OF ,则OF⊥BC,∴Rt△BOF∽Rt△BCO.∴BF BO =BO BC. ∵在Rt△BOC 中,BO =6 cm ,CO =8 cm , ∴BC=62+82=10(cm).∴BF 6=610.∴BF=3.6 cm. ∵AB,BC ,CD 分别与⊙O 相切,∴BE=BF =3.6 cm ,CG =CF.∵CF=BC -BF =10-3.6=6.4(cm),∴CG=CF =6.4 cm.2、如图,在△ABC 中,CD⊥AB,垂足为D.以AB 为直径的⊙O 分别与AC ,CD 相交于点E ,F ,连结AF ,EF.(1)求证:∠AFE=∠ACD;(2)若CE =4,CB =45,tan∠CAB=43,求FD 的长.解:(1)证明:连结BE ,∵AB 是⊙O 的直径,∴∠AEB=90°.∴∠CAD+∠ABE =90°.∵CD⊥AB,∴∠CDA=90°.∴∠CAD+∠ACD=90°.∴∠ABE=∠ACD.∵∠ABE=∠AFE,∴∠AFE=∠ACD.(2)连结OF ,∵∠BEC=90°,∴在Rt△BEC 中,由勾股定理,得BE =CB 2-CE 2=8.在Rt△AEB 中,∵tan∠CAB=BE AE =43,BE =8, ∴AE=6,AB =AE 2+BE 2=10,AC =AE +EC =10.∴AO=12AB =5,AB =AC. 在△ACD 和△ABE 中,⎩⎪⎨⎪⎧∠ADC=∠AEB,∠ACD=∠ABE,AC =AB ,∴△ACD≌△ABE(AAS).∴AD=AE =6.∴OD=AD -AO =1.在Rt△ODF 中,由勾股定理,得FD =OF 2-OD 2=52-12=2 6.3、如图,AB 是半圆O 的直径,点P 是半圆上不与点A ,B 重合的动点,PC∥AB,点M 是OP 中点.(1)求证:四边形OBCP 是平行四边形;(2)填空:①当∠BOP=120°时,四边形AOCP 是菱形;②连结BP ,当∠ABP=45°时,PC 是⊙O 的切线.证明:∵PC∥AB,∴∠PCM=∠OAM,∠CPM=∠AOM.∵点M 是OP 的中点,∴OM=PM.在△CPM 和△AOM 中,⎩⎪⎨⎪⎧∠PCM=∠OAM,∠CPM=∠AOM,PM =OM ,∴△CPM≌△AOM(AAS).∴PC=OA.∵AB 是半圆O 的直径,∴OA=OB.∴PC=OB.又∵PC∥AB,∴四边形OBCP 是平行四边形.4、如图,⊙O 半径为4 cm ,其内接正六边形ABCDEF ,点P ,Q 同时分别从A ,D 两点出发,以1 cm/s 的速度沿AF ,DC 向终点F ,C 运动,连结PB ,QE ,PE ,BQ.设运动时间为t(s).(1)求证:四边形PEQB 为平行四边形;(2)填空:①当t =2s 时,四边形PBQE 为菱形;②当t =0或4s 时,四边形PBQE 为矩形.证明:∵正六边形ABCDEF 内接于⊙O,∴AB=BC =CD =DE =EF =FA ,∠A=∠ABC=∠C=∠D=∠DEF=∠F. ∵点P ,Q 同时分别从A ,D 两点出发,以1 cm/s 的速度沿AF ,DC 向终点F ,C 运动,∴AP=DQ =t ,PF =QC =4-t.在△ABP 和△DEQ 中,⎩⎪⎨⎪⎧AB =DE ,∠A=∠D,AP =DQ ,∴△ABP≌△DEQ(SAS).∴BP=EQ.同理可证PE =QB ,∴四边形PEQB 是平行四边形.5、如图,圆心角都是90°的扇形OAB 与扇形OCD 叠放在一起,连结AC ,BD.(1)求证:AC =BD ;(2)若图中阴影部分的面积是34π cm 2,OA =2 cm ,求OC 的长.解:(1)证明:∵∠AOB=∠COD=90°,∴∠AOC+∠AOD=∠BOD+∠AOD.∴∠AOC=∠BOD.又∵AO=BO ,CO =DO ,∴△AOC≌△BOD(SAS).∴AC=BD.(2)根据题意,得S 阴影=90πOA 2360-90πOC 2360=π(OA 2-OC 2)4,∴34π=π(22-OC 2)4,解得OC =1(负值舍去). ∴OC=1 cm.6、如图,AB是⊙O的直径,点D在AB的延长线上,C,E是⊙O上的两点,CE=CB,∠BCD=∠CAE,延长AE交BC的延长线于点F.(1)求证:CD是⊙O的切线;(2)求证:CE=CF;(3)若BD=1,CD=2,求弦AC的长.解:(1)证明:连结OC,∵AB是⊙O的直径,∴∠ACB=90°.∴∠CAD+∠ABC=90°.∵CE=CB,∴∠CAE=∠CAB.∵∠BCD=∠CAE,∴∠CAB=∠BCD.∵OB=OC,∴∠OBC=∠OCB.∴∠OCB+∠BCD=90°,即∠OCD=90°.又∵OC 是⊙O 的半径,∴CD 是⊙O 的切线.(2)证明:∵∠BAC =∠CAE ,AC =AC ,∠ACB =∠ACF =90°,∴△ABC≌△AFC(ASA).∴CB=CF.又∵CB=CE ,∴CE=CF.(3)∵∠BCD=∠CAD,∠ADC=∠CDB,∴△CBD∽△ACD.∴CD BD =AD CD =AC BC , 即21=AD 2=ACBC .∴DA=2,AC =2BC.∴AB=AD -BD =2-1=1.设BC =a ,AC =2a ,由勾股定理,得a 2+(2a)2=12,解得a =33,∴AC=63.7、如图,已知等边△ABC内接于⊙O,BD为内接正十二边形的一边,CD=5 2 cm,求⊙O的半径R.解:连结OB,OC,OD,∵等边△ABC内接于⊙O,BD为内接正十二边形的一边,∴∠BOC=13×360°=120°,∠BOD=112×360°=30°.∴∠COD=∠BOC-∠BOD=90°. ∵OC=OD,∴∠OCD=45°.∴OC=CD·cos45°=52×22=5(cm),即⊙O的半径R=5 cm.8、如图,AB是⊙O的直径,AC是⊙O的弦,OD⊥AB,OD与AC的延长线相交于点D,点E在OD上,且CE=DE.(1)求证:直线CE是⊙O的切线;(2)若OA=23,AC=3,求CD的长.解:(1)证明:连结OC,∵OD⊥AB,∴∠AOD=90°.∴∠D+∠A=90°.∵OA=OC,∴∠A=∠ACO.∵CE=DE,∴∠ECD=∠D.∴∠ACO+∠DCE=90°. ∴∠OCE=90°.∴OC⊥CE.又∵OC是⊙O的半径,∴直线CE是⊙O的切线.(2)连结BC,∵AB 是⊙O 的直径,∴∠ACB =90°.∴∠AOD =∠ACB.又∵∠A =∠A ,∴△ABC ∽△ADO.∴AO AC =AD AB, 即233=AD 43. ∴AD =8.∴CD =AD -AC =5.9、如图,已知等边△ABC 内接于⊙O,BD 为内接正十二边形的一边,CD =5 2 cm ,求⊙O 的半径R.解:连结OB ,OC ,OD ,∵等边△ABC 内接于⊙O,BD 为内接正十二边形的一边,∴∠BOC=13×360°=120°,∠BOD=112×360°=30°.∴∠COD=∠BOC-∠BOD=90°.∵OC=OD ,∴∠OCD=45°.∴OC=CD·cos45°=52×22=5(cm), 即⊙O 的半径R =5 cm.10、如图是一纸杯,它的母线AC 和EF 延长后形成的立体图形是圆锥.该圆锥的侧面展开图形是扇形OAB.经测量,纸杯上开口圆的直径为6 cm ,下底面圆的直径为4 cm ,母线长EF =8 cm.(1)求扇形OAB 的圆心角;(2)求这个纸杯的表面积(面积计算结果用π表示).解:(1)由题意可知:AB ︵=6π cm,CD ︵=4π cm.设∠AOB=n°,AO =R cm ,则CO =(R -8)cm , 由弧长公式得:nπR 180=6π,nπ(R -8)180=4π. 解方程组⎩⎪⎨⎪⎧6×180=nR ,4×180=nR -8n ,得⎩⎪⎨⎪⎧n =45,R =24.∴扇形OAB 的圆心角是45°.(2)∵R=24 cm ,R -8=16 cm ,∴S 扇形OCD =12×4π×16=32π(cm 2), S 扇形OAB =12×6π×24=72π(cm 2). ∴S 纸杯侧面积=S 扇形OAB -S 扇形OCD =72π-32π=40π(cm 2).又∵S 纸杯底面积=π×22=4π(cm 2),∴S 纸杯表面积=40π+4π=44π(cm 2).11、如图,在△ABC 中,O 为AC 上一点,以点O 为圆心,OC 为半径作圆,与BC 相切于点C ,过点A 作AD ⊥BO 交BO 的延长线于点D ,且∠AOD =∠BAD.(1)求证:AB 为⊙O 的切线;(2)若BC =6,tan ∠ABC =43,求AD 的长.解:(1)证明:过点O 作OE ⊥AB 于点E.∵AD ⊥BO ,∴∠D =90°.∴∠BAD +∠ABD =90°,∠AOD +∠OAD =90°.∵∠AOD =∠BAD ,∴∠ABD =∠OAD.∵BC 为⊙O 的切线,∴AC ⊥BC.∴∠BCO =∠D =90°.又∵∠BOC =∠AOD ,∴∠OBC =∠OAD =∠ABD.在△BOC 和△BOE 中,⎩⎪⎨⎪⎧∠OBC =∠OBE ,∠OCB =∠OEB =90°,BO =BO ,∴△BOC ≌△BOE(AAS).∴OE =OC.∴OE 为⊙O 的半径.∴AB 是⊙O 的切线.(2)∵∠ABC +∠BAC =90°,∠EOA +∠BAC =90°,∴∠EOA =∠ABC.∵tan ∠ABC =43,BC =6,∴AC =BC ·tan ∠ABC =8.∴AB =10.由(1)知BE =BC =6,∴AE =4.∵tan ∠EOA =tan ∠ABC =43, ∴OE AE =34.∴OE =3,OB =BE 2+OE 2=3 5. ∵∠ABD =∠OBE ,∠D =∠BEO =90°,∴△ABD ∽△OBE.∴OE AD =OB AB ,即3AD =3510. ∴AD =2 5.12、如图,已知在▱ABCD 中,AB =5,BC =8,cosB =45,点E 是BC 边上的动点,当以CE 为半径的⊙C 与边AD 不相交时,求半径CE 的取值范围.解:过点A 作AM ⊥BC 于点M ,过点C 作CN⊥AD 于点N , ∵四边形ABCD 是平行四边形, ∴AD∥BC,AB =CD =5.∴AM=CN.∵AB=5,cosB =BM AB =45,∴BM=4. 在Rt△ABM 中,由勾股定理,得AM =CN =AB 2-BM 2=3.∵BC=8,BM =4,∴CM=4.∴在Rt△ACM 中,AC =AM 2+CM 2=5.∴当以CE 为半径的⊙C 与边AD 不相交时,半径CE 的取值范围是0<CE <3或5<CE≤8.13、如图,⊙O 是△ABC 的外接圆,C 是优弧AB ︵上一点,设∠OAB=α,∠C=β.(1)当β=36°时,求α的度数;(2)猜想α与β之间的关系,并给予证明.解:(1)连结OB ,则OA =OB ,∴∠OAB=∠OBA.∵∠C=36°,∴∠AOB =72°.∴∠OAB=12×(180°-∠AOB)=54°,即α=54°. (2)α与β之间的关系是α+β=90°.证明:∵∠OBA=∠OAB=α,∴∠AOB=180°-2α.∵∠AOB=2β,∴180°-2α=2β.∴α+β=90°.14、如图,在等腰△ABC 中,AB =AC ,以AC 为直径作⊙O 交BC 于点D ,过点D 作DE⊥AB,垂足为E.(1)求证:DE 是⊙O 的切线;(2)若DE =3,∠C=30°,求AD ︵的长.解:(1)证明:连结OD.∵OC=OD ,AB =AC ,∴∠ODC=∠C,∠C=∠B.∴∠ODC=∠B.∴OD∥AB.∵DE⊥AB,∴DE⊥OD.又∵OD 是⊙O 的半径,∴DE 为⊙O 的切线.(2)连结AD.∵AC 为⊙O 的直径,∴∠ADC=90°,即AD⊥BC.∵AB=AC ,∴∠B=∠C=30°,BD =CD. ∵DE=3,∴BD=CD =2 3.∴OA=12AC =12×CD cos30°=2.∵∠AOD=∠ODC+∠C=2∠C=60°,∴AD ︵的长为60π×2180=23π.15、如图,AB是⊙O的直径,点C在AB的延长线上,AD平分∠CAE 交⊙O于点D,且AE⊥CD,垂足为E.(1)求证:直线CE是⊙O的切线;(2)若BC=3,CD=32,求弦AD的长.解:(1)证明:连结OD.∵AD平分∠CAE,∴∠CAD=∠EAD.∵OA=OD,∴∠CAD=∠ODA.∴∠EAD=∠ODA.∴OD∥AE.∵AE⊥DC,∴OD⊥CE.又∵OD是⊙O的半径,∴CE是⊙O的切线.(2)连结BD.∵∠CDO=∠ADB=90°,∴∠ODA=∠CDB=∠CAD.∵∠C=∠C,∴△CDB∽△CAD.∴CD CA =CB CD =BD AD ,即32CA =332=BDAD .∴CA=6,BD =22AD.∴AB=CA -BC =3.在Rt△ADB 中,AD 2+BD 2=AB 2,即AD 2+(22AD)2=32,∴AD=6(负值舍去).16、已知在⊙O 中,弦AB⊥AC,且AB =AC =6,点D 在⊙O 上,连结AD ,BD ,CD.(1)如图1,若AD 经过圆心O ,求BD ,CD 的长;(2)如图2,若∠BAD=2∠DAC,求BD ,CD 的长.解:(1)∵AD 经过圆心O ,∴∠ACD=∠ABD=90°.∵AB⊥AC,且AB =AC =6,∴四边形ABDC 为正方形.∴BD=CD =AB =AC =6.(2)连结BC ,OD ,∵AB⊥AC,AB =AC =6,∴BC 为⊙O 的直径,BC =6 2.∴∠CDB=90°.∴BO=CO =DO =12BC =3 2. ∵∠BAD=2∠DAC,∴∠CAD=30°.∴∠COD=60°.∴△COD 为等边三角形.∴CD=CO =DO =3 2.在Rt△CDB 中,由勾股定理,得BD=BC2-CD2=3 6.17、如图,已知AB 是⊙O 的直径,AB =10,弦CD 与AB 相交于点N ,∠ANC=30°,ON∶AN=2∶3,OM⊥CD,垂足为M.(1)求OM 的长;(2)求弦CD 的长.解:(1)∵AB=10,∴OA=5.∵ON∶AN=2∶3,∴ON=2.∵∠ANC=30°,∴∠ONM=30°.又∵OM⊥CD,∴OM=12ON =1.(2)连结OC.∵OM⊥CD,∴CM=DM.在Rt△OCM 中,由勾股定理,得CM2=CO2-OM2=25-1=24.∴CM=2 6.∴CD=2CM=4 6.18、如图1,2,3,…,m中,M,N分别是⊙O的内接正三角形ABC,正方形ABCD,正五边形ABCDE,…,正n边形ABCDEF…的边AB,BC 上的点,且BM=CN,连结OM,ON.(1)求图1中∠MON的度数;(2)图2中∠MON的度数是90°,图3中∠MON的度数是72°;(3)试探究∠MON的度数与正n边形边数n的关系(直接写出答案). 解:(1)连结OA,OB.∵正三角形ABC内接于⊙O,∴AB=BC,∠OAM=∠OBN=30°,∠AOB=120°,OA=OB.∵BM=CN ,∴AM=BN.∴△AOM≌△BON(SAS). ∴∠AOM=∠BON.∴∠AOM+∠BOM=∠BON+∠BOM, 即∠AOB=∠MON=120°.(3)∠MON=360°n.。
2020年中考总复习圆的经典题型汇总(含答案)
1、如图1,四边形ABCD内接于⊙O,AC是⊙O的直径,过点A的切线与CD的延长线相交于点P.且∠APC=∠BCP(1)求证:∠BAC=2∠ACD;(2)过图1中的点D作DE⊥AC,垂足为E(如图2),当BC=6,AE=2时,求⊙O的半径.2、如图,在△ABC中,∠BAC=90°,点E在BC边上,且CA=CE,过A,C,E三点的⊙O 交AB于另一点F,作直径AD,连结DE并延长交AB于点G,连结CD,CF.(1)求证:四边形DCFG是平行四边形.(2)当BE=4,CD=AB时,求⊙O的直径长.3、如图,在▱OABC中,以O为圆心,OA为半径的圆与BC相切于点B,与OC相交于点D.(1)求的度数.(2)如图,点E在⊙O上,连结CE与⊙O交于点F,若EF=AB,求∠OCE的度数.4、如图,⊙O是△ABC的外接圆,∠BAC的平分线交⊙O于点D,交BC于点E,过点D作直线DF∥BC.(1)判断直线DF与⊙O的位置关系,并说明理由;(2)若AB=6,AE=,CE=,求BD的长.5、如图,点D是以AB为直径的⊙O上一点,过点B作⊙O的切线,交AD的延长线于点C,E是BC的中点,连接DE并延长与AB的延长线交于点F.(1)求证:DF是⊙O的切线;(2)若OB=BF,EF=4,求AD的长.6、如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD平分∠BAC,AD交BC于点D,ED⊥AD交AB于点E,△ADE的外接圆⊙O交AC于点F,连接EF.(1)求证:BC是⊙O的切线;(2)求⊙O的半径r及∠3的正切值.7、如图,在Rt△ABC中,∠ABC=90°,以AB为直径作⊙O,点D为⊙O上一点,且CD=CB,连接DO并延长交CB的延长线于点E.(1)判断直线CD与⊙O的位置关系,并说明理由;(2)若BE=2,DE=4,求圆的半径及AC的长.8、如图,△ABC内接于⊙O,AB为直径,作OD⊥AB交AC于点D,延长BC,OD交于点F,过点C作⊙O的切线CE,交OF于点E.(1)求证:EC=ED;(2)如果OA=4,EF=3,求弦AC的长.9、如图1,已知⊙O外一点P向⊙O作切线PA,点A为切点,连接PO并延长交⊙O于点B,连接AO并延长交⊙O于点C,过点C作CD⊥PB,分别交PB于点E,交⊙O于点D,连接AD.(1)求证:△APO~△DCA;(2)如图2,当AD=AO时①求∠P的度数;②连接AB,在⊙O上是否存在点Q使得四边形APQB是菱形.若存在,请直接写出的值;若不存在,请说明理由.10、如图,在⊙O中,B是⊙O上的一点,∠ABC=120°,弦AC=2,弦BM平分∠ABC交AC于点D,连接MA,MC.(1)求⊙O半径的长;(2)求证:AB+BC=BM.11、如图,在Rt△ABC中,∠ACB=90°,D为AB的中点,以CD为直径的⊙O分别交AC,BC于点E,F两点,过点F作FG⊥AB于点G.(1)试判断FG与⊙O的位置关系,并说明理由.(2)若AC=3,CD=2.5,求FG的长.12、如图1,AB为半圆的直径,点O为圆心,AF为半圆的切线,过半圆上的点C作CD∥AB 交AF于点D,连接BC.(1)连接DO,若BC∥OD,求证:CD是半圆的切线;(2)如图2,当线段CD与半圆交于点E时,连接AE,AC,判断∠AED和∠ACD的数量关系,并证明你的结论.13、如图,AB是⊙O的直径,AC与⊙O交于点F,弦AD平分∠BAC,DE⊥AC,垂足为E.(1)试判断直线DE与⊙O的位置关系,并说明理由;(2)若⊙O的半径为2,∠BAC=60°,求线段EF的长.14、如图,△ABC内接于⊙O,AB是⊙O的直径,AC=CE,连接AE交BC于点D,延长DC 至F点,使CF=CD,连接AF.(1)判断直线AF与⊙O的位置关系,并说明理由.(2)若AC=10,tan∠CAE=,求AE的长.15、已知AB是⊙O的直径,AM和BN是⊙O的两条切线,DC与⊙O相切于点E,分别交AM、BN于D、C两点(1)如图1,求证:AB2=4AD·BC(2)如图2,连接OE并延长交AM于点F,连接CF.若∠ADE=2∠OFC,AD=1,求图中阴影部分的面积16、如图在△ABC中,AB=BC,以AB为直径作⊙O交AC于点D,连接OD.(1)求证:OD∥BC;(2)过点D作⊙O的切线,交BC于点E,若∠A=30°,求的值.17、如图,AB为⊙O的直径,C、D是半圆AB的三等分点,过点C作AD延长线的垂线CE,垂足为E.(1)求证:CE是⊙O的切线;(2)若⊙O的半径为2,求图中阴影部分的面积.18、如图,AC是⊙O的一条弦,AP是⊙O的切线。
2020年九年级数学中考《圆》综合专题复习试题(含答案)
1 ∵AH=2AC= 3,
AH ∴OA=sin60°=2. ∴⊙O 半径的长为 2. (2)证明:在 BM 上截取 BE=BC,连接 CE, ∵∠ABC=120°,BM 平分∠ABC, ∴∠MBA=∠MBC=60°. ∵BE=BC, ∴△EBC 是等边三角形.
∴CE=CB=BE,∠BCE=60°. ∴∠BCD+∠DCE=60°. ∵∠ACM=∠ABM=60°,∴∠ECM+∠DCE=60°. ∴∠ECM=∠BCD. ∵∠CAM=∠CBM=60°,∠ACM=∠ABM=60°. ∴△ACM 是等边三角形.∴AC=CM. ∴△ACB≌△MCE(SAS).∴AB=ME. ∵ME+EB=BM, ∴AB+BC=BM.
基础题组
1.(2019·保定一模)已知⊙O 的半径 OA 长为 2,若 OB= 3,则可以得到的正确图形可
能是(A)
2.(2019·广州)平面内,⊙O 的半径为 1,点 P 到 O 的距离为 2,过点 P 可作⊙O 的切线条
数为(C)
A.0 条
B.1 条
C.2 条
D.无数条
3.如图,在 Rt△ABC 中,∠C=90°,AC=3,BC=4,以点 A 为圆心作圆.如果⊙A 与线
则∠D=27°.
基础题组
1.(2019·柳州)如图,A,B,C,D 是⊙O 上的点,则图中与∠A 相等的角是(D)
A.∠B
B.∠C
C.∠DEB
D.∠D
A︵B
A︵B
2.(2019·吉林)如图,在⊙O 中, 所对的圆周角∠ACB=50°.若 P 为 上一点,
∠AOP=55°,则∠POB 的度数为(B)
A.30°
3 切,连接 OC,则 tan∠OCB= 5 .
2020年中考数学复习专题练:《圆的综合 》(含答案)
2020年中考数学复习专题练:《圆的综合》1.如图,△ABC内接于⊙O,AB是直径,过点A作直线MN,且∠MAC=∠ABC.(1)求证:MN是⊙O的切线.(2)设D是弧AC的中点,连结BD交AC于点G,过点D作DE⊥AB于点E,交AC于点F.①求证:FD=FG.②若BC=3,AB=5,试求AE的长.2.如图,已知BC⊥AC,圆心O在AC上,点M与点C分别是AC与⊙O的交点,点D是MB 与⊙O的交点,点P是AD延长线与BC的交点,且AD•AO=AM•AP.(1)连接OP,证明:△ADM∽△APO;(2)证明:PD是⊙O的切线;(3)若AD=12,AM=MC,求PB和DM的值.3.已知正方形ABCD内接于⊙O,点E为上一点,连接BE、CE、DE.(1)如图1,求证:∠DEC+∠BEC=180°;(2)如图2,过点C作CF⊥CE交BE于点F,连接AF,M为AE的中点,连接DM并延长交AF于点N,求证:DN⊥AF;(3)如图3,在(2)的条件下,连接OM,若AB=10,tan∠DCE=,求OM的长.4.△ABC内接于⊙O,D为的中点,连接OD,交BC边于点E,且OE=DE.(1)如图1,求∠BAC的度数;(2)如图2,作AF⊥BC于点F,BG⊥AC于点G,AF、BG交于点H,求证:AH=OD;(3)如图3,在(2)的条件下,连接OH,若AC=4OH,EF=3,求线段GH的长.5.如图,以点O为圆心,OE为半径作优弧EF,连接OE,OF,且OE=3,∠EOF=120°,在弧EF上任意取点A,B(点B在点A的顺时针方向)且使AB=2,以AB为边向弧内作正三角形ABC.(1)发现:不论点A在弧上什么位置,点C与点O的距离不变,点C与点O的距离是;点C到直线EF的最大距离是.(2)思考:当点B在直线OE上时,求点C到OE的距离,在备用图1中画出示意图,并写出计算过程.(3)探究:当BC与OE垂直或平行时,直接写出点C到OE的距离.6.已知,AB、AC为圆O的弦,连接CO并延长,交AB于点D,且∠ADC=2∠C;(1)如图1,求证:AD=CO;(2)如图2,取弧BC上一点E,连接EB、EC、ED,且∠EDA=∠ECA,延长EB至点F,连接FD,若∠EDF﹣∠F=60°,求∠BDF的度数;(3)如图3,在(2)的条件下,若CD=10,EF=6,求AC的长度.7.如图,AB是⊙O的直径,AC⊥AB,BC交⊙O于点D,点E在劣弧BD上,DE的延长线交AB的延长线于点F,连接AE交BD于点G.(1)求证:∠AED=∠CAD;(2)若点E是劣弧BD的中点,求证:ED2=EG•EA;(3)在(2)的条件下,若BO=BF,DE=2,求EF的长.8.如图,点O为Rt△ABC斜边AB上的一点,以OA为半径的⊙O与BC切于点D,与AC交于点E,连接AD.(1)求证:AD平分∠BAC;(2)若∠B=30°,OA=2,求阴影部分的面积.(结果保留π)9.如图,在等腰△ABC中,AC=BC,以BC为直径的⊙O与底边AB交于点D,过D作⊙O的切线交AC于点E.(1)证明:DE⊥AC.(2)若BC=8,AD=6,求AE的长.10.如图,已知AB是⊙O的直径,点P是弦BC上一动点(不与端点重合),过点P作PE ⊥AB于点E,延长EP交于点F,交过点C的切线于点D.(1)求证:△DCP是等腰三角形;(2)若OA=6,∠CBA=30°.①当OE=EB时,求DC的长;②当的长为多少时,以点B,O,C,F为顶点的四边形是菱形?11.如图,AB是⊙O的直径,AE是弦,C是弧AE的中点,过点C作⊙O的切线交BA的延长线于点G,过点C作CD⊥AB于点D,交AE于点F.(1)求证:GC∥AE;(2)若sin∠EAB=,OD=3,求AE的长.12.如图,AB是⊙O的直径,过点B作⊙O的切线BM,点C为BM上一点,连接AC与⊙O交于点D,E为⊙O上一点,且满足∠EAC=∠ACB,连接BD,BE.(1)求证:∠ABE=2∠CBD;(2)过点D作AB的垂线,垂足为F,若AE=6,BF=,求⊙O的半径长.13.如图,以矩形ABCD的边CD为直径作⊙O,点E是AB的中点,连接CE交⊙O于点F,连接AF并延长交BC于点H.(1)若连接AO,试判断四边形AECO的形状,并说明理由;(2)求证:AH是⊙O的切线;(3)若AB=6,CH=2,则AH的长为.14.如图,在平面直角坐标系xOy中,A(0,8),B(6,0),C(0,3),点D从点A运动到点B停止,连接CD,以CD长为直径作⊙P.(1)若△ACD∽△AOB,求⊙P的半径;(2)当⊙P与AB相切时,求△POB的面积;(3)连接AP、BP,在整个运动过程中,△PAB的面积是否为定值,如果是,请直接写出面积的定值,如果不是,请说明理由.15.如图,点A,P,B,C是⊙O上的四个点,∠DAP=∠PBA.(1)求证:AD是⊙O的切线;(2)若∠APC=∠BPC=60°,试探究线段PA,PB,PC之间的数量关系,并证明你的结论;(3)在第(2)问的条件下,若AD=2,PD=1,求线段AC的长.16.如图,A,B,C,D四点都在OO上,弧AC=弧BC,连接AB,CD、AD,∠ADC=45°.(1)如图1,AB是⊙O的直径;(2)如图2,过点B作BE⊥CD于点E,点F在弧AC上,连接BF交CD于点G,∠FGC=2∠BAD,求证:BA平分∠FBE;(3)如图3,在(2)的条件下,MN与⊙O相切于点M,交EB的延长线于点N,连接AM,若2∠MAD+∠FBA=135°,MN=AB,EN=26,求线段CD的长.17.对于平面内⊙C和⊙C外一点P,若过点P的直线l与⊙C有两个不同的公共点M,N,点Q为直线l上的另一点,且满足(如图1所示),则称点Q是点P关于的密切点已知在平面直角坐标系xOy中,⊙O的半径为2,点P(4,0).(1)在点D(2,1),E(1,0),F(3,)中,是点P关于⊙O的密切点的为.(2)设直线l方程为y=kx+b,如图2所示,①k=﹣时,求出点P关于O的密切点Q的坐标;②⊙T的圆心为T(t,0),半径为2,若⊙T上存在点P关于⊙O的密切点,直接写出t的取值范围.18.如图,在△AOB中,∠AOB=90°,AO=6,BO=6,以点O为圆心,以2为半径作优弧,交AO于点D,交BO于点E.点M在优弧上从点D开始移动,到达点E时停止,连接AM.(1)当AM=4时,判断AM与优弧的位置关系,并加以证明;(2)当MO∥AB时,求点M在优弧上移动的路线长及线段AM的长;(3)连接BM,设△ABM的面积为S,直接写出S的取值范围.19.如图,四边形ABCD为菱形,以AD为直径作⊙O交AB于点F,连接DB交⊙O于点H,E 是BC上的一点,且BE=BF,连接DE.(1)求证:△DAF≌△DCE.(2)求证:DE是⊙O的切线.(3)若BF=2,DH=,求四边形ABCD的面积.20.如图1,已知AB是⊙O的直径,点D是弧AB上一点,AD的延长线交⊙O的切线BM于点C,点E为BC的中点,(1)求证:DE是⊙O的切线;(2)如图2,若DC=4,tan∠A=,延长OD交切线BM于点H,求DH的值;(3)如图3,若AB=8,点F是弧AB的中点,当点D在弧AB上运动时,过F作FG⊥AD 于G,连接BG,求BG的最小值.参考答案1.(1)证明:∵AB是直径,∴∠ACB=90°,∴∠CAB+∠ABC=90°;∵∠MAC=∠ABC,∴∠MAC+∠CAB=90°,即MA⊥AB,∴MN是⊙O的切线;(2)①证明:∵D是弧AC的中点,∴∠DBC=∠ABD,∵AB是直径,∴∠CBG+∠CGB=90°,∵DE⊥AB,∴∠FDG+∠ABD=90°,∵∠DBC=∠ABD,∴∠FDG=∠CGB=∠FGD,∴FD=FG;②解:连接AD、CD,作DH⊥BC,交BC的延长线于H点.∵∠DBC=∠ABD,DH⊥BC,DE⊥AB,∴DE=DH,在Rt△BDE与Rt△BDH中,,∴Rt△BDE≌Rt△BDH(HL),∴BE=BH,∵D是弧AC的中点,∴AD=DC,在Rt△ADE与Rt△CDH中,,∴Rt△ADE≌Rt△CDH(HL).∴AE=CH.∴BE=AB﹣AE=BC+CH=BH,即5﹣AE=3+AE,∴AE=1.2.(1)证明:连接OD、OP、CD.∵AD•AO=AM•AP,∴,∠A=∠A,∴△ADM∽△APO.(2)证明:∵△ADM∽△APO,∴∠ADM=∠APO,∴MD∥PO,∴∠DOP=∠MDO,∠POC=∠DMO,∵OD=OM,∴∠DMO=∠MDO,∴∠DOP=∠POC,∵OP=OP,OD=OC,∴△ODP≌△OCP(SAS),∴∠ODP=∠OCP,∵BC⊥AC,∴∠OCP=90°,∴OD⊥AP,∴PD是⊙O的切线.(3)解:连接CD.由(1)可知:PC=PD,∵AM=MC,∴AM=2MO=2R,在Rt△AOD中,OD2+AD2=OA2,∴R2+122=9R2,∴R=3,∴OD=3,MC=6,∵,∴,∴AP=18,∴DP=AP﹣AD=18﹣12=6,∵O是MC的中点,∴,∴点P是BC的中点,∴PB=CP=DP=6,∵MC是⊙O的直径,∴∠BDC=∠CDM=90°,在Rt△BCM中,∵BC=2DP=12,MC=6,∴BM===6,∵△BCM∽△CDM,∴,即,∴DM=2.3.(1)证明:连接BD,OC,∵四边形ABCD为正方形,∴∠A=90°,BC=CD,∴BD为⊙O的直径,∵OB=OD,∴OC⊥BD,∴∠BOC=90°,∴∠BEC=∠BOC=45°,∵正方形ABED是圆O的内接四边形,∴∠A+∠DEB=180°,∴∠DEB=90°,∴∠DEC+∠BEC=∠DEB+∠BEC+∠BEC=180°;(2)证明:如图2,延长ED至G,使ED=DG,连接AG,∵CE⊥CF,∴∠ECF=90°,∵∠CEF=45°,∴∠CEF=∠CFE=45°,∴CE=CF,∵∠BCD=∠ECF=90°,∴∠BCF=∠DCF,∵BC=CD,∴△BFC≌△DEC(SAS),∴BF=DE,∵DE=DG,∴BF=DG,∵四边形ABED为圆O的内接四边形,∴∠ABE+∠ADE=180°,∵∠ADE+∠ADG=180°,∴∠ABE=∠ADG,∵AB=AD,∴△ABF≌△ADG(SAS),∴∠BAF=∠DAC,∵∠BAF+∠FAD=∠BAD=90°,∴∠DAG+∠FAD=90°,∴∠FAG=90°,∵M为AE的中点,∴DM为△AEG的中位线,∴DM∥AG,∴∠DNF=∠FAG=90°,∴DN⊥AF,(3)解:如图3,连接BD,OC,过点B作BK⊥CF交CF的延长线于点K,过点B作BT⊥AE于点T,由(1)知∠BOC=90°,∴OB=OC=,由(1)知BD为⊙O的直径,在Rt△ABD中,BD=AB=10,∵,∴∠DBE=∠DCE,∴tan∠DCE=tan∠DBE=,∴,设DE=x,则BE=7x,在Rt△BDE中,BD==5x,∴,∴x=2,∴DE=2,∴BF=2,∵∠EFC=45°,∴∠BFK=∠EFC=45°,∴∠KBF=∠BFK=45°,∴,由(2)知∠BCF=∠DCE,∴tan∠BCF=tan∠DCE=,∴,∴,∴,在Rt△ECF中,EF=CF=12,∴BE=EF+BF=14,∵∠AEB=∠AEC﹣∠BEC=90°﹣45°=45°,∴∠TBE=∠TEB,∴TB=TE=,∴=,∴,∴,∵M为AE的中点,∴OM⊥AE,在Rt△OME中,OM==3.4.解:(1)连接OB,OC,如图所示:∵OE=DE,∴OB=2OE,∴,∴∠OBC=30°,∵OB=OC,∴∠OCB=30°,∴∠BOC=120°,(2)证明:连接OA,过O做OM⊥AB,垂足为M,连接AD,如图所示:∵∠BAC=60°.∠AGB=90°,∴∠ABG=30°,∴,∵OM⊥AB,∴,∴AM=AG,∵D为弧中点,∴∠BAD=∠CAD,∴OD⊥BC,∴OD∥AF,∴∠ODA=∠OAD=∠FAD,∴∠OAM=∠HAG,∴△OAM≌△HAG(AAS),∴AH=AO=OD.∴AH=OD;(3)连接DA,DB,DC,DH,延长AC至N,使AN=AB,连接DN.如图所示:由(2)可知,DO=DH,∴△ABD≌△AND(SAS),∴DN=DB=DC=DO=DH.∴△OBD为等边三角形,∴∠OBD=∠ODB=60°,设∠HBF=α,则∠CAF=α,∠DAF=30°﹣α,∴∠ODH=60°﹣2α,∵四边形ABDC内接于⊙O,∠DCN=DBA=∠N=60°+α,∴∠CDN=60°﹣2α=∠ODH,∴△DOH≌△DCN(SAS),∴OH=CN,∴AC+OH=AB.设OH=2a,∵AC=4OH,∴AC=8a,AB=10a,∵∠AGB=90°,∠ABG=30°,∴AG=5a,CG=3a,∴BG==5a,∴BC==2a,∴,∵△OBD为等边三角形,∴,由勾股定理得:GH==a,∴,∵cos∠HBF=cos∠HAG,∴=,∴BF=×BH=×4a=a,又∵EF=3,∴,解得,∴GH=×=.∴线段GH的长为.5.解:(1)如图1,连接OA、OB、OC,延长OC交AB于点G,在正三角形ABC中,AB=BC=AC=2,∵OA=OB,AC=BC,∴OC垂直平分AB,∴AG=AB=1,∴在Rt△AGC中,由勾股定理得:CG===,在Rt△AGO中,由勾股定理得:OG===2,∴OC=2﹣;如图2,延长CO交EF于点H,当CO⊥EF时,点C到直线EF的距离最大,最大距离为CH的长,∵OE=OF,CO⊥EF,∴CO平分∠EOF,∵∠EOF=120°,∴∠EOH=∠EOF=60°,在Rt△EOH中,cos∠EOH=,∴cos60°==,∴OH=,∴CH=CO+OH=,∴点C到直线EF的最大距离是.故答案为:2﹣;.(2)如图3,当点B在直线OE上时,由OA=OB,CA=CB可知,点O,C都在线段AB的垂直平分线上,过点C作AB的垂线,垂足为G,则G为AB中点,直线CG过点O.∴由∠COM=∠BOG,∠CMO=∠BGO∴△OCM∽△OBG,∴=,∴=,∴CM=,∴点C到OE的距离为.(3)如图4,当BC⊥OE时,设垂足为点M,∵∠EOF=120°,∴∠COM=180°﹣120°=60°,∴在Rt△COM中,sin∠COM=,∴sin60°==,∴CM=CO=(2﹣)=﹣;如图5,当BC∥OE时,过点C作CN⊥OE,垂足为N,∵BC∥OE,∴∠CON=∠GCB=30°,∴在Rt△CON中,sin∠CON=,∴sin30°==,∴CN=CO=(2﹣)=﹣;综上所述,当BC与OE垂直或平行时,点C到OE的距离为﹣或﹣.6.解:(1)如图1,连接AO,则∠DCA=∠OAC,∵∠DOA=∠DCA+∠OAC=2∠C,而∠ADC=2∠C,∴∠ADC=∠DOA,∴AD=AO=CO;(2)设∠F=x,则∠EDF=60°+x,∴∠FED=180°﹣x﹣(60°+x)=120°﹣2x,∵∠EDA=∠ECA,∴∠EBD=∠EDB=(180°﹣120+2x)=30°+x,∴∠BDF=∠EDF﹣∠EDB=60°+x﹣30°﹣x=30°;(3)延长ED交圆于点G,连接OG、OA、AG、BG,作AM⊥OD于点M,作ON⊥BG于点N,∵∠BEG=∠BAG=120°﹣2x,∠ADG=∠EDB=∠EBD=∠AGD=30°+x,∴AG=AD=OG=OA,∴△OGA为等边三角形,则∠ABG=AOG=30°=∠BDF,∵EB=ED,∠FED=∠GEB,∴△FED≌△GEB(AAS),∴EG=EF=6,∴NG=NE=3,∵∠OAD=∠OAG﹣∠DAG=60°﹣(120°﹣2x)=2x﹣60°,AD=AO,∴∠ADO=∠AOD=120°﹣x,∴∠NDO=180°﹣∠ADO﹣∠ADG=180°﹣(120°﹣x)﹣(30°﹣x)=30°,∴ON=OD=DM=OM=a,∴OC=OG=10﹣2a,在Rt△NOG中,由勾股定理得:(10﹣2a)2+a2+(3)2,解得:a=1或(舍去,此时OC=10﹣2a<0),∴CM=10﹣1=9,AM=3,则AC==12.7.(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,∵AC⊥AB,∴∠CAB=90°,∴∠ABD=∠CAD,∵=,∴∠AED=∠ABD,∴∠AED=∠CAD;(2)证明:∵点E是劣弧BD的中点,∴=,∴∠EDB=∠DAE,∵∠DEG=∠AED,∴△EDG∽△EAD,∴,∴ED2=EG•EA;(3)解:连接OE,∵点E是劣弧BD的中点,∴∠DAE=∠EAB,∵OA=OE,∴∠OAE=∠AEO,∴∠AEO=∠DAE,∴OE∥AD,∴,∵BO=BF=OA,DE=2,∴,∴EF=4.8.(1)证明:∵⊙O切BC于D,∴OD⊥BC,∵AC⊥BC,∴AC∥OD,∴∠CAD=∠ADO,∵OA=OD,∴∠OAD=∠ADO,∴∠OAD=∠CAD,即AD平分∠BAC;(2)解:设EO与AD交于点M,连接ED.∵∠B=30°,∠ACB=90°,∴∠BAC=60°,∵OA=OE,∴△AEO是等边三角形,∴AE=OA,∠AOE=60°,∴AE=AO=OD,又由(1)知,AC∥OD即AE∥OD,∴四边形AEDO是菱形,则△AEM≌△DMO,∠EOD=60°,∴S△AEM =S△DMO,∴S阴影=S扇形EOD==.9.解:(1)如图,连接OD,∵DE是⊙O的切线,∴∠ODE=90°,∵OB=OD,∴∠OBD=∠ODB,∵AC=BC,∴∠OBD=∠A,∴∠A=∠ODB,∴OD∥AC,∴∠DEC=90°,即DE⊥AC.(2)连接CD,∵BC为直径,∴∠BDC=∠CDA=90°,∴∠DEA=∠CDA=90°,∵∠A=∠A,∴△ADE∽△ACD,∴=,即=,∴AE=.10.(1)证明:连接OC,如图1,∵CD为⊙O的切线,∴OC⊥CD,∴∠OCD=90°,即∠OCB+∠BCD=90°,∵OB=OC,∴∠OCB=∠OBC,∵PE⊥AB,∴∠B+∠BPE=90°,而∠BPE=∠DPC,∴∠OCB+∠DPC=90°,∴∠DPC=∠BCD,∴DC=DP,∴△DCP是等腰三角形;(2)解:①如图1,连接AC,∵AB是⊙O的直径,AB=2AO=12,∴∠ACB=90°,∵∠ABC=30°,∴AC=AB=6,BC=6,Rt△PEB中,∵OE=BE=3,∠ABC=30°,∴PE=,PB=2,∴CP=BC﹣PB=6﹣2=4,∵∠DCP=∠CPD=∠EPB=60°,∴△PCD为等边三角形,∴CD=PC=4;②当F是弧BC的中点,即弧FB所对的圆周角为60°时,此时的长:=2π,以点B,O,C,F为顶点的四边形是菱形;理由如下:如图2,连接OF,AC,∵AB是⊙O的直径,∴∠ACB=90°,∵∠CBA=30°,∴∠A=60°,∴△OAC为等边三角形,∴∠BOC=120°,当F是弧BC的中点时,∠BOF=∠COF=60°,∴△BOF与△COF均为等边三角形,∴OB=OC=CF=BF,∴四边形OCFB为菱形,则当的长为2π时,以点B,O,C,F为顶点的四边形是菱形.11.(1)证明:连接OC,交AE于点H.∵C是弧AE的中点,∴OC⊥AE.∵GC是⊙O的切线,∴OC⊥GC,∴∠OHA=∠OCG=90°,∴GC∥AE;(2)解:OC⊥AE,CD⊥AB,∴∠OCD=∠EAB.∴.在Rt△CDO中,OD=3,∴OC=5,∴AB=10,连接BE∵AB是⊙O的直径,∴∠AEB=90°.在Rt△AEB中,∵,∴BE=6,∴AE=8.12.解:(1)∵AB是⊙O的直径,∴∠ADB=90°,即∠DAB+∠DBA=90°,∵BM是⊙O的切线,∴AB⊥BC,∴∠ABC=90°,即∠CBD+∠DBA=90°,∴∠DAB=∠CBD,∵∠ABC=90°,∴∠ACB=90°﹣∠BAC,∵∠EAC=∠ACB,∴∠EAC=90°﹣∠BAC=90°﹣(∠EAC﹣∠BAE),∴∠BAE=2∠EAC﹣90°,∵AB是直径,∴∠AEB=90°,∴∠ABE=90°﹣∠BAE=90°﹣(2∠EAC﹣90°)=2(90°﹣∠EAC)=2(90°﹣∠ACB)=2∠CAB=2∠CBD.∴∠ABE=2∠CBD;(2)如图,连接DO并延长交AE于点G,∵∠DOB=2∠BAD,∠ABE=2∠CAB,∴∠DOB=∠ABE,∴DG∥BE,∴∠AGO=∠AEB=90°,∴AG=EG=AE=3,∠AOG=∠DOF,OA=OD,∴△AOG≌△DOF(AAS)∴DF=AG=3,又OF=OB﹣BF=OD﹣,在Rt△DOF中,根据勾股定理,得OD2=DF2+OF2,即OD2=32+(OD﹣)2,解得OD=.答:⊙O的半径长为.13.(1)解:连接AO,四边形AECO是平行四边形.∵四边形ABCD是矩形,∴AB∥CD,AB=CD.∵E是AB的中点,∴AE=AB.∵CD是⊙O的直径,∴OC=CD.∴AE∥OC,AE=OC.∴四边形AECO为平行四边形.(2)证明:由(1)得,四边形AECO为平行四边形,∴AO∥EC∴∠AOD=∠OCF,∠AOF=∠OFC.∵OF=OC∴∠OCF=∠OFC.∴∠AOD=∠AOF.∵在△AOD和△AOF中,AO=AO,∠AOD=∠AOF,OD=OF ∴△AOD≌△AOF(SAS).∴∠ADO=∠AFO.∵四边形ABCD是矩形,∴∠ADO=90°.∴∠AFO=90°,即AH⊥OF.∵点F在⊙O上,∴AH是⊙O的切线.(3)∵CD为⊙O的直径,∠ADC=∠BCD=90°,∴AD,BC为⊙O的切线,又∵AH是⊙O的切线,∴CH=FH,AD=AF,设BH=x,∵CH=2,∴BC=2+x,∴BC=AD=AF=2+x,∴AH=AF+FH=4+x,在Rt△ABH中,∵AB2+BH2=AH2,∴62+x2=(4+x)2,解得x=.∴.故答案为:.14.解:(1)如图1,∵A(0,8),B(6,0),C(0,3),∴OA=8,OB=6,OC=3,∴AC=5,∵△ACD∽△AOB,∴,∴∴CD的=,∴⊙P的半径为;(2)在Rt△AOB中,OA=8,OB=6,∴==10,如图2,当⊙P与AB相切时,CD⊥AB,∴∠ADC=∠AOB=90°,∠CAD=∠BAO,∴△ACD∽△ABO,∴,即,∴AD=4,CD=3,∵CD为⊙P的直径,∴CP=,过点P作PE⊥AO于点E,∵∠PEC=∠ADC=90°,∠PCE=∠ACD,∴△CPE∽△CAD,∴,即,∴,∴,∴△POB的面积==;(3)①如图3,若⊙P与AB只有一个交点,则⊙P与AB相切,由(2)可知PD⊥AB,PD=,∴△PAB的面积=.②如图4,若⊙P与AB有两个交点,设另一个交点为F,连接CF,可得∠CFD=90°,由(2)可得CF=3,过点P作PG⊥AB于点G,则DG=,则PG为△DCF的中位线,PG=,∴△PAB的面积==.综上所述,在整个运动过程中,△PAB的面积是定值,定值为.15.(1)证明:先作⊙O的直径AE,连接PE,∵AE是直径,∴∠APE=90°.∴∠E+∠PAE=90°.又∵∠DAP=∠PBA,∠E=∠PBA,∴∠DAP=E,∴∠DAP+∠PAE=90°,即AD⊥AE,∴AD是⊙O的切线;(2)PA+PB=PC,证明:在线段PC上截取PF=PB,连接BF,∵PF=PB,∠BPC=60°,∴△PBF是等边三角形,∴PB=BF,∠BFP=60°,∴∠BFC=180°﹣∠PFB=120°,∵∠BPA=∠APC+∠BPC=120°,∴∠BPA=∠BFC,在△BPA和△BFC中,,∴△BPA≌△BFC(AAS),∴PA=FC,AB=CB,∴PA+PB=PF+FC=PC;(3)过点D作DH⊥AB于H,由已知可得,∠DAB=∠ACB=60°.在Rt△ADH中,可求得AH=1,DH=.在Rt△BDH中,由BD=4,DH=,可求得BH=,所以AC=AB=AH+BH=1+.16.解(1)如图1,连接BD.∵=,∴∠BDC=∠ADC=45°,∴∠ADB=90°,∴AB是圆O的直径.(2)如图2,连接OG、OD、BD.则OA=OD=OB,∴∠OAD=∠ODA,∠OBD=∠ODB,∴∠DOB=∠OAD+∠ODA=2∠BAD,∵∠FGC=2∠BAD,∴∠DOB=∠FGC=∠BGD,∴B、G、O、D四点共圆,∴∠ODE=∠OBG,∵BE⊥CD,∠BDC=45°,∴∠EBD=45°=∠EDB,∴∠OBE=∠ODE=∠OBG,∴BA平分∠FBE.(3)如图3,连接AC、BC、CO、DO、EO、BD.∵AC=BC,∴AC=BC,∵AB为直径,∴∠ACB=90°,∠CAB=∠CBA=45°,CO⊥AB,延长CO交圆O于点K,则∠DOK=∠OCD+∠ODC=2∠ODC=2∠OBE=2∠FBA,连接DM、OM,则∠MOD=2∠MAD,∵2∠MAD+∠FBA=135°,∴∠MOD+∠FBA=135°,∴2∠MOD+2∠FBA=270°,∴2∠MOD+∠DOK=270°,∵∠AOM+∠DOM+∠KOK=270°,∴∠AOM=∠DOM,∴AM=DM,连接MO并延长交AD于H,则∠MHA=∠MHD=90°,AH=DH,设MH与BC交于点R,连接AR,则AR=DR,∵∠ADC=45°,∴∠ARD=∠ARC=90°,△ADR是等腰直角三角形,∴∠BRH=∠ARH=45°∵∠ACR+∠BCE=∠BCE+∠CBE=90°,∴∠ACR=∠CBE,∴△ACR≌△CBE(AAS),∴CR=BE=ED,作EQ⊥MN于Q,则∠EQN=∠EQM=90°,连接OE,则OE垂直平分BD,∴OE∥AD∥MN,∴四边形OEQM是矩形,∴OM=EQ,OE=MQ,延长DB交MN于点P,∵∠PBN=∠EBD=45°,∴∠BNP=45°,∴△EQN是等腰直角三角形,∴EQ=QN=EN=13,∴OA=OB=OC=OD=OM═13,AB=2OA=26,∴BC=OC=26,∵MN=AB=20,∴OE=MQ=MN﹣QN=20﹣13=7,∵∠ORE=45°,∠EOR=90°,∴△OER是等腰直角三角形,∴RE=OE=14,设BE=CR=x,则CE=14+x,在Rt△CBE中:BC2=CE2+BE2,∴262=(x+14)2+x2,解得x=10,∴CD=CR+RE+DE=10+14+10=34.17.解:(1)当圆心在坐标原点时,直线l为y=0时,∵⊙O的半径为2,点P(4,0).∴M(2,0),N(﹣2,0),PM=2,PN=6,=,∵,∴=,设Q点坐标为(x,y),则QM=|2﹣x|,QN=|x﹣(﹣2)|=|x+2|,∴=,∴|2+x|=3|2﹣x|,∴2+x=6﹣3x,或2+x=3x﹣6,∴x=1,或x=4,∴E(1,0)是点P关于⊙O的密切点.故答案为:E.(2)①依题意直线l:y=kx+b过定点P(4,0),∵k=﹣∴将P(4,0)代入y=﹣x+b得:0=﹣×4+b,∴b=,∴y=﹣x+.如图,作MA⊥x轴于点A,NB垂直x轴于点B,设M(x,﹣x+),由OM=2得:x2+=4,∴5x2﹣4x﹣10=0,则M,N两点的横坐标x M,x N是方程5x2﹣4x﹣10=0的两根,解得x M=,x N=,∴AB=,PA=,PB=,∵,∴=,=,∴=,∴HA=,∴OH=OA﹣HA=﹣=1,∴Q(1,1).②点P关于⊙O的密切点的轨迹为切点弦ST(不含端点),如图所示:∴﹣1≤t<0或2<t≤3.18.解:(1)结论;AM与优弧相切.理由如下:∵AO=6,OM=2,AM=,∴OM2+AM2=OA2,∴∠AMO=90°,∴AM与优弧相切.(2)在△AOB中,∠AOB=90°,AO=6,BO=6,∴tan∠OAB=,∴∠OAB=60°,∠ABO=30°,当MO∥AB时,M点位置有两种情况:Ⅰ.如解图1,过M点作MF⊥AO,交AO于F,∴∠FOM=60°,∵OM=2,∴OF=OM•cos60°=2×=1,MF=OM•sin60°==,∴AF=OA﹣OF=5,∴AM===.的弧长=,Ⅱ.如解图2,过M点作MF⊥AO,交AO延长线于F,同理可得:∠MOF=60°,OF=1,MF=,AM=7,∴AM===.∴.的弧长=,综上所述:当MO∥AB时,点M在优弧上移动的路线长为时,线段AM的长=;点M在优弧上移动的路线长为时,线段AM的长=;(3)由(2)可知∠OAB=60°,∠ABO=30°,AB=12.如解图3,Ⅰ.由图可知,△ABM的AB边最小高为M在D时,∵OD=2,AO=6,∴AD=4=AD•sin∠OAB=,∴DH1∴△ABM的面积为S的最小值为==.Ⅱ.M在过O垂直于AB的直线上,△ABM的AB边的高最大,OH2=OA•sin∠OAB=,∴△ABM的AB边的高最大值为OM+OH2=2+3,∴△ABM的面积为S的最大值为===12+18.∴△ABM的面积为S取值范围为:.19.(1)证明:如图,连接DF,∵四边形ABCD为菱形,∴AB=BC=CD=DA,AD∥BC,∠DAB=∠C,∵BF=BE,∴AB﹣BF=BC﹣BE,即AF=CE,∴△DAF≌△DCE(SAS);(2)由(1)知,△DAF≌△DCE,则∠DFA=∠DEC.∵AD是⊙O的直径,∴∠DFA =90°,∴∠DEC =90° ∵AD ∥BC ,∴∠ADE =∠DEC =90°, ∴OD ⊥DE , ∵OD 是⊙O 的半径, ∴DE 是⊙O 的切线;(2)解:如图,连接AH , ∵AD 是⊙O 的直径, ∴∠AHD =∠DFA =90°, ∴∠DFB =90°, ∵AD =AB ,DH =, ∴DB =2DH =2,在Rt △ADF 和Rt △BDF 中, ∵DF 2=AD 2﹣AF 2,DF 2=BD 2﹣BF 2, ∴AD 2﹣AF 2=DB 2﹣BF 2, ∴AD 2﹣(AD ﹣BF )2=DB 2﹣BF 2, ∴AD 2﹣(AD ﹣2)2=(2)2﹣22,∴AD =5. ∴AH ===2∴S 四边形ABCD =2S △ABD =2וAH =BD •AH =2×2=20.即四边形ABCD 的面积是20.20.(1)证明:如图,连接OD ,BD ,∵AB是⊙O的直径,∴∠ADB=∠CDB=90°,∵BM是⊙O的切线,∴∠ABC=90°,∵点E是BC的中点,∴DE=BC=BE=CE,∴∠EDB=∠EBD,又∵OD=OB,∴∠ODB=∠OBD,∴∠ODB+∠EDB=∠OBD+∠EBD=90°,即∠ODE=90°,∴OD⊥DE,∴DE是⊙O的切线;(2)解:如图2,连接BD,∵∠A+∠ABD=∠ABD+∠CBD=90°,∴∠A=∠CBD,∵DC=4,tan∠A=,∴tan∠CBD=tan∠A=,∴BD=8,∴BC==4,∴DE=,∴AB=,∴BO=OD=4,又∵DE是⊙O的切线,∴∠HDE=90°,∴tan∠DHE==,设DH=x,则,∴BH=2x,在Rt△BOH中,OB2+BH2=OH2,即,解得:x=或x=0(舍去),∴DH=;(3)解:如图3,连接BF,取AF中点N,构造圆N,连接NG,∵FG⊥AD于点G,∴当点D在弧AB上运动时,点G在圆N上运动,∴当点N、G、B三点共线时,BG有最小值,∵AB=8,点F是弧AB的中点,∴∠AFB=90°,AF=BF=,∴NG=NF=,BN===2,∴BG=BN﹣NG=2.。
2020年度初三数学专题复习中考 圆的折叠专题(含答案详解)
2020年度初三数学专题复习中考 圆的折叠专题1. 如图①是半径为2的半圆,点C 是︵AB 的中点,现将半圆如图②方式翻折,使得点C 与圆心O 重合,则图中阴影部分的面积是( )A .4π3B .4π3 -3C .23+π3D .23-23π2. 如图,AB 是⊙O 的弦,AC 是⊙O 的直径,将︵ AB 沿着AB 弦翻折,恰好经过圆心O .若⊙O 的半径为6,则图中阴影部分的面积等于( )A .6πB .93C .9πD .633. 如图,将⊙O 的劣弧︵AB 沿AB 翻折,D 为优弧︵ADB 上一点,连接AD ,交︵ AB 于点C ,连接BC 、BD ;若BC=5,则BD= .4. 如图,AB 是⊙O 的直径,且AB=4,C 是⊙O 上一点,将弧AC 沿直线AC 翻折,若翻折后的圆弧恰好经过点O ,π≈314,2≈1.41,3≈1.73,那么由线段AB 、AC 和弧BC 所围成的曲边三角形的面积与下列四个数值最接近的是( )A .3.2B .3.6C .3.8D .4.25.如图,在扇形AOB中,∠AOB=90°,半径OA=6,将扇形AOB沿过点B的直线折叠,点O恰好落在弧AB上点D处,折痕交OA于点C,则整个阴影部分的面积为()A.9π-9 B.9π-63C.9π-18 D.9π-1236.如图,是一个圆心角为90°的扇形,AO=2cm,点P在半径AO上运动,点Q在弧AB上运动,沿PQ将它以上的部分向下翻折,使翻折后的弧恰好过点O,则OP的最大距离为.7.如图,⊙O的半径为5,弦AB的长为8,将沿直线AB折叠,折叠后如右图,则⊙O到所作的圆的切线OC的长为()A.22B.5C.3 D.118.如图,将半径为12的⊙O沿AB折叠,弧AB恰好经过与AB垂直的半径OC的中点D,则折痕AB长为()A.42B.82C.6 D.629. 已知如图:⊙O 的半径为8cm ,把弧AmB 沿AB 折叠使弧AmB 经过圆心O ,再把弧AOB 沿CD 折叠,使弧COD 经过AB 的中点E ,则折线CD 的长为( )A .8cmB .38cmC .72cmD .47cm10. 如图,AB 是⊙O 的直径,且AB=4,C 是⊙O 上一点,将弧AC 沿直线AC 翻折,若翻折后的圆弧恰好经过点O ,π≈314,2≈1.41,3≈1.73,那么由线段AB 、AC 和弧BC 所围成的曲边三角形的面积与下列四个数值最接近的是( )A .3.2B .3.6C .3.8D .4.211. 如图,将弧BC 沿弦BC 折叠交直径AB 于点D ,若AD=6,DB=7,则BC 的长是( )A .91B .37C .134D .13012. 如图,在⊙O 中,点C 在优弧 AB ︵ 上,将弧︵BC 沿BC 折叠后刚好经过AB 的中点D ,连接AC ,CD .则下列结论中错误的是( )A .AC=CDB .︵ AC +︵ BD =︵ BCC .OD ⊥AB D .CD 平分∠ACB13. 如图,点O 是半径为3的圆形纸片的圆心,将这个圆形纸片按下列顺序折叠,使弧AB 和弧BC 都经过圆心O ,则阴影部分的面积为( )A .2πB .3πC .34πD .5314. 如图,△ABC 内接于⊙O ,BC=22,∠BAC=45°,将劣弧︵ AB 和︵AC 分别沿直线AB 、AC 折叠后交于点M ,点S 、T 是弦AB 、AC 上的动点,则△MST 的周长的最小值为( )A .22B .4C .24D .815. 如图,在⊙O 中,点C 在优弧⌢ACB 上,将弧沿⌢BC 折叠后刚好经过AB 的中点D ,若⊙O 的半径为5,AB=4,则BC 的长是 .16. 如图,AB 是半径为2的⊙O 的弦,将︵ AB 沿着弦AB 折叠,正好经过圆心O ,点C 是折叠后的︵AB 上一动点,连接并延长BC 交⊙O 于点D ,点E 是CD 的中点,连接AC ,AD ,EO .则下列结论:①∠ACB=120°,②△ACD 是等边三角形,③EO 的最小值为1,其中正确的是 .(请将正确答案的序号填在横线上)17. 如图,将︵ AB 沿着弦AB 翻折,C 为翻折后的弧上任意一点,延长AC 交圆于D ,连接BC .(1)求证:BC=BD;(2)若AC=1,CD=4,︵AB=120°,求弦AB的长和圆的半径.18.如图,已知⊙O的半径为2,AB为直径,CD为弦.AB与CD交于点M,将︵CD 沿CD翻折后,点A与圆心O重合,延长OA至P,使AP=OA,连接PC (1)求CD的长;(2)求证:PC是⊙O的切线;(3)点G为︵ADB 的中点,在PC延长线上有一动点Q,连接QG交AB于点E.交︵BC 于点F(F与B、C不重合).问GE•GF是否为定值?如果是,求出该定值;如果不是,请说明理由.19.如图1和图2,AB是⊙O的直径,AB=10,C是⊙O上的一点,将︵BC 沿弦BC翻折,交AB于点D.(1)若点D与圆心O重合,直接写出∠B的度数;(2)设CD交⊙O于点E,若CE平分∠ACB,①求证:△BDE是等腰三角形;②求△BDE的面积;(3)将图1中的︵BD 沿直径AB翻折,得到图2,若点F恰好是翻折后的︵BD 的中点,直接写出∠B的度数.20.如图,CD是⊙O的直径,AB是⊙O的弦,AB⊥CD,垂足为G,OG:OC=3:5,AB=8.(1)求⊙O的半径;(2)点E为圆上一点,∠ECD=15°,将︵CE 沿弦CE翻折,交CD于点F,求图中阴影部分的面积.21.如图1,在平面直角坐标系中,已知点M的坐标是(3,0),半径为2的⊙M交x轴于E、F两点,过点P(-1,0)作⊙M的切线,切点为点A,过点A作AB⊥x轴于点C,交⊙M于点B.抛物线y=ax2+bx+c 经过P、B、M三点.(1)求该抛物线的函数表达式;(2)若点Q是抛物线上一动点,且位于P、B两点之间,设四边形APQB的面积为S,点Q的横坐标为x,求S与x之间的函数关系式,并求S的最大值和此时点Q的坐标;(3)如图2,将弧AEB沿弦AB对折后得到弧AE′B,试判断直线AF与弧AE′B的位置关系,并说明理由.2020年度初三数学专题复习中考 圆的折叠专题22. 如图①是半径为2的半圆,点C 是︵AB 的中点,现将半圆如图②方式翻折,使得点C 与圆心O 重合,则图中阴影部分的面积是( )A .4π3B .4π3 -3C .23+π3D .23-23π【分析】连接OC 交MN 于点P ,连接OM 、ON ,根据折叠的性质得到OP=12OM ,得到∠POM=60°,根据勾股定理求出MN ,结合图形计算即可.【解答】解:连接OC 交MN 于点P ,连接OM 、ON ,由题意知,OC ⊥MN ,且OP=PC=1,在Rt △MOP 中,∵OM=2,OP=1,∴cos ∠POM=OPOM=12,AC=22OP OM =3, ∴∠POM=60°,MN=2MP=23,∴∠AOB=2∠AOC=120°,则图中阴影部分的面积=S 半圆-2S 弓形MCN =12×π×22-2×(120π×22360 -12×23×1)=23-23π, 故选:D .【点评】本题考查了轴对称的性质的运用、勾股定理的运用、三角函数值的运用、扇形的面积公式的运用、三角形的面积公式的运用,解答时运用轴对称的性质求解是关键.23. 如图,AB 是⊙O 的弦,AC 是⊙O 的直径,将︵AB 沿着AB 弦翻折,恰好经过圆心O .若⊙O 的半径为6,则图中阴影部分的面积等于( )A .6πB .93C .9πD .63【分析】由题意△OBC 是等边三角形,弓形OnB 的面积=弓形BmC 的面积,根据S 阴=S △OBC 计算即可.【解答】解:如图,连接OB ,BC .由题意△OBC 是等边三角形,弓形OnB 的面积=弓形BmC 的面积,∴S 阴=S △OBC=43×62=93, 故选:B .【点评】本题考查扇形的面积的计算,垂径定理,翻折变换等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.24. 如图,将⊙O 的劣弧︵ AB 沿AB 翻折,D 为优弧︵ADB 上一点,连接AD ,交︵ AB 于点C ,连接BC 、BD ;若BC=5,则BD= .【分析】根据圆周角定理、翻转变换的性质得到∠ADB=∠BCD ,根据等腰三角形的判定定理解答.【解答】解:由翻转变换的性质可知,∠ADB 所对的弧是劣弧︵AB ,∠CAB 所对的弧是劣弧︵ BC ,∠CBA 所对的弧是劣弧︵ AC ,∴∠ADB=∠CAB+∠CBA ,由三角形的外角的性质可知,∠BCD=∠CAB+∠CBA ,∴∠ADB=∠BCD,∴BD=BC=5,故答案为:5.【点评】本题考查的是翻转变换的性质、圆周角定理的应用,掌握翻转变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.25.如图,AB是⊙O的直径,且AB=4,C是⊙O上一点,将弧AC沿直线AC翻折,若翻折后的圆弧恰好经过点O,π≈314,2≈1.41,3≈1.73,那么由线段AB、AC和弧BC所围成的曲边三角形的面积与下列四个数值最接近的是()A.3.2 B.3.6 C.3.8 D.4.2【分析】作MN关于直线AN的对称线段M′N,交半圆于B',连接AM、AM′,构造全等三角形,然后利用勾股定理、割线定理解答.【解答】解:如图,作MN关于直线AN的对称线段M′N,交半圆于B',连接AM、AM′,可得M、A、M′三点共线,MA=M′A,MB=M′B′=4,M′N=MN=10.连接AB',∵四边形AMNB'是圆内接四边形,∴∠M'AB'=∠M'NM,∵∠M'=∠M',∴△M'AB'∽△M'NM,∴M′AM′N=M′B′M′M∴M′A•M′M=M′B′•M′N,即M′A•2M′A=4×10=40.则M′A2=20,又∵M′A2=M′N2-AN2,∴20=100-AN2,∴AN=45.故选:B.【点评】此题将翻折变换、勾股定理、割线定理相结合,考查了同学们的综合应用能力,要善于观察图形特点,然后做出解答.26. 如图,在扇形AOB 中,∠AOB=90°,半径OA=6,将扇形AOB 沿过点B 的直线折叠,点O 恰好落在弧AB 上点D 处,折痕交OA 于点C ,则整个阴影部分的面积为( )A .9π-9B .9π-63C .9π-18D .9π-123【分析】首先连接OD ,由折叠的性质,可得CD=CO ,BD=BO ,∠DBC=∠OBC ,则可得△OBD 是等边三角形,继而求得OC 的长,即可求得△OBC 与△BCD 的面积,又在扇形OAB 中,∠AOB=90°,半径OA=6,即可求得扇形OAB 的面积,继而求得阴影部分面积.【解答】解:连接OD .根据折叠的性质,CD=CO ,BD=BO ,∠DBC=∠OBC ,∴OB=OD=BD ,即△OBD是等边三角形,∴∠DBO=60°,∴∠CBO=12∠DBO=30°, ∵∠AOB=90°,∴OC=OB•tan ∠CBO=6×33=23, ∴S △BDC =S △OBC =12×OB×OC=12×6×23=63, S 扇形AOB =90360•π×62=9π, ∴整个阴影部分的面积为:S 扇形AOB -S △BDC -S △OBC =9π-63-63=9π-123.故选:D .【点评】此题考查了折叠的性质、扇形面积公式以及直角三角形的性质.此题难度适中,注意数形结合思想的应用,注意辅助线的作法.27.如图,是一个圆心角为90°的扇形,AO=2cm,点P在半径AO上运动,点Q在弧AB上运动,沿PQ将它以上的部分向下翻折,使翻折后的弧恰好过点O,则OP的最大距离为.【分析】作O关于PQ的对称点O′,O′恰好落在⊙O上,于是得到OP=12Rcos∠POE,推出△OO′Q为等边三角形,根据等边三角形的性质得到OQ=O′Q=OO′=R,当cos∠POE最小时,∠POE最大,当∠QOB=0°时,∠POE=30°于是得到结论.【解答】解:作O关于PQ的对称点O′,O′恰好落在⊙O上,∴OP=12Rcos∠POE,∵△OO′Q为等边三角形,∴OQ=O′Q=OO′=R,∠POE+∠QOB=30°,当cos∠POE最小时,∠POE最大,当∠QOB=0°时,∠POE=30°,∴OP=1cos30°=332.故答案为:332.【点评】本题考查了翻折变换-折叠问题,等边三角形的判定和性质,正确的在才辅助线是解题的关键.28.如图,⊙O的半径为5,弦AB的长为8,将沿直线AB折叠,折叠后如右图,则⊙O到所作的圆的切线OC的长为()A .22B .5C .3D .11【分析】根据题意先画出图形,可知翻转过后的弧AB 所在的圆和⊙O 全等,且两个圆的圆心相距为6,又已知圆的半径,故根据勾股定理即可求出答案.【解答】解:根据题意画出图形如下所示:BD=4,OB=5,点O′为翻转过后的弧AB 所在圆的圆心,则有O′D=OD=2245-=3.又O′C=5,O′O=6,∴OC=22C ′O O ′O -=2256-=11.故选:D .【点评】本题考查了翻转变换、垂径定理及圆的切线的性质,难度不大,找出翻转过后的弧AB 所在圆的圆心是解题关键.29. 如图,将半径为12的⊙O 沿AB 折叠,弧AB 恰好经过与AB 垂直的半径OC 的中点D ,则折痕AB长为( )A .42B .82C .6D .62【分析】延长CO 交AB 于E 点,连接OB ,构造直角三角形,然后再根据勾股定理求出AB 的长【解答】解:延长CO 交AB 于E 点,连接OB ,∵CE ⊥AB ,∴E 为AB 的中点,∵OC=6,CD=2OD ,∴CD=4,OD=2,OB=6,∴DE=12(2OC-CD )=12(6×2-4)=12×8=4, ∴OE=DE-OD=4-2=2,在Rt △OEB 中,∵OE 2+BE 2=OB 2,∴BE=22OE OB -=2246-42∴AB=2BE=82.故选:B .【点评】本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键.30. 已知如图:⊙O 的半径为8cm ,把弧AmB 沿AB 折叠使弧AmB 经过圆心O ,再把弧AOB 沿CD 折叠,使弧COD 经过AB 的中点E ,则折线CD 的长为( )A .8cmB .38cmC .72cmD .47cm【分析】连接OE 并延长交CD 于点F ,交C′D′于点F′,交弧AmB 于点G ,根据翻折的性质得出OF′=6,再由勾股定理得出.【解答】解:连接OE 并延长交CD 于点F ,交C′D′于点F′,交弧AmB 于点G ,∵OC′=8cm ,∴OF′=6cm ,∴C′F′=CF=2268-=27cm ,F∴CD=2CD=47cm .故选:D . 【点评】本题考查了垂径定理和勾股定理以及翻折的性质,是基础知识要熟练掌握. 31. 如图,AB 是⊙O 的直径,且AB=4,C 是⊙O 上一点,将弧AC 沿直线AC 翻折,若翻折后的圆弧恰好经过点O ,π≈314,2≈1.41,3≈1.73,那么由线段AB 、AC 和弧BC 所围成的曲边三角形的面积与下列四个数值最接近的是( )A .3.2B .3.6C .3.8D .4.2【分析】作OE ⊥AC 交⊙O 于F ,交AC 于E ,根据折叠的性质得到OE=12OF ,求出∠ACB 的度数即可解决问题.【解答】解:作OE ⊥AC 交⊙O 于F ,交AC 于E .连接OB ,BC .由折叠的性质可知,EF=OE=12OF , ∴OE=12OA ,在Rt △AOE 中,OE=12OA , ∴∠CAB=30°,∵AB 是直径,∴∠ACB=90°,∠BOC=2∠BAC=60°,∵AB=4,∴BC=12AB=2,AC=3BC=23, ∴线段AB 、AC 和弧BC 所围成的曲边三角形的面积为S=12•AC•B C+S 扇形OBC -S △OBC =12×23×2+60π•22360-43×22=3+23π≈3.8,故选:C .【点评】本题考查的是翻折变换的性质、圆周角定理,折叠是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.32. 如图,将弧BC 沿弦BC 折叠交直径AB 于点D ,若AD=6,DB=7,则BC 的长是( )A .91B .37C .134D .130【分析】连接CA 、CD ,根据翻折的性质可得弧CD 所对的圆周角是∠CBD ,再根据AC 弧所得的圆周角也是∠CBA ,然后求出AC=CD ,过点C 作CE ⊥AB 于E ,根据等腰三角形三线合一的性质可得AE=ED=12AD ,根据直径所对的圆周角是直角可得∠ACB=90°,然后求出△ACE 和△CBE 相似,根据相似三角形对应边成比例求出CE 2,再求出BE ,然后利用勾股定理列式计算即可求出BC .【解答】解:如图,连接CA 、CD , 根据折叠的性质,弧CD 所对的圆周角是∠CBD , ∵弧AC 所对的圆周角是∠CBA ,∠CBA=∠CBD ,∴AC=CD (相等的圆周角所对的弦相等),过点C 作CE ⊥AB 于E , 则AE=ED=12AD=12×6=3, ∴BE=BD+DE=7+3=10, ∵AB 是直径,∴∠ACB=90°, ∵CE ⊥AB ,∴∠ACB=∠AEC=90°,∴∠A+∠ACE=∠ACE+∠BCE=90°,∴∠A=∠BCE ,∴△ACE ∽△CBE ,∴AE CE = CE BE, 即CE 2=AE•BE=3×10=30, 在Rt △BCE 中,BC=22CE BE + =30102+= 130,故选:D .【点评】本题考查了翻折的性质,相似三角形的判定与性质,圆的性质,等腰三角形的判定与性质,作辅助线并求出AC=CD 是解题的关键.33. 如图,在⊙O 中,点C 在优弧 AB ︵ 上,将弧︵BC 沿BC 折叠后刚好经过AB 的中点D ,连接AC ,CD .则下列结论中错误的是( )A .AC=CDB .︵ AC +︵ BD =︵ BCC .OD ⊥AB D .CD 平分∠ACB【分析】A 、作辅助线,构建折叠的性质可得AD=CD ;B 、相等两弧相加可作判断;C 、根据垂径定理可作判断;D 、延长OD 交⊙O 于E ,连接CE ,根据垂径定理可作判断.【解答】解:A 、过D 作DD'⊥BC ,交⊙O 于D',连接CD'、BD',由折叠得:CD=CD',∠ABC=∠CBD',∴AC=CD'=CD ,故①正确;B 、∵AC=CD',∴︵ AC =︵ CD′ ,由折叠得:︵ BD =︵ BD ′,∴︵ AC+︵ BD=︵ BC ,故②正确;C 、∵D 为AB 的中点,∴OD ⊥AB ,故③正确;D 、延长OD 交⊙O 于E ,连接CE ,∵OD ⊥AB ,∴∠ACE=∠BCE ,∴CD 不平分∠ACB ,故④错误;故选:D .【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了圆周角定理和垂径定理.34. 如图,点O 是半径为3的圆形纸片的圆心,将这个圆形纸片按下列顺序折叠,使弧AB 和弧BC 都经过圆心O ,则阴影部分的面积为( )A .2πB .3πC .34πD .53【分析】作OD ⊥AB 于点D ,连接AO ,BO ,CO ,求出∠OAD=30°,得到∠AOB=2∠AOD=120°,进而求得∠AOC=120°,再利用阴影部分的面积=S 扇形AOC 得出阴影部分的面积是⊙O 面积的13,即可得出答案.【解答】解:作OD ⊥AB 于点D ,连接AO ,BO ,CO ,如图所示:∵OD=12AO ∴∠OAD=30°, ∴∠AOB=2∠AOD=120°,同理∠BOC=120°,∴∠AOC=120°,∴阴影部分的面积=S 扇形BOC =13×⊙O 面积=13×π×32=3π,故选:B . 【点评】本题主要考查了翻折变换的性质、扇形面积以及圆的面积公式等知识;解题的关键是确定∠AOC=120°.35. 如图,△ABC 内接于⊙O ,BC=22,∠BAC=45°,将劣弧︵ AB 和︵AC 分别沿直线AB 、AC 折叠后交于点M ,点S 、T 是弦AB 、AC 上的动点,则△MST 的周长的最小值为( )A .22B .4C .24D .8【分析】作点M 关于AB 的对称点M ′,关于AC 的对称点M ″,根据折叠的性质得到点M ′,M ″在圆周上,连接M ′M ″,交AB 于S ,交AC 于T ,则△MST 的周长最小,连接AM ′,AM ″,OB ,OC ,根据圆周角定理得到M ′M ″是⊙O 的直径,即可得到结论.【解答】解:作点M 关于AB 的对称点M′,关于AC 的对称点M″,∵将劣弧AB 和AC 分别沿直线AB 、AC 折叠后交于点M ,∴点M′,M″在圆周上,连接M′M″,交AB 于S ,交AC 于T ,则△MST 的周长最小,连接AM′,AM″,OB ,OC ,则∠M′AM″=2∠BAC ,∵∠BAC=45°,∴∠M′AM″=∠BOC=90°,∵BC=22,∴OB=2,∴M′M″=2OB=4,∴△MST 的周长的最小值为4,故选:B .【点评】本题考查了三角形的外接圆与外心,轴对称-最短路线问题,翻折变换(折叠问题),圆周角定理,勾股定理,正确的作出辅助线是解题的关键.36. 如图,在⊙O 中,点C 在优弧⌢ACB 上,将弧沿⌢BC 折叠后刚好经过AB 的中点D ,若⊙O 的半径为5,AB=4,则BC 的长是 .【分析】连接OD 、AC 、DC 、OB 、OC ,作CE ⊥AB 于E ,OF ⊥CE 于F ,如图,利用垂径定理得到OD ⊥AB ,则AD=BD=12AB=2,于是根据勾股定理可计算出OD=1,再利用折叠的性质可判断弧AC 和弧CD 所在的圆为等圆,则根据圆周角定理得到︵ AC=︵CD ,所以AC=DC ,利用等腰三角形的性质得AE=DE=1,接着证明四边形ODEF 为正方形得到OF=EF=1,然后计算出CF 后得到CE=BE=3,于是得到BC=32.【解答】解:连接OD 、AC 、DC 、OB 、OC ,作CE ⊥AB 于E ,OF ⊥CE 于F ,如图,∵D 为AB 的中点,∴OD ⊥AB ,∴AD=BD=12AB=2, 在Rt △OBD 中,OD=22BD OB -=222)5(-=1,∵将弧︵ BC 沿BC 折叠后刚好经过AB 的中点D .∴︵ AC 和︵ CD 所在的圆为等圆,∴︵ AC=︵CD ,∴AC=DC ,∴AE=DE=1,易得四边形ODEF 为正方形,∴OF=EF=1,在Rt △OCF 中,CF=22OF CO -=221)5(-=2,∴CE=CF+EF=2+1=3,而BE=BD+DE=2+1=3,∴BC=32.故答案为32.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了圆周角定理和垂径定理.37. 如图,AB 是半径为2的⊙O 的弦,将︵ AB 沿着弦AB 折叠,正好经过圆心O ,点C 是折叠后的︵ AB 上一动点,连接并延长BC 交⊙O 于点D ,点E 是CD 的中点,连接AC ,AD ,EO .则下列结论:①∠ACB=120°,②△ACD 是等边三角形,③EO 的最小值为1,其中正确的是 .(请将正确答案的序号填在横线上)【分析】根据折叠的性质可知,结合垂径定理、三角形的性质、同圆或等圆中圆周角与圆心的性质等可以判断①②是否正确,EO 的最小值问题是个难点,这是一个动点问题,只要把握住E 在什么轨迹上运动,便可解决问题.【解答】解:如图1,连接OA 和OB ,作OF ⊥AB .由题知:︵AB 沿着弦AB 折叠,正好经过圆心O ∴OF=OA=12OB∴∠AOF=∠BOF=60° ∴∠AOB=120°∴∠ACB=120°(同弧所对圆周角相等)∠D=12∠AOB=60°(同弧所对的圆周角是圆心角的一半)∴∠ACD=180°-∠ACB=60°∴△ACD 是等边三角形(有两个角是60°的三角形是等边三角形) 故,①②正确下面研究问题EO 的最小值是否是1 如图2,连接AE 和EF∵△ACD 是等边三角形,E 是CD 中点 ∴AE ⊥BD (三线合一) 又∵OF ⊥AB∴F 是AB 中点即,EF 是△ABE 斜边中线∴AF=EF=BF 即,E 点在以AB 为直径的圆上运动. 所以,如图3,当E 、O 、F 在同一直线时,OE 长度最小 此时,AE=EF ,AE ⊥EF∵⊙O的半径是2,即OA=2,OF=1∴AF=3(勾股定理)∴OE=EF-OF=AF-OF=3-1所以,③不正确综上所述:①②正确,③不正确.故答案为①②.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了垂径定理.38.如图,将︵AB沿着弦AB翻折,C为翻折后的弧上任意一点,延长AC交圆于D,连接BC.(1)求证:BC=BD;(2)若AC=1,CD=4,︵AB=120°,求弦AB的长和圆的半径.【分析】(1)作点C关于AB的对称点C′,连接AC′,BC′.利用翻折不变性,以及圆周角定理即可解决问题;(2)连接OA,OB,作OM⊥AB于M,AH⊥BC交BC的延长线于H.解直角三角形求出AB,OA即可;【解答】(1)证明:作点C关于AB的对称点C′,连接AC′,BC′.由翻折不变性可知:BC=BC′,∠CAB=∠BAC′,∴︵BD=︵BC′,∴BD=BC′,∴BC=BD.(2)解:连接OA,OB,作OM⊥AB于M,AH⊥BC交BC的延长线于H.∵︵AB=120°,∴∠D=12×120°=60°,∴∠AOB=∠ACB=2∠D=120°, ∵BC=BD ,∴△BCD 是等边三角形, ∴BC=DC=4,在Rt △ACH 中, ∵∠H=90°,∠ACH=60°,AC=1,∴CH=12,AH=23,∴AB=22BH AH +=22)29()23(+=21, ∵OM ⊥AB , ∴AM=BM=221,在Rt △AOM 中, ∵∠OAM=30°,∠AMO=90°, ∴OA=AMcos30°=7【点评】本题考查圆心角、弧、弦之间的关系,垂径定理,勾股定理,翻折变换,等边三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.39. 如图,已知⊙O 的半径为2,AB 为直径,CD 为弦.AB 与CD 交于点M ,将︵CD 沿CD 翻折后,点A与圆心O 重合,延长OA 至P ,使AP=OA ,连接PC (1)求CD 的长;(2)求证:PC 是⊙O 的切线;(3)点G 为︵ADB 的中点,在PC 延长线上有一动点Q ,连接QG 交AB 于点E .交︵BC 于点F (F 与B 、C 不重合).问GE•GF 是否为定值?如果是,求出该定值;如果不是,请说明理由.【分析】(1)连接OC ,根据翻折的性质求出OM ,CD ⊥OA ,再利用勾股定理列式求解即可;(2)利用勾股定理列式求出PC ,然后利用勾股定理逆定理求出∠PCO=90°,再根据圆的切线的定义证明即可;(3)连接GA 、AF 、GB ,根据等弧所对的圆周角相等可得∠BAG=∠AFG ,然后根据两组角对应相等两三角相似求出△AGE 和△FGA 相似,根据相似三角形对应边成比例可得AG GE =FGAG ,从而得到GE•GF=AG 2,再根据等腰直角三角形的性质求解即可.【解答】(1)解:如图,连接OC ,∵︵CD 沿CD 翻折后,点A 与圆心O 重合, ∴OM=12OA=12×2=1,CD ⊥OA ,∵OC=2,∴CD=2CM=222OM OC -=22212-=23;(2)证明:∵PA=OA=2,AM=OM=1,CM=12CD=3,∠CMP=∠OMC=90°,∴PC=22PM MC +=223)3(+=23,∵OC=2,PO=2+2=4,∴PC 2+OC 2=(23)2+22=16=PO 2, ∴∠PCO=90°, ∴PC 是⊙O 的切线;(3)解:GE•GF是定值,证明如下,连接GO并延长,交⊙O于点H,连接HF∵点G为︵ADB 的中点∴∠GOE=90°,∵∠HFG=90°,且∠OGE=∠FGH ∴△OGE∽△FGH∴OGGF=GEGH∴GE•GF=OG•GH=2×4=8.【点评】本题是圆的综合题型,主要利用了翻折变换的性质,垂径定理,勾股定理,勾股定理逆定理,圆的切线的定义,相似三角形的判定与性质,难点在于(3)作辅助线构造出相似三角形.40.如图1和图2,AB是⊙O的直径,AB=10,C是⊙O上的一点,将︵BC 沿弦BC翻折,交AB于点D.(1)若点D与圆心O重合,直接写出∠B的度数;(2)设CD交⊙O于点E,若CE平分∠ACB,①求证:△BDE是等腰三角形;②求△BDE的面积;(3)将图1中的︵BD 沿直径AB翻折,得到图2,若点F恰好是翻折后的︵BD 的中点,直接写出∠B的度数.【分析】(1)如图所示:将⊙O沿BC翻折得到⊙O′,则⊙O与⊙O′为等圆,然后证明︵AC =︵CD =︵BD ,则可得到︵AC 的弧度,从而可求得∠B的度数;(2)①将⊙O沿BC翻折得到⊙O′,则⊙O与⊙O′为等圆,在⊙O′上取点E′,连接CE′,BE′.由等弧所对的圆周角相等可得到∠CEB=∠E′,依据圆内接四边形的性质可得到E′=∠BDE,故此可证明∠CEB=∠BDE ;②连接OE .先证明∠BOE 为直角,依据勾股定理可求得BE 的长,从而得到BD 的长,最后依据△DBE 的面积=12BD•OE 求解即可;(3)将⊙O 沿BC 翻折得到⊙O′,将⊙O′沿BD 翻折得到⊙O″,则⊙O 、⊙O′、⊙O″为等圆.依据在同圆或等圆中相等的圆周角所对的弧相等可证明︵AC =︵CD =︵ DF=︵FB ,从而可得到弧AC 的度数,由弧AC 的度数可求得∠B 的度数.【解答】解:(1)如图所示:将⊙O 沿BC 翻折得到⊙O′,则⊙O 与⊙O′为等圆.∵︵AC 与︵CD 所对的角均为∠CBA ,⊙O 与⊙O′为等圆, ∴︵AC =︵ CD . 又∵CD=BC , ∴︵CD =︵ BD .又∵︵ CDB =︵CO′B ,∴︵ AC =13︵ ACB ,∴∠ADC=13×180°=60°.∴∠B=30°.(2)①将⊙O 沿BC 翻折得到⊙O′,则⊙O 与⊙O′为等圆,在⊙O′上取点E′,连接CE′,BE′.由翻折的性质可知:︵ CFB=︵ CDB ,∴∠CEB=∠E′.∵四边形CDBE′是圆内接四边形, ∴∠E′=∠BDE . ∴∠CEB=∠BDE . ∴BE=BD .∴△BDE 为等腰三角形.②如图2所示:连接OE .∵AB 是⊙O 的直径,∴∠ACB=90°.∵CE 是∠ACB 的角平分线, ∴∠BCE=45°. ∴∠BOE=90°.在Rt △OBE 中,BE=22OB OE =52. ∴BD=52.∴△DBE 的面积=12BD•OE=12×52×5=2225.(3)将⊙O 沿BC 翻折得到⊙O′,将⊙O′沿BD 翻折得到⊙O″,则⊙O 、⊙O′、⊙O″为等圆.∵⊙O 与⊙O′为等圆,劣弧AC 与劣弧CD 所对的角均为∠ABC , ∴︵AC =︵CD . 同理:︵DF =︵CD .又∵F 是劣弧BD 的中点, ∴︵DF =︵ BF . ∴︵AC =︵CD =︵ DF =︵FB .∴弧AC 的度数=180°÷4=45°. ∴∠B=12×45°=22.5°.【点评】本题主要考查的是圆的综合应用,解答本题主要应用了翻折的性质、弧、弦、圆周角之间的关系、圆内接四边形的性质,等腰三角形的判定,找出图形中的等弧是解题的关键.41. 如图,CD 是⊙O 的直径,AB 是⊙O 的弦,AB ⊥CD ,垂足为G ,OG :OC=3:5,AB=8.(1)求⊙O 的半径;(2)点E 为圆上一点,∠ECD=15°,将︵CE 沿弦CE 翻折,交CD 于点F ,求图中阴影部分的面积.【分析】(1)根据AB ⊥CD ,垂足为G ,OG :OC=3:5,AB=8,可以求得⊙O 的半径;(2)要求阴影部分的面积只要做出合适的辅助线,然后利用锐角三角函数、扇形的面积和三角形的面积即可解答本题.【解答】解:(1)连接AO ,如右图1所示,∵CD 为⊙O 的直径,AB ⊥CD ,AB=8, ∴AG=12AB=4,∵OG :OC=3:5,AB ⊥CD ,垂足为G , ∴设⊙O 的半径为5k ,则OG=3k , ∴(3k )2+42=(5k )2, 解得,k=1或k=-1(舍去), ∴5k=5,即⊙O 的半径是5;(2)如图2所示,将阴影部分沿CE 翻折,点F 的对应点为M ,∵∠ECD=15°,由对称性可知,∠DCM=30°,S 阴影=S 弓形CBM , 连接OM ,则∠MOD=60°, ∴∠MOC=120°,过点M 作MN ⊥CD 于点N , ∴MN=MO•sin60°=5×23=235, ∴S 阴影=S 扇形OMC -S △OMC =120×π×52360 −12×5×235=25π3−435, 即图中阴影部分的面积是:25π3−435. 【点评】本题考查垂径定理、扇形的面积、翻折变换,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.42.如图1,在平面直角坐标系中,已知点M的坐标是(3,0),半径为2的⊙M交x轴于E、F两点,过点P(-1,0)作⊙M的切线,切点为点A,过点A作AB⊥x轴于点C,交⊙M于点B.抛物线y=ax2+bx+c 经过P、B、M三点.(1)求该抛物线的函数表达式;(2)若点Q是抛物线上一动点,且位于P、B两点之间,设四边形APQB的面积为S,点Q的横坐标为x,求S与x之间的函数关系式,并求S的最大值和此时点Q的坐标;(3)如图2,将弧AEB沿弦AB对折后得到弧AE′B,试判断直线AF与弧AE′B的位置关系,并说明理由.【分析】【解答】【点评】本题考查了二次函数解析式的确定、图形面积的求法、圆心角定理、切线的性质与判定、特殊三角形的判定和性质等知识点.。
2020年九年级数学典型中考压轴题专练:圆有关题型(含答案)
2020年九年级数学典型中考压轴题专练:圆有关题型1、如图,已知⊙O的直径AB=10,弦AC=6,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC 交AC的延长线于点E.(1)求证:DE是⊙O的切线.(2)求DE的长.2、如图,AB为⊙O的直径,弦CD⊥AB,垂足为点P,直线BF与AD的延长线交于点F,且∠AFB=∠ABC.(1)求证:直线BF是⊙O的切线.(2)若CD=2,OP=1,求线段BF的长.3、如图,已知AB为⊙O的直径,AC为⊙O的切线,OC交⊙O于点D,BD的延长线交AC于点E.(1)求证:∠1=∠CAD;(2)若AE=EC=2,求⊙O的半径.4、如图,在四边形ABCD 中,AB=6,BC=8,CD=24,AD=26,∠B=90°,以AD 为直径作圆O ,过点D 作DE ∥AB 交圆O 于点E(1)证明点C 在圆O 上;(2)求tan ∠CDE 的值;(3)求圆心O 到弦ED 的距离.5、如图,AB 是半圆O 的直径,点P 是BA 延长线上一点,PC 是⊙O 的切线,切点为C. 过点B 作BD ⊥PC 交PC 的延长线于点D ,连接BC. 求证:(1)∠PBC =∠CBD;(2)BC 2=AB ·BD6、如图,AB 是⊙O 的直径,点P 是弦AC 上一动点(不与A 、C 重合),过点P 作PE ⊥AB,垂足为E ,弧AC 射线EP 交于点F ,交过点C 的切线于点D.(1)求证DC=DP(2)若∠CAB=30°,当F 是 的中点时,判断以A 、O 、C 、F 为顶点的四边形是什么特殊四边形?说明理由;7、如图,在△ABC 中,∠C=90°,D 是BC 边上一点,以DB 为直径的⊙O 经过AB 的中点E ,交AD 的延长线于点F ,连结EF .AC(1)求证:∠1=∠F.(2)若sinB=,EF=2,求CD的长.8、如图,已知四边形ABCD内接于⊙O,A是的中点,AE⊥AC于A,与⊙O及CB的延长线交于点F、E,且.(1)求证:△ADC∽△EBA;(2)如果AB=8,CD=5,求tan∠CAD的值.9、如图1,AB为半圆O的直径,D为BA的延长线上一点,DC为半圆O的切线,切点为C.(1)求证:∠ACD=∠B;(2)如图2,∠BDC的平分线分别交AC,BC于点E,F;①求tan∠CFE的值;②若AC=3,BC=4,求CE的长.10、如图,已知⊙O是△ABC的外接圆,AD是⊙O的直径,且BD=BC,延长AD 到E,且有∠EBD=∠CAB.(1)求证:BE是⊙O的切线;(2)若BC=,AC=5,求圆的直径AD及切线BE的长.11、已知:如图,⊙O是△ABC的外接圆, =,点D在边BC上,AE∥BC,AE=BD.(1)求证:AD=CE;(2)如果点G在线段DC上(不与点D重合),且AG=AD,求证:四边形AGCE是平行四边形.12、如图,△ABC中,∠BAC=120°,AB=AC=6.P是底边BC上的一个动点(P与B、C不重合),以P为圆心,PB为半径的⊙P与射线BA交于点D,射线PD交射线CA于点E.(1)若点E在线段CA的延长线上,设BP=x,AE=y,求y关于x的函数关系式,并写出x 的取值范围.(2)当BP=2时,试说明射线CA与⊙P是否相切.(3)连接PA,若S△APE=S△ABC,求BP的长.13、如图,AB是⊙O的弦,点C为半径OA的中点,过点C作CD⊥OA交弦AB于点E,连接BD,且DE=DB.(1)判断BD与⊙O的位置关系,并说明理由;(2)若CD=15,BE=10,tanA=,求⊙O的直径.14、如图,直线AB经过⊙O上的点C,直线AO与⊙O交于点E和点D,OB与⊙O交于点F,连接DF、DC.已知OA=OB,CA=CB,DE=10,DF=6.(1)求证:①直线AB是⊙O的切线;②∠FDC=∠EDC;(2)求CD的长.15、如图1是一个用铁丝围成的篮框,我们来仿制一个类似的柱体形篮框.如图2,它是由一个半径为r、圆心角90°的扇形A2OB2,矩形A2C2EO、B2D2EO,及若干个缺一边的矩形状框A1C1D1B1、A2C2D2B2、…、A n B n C n D n,OEFG围成,其中A1、G、B1在上,A2、A3…、A n与B2、B3、…B n分别在半径OA2和OB2上,C2、C3、…、C n和D2、D3…D n分别在EC2和ED2上,EF⊥C2D2于H2,C1D1⊥EF于H1,FH1=H1H2=d,C1D1、C2D2、C3D3、C n D n依次等距离平行排放(最后一个矩形状框的边C n D n与点E间的距离应不超过d),A1C1∥A2C2∥A3C3∥…∥A n C n(1)求d的值;(2)问:C n D n与点E间的距离能否等于d?如果能,求出这样的n的值,如果不能,那么它们之间的距离是多少?16、在平面直角坐标中,△ABC三个顶点坐标为A(﹣,0)、B(,0)、C(0,3).(1)求△ABC内切圆⊙D的半径.(2)过点E(0,﹣1)的直线与⊙D相切于点F(点F在第一象限),求直线EF的解析式.(3)以(2)为条件,P为直线EF上一点,以P为圆心,以2为半径作⊙P.若⊙P上存在一点到△ABC三个顶点的距离相等,求此时圆心P的坐标.答案:1、【解答】证明:(1)连接OD,∵AD平分∠BAC,∴∠DAE=∠DAB,∵OA=OD,∴∠ODA=∠DAO,∴∠ODA=∠DAE,∴OD∥AE,∵DE⊥AC,∴OD⊥DE,∴DE是⊙O切线.(2)过点O作OF⊥AC于点F,∴AF=CF=3,∴OF===4.∵∠OFE=∠DEF=∠ODE=90°,∴四边形OFED是矩形,∴DE=OF=4.2、【解答】(1)证明:∵∠AFB=∠ABC,∠ABC=∠ADC,∴∠AFB=∠ADC,∴CD∥BF,∴∠AFD=∠ABF,∵CD⊥AB,∴AB⊥BF,∴直线BF是⊙O的切线.(2)解:连接OD,∵CD⊥AB,∴PD=CD=,∵OP=1,∴OD=2,∵∠PAD=∠BAF,∠APO=∠ABF,∴△APD∽△ABF,∴=,∴=,∴BF=.3、【解答】(1)证明:∵AB为⊙O的直径,∴∠ADB=90°,∴∠ADO+∠BDO=90°,∵AC为⊙O的切线,∴OA⊥AC,∴∠OAD+∠CAD=90°,∵OA=OD,∴∠OAD=∠ODA,∵∠1=∠BDO,∴∠1=∠CAD;(2)解:∵∠1=∠CAD,∠C=∠C,∴△CAD∽△CDE,∴CD:CA=CE:CD,∴CD2=CA•CE,∵AE=EC=2,∴AC=AE+EC=4,∴CD=2,设⊙O的半径为x,则OA=OD=x,则Rt△AOC中,OA2+AC2=OC2,∴x2+42=(2+x)2,解得:x=.∴⊙O的半径为.4、【解答】(1)证明:如图1,连结CO.∵AB=6,BC=8,∠B=90°,∴AC=10.又∵CD=24,AD=26,102+242=262,∴△ACD是直角三角形,∠C=90°.∵AD为⊙O的直径,∴AO=OD,OC为Rt△ACD斜边上的中线,∴OC=AD=r,∴点C在圆O上;(2)解:如图2,延长BC、DE交于点F,∠BFD=90°.∵∠BFD=90°,∴∠CDE+∠FCD=90°,又∵∠ACD=90°,∴∠ACB+∠FCD=90°,∴∠CDE=∠ACB.在Rt△ABC中,tan∠ACB==,∴tan∠CDE=tan∠ACB=;(3)解:如图3,连结AE,作OG⊥ED于点G,则OG∥AE,且OG=AE.易证△ABC∽△CFD,∴=,即=,∴CF=,∴BF=BC+CF=8+=.∵∠B=∠F=∠AE D=90°,∴四边形ABFE是矩形,∴AE=BF=,∴OG=AE=,即圆心O到弦ED的距离为.5、【解答】证明:(1)连接OC,∵PC是⊙O的切线,∴∠OCD=90°.又∵BD⊥PC∴∠BDP=90°∴OC∥BD.∴∠CBD=∠OCB.∴OB=OC .∴∠OCB=∠PBC.∴∠PBC=∠CBD.(2)连接AC∵AB 是直径,∴∠BDP=90°.又∵∠BDC=90°,∴∠ACB=∠BDC.∵∠PBC=∠CBD,∴△ABC ∽△CBD. ∴BC AB =BD BC .∴BC 2=AB ·BD6、【解析】 (1) 如图连接OC, ∵CD 是⊙O 的切线,∴ OC ⊥CD ∴∠OCD=90º,∴∠DCA= 90º-∠OCA .又PE⊥AB ,点D在EP的延长线上,∴∠DEA=90º,∴∠DPC=∠APE=90º-∠OAC.∵OA=OC , ∴∠OCA=∠OAC.∴∠DCA=∠DPC ,∴DC=DP.(2) 如图四边形AOCF是菱形.连接CF、AF,∵F是弧AC的中点,∴弧AF=弧CF ∴ AF=FC .∵∠BAC=30º,∴弧BC =60º,又AB是⊙O的直径,∴弧ACB =120º,∴弧AF=弧CF= 60º,∴∠ACF=∠FAC =30º .∵OA=OC, ∴∠OCA=∠BAC=30º,∴⊿OAC≌⊿FAC (ASA) , ∴AF=OA ,∴AF=FC=OC=OA , ∴四边形AOCF是菱形.7、【解答】解:(1)证明:连接DE,∵BD是⊙O的直径,∴∠DEB=90°,∵E是AB的中点,∴DA=DB,∴∠1=∠B,∵∠B=∠F,∴∠1=∠F;(2)∵∠1=∠F,∴AE=EF=2,∴AB=2AE=4,在Rt△ABC中,AC=AB•sinB=4,∴BC==8,设CD=x,则AD=BD=8﹣x,∵AC2+CD2=AD2,即42+x2=(8﹣x)2,∴x=3,即CD=3.8、【解答】(1)证明:∵四边形ABCD内接于⊙O,∴∠CDA=∠ABE.∵,∴∠DCA=∠BAE.∴△ADC∽△EBA;(2)解:∵A是的中点,∴∴AB=AC=8,∵△ADC∽△EBA,∴∠CAD=∠AEC,,即,∴AE=,∴tan∠CAD=tan∠AEC===.9、【解答】(1)证明:如图1中,连接OC.∵OA=OC,∴∠1=∠2,∵CD是⊙O切线,∴OC⊥CD,∴∠DCO=90°,∴∠3+∠2=90°,∵AB是直径,∴∠1+∠B=90°,∴∠3=∠B.(2)解:①∵∠CEF=∠ECD+∠CDE,∠CFE=∠B+∠FDB,∵∠CDE=∠FDB,∠ECD=∠B,∴∠CEF=∠CFE,∵∠ECF=90°,∴∠CEF=∠CFE=45°,∴tan∠CFE=tan45°=1.②在RT△ABC中,∵AC=3,BC=4,∴AB==5,∵∠CDA=∠BDC,∠DCA=∠B,∴△DCA∽△DBC,∴===,设DC=3k,DB=4k,∵CD2=DA•DB,∴9k2=(4k﹣5)•4k,∴k=,∴CD=,DB=,∵∠CDE=∠BDF,∠DCE=∠B,∴△DCE∽△DBF,∴=,设EC=CF=x,∴=,∴x=.∴CE=.10、【解答】解:如图,连接OB,∵BD=BC,∴∠CAB=∠BAD,∵∠EBD=∠CAB,∴∠BAD=∠EBD,∵AD是⊙O的直径,∴∠ABD=90°,OA=BO,∴∠BAD=∠ABO,[来源:学科网]∴∠EBD=∠ABO,∴∠OBE=∠EBD+∠OBD=∠ABD+∠OBD=∠ABD=90°,∵点B在⊙O上,∴BE是⊙O的切线,(2)如图2,设圆的半径为R,连接CD,∵AD为⊙O的直径,∴∠ACCD=90°,∵BC=BD,∴OB⊥CD,∴OB∥AC,∵OA=OD,∴OF=AC=,∵四边形ACBD是圆内接四边形,∴∠BDE=∠ACB,∵∠DBE=∠ACB,∴△DBE∽△CAB,∴,∴,∴DE=,∵∠OBE=∠OFD=90°,∴DF∥BE,∴,∴,∵R>0,∴R=3,∵BE是⊙O的切线,∴BE===.11、【解答】证明:(1)在⊙O中,∵=,∴AB=AC,∴∠B=∠ACB,∵AE∥BC,∴∠EAC=∠ACB,∴∠B=∠EAC,在△ABD和△CAE中,,∴△ABD≌△CAE(SAS),∴AD=CE;(2)连接AO并延长,交边BC于点H,∵=,OA为半径,∴AH⊥BC,∴BH=CH,∵AD=AG,∴DH=HG,∴BH﹣DH=CH﹣GH,即BD=CG,∵BD=AE,∴CG=AE,∵CG∥AE,∴四边形AGCE是平行四边形.12、【解答】解:(1)过A作AF⊥BC于F,过P作PH⊥AB于H,∵∠BAC=120°,AB=AC=6,∴∠B=∠C=30°,∵PB=PD,∴∠PDB=∠B=30°,CF=AC•cos30°=6×=3,∴∠ADE=30°,∴∠DAE=∠CPE=60°,∴∠CEP=90°,∴CE=AC+AE=6+y,∴PC==,∵BC=6,∴PB+CP=x+=6,∴y=﹣x+3,∵BD=2BH=x<6,∴x<2,∴x的取值范围是0<x<2;(2)∵BP=2,∴CP=4,∴PE=PC=2=PB,∴射线CA与⊙P相切;(3)当D点在线段BA上时,连接AP,∵S△ABC=BC•AF=××3=9,∵S△APE=AE•PE=y•×(6+y)=S△ABC=,解得:y=,代入y=﹣x+3得x=4﹣.当D点BA延长线上时,PC=EC=(6﹣y),∴PB+CP=x+(6﹣y)=6,∴y=x﹣3,∵∠PEC=90°,∴PE===(6﹣y),∴S△APE=AE•PE=x•=y•(6﹣y)=S△ABC=,解得y=或,代入y=x﹣3得x=3或5.综上可得,BP的长为4﹣或3或5.13、【解答】(1)证明:连接OB,∵OB=OA,DE=DB,∴∠A=∠OBA,∠DEB=∠ABD,又∵CD⊥OA,∴∠A+∠AEC=∠A+∠DEB=90°,∴∠OBA+∠ABD=90°,∴OB⊥BD,∴BD是⊙O的切线;(2)如图,过点D作DG⊥BE于G,∵DE=DB,∴EG=BE=5,∵∠ACE=∠DGE=90°,∠AEC=∠GED,∴∠GDE=∠A,∴△ACE∽△DGE,∴sin∠EDG=sinA==,即CE=13,在Rt△ECG中,∵DG==12,∵CD=15,DE=13,∴DE=2,∵△ACE∽△DGE,∴=,∴AC=•DG=,∴⊙O的直径2OA=4AD=.4、【解答】(1)①证明:连接OC.∵OA=OB,AC=CB,∴OC⊥AB,∵点C在⊙O上,∴AB是⊙O切线.②证明:∵OA=OB,AC=CB,∴∠AOC=∠BOC,∵OD=OF,∴∠ODF=∠OFD,∵∠AOB=∠ODF+∠OFD=∠AOC+∠BOC,∴∠BOC=∠OFD,∴OC∥DF,∴∠CDF=∠OCD,∵OD=OC,∴∠ODC=∠OCD,∴∠ADC=∠CDF.(2)作ON⊥DF于N,延长DF交AB于M.∵ON⊥DF,∴DN=NF=3,在RT△ODN中,∵∠OND=90°,OD=5,DN=3,∴ON==4,∵∠OCM+∠CMN=180°,∠OCM=90°,∴∠OCM=∠CMN=∠MNO=90°,∴四边形OCMN是矩形,∴ON=CM=4,MN=OC=5,在RT△CDM中,∵∠DMC=90°,CM=4,DM=DN+MN=8,∴CD===4.15、【解答】解:(1)在RT△D2EC2中,∵∠D2EC2=90°,EC2=ED2=r,EF⊥C2D2,∴EH1=r,FH1=r﹣r,∴d=(r﹣r)=r,(2)假设C n D n与点E间的距离能等于d,由题意•r=r,这个方程n没有整数解,所以假设不成立.∵r÷r=2+2≈4.8,∴n=6,此时C n D n与点E间的距离=r﹣4×r=r.16、【解答】解:(1)连接BD,∵B(,0),C(0,3),∴OB=,OC=3,∴tan∠CBO==,∴∠CBO=60°∵点D是△ABC的内心,∴BD平分∠CBO,∴∠DBO=30°,∴tan∠DBO=,∴OD=1,∴△ABC内切圆⊙D的半径为1;(2)连接DF,过点F作FG⊥y轴于点G,∵E(0,﹣1)∴OE=1,DE=2,∵直线EF与⊙D相切,∴∠DFE=90°,DF=1,∴sin∠DEF=,∴∠DEF=30°,∴∠GDF=60°,∴在Rt△DGF中,∠DFG=30°,∴DG=,由勾股定理可求得:GF=,∴F(,),设直线EF的解析式为:y=kx+b,∴,∴直线EF的解析式为:y=x﹣1;(3)∵⊙P上存在一点到△ABC三个顶点的距离相等,∴该点必为△ABC外接圆的圆心,由(1)可知:△ABC是等边三角形,∴△ABC外接圆的圆心为点D∴DP=2,设直线EF与x轴交于点H,∴令y=0代入y=x﹣1,∴x=,∴H(,0),∴FH=,当P在x轴上方时,过点P1作P1M⊥x轴于M,由勾股定理可求得:P1F=3,∴P1H=P1F+FH=,∵∠DEF=∠HP1M=30°,∴HM=P1H=,P1M=5,∴OM=2,∴P1(2,5),当P在x轴下方时,过点P2作P2N⊥x轴于点N,由勾股定理可求得:P2F=3,∴P2H=P2F﹣FH=,∴∠DEF=30°∴∠OHE=60°∴sin∠OHE=,∴P2N=4,令y=﹣4代入y=x﹣1,∴x=﹣,∴P2(﹣,﹣4),综上所述,若⊙P上存在一点到△ABC三个顶点的距离相等,此时圆心P的坐标为(2,5)或(﹣,﹣4).。
备考2020年中考数学复习专题 《圆》综合练习题(含答案)
备考2020年中考数学复习专题《圆》综合练习题一.选择题1.如图,一个小圆沿着一个五边形的边滚动,如果五边形的各边长都和小圆的周长相等,那么当小圆滚动到原来位置时,小圆自身滚动的圈数是()A.4 B.5 C.6 D.102.如图,在⊙O中,弦AB长6cm,圆心O到AB的距离是3cm,⊙O的半径是()A.3cm B.C.4cm D.3.如图为球形灯笼的截面图,过圆心的CD垂直弦AB于D,AB=2dm,CD=4dm,则⊙O半径为()A.2dm B.dm C.dm D.dm4.下列判断中不正确的是()A.半圆是弧,但弧不一定是半圆B.平分弦的直径垂直于弦C.在平面内,到圆心的距离等于半径的点都在圆上D.在同圆或等圆中,相等的圆心角所对的弦相等5.如图,点A、B、C在⊙O上,D是的中点,若∠ACD=20°,则∠AOB的度数为()A.60°B.70°C.80°D.90°6.在菱形ABCD中,记∠ABC=∠α(0°<∠α<90°),菱形的面积记作S,菱形的周长记作C,若AD=2,则()A.C与∠α的大小有关B.当∠α=45°时,S=C.A,B,C,D四个点可以在同一个圆上D.S随∠α的增大而增大7.如图在一次游园活动中有个投篮游戏,活动开始时四个人A、B、C、D在距篮筐P都是5米处站好,篮球放在AC和BD的交点O处,已知取篮球时A要走6米,B要走3米,C要走2米,则D要走()A.2米B.3米C.4米D.5米8.⊙O半径为5,圆心O的坐标为(0,0),点P的坐标为(3,4),则点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.点P在⊙O上或外9.给定下列条件可以确定一个圆的是()A.已知圆心B.已知半径C.已知直径D.不在同一直线上三点10.如图,△ABC是⊙O的内接三角形,半径OE⊥AB,垂足为点F,连结弦AE,已知OE =1,则下面的结论:①AE2+BC2=4 ②sin∠ACB=③cos∠B=,其中正确的是()A.①②B.①③C.②③D.②11.若半径为5m的圆,其圆心到直线的距离是5m,则直线和圆的位置关系为()A.相离B.相交C.相切D.无法确定12.如图,圆上有A、B、C三点,直线l与圆相切于点A,CD平分∠ACB,且与l交于点D,若=80°,=60°,则∠ADC的度数为()A.80°B.85°C.90°D.95°二.填空题13.如图,在正方形纸片ABCD中,EF∥AD,M,N是线段EF的六等分点,若把该正方形纸片卷成一个圆柱,使点A与点D重合,此时,底面圆的半径为2cm,则此时M、N两点间的距离是cm.14.如图,⊙O的半径OA垂直于弦BC,垂足是D,OA=5,AD:OD=1:4,则BC的长为.15.在我国古代数学著作《九章算术》中记载了这样一个问题:“今有圆材,埋在墙壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”问题题意为:如图,有一圆柱形木材埋在墙壁中,不知其直径大小.用锯去锯这木材,锯口深1寸(即CD=1寸),锯道长1尺(即AB=1尺),问这圆形木材直径是多少?(注:1尺=10寸)由此,可求出这圆形木材直径为为寸.16.′如图,在平面直角坐标系xOy中,扇形OAB的圆心角∠AOB=60°,点A在x轴正半轴上且OA=2,带你C为弧AB的中点,D为半径OA上一点,点A关于直线CD的对称点为E,若点E落在扇形OAB内(不含边界),则点E的横坐标x取值范围为.17.如图,以等边△ABC的一边AB为直径的半圆O交AC于点D,交BC于点E,若AB =4,则阴影部分的面积是.18.在一个圆内接四边形ABCD中,已知∠A=100°,则∠C的度数为.三.解答题19.如图AB=3cm,用图形表示:到点A的距离小于2cm,且到点B的距离不小于2cm 的所有点的集合(用阴影表示,注意边界上的点是否在集合中,如果在,用实线表示,如果不在,则用虚线表示).20.如图,⊙O直径AB和弦CD相交于点E,AE=2,EB=6,∠DEB=30°,求弦CD长.21.一条排水管的截面如图所示,已知排水管的半径OA=10m,水面宽AB=12m,某天下雨后,水管水面上升了2m,求此时排水管水面的宽CD.22.如图,已知⊙O的弦AB,E,F是弧AB上两点,=,OE、OF分别交于AB于C、D两点,求证:AC=BD.23.如图,CD为⊙O的弦,P为⊙O上一点,OP∥CD,∠PCD=15°(1)求∠POC的度数;(2)若=,AB⊥CD,点A在CD的上方,直接写出∠BPA的度数.24.如图,四边形ABCD内接于⊙O,∠ABC=135°,AC=4,求⊙O的半径长.25.已知圆O,弦AB、CD相交于点M.(1)求证:AM•MB=CM•MD;(2)若M为CD中点,且圆O的半径为3,OM=2,求AM•MB的值.参考答案一.选择题1.解:因为五边形的各边长都和小圆的周长相等,所以小圆在每一边上滚动正好一周,在五条边上共滚动了5周.由于每次小圆从五边形的一边滚动到另一边时,都会翻转72°,所以小圆在五个角处共滚动一周.因此,总共是滚动了6周.故选:C.2.解:如图所示,由题意知OC=3,且OC⊥AB,∵AB=6,∴AC=AB=3,则OA===3,故选:B.3.解:∵过圆心的CD垂直弦AB于D,AB=2dm,CD=4dm,∴BD=AD=1dm,在Rt△ODB中,OD2+DB2=OB2,即(4﹣r)2+12=r2,解得:r=dm,故选:C.4.解:A、半圆是弧,但弧不一定是半圆,正确;B、平分弦的直径垂直于弦,不正确.需要添加条件:此弦非直径;C、在平面内,到圆心的距离等于半径的点都在圆上,正确;D、在同圆或等圆中,相等的圆心角所对的弦相等,正确,故选:B.5.解:连接OD,∴∠AOD=2∠ACD,∵D是的中点,∴∠AOB=2∠AOD=4∠ACD=80°,故选:C.6.【解答】解:A、错误.菱形的周长=8,与∠α的大小无关;B、错误,∠α=45°时,菱形的面积=2•2•sin45°=2;C、错误,A,B,C,D四个点不在同一个圆上;D、正确.∵0°<α<90°,S=菱形的面积=2•2•sinα,∴菱形的面积S随α的增大而增大.故选:D.7.解:根据题意得:A、B、C、D在以P为圆心,半径是5米的圆上.∴OA•OC=OB•OD,即6×2=3×OD.解得OD=4.故选:C.8.解:∵点P的坐标为(3,4),∴由勾股定理得,点P到圆心O的距离==5,∴点P在⊙O上,故选B.9.解:A、不能确定.因为半径不确定,故不符合题意;B、不能确定.因为圆心的位置不确定,故不符合题意;C、不能确定,因为圆心的位置不确定,故不符合题意;D.不在同一直线上三点可以确定一个圆.故符合题意;故选:D.10.解:连接AO,延长AO交⊙O于M,连接BM、CM、EM.∵AM是直径,∴∠AEM=90°,∴AE2+EM2=AM2,∴AE2+EM2=4,显然无法判定BC=EM,故①错误,∵∠ACB=∠AMB,∴sin∠ACB=sin∠AMB==,故②正确,∵∠ABC=∠AMC,∴cos∠ABC=cos∠AMC==,显然无法判断CM=AE,故③错误,故选:D.11.解:根据圆心到直线的距离等于圆的半径,则直线和圆相切.故选:C.12.解:设圆心为O,连接OA、OC,∵=80°,=60°,∴∠AOC=140°,∠ACB=40°,∵OA=OC,∴∠OAC=20°,∵直线l与圆相切于点A,∴OA⊥l,∴∠OAD=90°,∴∠CAD=70°,∵CD平分∠ACB,∴∠ACD=∠ACB=20°,∴∠ADC=180°﹣∠CAD﹣∠ACD=90°,故选:C.二.填空题(共6小题)13.解:根据题意得:EF=BC,MN=EF,把该正方形纸片卷成一个圆柱,使点A与点D重合,则线段BC形成一半径为2cm的圆,线段BC是圆的周长,BC=EF=2π×2=4π,∴的长=EF==,∴n=120°,即∠MON=120°,∵OM=ON,∴∠M=30°,过O作OG⊥MN于G,∵OM=2,∴OG=1,MG=,∴MN=2MG=2,故答案为:2.14.解:连接OB,∵OA=5,AD:OD=1:4,∴AD=1,OD=4,OB=5,在Rt△ODB中,由勾股定理得:OB2=OD2+BD2,52=42+BD2,解得:BD=3,∵OD⊥BC,OD过O,∴BC=2BD=6,故答案为:6.15.解:延长CD,交⊙O于点E,连接OA,由题意知CE过点O,且OC⊥AB,则AD=BD=AB=5(寸),设圆形木材半径为r,则OD=r﹣1,OA=r,∵OA2=OD2+AD2,∴r2=(r﹣1)2+52,解得r=13,所以⊙O的直径为26寸,故答案为:26.16.解:当点E落在半径OA上时,连接OC,如下图1所示,∵∠ADC=90°,∠AOB=60°,点C为弧AB的中点,点A(2,0),∴∠COD=30°,OA=OC=2,∴CD=OC•sin30°=2×=1,∴OD=O C•cos30°=2×=,∴AD=OA﹣OD=2﹣,∵DE=DA,∴OE=OD﹣OE=﹣(2﹣)=2﹣2,即点E的坐标为(2﹣2,0);当点E落在半径OB上时,连接OC,CD,如图2所示,由已知可得,CE=CA=CB,由上面的计算可知,OE=2﹣2,∴点E的横坐标为:(2﹣2)×cos60°=﹣1,点E的纵坐标为:(2﹣2)×sin60°=3﹣,∴E(﹣1,3﹣),∴满足条件的点E的横坐标x取值范围为﹣1<x<2﹣2.故答案为﹣1<x<2﹣2.17.解:如图,连接OD,OE,DE.∵△ABC是等边三角形,∴∠A=∠B=60°,∵OA=OD=OB=OE=2,∴△AOD,∠EOB都是等边三角形,∴∠AOD=∠EOB=60°,∴∠DOE=60°,△DOE是等边三角形,∴∠DOE=∠EOB,∴弓形DE与弓形BE的面积相等,∵CD=DE=CE=2,∴△CDE是等边三角形,∴S阴=S△CDE=×22=,故答案为.18.解:∵四边形ABCD是⊙O的内接四边形,∴∠C+∠A=180°,∴∠C=180°﹣100°=80°.故答案为:80°三.解答题(共7小题)19.解:到点A的距离小于2cm,且到点B的距离不小于2cm的所有点的集合如图所示:20.解:过O作OF⊥CD,交CD于点F,连接OD,∴F为CD的中点,即CF=DF,∵AE=2,EB=6,∴AB=AE+EB=2+6=8,∴OA=4,∴OE=OA﹣AE=4﹣2=2,在Rt△OEF中,∠DEB=30°,∴OF=OE=1,在Rt△ODF中,OF=1,OD=4,根据勾股定理得:DF==,则CD=2DF=2.21.解:如图:作OE⊥AB于E,交CD于F,∵AB=12m,OE⊥AB,OA=1m,∴OE=8m.∵水管水面上升了2m,∴OF=8﹣2=6m,∴CF==8m,∴CD=16m.22.证明:连接OA、OB,∵OA=OB,∴∠A=∠B,∵=,∴∠AOC=∠BOD,在△AOC和△BOD中,,∴△AOC≌△BOD,∴AC=BD.23.解:(1)∵OP∥CD,∴∠OPC=∠PCD=15°,∵OP=OC,∴∠OPC=∠OCP=15°,∴∠OCD=30°.(2)①如图1中,当AB在点O的左侧时,连接PA,PB,OD,OA,OB.∵OC=OD,∴∠OCD=∠ODC=30°,∴∠COD=120°,∵=,∴∠AOB=∠COD=120°,∴∠APB=∠AOB=60°.②如图2中,当AB在点O的右侧时,同法可得∠ACB=60°,∵∠APB+∠ACB=180°,∴∠APB=120°,综上所述,∠APB=60°或120°.24.解:∵四边形ABCD内接于⊙O,∠ABC=135°,∴∠D=180°﹣∠ABC=45°,∴∠AOC=2∠D=90°,∵OA=OC,且AC=4,∴OA=OC=AC=2,即⊙O的半径长为2.25.解:(1)连接AD、BC.∵∠A=∠C,∠D=∠B,∴△ADM∽△CBM∴即AM•MB=CM•MD.(2)连接OM、OC.∵M为CD中点,∴OM⊥CD在Rt△OMC中,∵OC=3,OM=2 ∴CD=CM===由(1)知AM•MB=CM•MD.∴AM•MB=•=5.。
2020年九年级数学 中考第二轮专题训练 圆 (含答案)
2020年九年级数学中考第二轮专题训练圆1、已知:如图,⊙O的直径A B与弦C D相交于E,=,⊙O的切线B F与弦A D的延长线相交于点F.(1)求证:C D∥B F.(2)连接B C,若⊙O 的半径为4,cos∠BCD =,求线段A D、C D的长.2、如图,在△ABC中,AB=AC,以AB为直径的半圆O交BC于点D,DE⊥AC,垂足为E.(1)判断D E与⊙O 的位置关系,并证明你的结论;(2)如果⊙O的直径为9,cos B=,求D E的长.3、如图,在Rt△ABC 中,∠ABC=90°,以A B为直径作⊙O,点D 为⊙O上一点,且C D=C B,连接D O并延长交C B的延长线于点E.(1)判断直线C D与⊙O 的位置关系,并说明理由;(2)若BE=2,DE=4,求圆的半径及A C的长.4、如图,BC 是⊙O的直径,CE 是⊙O的弦,过点E 作⊙O 的切线,交C B的延长线于点G,过点B作B F⊥G E于点F,交C E的延长线于点A.(1)求证:∠ABG=2∠C;(2)若G F=33,GB=6,求⊙O的半径.5、如图,点A、B、C分别是⊙O上的点,∠B=60°,CD是⊙O的直径,P是C D延长线上的点,且A P=A C.(1)求证:A P是⊙O的切线;(2)若A C=3,求P D 的长.6、如图,在矩形A B C D中,CD=2,AD =4,点P在B C上,将△A B P沿A P折叠,点B 恰好落在对角线A C上的E点,O为A C上一点,⊙O经过点A,P(1)求证:BC 是⊙O的切线;(2)在边C B上截取C F=C E,点F是线段B C的黄金分割点吗?请说明理由.7、已知:如图,在Rt△ABC 中,∠C=90°,点O在A B上,以O为圆心,O A 长为半径的圆与A C,A B分别交于点D,E,且∠CB D=∠A.(1)判断直线B D与⊙O的位置关系,并证明你的结论;(2)若B C=2,B D=,求的值.8、如图,AB是⊙O的直径,C是⊙O上一点,过点O作OD⊥AB,交BC的延长线于D,交AC于点E,F是DE的中点,连接CF.(1)求证:CF是⊙O的切线.(2)若∠A=22.5°,求证:AC=DC.9、如图,在△A B C中,A B=A C,以A B为直径的⊙O分别交B C、A C于点D、E,连接E B交O D于点F.(1)求证:O D⊥B E;(2)若D E=,A B=,求A E的长.10、如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,过点D作DF⊥AC,垂足为点F.(1)求证:直线D F是⊙O的切线;(2)求证:B C2=4C F•A C;(3)若⊙O的半径为 4,∠CDF=15°,求阴影部分的面积.11、如图,A B是⊙O的直径,C是⊙O上一点,D是的中点,E为O D延长线上一点,且∠C A E=2∠C,AC 与B D交于点H,与O E交于点F.(1)求证:AE 是⊙O的切线;(2)若DH=9,tan C=,求直径A B的长.12、已知Rt△ABC 中,∠ABC=90°,以A B为直径作⊙O交A C于点D,连接B D.(1)如图 1,若BD :CD =3:4,AD =3,求⊙O的直径A B的长;(2)如图 2,若E是B C的中点,连接E D,请你判断直线E D与⊙O的位置关系,并证明你的结论.13、如图,△A B C内接于⊙O,A B为直径,作O D⊥A B交A C于点D,延长B C,O D交于点F,过点C作⊙O的切线C E,交O F于点E.(1)求证:E C=E D;(2)如果OA=4,EF=3,求弦A C的长.14、以坐标原点为圆心,1 为半径的圆分别交x,y轴的正半轴于点A,B.(1)如图一,动点P从点A处出发,沿x轴向右匀速运动,与此同时,动点Q从点B处出发,沿圆周按顺时针方向匀速运动.若点Q的运动速度比点P的运动速度慢,经过 1 秒后点P运动到点(2,0),此时P Q 恰好是⊙O的切线,连接O Q.求∠Q O P的大小;(2)若点Q按照(1)中的方向和速度继续运动,点P停留在点(2,0)处不动,求点Q 再经过 5 秒后直线PQ被⊙O截得的弦长.15、如图,已知半径为 1 的⊙O1 与x轴交于A,B两点,O M 为⊙O1 的切线,切点为M,圆心O1的坐标为(2,0),二次函数y=﹣x2+b x+c的图象经过A,B两点.(1)求二次函数的解析式;(2)求切线O M的函数解析式;(3)线段O M 上存在一点P,使得以P,O,A为顶点的三角形与△O O1M 相似.请问有几个符合条件的点P 并分别求出它们的坐标.16、(1)方法选择如图①,四边形A B C D是⊙O的内接四边形,连接A C,B D,A B=B C=A C.求证:B D=A D+C D.小颖认为可用截长法证明:在D B上截取D M=A D,连接A M…小军认为可用补短法证明:延长C D至点N,使得D N=A D…请你选择一种方法证明.(2)类比探究【探究 1】如图②,四边形A B C D是⊙O的内接四边形,连接A C,B D,B C是⊙O的直径,A B=A C.试用等式表示线段A D,B D,C D之间的数量关系,井证明你的结论.【探究 2】如图③,四边形A B C D是⊙O的内接四边形,连接A C,B D.若B C是⊙O的直径,∠ABC =30°,则线段A D,B D,C D之间的等量关系式是.(3)拓展猜想如图④,四边形A B C D是⊙O的内接四边形,连接A C,B D.若B C是⊙O的直径,B C:A C:A B=a:b:c,则线段A D,B D,C D之间的等量关系式是.17、如图,Rt△ABC 中,∠ACB=90°,以B C上一点O为圆心作圆与A B相切于点D,与B C分别交于点F、N,连接D F并延长交A C的延长线点E.(1)求证:A E=A D;(2)过点D作D H⊥B C于点B,连接A F并延长交⊙O于点G,连接D G,若D O平分∠G D H.求证:∠A F D=2∠D F N;(3)在(2)的条件下,延长D G交A E的延长线于点P,连接P F并延长交⊙O于点M,若FM=5,FH =9,求O H的长.参考答案1、(1)证明:∵直径A B平分,∴AB⊥CD.∵BF与⊙O相切,AB是⊙O的直径,∴A B⊥B F.∴C D∥B F.(2)解:连接BD,BC.∵AB是⊙O的直径,∴∠ADB=90°.在Rt△ADB中,∵cos∠BAF=c os∠BCD=,AB=4×2=8.∴AD=AB •c o s∠BAF=8×=6.∵AB⊥CD于E,在Rt△AED中,c os∠BAF=c os∠BCD=,sin∠BAF=.∴DE=AD •s i n∠BAF=6×.∵直径A B平分,∴C D=2D E=3.2、解:(1)答:D E是⊙O的切线.证明:连接O D,A D,∵AB是直径,∴∠ADB=90°,即A D⊥B C,∵O D=O A,∴∠O D A=∠O A D,∴∠O A D=∠C A D,∴∠O D A=∠C A D,又∵D E⊥A C,∴∠EDA+∠CAD=90°,∴∠EDA+∠ODA=90°,即:O D⊥D E,∴DE是⊙O的切线;(2)解:∵AB是⊙O的直径,∴∠ADB=90°,在Rt△ADB中,∵cos∠B==,AB=9,∴B D=C D=3,在Rt△CDE中,∵cos∠C=,∴CE=CD•cos∠C=3•cos∠B=3×=1,∴D E==2.3、(1)证明:连接O C.∵CB=CD,CO=CO,OB=OD,∴△O C B≌△O C D(S S S),∴∠ODC=∠OBC=90°,∴OD⊥DC,∴DC是⊙O的切线;(2)解:设⊙O的半径为r.在Rt△O B E中,∵O E2=E B2+O B2,∴(4﹣r)2=r2+22,∴r=1.5,∵tan∠E==,∴=,∴CD=BC=3,在Rt△ABC中,A C===3.∴圆的半径为1.5,AC 的长为3.4、(1)证明:连接O E,∵EG是⊙O的切线,∴O E⊥E G,∵B F⊥G E,∴O E∥A B,∴∠A=∠OEC,∵OE=OC,∴∠O E C=∠C,∴∠A=∠C,∵∠ABG=∠A+∠C,∴∠ABG=2∠C;(2)解:∵BF⊥GE,∴∠BFG=90°,∵GF=3,GB=6,∴B F==3,∵BF∥OE,∴△B G F∽△O G E,∴=,∴=,∴OE=6,∴⊙O的半径为 6.5、解:(1)证明:连接O A,∵∠B=60°,∴∠AOC=2∠B=120°,∵OA=OC,∴∠ACP=∠CAO=30°,∴∠AOP=60°,又∵A P=A C,∴∠P=∠ACP=30°,∴∠OAP=90°,即O A⊥A P,∵点A在⊙O上,∴AP是⊙O的切线.(2)解:连接A D,∵CD是⊙O的直径,∴∠CAD=90°,∴AD=AC∙tan30°=,C D=2A D=2,∴D O=A O=C D=,在Rt△P A O中,由勾股定理得:P A2+A O2=P O2,∴32+()2=(P D+)2,∵PD的值为正数,∴P D=.6、解:(1)连接O P,则∠P A O=∠A P O,而△A E P是由△A B P沿A P折叠而得:故A E=A B=4,∠O A P=∠P A B,∴∠BAP=∠OPA,∴AB∥OP,∴∠OPC=90°,∴BC是⊙O的切线;(2)C F=C E=A C﹣A E=﹣4=2﹣2,=,故:点F是线段B C的黄金分割点. 7、解:(1)直线B D与⊙O相切.证明:如图 1,连接O D.∵OA=OD,∴∠A=∠A D O.∵∠C=90°,∴∠CBD +∠CDB=90°.又∵∠C B D=∠A,∴∠ADO+∠CDB=90°.∴∠ODB=90°.∴直线BD与⊙O相切.(2)解法一:如图 1,连接DE.∵∠C=90°,BC=2,BD=∴.∵AE是⊙O的直径,∴∠ADE=90°.∴.∵∠CBD=∠A,∴==.∵AE=2AO,∴=.解法二:如图 2,过点O作OH⊥AD于点H.∴.∴∵∠C=90°,BC=2,BD=∴.∵∠CBD=∠A,∴==.∴=.8、(1)证明:∵AB是⊙O的直径,∴∠ACB=∠ACD=90°,∵点F是ED的中点,∴CF=EF=DF,∴∠AEO=∠FEC=∠FCE,∵OA=OC,∴∠OCA=∠OAC,∵OD⊥AB,∴∠OAC+∠AEO=90°,∴∠OCA+∠FCE=90°,即OC⊥FC,∴CF与⊙O相切;(2)解:∵OD⊥AB,AC⊥BD,∴∠AOE=∠ACD=90°,∵∠AEO=∠DEC,∴∠OAE=∠CDE=22.5°,∵A O=B O,∴A D=B D,∴∠ADO=∠BDO=22.5°,∴∠ADB=45°,∴∠CAD=∠ADC=45°,∴AC=CD.9、证明:(1)连接A D.∵AB是⊙O的直径,∴∠ADB=∠AEB=90°,∵A B=A C,∴D C=D B.∵O A=O B,∴O D∥A C.∴∠OFB=∠AEB=90°,∴OD⊥BE.(2)设AE=x,∵OD⊥BE,∴可得OD是BE的中垂线,∴DE=DB,∴∠1=∠2,∴B D=E D=,∵O D⊥E B,∴F E=F B.∴O F=A E=,D F=O D﹣O F=.在Rt△DFB 中,;在Rt△OFB 中,;∴=.解得,即.10、解:(1)如图所示,连接O D,∵AB=AC,∴∠ABC=∠C,而OB=OD,∴∠ODB=∠ABC=∠C,∵DF⊥AC,∴∠CDF+∠C=90°,∴∠CDF+∠ODB=90°,∴∠ODF=90°,∴直线DF是⊙O的切线;(2)连接A D,则A D⊥B C,则A B=A C,则D B=D C=,∵∠CDF+∠C=90°,∠C+∠DAC=90°,∴∠CDF=∠DCA,而∠D F C=∠A D C=90°,∴△C F D∽△C D A,∴C D2=C F•A C,即B C2=4C F•A C;(3)连接O E,∵∠CDF=15°,∠C=75°,∴∠OAE=30°=∠OEA,∴∠AOE=120°,S△O A E=A E×O E sin∠O E A=×2×O E×cos∠O E A×O E sin∠O E A=4,S =﹣S =×π×42﹣4 =﹣4 .阴影部分S扇形OAE △OAE11、解:(1)∵D是的中点,∴OE⊥AC,∴∠AFE=90°,∴∠E+∠EAF=90°,∵∠AOE=2∠C,∠CAE=2∠C,∴∠CAE=∠AOE,∴∠E+∠AOE=90°,∴∠EAO=90°,∴AE是⊙O的切线;(2)∵∠C=∠B,∵OD=OB,∴∠B=∠O D B,∴∠O D B=∠C,∴tan C=tan∠ODB==,∴设HF=3x,DF=4x,∴DH=5x=9,∴x=,∴D F=,H F=,∵∠C=∠FDH,∠DFH=∠CFD,∴△D F H∽△C F D,∴=,∴C F==,∴A F=C F=,设O A=O D=x,∴O F=x﹣,∵A F2+O F2=O A2,∴()2+(x﹣)2=x2,解得:x=10,∴OA=10,∴直径AB的长为 20.12、解:(1)如图,∵A B是⊙O的直径,∴∠ADB=90°.则∠CDB=∠ADB=90°.∴∠C+∠CBD=90°.∵∠ABC=90°,∴∠ABD+∠CBD=90°.∴∠C=∠A B D.∴△A D B∽△B D C.∴.∵BD:CD=3:4,AD=3,∴BD=4.在Rt△A B D中,A B=;(3 分)(2)直线E D与⊙O相切.证明:如图,连接O D.由(1)得∠BDC=90°.∵E是BC的中点,∴D E=B E=B C,∴∠E D B=∠E B D,∵OB=OD,∴∠ODB=∠OBD.∵∠OBD+∠EBD=90°,∴∠ODB+∠EDB=∠ODE=90°.∵点D在⊙O上,且OD⊥DE∴ED是⊙O的切线.(5 分)13、(1)证明:连接O C,∵CE与⊙O相切,为C是⊙O的半径,∴OC⊥CE,∴∠OCA+∠ACE=90°,∵OA=OC,∴∠A=∠OCA,∴∠ACE+∠A=90°,∵OD⊥AB,∴∠ODA+∠A=90°,∵∠ODA=∠CDE,∴∠CDE+∠A=90°,∴∠CDE=∠ACE,∴EC=ED;(2)解:∵AB为⊙O的直径,∴∠ACB=90°,在Rt△DCF中,∠DCE+∠ECF=90°,∠DCE=∠CDE,∴∠CDE +∠ECF=90°,∵∠CDE +∠F=90°,∴∠ECF=∠F,∴E C=E F,∵EF=3,∴EC=DE=3,∴O E==5,∴OD=OE﹣DE=2,在Rt△OAD中,A D==2,在Rt△AOD 和Rt△ACB 中,∵∠A=∠A,∠A C B=∠A O D,∴Rt△AOD∽Rt△ACB,∴,即,∵∴O C = = .. ∴A C = .14、解:(1)如图一,连接A Q .由题意可知:O Q =O A =1.∵OP =2,∴A 为 OP 的中点.∵PQ 与⊙O 相切于点 Q ,∴△O Q P 为直角三角形.∴.即△OAQ 为等边三角形.∴∠QOP =60°.(2)由(1)可知点 Q 运动 1 秒时经过的弧长所对的圆心角为 30°,若 Q 按照(1)中的方向和速度继续运动,那么再过 5 秒,则 Q 点落在⊙O 与 y 轴负半轴的交点处(如图二).设 直线 P Q 与⊙O 的另外一个交点为 D ,过 O 作 OC ⊥QD 于点 C ,则 C 为 QD 的中点.∵∠QOP =90°,OQ =1,OP =2,∴Q P =. , ∵O C ⊥Q D ,O Q =1,O C = ,∴Q C == .∴QD =15、解:(1)∵圆心的坐标为O1(2,0),⊙O1 半径为 1,∴A(1,0),B(3,0),∵二次函数y=﹣x2+b x+c的图象经过点A,B,∴可得方程组,解得:,∴二次函数解析式为y=﹣x2+4x﹣3.(2)过点M作M F⊥X轴,垂足为F.∵O M是⊙O1 的切线,M为切点,∴O1M⊥O M(圆的切线垂直于经过切点的半径).在R T△O O1M中,sin∠O1O M==,∵∠O1O M为锐角,∴∠O1O M=30°,∴O M=O O1•cos30°=,在R T△M O F中,OF=OM •cos30°=.MF=O M sin30°=.∴点M坐标为(),设切线O M的函数解析式为y=k x(k≠0),由题意可知=k,∴k=,∴切线O M的函数解析式为y=x(3)两个,①过点A作A P1⊥x轴,与O M交于点P1,可得 Rt△A P1O∽Rt△M O1O(两角对应相等两三角形相似),P1A=O A•tan∠A O P1=,∴P1(1,);②过点A作A P2⊥O M,垂足为,过P2 点作P2 H⊥O A,垂足为H.可得 Rt△O P2A∽Rt△O1 M O(两角对应相等两三角形相似),在Rt△O P2A中,∵OA=1,∴P2=O A•cos30°=,在Rt△O P2 H中,O H=O P2•cos∠A O P2=,P2H=O P2 •sin∠A O P2=,P2(,),∴符合条件的P点坐标有(1,),(,).16、解:(1)方法选择:∵A B=B C=A C,∴∠ACB=∠ABC=60°,如图①,在BD上截取DEMAD,连接AM,∵∠ADB=∠ACB=60°,∴△ADM是等边三角形,∴AM=AD,∵∠ABM=∠ACD,∵∠AMB=∠ADC=120°,∴△A B M≌△A C D(A A S),∴BM=CD,∴BD=BM+DM=CD+AD;(2)类比探究:如图②,∵BC是⊙O的直径,∴∠BAC=90°,∵AB=AC,∴∠ABC=∠ACB=45°,过A作A M⊥A D交B D于M,∵∠ADB=∠ACB=45°,∴△ADM是等腰直角三角形,∴AM=AD,∠AMD=45°,∴D M=A D,∴∠AMB=∠ADC=135°,∵∠ABM=∠ACD,∴△A B M≌△A C D(A A S),∴BM=CD,∴B D=B M+D M=C D+A D;【探究 2】如图③,∵若BC是⊙O的直径,∠ABC=30°,∴∠BAC=90°,∠ACB=60°,过A作A M⊥A D交B D于M,∵∠ADB=∠ACB=60°,∴∠AMD=30°,∴MD=2AD,∵∠ABD=∠ACD,∠AMB=∠ADC=150°,∴△ABM∽△ACD,∴=,∴B M=C D,∴B D=B M+D M=C D+2A D;故答案为:B D=C D+2A D;(3)拓展猜想:B D=B M+D M=C D+A D;理由:如图④,∵若B C是⊙O的直径,∴∠BAC=90°,过A作AM⊥AD交BD于M,∴∠MAD=90°,∴∠B A M=∠D A C,∴△A B M∽△A C D,∴=,∴B M=C D,∵∠ADB=∠ACB,∠BAC=∠NAD=90°,∴△ADM∽△ACB,∴==,∴D M=A D,∴B D=B M+D M=C D+A D.故答案为:B D=C D+A D17、解:(1)证明:∵∠A C B=90°∴∠E+∠CFE=∠ACB=90°∵∠CFE=∠OFD∴∠E+∠OFD=90°∵AB切⊙O于D∴OD⊥AB∴∠ODF+∠ADE=90°∵OD=OF∴∠OFD=∠ODF∴∠E=∠ADE∴AE=AD(2)证明:连接D N∵DO平分∠GDH∴设∠ODG=∠ODH=α,设∠FDG=β,则∠FDH=2α+β∵OF=OD∴∠DFN=∠ODF=α+β∵DH⊥FN∴∠DHF=90°∴∠DFN+∠FDH=90°,即α+β+2α+β=3α+2β=90°∵FN为⊙O直径∴∠FDN=90°∴∠DNF=90°﹣∠DFN=90°﹣(2α+β)=3α+2β﹣(α+β)=2α+β∴∠G=∠DNF=2α+β∵∠AFD=∠G+∠FDG=2α+β+β=2α+2β∴∠AFD=2∠DFN(3)过O作O Q∥A B交F M于点Q∵∠AEF+∠EFC=90°,∠DFN+∠FDH=90°,∠EFC=∠DFN∴∠AEF=∠FDH=2α+β∴∠ADE=∠AEF=2α+β∴∠FAD=180°﹣∠AFD﹣∠ADF=2(3α+2β)﹣(2α+2β)﹣(2α+β)=2α+β 即∠F A D=∠A D F∴AF=DF∴F在AD的垂直平分线上∵∠AEF=∠FGD=2α+β,∠AFE=∠DFG∴∠EAF=∠FDG=β∴∠PAD=∠PDA=β+(2α+β)=2α+2β∴PA=PD∴P在A D的垂直平分线上即P M垂直平分A D∴OQ⊥FM∴∠OQF=90°,FQ=F M=∵OQ∥AB∴∠FOQ=∠B∵∠B+∠DOH=∠DOH+∠ODH=90°∴∠B=∠ODH∴∠F O Q=∠O D H在△F O Q与△O D H中∴△FOQ≌△ODH(AAS)∴OH=FQ=。
2020年中考数学复习:《圆》解答题压轴专题训练(解析版)
2020年中考数学复习:《圆》解答题压轴专题训练1.如图,AB是⊙O的直径,AC是⊙O的切线,连接OC交⊙O于E,过点A作AF⊥AC于F 交⊙O于D,连接DE,BE,BD(1)求证:∠C=∠BED;(2)若AB=12,tan∠BED=,求CF的长.(1)证明:∵AB是⊙O的直径,CA切⊙O于A,∴∠C+∠AOC=90°;又∵OC⊥AD,∴∠OFA=90°,∴∠AOC+∠BAD=90°,∴∠C=∠BAD.又∵∠BED=∠BAD,∴∠C=∠BED.(2)解:由(1)知∠C=∠BAD,tan∠BED=,∴tan∠C=,∴tan∠C==,且OA=AB=6,∴,解得AC=8,∴=10,∵OC•AF=OA•AC,∴.∴==.2.如图,以△ABC的BC边上一点O为圆心的圆,经过A,B两点,且与BC边交于点E,D 为弧BE的中点,连接AD交BC于F,AC=FC,连接BD.(1)求证:AC是⊙O的切线;(2)已知⊙O的半径R=5cm,AB=8cm,求△ABD的面积.(1)证明:连接OA,OD.∵点D是弧BE的中点,∴∠BOD=∠EOD=90°,∴∠ODF+∠OFD=90°又∵∠OFD=∠AFC,∴∠ODF+∠AFC=90°又∵AC=FC,∴∠AFC=∠CAF,∵OA=OD,∴∠ODF=∠OAF,∴∠OAF+∠CAF=90°,即∠OAC=90°,故AC是⊙O的切线;(2)解:过点B作BG⊥AD于G,∵∠BOD=90°,OB=OD=R=5,∴,∵点D是弧BE的中点,∴∠BAD=45°,∵∠AGB=90°,∴∠ABG=∠BAD=45°,即BG=AG.∴又∵,∴=AD•BG==28(cm2).故S△ABD3.如图所示,以△ABC的边AB为直径作⊙O,点C在⊙O上,BD是⊙O的弦,∠A=∠CBD,过点C作CF⊥AB于点F,交BD于点G过C作CE∥BD交AB的延长线于点E.(1)求证:CE是⊙O的切线;(2)求证:CG=BG;(3)若∠DBA=30°,CG=8,求BE的长.(1)证明:连接OC,∵∠A=∠CBD,∴=,∴OC⊥BD,∵CE∥BD,∴OC⊥CE,∴CE是⊙O的切线;(2)证明:∵AB为直径,∵CF⊥AB,∴∠ACB=∠CFB=90°,∵∠ABC=∠CBF,∴∠A=∠BCF,∵∠A=∠CBD,∴∠BCF=∠CBD,∴CG=BG;(3)解:连接AD,∵AB为直径,∴∠ADB=90°,∵∠DBA=30°,∴∠BAD=60°,∵=,∴∠DAC=∠BAC=∠BAD=30°,∴=tan30°=,∵CE∥BD,∴∠E=∠DBA=30°,∴AC=CE,∴=,∵∠A=∠BCF=∠CBD=30°,∴∠BCE=30°,∴BE=BC,∴△CGB∽△CBE,∴==,∵CG=8,∴BC=8,∴BE=8.4.如图,B,E是⊙O上的两个定点,A为优弧BE上的动点,过点B作BC⊥AB交射线AE于点C,过点C作CF⊥BC,点D在CF上,且∠EBD=∠A.(1)求证:BD与⊙O相切;(2)已知∠A=30°.①若BE=3,求BD的长;②当O,C两点间的距离最短时,判断A,B,C,D四点所组成的四边形的形状,并说明理由.(1)证明:如图1,作直径BG,连接GE,则∠GEB=90°,∴∠G+∠GBE=90°,∵∠A=∠EBD,∠A=∠G,∴∠EBD=∠G,∴∠EBD+∠GBE=90°,∴∠GBD=90°,∴BD⊥OB,∴BD与⊙O相切;(2)解:如图2,连接AG,∵BC⊥AB,∴∠ABC=90°,由(1)知∠GBD=90°,∴∠GBD=∠ABC,∴∠GBA=∠CBD,又∵∠GAB=∠DCB=90°,∴△BCD∽△BAG,∴==tan30°=,又∵Rt△BGE中,∠BGE=30°,BE=3,∴BG=2BE=6,∴BD=6×=2;(3)解:四边形ABCD是平行四边形,理由如下,由(2)知=,=,∴=,∵B,E为定点,BE为定值,∴BD为定值,D为定点,∵∠BCD=90°,∴点C在以BD为直径的⊙M上运动,∴当点C在线段OM上时,OC最小,此时在Rt△OBM中,==,∴∠OMB=60°,∴MC=MB,∴∠MDC=∠MCD=30°=∠A,∵AB⊥BC,CD⊥BC,∴∠ABC=∠DCB=90°,∴AB∥CD,∴∠A+∠ACD=180°,∴∠BDC+∠ACD=180°,∴AC∥BD,∴四边形ABCD为平行四边形.5.如图,在△ABC中,A B=AC,⊙O是△ABC的外接圆,连结OA、OB、OC,延长BO与AC 交于点D,与⊙O交于点F,延长BA到点G,使得∠BGF=∠GBC,连接FG.(1)求证:FG是⊙O的切线;(2)若⊙O的径为4.①当OD=3,求AD的长度;②当△OCD是直角三角形时,求△ABC的面积.(1)证明:连接AF,∵BF为⊙O的直径,∴∠BAF=90°,∠FAG=90°,∴∠BGF+∠AFG=90°,∵AB=AC,∴∠ABC=∠ACB,∵∠ACB=∠AFB,∠BGF=∠ABC,∴∠BGF=∠AFB,∴∠AFB+∠AFG=90°,即∠OFG=90°,又∵OF为半径,∴FG是⊙O的切线;(2)解:①连接CF,则∠ACF=∠ABF,∵AB=AC,AO=AO,BO=CO,∴△ABO≌△ACO(SSS),∴∠ABO=∠BAO=∠CAO=∠ACO,∴∠CAO=∠ACF,∴AO∥CF,∴=,∵半径是4,OD=3,∴DF=1,BD=7,∴==3,即CD=AD,∵∠ABD=∠FCD,∠ADB=∠FDC,∴△ADB∽△FDC,∴=,∴AD•CD=BD•DF,∴AD•CD=7,即AD2=7,∴AD=(取正值);②∵△ODC为直角三角形,∠DCO不可能等于90°,∴存在∠ODC=90°或∠COD=90°,当∠ODC=90°时,∵∠ACO=∠ACF,∴OD=DF=2,BD=6,∴AD=CD,∴AD•CD=AD2=12,∴AD=2,AC=4,=×4×6=12;∴S△ABC当∠COD=90°时,∵OB=OC=4,∴△OBC是等腰直角三角形,∴BC=4,延长AO交BC于点M,则AM⊥BC,∴MO=2,∴AM=4+2,=×4×(4+2)=8+8,∴S△ABC∴△ABC的面积为12或8+8.6.如图⊙O的直径AB=10cm,弦BC=6cm,∠ACB的平分线交⊙O于D,交AB于E,P是AB 延长线上一点,且PC=PE.(l)求证:PC是⊙O的切线;(2)求AC、AD的长.(1)证明:连结OC,如图所示:∵PC=PE,∴∠PCE=∠PEC,∵∠PEC=∠EAC+∠ACE=∠EAC+45°,而∠CAB=90°﹣∠ABC,∠ABC=∠OCB,∴∠PCE=90°﹣∠OCB+45°=90°﹣(∠OCE+45°)+45°,∴∠OCE+∠PCE=90°,即∠PCO=90°,∴OC⊥PC,∴PC为⊙O的切线;(2)连结BD,如图所示,∵AB为直径,∴∠ACB=90°,在Rt△ACB中,AB=10cm,BC=6cm,∴AC==8(cm);∵DC平分∠ACB,∴∠ACD=∠BCD=45°,∴∠DAB=∠DBA=45°∴△ADB为等腰直角三角形,∴AD=AB=5(cm).7.如图,在Rt△ABC中,∠BAC=90°,CD平分∠ACB,交AB于点D,以点D为圆心,DA 为半径的圆与AB相交于点E,与CD交于点F.(1)求证:BC是⊙D的切线;(2)若EF∥BC,且BC=6,求图中阴影部分的面积.(1)证明:过D作DG⊥BC于G,∵DA⊥AC,∠ACD=∠BCD,∴DG=DA,∴BC是⊙D的切线;(2)解:连接EF,∵EF∥BC,由(1)DG⊥BC,∴DG⊥EF,∴=.∴∠EDG=∠CDG.由(1)∠ACD=∠BCD,∠ACD+∠ADC=∠BCD+∠CDG=90°,∴∠CDG=∠ADC,∴∠CDG=∠ADC=∠BDG=60°.∵EF∥BC,∴∠DEF=∠B,∠DFE=∠DCB,在⊙D中,DE=DF,∴∠DFE=∠DEF.∴∠B=∠DCB,∴DB=DC.∵DG⊥BC,∴CG=BC=3.在Rt△DCG中,D G=CG/=.∴S=×3×﹣π()2=﹣.阴影8.请阅读下列材料,并完成相应的任务.人类会作圆并且真正了解圆的性质是在2000多年前,由我国的墨子给出圆的概念:“一中同长也.”.意思说,圆有一个圆心,圆心到圆周的长都相等.这个定义比希腊数学家欧几里得给圆下的定义要早100年.与圆有关的定理有很多,弦切角定理就是其中之一.我们把顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角.弦切角定理:弦切角的度数等于它所夹弧所对的圆周角度数.下面是弦切角定理的部分证明过程:证明:如图①,AB与⊙O相切于点A.当圆心O在弦AC上时,容易得到∠CAB=90°,所以弦切角∠BAC的度数等于它所夹半圆所对的圆周角度数.如图②,AB与⊙O相切于点A,当圆心O在∠BAC的内部时,过点A作直径AD交⊙O于点D,在上任取一点E,连接EC,ED,EA,则∠CED=∠CAD.任务:(1)请按照上面的证明思路,写出该证明的剩余部分;(2)如图③,AB与⊙O相切于点A.当圆心O在∠BAC的外部时,请写出弦切角定理的证明过程.解:(1)如图②,∵AD是⊙O直径,∴∠DEA=90°.∵AB与⊙O相切于点A,∴∠DAB=90°.∴∠CED+∠DEA=∠CAD+∠DAB,即∠CEA=∠CAB,∴弦切角的度数等于它所夹弧所对的圆周角度数;(2)证明:如图③,过点A作直径AF交⊙O于点F,连接FC,∵AF是直径,∴∠ACF=90°,∴∠CFA+∠FAC=90°,∵AB与⊙O相切于点A,∴∠FAB=90°,∴∠CAB+∠FAC=90°,∴∠CAB=∠CFA,即弦切角的度数等于它所夹弧所对的圆周角度数.9.【问题背景】(1)如图1,⊙O与∠P的两边分别切与A,B两点.求证:PA=PB.【深入探究】(2)在(1)的条件下,若∠APB=60°,连接PO,以PO为一条边向上作等边三角形POQ,连接AO,AQ.求证:AO=AQ.(3)若在(1)的条件下,以OP为斜边向上作等腰直角三角形POQ,取OP中点M,连接MB,MQ,BQ,求证:∠MQB=∠MBQ.【拓展延伸】在(3)的条件下,连接AO,AQ,探索AO,AQ,AP之间的数量关系.解:【问题背景】(1)连接OA,OB,OP,∵PA、PB是切线,∴PA⊥OA,PB⊥OB,∴∠PAO=∠PBO=90°,在Rt△PAO和Rt△PBO中,,∴Rt△PAO≌Rt△PBO(HL),∴PA=PB;【深入探究】(2)∵Rt△PAO≌Rt△PBO,∴∠APO=∠BPO,∵∠APB=60°,∴∠APO=∠BPO=30°,∵△POQ是等边三角形,∴∠OPQ=60°,PO=PQ,∴∠APQ=∠APO=30°,且PO=PQ,∴PA垂直平分OQ,∴AO=AQ;(3)如图3,连接OB,∵PB是⊙O是切线,∴PB⊥OB,且点M是OP的中点,∴BM=PO,∵△OPQ是等腰直角三角形,且点M是OP的中点,∴QM=OP,∴QM=BM,∴∠MQB=∠MBQ;拓展延伸】AO+AQ=AP,理由如下:过点Q作QH⊥AQ交AP于点H,∴∠AQH=∠PQO=90°,∴∠AQO=∠PQH,∵∠QPO+∠QOP=90°,∠AOP+∠APO=90°,∴∠APQ+∠APO=∠APO+∠AOQ,∴∠APQ=∠AOP,且∠AQO=∠PQH,QP=OQ,∴△AOQ≌△HPQ(ASA)∴QH=AQ,AO=PH,∴AH=AQ,∵AP=PH+AH,∴AO+AQ=AP.10.如图,AB、CE是⊙O的直径,过点C的切线与AB的延长线交于点P,AD⊥PC于D,连接AC、OD、PE.(1)求证:AC是∠DAP的角平分线;(2)求证:PC2=PA•PB;(3)若AD=3,PE=2DO,求⊙O的半径.证明:(1)∵PC是圆的切线,AD⊥PD,∴AD∥OC,∴∠DAC=∠ACO,∵AO=CO,∴∠CAO=∠ACO,∴∠DAC=∠CAO,∴AC是∠DAP的平分线;(2)如右图,连接BC,∵OC=OB,∴∠OCB=∠OBC,∵AB为⊙O的直径,∴∠ACB=90°,∴∠CAB+∠OBC=90°,∵PC是⊙O的切线,∴∠OCB+∠BCP=90°,∴∠CAB=∠BCP,又∵∠CPB=∠APC,∴△CPB∽△APC,∴=,∴PC2=PA•PB;(3)设半径为r,在Rt△PCE中,PE2=(2r)2+PC2=4r2+PC2,∵PE=2DO,∴4DO2=4r2+PC2,∴4(DO2﹣r2)=PC2,∴4DC2=PC2,∴PC=2CD,∵AD∥OC,∴△PCO∽△PDA,∴=,∴=,∴r=2.11.如图,AB是直经,D是的中点,DE⊥AC交AC的延长线于E,⊙O的切线BF交AD的延长线于点F.(1)求证:DE是⊙O的切线.(2)试探究AE,AD,AB三者之间的等量关系.(3)若DE=3,⊙O的半径为5,求BF的长.(1)证明:如图1,连接OC,OD,BC,∵AB是直径,∵DE⊥AC于E,∴∠E=90°,∴∠ACB=∠E,∴BC∥DE,∵点D是的中点,∴,∴∠COD=∠BOD,又∵OC=OB,∴OD垂直平分BC,∵BC∥DE,∴OD⊥DE,∴DE是⊙O的切线;(2)AD2=AE•AB,理由如下:如图2,连接BD,由(1)知,,∴∠EAD=∠DAB,∵AB为直径,∴∠ADB=∠E=90°,∴△AED∽△ADB,∴=,即AD2=AE•AB;(3)由(1)知,∠E=∠ECH=∠CHD=90°,∴四边形CHDE为矩形,∴ED=CH=BH=3,∴OH===4,∴CE=HD=OD﹣OH=5﹣4=1,AC===8,∵BF是⊙O的切线,∴∠FBA=∠E=90°,又∵∠EAD=∠DAB,∴△EAD∽△BAF,∴=,即=,∴BF=.12.如图1,在直角坐标系中,直线l与x、y轴分别交于点A(2,0)、B(0,)两点,∠BAO的角平分线交y轴于点D.点C为直线l上一点,以AC为直径的⊙G经过点D,且与x轴交于另一点E.(1)求出⊙G的半径r,并直接写出点C的坐标;(2)如图2,若点F为⊙G上的一点,连接AF,且满足∠FEA=45°,请求出EF的长?解:(1)连接GD,EC.∵∠OAB的角平分线交y轴于点D,∴∠GAD=∠DAO,∵GD=GA,∴∠GDA=∠GAD,∴∠GDA=∠DAO,∴GD∥OA,∴∠BDG=∠BOA=90°,∵GD为半径,∴y轴是⊙G的切线;∵A(2,0),B(0,),∴OA=2,OB=,在Rt△AOB中,由勾股定理可得:AB===设半径GD=r,则BG=﹣r,∵GD∥OA,∴△BDG∽△BOA,∴=,∴r=2(﹣r),∴r=,∵AC是直径,∴∠AEC=∠AOB=90°,∴EC∥OB,∴==,∴==,∴EC=2,AE=,∴OE=2﹣=,∴C的坐标为(,2);(2)过点A作AH⊥EF于H,连接CE、CF,∵AC是直径,∴AC=2×=∴∠AEC=∠AFC=90°∵∠FEA=45°∴∠FCA=45°∴在Rt△AEH中,由勾股定理可知:AF=CF=,设OE=a∴AE=2﹣a∵CE∥OB∴△ACE∽△ABO∴=,∴CE=,∵CE2+AE2=AC2,∴(2﹣a)2+(2﹣a)2=∴a=或a=(不合题意,舍去)∴AE=∴在Rt△AEH中,由勾股定理可得,AH=EH=,∴在Rt△AEH中,由勾股定理可知:FH2=AF2﹣AH2=()2﹣()2=2,∴FH=,∴EF=EH+FH=.13.如图I,四边形ADBC内接于⊙O,E为BD延长线上一点,AD平分∠EDC,(1)求证:AB=AC;(2)如图2,若CD为直径,过A点的圆的切线交BD延长线于E,若DE=1,AE=2.求⊙O的半径.(1)证明:∵四边形ADBC内接于⊙O,∴∠EDA=∠ACB,由圆周角定理得,∠CDA=∠ABC,∵AD平分∠EDC,∴∠EDA=∠CDA,∴∠ABC=∠ACB,∴AB=AC;(2)解:连接AO并延长交BC于H,AM⊥CD于M,∵AB=AC,∴AH⊥BC,又AH⊥AE,∴AE∥BC,∵CD为⊙O的直径,∴∠DBC=90°,∴∠E=∠DBC=90°,∴四边形AEBH为矩形,∴BH=AE=2,∴BC=4,∵AD平分∠EDC,∠E=90°,AM⊥CD,∴DE=DM=1,AE=AM=2,在Rt△ABE和Rt△ACM中,∴Rt△ABE≌Rt△ACM(HL),∴BE=CM,设BE=x,CD=x+2,在Rt△BDC中,x2+42=(x+2)2,解得,x=3,∴CD=5,∴⊙O的半径为2.5.14.如图,AB为⊙O的直径,弦CD⊥AB,垂足为F,CG⊥AE,交弦AE的延长线于点G,且CG=CF.(1)求证:CG是⊙O的切线;(2)若AE=2,EG=1,求由弦BC和所围成的弓形的面积.解:(1)证明:连接OC.∵CD⊥AB,CG⊥AE,CG=CF,∴∠CAG=∠BAC,∠AFC=∠G=90°,∵OA=OC,∴∠ACO=∠BAC.∴∠CAG=∠ACO,∴OC∥AG,∴∠OCG=180°﹣∠G=90°,∴CG是⊙O的切线;(2)过点O作OM⊥AE,垂足为M,则AM=ME=AE=1,∠OMG=∠OCG=∠G=90°.∴四边形OCGM为矩形,∴OC=MG=ME+EG=2.在Rt△AGC和Rt△AFC中∴Rt△AGC≌Rt△AFC(HL),∴AF=AG=AE+EG=3,∴OF=AF﹣OA=1,在Rt△COF中,∵cos∠COF==.∴∠COF=60°,CF=OC•sin∠COF=2×=,=﹣×2×=π﹣.∴S弓形BC15.如图,AB、AC是⊙O的两条弦,M是的中点,N是的中点,弦MN分别交AB、AC 于点P、D.(1)求证:AP=AD;(2)连接PO,当AP=3,OP=,⊙O的半径为5,求MP的长.(1)证明:连AM,AN,∵=,=,∴∠BAM=∠ANM,∠AMN=∠CAN,∵∠APD=∠AMN+∠BAM,∠ADP=∠CAN+∠ANM,∴∠APD=∠ADP,∴AP=AD.(2 )解:连AO,OM交AB于E,设PE=x,∵=,∴OM⊥AB,∴∠AEO=90°,∵OE2=OA2﹣AE2=OP2﹣PE2∴52﹣(x+3)2=()2﹣x2,∴x=1,∴AE=4,OE=3,ME=2,∴MP===.16.如图,在平面直角坐标系中,O为坐标原点,点A的坐标为(0,4),点B的坐标为(4,0),点C的坐标为(﹣4,0),点P在AB上,连结CP与y轴交于点D,连结BD.过P,D,B三点作⊙Q与y轴的另一个交点为E,延长DQ交⊙Q于点F,连结EF,BF.(1)求直线AB的函数解析式;(2)求证:∠BDE=∠ADP;(3)设DE=x,DF=y.请求出y关于x的函数解析式.解:(1)设直线AB的函数解析式为y=kx+4,将点B(4,0)代入y=kx+4,得:4k+4=0,解得:k=﹣1,则直线AB的函数解析式为y=﹣x+4;(2)由已知得:OB=OC,∠BOD=∠COD=90°,又∵OD=OD,∴△BOD≌△COD(SAS),∴∠BDO=∠CDO,∵∠CDO=∠ADP,∴∠BDE=∠ADP;(3)如图2,连结PE,∵∠ADP是△DPE的一个外角,∴∠ADP=∠DEP+∠DPE,∵∠BDE是△ABD的一个外角,∴∠BDE=∠ABD+∠OAB,∵∠ADP=∠BDE,∠DEP=∠ABD,∴∠DPE=∠OAB,∵OA=OB=4,∠AOB=90°,∴∠OAB=45°,∴∠DPE=45°,∴∠DFE=∠DPE=45°,∵DF是⊙Q的直径,∴∠DEF=90°,∴△DEF是等腰直角三角形,∴DF=DE,即y=x.17.如图1,AB为⊙O的弦,弧AC=弧BC,G为弧BC上一点,连接AG交BC于点D,连接CG、BG.(1)求证:∠GCB+∠GBC=∠CBA;(2)如图2,若AB为⊙O的直径,求证:AG=CG+BG;(3)如图3,在(2)的条件下,F为圆上一点,连接CF交AB于点E,若CD:DB=5:7,∠ACF=∠CAG,AE=,求线段CG的长.证明:(1)∵=,∴∠CAB=∠CBA,∵∠GCB=∠GAB,∠CBG=∠CAG,∴∠GCB+∠GBC=∠GAB+∠CAG=∠CAB=∠CBA;(2)如图2,过点C作CH⊥CG交AG于点H,∵AB为⊙O的直径,∴∠AGB=∠ACB=90°,且AC=BC,∴∠ABC=∠BAC=45°.∵∠AGC=∠ABC,∴∠AGC=45°,且CH⊥CG,∴∠CHG=∠AGC=45°,∴CH=CG,∠AHC=135°∴GH=CG.∵∠CGB=∠CGA+∠AGB=135°,∴∠AHC=∠CGB,CH=CG,∠CAH=∠CBG,∴△ACH≌△BCG(AAS)∴AH=BG,∴AG=CG+BG;(3)∵CD:DB=5:7,∴设CD=5a,DB=7a,∴BC=AC=12a,∴AD===13a.如图3,过点E作EH⊥AC于H,作AP平分∠GAC,交BC于P,作PQ⊥AD于Q,∴∠CAP=∠DAP=∠CAG,∠PQA=90°=∠ACB,且AP=AP,∴△CAP≌△QAP(AAS)∴AC=AQ=12a,CP=PQ,∴QD=AD﹣AQ=a.∵PD2=PQ2+QD2,∴(5﹣PQ)2=PQ2+a2,∴PQ=a,∴CP=a,∵HE⊥AC,∠CAB=45°,∴∠HEA=∠CAB=45°,∴AH=HE,∵AE2=AH2+HE2=(3)2,∴AH=HE=3,∵∠ACF=∠CAG,∠CAP=∠DAP=∠CAG,∴∠ACF=∠CAP,∴tan∠CAP=tan∠ACF=,∴∴CH=15,∴AC=3+15=18=12a,∴a=,∴CD=,BD=,AD=.∵∠ACD=∠AGB=90°,∠CAD=∠DBG,∴△ACD∽△BGD,∴,∴,∴BG=,DG=,∴AG=AD+DG=+=,∵AG=CG+BG,∴==CG,∴CG=.18.如图1,在△ABC中,∠ACB=90°,∠ABC的角平分线交AC上点E,过点E作BE的垂线交AB于点F,△BEF的外接圆⊙O与CB交于点D.(1)求证:AC是⊙O的切线;(2)若BC=9,EH=3,求⊙O的半径长;(3)如图2,在(2)的条件下,过C作CP⊥AB于P,求CP的长.(1)证明:连接OE.如图1所示:∵BE⊥EF,∴∠BEF=90°,∴BF是圆O的直径,∴OB=OE,∴∠OBE=∠OEB,∵BE平分∠ABC,∴∠CBE=∠OBE,∴∠OEB=∠CBE,∴OE∥BC,∴∠AEO=∠C=90°,∴AC⊥OE,∴AC是⊙O的切线;(2)解:∵∠ACB=90°,∴EC⊥BC,∵BE平分∠ABC,EH⊥AB,∴EH=EC,∠BHE=90°,在Rt△BHE和Rt△BCE中,,∴Rt△BHE≌Rt△BCE(HL),∴BH=BC=9,∵BE⊥EF,∴∠BEF=90°=∠BHE,BF是圆O的直径,∴BE===3,∵∠EBH=∠FBE,∴△BEH∽△BFE,∴=,即=,解得:BF=10,∴⊙O的半径长=BF=5;(3)解:连接OE,如图2所示:由(2)得:OE=OF=5,EC=EH=3,∵EH⊥AB,∴OH===4,在Rt△OHE中,cos∠EOA==,在Rt△EOA中,cos∠EOA==,∴OA=OE=,∴AE===,∴AC=AE+EC=+3=,,∵AB=OB+OA=5+=,∠ACB=90°,∴△ABC的面积=AB×CP=BC×AC,∴CP===.19.△ABC内接于⊙O,弦BD与AC相交于点E,连接BO,且AC⊥BD.(1)如图1,求证:∠OBC=∠ABD;(2)如图2,作CG⊥AB于G,交BD于F,若∠BAC=∠ABO+30°,求证:BO=BF;(3)如图3,在(2)的条件下,直线OF与AB相交于点M,与BC相交于点N,若NC:MA=5:3,且S=16,求线段AE的长.△BMN解:(1)延长BO交⊙O于点K,连接CK,则BK为⊙O的直径,∴∠BCK=90°,∴∠OBC+∠K=90°,∵AC⊥BD,∴∠AEB=90°,∴∠ABE+∠A=90°,∵,∴∠A=∠K∴∠OBC=∠ABD;(2)作OH⊥BC于H,则BC=2BH,∵∠K+∠KBC=90°,∴∠BAC+∠KBC=90°,∴∠ABO+30°+∠KBC=90°,∴∠ABC=60°∴BC=2BG,∴BG=BH,且∠ABD=∠OBC,∠BGF=∠BHO=90°,∴△BFG≌△BOH(AAS)∴BO=BF;(3)作OH⊥BC于H,∵△BFG≌△BOH,∴BF=BO,∴∠MFB=∠BON,且BF=BO,∠ABD=∠OBN,∴△BFM≌△BON(ASA)∴BM=BN,且∠ABC=60°,∴△MBN为等边三角形,∴S=BM2=16,△BMN∴BM=BN=8,∵NC:MA=5:3,∴设NC=5x,AM=3x,∴BC=8+5x,BH==BG,CG=BG=•()∴GM=HN=8﹣=,∵∠MNB=60°,∴OH=HN=•(),∵∠OBC=∠ABD=∠ACG,∴tan∠OBC=tan∠ACG,∴,∴=,∴x=1,∴AM=3,CN=5,HN=GM=,OH=,BH=∴OB===7,∵sin∠OBH=sin∠ABD,∴∴AE==.20.如图1,AB为⊙O的直径,BC为⊙O的切线,过点B作OC的垂线与⊙O的另一交点为点E,连接CE.(1)求证:CE为⊙O的切线;(2)如图2,过点C作BC的垂线交AE的延长线于点F,若BC=AB,求的值.解:(1)证明:如图,连接OE,设OC与BE的交点为M∵OB=OE∠OBM=∠OEM∵BE⊥OC∴∠BMO=∠EMO∴∠BOC=∠EOC∴在△OBC和△OEC中∴△OBC≌△OEC(SAS)∴∠OEC=∠OBC∵BC为⊙O的切线∴OB⊥BC∴∠OBC=90°∴∠OEC=90°∴CE为⊙O的切线;(2)∵AB为⊙O的直径,∴∠BEA=90°∵OB⊥BC∴AF∥OC∵AB⊥BC,CF⊥BC∴AO∥CF∴四边形AOCF为平行四边形∴AF=OC∵BC=AB∴设BC=AB=2k,则OB=OA=k在Rt△OBC中,由勾股定理得:OC==k∴AF=k∵∠ABE+∠CBE=90°,∠CBE+∠BCO=90°∴∠ABE=∠BCO∴sin∠ABE=sin∠BCO∵=sin∠BCO==∴=sin∠ABE=∴AE=×2k=∴EF=AF﹣AE=∴=.。
2020九年级中考数学 专题复习:圆的综合(含答案)
2020中考数学 专题复习:圆的综合(含答案)类型一 与基本性质有关的证明与计算1. 如图,AB 是⊙O 的直径,点D 是AE ︵上的一点,且∠BDE =∠CBE ,BD 与AE 交于点F . (1)求证:BC 是⊙O 的切线;(2)若BD 平分∠ABE ,求证:DE 2=DF ·DB ;(3)在(2)的条件下,延长ED ,BA 交于点P ,若P A =AO ,DE =2,求PD 的长.第1题图(1)证明:∵AB 是⊙O 的直径, ∴∠AEB =90°, ∴∠EAB +∠ABE =90°,∵∠BDE =∠EAB ,∠BDE =∠CBE , ∴∠EAB =∠CBE ,∴∠ABE +∠CBE =∠ABE +∠EAB =90°,即CB ⊥AB . 又∵AB 是⊙O 的直径, ∴BC 是⊙O 的切线; (2)证明:∵BD 平分∠ABE , ∴∠ABD =∠DBE ,AD ︵=DE ︵, ∴∠ABD = ∠DEA , ∴∠DEA = ∠DBE , ∵∠EDB =∠BDE , ∴△DEF ∽△DBE ,∴DE DB =DF DE, ∴DE 2= DF ·DB ;(3)解:如解图,连接OD ,延长ED 交BA 的延长线于点P ,第1题解图∵OD =OB , ∴∠ODB =∠OBD , ∵BD 平分∠ABE , ∴∠OBD = ∠EBD , ∴∠EBD =∠ODB , ∴OD ∥BE , ∴△PDO ∽△PEB , ∴PD PE =POPB, ∵P A =AO , ∴P A =AO =OB , ∴PO PB =PD PE =23, ∵PD PE =PD PD +DE =23,DE =2, ∴PD =4.2. 如图,AB 是⊙O 的直径,C 是BD ︵的中点,CE ⊥AB ,垂足为E ,BD 交CE 于点F . (1)求证:CF =BF ;(2)若BE =4,EF = 3,求⊙O 的半径.第2题图(1)证明:连接AC ,如解图,∵点C 是BD ︵的中点,∴∠DBC =∠BAC , 在△ABC 中,∠ACB =90°,CE ⊥AB ,第2题解图∴∠BCE +∠ECA =∠BAC +∠ECA =90°, ∴∠BCE =∠BAC , 又∵C 是BD ︵的中点, ∴∠DBC =∠CDB , ∴∠BCE =∠DBC , ∴CF = BF ;(2)解:∵BE = 4,EF = 3, ∴BF =32+42= 5,∴CF = 5,∴CE = 5+3= 8, ∵AB 是⊙O 的直径, ∴∠ACB = 90°, ∴CE 2=BE ·AB , ∴AB =CE 2BE = 644= 16,∴AO = 8,∴⊙O 的半径为8.3. 如图,⊙O 中,直径CD ⊥弦AB 于E ,AM ⊥BC 于M ,交CD 于N ,连接AD . (1)求证:AD =AN;(2)若AB =8,ON = 1,求⊙O 的半径.第3题图(1)证明:∵CD ⊥AB , ∴∠CEB = 90°, ∴∠C +∠B = 90°, 同理∠C +∠CNM = 90°, ∴∠CNM =∠B , ∵∠CNM = ∠AND , ∴∠AND = ∠B , ∵AC ︵=AC ︵, ∴∠ADN = ∠B , ∴∠AND = ∠ADN , ∴AN =AD ;第3题解图(2)解:设OE 的长为x ,连接OA , ∵AN =AD ,CD ⊥AB , ∴DE = NE =x +1,∴OD =OE +ED =x +x +1=2x +1, ∴OA = OD = 2x +1,∴在Rt △OAE 中,OE 2+AE 2= OA 2, ∴x 2+42=(2x +1)2,解得x =53或x =-3(不合题意,舍去),∴OA = 2x +1= 2×53+1= 133,即⊙O 的半径为133.4. 如图,A 、B 、C 为⊙O 上的点,PC 过O 点,交⊙O 于D 点,PD = OD ,若OB ⊥AC 于E 点.第4题图(1)判断A 是否是PB 的中点,并说明理由; (2)若⊙O 半径为8,试求BC 的长. 解:(1)A 是PB 的中点, 理由:连接AD ,如解图,第4题解图∵CD 是⊙O 的直径, ∴AD ⊥AC , ∵OB ⊥AC , ∴AD ∥OB , ∵PD = OD ,∴AD 是△PBO 的中位线, ∴P A =AB , ∴A 是PB 的中点; (2)∵AD ∥OB , ∴△APD ∽△BPO , ∴AD BO =PD PO = 12, ∵⊙O 半径为8, ∴OB = 8, ∴AD =4, ∴AC =CD 2-AD 2= 415,∵OB ⊥AC , ∴AE =CE = 215, ∴OE =12AD = 2,∴BE =6, ∴BC =BE 2+CE 2=4 6.5. 如图,AB 是⊙O 的直径,点C 、E 是⊙O 上的点,且AC ︵=EC ︵,连接AC 、BE ,并延长交于点D ,已知AB =2AC =6.第5题图(1)求DC 的长; (2)求EC ︵的长.解:(1)如解图,连接BC ,第5题解图∵ AB 是⊙O 的直径, ∴∠ACB =90°,CB ⊥AD , ∵AC ︵=EC ︵, ∴∠ABC =∠DBC , ∴△ABD 为等腰三角形, ∵AB =2AC =6, ∴DC =AC =3;(2)如解图,连接OC 、OE , ∵AB =2AC =6,∠ACB =90°, ∴∠ABC =30°,OC =OE =3, ∴∠DBC =∠ABC =30°∴∠COE =2∠DBC =60°,∴l EC ︵=60×π×3180=π.6. 如图,AB 为圆O 的直径,CD ⊥AB 于点E ,交圆O 于点D ,OF ⊥AC 于点F .第6题图(1)求证:OF =12BD ;(2)当∠D =30°,BC =1时,求圆中阴影部分的面积. (1)证明:如解图,连接OC ,第6题解图∵OF ⊥AC ,OA =OC , ∴AF =FC ,∵OA =OB ,∴OF 是△ABC 的中位线,∴OF =12BC ,∵AB ⊥CD ,∴BC ︵=BD ︵, ∴BC =BD , ∴OF =12BD ;(2)解:∵∠D =30°, ∴∠A =∠D =30°, ∴∠COB =2∠A =60°, ∴∠AOC =120°,∵AB为⊙O的直径,∴∠ACB=90°,在Rt△ABC中,BC=1,∴AB=2,AC=3,由(1)可知OF=12BC=1 2,∵∠COB=60°,OB=OC,∴△BOC是等边三角形,∴OA=OB=BC=1,∴S△AOC=12AC ·OF=12×3×12=34,S扇形AOC=120πOA2360=π3,∴S阴影=S扇形AOC-S△AOC=π3-34.7. 如图,△ABC内接于⊙O,AB为⊙O的直径,OD⊥AB交⊙O于点D,AC、OD的延长线交于点E,连接CD.(1)求证:∠ECD=∠BCD;(2)当AC=CD时,求证:CE=CB.第20题图证明:(1)∵AB是⊙O的直径,∴∠ACB=∠ECB=90°,∵OD⊥AB,∴∠DOB=90°,∴∠BCD=12∠DOB=45°,∴∠ECD=∠ECB-∠BCD=90°-45°=45°,∴∠ECD =∠BCD ;(2)如解图,连接OC 、BD ,第7题解图∵AC =CD ,∴∠AOC =∠DOC ,∠ABC =∠DBC , 又∵∠E +∠A =∠ABC +∠A =90°, ∴∠E =∠ABC =∠DBC , 在△ECD 和△BCD 中⎩⎨⎧∠E =∠DBC∠ECD =∠BCD CD =CD, ∴△ECD ≌△BCD (AAS), ∴CE = CB .8. 如图,四边形ABCD 内接于⊙O ,且BD 为直径,∠ACB = 45°,过A 点的AC 的垂线交BC 的延长线于点E . (1)求证:BE = DC ; (2)如果AD =2,求图中阴影的面积.第8题图解:(1)∵BD 是⊙O 的直径, ∴∠BAD =90°,∵∠ACB =45°,∴∠ADB =∠ACB = 45°, ∵AE ⊥AC ,∴△ACE 与△ABD 是等腰直角三角形,∴AE = AC ,AB = AD ,∠EAC = ∠BAD = 90°, ∴∠EAB = ∠CAD , 在△ABE 与△ADC 中,⎩⎨⎧AE =AC∠EAB = ∠CAD AB =AD, ∴△ABE ≌△ADC , ∴BE =DC ;第8题解图(2)如解图,连接AO ,则∠AOD = ∠ABD =90°, ∵AD = 2, ∴AO = OD = 1, ∴S 阴影= S 扇形-S △AOD =90 ·π×12360-12×1×1= π4-12. 9. 如图,在△ABC 中,以AC 为直径的⊙O 分别交AB ,BC 于点D ,E ,连接DE ,AD =BD ,∠ADE =120°. (1)证明:△ABC 是等边三角形; (2)若AC =2,求图中阴影部分的面积.第9题图(1)证明:如解图,连接CD , ∵AC 为⊙O 的直径, ∴CD ⊥AB , ∵AD =BD , ∴AC =BC ,∵∠ADE =120°,∴∠ACE =60°, 又∵AC =BC ,∴△ABC 是等边三角形;第9题解图(2)解:∵△ABC 是等边三角形, ∴∠CAB =∠ACB =∠B =60°,∵∠ADE =120°,∴∠BED =∠BDE =∠B =60°, ∴△BDE 是等边三角形, ∴BD =ED , ∵AD =BD ,∴DE =AD = BE =12AB = 12BC ,∴DE ︵=AD ︵,DE 为△ABC 的中位线,E 为BC 的中点, ∴S 弓形DE =S 弓形AD ,∴S 阴影=S △DEB = 12S △BDC ,∵AC =2,∴AD =BD =1,∴DC =3,∴S 阴影=12×12×1×3= 34.10. 如图,在△ABC 中,AB = AC ,以AB 为直径的半圆分别交AC ,BC 边于点D ,E ,连接BD .第10题图(1)求证:点E 是BD ︵的中点;(2)当BC = 12,且AD ∶CD =1∶2,求⊙O 的半径. (1)证明:如解图,连接AE ,DE ,第10题解图∵AB 是直径, ∴AE ⊥BC , ∵AB = AC , ∴BE = EC ,∵∠CDB =90°,DE 是斜边BC 的中线, ∴DE = EB , ∴ED ︵= EB ︵,即点E 是BD ︵的中点; (2)设AD =x ,则CD = 2x , ∴AB =AC =3x ,∵AB 为直径, ∴∠ADB =90°, ∴BD 2= (3x )2-x 2=8x 2, 在Rt △CDB 中, (2x )2+8x 2=122, ∴x =23, ∴OA = 32x =33,即⊙O 的半径是3 3.类型二 与切线有关的证明与计算1. 如图,AB 是⊙O 的切线,B 为切点,圆心O 在AC 上,∠A = 30°,D 为BC ︵的中点.第1题图(1)求证:AB =BC ;(2)试判断四边形BOCD 的形状,并说明理由. 解:(1)∵AB 是⊙O 的切线,∴∠OBA = 90°,∠AOB = 90°-30°= 60°. ∵OB =OC ,∴∠OBC =∠OCB ,∠OCB = ∠A = 30°, ∴AB = BC ;(2)四边形BOCD 为菱形,理由如下:连接OD 交BC 于点M , ∵D 是BC ︵的中点,第1题解图∴OD 垂直平分BC , 在Rt △OMC 中, ∵∠OCM = 30°, ∴OC =2OM =OD , ∴OM =MD ,∴四边形BOCD 为菱形.2. 如图,AB 为⊙O 的直径,C ,D 为⊙O 上两点,∠BAC =∠DAC ,过点C 作直线EF ⊥AD ,交AD 的延长线于点E ,连接BC .(1)求证:EF 是⊙O 的切线;(2)若DE =1,BC =2,求劣弧BC ︵的长l .第2题图(1)证明:如解图,连接OC , ∵OA =OC , ∴∠OAC =∠OCA , ∵∠BAC =∠DAC , ∴∠DAC =∠OCA , ∴AD ∥OC , ∵EF ⊥AD , ∴∠AEC =90°,∴∠OCF =∠AEC =90°, ∴EF 是⊙O 的切线;(2)解:如解图,连接OD ,DC .第2题解图∵∠DAC =12∠DOC ,∠OAC =12∠BOC ,∠DAC =∠OAC , ∴∠DOC =∠BOC , ∴DC =BC =2, 在Rt △EDC 中, ∵ED =1,DC =2, ∴sin ∠ECD =DE DC =12, ∴∠ECD =30°,∴∠OCD =90°-30°=60°, 又∵OC =OD ,∴△DOC 为等边三角形,∴∠BOC =∠COD =60°,OC =2, ∴l =60π×2180=23π. 3. 如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 与边BC ,AC 分别交于D ,E 两点,过点D 作DF ⊥AC ,垂足为点F .第3题图(1)求证:DF 是⊙O 的切线; (2)若AE =4,cos A =25,求DF 的长.(1)证明:如解图,连接OD ,第3题解图∵OB =OD , ∴∠ODB =∠B . 又∵AB =AC , ∴∠C =∠B . ∴∠ODB =∠C . ∴OD ∥AC , ∵DF ⊥AC , ∴∠DFC =90°.∴∠ODF =∠DFC =90°, ∵OD 是⊙O 的半径, ∴DF 是⊙O 的切线;(2)解:如解图,过点O 作OG ⊥AC ,垂足为点G . ∴AG =12AE =2.∵cos A =AG OA =25,∴OA =225=5.∴OG =OA 2-AG 2=21.∵∠ODF =∠DFG =∠OGF =90°. ∴四边形OGFD 为矩形, ∴DF =OG =21.4. 如图,已知△ABC为直角三角形,∠C=90°,边BC是⊙O的切线,切点为D,AB经过圆心O并与圆相交于点E,连接AD.(1)求证:AD平分∠BAC;(2)若AC=8,tan∠DAC=34,求⊙O的半径.第4题图(1)证明:如解图,连接OD,第4题解图∵BC是⊙O的切线,∴OD⊥BC,∴∠ODB=90°,又∵∠C=90°,∴AC∥OD,∴∠CAD=∠ADO,又∵OA=OD,∴∠OAD=∠ADO,∴∠CAD=∠OAD,∴AD平分∠BAC;(2)解:∵AC=8,tan∠P AC=CDAC=34,∴CD=6,在Rt△ACD中,AD=AC2+CD2=10,如解图,连接DE ,∵AE 为⊙O 的直径, ∴∠ADE = 90°, ∴∠ADE = ∠C , ∵∠CAD =∠OAD , ∴△ACD ∽△ADE , ∴AD AC = AE AD ,即108= AE10, ∴AE =252,∴⊙O 的半径是254.5. 如图,AB 为⊙O 的直径,CB ,CD 分别切⊙O 于点B ,D ,CD 交BA 的延长线于点E ,CO 的延长线交⊙O 于点G ,EF ⊥OG 于点F .(1)求证:∠FEB =∠ECF ; (2)若BC =6,DE =4,求EF 的长.第5题图(1)证明:∵EF ⊥OG ,BC 是⊙O 的切线, ∴∠CBA = ∠EFC =90°,∴∠EOF +∠FEB = 90°,∠BOC +∠BCO =90°, ∵∠EOF = ∠COB , ∴∠FEB = ∠BCO , ∵CB ,CD 是⊙O 的切线, ∴∠ECF = ∠BCO , ∴∠FEB = ∠ECF ;(2)解:如解图,连接OD ,则OD ⊥CE ,第5题解图∵CB,CD为⊙O的切线,BC=6,DE=4,∴CD=BC=6,∴CE=CD+DE=6+4=10,在Rt△CBE中,根据勾股定理得BE=CE2-BC2=102-62=8,设OD=x,则OE=8-x,在Rt△ODE中,根据勾股定理得OE2=OD2+ED2,即(8-x)2=x2+42,解得x=3,则OE=5.在Rt△ODC中,根据勾股定理得OC=CD2+OD2=62+32=35,∵∠EOF=∠COB,∠EFO=∠CBO,∴△EFO∽△CBO,∴EFCB=OEOC,即EF6=535,解得EF=2 5.6. 如图,AC为⊙O的直径,B为⊙O上一点,∠ACB=30°,延长CB至点D,使得CB=BD,过点D作DE⊥AC,垂足E在CA的延长线上,连接BE.(1)求证:BE是⊙O的切线;(2)当BE=3时,求图中阴影部分的面积.第6题图 (1)证明:如解图,连接OB,第6题解图∵OB =OC ,∠ACB =30°,∴∠OBC =∠OCB =30°,∵DE ⊥AC ,∴∠DEC =90°,∴∠D =60°,∵CB =BD ,∴BE =BD ,∴△BDE 为等边三角形,∴∠DBE =60°,∴∠EBO =180°-∠DBE -∠OBC =180°-60°-30°=90°,即OB ⊥BE ,又∵OB 为⊙O 的半径,∴BE 是⊙O 的切线;(2)解:∵AC 为⊙O 的直径,∴∠ABC =90°,在Rt △ABC 中,BC =BD =BE =3,∠ACB =30°,∴AB =BC ·tan30°= 3,AC = 2AB =23,∴OA =12AC =3,∴S △ABC =12AB ·BC = 12×3×3=332, ∴S 阴影= S 半圆-S △ABC = 12π×(3)2-332=3π-332. 7. 如图,已知AB 是⊙O 的直径,CD 与⊙O 相切于C ,BE ∥CO .(1)求证:BC 是∠ABE 的平分线;(2)若DC = 8,⊙O 的半径OA =6,求CE 的长.第7题图(1)证明:∵BE ∥CO ,∴∠OCB =∠EBC ,∵OC =OB ,∴∠OCB =∠OBC ,∴∠OBC =∠EBC ,∴BC 是∠ABE 的平分线;(2)解:∵CD 是⊙O 的切线,∴CD ⊥CO ,∴∠DCO =90°,在Rt △DCO 中,有DC 2+CO 2=DO 2,即82+62=DO 2,∴DO =10,∵CO ∥BE ,∴CE DC =BO DO ,即CE 8=610, ∴CE =4.8.8. 如图,在Rt △ABC 中,∠ABC =90°,以AB 为直径的⊙O 交AC 于点D ,BD 是⊙O 的弦,点E 是BC 的中点,连接DE .第8题图(1)求证:DE 是⊙O 的切线;(2)若CD ∶AD =1∶3,BC =2,求线段BD 的长. (1)证明:如解图,连接OD .第8题解图∵AB 是⊙O 的直径,∴∠ADB =90°,∴∠CDB =90°,在Rt △CDB 中,∵点E 是BC 的中点,∴DE 是Rt △CDB 斜边BC 上的中线,∴ED =12BC ,EB =12BC , ∴ED =EB ,∴∠EDB =∠EBD ,∵OD =OB ,∴∠ODB =∠OBD ,∠OBD +∠EBD =∠ODB +∠EDB =∠ABC =90°,∴∠ODE =90°,∴OD ⊥DE ,又∵OD 是⊙O 的半径,∴DE 是⊙O 的切线.(2)解:在Rt △CDB 和在Rt △CBA ,∵∠C=∠C ,∠CDB=∠ABC=90°,∴Rt △CDB ≌Rt △CBA.∴CD :BC= BC :AC ,∵CD :AD=1:3,∴设CD 为x ,则AD =3x ,AC=4x ,∴x :2=2:4x ,解得x 1=1, x 2=-1(舍),∴CD =1,∴BD=222221 3.BC CD -=-=9. 如图,在⊙O 中,AB 为直径,C 为圆上一点且∠P +12∠AOC =90°. (1)求证:P A 是⊙O 的切线;(2)cos B =45,P A =8,求⊙O 的半径.第9题图(1)证明:∵∠B 与∠AOC 所对的弧都为弧AC ,∴∠B =12∠AOC , 又∵∠P +12∠AOC =90°, ∴∠P +∠B =90°.在△ABP 中,∠BAP =180°-90°=90°,∴P A ⊥AB .又∵AB 为⊙O 的直径,∴P A 是⊙O 的切线;(2)解:在Rt △ABP 中,∵cos B =45,P A =8,∴AB PB =45. ∴设AB =4x ,则PB =5x ,根据勾股定理得P A 2+AB 2=PB 2,∴82+(4x )2=(5x )2,化简得:9x 2=64,解得x =83. ∴AB =4×83=323, ∴AO =12AB =12×323=163. ∴⊙O 的半径为163.10. 如图,四边形ABCD 内接于⊙O ,点E 在对角线AC 上,EC = BC = DC .(1)若∠CDB =39°,求∠BAD 的度数;(2)求证:∠1=∠2.第10题图(1)解:∵BC =DC ,∴∠CBD =∠CDB = 39°,∵∠BAC =∠CDB = 39°,∠CAD = ∠CBD = 39°,∴∠BAD =∠BAC +∠CAD = 39°+39°= 78°;(2)证明:∵BC = EC ,∴∠CBE =∠CEB ,∵∠CEB =∠2+∠BAE ,∠CBE =∠1+∠CBD ,∴∠2+∠BAE = ∠1+∠CBD ,∵∠BAE =∠CBD ,∴∠1= ∠2.。
2020年中考数学专题《圆的综合》针对训练卷(附解析)
2020年中考数学专题《圆的综合》针对训练卷时间:100分钟满分:100分一.选择题(每题3分,共30分)1.下列说法正确的有()①相等的圆心角所对的弧相等;②长度相等的两条弧是等弧;③三角形的外心到三角形各顶点的距离相等;④三点可以确定一个圆.A.4个B.3个C.2个D.1个2.已知AB是半径为5的圆的一条弦,则AB的长不可能是()A.4B.8C.10D.123.已知,在△ABC中,∠A=30°,∠B=135°,CD⊥AB,且CD=1.若以点A为圆心,为半径作⊙A,以点B为圆心,1为半径作⊙B,则⊙A与⊙B的位置关系是()A.内切B.外切C.相交D.外离4.如图,在⊙O中,点A、B、C在圆上,∠AOB=100°,则∠C=()A.45°B.50°C.55°D.60°5.如图,扇形纸扇完全打开后,扇形ABC的面积为240πcm2,∠BAC=150°,BD=2AD,则BD的长度为()A.16cm B.18cm C.20cm D.24cm6.如图,△ABC是⊙O的内接三角形,半径OE⊥AB,垂足为点F,连结弦AE,已知OE=1,则下面的结论:①AE2+BC2=4 ②sin∠ACB=③cos∠B=,其中正确的是()A.①②B.①③C.②③D.②7.边长为2的正六边形的面积为()A.6B.6C.6D.8.如图,BC是⊙O的直径,点A、D在⊙O上,若∠ADC=48°,则∠ACB的度数为()A.42°B.48°C.90°D.52°9.如图,把半径为2的⊙O沿弦AB,AC折叠,使和都经过圆心O,则阴影部分的面积为()A.B.C.2D.410.如图,△ABC是等腰直角三角形,∠ACB=90°,AC=BC=2,把△ABC绕点A按顺时针方向旋转45°后得到△AB′C′,则线段BC在上述旋转过程中所扫过部分(阴影部分)的面积是()A.B.C.πD.2π二.填空题(每题3分,共30分)11.⊙O1,⊙O2交于A,B两点,O1,O2在AB的两侧,AC为⊙O1的直径,延长BC为⊙O2,交于点D、E为弧BC上一点,延长EB与⊙O2交于点F,M,N分别为CD,EF的中点,AC=2CE,求∠AMN=.12.如图,已知O是四边形ABCD内一点,OA=OB=OC,∠ABC=∠ADC=75°,则∠DAO+∠DC O的大小是.13.在平面直角坐标系中,点O为坐标原点,A、B、C三点的坐标为(,0)、(3,0)、(0,5),点D在第一象限,且∠ADB=60°,则线段CD的长的最小值为.14.如图,AB是半圆O的直径,四边形ABCD内接于圆O,连接BD,AD=BD,则∠BCD =度.15.Rt△ABC中,∠C=90°,⊙O是△ABC的内切圆,切点为D,E,F,若AC=6,BC =8,则⊙O的半径为.16.如图,AB是⊙O的直径,AB=4,C为弧AB中点,点P是⊙O上一个动点,取弦AP的中点D,则CD的最大值为.17.正△ABC的边长为4,⊙A的半径为2,D是⊙A上动点,E为CD中点,则BE的最大值为.18.如图,在⊙O中,AB是⊙O的弦,CD是⊙O的直径,CD⊥AB于点M,若AB=CM=4,则⊙O的半径为.19.如图,在平面直角坐标系xOy中,已知⊙A经过点E、B、0、C,点C在y轴上,点E 在x轴上,点A的坐标为(﹣2,1),则sin∠OBC的值是.20.已知A,B,C三点在⊙O上,且AB是⊙O内接正三角形的边长,AC是⊙O内接正方形的边长,则∠BAC的度数为.三.解答题(每题8分,共40分)21.已知AB是⊙O的直径,C,D是⊙O上AB同侧两点,∠BAC=26°.(Ⅰ)如图1,若OD⊥AB,求∠ABC和∠ODC的大小;(Ⅱ)如图2,过点C作⊙O的切线,交AB的延长线于点E,若OD∥EC,求∠ACD的大小.22.如图,在△ABC中,∠ABC=90°,AB=8,BC=6.以BC为直径的⊙O交AC于D,E是AB的中点,连接ED并延长交BC的延长线于点F.(1)求证:DE是⊙O的切线;(2)求DB的长.23.如图,AB是⊙O的直径,P是BA延长线上一点,过点P作⊙O的切线,切点为D,连接BD,过点B作射线PD的垂线,垂足为C.(1)求证:BD平分∠ABC;(2)如果AB=6,sin∠CBD=,求PD的长.24.如图,已知⊙O为△ABC的外接圆,BC为直径,点E在AB上,过点E作EF⊥BC,点G在FE的延长线上,且GA=GE.(1)判断AG与⊙O的位置关系,并说明理由.(2)若BA=8,∠B=37°,求直径BC的长(结果精确到0.01).25.如图,在△ABC中,AB=BC,∠ABC=90°,D是AB上一动点,连接CD,以CD为直径的⊙M交AC于点E,连接BM并延长交AC于点F,交⊙M于点G,连接BE.(1)求证:点B在⊙M上.(2)当点D移动到使CD⊥BE时,求BC:BD的值.(3)当点D到移动到使=30°时,求证:AE2+CF2=EF2.参考答案一.选择题1.解:①在同圆或等圆中相等的圆心角所对的弧相等;故不符合题意;②在同圆或等圆中长度相等的两条弧是等弧;故不符合题意;③三角形的外心到三角形各顶点的距离相等;故符合题意;④不在同一条直线上的三点可以确定一个圆,故不符合题意;故选:D.2.解:因为圆中最长的弦为直径,所以弦长L≤10.故选:D.3.解:在30°的直角三角形ACD中,因为CD=1,则AC=2,AD=,在等腰直角三角形BCD中,求得BD=CD=1,则AB=﹣1,因为⊙A的半径﹣⊙B的半径=﹣1=AB,所以两圆内切.故选:A.4.解:∵,∴∠C=∠AOB,∵∠AOB=100°,∴∠C=50°.故选:B.5.解:设AB=rcm,∵扇形ABC的面积为240πcm2,∠BAC=150°,∴=240π,解得:r=24,即AB=24cm,∵BD=2AD,BD+AD=AB,∴BD=16cm,故选:A.6.解:连接AO,延长AO交⊙O于M,连接BM、CM、EM.∵AM 是直径,∴∠AEM =90°,∴AE 2+EM 2=AM 2,∴AE 2+EM 2=4,显然无法判定BC =EM ,故①错误,∵∠ACB =∠AMB ,∴sin ∠ACB =sin ∠AMB ==,故②正确,∵∠ABC =∠AMC ,∴cos ∠ABC =cos ∠AMC ==, 显然无法判断CM =AE ,故③错误,故选:D .7.解:如图,连接OB ,OC ,过点O 作OH ⊥BC 于H , ∵六边形ABCDEF 是正六边形,∴∠BOC =×360°=60°,∵OB =0C ,∴△OBC 是等边三角形,∴BC =OB =OC =2,∴它的半径为2,边长为2;∵在Rt △OBH 中,OH =OB •sin60°=2×, ∴边心距是:;∴S 正六边形ABCDEF =6S △OBC =6××2×=6. 故选:A .8.解:∵BC是⊙O的直径,∴∠BAC=90°,∵∠B=∠ADC=48°,∴∠ACB=90°﹣∠B=42°;故选:A.9.解:作OD⊥AC于D,连接AO、BO、CO,∵OD=AO==1,AD=AC=,∴∠OAD=30°,∴∠AOC=2∠AOD=120°,同理∠AOB=120°,∴∠BOC=120°,∴阴影部分的面积=2S△AOC=2××2×1=2,故选:C.10.解:∵△ABC是等腰直角三角形,∴∠BAC=45°,AB=AC=2,∵△ABC绕点A按顺时针方向旋转45°后得到△AB′C,∴∠BAB′=∠CAC′=45°,∴点B′、C、A共线,∴线段BC在上述旋转过程中所扫过部分(阴影部分)的面积=S扇形BAB′+S△AB′C﹣S扇形CAC′﹣S△ABC=S扇形BAB′﹣S扇形CAC′=﹣=π.故选:A.二.填空题(共10小题)11.解:如图,连接AD,AF.AE.∵AC是直径,∴∠AEC=90°,∵AC=2EC,∴∠CAE=30°,∵∠ACD=∠AEF,∠ADC=∠AFE,∴△ACD∽△AEF,∴=,∵CM=MD,EN=NF,∴=,∴∠ACM=∠AEN,∴△ACM∽△AEN,∴∠CAM=∠EAN,∴∠MAN=∠CAE=30°,故答案为30°.12.解:由AO=BO=CO可知:O是三角形ABC的外心,∴∠ABC是圆周角,∠AOC是圆心角,∴∠AOC=2∠ABC=150°,又∠D=75°,所以∠DAO+∠DCO=360°﹣150°﹣75°=135°.故答案为:135°.13.解:作圆,使∠ADB=60°,设圆心为P,连结P A、PB、PC,PE⊥AB于E,如图所示:∵A(,0)、B(3,0),∴E(2,0)又∠ADB=60°,∴∠APB=120°,∴PE=1,P A=2PE=2,∴P(2,1),∵C(0,5),∴PC==2,又∵PD=P A=2,∴只有点D在线段PC上时,CD最短(点D在别的位置时构成△CDP)∴CD最小值为:2﹣2.故答案为:2﹣2.14.解:∵AB是半圆O的直径,AD=BD,∴∠ADB=90°,∠DAB=45°,∵四边形ABCD内接于圆O,∴∠BCD=180°﹣45°=135°,故答案为:135.15.解:设⊙O的半径为r,Rt△ABC中,∠C=90°,∴AB==10,∵⊙O是△ABC的内切圆,切点为D,E,F,∴OD⊥BC,OE⊥AC,BD=BF,AE=AF,易得四边形ODCE为正方形,∴CD=CE=OE=r,∴BF+BD=8﹣r,AF=AE=6﹣r,∴8﹣r+6﹣r=10,解得r=2,即⊙O的半径为2.故答案为2.16.解:如图,连接OD,OC,∵AD=DP,∴OD⊥P A,∴∠ADO=90°,∴点D的运动轨迹为以AO为直径的⊙K,连接CK,当点D在CK的延长线上时,CD的值最大,∵C为弧AB中点,∴OC⊥AB,在Rt△OCK中,∵∠COA=90°,OC=2,OK=AO=,∴CK==,∵DK=OA=,∴CD=+,∴CD的最大值为+,故答案为:+.17.解:连接AD,∵⊙A的半径是2,∴⊙A与AC边交于AC的中点F,∵E为CD中点,E点的运动轨迹是以F为圆心FE为半径的圆,∴当点B,E,F三点共线,此时BE与圆A相切时,BE的值最大,∵AF=2,AB=4,∴BF=2,∵E为CD中点,F是AC的中点,∴EF=AD=1,∴BE=2+1;故答案为2+1.18.解:连接OA,如图所示:∵CD是⊙O的直径,CD⊥AB,∴AM=AB=2,∠OMA=90°,设OC=OA=x,则OM=4﹣x,根据勾股定理得:AM2+OM2=OA2,即22+(4﹣x)2=x2,解得:x=2.5;故答案为:2.5.19.解:过A作AM⊥x轴于M,AN⊥y轴于N,连接EC,∵∠COE=90°,∴EC是⊙A的直径,即EC过O,∵A(﹣2,1),∴OM=2,ON=1,∵AM⊥x轴,x轴⊥y轴,∴AM∥OC,同理AN∥OE,∴N为OC中点,M为OE中点,∴OE=2AN=4,OC=2AM=2,由勾股定理得:EC==2,∵∠OBC=∠OEC,∴sin∠OBC=sin∠OE C===.故答案为.20.解:①如图1所示:∵AB是⊙O内接正三角形的边长,AC是⊙O内接正方形的边长,∴∠AOB=120°,∠AOC=90°,∴∠BCO=360°﹣120°﹣90°=150°,∴∠BAC=∠BOC=75°;②如图2所示,同①得出∠BAC=15°,故答案为:75°或15°.三.解答题(共5小题)21.解:(Ⅰ)连接OC,∵AB是⊙O的直径,∴∠ACB=90°,∵∠BAC=26°,∴∠ABC=64°,∵OD⊥AB,∴∠AOD=90°,∴∠ACD=∠AOD=×90°=45°,∵OA=OC,∴∠OAC=∠OCA=26°,∴∠OCD=∠OCA+∠ACD=71°,∵OD=OC,∴∠ODC=∠OCD=71°;(Ⅱ)如图2,连接OC,∵∠BAC=26°,∴∠EOC=2∠A=52°,∵CE是⊙O的切线,∴∠OCE=90°,∴∠E=38°,∵OD∥CE,∴∠AOD=∠E=38°,∴∠ACD=AOD=19°.22.(1)证明:连接BD,DO,∵BC是⊙O的直径,∴∠ADB=90°.∴∠CDB=90°,又∵E为AB的中点,∴DE=EB=EA,∴∠EDB=∠EBD.∵OD=OB,∴∠ODB=∠OBD.∵∠ABC=90°,∴∠EDB+∠OBD=90°.即OD⊥DE.∴DE是⊙O的切线.(2)解:在Rt△ABC中,AB=8,BC=6,∴AC===10,∵,∴.23.解:(1)证明:连接OD,如图1,∵PD是⊙O的切线,∴OD⊥PC,∵BC⊥PC,∴OD∥BC,∴∠ODB=∠CBD,∵OB=OD,∴∠ODB=∠OBD,∴∠CBD=∠OBD,即BD平分∠ABC;(2)连接AD,∵AB是⊙O的直径,∴∠AD B=90°,∵sin∠CBD=sin∠ABD==,AB=6,∴AD=2,∴BD=4,∵sin∠CBD==,∴CD=,∴BC=,∵OD∥BC,∴△PDO∽△PCB,∴,∴=,∴PD=.24.解:(1)AG与⊙O相切,证明:如图连接OA,∵OA=OB,GA=GE,∴∠ABO=∠BAO,∠GEA=∠GAE.∵EF⊥BC,∴∠BFE=90°.∴∠ABO+∠BEF=90°.又∵∠BEF=∠GEA,∴∠GAE=∠BEF.∴∠BAO+∠GAE=90°.∴OA⊥AG,即AG与⊙O相切.(2)∵BC为直径,∴∠BAC=90°,在Rt△BAC中,∠BAC=90°.∵BA=8,∠B=37°,∴B C=≈10.02.25.(1)证明:∵CD为⊙M的直径,∴CM=DM=CD∵∠ABC=90°,∴BM=CM=DM=CD,∴点B在⊙M上.(2)解:连接DE.∵CD为⊙M的直径,CD⊥BE∴∠DEC=90°,=,∴∠DEA=90°,BD=DE,∵AB=BC,∠ABC=90°,∴∠A=∠ACB=45°,∴∠ADE=180°﹣∠A﹣∠AED=45°,∴∠ADE=∠A=45°,∴AE=DE,∴AE=DE=DB,∴AD==BD,∴AB=AD+BD=(+1)BD,∴BC=AB=(+1)BD,∴BC:BD=+1.(3)证明:连接EM.∵∠EMB=2∠ECB,由(2)知∠ECB=45°,∴∠EMB=90°,∴∠EMF=90°,∴EM2+MF2=EF2,∵弧CG等于30°,∴∠CMG=30°,∴∠DME=60°,∵DM=EM,∴△DME是等边三角形,∴DE=EM∠CDE=60°,由(2)知AE=DE,∴AE=ME,∵∠AEC=90°∠CDE=60°,∴∠DCE=30°,∴∠DCE=∠CMG=30°,∴CF=MF,∵EM2+MF2=EF2,∴AE2+CF2=EF2.。
2020中考数学一轮专项复习《圆》中考真题能力提升卷(含答案)
2020中考数学一轮专项复习《圆》中考真题能力提升卷一.选择题(每题3分,共36分)1.如图,AB为⊙O的直径,C,D两点在圆上,∠CAB=20°,则∠ADC的度数等于()A.114°B.110°C.108°D.106°2.已知一个三角形的三边长分别为5,12,13,则其内切圆的半径为()A.1B.2C.4D.6.53.如图,四边形ABCD内接于⊙O,∠A=125°,则∠C的度数为()A.45°B.55°C.65°D.75°4.如图,P A、PB分别与⊙O相切于A、B两点,若∠C=59°,则∠P的度数为()A.59°B.62°C.118°D.124°5.如图,AB是⊙O的直径,点D是半径OA的中点,过点D作CD⊥AB,交〇O于点C,点E为弧BC的中点,连结ED并延长ED交⊙O于点F,连结AF、BF,则()A.sin∠AFE=B.cos∠BFE=C.tan∠EDB=D.tan∠BAF=6.如图,在△ABC中,O是AB边上的点,以O为圆心,OB为半径的⊙O与AC相切于点D,BD平分∠ABC,AD=OD,AB=12,CD的长是()A.2B.2C.3D.47.如图,⊙O是△ABC的外接圆,AD是⊙O的直径,连接CD,若⊙O的半径r=5,AC =8,则cos B的值是()A.B.C.D.8.如图,DE是边长为2的菱形ABCD的高,CE=1,以点D为圆心,DE的长为半径画弧,交BD于F,交DC于G,则图中阴影部分的面积为()A.πB.C.D.9.如图,矩形ABCD中,E是BC上一点,连接AE,将矩形沿AE翻折,使点B落在CD 边F处,连接AF,在AF上取点O,以O为圆心,OF长为半径作⊙O与AD相切于点P.若AB=6,BC=3,则下列结论:①F是CD的中点;②⊙O的半径是2;③AE=4CE;④S=.其中正确的结论有()阴影A.1个B.2个C.3个D.4个10.如图,点I为△ABC的内心,AB=4,AC=3,BC=2,将∠ACB平移使其顶点与I重合,则图中阴影部分的周长为()A.4.5B.4C.3D.211.如图,P为⊙O外一点,P A、PB分别切⊙O于点A、B,CD切⊙O于点E,分别交P A、PB于点C、D,若P A=6,则△PCD的周长为()A.8B.6C.12D.1012.如图,点C是以AB为直径的半圆O的三等分点,AC=2,则图中阴影部分的面积是()A.B.C.D.二.填空题(每题3分,共24分)13.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交BC、AC于点D、E连接EB、DE,EC=2,BC=6,则⊙O的半径为.14.如图,过⊙O外一点P作⊙O的两条切线P A,PB,切点分别为A,B,作直线BC,连接AB,AC,若∠P=80°,则∠C=°.15.在⊙O中,∠AOB=120°,P为劣弧AB上的一点,则∠APB的度数是.16.如图,以点O为圆心的两个圆中,大圆的弦AB切小圆于点C,大圆的半径OA交小圆于点D,若OD=3,tan∠OAB=,则AB的长是.17.如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD 的长为.18.如图,AB是⊙O的直径,AB=4,C为弧AB中点,点P是⊙O上一个动点,取弦AP的中点D,则CD的最大值为.19.正△ABC的边长为4,⊙A的半径为2,D是⊙A上动点,E为CD中点,则BE的最大值为.20.如图,⊙O中,直径CD⊥弦AB于E,AM⊥BC于M,交CD于N,连接AD.①AD AN(填“>”,“=”或“<”);②AB=8,ON=1,⊙O的半径为.三.解答题(每题8分,共40分)21.如图,AB是⊙O的直径,AC是⊙O的切线,切点为A,BC交⊙O于点D,点E是AC 的中点.(1)试判断直线DE与⊙O的位置关系,并说明理由;(2)若⊙O的半径为2,∠B=50°,AC=6,求图中阴影部分的面积.22.如图,以线段AB为直径的⊙O交线段AC于点E,点M是的中点,OM交AC于点D,∠BOE=60°,cos C=,BC=2.(1)求∠A的度数;(2)求证:BC是⊙O的切线;(3)求MD的长度.23.如图,AB是⊙O直径,弦CD⊥AB于点E,过点C作DB的垂线,交AB的延长线于点G,垂足为点F,连结AC.(1)求证:AC=CG;(2)若CD=8,OG=10,求⊙O的半径.24.如图1,在矩形ABCD中,AB=18cm,BC=24cm.在Rt△GEF中,∠GFE=90°.EF =12cm,GF=16cm.E,F两点在BC边上,GE,GF两边分别与矩形ABCD对角线BD 交于M,N两点.现矩形ABCD固定不动,△GEF从点F与点B重合的位置出发,沿BC以2cm/s的速度向点C运动,点P从点F出发,在折线FG﹣GE上以4cm/s的速度向点E运动.⊙G是以G为圆心.GP的长为半径的圆.△GEF与点P同时出发,当点E到达点C时,△GEF和点P同时停止运动.设运动的时间是t(单位:s).(1)当t=2s时,PN=cm,GM=cm;(2)当△PGE为等腰三角形时,求t的值;(3)当⊙G与BD相切时,求t的值.25.如图,⊙O是Rt△ABC的外接圆,直径AB=4,直线EF经过点C,AD⊥EF于点D,∠ACD=∠B.(1)求证:EF是⊙O的切线;(2)若AD=1,求BC的长;(3)在(2)的条件下,求图中阴影部分的面积.参考答案一.选择题1.解:连接BC.∵AB为⊙O直径,∴∠ACB=90°,∵∠CAB=20°,∴∠B=90°﹣20°=70°,在圆内接四边形ABCD中,∠ADC=180°﹣70°=110°.故选:B.2.解:∵AC2+BC2=25+144=169,AB2=169,∴AC2+BC2=AB2,∴∠C=90°,连接OE、OQ,∵圆O是三角形ABC的内切圆,∴AE=AF,BQ=BF,∠OEC=∠OQC=∠C=90°,OE=OQ,∴四边形OECQ是正方形,∴设OE=CE=CQ=OQ=r,∵AF+BF=13,∴12﹣r+5﹣r=13,∴r=2,故选:B.3.解:∵四边形ABCD内接于⊙O,∴∠A+∠C=180°,∵∠A=125°,∴∠C=55°,故选:B.4.解:连接OA、OB,如图所示:∵P A、PB是⊙O切线,∴P A⊥OA,PB⊥OB,∴∠P AO=∠PBO=90°,∵∠P+∠P AO+∠AOB+∠PBO=360°,∴∠P=180°﹣∠AOB,∵∠ACB=59°,∴∠AOB=2∠ACB=118°,∴∠P=180°﹣118°=62°,故选:B.5.解:连接OC、OF,作EG⊥AB于G,∵OD=OC,∴∠OCD=30°,∴∠COD=60°,∴∠BOC=180°﹣60°=120°,∴∠AFE=∠BOC=60°,∴,A错误;∵点E为弧BC的中点,∴∠BOE=∠BOC=60°,∴∠BFE=30°,∴cos∠BFE=,B错误;设OD=a,则OC=2a,由勾股定理得,CD==a,在△COD和△EOG中,,∴△COD≌△EOG(AAS)∴EG=CD=a,OG=OD=a,∴tan∠EDB==,C正确;∵tan∠EDB=,∴∠EDB≠60°,则∠BAF≠60°,∴tan∠BAF≠,D错误;故选:C.6.解:∵⊙O与AC相切于点D,∴AC⊥OD,∴∠ADO=90°,∵AD=OD,∴tan A==,∴∠A=30°,∵BD平分∠ABC,∴∠OBD=∠CBD,∵OB=OD,∴∠OBD=∠ODB,∴∠ODB=∠CBD,∴OD∥BC,∴∠C=∠ADO=90°,∴∠ABC=60°,BC=AB=6,AC=BC=6,∴∠CBD=30°,∴CD=BC=×6=2;故选:A.7.解:∵AD是⊙O的直径,∴∠ACD=90°.Rt△ACD中,AD=2r=10,AC=8.根据勾股定理,得:CD=.∴cos D=.∵∠B=∠D,∴cos B=cos D=,故选:B.8.解:∵DE是边长为2的菱形ABCD的高,CE=1,∴∠DEC=90°,DC=2,∴cos∠DCE=,DE==,∴∠DCE=60°,∴∠ADC=120°,∴∠FDG=60°,∴图中阴影部分的面积为:=,故选:B.9.解:①∵AF是AB翻折而来,∴AF=AB=6,∵AD=BC=3,∴DF==3,∴F是CD中点;∴①正确;②连接OP,∵⊙O与AD相切于点P,∴OP⊥AD,∵AD⊥DC,∴OP∥CD,∴=,设OP=OF=x,则=,解得:x=2,∴②正确;③∵Rt△ADF中,AF=6,DF=3,∴∠DAF=30°,∠AFD=60°,∴∠EAF=∠EAB=30°,∴AE=2EF;∵∠AFE=90°,∴∠EFC=90°﹣∠AFD=30°,∴EF=2EC,∴AE=4CE,∴③正确;④连接OG,作OH⊥FG,∵∠AFD =60°,OF =OG ,∴△OFG 为等边△;同理△OPG 为等边△;∴∠POG =∠FOG =60°,OH =OG =,S 扇形OPG =S 扇形OGF , ∴S 阴影=(S 矩形OPDH ﹣S 扇形OPG ﹣S △OGH )+(S 扇形OGF ﹣S △OFG )=S 矩形OPDH ﹣S △OFG =2×﹣(×2×)=.∴④正确;故选:D .10.解:连接AI 、BI ,∵点I 为△ABC 的内心,∴AI 平分∠CAB ,∴∠CAI =∠BAI ,由平移得:AC ∥DI ,∴∠CAI =∠AID ,∴∠BAI =∠AID ,∴AD =DI ,同理可得:BE =EI ,∴△DIE 的周长=DE +DI +EI =DE +AD +BE =AB =4,即图中阴影部分的周长为4,故选:B .11.解:∵P A 、PB 分别切⊙O 于点A 、B ,CD 切⊙O 于点E ,∴P A =PB =6,AC =EC ,BD =ED ,∴PC+CD+PD=PC+CE+DE+PD=P A+AC+PD+BD=P A+PB=6+6=12,即△PCD的周长为12,故选:C.12.解:连接OC,∵点C是以AB为直径的半圆O的三等分点,∴∠AOC=60°,∠BOC=120°,∵AB为半圆的直径,∴∠ACB=90°,∴BC===2,∴△BOC的面积=×△ABC的面积=××2×2=,扇形BOC的面积==π,则阴影部分的面积=π﹣,故选:A.二.填空题(共8小题)13.解:连接BE,AD,∵AB为⊙O的直径,∴∠ADB=90°,即AD⊥BC,∵BC=6,AB=AC,∴CD=BD=3,∵由圆周角定理得:∠CAD=∠CBE,∵∠C=∠C,∴△CDA∽△CEB,∴=,∴=,解得:AC=9,∵AB=AC,∴AB=9,∴⊙O的半径为=4.5,故答案为:4.5.14.解:连接OA,∵过⊙O外一点P作⊙O的两条切线P A,PB,切点分别为A,B,∴∠P AO=∠PBO=90°,∵∠P=80°,∴∠AOB=360°﹣90°﹣90°﹣80°=100°,∴∠C=AOB=50°,故答案为:50.15.解:作所对的圆周角∠ACB,如图,∴∠ACB=∠AOB=×120°=60°,∵∠ACB+∠APB=180°,∴∠APB=180°﹣60°=120°.故答案为120°.16.解:连接OC,∵大圆的弦AB切小圆于点C,∴OC⊥AB,∴AB=2AC,∵OD=3,∴OC=3,∵tan∠OAB==,∴AC=6,∴AB=12.故答案为:12.17.解:作OH⊥CD于H,连结OC,如图,∵OH⊥CD,∴HC=HD,∵AP=2,BP=6,∴AB=8,∴OA=4,∴OP=OA﹣AP=2,在Rt△OPH中,∵∠OPH=30°,∴∠POH=60°,∴OH=OP=1,在Rt△OHC中,∵OC=4,OH=1,∴CH=,∴CD=2CH=2.故答案为:218.解:如图,连接OD,OC,∵AD=DP,∴OD⊥P A,∴∠ADO=90°,∴点D的运动轨迹为以AO为直径的⊙K,连接CK,当点D在CK的延长线上时,CD的值最大,∵C为弧AB中点,∴OC⊥AB,在Rt△OCK中,∵∠COA=90°,OC=2,OK=AO=,∴CK==,∵DK=OA=,∴CD=+,∴CD的最大值为+,故答案为:+.19.解:连接AD,∵⊙A的半径是2,∴⊙A与AC边交于AC的中点F,∵E为CD中点,E点的运动轨迹是以F为圆心FE为半径的圆,∴当点B,E,F三点共线,此时BE与圆A相切时,BE的值最大,∵AF=2,AB=4,∴BF=2,∵E为CD中点,F是AC的中点,∴EF=AD=1,∴BE=2+1;故答案为2+1.20.解:(1)AD=AN,证明:∵CD⊥AB∴∠CEB=90°∴∠C+∠B=90°,同理∠C+∠CNM=90°∴∠CNM=∠B∵∠CNM=∠AND∴∠AND=∠B,∵∠D=∠B,∴∠AND=∠D,∴AN=AD,故答案为=;(2)设OE的长为x,连接OA∵AN=AD,CD⊥AB∴DE=NE=x+1,∴OD=OE+ED=x+x+1=2x+1,∴OA=OD=2x+1,∴在Rt△OAE中OE2+AE2=OA2,∴x2+42=(2x+1)2.解得x=或x=﹣3(不合题意,舍去),∴OA=2x+1=2×+1=,即⊙O的半径为,故答案为.三.解答题(共5小题)21.解:(1)直线DE与⊙O相切,理由如下:连接OE、OD,如图,∵AC是⊙O的切线,∴AB⊥AC,∴∠OAC=90°,∵点E是AC的中点,O点为AB的中点,∴OE∥BC,∴∠1=∠B,∠2=∠3,∵OB=OD,∴∠B=∠3,∴∠1=∠2,在△AOE和△DOE中,∴△AOE≌△DOE(SAS)∴∠ODE=∠OAE=90°,∴DE⊥OD,∵OD为⊙O的半径,∴DE为⊙O的切线;(2)∵DE、AE是⊙O的切线,∴DE=AE,∵点E是AC的中点,∴AE=AC=3,∠AOD=2∠B=2×50°=100°,∴图中阴影部分的面积=2××2×3﹣=6﹣π.22.(1)解:∵∠BOE=60°,∴∠A=∠BOE=30°.(2)证明:在△ABC中,∵cos C=,∴∠C=60°.又∵∠A=30°,∴∠ABC=90°,∴AB⊥BC.∴BC是⊙O的切线.(3)解:∵点M是的中点,∴OM⊥AE.在Rt△ABC中,∵BC=2,∴AB=BC•tan60°=2×=6.∴OA==3,∴OD=OA=,∴MD=.23.(1)证明:∵DF⊥CG,CD⊥AB,∴∠DEB=∠BFG=90°,∵∠DBE=∠GBF,∴∠D=∠G,∵∠A=∠D,∴∠A=∠G,∴AC=CG.(2)解:设⊙O的半径为r.则AG=OA+OG=r+10,∵CA=CG,CD⊥AB,∴AE=EG=,EC=ED=4,∴OE=AE﹣OA=,在Rt△OEC中,∵OC2=OE2+EC2,∴r2=()2+42,解得r=或(舍弃),∴⊙O的半径为.24.解:(1)当t=2时,BF=2×2=4(cm),FP=2×4=8(cm),∵四边形ABCD是矩形,∴∠C=90°,AB=CD=18cm,tan∠DBC===,∵∠GFE=90°,∴∠BFN=90°=∠C,∴GF∥CD,∴△BFN∽△BCD,∴=,即=,解得:FN=3cm,∴PN=FP﹣FN=5cm;GN=GF﹣FN=16﹣3=13(cm),∵Rt△GEF中,∠GFE=90°.EF=12cm,GF=16cm,∴GE==20cm,tan∠G===,∴∠DBC=∠G,∵∠BFN=180°﹣90°=90°,∴∠DBC+∠BNF=90°,∵∠GNM=∠BNF,∴∠G+∠GNM=90°,∴∠GMN=90°,∴△GNM∽△GEF,∴=,即=,∴GM=cm,故答案为:5,;(2)由题意得:当△PGE为等腰三角形时,PG=PE,如图2所示:设PF=x,则PE=PG=(16﹣x)cm,在Rt△PEF中,由勾股定理得:122+x2=(16﹣x)2,解得:x=,∴PF=,∴t=÷4=(s);(3)由勾股定理得:BD==30cm,由(1)得:∠GMN=90°,∴GM⊥BD,∵GP是⊙G的半径,∴当⊙G与BD相切时,GM=GP,∵∠BME=∠C=90°,∠DBC=∠EBM,∴△BME∽△BCD,∴=,即=,解得:ME=(2t+12),∴GM=GE﹣ME=20﹣(2t+12)=,分两种情况:①当0<t≤4时,∵GP=16﹣4t,∴=16﹣4t,解得:t=;②当4<t≤6时,P与M重合,GP=4t﹣16,∴=4t﹣16,解得:t=;综上所述,当⊙G与BD相切时,t的值为s或s.25.(1)证明:连接OC,∵AB是⊙O直径,∴∠ACB =90°,即∠BCO +∠OCA =90°,∵OB =OC ,∴∠BCO =∠B ,∵∠ACD =∠B ,∴∠ACD +∠OCA =90°,∵OC 是⊙O 的半径,∴EF 是⊙O 的切线;(2)解:在Rt △ABC 和Rt △ACD 中,∵∠ACD =∠B ,∠ACB =∠ADC ,∴Rt △ABC ∽Rt △ACD ,∴,∴AC 2=AD •AB ,AC 2=1×4=4,∴AC =2,BC 2=AB 2﹣AC 2=42﹣4=12,∴;(3)解:在Rt △ABC 中∵AC =2,AB =4,∴∠B =30°,∴∠OAC =60°,∵OA =OC ,∴△AOC 是等边三角形,∴∠AOC =60°,在Rt △ADC 中∵∠ACD =∠B =30°,AD =1,∴CD ===,∴S 阴影=S 梯形ADCO ﹣S 扇形OAC =.。
2020年九年级中考数学考前专项练习:圆的压轴综合题(含答案)
圆的压轴综合题1.如图,已知AB是⊙O的直径,弦CD⊥AB于点E.点P是劣弧上任一点(不与点A,D重合),CP交AB于点M,AP与CD的延长相交于点F.(1)设∠CPF=α,∠BDC=β,求证:α=β+90°;(2)若OE=BE,设tan∠AFC=x,.①求∠APC的度数;②求y关于x的函数表达式及自变量x的取值范围.2.如图,P A、PB是⊙O的切线,A、B为切点,连接AO并延长,交PB的延长线于点C,连接PO,交⊙O于点D.(1)求证:∠APO=∠CPO;(2)若⊙O的半径为3,OP=6,∠C=30°,求PC的长.3.如图所示AB是⊙O的直径,圆心为点O,点C为⊙O上一点,OM⊥AB于点O交AC 于点D,MC=MD,求证:MC为⊙O的切线.4.如图1,以BC为直径的半圆O上有一动点F,点E为弧CF的中点,连接BE、FC相交于点M,延长CF到A点,使得AB=AM,连接AB、CE.(1)求证:AB是⊙O的切线;(2)如图2,连接BF,若AF=FM,求的值;(3)如图3.若tan∠ACB=,BM=10.求EC的长.5.如图,在△ABC中,以AC为直径的⊙O与边AB交于点D,点E为⊙O上一点,连接CE并延长交AB于点F,连接ED.(1)若BC是⊙O的切线,求证:∠B+∠FED=90°;(2)若FC=6,DE=3,FD=2.求⊙O的直径.6.如图,矩形ABCD中,AB=4,BC=3,点E是线段AB上的一个动点,经过A,D,E 三点的⊙O交线段AC于点K,交线段CD于点H,连接DE交线段AC于点F.(1)求证:AE=DH;(2)连结DK,当DE平分∠ADK时,求线段DE的长;(3)连结HK,KE,在点E的运动过程中,①当线段DH,HK,KE中满足某两条线段相等,求所有满足条件的AE的长.②当DA=AE时,连结OA,记△AOF的面积为S1,△EFK的面积为S2,求的值.(请直接写出答案)7.如图,OA、OB是⊙O的两条半径,OA⊥OB,C是半径OB上一动点,连接AC并延长交⊙O于D,过点D作圆的切线交OB的延长线于E,已知OA=6.(1)求证:∠ECD=∠EDC;(2)若BC=2OC,求DE长;(3)当∠A从15°增大到30°的过程中,求弦AD在圆内扫过的面积.8.如图,AB是半⊙O的直径,点C,D在半圆上,CD=BD,过点D作EF⊥AC于E,交AB的延长线于F.(1)求证:EF是⊙O的切线.(2)当BF=4,sin F=时,求AE的长.9.已知:如图,AB是⊙O的直径,直线DC,DA分别切⊙O于点C,点A,连结BC,OD.(1)求证:BC∥OD.(2)若∠ODC=36°,AB=6,求出的长.10.如图,在△ABC中,以AB为直径的⊙O分别与BC,AC相交于点D,E,BD=CD,过点D作⊙O的切线交边AC于点F.(1)求证:DF⊥AC;(2)若⊙O的半径为2,CF=1,求的长(结果保留π).11.如图,AB,CD是圆O的直径,AE是圆O的弦,且AE∥CD,过点C的圆O切线与EA的延长线交于点P,连接AC.(1)求证:AC平分∠BAP;(2)求证:PC2=P A•PE;(3)若AE﹣AP=PC=4,求圆O的半径.12.如图,AB是⊙O的直径,BE是弦,点D是弦BE上一点,连接OD并延长交⊙O于点C,连接BC,在过点D垂直于OC的直线上取点F.使∠DFE=2∠CBE.(1)请说明EF是⊙O的切线;(2)若⊙O的半径是6,点D是OC的中点,∠CBE=15°,求线段EF的长.13.如图,四边形ABCD内接于⊙O,∠BAD=90°,AD、BC的延长线交于点F,点E在CF上,且∠DEC=∠BAC.(1)求证:DE是⊙O的切线;(2)当AB=AC时,若CE=4,EF=6,求⊙O的半径.14.如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作DE⊥AC,交AC于点E,AC的反向延长线交⊙O于点F.(1)求证:DE是⊙O的切线;(2)若DE+EA=8,AF=16,求⊙O的半径.15.如图,在⊙O的内接三角形ABC中,∠ACB=90°,AC=2BC,过C作AB的垂线l交⊙O于另一点D,垂足为E.设P是上异于A,C的一个动点,射线AP交l于点F,连接PC与PD,PD交AB于点G.(1)求证:△P AC≌△PDF;(2)若AB=5,=,求PD的长.16.如图,AB是⊙O的直径,点E是劣弧AD上一点,∠PBD=∠BED,且DE=,BE 平分∠ABD,BE与AD交于点F.(1)求证:BP是⊙O的切线;(2)若tan∠DBE=,求EF的长;(3)延长DE,BA交于点C,若CA=AO,求⊙O的半径.17.如图,在△ABC中,AB=AC=10,以AB为直径的OO与BC相交于点D,与AC相交于点E,DF⊥AC,垂足为F,连接DE,过点A作AG⊥DE,垂足为G,AG与⊙O交于点H.(1)求证:DF是⊙O的切线;(2)若∠CAG=25°,求弧AH的长;(3)若tan∠CDF=,求AE的长;18.如图,在Rt△ABC中,∠ACB=90°,点O为△ABC外接圆的圆心,将△ABC沿AB翻折后得到△ABD.(1)求证:点D在⊙O上;(2)在直径AB的延长线上取一点E,使DE2=BE•AE.①求证:直线DE为⊙O的切线;②过点O作OF∥BD交AD于点H,交ED的延长线于点F.若⊙O的半径为5,cos∠DBA=,求FH的长.参考答案1.解:(1)∵CD⊥AB,∴∠+∠=90°,即:180°﹣α+β=90°,∴α=β+90°;(2)如图1,连接OD,①OE=BE,OB⊥BE,设圆的半径为r,∴∠BOD=∠OBD=∠ODB=60°,即:△BOD为等边三角形,∴BC=r,∴∠CDB=30°,∴∠APC=90°﹣30°=60°;②连接BC,过点M组MH⊥BC于点H,则∠MCB=∠F AB,∴∠CMH=∠F,在△CBM中,设BC=r,∠CBA=60°,∴MH=BM sin∠CBA=MB,BH=MB,CH=MH tan∠CMH=MH•x,CH+HB=BC,即,,而AM+BM=2r,即:,∴1x=1+y,即:y=x.2.(1)证明:∵P A、PB是⊙O的切线,∴∠APO=∠CPO;(2)解:∵P A是⊙O的切线,∴∠P AC=90°,∴AP==3,在Rt△CAP中,∠C=30°,∴PC=2AP=3.3.证明:连接OC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠A+∠B=90°,∵OM⊥AB,∴∠AOD=90°,∴∠A+∠ADO=90°,∴∠ADO=∠B,∵∠ADO=∠CDM,∴∠CDM=∠B,∵MC=MD,∴∠MDC=∠MCD,∴∠MCD=∠B,∵OA=OC,∴∠A=∠ACO,∴∠MCD+∠ACO=90°,∴∠MCO=90°,∴MC为⊙O的切线.4.解:(1)如图1,AB=AM,∴∠ABM=∠AMB=∠EMC,点E为弧CF的中点,则∠EBC=∠ECM,∵BC为直径,∴∠BEC=90°,∠BFC=90°,∴∠EMC+∠ECM=90°,∴∠ABM+∠MBC=90°,∴AB是⊙O的切线;(2)如图2,∵AF=FM,∠BFC=90°,∴∠ABF=∠MBF=α=∠MCE,而∠ABF=∠ACB=α,∴∠ABF+∠MBF+∠EBC=∠ABC=90°=3α,∴α=30°,则BF=BC=r,同理BE=r,而BC=2r,∴求==;(3)如图3,tan∠ACB==设:AB=5m,BC=12m,则AC=13m,CM=AC﹣AM=8m,∵∠EBC=∠ECM,∴Rt△CEM∽Rt△BEC,∴,即:,解得:EC=12.5.(1)证明:∵∠A+∠DEC=180°,∠FED+∠DEC=180°,∴∠FED=∠A,∵BC是⊙O的切线,∴∠BCA=90°,∴∠B+∠A=90°,∴∠B+∠FED=90°;(2)解:∵∠CF A=∠DFE,∠FED=∠A,∴△FED∽△F AC,∴=,∴=,解得:AC=9,即⊙O的直径为9.6.(1)证明:连接HE,如图1所示:∵矩形ABCD,∴∠DAB=∠ADC=90°,∴DE为⊙O直径,∴∠DHE=90°,∴四边形ADHE是矩形,∴DH=AE;(2)解:如图2所示:∵四边形ABD是矩形,∴∠B=∠ADC=90°,AD=BC=3,AB∥CD,∴AC==5,∵DE平分∠ADK,∴∠DAE=∠EDK,,∵DE为⊙O直径,∴DE⊥AC,∴∠ADE=∠CAB,∴cos∠ADE=cos∠CAB=,即=,∴DE=;(3)解:①若HK=KE时,过K作MN⊥CD,交CD于M,交AB于N,如图3所示:则,MN=BC=3,∴∠EDK=∠MDK=∠CAB=∠DCA,∵∠ADC=90°,∴DK=AK=CK,∵AB∥CD,∴KM=KN=,AN=CM=DM=2,∵DE为⊙O直径,∴∠DKE=90°,∴tan∠EKN=tan∠MDK=,∴NE=,∴AE=AN﹣NE=2﹣=;若DH=KE时,∴,∴tan∠ADE=tan∠CAB=,即=,∴AE=;若DH=HK时,∵∠ADC=90°,∴∠AKH=90°,设:DH=HK=3x,∵sin∠ACD==,∴CH=5x,∵DH+CH=CD,∴5x+3x=4,∴x=∴DH=AE=;②如图4所示:当DA=AE=3时,△ADE是等腰直角三角形,∴OA⊥DE,DE=AD=3,∴OA=OD=OE=DE=,∵AB∥CD,∴△CDF∽△AEF,∴===,∴DF=×3=,EF=DE=,AF=AC=,∴OF=DF﹣OD=﹣=,∴△AOF的面积为S1=OF×O A=××=,∵∠ADF=∠EKF,∠AFD=∠EFK,∴△ADF∽△EKF,∴=()2=,∴S2=S△EFK===,∴==.7.(1)证明:连接OD,如图1所示:∵DE是⊙O的切线,∴∠EDC+∠ODA=90°,∵OA⊥OB,∴∠ACO+∠OAC=90°,∵OA、OB是⊙O的两条半径,∴OA=OB,∴∠ODA=∠OAC,∴∠EDC=∠ACO,∵∠ECD=∠ACO,∴∠ECD=∠EDC;(2)解:∵BC=2OC,OB=OA=6,∴OC=2,设DE=x,∵∠ECD =∠EDC ,∴CE =DE =x ,∴OE =2+x ,∵∠ODE =90°,∴OD 2+DE 2=OE 2,即:62+x 2=(2+x )2,解得:x =8,∴DE =8;(3)解:过点D 作DF ⊥AO 交AO 的延长线于F ,如图2所示: 当∠A =15°时,∠DOF =30°,∴DF =OD =OA =3,∠DOA =150°,S 弓形ABD =S 扇形ODA ﹣S △AOD =﹣OA •DF =15π﹣×6×3=15π﹣9, 当∠A =30°时,∠DOF =60°,∴DF =OD =OA =3,∠DOA =120°,S 弓形ABD =S 扇形ODA ﹣S △AOD =﹣OA •DF =12π﹣×6×3=12π﹣9,∴当∠A 从15°增大到30°的过程中,AD 在圆内扫过的面积=(15π﹣9)﹣(12π﹣9)=3π+9﹣9.8.(1)证明:连接AD ,OD ,∵CD =BD , ∴=,∴∠1=∠2,∵OA =OD ,∴∠2=∠3,∴∠1=∠3,∴AE∥OD,∵EF⊥AC,∴EF⊥OD,∴EF是⊙O的切线;(2)解:设⊙O的半径为r,在Rt△ODF中,sin F=,∴=,∴r=6,∵AE∥OD,∴,∴=,∴AE=.9.解:(1)连接OC,∵直线DC,DA分别切⊙O于点C,∴CD=AD,在△ADO与△CDO中,,∴△ADO≌△CDO(SSS),∴∠AOD=∠COD,∴∠AOD=AOC,∵∠B=AOC,∴∠B=∠AOD,∴BC∥OD;(2)∵∠ODC=36°,直线DC,DA分别切⊙O于点C,点A,∴∠ADC=2∠CDO=72°,∴∠AOC=180°﹣∠ADC=108°,∴∠BOC=72°,∵AB=6,∴OB=3,∴的长==.10.(1)证明:连接OD,如图所示.∵DF是⊙O的切线,D为切点,∴OD⊥DF,∴∠ODF=90°.∵BD=CD,OA=OB,∴OD是△ABC的中位线,∴OD∥AC,∴∠CFD=∠ODF=90°,∴DF⊥AC.(2)解:连接BE,∵AB是直径,∴BE⊥AC,∵DF⊥AC,∴==,∵FC=1,∴EC=2,∵OD=AC=2,∴A C=4,∴AE=EC=2,∴AB=BC,∵AB=AC=4,∴AB=BC=AC,∴△ABC是等边三角形,∴∠BAC=60°,∵OD∥AC,∴∠BOD=∠BAC=60°,∴的长:=.11.解:(1)∵OA=OC,∴∠OCA=∠OAC,∵CD∥AP,∴∠OCA=∠P AC,∴∠OAC=∠P AC,∴AC平分∠BAP;(2)连接AD,∵CD为圆的直径,∴∠CAD=90°,∴∠DCA+∠D=90°,∵CD∥P A,∴∠DCA=∠P AC,又∠P AC+∠PCA=90°,∴∠P AC=∠D=∠E,∴△P AC∽△PCE,∴,∴PC2=P A•PE;(3)AE=AP+PC=AP+4,由(2)得16=P A(P A+P A+4),P A2+2P A﹣8=0,解得,P A=2,连接BC,∵CP是切线,则∠PCA=∠CBA,Rt△P AC∽Rt△CAB,,而PC2=AC2﹣P A2,AC2=AB2﹣BC2,其中P A=2,解得:AB=10,则圆O的半径为5.12.(1)证明:连接OE交DF于点H,∵DF⊥OC,∴∠FDO=90°,∵∠COE=2∠CBE,∠DFE=2∠CBE.∴∠F=∠DOE,∵∠EHF=∠OHD,∴∠FEH=∠ODH=90°,∴EF是⊙O的切线;(2)解:∵∠CBE=15°,∴∠F=∠COE=2∠CBE=30°.∵⊙O的半径是6,点D是OC中点,∴OD=3,在Rt△ODH中,cos∠DOH=,∴OH=2.∴HE=6﹣2.在Rt△FEH中,tan F==6﹣2=.∴EF=6﹣6.13.解:(1)如图,连接BD,∵∠BAD=90°,∴点O必在BD上,即:BD是直径,∴∠BCD=90°,∴∠DEC+∠CDE=90°,∵∠DEC=∠BAC,∴∠BAC+∠CDE=90°,∵∠BAC=∠BDC,∴∠BDC+∠CDE=90°,∴∠BDE=90°,即:BD⊥DE,∵点D在⊙O上,∴DE是⊙O的切线;(2)∵∠BAF=∠BDE=90°,∴∠F+∠ABC=∠FDE+∠ADB=90°,∵AB=AC,∴∠ABC=∠ACB,∵∠ADB=∠ACB,∴∠F=∠EDF,∴DE=EF=6,∵CE=4,∠BCD=90°,∴∠DCE=90°,∴CD==2,∵∠BDE=90°,CD⊥BE,∴△CDE∽△CBD,∴=,∴BD==3,∴⊙O的半径=.14.(1)证明:∵OB=OD,∴∠ABC=∠ODB,∵AB=AC,∴∠ABC=∠ACB,∴∠ODB=∠ACB,∴OD∥AC.∵D E⊥AC,OD是半径,∴DE⊥OD,∴DE是⊙O的切线;(2)解:如图,过点O作OH⊥AF于点H,则∠ODE=∠DEH=∠OHE=90°,∴四边形ODEH是矩形,∴OD=EH,OH=DE.∴AH=AF=8,设AE=x.∵DE+AE=8,∴OH=DE=8﹣x,OA=OD=HE=AH+AE=8+x,在Rt△AOH中,由勾股定理知:AH2+OH2=OA2,即82+(8﹣x)2=(8+x)2,解得:x=2,∴OA=8+2=10.∴⊙O的半径为10.15.(1)证明:连接AD,∵AB⊥CD,AB是⊙O的直径,∴=,∴∠ACD=∠B=∠ADC,∵∠FPC=∠B,∴∠ACD=∠FPC,∴∠APC=∠ACF,∵∠F AC=∠CAF,∴△P AC∽△CAF;(2)连接OP,则OA=OB=OP=AB=,∵=,∴OP⊥AB,∠OPG=∠PDC,∵AB是⊙O的直径,∵AC=2BC,∴tan∠CAB=tan∠DCB=,∴==,∴AE=4BE,∵AE+BE=AB=5,∴AE=4,BE=1,CE=2,∴OE=OB﹣BE=2.5﹣1=1.5,∵∠OPG=∠PDC,∠OGP=∠DGE,∴△OPG∽△EDG,∴=,∴==,∴GE=,OG=,∴PG==,GD==,∴PD=PG+GD=.16.(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,∴∠DAB+∠ABD=90°,∵∠BED=∠DAB,∠PBD=∠BED,∴∠DAB=∠PBD,∴∠PBD+∠ABD=90°,∴AB⊥PB,∴BP是⊙O的切线;(2)解:连接AE,∴∠AEB=90°,∵BE平分∠ABD,∴∠ABE=∠DBE,∴=,∴AE=DE=,∴∠ABE=∠DBE=∠DAE,∴tan∠DBE=tan∠ABE=tan∠DAE==,∴=,∴EF=;(3)解:连接OE,∵OE=OB,∴∠ABE=∠OEB,∵∠ABE=∠DBE,∴∠DBE=∠OEB,∴△CEO∽△CDB,∴,∵CA=AO,设CA=AO=BO=R,∴=,即=2,∴CE=2,∴DC=3,∵∠ADC=∠ABE,∠C=∠C,∴△CAD∽△CEB,∴=,∴=,∴R=,∴⊙O的半径为.17.(1)证明:连接OD、AD,AB是⊙O的半径,∴∠ADB=90°,∵AB=AC,∵点D是BC的中点,O是AB的中点,∴OD∥AC,∵DF⊥AC,∴OD⊥DF,∵OD是⊙O的半径,DF是⊙O的切线;(2)解:连接OH,∵AG⊥DG,∴∠G=90°,∵∠CAG=25°,∴∠AEG=65°,∴∠B=∠AEG=65°,∴∠BAC=180°﹣65°﹣65°=50°,∴∠OAH=75°,∴∠AOH=30°,∴l==;弧AH(3)解:∵∠CAD+∠C=90°,∠CDF+∠C=90°,∴∠CAD=∠CDF,∴tan∠CAD=tan∠CDF=,∴AD=2CD,∴DC2+(2CD)2=102,∴CD=2,∵△CDF∽△CAD,∴DC2=CF•AC,∴CF=2,∴CD=DE,∵OF⊥AC,∴EF=CF=2,∴AE=10﹣2﹣2=6.18.(1)证明:连接OD,如图所示:∵∠ACB=90°,∴AB为直径,由翻折可知△ADB≌△ACB,∴∠ADB=90°,∵O为AB中点,∴OD=AB,∴D在⊙O上;(2)①证明:∵DE2=BE•AE,∴,∠E=∠E,∴△EBD∽△EDA,∴∠EDB=∠DAE,∵OD=OB,∴∠ABD=∠ODB,∵∠ADB=90°,∴∠DAB+∠DBA=90°,∴∠EDB+∠ODB=90°,∴∠EDO=90°,∴DE为⊙O切线;②解:在Rt△ADB中,∵cos∠DBA=,AB=10,∴BD=6,∴AD===8,∵∠ADB=90°,OF∥BD,∴∠FHD=∠ADB=90°,∵OH⊥AD,∴HD=AD=4,又∵OA=OB,∴OH=BD=3,∵∠HOD=∠ODB=∠ABD,∴cos∠HOD=,即,∴FO=,∴FH=FO﹣HO=﹣3=.。
2020届中考数学总复习(22)圆-精练精析(2)及答案解析
图形的性质——圆2一.选择题(共9小题)1.如图,在⊙O中,AB是直径,BC是弦,点P是上任意一点.若AB=5,BC=3,则AP的长不可能为()A.3 B.4 C. D.52.如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠AOD等于()A.160°B.150°C.140°D.120°3.如图,A、B、C、D四个点均在⊙O上,∠AOD=70°,AO∥DC,则∠B的度数为()A.40° B.45° C.50° D.55°4.从下列直角三角板与圆弧的位置关系中,可判断圆弧为半圆的是()A.B.C.D.5.如图所示,点A,B,C在圆O上,∠A=64°,则∠BOC的度数是()A.26° B.116°C.128°D.154°6.如图,在⊙O中,OD⊥BC,∠BOD=60°,则∠CAD的度数等于()A.15° B.20° C.25° D.30°7.如图,已知AB是△ABC外接圆的直径,∠A=35°,则∠B的度数是()A.35° B.45° C.55° D.65°8.如图,⊙O是△AB C的外接圆,连接OA、OB,∠OBA=50°,则∠C的度数为()A.30° B.40° C.50° D.80°9.如图,点A,B,C,D都在⊙O上,AC,BD相交于点E,则∠ABD=()A.∠ACD B.∠ADB C.∠AED D.∠ACB二.填空题(共8小题)10.如图,△ABC内接于⊙O,∠OAB=20°,则∠C的度数为_________ .11.如图,已知A、B、C三点都在⊙O上,∠AOB=60°,∠ACB=_________ .12.如图,△ABC为⊙O的内接三角形,AB为⊙O的直径,点D在⊙O上,∠ADC=54°,则∠BAC的度数等于_________ .13.如图,△ABC是⊙O的内接三角形,如果∠AOC=100°,那么∠B=_________ 度.14如图,AB为⊙O直径,CD为⊙O的弦,∠ACD=25°,∠BAD的度数为_________ .15.如图,AB是⊙O的直径,点D在⊙O上,∠BOD=130°,AC∥OD交⊙O于点C,连接BC,则∠B=_________ 度.16.如图,AB是⊙O的直径,AB=15,AC=9,则tan∠ADC=_________ .17.如图,AB是⊙O的直径,点C在AB的延长线上,CD切⊙O于点D,连接AD.若∠A=25°,则∠C=_________ 度.三.解答题(共8小题)18.已知:如图,四边形ABCD为平行四边形,以CD为直径作⊙O,⊙O与边BC相交于点F,⊙O的切线DE与边AB相交于点E,且AE=3EB.(1)求证:△ADE∽△CDF;(2)当CF:FB=1:2时,求⊙O与▱ABCD的面积之比.19.已知:AB是⊙O的直径,直线CP切⊙O于点C,过点B作BD⊥CP于D.(1)求证:△ACB∽△CDB;(2)若⊙O的半径为1,∠BCP=30°,求图中阴影部分的面积.20.如图,AB是⊙O的直径,过点A作⊙O的切线并在其上取一点C,连接OC交⊙O于点D,BD的延长线交AC于E,连接AD.(1)求证:△CDE∽△CAD;(2)若AB=2,AC=2,求AE的长.21.已知:如图,P是⊙O外一点,过点P引圆的切线PC(C为切点)和割线PAB,分别交⊙O于A、B,连接AC,BC.(1)求证:∠PCA=∠PBC;(2)利用(1)的结论,已知PA=3,PB=5,求PC的长.22.如图,在⊙O中,AB,CD是直径,BE是切线,B为切点,连接AD,BC,BD.(1)求证:△ABD≌△CDB;(2)若∠DBE=37°,求∠ADC的度数.23.如图,AB是⊙O的直径,点C是⊙O上一点,AD与过点C的切线垂直,垂足为点D,直线DC与AB的延长线相交于点P,弦CE平分∠ACB,交AB于点F,连接BE.(1)求证:AC平分∠DAB;(2)求证:△PCF是等腰三角形;(3)若tan∠ABC=,BE=7,求线段PC的长.24.如图,AB是⊙O的直径,点C在⊙O上,CD与⊙O相切,BD∥AC.(1)图中∠OCD=_________ °,理由是_________ ;(2)⊙O的半径为3,AC=4,求CD的长.25.如图,已知⊙O中直径AB与弦AC的夹角为30°,过点C作⊙O的切线交AB的延长线于点D,OD=30cm.求:直径AB的长.图形的性质——圆2参考答案与试题解析一.选择题(共9小题)1.如图,在⊙O中,AB是直径,BC是弦,点P是上任意一点.若AB=5,BC=3,则AP的长不可能为()A. 3 B.4 C.D. 5考点:圆周角定理;勾股定理;圆心角、弧、弦的关系.专题:几何图形问题.分析:首先连接AC,由圆周角定理可得,可得∠C=90°,继而求得AC的长,然后可求得AP的长的取值范围,继而求得答案.解答:解:连接AC,∵在⊙O中,AB是直径,∴∠C=90°,∵AB=5,BC=3,∴AC==4,∵点P是上任意一点.∴4≤AP≤5.故选:A.点评:此题考查了圆周角定理以及勾股定理.此题难度不大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.2.如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠AOD等于()A.160°B.150°C.140°D.120°考点:圆周角定理;垂径定理.专题:压轴题.分析:利用垂径定理得出=,进而求出∠BOD=40°,再利用邻补角的性质得出答案.解答:解:∵线段AB是⊙O的直径,弦CD丄AB,∴=,∵∠CAB=20°,∴∠BOD=40°,∴∠AOD=140°.故选:C.点评:此题主要考查了圆周角定理以及垂径定理等知识,得出∠BOD的度数是解题关键.3.如图,A、B、C、D四个点均在⊙O上,∠AOD=70°,AO∥DC,则∠B的度数为()A.40°B.45°C.50°D.55°考点:圆周角定理;平行线的性质.分析:连接OC,由AO∥DC,得出∠ODC=∠AOD=70°,再由OD=OC,得出∠ODC=∠OCD=70°,求得∠COD=40°,进一步得出∠AOC,进一步利用圆周角定理得出∠B 的度数即可.解答:解:如图,连接OC,∵AO∥DC,∴∠ODC=∠AOD=70°,∵OD=O C,∴∠ODC=∠OCD=70°,∴∠COD=40°,∴∠AOC=110°,∴∠B=∠AOC=55°.故选:D.点评:此题考查平行线的性质,等腰三角形的性质,三角形的内角和,圆周角定理,正确作出辅助线是解决问题的关键.4.从下列直角三角板与圆弧的位置关系中,可判断圆弧为半圆的是()A.B.C.D.考点:圆周角定理.分析:根据圆周角定理(直径所对的圆周角是直角)求解,即可求得答案.解答:解:∵直径所对的圆周角等于直角,∴从下列直角三角板与圆弧的位置关系中,可判断圆弧为半圆的是B.故选:B.点评:此题考查了圆周角定理.此题比较简单,注意掌握数形结合思想的应用.5.如图所示,点A,B,C在圆O上,∠A=64°,则∠BOC的度数是()A.26°B.116°C.128°D.154°考点:圆周角定理.分析:根据圆周角定理直接解答即可.解答:解:∵∠A=64°,∴∠BOC=2∠A=2×64°=128°.故选:C.点评:本题考查了圆周角定理,知道同弧所对的圆周是圆心角的一半是解题的关键.6.如图,在⊙O中,OD⊥BC,∠BOD=60°,则∠CAD的度数等于()A.15°B.20°C.25°D.30°考点:圆周角定理;垂径定理.专题:计算题.分析:由在⊙O中,OD⊥BC,根据垂径定理的即可求得:=,然后利用圆周角定理求解即可求得答案.解答:解:∵在⊙O中,OD⊥BC,∴=,∴∠CAD=∠BOD=×60°=30°.故选:D.点评:此题考查了圆周角定理以及垂径定理.此题难度不大,注意掌握数形结合思想的应用.7.如图,已知AB是△ABC外接圆的直径,∠A=35°,则∠B的度数是()A.35°B.45°C.55°D.65°考点:圆周角定理.专题:几何图形问题.分析:由AB是△ABC外接圆的直径,根据直径所对的圆周角是直角,可求得∠ACB=90°,又由∠A=35°,即可求得∠B的度数.解答:解:∵AB是△ABC外接圆的直径,∴∠C=90°,∵∠A=35°,∴∠B=90°﹣∠A=55°.故选:C.点评:此题考查了圆周角定理.此题比较简单,注意掌握数形结合思想的应用.8.如图,⊙O是△ABC的外接圆,连接OA、OB,∠OBA=50°,则∠C的度数为()A.30°B.40°C.50°D.80°考点:圆周角定理.专题:几何图形问题.分析:根据三角形的内角和定理求得∠AOB的度数,再进一步根据圆周角定理求解.解答:解:∵OA=OB,∠OBA=50°,∴∠OAB=∠OBA=50°,∴∠AOB=180°﹣50°×2=80°,∴∠C=∠AOB=40°.故选:B.点评:此题综合运用了三角形的内角和定理以及圆周角定理.一条弧所对的圆周角等于它所对的圆心角的一半.9.如图,点A,B,C,D都在⊙O上,AC,BD相交于点E,则∠ABD=()A.∠ACD B.∠ADB C.∠AED D.∠ACB考点:圆周角定理.专题:几何图形问题.分析:根据圆周角定理即可判断A、B、D,根据三角形外角性质即可判断C.解答:解:A、∵∠ABD对的弧是弧AD,∠ACD对的弧也是AD,∴∠ABD=∠ACD,故A选项正确;B、∵∠ABD对的弧是弧AD,∠ADB对的弧也是AB,而已知没有说=,∴∠ABD和∠ACD不相等,故B选项错误;C、∠AED>∠ABD,故C选项错误;D、∵∠ABD对的弧是弧AD,∠ACB对的弧也是AB,而已知没有说=,∴∠ABD和∠ACB不相等,故D选项错误;故选:A.点评:本题考查了圆周角定理和三角形外角性质的应用,注意:在同圆或等圆中,同弧或等弧所对的圆周角相等.二.填空题(共8小题)10.如图,△ABC内接于⊙O,∠OAB=20°,则∠C的度数为70°.考点:圆周角定理.分析:由△ABC内接于⊙O,∠OAB=20°,根据等腰三角形的性质,即可求得∠OBA 的度数,∠AOB的度数,又由圆周角定理,求得∠ACB的度数.解答:解:∵∠OAB=20°,OA=OB,∴∠OBA=∠OAB=20°,∴∠AOB=180°﹣∠OAB﹣∠OBA=140°,∴∠ACB=∠AOB=70°.故答案为70°.点评:本题考查了圆周角定理与等腰三角形的性质.此题比较简单,注意掌握数形结合思想的应用.11.如图,已知A、B、C三点都在⊙O上,∠AOB=60°,∠ACB=30°.考点:圆周角定理.分析:由∠ACB是⊙O的圆周角,∠AOB是圆心角,且∠AOB=60°,根据圆周角定理,即可求得圆周角∠ACB的度数.解答:解:如图,∵∠AOB=60°,∴∠ACB=∠AOB=30°.故答案是:30°.点评:此题考查了圆周角定理.此题比较简单,注意掌握数形结合思想的应用.12.如图,△ABC为⊙O的内接三角形,AB为⊙O的直径,点D在⊙O上,∠ADC=54°,则∠BAC的度数等于36°.考点:圆周角定理.专题:几何图形问题.分析:由在同圆或等圆中,同弧或等弧所对的圆周角相等,即可求得∠B的度数,又由直径所对的圆周角是直角,即可求得∠ACB=90°,继而求得答案.解答:解:∵∠ABC与∠ADC是所对的圆周角,∴∠ABC=∠ADC=54°,∵AB为⊙O的直径,∴∠ACB=90°,∴∠BAC=90°﹣∠ABC=90°﹣54°=36°.故答案为:36°.点评:此题考查了圆周角定理与直角三角形的性质.此题比较简单,注意掌握在同圆或等圆中,同弧或等弧所对的圆周角相等与直径所对的圆周角是直角定理的应用.13.如图,△ABC是⊙O的内接三角形,如果∠AOC=100°,那么∠B=50 度.考点:圆周角定理.专题:计算题.分析:直接根据圆周角定理求解.解答:解:∠B=∠AOC=×100°=50°.故答案为:50.点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.14.如图,AB为⊙O直径,CD为⊙O的弦,∠ACD=25°,∠BAD的度数为65°.考点:圆周角定理.专题:计算题.分析:根据直径所对的圆周角是直角,构造直角三角形ABD,再根据同弧所对的圆周角相等,求得∠B的度数,即可求得∠BAD的度数.解答:解:∵AB为⊙O直径∴∠ADB=90°∵相同的弧所对应的圆周角相等,且∠B=25°∴∠ACD=25°∴∠BAD=90°﹣∠B=65°.故答案为:65°.点评:考查了圆周角定理的推论.构造直径所对的圆周角是圆中常见的辅助线之一.15.如图,AB是⊙O的直径,点D在⊙O上,∠BOD=130°,AC∥OD交⊙O于点C,连接BC,则∠B=40 度.考点:圆周角定理;平行线的性质.分析:先求出∠AOD,利用平行线的性质得出∠A,再由圆周角定理求出∠B的度数即可.解答:解:∵∠BOD=130°,∴∠AOD=50°,又∵AC∥OD,∴∠A=∠AOD=50°,∵AB是⊙O的直径,∴∠C=90°,∴∠B=90°﹣50°=40°.故答案为:40.点评:本题考查了圆周角定理,熟练掌握圆周角定理的内容是解题关键.16.如图,AB是⊙O的直径,AB=15,AC=9,则tan∠ADC=.考点:圆周角定理;勾股定理;锐角三角函数的定义.分析:根据勾股定理求出BC的长,再将tan∠ADC转化为tanB进行计算.解答:解:∵AB为⊙O直径,∴∠ACB=90°,∴BC==12,∴tan∠ADC=tanB===,故答案为.点评:本题考查了圆周角定理和三角函数的定义,要充分利用转化思想.17.如图,AB是⊙O的直径,点C在AB的延长线上,CD切⊙O于点D,连接AD.若∠A=25°,则∠C=40 度.考点:切线的性质;圆周角定理.专题:计算题.分析:连接OD,由CD为圆O的切线,利用切线的性质得到OD垂直于CD,根据OA=OD,利用等边对等角得到∠A=∠ODA,求出∠ODA的度数,再由∠COD为△AOD外角,求出∠COD 度数,即可确定出∠C的度数.解答:解:连接OD,∵CD与圆O相切,∴OD⊥DC,∵OA=OD,∴∠A=∠ODA=25°,∵∠COD为△AOD的外角,∴∠COD=50°,∴∠C=90°﹣50°=40°.故答案为:40点评:此题考查了切线的性质,等腰三角形的性质,以及外角性质,熟练掌握切线的性质是解本题的关键.三.解答题(共8小题)18.已知:如图,四边形ABCD为平行四边形,以CD为直径作⊙O,⊙O与边BC相交于点F,⊙O的切线DE与边AB相交于点E,且AE=3EB.(1)求证:△ADE∽△CDF;(2)当CF:FB=1:2时,求⊙O与▱ABCD的面积之比.考点:切线的性质;勾股定理;平行四边形的性质;相似三角形的判定与性质.专题:几何综合题.分析:(1)根据平行四边形的性质得出∠A=∠C,AD∥BC,求出∠ADE=∠CDF,根据相似三角形的判定推出即可;(2)设CF=x,FB=2x,则BC=3x,设EB=y,则AE=3y,AB=4y,根据相似得出=,求出x=2y,由勾股定理得求出DF=2y,分别求出⊙O的面积和四边形ABCD的面积,即可求出答案.解答:(1)证明:∵CD是⊙O的直径,∴∠DFC=90°,∵四边形ABCD是平行四边形,∴∠A=∠C,AD∥BC,AB∥CD,∴∠ADF=∠DFC=90°,∵DE为⊙O的切线,∴DE⊥DC,∴DE⊥AB,∴∠DEA=∠DFC=90°,∵∠A=∠C,∴△ADE∽△CDF;(2)解:∵CF:FB=1:2,∴设CF=x,FB=2x,则BC=3x,∵AE=3EB,∴设EB=y,则AE=3y,AB=4y,∵四边形ABCD是平行四边形,∴AD=BC=3x,AB=DC=4y,∵△ADE∽△CDF,∴=,∴=,∵x、y均为正数,∴x=2y,∴B C=6y,CF=2y,在Rt△DFC中,∠DFC=90°,由勾股定理得:DF===2y,∴⊙O的面积为π•(DC)2=π•DC2=π(4y)2=4πy2,四边形ABCD的面积为BC•DF=6y•2y=12y2,∴⊙O与四边形ABCD的面积之比为4πy2:12y2=π:3.点评:本题考查了平行四边形的性质,相似三角形的性质和判定,勾股定理的应用,主要考查学生综合运用性质进行推理和计算的能力.19.已知:AB是⊙O的直径,直线CP切⊙O于点C,过点B作BD⊥CP于D.(1)求证:△ACB∽△CDB;(2)若⊙O的半径为1,∠BCP=30°,求图中阴影部分的面积.考点:切线的性质;扇形面积的计算;相似三角形的判定与性质.专题:几何综合题.分析:(1)由CP是⊙O的切线,得出∠BCD=∠BAC,AB是直径,得出∠ACB=90°,所以∠ACB=∠CDB=90°,得出结论△ACB∽△CDB;(2)求出△OCB是正三角形,阴影部分的面积=S扇形OCB﹣S△OCB=π﹣.解答:(1)证明:如图,连接OC,∵直线CP是⊙O的切线,∴∠BCD+∠OCB=90°,∵AB是直径,∴∠ACB=90°,∴∠ACO+∠OCB=90°∴∠BCD=∠ACO,又∵∠BAC=∠ACO,∴∠BCD=∠BAC,又∵BD⊥CP∴∠CDB=90°,∴∠ACB=∠CDB=90°∴△ACB∽△CDB;(2)解:如图,连接OC,∵直线CP是⊙O的切线,∠BCP=30°,∴∠COB=2∠BCP=60°,∴△OCB是正三角形,∵⊙O的半径为1,∴S△OCB=,S扇形OCB==π,故阴影部分的面积=S扇形OCB﹣S△OCB=π﹣.点评:本题主要考查了切线的性质及扇形面积,三角形的面积,解题的关键是利用弦切角找角的关系.20.如图,AB是⊙O的直径,过点A作⊙O的切线并在其上取一点C,连接OC交⊙O于点D,BD的延长线交AC于E,连接AD.(1)求证:△CDE∽△CAD;(2)若AB=2,AC=2,求AE的长.考点:切线的性质;相似三角形的判定与性质.专题:证明题.分析:(1)根据圆周角定理由AB是⊙O的直径得到∠ADB=90°,则∠B+∠BAD=90°,再根据切线的性质,由AC为⊙O的切线得∠BAD+∠CAD=90°,则∠B=∠CAD,由于∠B=∠ODB,∠ODB=∠CDE,所以∠B=∠CDE,则∠CAD=∠CDE,加上∠ECD=∠DCA,根据三角形相似的判定方法即可得到△CDE∽△CAD;(2)在Rt△AOC中,OA=1,AC=2,根据勾股定理可计算出OC=3,则CD=OC﹣OD=2,然后利用△CDE∽△CAD,根据相似比可计算出CE,再由AE=AC﹣CE可得AE的值.解答:(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,∴∠B+∠BAD=90°,∵AC为⊙O的切线,∴BA⊥AC,∴∠BAC=90°,即∠BAD+∠CAD=90°,∴∠B=∠CAD,∵OB=OD,∴∠B=∠ODB,而∠ODB=∠CDE,∴∠B=∠CDE,∴∠CAD=∠CDE,而∠ECD=∠DCA,∴△CDE∽△CAD;(2)解:∵AB=2,∴OA=1,在Rt△AOC中,AC=2,∴OC==3,∴CD=OC﹣OD=3﹣1=2,∵△CDE∽△CAD,∴=,即=,∴CE=.∴AE=AC﹣CE=2﹣=.点评:本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了勾股定理、圆周角定理和相似三角形的判定与性质.21.已知:如图,P是⊙O外一点,过点P引圆的切线PC(C为切点)和割线PAB,分别交⊙O于A、B,连接AC,BC.(1)求证:∠PCA=∠PBC;(2)利用(1)的结论,已知PA=3,PB=5,求PC的长.考点:切线的性质;相似三角形的判定与性质.专题:几何综合题.分析:(1)连结OC,OA,先根据等腰三角形的性质得出∠ACO=∠CAO,再由PC是⊙O的切线,C为切点得出∠PCO=90°,∠PCA+∠ACO=90°,在△AOC中根据三角形内角和定理可知∠ACO+∠CAO+∠AOC=180°,由圆周角定理可知∠AOC=2∠PBC,故可得出∠ACO+∠PBC=90°,再根据∠PCA+∠ACO=90°即可得出结论;(2)先根据相似三角形的判定定理得出△PAC∽△PCB,由相似三角形的对应边成比例即可得出结论.解答:(1)证明:连结OC,OA,∵OC=OA,∴∠ACO=∠CAO,∵PC是⊙O的切线,C为切点,∴PC⊥OC,∴∠PCO=90°,∠PCA+∠ACO=90°,在△AOC中,∠ACO+∠CAO+∠AOC=180°,∵∠AOC=2∠P BC,∴2∠ACO+2∠PBC=180°,∴∠ACO+∠PBC=90°,∵∠PCA+∠ACO=90°,∴∠PCA=∠PBC;(2)解:∵∠PCA=∠PBC,∠CPA=∠BPC,∴△PAC∽△PCB,∴=,∴PC2=PA•PB,∵PA=3,PB=5,∴PC==.点评:本题考查的是切线的性质,根据题意作出辅助线,构造出圆心角是解答此题的关键.22.如图,在⊙O中,AB,CD是直径,BE是切线,B为切点,连接AD,BC,BD.(1)求证:△ABD≌△CDB;(2)若∠DBE=37°,求∠ADC的度数.考点:切线的性质;全等三角形的判定与性质.专题:证明题.分析:(1)根据AB,CD是直径,可得出∠ADB=∠CBD=90°,再根据HL定理得出Rt△ABD≌Rt△CDB;(2)由BE是切线,得AB⊥BE,根据∠DBE=37°,得∠BAD,由OA=OD,得出∠ADC的度数.解答:(1)证明:∵AB,CD是直径,∴∠ADB=∠CBD=90°,在Rt△ABD和Rt△CDB中,,∴Rt△ABD和Rt△CDB(HL);(2)解:∵BE是切线,∴AB⊥BE,∴∠ABE=90°,∵∠DBE=37°,∴∠ABD=53°,∵OA=OD,∴∠BAD=∠ODA=90°﹣53°=37°,∴∠ADC的度数为37°.点评:本题考查了切线的性质以及全等三角形的判定和性质,是基础题,难度不大.23.如图,AB是⊙O的直径,点C是⊙O上一点,AD与过点C的切线垂直,垂足为点D,直线DC与AB的延长线相交于点P,弦CE平分∠ACB,交AB于点F,连接BE.(1)求证:AC平分∠DAB;(2)求证:△PCF是等腰三角形;(3)若tan∠ABC=,BE=7,求线段PC的长.考点:切线的性质;等腰三角形的判定;勾股定理;圆周角定理;相似三角形的判定与性质.专题:证明题.分析:(1)由PD切⊙O于点C,AD与过点C的切线垂直,易证得OC∥AD,继而证得AC平分∠DAB;(2)由AD⊥PD,AB为⊙O的直径,易证得CE平分∠ACB,继而可得∴∠PFC=∠PCF,即可证得PC=PF,即△PCF是等腰三角形;(3)首先连接AE,易得AE=BE,即可求得AB的长,继而可证得△PAC∽△PCB,又由tan∠ABC=,BE=7,即可求得答案.解答:解:(1)∵PD切⊙O于点C,∴OC⊥PD.又∵AD⊥PD,∴OC∥AD.∴∠ACO=∠DAC.又∵OC=OA,∴∠ACO=∠CAO,∴∠DAC=∠CAO,即AC平分∠DAB.(2)∵AD⊥PD,∴∠DAC+∠ACD=90°.又∵AB为⊙O的直径,∴∠ACB=90°.∴∠PCB+∠ACD=90°,∴∠DAC=∠PCB.又∵∠DAC=∠CAO,∴∠CAO=∠PCB.∵CE平分∠ACB,∴∠ACF=∠BCF,∴∠CAO+∠ACF=∠PCB+∠BCF,∴∠PFC=∠PCF,∴PC=PF,∴△PCF是等腰三角形.(3)连接AE.∵CE平分∠ACB,∴=,∴.∵AB为⊙O的直径,∴∠AEB=90°.在Rt△ABE中,.∵∠PAC=∠PCB,∠P=∠P,∴△PAC∽△PCB,∴.又∵tan∠ABC=,∴,∴.设PC=4k,PB=3k,则在Rt△POC中,PO=3k+7,OC=7,∵PC2+OC2=OP2,∴(4k)2+72=(3k+7)2,∴k=6 (k=0不合题意,舍去).∴PC=4k=4×6=24.点评:此题考查了切线的性质、相似三角形的判定与性质、垂径定理、圆周角定理、勾股定理以及等腰三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.24.如图,AB是⊙O的直径,点C在⊙O上,CD与⊙O相切,BD∥AC.(1)图中∠OCD=90 °,理由是圆的切线垂直于经过切点的半径;(2)⊙O的半径为3,AC=4,求CD的长.考点:切线的性质;相似三角形的判定与性质.专题:几何综合题.分析:(1)根据切线的性质定理,即可解答;(2)首先证明△ABC∽△CDB,利用相似三角形的对应边的比相等即可求解.解答:解:(1)∵CD与⊙O相切,∴OC⊥CD,(圆的切线垂直于经过切点的半径)∴∠OCD=90°;故答案是:90,圆的切线垂直于经过切点的半径;(2)连接BC.∵BD∥AC,∴∠CBD=∠OCD=90°,∴在直角△ABC中,BC===2,∠A+∠ABC=90°,∵OC=OB,∴∠BCO=∠ABC,∴∠A+∠BCO=90°,又∵∠OCD=90°,即∠BCO+∠BCD=90°,∴∠BCD=∠A,又∵∠CBD=∠ACB,∴△ABC∽△CDB,∴=,∴=,解得:CD=3.点评:本题考查了切线的性质定理以及相似三角形的判定与性质,证明两个三角形相似是本题的关键.25.如图,已知⊙O中直径AB与弦AC的夹角为30°,过点C作⊙O的切线交AB的延长线于点D,OD=30cm.求:直径AB的长.考点:切线的性质;含30度角的直角三角形.专题:计算题.分析:先求出∠COD,根据切线的性质知∠OCD=90°,从而求出∠D,根据含30度角的直角三角形性质求出OC,即可求出答案.解答:解:∵∠A=30°,OC=OA,∴∠ACO=∠A=30°,∴∠COD=60°,∵DC切⊙O于C,∴∠OCD=90°,∴∠D=30°,∵OD=30cm,∴OC=OD=15cm,∴AB=2OC=30cm.点评:本题考查了切线的性质,含30度角的直角三角形性质,等腰三角形性质,三角形外角性质的应用,主要考查学生的推理和计算能力,题目比较好,难度适中.。
2020年九年级中考数学复习专题训练:《圆的综合 》(包含答案)
2020年九年级中考数学复习专题训练:《圆的综合》1.如图,在Rt△ACB中,∠ACB=90°,以AC为直径作⊙O,交AB于点D.(1)若AB=8,∠ABC=30°,求⊙O的半径;(2)若点E是边BC的中点,连结DE,求证:直线DE是⊙O的切线;(3)在(1)的条件下,保持Rt△ACB不动,将⊙O沿直线BC向右平移m个单位长度后得到⊙O′,当⊙O′与直线AB相切时,m=.2.如图,矩形ABCD中,AB=13,AD=6.点E是CD上的动点,以AE为直径的⊙O与AB交于点F,过点F作FG⊥BE于点G.(1)当E是CD的中点时:tan∠EAB的值为;(2)在(1)的条件下,证明:FG是⊙O的切线;(3)试探究:BE能否与⊙O相切?若能,求出此时BE的长;若不能,请说明理由.3.如图,已知正方形ABCD 的边长为1,正方形BEFG 中,点E 在AB 的延长线上,点G 在BC 上,点O 在线段AB 上,且AO ≥BO .以OF 为半径的⊙O 与直线AB 交于点M ,N . (1)如图1,若点O 为AB 中点,且点D ,点C 都在⊙O 上,求正方形BEFG 的边长. (2)如图2,若点C 在⊙O 上,求证:以线段OE 和EF 为邻边的矩形的面积为定值,并求出这个定值.(3)如图3,若点D 在⊙O 上,求证:DO ⊥FO .4.如图,四边形ABCD 内接于⊙O ,AC 为直径,AC 和BD 交于点E ,AB =BC . (1)求∠ADB 的度数;(2)过B 作AD 的平行线,交AC 于F ,试判断线段EA ,CF ,EF 之间满足的等量关系,并说明理由;(3)在(2)条件下过E ,F 分别作AB ,BC 的垂线,垂足分别为G ,H ,连接GH ,交BO 于M ,若AG =3,S 四边形AGMO :S 四边形CHMO =8:9,求⊙O 的半径.5.定义:当点P在射线OA上时,把的的值叫做点P在射线OA上的射影值;当点P不在射线OA上时,把射线OA上与点P最近点的射影值,叫做点P在射线OA上的射影值.例如:如图1,△OAB三个顶点均在格点上,BP是OA边上的高,则点P和点B在射线OA 上的射影值均为=.(1)在△OAB中,①点B在射线OA上的射影值小于1时,则△OAB是锐角三角形;②点B在射线OA上的射影值等于1时,则△OAB是直角三角形;③点B在射线OA上的射影值大于1时,则△OAB是钝角三角形.其中真命题有.A.①②B.①③C.②③D.①②③(2)已知:点C是射线OA上一点,CA=OA=1,以〇为圆心,OA为半径画圆,点B是⊙O 上任意点.①如图2,若点B在射线OA上的射影值为.求证:直线BC是⊙O的切线;②如图3,已知D为线段BC的中点,设点D在射线OA上的射影值为x,点D在射线OB上的射影值为y,直接写出y与x之间的函数关系式为.6.问题发现:(1)如图1,△ABC内接于半径为4的⊙O,若∠C=60°,则AB=;问题探究:(2)如图2,四边形ABCD内接于半径为6的⊙O,若∠B=120°,求四边形ABCD的面积最大值;解决问题:(3)如图3,一块空地由三条直路(线段AD、AB、BC)和一条弧形道路围成,点M 是AB道路上的一个地铁站口,已知AD=BM=1千米,AM=BC=2千米,∠A=∠B=60°,的半径为1千米,市政府准备将这块空地规划为一个公园,主入口在点M处,另外三个入口分别在点C、D、P处,其中点P在上,并在公园中修四条慢跑道,即图中的线段DM、MC、CP、PD,是否存在一种规划方案,使得四条慢跑道总长度(即四边形DMCP 的周长)最大?若存在,求其最大值;若不存在,说明理由.7.如图,AB是⊙O的直径,BM切⊙O于点B,点P是⊙O上的一个动点(点P不与A,B两点重合),连接AP,过点O作OQ∥AP交BM于点Q,过点P作PE⊥AB于点C,交QO的延长线于点E,连接PQ,OP,AE.(1)求证:直线PQ为⊙O的切线;(2)若直径AB的长为4.①当PE=时,四边形BOPQ为正方形;②当PE=时,四边形AEOP为菱形.8.已知AB是⊙O的直径,DA为⊙O的切线,切点为A,过⊙O上的点C作CD∥AB交AD于点D,连接BC、AC.(1)如图①,若DC为⊙O的切线,切点为C,求∠ACD和∠DAC的大小.(2)如图②,当CD为⊙O的割线且与⊙O交于点E时,连接AE,若∠EAD=30°,求∠ACD和∠DAC的大小.9.已知AB为⊙O的直径,点C为⊙O上一点,点D为AB延长线一点,连接AC.(Ⅰ)如图①,OB=BD,若DC与⊙O相切,求∠D和∠A的大小;(Ⅱ)如图②,CD与⊙O交于点E,AF⊥CD于点F连接AE,若∠EAB=18°,求∠FAC的大小.10.如图,AB为⊙O的直径,点P为AB延长线上的一点,过点P作⊙O的切线PE,切点为M,过A、B两点分别作PE的垂线AC,BD,垂足分别为C,D,连接AM.(1)求证:AM平分∠CAB;(2)若AB=4,∠APE=30°,求的长.11.如图,AB是⊙O的直径,AC是⊙O的切线,连接OC交⊙O于E,过点A作AF⊥AC于F,交⊙O于D,连接DE,BE,BD(1)求证:∠C=∠BED;(2)若AB=12,tan∠BED=,求CF的长.12.已知,点A为⊙O外一点,过A作⊙O的切线与⊙O相切于点P,连接PO并延长至圆上一点B连接AB交⊙O于点C,连接OA交⊙O于点D连接DP且∠OAP=∠DPA.(1)求证:PO=PD;(2)若AC=,求⊙O的半径.13.如图,AB是⊙O的直径,C为⊙O上一点,P是半径OB上一动点(不与O,B重合),过点P作射线l⊥AB,分别交弦BC,于D,E两点,过点C的切线交射线1于点F.(1)求证:FC=FD.(2)当E是的中点时,①若∠BAC=60°,判断以O,B,E,C为顶点的四边形是什么特殊四边形,并说明理由;②若=,且AB=30,则OP=.14.如图,在∠DAM内部做Rt△ABC,AB平分∠DAM,∠ACB=90°,AB=10,AC=8,点N 为BC的中点,动点E由A点出发,沿AB运动,速度为每秒5个单位,动点F由A点出发,沿AM运动,速度为每秒8个单位,当点E到达点B时,两点同时停止运动,过A、E、F作⊙O.(1)判断△AEF的形状为,并判断AD与⊙O的位置关系为;(2)求t为何值时,EN与⊙O相切?求出此时⊙O的半径,并比较半径与劣弧长度的大小;(3)直接写出△AEF的内心运动的路径长为;(注:当A、E、F重合时,内心就是A点)(4)直接写出线段EN与⊙O有两个公共点时,t的取值范围为.(参考数据:sin37°=,tan37°=,tan74°≈,sin74°≈,cos74°≈)15.如图1,CD是⊙O的直径,且CD过弦AB的中点H,连接BC,过弧AD上一点E作EF∥BC,交BA的延长线于点F,连接CE,其中CE交AB于点G,且FE=FG.(1)求证:EF是⊙O的切线;(2)如图2,连接BE,求证:BE2=BG•BF;(3)如图3,若CD的延长线与FE的延长线交于点M,tan F=,BC=5,求DM的值.16.如图,在Rt△ABC中,AB⊥BC,以AB为直径的圆交AC于点D,E是BC的中点,连接DE.(1)求证:DE是⊙O的切线;(2)设⊙O的半径为r,证明r2=AD•OE;(3)若DE=4,sin C=,求AD之长.17.定义:三角形一边上的点将该边分为两条线段,且这两条线段的积等于这个点到该边所对顶点连线的平方,则称这个点为三角形该边的“好点”.如图1,△ABC中,点D是BC 边上一点,连结AD,若AD2=BD•CD,则称点D是△ABC中BC边上的“好点”.(1)如图2,△ABC的顶点是4×3网格图的格点,请仅用直尺画出AB边上的一个“好点”.(2)△ABC中,BC=9,tan B=,tan C=,点D是BC边上的“好点”,求线段BD的长.(3)如图3,△ABC是⊙O的内接三角形,OH⊥AB于点H,连结CH并延长交⊙O于点D.①求证:点H是△BCD中CD边上的“好点”.②若⊙O的半径为9,∠ABD=90°,OH=6,请直接写出的值.18.如图,在等腰三角形ABC中,AB=AC,以AC为直径的⊙O分别交AB、BC于点M、N,过点C作⊙O的切线交AB的延长线于点P.(1)求证:∠CAB=2∠BCP;(2)若⊙O的直径为5,sin∠BCP=,求△ABC内切圆的半径;(3)在(2)的条件下,求△ACP的周长.19.已知四边形ABCD为⊙O的内接四边形,直径AC与对角线BD相交于点E,作CH⊥BD于H,CH与过A点的直线相交于点F,∠FAD=∠ABD.(1)求证:AF为⊙O的切线;(2)若BD平分∠ABC,求证:DA=DC;(3)在(2)的条件下,N为AF的中点,连接EN,若∠AED+∠AEN=135°,⊙O的半径为2,求EN的长.20.如图,在Rt△ABC中,∠ACB=90°,O是线段BC上一点,以O为圆心,OC为半径作⊙O,AB与⊙O相切于点F,直线AO交⊙O于点E,D.(1)求证:AO是△CAB的角平分线;(2)若tan∠D=,求的值;(3)如图2,在(2)条件下,连接CF交AD于点G,⊙O的半径为3,求CF的长.参考答案1.解:(1)在Rt△ABC中,∵AB=8,∠ABC=30°,∴AC=AB sin∠ABC=8sin30°=4,∴⊙O的半径为2;(2)证明:连接OD,CD,∵AC为⊙O的直径,∴CD⊥AB,∴∠CDB=90°,∵点E是边BC的中点,∴DE=CE=CB,∴∠DCE=∠CDE,∵OC=OD,∴∠OCD=∠ODC,∴∠ACE=∠ACD+∠DCE=90°,∴∠ODE=∠ODC+∠CDE=90°,∴OD⊥DE,∴直线DE是⊙O的切线;(3)连接OO′交AB于F,设⊙O′与AB相切于G,连接O′G,则∠O′GF=90°,∵将⊙O沿直线BC向右平移m个单位长度后得到⊙O′,∴OO′∥BC,AO=O′G,∴∠AOF=∠ACB=90°,∵∠AFO=∠O′FG,∴△AOF≌△O′GF(AAS),∴O′F=AF,∵在Rt△AOF中,∵∠A=60°,AO=2,∴AF=4,OF=2,∴O′F=AF=4,∴OO′=4+2,∴m=4+2.故答案为:4+2.2.(1)解:∵四边形ABCD是矩形,∴∠D=90°,CD∥AB,CD=AB=13,∴∠EAB=∠DEA,∵E是CD的中点,∴DE=CD=,∴tan∠DEA===.故答案为:.(2)证明:连接OF,在矩形ABCD中,AD=BC,∠ADE=∠BCE=90°,又CE=DE,∴△ADE≌△BCE(SAS),∴AE=BE,∴∠EAB=∠EBA.∵OF=OA,∴∠OAF=∠OFA,∴∠OFA=∠EBA.∴OF∥EB.∵FG⊥BE,∴FG⊥OF,∴FG是⊙O的切线.(3)解:若BE能与⊙O相切,由AE是⊙O的直径,则AE⊥BE,∠AEB=90°.设DE=x,则EC=13﹣x.由勾股定理得:AE2+EB2=AB2,即(36+x2)+[(13﹣x)2+36]=132,整理得x2﹣13x+36=0,解得:x1=4,x2=9,∴DE=4或9,当DE=4时,CE=9,BE===3,当DE=9时,CE=4,BE===2,∴BE能与⊙O相切,此时BE=2或3.3.解:(1)如图1,连接OC,∵四边形ABCD和四边形BEFG为正方形,∴AB=BC=1,BE=EF,∠OEF=∠ABC=90°,∵点O为AB中点,∴OB=AB=,设BE=EF=x,则OE=x+,在Rt△OEF中,∵OE2+EF2=OF2,∴,在Rt△OBC中,∵OB2+BC2=OC2,∴=OC2,∵OC,OF为⊙O的半径,∴OC=OF,∴,解得:x=,∴正方形BEFG的边长为;(2)证明:如图2,连接OC,设OB=y,BE=EF=x,同(1)可得,OE2+EF2=OF2,OB2+BC2=OC2,∴OF2=x2+(x+y)2,OC2=y2+12∵OC,OF为⊙O的半径,∴OC=OF,∴x2+(x+y)2=y2+12,∴2x2+2xy=1,∴x2+xy=,即x(x+y)=,∴EF×OE=,∴以线段OE和EF为邻边的矩形的面积为定值,这个定值为.(3)证明:连接OD,设OA=a,BE=EF=b,则OB=1﹣a,则OE=1﹣a+b,∵∠DAO=∠OEF=90°,∴DA2+OA2=OD2,OE2+EF2=OF2,∴12+a2=OD2,(1﹣a+b)2+b2=OF2,∵OD=OF,∴12+a2=(1﹣a+b)2+b2,∴(b+1)(a﹣b)=0,∵b+1≠0,∴a﹣b=0,∴a=b,∴OA=EF,在Rt△AOD和Rt△EFO中,,∴Rt△AOD≌Rt△EFO(HL),∴∠FOE=∠ODA,∵∠DAO=90°,∴∠ODA+∠AOD=90°,∴∠FOE+∠AOD=90°,∴∠DOF=90°,∴DO⊥FO.4.解:(1)如图1,∵AC为直径,∴∠ABC=90°,∴∠ACB+∠BAC=90°,∵AB=BC,∴∠ACB=∠BAC=45°,∴∠ADB=∠ACB=45°;(2)线段EA,CF,EF之间满足的等量关系为:EA2+CF2=EF2.理由如下:如图2,设∠ABE=α,∠CBF=β,∵AD∥BF,∴∠EBF=∠ADB=45°,又∠ABC=90°,∴α+β=45°,过B作BN⊥BE,使BN=BE,连接NC,∵AB=CB,∠ABE=∠CBN,BE=BN,∴△AEB≌△CNB(SAS),∴AE=CN,∠BCN=∠BAE=45°,∴∠FCN=90°.∵∠FBN=α+β=∠FBE,BE=BN,BF=BF,∴△BFE≌△BFN(SAS),∴EF=FN,∵在Rt△NFC中,CF2+CN2=NF2,∴EA2+CF2=EF2;(3)如图3,延长GE,HF交于K,由(2)知EA 2+CF 2=EF 2, ∴EA 2+CF 2=EF 2,∴S △AGE +S △CFH =S △EFK ,∴S △AGE +S △CFH +S 五边形BGEFH =S △EFK +S 五边形BGEFH ,即S △ABC =S 矩形BGKH , ∴S △ABC =S 矩形BGKH ,∴S △GBH =S △ABO =S △CBO ,∴S △BGM =S 四边形COMH ,S △BMH =S 四边形AGMO ,∵S 四边形AGMO :S 四边形CHMO =8:9,∴S △BMH :S △BGM =8:9,∵BM 平分∠GBH ,∴BG :BH =9:8,设BG =9k ,BH =8k ,∴CH =3+k ,∵AG =3,∴AE =3, ∴CF =(k +3),EF =(8k ﹣3),∵EA 2+CF 2=EF 2, ∴+=,整理得:7k 2﹣6k ﹣1=0,解得:k 1=﹣(舍去),k 2=1.∴AB =12,∴AO =AB =6,∴⊙O的半径为6.5.解:(1)①错误.点B在射线OA上的射影值小于1时,∠OBA可以是钝角,故△OAB 不一定是锐角三角形;②正确.点B在射线OA上的射影值等于1时,AB⊥OA,∠OAB=90°,△OAB是直角三角形;③正确.点B在射线OA上的射影值大于1时,∠OAB是钝角,故△OAB是钝角三角形;故答案为:B.(2)①如图2,作BH⊥OC于点H,∵点B在射线OA上的射影值为,∴=,=,CA=OA=OB=1,∴=,又∵∠BOH=∠COB,∴△BOH∽△COB,∴∠BHO=∠CBO=90°,∴BC⊥OB,∴直线BC是⊙O的切线;②图形是上下对称的,只考虑B在直线OC上及OC上方部分的情形.过点D作DM⊥OC,作DN⊥OB,当∠DOB<90°时,设DM=h,∵D为线段BC的中点,∴S△OBD =S△ODC,∴OB×DN=OC×DM,∴DN=2h,∵在Rt△DON和Rt△DOM中,OD2=DN2+ON2=DM2+OM2,∴4h2+y2=h2+x2,∴3h2=x2﹣y2①,∵BD2=CD2,∴4h2+(1﹣y)2=h2+(2﹣x)2②,①②消去h得:y=2x﹣.如图,当∠BOD=90°时,过点D作DM⊥OC于点M,∵D为线段BC的中点,∴S△OBD =S△ODC,∴OB×DO=OC×DM,∵CA=OA=OB=1,∴OD=2DM,∴sin∠DOM=,∴∠DOM=30°,设DM=h,则OD=2h,OM=h,∴h2+=1+4h2,∴h=,∴OM=,当点B在OC上时,OD=,综上所述,当≤x≤时,y=0;当<x≤时,y=2x﹣.故答案为:y=0(≤x≤)或y=2x﹣(<x≤).6.解:(1)如图1,连接OA、OB,过点O作OH⊥AB于点H,∵∠C=60°,∴∠AOB=120°,∵OA=OB,∴△OAB为等腰三角形,∵OH⊥AB,∴∠AOH=∠BOH=60°,∴AH=OA sin∠AOH=4×=2,则AB=2AH=4;故答案为4;(2)如图2,连接AC,过点D作DE⊥AC于点E,过点B作BF⊥AC于点F,∵四边形ABCD的面积S=AC×DE AC×BF=AC×(DE+BF),∴当D、E、F、B四点共线且为直径时,四边形ABCD的面积S最大;∵∠ABC=120°,∴∠ADC=60°,∴∠AOC=120°,在△AOC中,由(1)知,AC=2×OA sin60°=2×6×=6,∴四边形ABCD的面积S的最大值为:×AC×BD=6×12=36,故四边形ABCD的面积的最大值为36;(3)如图3,过点D作DK⊥AB于点K,连接CD,在△ADM中,DK=AD•sin A=1×=,同理AK=,则KM=AM﹣AK=2﹣=,则tan∠DMK==∴∠DMK=30°,故△ADM为直角三角形,同理△CMB为直角三角形,在Rt△ADM中,DM===,∴∠DMC=180°﹣∠DMA﹣∠CMB=60°∵AD=BM,AM=BC,∠A=∠B=60°,∴Rt△ADM≌Rt△BMC(SAS),∴DM=CM,∴△CDM为等边三角形;设所在的圆的圆心为R,连接DR、CR、MR,∵DM=CM,RM=RM,DR=CR,∴△DRM≌△CRM(SSS),∴∠DMR=∠CMR=∠DMC=30°,在△DMR中,DR=1,∠DMR=30°,DM==CM,过点R作RH⊥DM于点H,则RM===1=RD,故D、P、C、M四点共圆,∴∠DPC=120°,如图4,连接MP,在PM上取PP′=PC,∵△CDM为等边三角形,∴∠CDM=60°=∠CPM,∴△P′PC为等边三角形,则PP′=P′C=PC,∵∠PMC=∠PDC,∠CP′M=180°﹣∠PP′C=120°=∠DPC,CD=CM,∴△PDC≌△P′MC(AAS),∴PD=P′M,∴PD+PC=PP′+PD=PP′+P′M=PM,故当PM是直径时,PD+PC最大值为2;∵四边形DMCP的周长=DM+CM+PC+PD=2+PD+PC,而PD+PC最大值为2;故四边形DMCP的周长的最大值为:2+2,即四条慢跑道总长度(即四边形DMCP的周长)最大为2+2.7.(1)证明:∵OQ∥AP,∴∠EOC=∠OAP,∠POQ=∠APO,又∵OP=OA,∴∠APO=∠OAP,又∵∠BOQ=∠EOA=∠OAP,∴∠POQ=∠BOQ,在△BOQ与△POQ中,,∴△POQ≌△BOQ(SAS),∴∠OPQ=∠OBQ=90°,∵点P在⊙O上,∴PQ是⊙O的切线;(2)解:①∵△POQ≌△BOQ,∴∠OBQ=∠OPQ=90°,当∠BOP=90°,四边形OPQB为矩形,而OB=OP,则四边形OPQB为正方形,此时点C、点E与点O重合,PE=PO=AB=2;②∵PE⊥AB,∴当OC=AC,PC=EC,四边形AEOP为菱形,∵OC=OA=1,∴PC===,∴PE=2PC=2.故答案为:2;2.8.解:(1)∵AB是⊙O的直径,DA为⊙O的切线,切点为A,∴DA⊥AB,∴∠DAB=90°,∵DC为⊙O的切线,切点为C,∴DC=DA,∵CD∥AB,∴∠D+∠DAB=180°,∴∠D=90°,∴∠ACD=∠DAC=45°;(2)∵AB是⊙O的直径,DA为⊙O的切线,切点为A,∴DA⊥AB,∴∠DAB=90°,∠DEA=∠EAB,∴∠ADC=90°,∵∠EAD=30°,∴∠DEA=60°,∴∠EAB=60°,∴∠BCE=120°,∵AB是⊙O的直径,∴∠BCA=90°,∴∠ACD=30°,∴∠DAC=60°.9.解:(Ⅰ)如图①,连接OC,BC,∵AB为⊙O的直径,∴∠ACB=90°,∵DC与⊙O相切,∴∠OCD=90°,∵OB=BD,∴BC=OD=OB=BD,∴BC=OB=OC,∴△OBC是等边三角形,∴∠OBC=∠OCB=∠COB=60°,∴∠BCD=∠OCA=30°,∴∠D=∠A=30°;(Ⅱ)如图②,连接BE,∵AB为⊙O的直径,∴∠AEB=90°,∵AF⊥CD,∴∠AFC=90°,∵∠ACF是圆内接四边形ACEB的外角,∴∠ACF=∠ABE,∴∠FAC=∠EAB=18°,答:∠FAC的大小为18°.10.解:(1)连接OM,∵PE为⊙O的切线,∴OM⊥PC,∵AC⊥PC,∴OM∥AC,∴∠CAM=∠AMO,∵OA=OM,∠OAM=∠AMO,∴∠CAM=∠OAM,即AM平分∠CAB;(2)∵∠APE=30°,∴∠MOP=∠OMP﹣∠APE=90°﹣30°=60°,∵AB=4,∴OB=2,∴的长为=.11.(1)证明:∵AB是⊙O的直径,CA切⊙O于A,∴∠C+∠AOC=90°;又∵OC⊥AD,∴∠OFA=90°,∴∠AOC+∠BAD=90°,∴∠C=∠BAD.又∵∠BED=∠BAD,∴∠C=∠BED.(2)解:由(1)知∠C=∠BAD,tan∠BED=,∴tan∠C=,∴tan∠C==,且OA=AB=6,∴,解得AC=8,∴=10,∵OC•AF=OA•AC,∴.∴==.12.(1)证明:∵PA与⊙O相切于点P,∴BP⊥AP∴∠OPD+∠DPA=90°,∠OAP+∠AOP=90°∵∠OAP=∠DPA.∴∠OPD=∠AOP∴OD=PD∵PO=OD∴PO=PD.(2)连接PC,∵PB为⊙O的直径∴∠BCP=90°∵PO=PD=OD∴∠AOP=60°设⊙O的半径为x,则PB=2x,=tan60°∴PA=x∴AB==x∵∠BPA=∠BCP=90°,∠B=∠B∴△BAP∽△BPC∴=∵AC=∴=∴7x﹣=4x∴x=∴⊙O的半径为.13.证明:(1)连接OC,(1)证明:连接OC∵CF是⊙O的切线,∴OC⊥CF,∴∠OCF=90°,∴∠OCB+∠DCF=90°,∵OC=OB,∴∠OCB=∠OBC,∵PD⊥AB,∴∠BPD=90°,∴∠OBC+∠BDP=90°,∴∠BDP=∠DCF,∵∠BDP=∠CDF,∴∠DCF=∠CDF,∴FC=FD;(2)如图2,连接OC,OE,BE,CE,①以O,B,E,C为顶点的四边形是菱形.理由如下:∵AB是直径,∴∠ACB=90°,∵∠BAC=60°,∴∠BOC=120°,∵点E是的中点,∴∠BOE=∠COE=60°,∵OB=OE=OC,∴△BOE,△OCE均为等边三角形,∴OB=BE=CE=OC∴四边形BOCE是菱形;②∵,∴设AC=3k,BC=4k(k>0),由勾股定理得AC2+BC2=AB2,即(3k)2+(4k)2=302,解得k=6,∴AC=18,BC=24,∵点E是的中点,∴OE⊥BC,BH=CH=12,=OE×BH=OB×PE,即15×12=15PE,解得:PE=12,∴S△OBE由勾股定理得OP===9.故答案为:9.14.解:(1)过点E作EH⊥AF于H,连接OA、OE、OH,如图1所示:∵∠ACB=90°,AB=10,AC=8,∴BC===6,设运动时间为t,则AE=5t,AF=8t,∵∠AHE=∠ACB=90°,∠EAH=∠BAC,∴△EAH∽△BAC,∴=,即:=,∴AH=4t,∴FH=AF﹣AH=8t﹣4t=4t,∴AH=FH,∵EH⊥AF,∴△AEF是等腰三角形,∴E为的中点,∠EAF=∠EFA,∵AH=FH,∴OH⊥AC,∴E、H、O三点共线,∴∠OAF+∠AOE=90°,∵AB平分∠DAM,∴∠DAE=∠EAF=∠EFA,∵∠AOE=2∠EFA,∴∠AOE=∠DAE+∠EAF=∠DAF,∴∠DAF+∠OAF=90°=∠DAO,即OA⊥AD,∵OA为⊙O的半径,∴AD与⊙O相切;故答案为:等腰三角形,相切;(2)连接OA、OF、OE,OE于AC交于H,如图2所示:由(1)知:EH⊥AC,∵EN与⊙O相切,∴∠OEN=90°,∵∠ACB=90°,∴四边形EHCN为矩形,∴EH=NC,在Rt△AHE中,EH===3t,∴NC=3t,∵点N为BC的中点,∴BC=2NC=6t,∵BC=6,∴6t=6,∴t=1,∴AH=4,EH=3,设⊙O的半径为x,则OH=x﹣3,在Rt△AOH中,由勾股定理得:OA2=OH2+AH2,即x2=(x﹣3)2+42,解得:x=,∴⊙O的半径为,∴OH=,∴tan∠AOH==,∴∠AOH=74°,∵∠AOH=60°时,△AOE是等边三角形,AE=OA,74°>60°,∴AE>OA,∴劣弧长度的大于半径;(3)当点E运动到B点时,t=10÷5=2,∴AF=2×8=16,AE=EF=AB=10,此时△AEF的内心记为G,当A、E、F重合时,内心为A点,∴△AEF的内心运动的路径长为AG,作GP⊥AE于P,GQ⊥EF于Q,连接AG、GF,则CG=PG=NQ,如图3所示:S△AEF=AF•BC=×16×6=48,设CG=PG=NQ=a,则S△AEF =S△AGF+S△AEB+S△FEG=AF•CG+AE•PG+EF•NQ=×(16+10+10)a=48,解得:a=,在Rt△AGC中,AC2+CG2=AG2,即82+()2=AG,∴AG=,故答案为:;(4)分别讨论两种极限位置,①当EN与⊙O相切时,由(2)知,t=1;②当N在⊙O上,即ON为⊙O的半径,连接OA、ON、OE,OE交AC于H,过点O作OK⊥BC于K,如图4所示:则四边形OKCH为矩形,OA=OE=ON,∴OH=CK,AH=4t,EH=3t,设⊙O的半径为x,则在Rt△AOH中,AH2+OH2=OA2,即(4t)2+(x﹣3t)2=x2,解得:x=t,∴OH=CK=t﹣3t=t,在Rt△OKN中,OK2+KN2=ON2,即(8﹣4t)2+(3+t)2=(t)2,解得:t=,∴线段EN与⊙O有两个公共点时,t的取值范围为:1<t≤,故答案为:1<t≤.15.解:(1)连接OE,则∠OCE=∠OEC=α,∵FE=FG,∴∠FGE=∠FEG=β,∵H是AB的中点,∴CH⊥AB,∴∠GCH+∠CGH=α+β=90°,∴∠FEO=∠FEG+∠CEO=α+β=90°,∴EF是⊙O的切线;(2)∵CH⊥AB,∴=∴∠CBA=∠CEB,∵EF∥BC,∴∠CBA=∠F,故∠F=∠CEB,∴∠FBE=∠GBE,∴△FEB∽△EGB,∴BE2=BG•BF;(3)如图2,过点F作FR⊥CE于点R,设∠CBA=∠CEB=∠GFE=γ,则tanγ=,∵EF∥BC,∴∠FEC=∠BCG=β,故△BCG为等腰三角形,则BG=BC=5,在Rt△BCH中,BC=5,tan∠CBH=tanγ=,则sinγ=,cosγ=,CH=BC sinγ=5×=3,同理HB=4;设圆的半径为r,则OB2=OH2+BH2,即r2=(r﹣3)2+(4)2,解得:r=;GH=BG﹣BH=5﹣4=,tan∠GCH===,则cos∠GCH=,则tan∠CGH=3=tanβ,则cosβ=,连接DE,则∠CED=90°,在Rt△CDE中cos∠GCH===,解得:CE=,在△FEG中,cosβ===,解得:FG=;∵FH=FG+GH=,∴HM=FH tan∠F=×=;∵CM=HM+CH=,∴MD=CM﹣CD=CM﹣2r=.16.(1)证明:连接OD、BD,∵AB为圆O的直径,∴∠BDA=90°,∴∠BDC=180°﹣90°=90°,∵E为BC的中点,∴DE=BC=BE,∴∠EBD=∠EDB,∵OD=OB,∴∠OBD=∠ODB,∵∠EBD+∠DBO=90°,∴∠EDB+∠ODB=90°,∴∠ODE=90°,∴DE是圆O的切线.(2)证明:如图,连接BD.由(1)知,∠ODE=∠ADB=90°,BD⊥AC.∵E是BC的中点,O是AB的中点,∴OE是△ABC的中位线,∴OE∥AC,∴OE⊥BD.∴OE∥AC,∴∠1=∠2.又∵∠1=∠A,∴∠A=∠2.即在△ADB与△ODE中,∠ADB=∠ODE,∠A=∠2,∴△ADB∽△ODE.∴=,即=.∴r2=AD•OE;(3)∵AB为⊙O的直径,∴∠ADB=∠BDC=90°,∵点E为BC的中点,∴BC=2DE=8,∵sin C=,∴设AB=3x,AC=5x,根据勾股定理得:(3x)2+82=(5x)2,解得x=2.则AC=10.由切割线定理可知:82=(10﹣AD)×10,解得,AD=3.6.17.解:(1)如答图1,当CD⊥AB或点D是AB的中点是,CD2=AD•BD;(2)作AE⊥BC于点E,由,可设AE=4x,则BE=3x,CE=6x,∴BC=9x=9,∴x=1,∴BE=3,CE=6,AE=4,设DE=a,①如答图2,若点D在点E左侧,由点D是BC边上的“好点”知,AD2=BD•CD,∴a2+42=(3﹣a)(6+a),即2a2+3a﹣2=0,解得,a=﹣2(舍去),2∴.②如答图3,若点D在点E右侧,由点D是BC边上的“好点”知,AD2=BD•CD,∴a2+42=(3+a)(6﹣a),即2a2﹣3a﹣2=0,=2,(舍去)解得a1∴BD=3+a=3+2=5.∴或5.(5)①∵∠CHA=∠BHD,∠ACH=∠DBH∴△AHC∽△DHB,∴,即AH•BH=CH•DH,∵OH⊥AB,∴AH=BH,∴BH2=CH•DH∴点H是△BCD中CD边上的“好点”.②.理由如下:如答图4,连接AD,BD,∵∠ABD=90°,∴AD是直径,∴AD=18.又∵OH⊥AB,∴OH∥BD.∵点O是线段AD的中点,∴OH是△ABD的中位线,∴BD=2OH=12.在直角△ABD中,由勾股定理知:AB===6.∴由垂径定理得到:BH=AB=3.在直角△BDH中,由勾股定理知:DH===3.又由①知,BH2=CH•DH,即45=3CH,则CH=.∴==,即.18.解:(1)如图,连接AN,∵AC为直径,∴AN⊥BC,∵AB=AC,∴AN平分∠BAC,∵PC是圆的切线,∴∠ACP=90°,∵∠NAC+∠ACB=∠PCB+∠ACB=90°,∴∠NAC=∠BCP,即∠BAC=2∠BCP;(2)由(1)知,AN平分∠BAC,则∠NAC=∠BCP,故sin∠NAC=sin∠BCP=,则tan∠NAC=,在Rt△NAC中,AC=5,NC=AC•sin∠NAC=5×=,同理AN=2,则BC=2NC=2;S=×BC•AN=2×2=10,△ABC设△ABC内切圆的半径为r,则S=(AB+AC+BC)•r=×(5+5+2)=10,△ABC解得:r=;故△ABC内切圆的半径为;(3)在△ABC中,设AC边长的高为h,则S=AC•h=×5×h=10,解得:h=4,△ABCsin∠BAC==,在Rt△ACP中,∵sin∠BAC==,设PC=4m,则AP=5m,则AC=3m=5,解得m=,△ACP的周长=3m+4m+5m=12m=20.19.(1)证明:如图1,∵AC为⊙O的直径,∴∠ADC=90°,∴∠DAC+∠DCA=90°.∵=,∴∠ABD=∠DCA,∵∠FAD=∠ABD,∴∠FAD=∠DCA,∴∠FAD+∠DCA=90°,∴CA⊥AF,∴AF为⊙O的切线.(2)证明:如图2,连接OD,∵=,∴∠ABD=∠AOD,∵=,∴∠DBC=∠DOC,∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠DOA=∠DOC,∴DA=DC.(3)如图3,连接OD交CF于M,作EP⊥AD于P,∵AC为⊙O的直径,∴∠ADC=90°.∵DA=DC,∴DO⊥AC,∴∠FAC=∠DOC=90°,∴AF∥OM,∵AO=OC,∴OM=AF.∵∠ODE+∠DEO=90°,∠OCM+∠DEO=90°.∴∠ODE=∠OCM.∵∠DOE=∠COM,OD=OC,∴∴△ODE≌△OCM,∴OE=OM,设OM=m,∴AE=2﹣m,AP=PE=2﹣m,DP=2+m,∵∠AED+∠AEN=135°,∠AED+∠ADE=135°,∴∠AEN=∠ADE,∵∠EAN=∠DPE,∴△EAN∽△DPE,∴=,∴=,∴m=,∴AN=,AE=,∴勾股定理得NE=.20.(1)证明:连接OF,∵AB与⊙O相切于点F,∴OF⊥AB,∵∠ACB=90°,OC=OF,∴∠OAF=∠OAC,即AO是△ABC的角平分线;(2)如图2,连接CE,∵ED是⊙O的直径,∴∠ECD=90°,∴∠ECO+∠OCD=90°,∵∠ACB=90°,∴∠ACE+∠ECO=90°,∴∠ACE=∠OCD,∵OC=OD,∴∠OCD=∠ODC,∴∠ACE=∠ODC,∵∠CAE=∠CAE,∴△ACE∽△ADC,∴,∵tan∠D=,∴,∴;(3)由(2)可知:=,∴设AE=x,AC=2x,∵△ACE∽△ADC,∴,∴AC2=AE•AD,∴(2x)2=x(x+6),解得:x=2或x=0(不合题意,舍去),∴AE=2,AC=4,∴AO=AE+OE=2+3=5,如图3,连接CF交AD于点G,∵AC,AF是⊙O的切线,∴AC=AF,∠CAO=∠OAF,∴CF⊥AO,∴∠ACO=∠CGO=90°,∵∠COG=∠AOC,∴△CGO∽△ACO,∴,∴OC2=OG•OA,∴OG=,∴CG===,∴CF=2CG=.。
天津市2020版中考数学专题练习:圆50题_含答案
圆50题一、选择题:1.如图,小明同学设计了一个测量圆直径的工具,标有刻度的尺子OA、OB在O点钉在一起,并使它们保持垂直,在测直径时,把O点靠在圆周上,读得刻度OE=8个单位,OF=6个单位,则圆的直径为()A.12个单位 B.10个单位 C.1个单位 D.15个单位2.如图,AB、CD是⊙O的两条弦,连结AD、BC.若∠BCD=70°,则∠BAD的度数为()A.40° B.50° C.60° D.70°3.已知圆内接正三角形的边心距为1,则这个三角形的面积为()A.2 B.3 C.4 D.64.如图,点A,B,C,在⊙O上,∠ABO=32°,∠ACO=38°,则∠BOC等于()A.60° B.70° C.120°D.140°5.如图,点A,B,C在⊙O上,∠A=36°,∠C=28°,则∠B=()A.100°B.72°C.64°D.36°6.如图,⊙O是△ABC的外接圆,弦AC的长为3,sinB=0.75,则⊙O的半径为( )A.4B.3C.2D.7.如图,圆锥的底面半径OB=6cm,高OC=8cm.则这个圆锥的侧面积是()A.30cm2B.30πcm2C.60πcm2D.120cm28.如图,已知AB是⊙O的直径,AD切⊙O于点A,点C是弧BE的中点,则下列结论不成立的是()A.OC∥AE B.EC=BC C.∠DAE=∠ABE D.AC⊥OE9.如图,AB是⊙O的直径,C、D是⊙O上两点,分别连接AC、BC、CD、OD.∠DOB=140°,则∠ACD=()A.20°B.30°C.40°D.70°10.如图,△ABC中,AB=5,BC=3,AC=4,以点C为圆心的圆与AB相切,则⊙C半径为()A.2.6B.2.5C.2.4D.2.311.数学课上,老师让学生尺规作图画Rt△ABC,使其斜边AB=c,一条直角边BC=a,小明的作法如图所示,你认为这种作法中判断∠ACB是直角的依据是()A .勾股定理B .勾股定理是逆定理C .直径所对的圆周角是直角D .90°的圆周角所对的弦是直径12.如图,⊙O 中,弦AB 、CD 相交于点P , 若30A ∠=︒,70APD ∠=︒,则B ∠等于( )A .30︒B .35︒C .40︒D .50︒13.如图,将⊙O 沿弦AB 折叠,圆弧恰好经过圆心O ,点P 是优弧AMB 上一点,则∠APB 的度数为( ) A .45° B .30° C .75° D .60°14.如图,阴影部分是两个半径为1的扇形,若α=120°,β=60°,则大扇形与小扇形的面积之差为( )A. B. C. D.15.以半径为1的圆内接正三角形、正方形、正六边形的边心距为三边作三角形,则( )A.不能构成三角形B.这个三角形是等腰三角形C.这个三角形是直角三角形D.这个三角形是钝角三角形第11题 CAD PO16.如图,在Rt△ABC中,∠A=30°,BC=2,以直角边AC为直径作⊙O交AB于点D,则图中阴影部分的面积是()A.﹣B.﹣C.﹣D.﹣17.已知圆锥底面半径为5cm,侧面积为65πcm2,设圆锥母线与高夹角为θ,如图,则sinθ值为()A. B. C. D.18.如图,△ABC中,∠B=60°,∠ACB=75°,点D是BC边上一动点,以AD为直径作⊙O,分别交AB、AC 于点E、F,若弦EF的最小值为1,则AB的长为().A. B. C. 1.5 D.19.如图,在△ABC中,AB=10,AC=8,BC=6,以边AB的中点O为圆心,作半圆与AC相切,点P,Q分别是边BC和半圆上的动点,连接PQ,则PQ长的最大值与最小值的和是()A. 6B.C. 9D.20.如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠PAB=∠PBC,则线段CP 长的最小值为()A.1.5B.2C.D.二、填空题:21.如图,A,B,C是⊙O上三点,∠ACB=25°,则∠BAO的度数是22.如图,直线AB与☉O相切于点A,AC,CD是☉O的两条弦,且CD∥AB,若☉O的半径为2.5,CD=4,则弦AC的长为 .23.如图,点A, B, C在⊙O上,CO的延长线交AB于点D,∠A=50°,∠B=30°则∠ADC的度数为 .24.已知扇形的圆心角为45°,半径长为12,则该扇形的弧长为.25.如图AB是⊙O的直径,∠BAC=42°,点D是弦AC的中点,则∠DOC的度数是度.26.如图,四边形ABCD内接于⊙O,∠DAB=130°,连接OC,点P是半径OC上任意一点,连接DP,BP,则∠BPD可能为度(写出一个即可).27.如图,AC是⊙O的直径,∠1=46°,∠2=28°,则∠BCD=______.28.如图,小亮将边长为3的正方形铁丝框ABCD变形为正六边形为EFMNPQ(忽略铁丝的粗细),则所得正六边形的面积为.29.如图,⊙O的内接四边形ABCD中,∠A=115°,则∠BOD等于.30.如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,连接AC.若∠CAB=22.5°,CD=8cm,则⊙O的半径为 cm.31.将面积为32π的半圆围成一个圆锥的侧面,则这个圆锥的底面半径为.32.如图,已知⊙O半径为2,从⊙O外点C作⊙O的切线CA和CB,切点分别为点A和点D,∠ACB=90°,BC=2,则图中阴影部分的面积是.33.若正n边形的一个外角是一个内角的时,此时该正n边形有_________条对称轴.34.如图,AB是⊙O的弦,AB=6,点C是⊙O上的一个动点,且∠ACB=45°.若点M,N分别是AB,BC的中点,则MN长的最大值是.35.AB为半圆O的直径,现将一块等腰直角三角板如图放置,锐角顶点P在半圆上,斜边过点B,一条直角边交该半圆于点Q.若AB=2,则线段BQ的长为.36.如图,正六边形ABCDEF内接于⊙O,若⊙O的半径为4,则阴影部分的面积等于.37.如图,是一个隧道的截面,如果路面AB宽为8米,净高CD为8米,那么这个隧道所在圆的半径OA是___________米.38.如图,在平面直角坐标系中,已知点A(1,0),B(1﹣a,0),C(1+a,0)(a>0),点P在以D(4,4)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则a的最大值是.39.在平面直角坐标系xOy中,以原点O为圆心的圆过点A(13,0),直线y=kx﹣4k+3与⊙O交于B、C两点,则弦BC的长的最小值为.40.如图,已知Rt△ABC,∠ACB=90°,∠BAC=30°,BC=2,D为平面内一动点,连接DA、DC,且∠ADC 度数始终等于30°,连接BD,则BD的最大值为 .三、解答题:41.如图,已知⊙O的半径长为R=5,弦AB 与弦CD平行,他们之间距离为7,AB=6求:弦CD的长.42.如图,已知AB是⊙O的直径,点P在BA的延长线上,PD切⊙O于点D,过点B作BE垂直于PD,交PD的延长线于点C,连接AD并延长,交BE于点E.(1)求证:AB=BE;(2)若PA=2,cosB=,求⊙O半径的长.43.如图,A、F、B、C是半圆O上的四个点,四边形OABC是平行四边形,∠FAB=15°,连接OF交AB于点E,过点C作OF的平行线交AB的延长线于点D,延长AF交直线CD于点H.(1)求证:CD是半圆O的切线;(2)若DH=6﹣3,求EF和半径OA的长.44.如图,直线AB经过⊙O上的点C,直线AO与⊙O交于点E和点D,OB与⊙O交于点F,连接DF、DC.已知OA=OB,CA=CB,DE=10,DF=6.(1)求证:①直线AB是⊙O的切线;②∠FDC=∠EDC;(2)求CD的长.45.如图,PA,PB是⊙O的切线,A,B为切点,∠OAB=30°.(1)求∠APB的度数;(2)当OA=3时,求AP的长.46.如图,Rt△ABC中,∠ABC=90°,以AB为直径作半圆⊙O交AC与点D,点E为BC的中点,连接DE.(1)求证:DE是半圆⊙O的切线.(2)若∠BAC=30°,DE=2,求AD的长.47.已知点A、B在半径为1的⊙O上,直线AC与⊙O相切,OC⊥OB,连接AB交OC于点D.(Ⅰ)如图①,若∠OCA=60°,求OD的长;(Ⅱ)如图②,OC与⊙O交于点E,若BE∥OA,求OD的长.48.如图1,在直角坐标系xoy中,直线l与x、y轴分别交于点A(4,0)、B(0,16/3)两点,∠BAO的角平分线交y轴于点D.点C为直线l上一点,以AC为直径的⊙G经过点D,且与x轴交于另一点E.(1)求证:y轴是⊙G的切线;(2)请求⊙G的半径r,并直接写出点C的坐标;(3)如图2,若点F为⊙G上的一点,连接AF,且满足∠FEA=45°,请求出EF的长?49.如图,⊙O的半径r=25,四边形ABCD内接于圆⊙O,AC⊥BD于点H,P为CA延长线上的一点,且∠PDA=∠ABD.(1)试判断PD与⊙O的位置关系,并说明理由;(2)若tan∠ADB=,PA=AH,求BD的长;(3)在(2)的条件下,求四边形ABCD的面积.50.如图,AB是⊙O的弦,D为OA半径的中点,过D作CD⊥OA交弦AB于点E,交⊙O于点F,且CE=CB.(1)求证:BC是⊙O的切线;(2)连接AF,BF,求∠ABF的度数;(3)如果CD=15,BE=10,sinA=,求⊙O的半径.参考答案1.B2.D3.B4.D5.C6.C7.C8.B9.A10.D11.C12.C13.D14.B15.C16.A17.B18.B19.C20.解:∵∠ABC=90°,∴∠ABP+∠PBC=90°,∵∠PAB=∠PBC,∴∠BAP+∠ABP=90°,∴∠APB=90°,∴点P在以AB为直径的⊙O上,连接OC交⊙O于点P,此时PC最小,在RT△BCO中,∵∠OBC=90°,BC=4,OB=3,∴OC==5,∴PC=OC=OP=5﹣3=2.∴PC最小值为2.故选B.21.答案为:65°;22.答案为:223.答案为:110°24.答案为:3π.25.答案为:48.26.答案为:80.27.答案为:72°28.答案为:6.29.答案为:130°.30.答案为:431.答案为:4.32.答案为:3.33.答案:534.答案为:3.35.答案为:.36.答案为:π.37.答案:5.38.答案为6.39.答案为:24.40.答案为:;(提示:以AC为半径作⊙O,连接BO并延长,交⊙O于D点,则BD最长)41.答案为:8.42.(1)证明:连接OD,∵PD切⊙O于点D,∴OD⊥PD,∵BE⊥PC,∴OD∥BE,∴ADO=∠E,∵OA=OD,∴∠OAD=∠ADO,∴∠OAD=∠E,∴AB=BE;(2)解:有(1)知,OD∥BE,∴∠POD=∠B,∴cos∠POD=cosB=,在Rt△POD中,cos∠POD==,∵OD=OA,PO=PA+OA=2+OA,∴,∴OA=3,∴⊙O半径=3.43.【解答】解:(1)连接OB,∵OA=OB=OC,∵四边形OABC是平行四边形,∴AB=OC,∴△AOB是等边三角形,∴∠AOB=60°,∵∠FAD=15°,∴∠BOF=30°,∴∠AOF=∠BOF=30°,∴OF⊥AB,∵CD∥OF,∴CD⊥AD,∵AD∥OC,∴OC⊥CD,∴CD是半圆O的切线;(2)∵BC∥OA,∴∠DBC=∠EAO=60°,∴BD=0.5BC=0.5AB,∴AE=AD,∵EF∥DH,∴△AEF∽△ADH,∴,∵DH=6﹣3,∴EF=2﹣,∵OF=OA,∴OE=OA﹣(2﹣),∵∠AOE=30°,∴==,解得:OA=2.44.【解答】(1)①证明:连接OC.∵OA=OB,AC=CB,∴OC⊥AB,∵点C在⊙O上,∴AB是⊙O切线.②证明:∵OA=OB,AC=CB,∴∠AOC=∠BOC,∵OD=OF,∴∠ODF=∠OFD,∵∠AOB=∠ODF+∠OFD=∠AOC+∠BOC,∴∠BOC=∠OFD,∴OC∥DF,∴∠CDF=∠OCD,∵OD=OC,∴∠ODC=∠OCD,∴∠ADC=∠CDF.(2)作ON⊥DF于N,延长DF交AB于M.∵ON⊥DF,∴DN=NF=3,在RT△ODN中,∵∠OND=90°,OD=5,DN=3,∴ON==4,∵∠OCM+∠CMN=180°,∠OCM=90°,∴∠OCM=∠CMN=∠MNO=90°,∴四边形OCMN是矩形,∴ON=CM=4,MN=OC=5,在RT△CDM中,∵∠DMC=90°,CM=4,DM=DN+MN=8,∴CD===4.45.答案为:∠APB=60°AP=346.【解答】(1)证明:连接OD,OE,BD,∵AB为圆O的直径,∴∠ADB=∠BDC=90°,在Rt△BDC中,E为斜边BC的中点,∴DE=BE,在△OBE和△ODE中,,∴△OBE≌△ODE(SSS),∴∠ODE=∠ABC=90°,则DE为圆O的切线;(2)在Rt△ABC中,∠BAC=30°,∴BC=AC,∵BC=2DE=4,∴AC=8,又∵∠C=60°,DE=CE,∴△DEC为等边三角形,即DC=DE=2,则AD=AC﹣DC=6.47.【解答】解:(1)∵AC与⊙O相切,∴∠OAC=90°.∵∠OCA=60°,∴∠AOC=30°.∵OC⊥OB,∴∠AOB=∠AOC+∠BOC=120°.∵OA=OB,∴∠OAB=∠OBA=30°,∴OD=AD,∠DAC=60°∴AD=CD=AC.∵OA=1,∴OD=AC=OA•tan∠AOC=.(2)∵OC⊥OB,∴∠OBE=∠OEB=45°.∵BE∥OA,∴∠AOC=45°,∠ABE=∠OAB,∴OA=AC,∠OAB=∠OBA=22.5°,∴∠ADC=∠AOC+∠OAB=67.5°.∵∠DAC=90°﹣∠OAB=67.5°=∠ADC,∴AC=CD.∵OC==,∴OD=OC﹣CD=﹣1.48.49.解:(1)PD与圆O相切.理由:如图,连接DO并延长交圆于点E,连接AE,∵DE是直径,∴∠DAE=90°,∴∠AED+∠ADE=90°,∵∠PDA=∠ABD=∠AED,∴∠PDA+∠ADE=90°,即PD⊥DO,∴PD与圆O相切于点D;(2)∵tan∠ADB=∴可设AH=3k,则DH=4k,∵PA=AH,∴PA=(4﹣3)k,∴PH=4k,∴在Rt△PDH中,tan∠P==,∴∠P=30°,∠PDH=60°,∵PD⊥DO,∴∠BDE=90°﹣∠PDH=30°,连接BE,则∠DBE=90°,DE=2r=50,∴BD=DE•cos30°=;(3)由(2)知,BH=﹣4k,∴HC=(﹣4k),又∵PD2=PA×PC,∴(8k)2=(4﹣3)k×[4k+(25﹣4k)],解得:k=4﹣3,∴AC=3k+(25﹣4k)=24+7,∴S四边形ABCD=BD•AC=×25×(24+7)=900+.50.(1)证明:连接OB∵OB=OA,CE=CB,∴∠A=∠OBA,∠CEB=∠ABC又∵CD⊥OA∴∠A+∠AED=∠A+∠CEB=90°∴∠OBA+∠ABC=90°∴OB⊥BC∴BC是⊙O的切线.(2)连接OF,AF,BF,∵DA=DO,CD⊥OA,∴△OAF是等边三角形,∴∠AOF=60°∴∠ABF=0.5∠AOF=30°(3)过点C作CG⊥BE于点G,由CE=CB,∴EG=0.5BE=5又Rt△ADE∽Rt△CGE∴sin∠ECG=sin∠A=,∴CE==13∴CG==12,又CD=15,CE=13,∴DE=2,由Rt△ADE∽Rt△CGE得=∴AD=•CG=4.8∴⊙O的半径为2AD=9.6.。
2020年中考数学 临考大专题复习:圆(解析版)
2020中考数学临考大专题复习:圆(含答案)一、选择题(本大题共8道小题)1. 如图,AB为☉O的切线.切点为A,连接AO,BO,BO与☉O交于点C,延长BO与☉O交于点D,连接AD.若∠ABO=36°,则∠ADC的度数为()A.54°B.36°C.32°D.27°2. 如图,AB,AC分别是☉O的直径和弦,OD⊥AC于点D,连接BD,BC,若AB=10,AC=8,则BD的长为()A.2√5B.4C.2√13D.4.83. 下列四个命题:①直径所对的圆周角是直角;②圆既是轴对称图形,又是中心对称图形;③在同圆中,相等的圆周角所对的弦相等;④三点确定一个圆.其中正确命题的个数为 ()A.1B.2C.3D.4⏜=CB⏜.若∠C=110°,4. 如图,四边形ABCD是半圆的内接四边形,AB是直径,DC则∠ABC的度数等于()A.55°B.60°C.65°D.70°5. 如图,☉O的直径AB垂直于弦CD.垂足是点E,∠CAO=22.5°,OC=6,则CD的长为()A.6√2B.3√2C.6D.126. 如图,已知AB是☉O的直径,点P在BA的延长线上,PD与☉O相切于点D,过点B作PD的垂线交PD的延长线于点C.若☉O的半径为4,BC=6,则P A的长为()A.4B.2√3C.3D.2.57. 小红不小心把家里的一块圆形玻璃镜打碎了,需要配制一块同样大小的玻璃镜,工人师傅在一块如图所示的玻璃镜残片的边缘描出了点A,B,C,给出三角形ABC,则这块玻璃镜的圆心是()A.AB,AC边上的中线的交点B.AB,AC边上的垂直平分线的交点C.AB,AC边上的高所在直线的交点D.∠BAC与∠ABC的角平分线的交点8. 如图,弦CD垂直于⊙O的直径AB,垂足为H,且CD=22,BD=3,则AB的长为()A. 2B. 3C. 4D. 5二、填空题(本大题共5道小题)9. 如图所示,AB是☉O的直径,弦CD⊥AB于H,∠A=30°,CD=2√3,则☉O的半径是.10. 如图所示,AB为☉O的直径,点C在☉O上,且OC⊥AB,过点C的弦CD与线段OB相交于点E,满足∠AEC=65°,连接AD,则∠BAD=度.11. 如图,∠AOB=90°,∠B=30°,以点O为圆心,OA为半径作弧,交AB于点A,C,交OB于点D,若OA=3,则阴影部分的面积为.12. 如图,AC是圆内接四边形ABCD的一条对角线,点D关于AC的对称点E在边BC上,连接AE,若∠ABC=64°,则∠BAE的度数为.⏜上.若13. 如图,☉O分别切∠BAC的两边AB,AC于点E,F,点P在优弧EDF∠BAC=66°,则∠EPF等于度.三、解答题(本大题共4道小题)14. 如图,四边形ABCD是正方形,以边AB为直径作☉O,点E在BC边上,连接AE交☉O于点F,连接BF并延长交CD于点G.(1)求证:△ABE≌△BCG.⏜的长.(结果保留π)(2)若∠AEB=55°,OA=3,求BF15. 如图,AB是☉O的直径,点C,D为半圆O的三等分点,过点C作CE⊥AD,交AD的延长线于点E.(1)求证:CE为☉O的切线.(2)判断四边形AOCD是否为菱形?并说明理由.16. 如图,M为线段AB的中点,AE与BD交于点C,∠DME=∠A=∠B=α,且DM交AC于F,ME交BC于G.(1)写出图中两对相似三角形,并证明其中的一对;(2)请连接FG,如果α=45°,AB=42,AF=3,求FG的长.17. 如图,过☉O外一点P作☉O的切线P A,切☉O于点A,连接PO并延长,与☉O交于C,D两点,M是半圆CD的中点,连接AM交CD于点N,连接AC,CM.(1)求证:CM2=MN·MA;(2)若∠P=30°,PC=2,求CM的长.2020中考数学 临考大专题复习:圆-答案一、选择题(本大题共8道小题)1. 【答案】D [解析]∵AB 为☉O 的切线,∴∠OAB=90°. ∵∠ABO=36°,∴∠AOB=90°-∠ABO=54°.∵OA=OD ,∴∠ADC=∠OAD ,∵∠AOB=∠ADC +∠OAD ,∴∠ADC=12∠AOB=27°,故选D .2. 【答案】C[解析]∵AB 是直径,∴∠C=90°,∴BC=√AB 2-AC 2=6.∵OD ⊥AC ,∴CD=AD=12AC=4, ∴BD=√BC 2+CD 2=2√13,故选C .3. 【答案】C4. 【答案】A[解析]连接AC ,∵四边形ABCD 是半圆的内接四边形,∴∠DAB=180°-∠C=70°.∵DC ⏜=CB ⏜,∴∠CAB=12∠DAB=35°.∵AB 是直径,∴∠ACB=90°, ∴∠ABC=90°-∠CAB=55°,故选A .5. 【答案】A[解析]∵∠A=22.5°,∴∠COE=45°,∵☉O 的直径AB 垂直于弦CD , ∴∠CEO=90°,CE=DE. ∵∠COE=45°, ∴CE=OE=√22OC=3√2, ∴CD=2CE=6√2,故选A .6. 【答案】A[解析]如图,连接OD.∵PC切☉O于点D,∴OD⊥PC.∵☉O的半径为4,∴PO=P A+4,PB=P A+8.∵OD⊥PC,BC⊥PD,∴OD∥BC,∴△POD∽△PBC,∴ODBC =POPB,即46=PA+4PA+8,解得P A=4.故选A.7. 【答案】B[解析]本题实质上是要确定三角形外接圆的圆心,三角形外接圆的圆心是三边垂直平分线的交点,故选B.8. 【答案】B【解析】由垂径定理可得DH=2,所以BH=BD2-DH2=1,又可得△DHB∽△ADB,所以有BD2=BH·BA,(3)2=1×BA,AB=3.二、填空题(本大题共5道小题)9. 【答案】2[解析]连接OC,则OA=OC,∴∠A=∠ACO=30°,∴∠COH=60°.∵OB⊥CD,CD=2√3,∴CH=√3,∴OH=1,∴OC=2.10. 【答案】20[解析]如图,连接DO,∵CO⊥AB,∴∠COB=90°,∵∠AEC=65°,∴∠C=25°,∵OD=OC,∴∠ODC=∠C=25°,∴∠DOC=130°,∴∠DOB=40°,∵2∠BAD=∠DOB,∴∠BAD=20°.11. 【答案】34π[解析]连接OC,过点C作CN⊥AO于点N,CM⊥OB于点M,∵∠AOB=90°,∠B=30°,∴∠A=60°,∵OA=OC,∴△AOC为等边三角形,∵OA=3,∴CN=32√3,CM=ON=32,∴S扇形AOC =32π,S△AOC=94√3,在Rt △AOB 中,OB=√3OA=3√3,S △OCB =94√3,∠COD=30°,S 扇形COD =34π,∴S 阴影=S 扇形AOC -S △AOC +S △OCB -S 扇形COD =34π.12. 【答案】52°[解析]∵圆内接四边形对角互补,∴∠B +∠D=180°,∵∠B=64°,∴∠D=116°.∵点D 关于AC 的对称点是点E ,∴∠D=∠AEC=116°. ∵∠AEC=∠B +∠BAE ,∴∠BAE=52°.13. 【答案】57[解析]连接OE ,OF .∵☉O 分别切∠BAC 的两边AB ,AC 于点E ,F ,∴OF ⊥AC ,OE ⊥AB ,∴∠BAC +∠EOF=180°,∵∠BAC=66°, ∴∠EOF=114°.∵点P 在优弧EDF ⏜上, ∴∠EPF=12∠EOF=57°.故填:57.三、解答题(本大题共4道小题)14. 【答案】解:(1)证明:∵四边形ABCD 是正方形,AB 为☉O 的直径, ∴∠ABE=∠BCG=∠AFB=90°,AB=BC , ∴∠BAF +∠ABF=90°,∠ABF +∠EBF=90°, ∴∠EBF=∠BAF , 在△ABE 与△BCG 中,{∠BAF =∠EBF ,AB =BC ,∠ABE =∠BCG ,∴△ABE ≌△BCG (ASA). (2)连接OF ,∵∠ABE=∠AFB=90°,∠AEB=55°, ∴∠BAE=90°-55°=35°, ∴∠BOF=2∠BAE=70°. ∵OA=3, ∴BF⏜的长=70×π×3180=7π6.15. 【答案】解:(1)证明:如图,连接OD ,∵点C ,D 为半圆O 的三等分点, ∴∠AOD=∠COD=∠COB=60°. ∵OA=OD ,∴△AOD 为等边三角形, ∴∠DAO=60°, ∴AE ∥OC. ∵CE ⊥AD , ∴CE ⊥OC , ∴CE 为☉O 的切线. (2)四边形AOCD 为菱形. 理由:∵OD=OC ,∠COD=60°, ∴△OCD 为等边三角形, ∴CD=CO. 同理:AD=AO. ∵AO=CO ,∴AD=AO=CO=DC , ∴四边形AOCD 为菱形.16. 【答案】解:(1)△AMF ∽△BGM ,△DMG ∽△DBM ,△EMF ∽△EAM 等.(写出两对即可)以下证明△AMF ∽△BGM.由题知∠A =∠B =∠DME =α,而∠AFM =∠DME +∠E ,∠BMG =∠A +∠E ,∴∠AFM =∠BMG ,∴△AMF ∽△BGM. (2)当α=45°时,可得AC ⊥BC 且AC =BC ,∵M 为AB 中点, ∴AM =BM =2 2.由△AMF ∽△BGM 得,AF·BG =AM·BM ,∴BG =83.又AC =BC =42cos 45°=4,∴CG =4-83=43,CF =4-3=1,∴FG =(43)2+12=53.17. 【答案】解:(1)证明:∵在☉O 中,点M 是半圆CD 的中点,∴∠CAM=∠DCM , 又∵∠CMA 是△CMN 和△AMC 的公共角, ∴△CMN ∽△AMC ,∴CM AM =MNMC ,∴CM 2=MN ·M A . (2)连接OA ,DM ,∵P A 是☉O 的切线,∴∠P AO=90°, 又∵∠P=30°, ∴OA=12PO=12(PC +CO ). 设☉O 的半径为r ,∵PC=2,∴r=12(2+r ),解得r=2. 又∵CD 是直径,∴∠CMD=90°, ∵点M 是半圆CD 的中点,∴CM=DM , ∴△CMD 是等腰直角三角形, ∴在Rt △CMD 中,由勾股定理得CM 2+DM 2=CD 2,∴2CM 2=(2r )2=16,∴CM 2=8,∴CM=2√2.。
2020届中考数学总复习(22)圆-精练精析(1)及答案解析
2020届中考数学总复习图形的性质——圆1一.选择题(共8小题)1.如图,正方形ABCD的边AB=1,和都是以1为半径的圆弧,则无阴影两部分的面积之差是()A.B.1﹣C.﹣1 D.1﹣2.已知⊙O的直径CD=10cm,AB是⊙O的弦,AB=8cm,且AB⊥CD,垂足为M,则AC的长为()A.cm B.cm C.cm或cm D.cm或cm3.如图,⊙O的直径CD垂直弦AB于点E,且CE=2,DE=8,则AB的长为()A.2 B.4 C.6 D.84.如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x 的图象被⊙P截得的弦AB的长为,则a的值是()A.4 B.C.D.5.已知⊙O的面积为2π,则其内接正三角形的面积为()A.3 B.3 C. D.6.如图,半径为3的⊙O内有一点A,OA=,点P在⊙O上,当∠OPA最大时,PA的长等于()A.B.C.3 D.27.在△ABC中,AB=AC=5,sinB=,⊙O过点B、C两点,且⊙O半径r=,则OA的长为()A.3或5 B.5 C.4或5 D.48.如图,B,C,D是半径为6的⊙O上的三点,已知的长为2π,且OD∥BC,则BD的长为()A.3 B.6 C.6 D.12二.填空题(共7小题)9.如图,⊙O的半径是5,AB是⊙O的直径,弦CD⊥AB,垂足为P,若CD=8,则△ACD的面积是_________ .10.正六边形的中心角等于_________ 度.11.如图,以△ABC的边BC为直径的⊙O分别交AB、AC于点D、E,连结OD、OE,若∠A=65°,则∠DOE=_________ .12.如图,AB、CD是半径为5的⊙O的两条弦,AB=8,CD=6,MN是直径,AB⊥MN于点E,CD⊥MN于点F,P为EF上的任意一点,则PA+PC的最小值为_________ .13.如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,连接BC,若AB=2cm,∠BCD=22°30′,则⊙O的半径为_________ cm.14.如图,⊙O的半径是2,直线l与⊙O相交于A、B两点,M、N是⊙O上的两个动点,且在直线l的异侧,若∠AMB=45°,则四边形MANB面积的最大值是_________ .15.⊙O的半径为2,弦BC=2,点A是⊙O上一点,且AB=AC,直线AO与BC交于点D,则AD的长为_________ .三.解答题(共8小题)16.一个弓形桥洞截面示意图如图所示,圆心为O,弦AB是水底线,OC⊥AB,AB=24m,sin∠COB=,DE是水位线,DE∥AB.(1)当水位线DE=4m时,求此时的水深;(2)若水位线以一定的速度下降,当水深8m时,求此时∠ACD的余切值.17.如图,已知在△ABC中,AB=AC,以AB为直径的⊙O与边BC交于点D,与边AC交于点E,过点D作DF⊥AC于F.(1)求证:DF为⊙O的切线;(2)若DE=,AB=,求AE的长.18.如图,AB是⊙O的直径,弦CD⊥AB于点E,点M在⊙O上,MD恰好经过圆心O,连接MB.(1)若CD=16,BE=4,求⊙O的直径;(2)若∠M=∠D,求∠D的度数.19.如图,⊙O的直径为10cm,弦AB=8cm,P是弦AB上的一个动点,求OP的长度范围.20.如图,AB是⊙O的直径,弦CD⊥A B于点E,点P在⊙O上,PB与CD交于点F,∠PBC=∠C.(1)求证:CB∥PD;(2)若∠PBC=22.5°,⊙O的半径R=2,求劣弧AC的长度.21.如图,AB是半圆O的直径,C、D是半圆O上的两点,且OD∥BC,OD与AC交于点E.(1)若∠B=70°,求∠CAD的度数;(2)若AB=4,AC=3,求DE的长.22.如图,⊙O是△ABC的外接圆,AB为直径,OD∥BC交⊙O于点D,交AC于点E,连接AD,BD,CD.(1)求证:AD=CD;(2)若AB=10,c os∠ABC=,求tan∠DBC的值.23.如图,PA,PB分别与⊙O相切于点A,B,∠APB=60°,连接AO,BO.(1)所对的圆心角∠AOB=_________ ;(2)求证:PA=PB;(3)若OA=3,求阴影部分的面积.图形的性质——圆1参考答案与试题解析一.选择题(共8小题)1.如图,正方形ABCD的边AB=1,和都是以1为半径的圆弧,则无阴影两部分的面积之差是()A.B.1﹣C.﹣1 D.1﹣考点:扇形面积的计算.分析:图中1、2、3、4图形的面积和为正方形的面积,1、2和两个3的面积和是两个扇形的面积,因此两个扇形的面积的和﹣正方形的面积=无阴影两部分的面积之差,即﹣1=.解答:解:如图:正方形的面积=S1+S2+S3+S4;①两个扇形的面积=2S3+S1+S2;②②﹣①,得:S3﹣S4=S扇形﹣S正方形=﹣1=.故选:A.点评:本题主要考查了扇形的面积计算公式及不规则图形的面积计算方法.找出正方形内四个图形面积之间的联系是解题的关键.2.已知⊙O的直径CD=10cm,AB是⊙O的弦,AB=8cm,且AB⊥CD,垂足为M,则AC的长为()A.cm B.cm C.cm或cm D.cm或cm考点:垂径定理;勾股定理.专题:分类讨论.分析:先根据题意画出图形,由于点C的位置不能确定,故应分两种情况进行讨论.解答:解:连接AC,AO,∵⊙O的直径CD=10cm,AB⊥CD,AB=8cm,∴AM=AB=×8=4cm,OD=OC=5cm,当C点位置如图1所示时,∵OA=5cm,AM=4cm,CD⊥AB,∴OM===3cm,∴CM=OC+OM=5+3=8cm,∴AC===4cm;当C点位置如图2所示时,同理可得OM=3cm,∵OC=5cm,∴MC=5﹣3=2cm,在Rt△AMC中,AC===2cm.故选:C.点评:本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.3.如图,⊙O的直径CD垂直弦AB于点E,且CE=2,DE=8,则AB的长为()A. 2 B.4C.6D.8考点:垂径定理;勾股定理.专题:计算题.分析:根据CE=2,DE=8,得出半径为5,在直角三角形OBE中,由勾股定理得BE,根据垂径定理得出AB的长.解答:解:∵CE=2,DE=8,∴OB=5,∴OE=3,∵AB⊥CD,∴在△OBE中,得BE=4,∴AB=2BE=8.故选:D.点评:本题考查了勾股定理以及垂径定理,是基础知识要熟练掌握.4.如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是()A. 4 B.C.D.考点:垂径定理;一次函数图象上点的坐标特征;勾股定理.专题:计算题;压轴题.分析:PC⊥x轴于C,交AB于D,作PE⊥AB于E,连结PB,由于OC=3,PC=a,易得D点坐标为(3,3),则△OCD为等腰直角三角形,△PED也为等腰直角三角形.由PE⊥AB,根据垂径定理得AE=BE=AB=2,在Rt△PBE中,利用勾股定理可计算出PE=1,则PD=PE=,所以a=3+.解答:解:作PC⊥x轴于C,交AB于D,作PE⊥AB于E,连结PB,如图,∵⊙P的圆心坐标是(3,a),∴OC=3,PC=a,把x=3代入y=x得y=3,∴D点坐标为(3,3),∴CD=3,∴△OCD为等腰直角三角形,∴△PED也为等腰直角三角形,∵PE⊥AB,∴AE=BE=AB=×4=2,在Rt△PBE中,PB=3,∴PE=,∴PD=PE=,∴a=3+.故选:B.点评:本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理和等腰直角三角形的性质.5.已知⊙O的面积为2π,则其内接正三角形的面积为()A.3B.3C.D.考点:垂径定理;等边三角形的性质.专题:几何图形问题.分析:先求出正三角形的外接圆的半径,再求出正三角形的边长,最后求其面积即可.解答:解:如图所示,连接OB、OC,过O作OD⊥BC于D,∵⊙O的面积为2π∴⊙O的半径为∵△ABC为正三角形,∴∠BOC==120°,∠BOD=∠BOC=60°,OB=,∴BD=OB•sin∠BOD==,∴BC=2BD=,∴OD=OB•cos∠BOD=•cos60°=,∴△BOC的面积=•BC•OD=××=,∴△ABC的面积=3S△BOC=3×=.故选:C.点评:本题考查的是三角形的外接圆与外心,根据题意画出图形,利用数形结合求解是解答此题的关键.6.如图,半径为3的⊙O内有一点A,OA=,点P在⊙O上,当∠OPA最大时,PA的长等于()A.B.C3 D.2考点:垂径定理;圆周角定理.分析:当PA⊥OA时,PA取最小值,∠OPA取得最大值,然后在直角三角形OPA中利用勾股定理求PA的值即可.解答:解:∵OA、OP是定值,∴在△OPA中,当∠OPA取最大值时,PA取最小值,∴PA⊥OA时,PA取最小值;在直角三角形OPA中,OA=,OP=3,∴PA==.故选B.点评:本题考查了解直角三角形.解答此题的关键是找出“当PA⊥OA时,PA取最小值”即“PA⊥OA时,∠OPA取最大值”这一隐含条件.7.在△ABC中,AB=AC=5,sinB=,⊙O过点B、C两点,且⊙O半径r=,则OA的长为()A.3或5 B.5 C.4或5 D.4考点:垂径定理;等腰三角形的性质;勾股定理;解直角三角形.专题:分类讨论.分析:作AD⊥BC于D,由于AB=AC=5,根据等腰三角形的性质得AD垂直平分BC,根据垂径定理的推论得到点O在直线AD上,连结OB,在Rt△ABD中,根据正弦的定义计算出AD=4,根据勾股定理计算出BD=3,再在Rt△OBD中,根据勾股定理计算出OD=1,然后分类讨论:①当点A与点O在BC的两侧,有OA=AD+OD;②当点A与点O在BC的同侧,有OA=AD ﹣OD,即求得OA的长.解答:解:如图,作AD⊥BC于D,∵AB=AC=5,∴AD垂直平分BC,∴点O在直线AD上,连结OB,在Rt△ABD中,sinB==,∵AB=5,∴AD=4,∴BD==3,在R t△OBD中,OB=,BD=3,∴OD==1,当点A与点O在BC的两侧时,OA=AD+OD=4+1=5;当点A与点O在BC的同侧时,OA=AD﹣OD=4﹣1=3,故OA的长为3或5.故选:A.点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧;弦的垂直平分线经过圆心,并且平分弦所对的两条弧.也考查了等腰三角形的性质和勾股定理.8.如图,B,C,D是半径为6的⊙O上的三点,已知的长为2π,且OD∥BC,则BD的长为()A.3B.6 C.6D.12考点:垂径定理;等边三角形的判定与性质;圆周角定理;弧长的计算;解直角三角形.专题:计算题.分析:连结OC交BD于E,设∠BOC=n°,根据弧长公式可计算出n=60,即∠BOC=60°,易得△OBC为等边三角形,根据等边三角形的性质得∠C=60°,∠OBC=60°,BC=OB=6,由于BC∥OD,则∠2=∠C=60°,再根据圆周角定理得∠1=∠2=30°,即BD平分∠OBC,根据等边三角形的性质得到BD⊥OC,接着根据垂径定理得BE=DE,在Rt△CBE中,利用含30度的直角三角形三边的关系得CE=BC=3,CE=CE=3,所以BD=2BE=6.解答:解:连结OC交BD于E,如图,设∠BOC=n°,根据题意得2π=,得n=60,即∠BOC=60°,而OB=OC,∴△OBC为等边三角形,∴∠C=60°,∠OBC=60°,BC=OB=6,∵BC∥OD,∴∠2=∠C=60°,∵∠1=∠2(圆周角定理),∴∠1=30°,∴BD平分∠OBC,BD⊥OC,∴BE=DE,在Rt△CBE中,CE=BC=3,∴BE=CE=3,∴BD=2BE=6.故选:C.点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了弧长公式、等边三角形的判定与性质和圆周角定理.二.填空题(共7小题)9.如图,⊙O的半径是5,AB是⊙O的直径,弦CD⊥AB,垂足为P,若CD=8,则△ACD的面积是32 .考点:垂径定理;勾股定理.分析:连接OD,先根据垂径定理得出PD=CD=4,再根据勾股定理求出OP的长,根据三角形的面积公式即可得出结论.解答:解:连接OD,∵⊙O的半径是5,AB是⊙O的直径,弦CD⊥AB,CD=8,∴P D=CD=4,∴OP===3,∴AP=OA+OP=5+3=8,∴S△ACD=CD•AP=×8×8=32.故答案为:32.点评:本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.10.正六边形的中心角等于60 度.考点:正多边形和圆.分析:根据正六边形的六条边都相等即可得出结论.解答:解:∵正六边形的六条边都相等,∴正六边形的中心角==60°.故答案为:60.点评:本题考查的是正多边形和圆,熟知正多边形的性质是解答此题的关键.11.(2014•扬州)如图,以△ABC的边BC为直径的⊙O分别交AB、AC于点D、E,连结OD、OE,若∠A=65°,则∠DOE=50°.考点:圆的认识;三角形内角和定理;等腰三角形的性质;圆周角定理.专题:几何图形问题.分析:如图,连接BE.由圆周角定理和三角形内角和定理求得∠ABE=25°,再由“同弧所对的圆周角是所对的圆心角的一半”进行答题.解答:解:如图,连接BE.∵BC为⊙O的直径,∴∠CEB=∠AEB=90°,∵∠A=65°,∴∠ABE=25°,∴∠DOE=2∠ABE=50°,(圆周角定理)故答案为:50°.点评:本题考查了圆的认识及三角形的内角和定理等知识,难度不大.12.如图,AB、CD是半径为5的⊙O的两条弦,AB=8,CD=6,MN是直径,AB⊥MN于点E,CD⊥MN于点F,P为EF上的任意一点,则PA+PC的最小值为.考点:垂径定理;轴对称的性质.分析:A、B两点关于MN对称,因而PA+PC=PB+PC,即当B、C、P在一条直线上时,PA+PC的最小,即BC的值就是PA+PC的最小值解答:解:连接OA,OB,OC,作CH垂直于AB于H.根据垂径定理,得到BE=AB=4,CF=CD=3,∴OE===3,OF===4,∴CH=OE+OF=3+4=7,BH=BE+EH=BE+CF=4+3=7,在直角△BCH中根据勾股定理得到BC=7,则PA+PC的最小值为.故答案为:点评:正确理解BC的长是PA+PC的最小值,是解决本题的关键.13.如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,连接BC,若AB=2cm,∠BCD=22°30′,则⊙O的半径为 2 cm.考点:垂径定理;等腰直角三角形;圆周角定理.专题:计算题.分析:先根据圆周角定理得到∠BOD=2∠BCD=45°,再根据垂径定理得到BE=AB=,且△BOE为等腰直角三角形,然后根据等腰直角三角形的性质求解.解答:解:连结OB,如图,∵∠BCD=22°30′,∴∠BOD=2∠BCD=45°,∵AB⊥CD,∴BE=AE=AB=×2=,△BOE为等腰直角三角形,∴OB=BE=2(cm).故答案为:2.点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了等腰直角三角形的性质和圆周角定理.14.如图,⊙O的半径是2,直线l与⊙O相交于A、B两点,M、N是⊙O上的两个动点,且在直线l的异侧,若∠AMB=45°,则四边形MANB面积的最大值是4.考点:垂径定理;圆周角定理.专题:压轴题.分析:过点O作OC⊥AB于C,交⊙O于D、E两点,连结OA、OB、DA、DB、EA、EB,根据圆周角定理得∠AOB=2∠AMB=90°,则△OAB为等腰直角三角形,所以AB=OA=2,由于S四边形MANB=S△MAB+S△NAB,而当M点到AB的距离最大,△MAB的面积最大;当N点到AB的距离最大时,△NAB的面积最大,即M点运动到D点,N点运动到E点,所以四边形MANB面积的最大值=S四边形DAEB=S△DAB+S△EAB=AB•CD+AB•CE=AB(CD+CE)=AB•DE=×2×4=4.解答:解:过点O作OC⊥AB于C,交⊙O于D、E两点,连结OA、OB、DA、DB、EA、EB,如图,∵∠AMB=45°,∴∠AOB=2∠AMB=90°,∴△OAB为等腰直角三角形,∴AB=OA=2,∵S四边形MANB=S△MAB+S△NAB,∴当M点到AB的距离最大,△MAB的面积最大;当N点到AB的距离最大时,△NAB的面积最大,即M点运动到D点,N点运动到E点,此时四边形MANB面积的最大值=S四边形DAEB=S△DAB+S△EAB=AB•CD+AB•CE=AB(CD+CE)=AB•DE=×2×4=4.故答案为:4.点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了圆周角定理.15.⊙O的半径为2,弦BC=2,点A是⊙O上一点,且AB=AC,直线AO与BC交于点D,则AD的长为1或3 .考点:垂径定理;勾股定理.专题:分类讨论.分析:根据题意画出图形,连接OB,由垂径定理可知BD=BC,在Rt△OBD中,根据勾股定理求出OD的长,进而可得出结论.解答:解:如图所示:∵⊙O的半径为2,弦BC=2,点A是⊙O上一点,且AB=AC,∴AD⊥BC,∴BD=BC=,在Rt△OBD中,∵BD2+OD2=OB2,即()2+OD2=22,解得OD=1,∴当如图1所示时,AD=OA﹣OD=2﹣1=1;当如图2所示时,AD=OA+OD=2+1=3.故答案为:1或3.点评:本题考查的是垂径定理,在解答此题时要进行分类讨论,不要漏解.三.解答题(共8小题)16.一个弓形桥洞截面示意图如图所示,圆心为O,弦AB是水底线,OC⊥AB,AB=24m,sin∠COB=,DE是水位线,DE∥AB.(1)当水位线DE=4m时,求此时的水深;(2)若水位线以一定的速度下降,当水深8m时,求此时∠ACD的余切值.考点:垂径定理的应用;勾股定理.分析:(1)延长CO交DE于点F,连接OD,根据垂径定理求出BC的长,由sin∠COB=得出OB的长,根据DE∥AB可知∠ACD=∠CDE,∠DFO=∠BCO=90°.由OF过圆心可得出DF的长,再根据勾股定理求出OF的长,进而可得出CF的长;(2)若水位线以一定的速度下降,当水深8m时,即CF=8m,则OF=CF﹣OC=3m,连接CD,在Rt△ODF中由勾股定理求出DF的长,由cot∠ACD=cot∠CDF即可得出结论.解答:解:(1)延长CO交DE于点F,连接OD∵OC⊥AB,OC过圆心,AB=24m,∴BC=AB=12m.在Rt△BCO中,sin∠COB==,∴OB=13mCO=5m.∵DE∥AB,∴∠ACD=∠CDE,∠DFO=∠BCO=90°.又∵OF过圆心,∴DF=DE=×4=2m.在Rt△DFO中,OF===7m,∴CF=CO+OF=12m,即当水位线DE=4m时,此时的水深为12m;(2)若水位线以一定的速度下降,当水深8m时,即CF=8m,则OF=CF﹣OC=3m,连接CD,在Rt△ODF中,DF===4m.在Rt△CDF中,cot∠CDF==.∵DE∥AB,∴∠ACD=∠CDE,∴cot∠ACD=cot∠CDF=.答:若水位线以一定的速度下降,当水深8m时,此时∠ACD的余切值为.点评:本题考查的是垂径定理的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.17.如图,已知在△ABC中,AB=AC,以AB为直径的⊙O与边BC交于点D,与边AC交于点E,过点D作DF⊥AC于F.(1)求证:DF为⊙O的切线;(2)若DE=,AB=,求AE的长.考点:切线的判定;勾股定理.专题:计算题;证明题.分析:(1)连接AD,OD,则∠ADB=90°,AD⊥BC;又因为AB=AC,所以BD=DC,OA=OB,OD∥AC,易证DF⊥OD,故DF为⊙O的切线;(2)连接BE交OD于G,由于AC=AB,AD⊥BCED⊥BD,故∠EAD=∠BAD,=,ED=BD,OE=OB;故OD垂直平分EB,EG=BG,因为AO=BO,所以OG=AE,在Rt△DGB和Rt△OGB中,BD2﹣DG2=BO2﹣OG2,代入数值即可求出AE的值.解答:(1)证明:连接AD,OD;∵AB为⊙O的直径,∴∠ADB=90°,即AD⊥BC;∵AB=AC,∴BD=DC.∵OA=OB,∴OD∥AC.∵DF⊥AC,∴DF⊥OD.∴∠ODF=∠DFA=90°,∴DF为⊙O的切线.(2)解:连接BE交OD于G;∵AC=AB,AD⊥BC,ED=BD,∴∠EAD=∠BAD.∴.∴ED=BD,OE=OB.∴OD垂直平分EB.∴EG=BG.又AO=BO,∴OG=AE.在Rt△DGB和Rt△OGB中,BD2﹣DG2=BO2﹣OG2∴()2﹣(﹣OG)2=BO2﹣OG2解得:OG=.∴AE=2OG=.点评:本题比较复杂,涉及到切线的判定定理及勾股定理,等腰三角形的性质,具有很强的综合性.18.如图,AB是⊙O的直径,弦CD⊥AB于点E,点M在⊙O上,MD恰好经过圆心O,连接MB.(1)若CD=16,BE=4,求⊙O的直径;(2)若∠M=∠D,求∠D的度数.考点:垂径定理;勾股定理;圆周角定理.专题:几何综合题.分析:(1)先根据CD=16,BE=4,得出OE的长,进而得出OB的长,进而得出结论;(2)由∠M=∠D,∠DOB=2∠D,结合直角三角形可以求得结果;解答:解:(1)∵AB⊥CD,CD=16,∴CE=DE=8,设OB=x,又∵BE=4,∴x2=(x﹣4)2+82,解得:x=10,∴⊙O的直径是20.(2)∵∠M=∠BOD,∠M=∠D,∴∠D=∠BOD,∵AB⊥CD,∴∠D=30°.点评:本题考查了圆的综合题:在同圆或等圆中,相等的弧所对的圆周角相等,直径所对的圆周角为直角;垂直于弦的直径平分弦,并且平分弦所对的弧;19.如图,⊙O的直径为10cm,弦AB=8cm,P是弦AB上的一个动点,求OP的长度范围.考点:垂径定理;勾股定理.专题:几何图形问题.分析:过点O作OE⊥AB于点E,连接OB,由垂径定理可知AE=BE=AB,再根据勾股定理求出OE的长,由此可得出结论.解答:解:过点O作OE⊥AB于点E,连接OB,∵AB=8cm,∴AE=BE=AB=×8=4cm,∵⊙O的直径为10cm,∴OB=×10=5cm,∴OE===3cm,∵垂线段最短,半径最长,∴3cm≤OP≤5cm.点评:本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.20.如图,AB是⊙O的直径,弦CD⊥AB于点E,点P在⊙O上,PB与CD交于点F,∠PBC=∠C.(1)求证:CB∥PD;(2)若∠PBC=22.5°,⊙O的半径R=2,求劣弧AC的长度.考点:垂径定理;圆周角定理;弧长的计算.专题:几何图形问题.分析:(1)先根据同弧所对的圆周角相等得出∠PBC=∠D,再由等量代换得出∠C=∠D,然后根据内错角相等两直线平行即可证明CB∥PD;(2)先由垂径定理及圆周角定理得出∠BOC=2∠PBC=45°,再根据邻补角定义求出∠AOC=135°,然后根据弧长的计算公式即可得出劣弧AC的长度.解答:解:(1)∵∠PBC=∠D,∠PBC=∠C,∴∠C=∠D,∴CB∥PD;(2)连结OC,OD.∵AB是⊙O的直径,弦CD⊥AB于点E,∴=,∵∠PBC=∠C=22.5°,∴∠BOC=∠BOD=2∠C=45°,∴∠AOC=180°﹣∠BOC=135°,∴劣弧AC的长为:=.点评:本题考查了圆周角定理,平行线的判定,垂径定理,弧长的计算,难度适中.(2)中求出∠AOC=135°是解题的关键.21.如图,AB是半圆O的直径,C、D是半圆O上的两点,且OD∥BC,OD与AC交于点E.(1)若∠B=70°,求∠CAD的度数;(2)若AB=4,AC=3,求DE的长.考点:圆周角定理;平行线的性质;三角形中位线定理.专题:几何图形问题.分析:(1)根据圆周角定理可得∠ACB=90°,则∠CAB的度数即可求得,在等腰△AOD中,根据等边对等角求得∠DAO的度数,则∠CAD即可求得;(2)易证OE是△ABC的中位线,利用中位线定理求得OE的长,则DE即可求得.解答:解:(1)∵AB是半圆O的直径,∴∠ACB=90°,又∵OD∥BC,∴∠AEO=90°,即OE⊥AC,∠CAB=90°﹣∠B=90°﹣70°=20°,∠AOD=∠B=70°.∵OA=OD,∴∠DAO=∠ADO===55°∴∠CAD=∠DAO﹣∠CAB=55°﹣20°=35°;(2)在直角△ABC中,BC===.∵OE⊥AC,∴AE=EC,又∵OA=OB,∴OE=BC=.又∵OD=AB=2,∴DE=OD﹣OE=2﹣.点评:本题考查了圆周角定理以及三角形的中位线定理,正确证明OE是△ABC的中位线是关键.22.如图,⊙O是△ABC的外接圆,AB为直径,OD∥BC交⊙O于点D,交AC于点E,连接AD,BD,CD.(1)求证:AD=CD;(2)若AB=10,cos∠ABC=,求tan∠DBC的值.考点:圆周角定理;勾股定理;圆心角、弧、弦的关系;解直角三角形.专题:几何综合题.分析:(1)由AB为直径,OD∥BC,易得OD⊥AC,然后由垂径定理证得,=,继而证得结论;(2)由AB=10,cos∠ABC=,可求得OE的长,继而求得DE,AE的长,则可求得tan∠DAE,然后由圆周角定理,证得∠DBC=∠DAE,则可求得答案.解答:(1)证明:∵AB为⊙O的直径,∴∠ACB=90°,∵OD∥BC,∴∠AEO=∠ACB=90°,∴OD⊥AC,∴=,∴AD=CD;(2)解:∵AB=10,∴OA=OD=AB=5,∵OD∥BC,∴∠AOE=∠ABC,在Rt△AEO中,OE=OA•cos∠AOE=OA•cos∠ABC=5×=3,∴DE=OD﹣OE=5﹣3=2,∴AE===4,在Rt△AED中,tan∠DAE===,∵∠DBC=∠DAE,∴tan∠DBC=.点评:此题考查了圆周角定理、垂径定理以及勾股定理.此题难度适中,注意掌握数形结合思想的应用.23.如图,PA,PB分别与⊙O相切于点A,B,∠APB=60°,连接AO,BO.(1)所对的圆心角∠AOB=120°;(2)求证:PA=PB;(3)若OA=3,求阴影部分的面积.考点:切线的性质;扇形面积的计算.专题:几何综合题.分析:(1)根据切线的性质可以证得∠OAP=∠OBP=90°,根据四边形内角和定理求解;(2)证明直角△OAP≌直角△OBP,根据全等三角形的对应边相等,即可证得;(3)首先求得△OPA的面积,即求得四边形OAPB的面积,然后求得扇形OAB的面积,即可求得阴影部分的面积.解答:(1)解:∵PA,PB分别与⊙O相切于点A,B,∴∠OAP=∠OBP=90°,∴∠AOB=360°﹣90°﹣90°﹣60°=120°;(2)证明:连接OP.在Rt△OAP和Rt△OBP中,,∴Rt△OAP≌Rt△OBP,∴PA=PB;(3)解:∵Rt△OAP≌Rt△OBP,∴∠OPA=∠OPB=∠APB=30°,在Rt△OAP中,OA=3,∴AP=3,∴S△OPA=×3×3=,∴S阴影=2×﹣=9﹣3π.点评:本题考查了圆的切线性质,及解直角三角形的知识.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆
1. 如图物体由两个圆锥组成.其主视图中,∠A =90°,∠ABC =105°,若上面圆锥的侧面积为1,则下面圆锥的侧面积为
A .2 B
C .32
D
2. 一块圆形宣传标志牌如图所示,点A ,B ,C 在⊙O 上,CD 垂直平分AB 于点D .现测得AB =8dm ,DC =2dm ,则圆形标志牌的半径为
A .6dm
B .5dm
C .4dm
D .3dm
3. 如图,P 为圆O 外一点,PA ,PB 分别切圆O 于A ,B 两点,若PA =3,则PB =
A.2 B.3
C.4 D.5
4.如图,四边形ABCD内接于⊙O,它的一个外角
∠EBC=55°,分别连接AC、BD,若AC=AD,则∠DBC的度数为
A.50°B.60°
C.65°D.70°
5.一个扇形的半径为6,圆心角为120°,则该扇形的面积是A.2πB.4π
C.12πD.24π
6.如图,等边三角形ABC的边长为8,以BC上一点O为圆心的圆分别与边AB,AC相切,则⊙O的半径为
A .
B .3
C .4
D .4
7. 如图,ABD △是O e 的内接三角形,AB 是直径,点C 在O e 上,且
56ABD ∠=︒,则BCD ∠等于
A .32︒
B .34︒
C .56︒
D .66︒
8. 如图,正方形ABCD 内接于圆O ,4AB =,则图中阴影部分的面积是
A .4π16-
B .32π16-
C .16π32-
D .8π16-
9. 如图,已知正五边形ABCDE 内接于⊙O ,连结BD ,则∠ABD 的度数是
A .60°
B .70°
C .72°
D .144°
10. 用一个圆心角为120°,半径为6的扇形做一个圆锥的侧面,则这个圆锥的底面圆的面积为__________.
11. 如图,A 、B 、C 是⊙O 上的三点,∠AOB =76°,则∠ACB 的度数是__________.
12.如图,边长为2的正方形ABCD中心与半径为2的⊙O的圆心重合,E、F分别是AD、BA的延长与⊙O的交点,则图中阴影部分的面积是__________.(结果保留π)
13.如图,AC是圆内接四边形ABCD的一条对角线,点D关于AC的对称点E在边BC上,连接AE.若∠ABC=64°,则∠BAE的度数为__________.
14.一扇形面积是3π,半径为3,则该扇形圆心角度数是__________.
15.《九章算术》作为古代中国乃至东方的第一部自成体系的数学专著,与古希腊的《几何原本》并称现代数学的两大源泉.在《九章算术》中记载有一问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道AB=1尺(1尺=10寸),则该圆材的直径为__________寸.
16.如图,已知锐角三角形ABC内接于圆O,OD⊥BC于点D,连接OA.(1)若∠BAC=60°,
①求证:OD
1
2
OA.
②当OA=1时,求△ABC面积的最大值.
(2)点E在线段OA上,OE=OD,连接DE,设∠ABC=m∠OED,∠ACB=n ∠OED(m,n是正数),若∠ABC<∠ACB,求证:m﹣n+2=0.
17.如图1,在△ABC中,AB=AC,⊙O是△ABC的外接圆,过点C作∠BCD=∠ACB交
⊙O于点D,连接AD交BC于点E,延长DC至点F,使CF=AC,连接AF.
(1)求证:ED=EC;
(2)求证:AF是⊙O的切线;
(3)如图2,若点G是△ACD的内心,BC·BE=25,求BG的长.
18.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,过点D作DF⊥AC,垂足为点F.
(1)求证:直线DF是⊙O的切线;
(2)求证:BC2=4CF·AC;
(3)若⊙O的半径为4,∠CDF=15°,求阴影部分的面积.
答案
1. D
2. B
3. B
4. D
5. C
6. A
7. B
8.
9. C
10.4π
11.38°
12.π-1
13.52°
14.120°
15.26
16.(1)①如图1,连接OB、OC,
则∠BOD
1
2
=∠BOC=∠BAC=60°,
∴∠OBC=30°,∴OD
1
2
=OB
1
2
=OA;
②∵BC长度为定值,
∴△ABC面积的最大值,要求BC边上的高最大,
当AD过点O时,AD最大,即:AD=AO+OD
3
2 =,
△ABC面积的最大值
1
2
=⨯BC×AD
1
2
=⨯2OB sin60°3
2
⨯=;
(2)如图2,连接OC,
设:∠OED=x,
则∠ABC=mx,∠ACB=nx,
则∠BAC=180°﹣∠ABC﹣∠ACB=180°﹣mx﹣nx
1
2
∠BOC=∠DOC,
∵∠AOC=2∠ABC=2mx,
∴∠AOD=∠COD+∠AOC=180°﹣mx﹣nx+2mx=180°+mx﹣nx,∵OE=OD,∴∠AOD=180°﹣2x,
即:180°+mx﹣nx=180°﹣2x,
化简得:m﹣n+2=0.
17.(1)∵AB=AC,
∴∠ABC=∠ACB,
又∵∠ACB=∠BCD,∠ABC=∠ADC,
∴∠BCD=∠ADC,
∴ED=EC.
(2)如图1,连接OA,
∵AB=AC,
∴»»
AB AC
=,
∴OA⊥BC,
∵CA=CF,
∴∠CAF=∠CFA,
∴∠ACD=∠CAF+∠CFA=2∠CAF,
∵∠ACB=∠BCD,
∴∠ACD=2∠ACB,
∴∠CAF=∠ACB,
∴AF∥BC,
∴OA⊥AF,
∴AF为⊙O的切线.
(3)∵∠ABE=∠CBA,∠BAD=∠BCD=∠ACB,∴△ABE∽△CBA,
∴AB BE BC AB
=,
∴AB2=BC·BE,
∴BC·BE=25,
∴AB=5,
如图2,连接AG,
∴∠BAG=∠BAD+∠DAG,∠BGA=∠GAC+∠ACB,
∵点G为内心,
∴∠DAG=∠GAC,
又∵∠BAD+∠DAG=∠GDC+∠ACB,
∴∠BAG=∠BGA,
∴BG=AB=5.
18.(1)如图所示,连接OD,
∵AB=AC,∴∠ABC=∠C,而OB=OD,∴∠ODB=∠ABC=∠C,∵DF⊥AC,∴∠CDF+∠C=90°,∴∠CDF+∠ODB=90°,
∴∠ODF=90°,∴直线DF是⊙O的切线.
(2)连接AD,则AD⊥BC,则AB=AC,
则DB=DC=1
2 BC,
∵∠CDF+∠C=90°,∠C+∠DAC=90°,∴∠CDF=∠DCA,而∠DFC=∠ADC=90°,∴△CFD∽△CDA,
∴CD 2=CF ·AC ,即BC 2=4CF ·
AC . (3)连接OE ,
∵∠CDF =15°,∠C =75°,∴∠OAE =30°=∠OEA , ∴∠AOE =120°,
S △OAE =
12AE ·OE ·sin ∠OEA =12
×2×OE ×cos ∠OEA ×OE sin ∠OEA =
S 阴影部分=S 扇形OAE -S △OAE =120360︒︒×π×42-16π3-。