人教版小学五年级数学上册知识点归纳汇总

合集下载

人教版五年级数学上册知识点汇总

人教版五年级数学上册知识点汇总

人教版五年级数学上册知识点汇总第一章:整数的初步认识1. 整数概念•整数是由自然数、0和负整数组成的数。

•整数用“+”表示正数,用“-”表示负数。

2. 整数的比较和绝对值•整数比较的大小与自然数比较的大小相同。

•整数的绝对值是一个数离0的距离。

正整数的绝对值等于该数,负整数的绝对值等于该数的相反数。

3. 整数的加减运算•整数的加法运算规则:同号相加得同号,异号相加取绝对值较大的符号。

•整数的减法运算规则:减去一个整数等于加上它的相反数。

4. 整数的乘法和除法运算•整数的乘法运算:同号相乘得正数,异号相乘得负数。

•非0整数除以整数时,同号得正数,异号得负数,余数的符号与除数相同。

0不能作为除数。

第二章:计算的基本思想1. 算术法则•乘法分配律:a×(b+c)=a×b+a×c•乘法交换律:a×b=b×a•乘法结合律:a×(b×c)=(a×b)×c•加法交换律:a+b=b+a•加法结合律:a+(b+c)=(a+b)+c•减法与加法的关系:a+b=c,c-a=b;a=c-b,a-b=c•除法的基本概念:有理数分母不能为02. 运算顺序•先乘除后加减,同级按照从左往右的顺序计算。

3. 分数•分数是有理数的一种表示方法,由分子和分母构成。

•分数的基本性质:分数加减的通分、约分和把分数化成小数。

4. 分数的加减•分数相加减需通分,化简后按数学法则计算。

第三章:几何图形的初步认识1. 点、线、面•点是没有大小的几何体,用一个小点表示。

•线是一条几乎没有宽度的连续曲线,由无数个点组成。

•面是有一定大小和形状的几何图形,由许多条线组成。

2. 圆•圆是由与圆心距离相等的点组成的图形。

•圆的性质:圆心到圆上任一点的距离相等,圆的直径是圆心到圆上任一点的距离的两倍。

3. 三角形•三角形的两个性质:(1) 三角形的内角和等于直角的两个角的和;(2) 三角形的内角和等于180°。

人教版小学数学五年级(上册)数学知识点汇总

人教版小学数学五年级(上册)数学知识点汇总

第一单元小数乘法1、小数乘整数:意义——求几个相同加数的和的简便运算。

如:1.5×3表示1.5的3倍是多少或3个1.5是多少。

计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

2、小数乘小数:意义——就是求这个数的几分之几是多少。

如:1.5×0.8(整数部分是0)就是求1.5的十分之八是多少。

1.5×1.8(整数部分不是0)就是求1.5的1.8倍是多少。

计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。

3、规律:一个数(0除外)乘大于1的数,积比原来的数大;一个数(0除外)乘小于1的数,积比原来的数小。

4、求近似数的方法一般有三种:⑴四舍五入法;⑵进一法;⑶去尾法5、计算钱数,保留两位小数,表示计算到分。

保留一位小数,表示计算到角。

6、小数四则运算顺序跟整数是一样的。

7、运算定律和性质:加法:加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)乘法:乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c或a×c+b×c=(a+b)×c(b=1时,省略b)变式:(a-b)×c=a×c-b×c或a×c-b×c=(a-b)×c减法:减法性质:a-b-c=a-(b+c)除法:除法性质:a÷b÷c=a÷(b×c)第二单元位置8、确定物体的位置,要用到数对(先列:即竖,后行即横排)。

人教版小学五年级数学上册知识点归纳

人教版小学五年级数学上册知识点归纳

人教版小学五年级数学上册知识点归纳第一单元《小数乘法》一.小数乘整数1.计算小数加法先把小数点对齐,再把相同数位上的数相加2.计算小数乘法末尾对齐,按整数乘法法则进行计算.3.积中小数末尾有0的乘法. 先计算出小数乘整数的乘积后,积的小数末尾出现0 ,要再根据小数的性质去掉小数末尾的0.如:3.60 “0”应划去 .如果乘得的积的小数位数不够要在前面用0补足,再点上小数点.如0.02×2=0.044.计算整数因数末尾有0的小数乘法时,要把整数数位中不是0的最右侧数字与小数的末尾对齐.二.小数乘小数1.因数与积的小数位数的关系:因数中共有几位小数,积中就有几位小数.2.小数乘法的一般计算方法:先按整数乘法算出积,再给积点上小数点(看因数中一共有几位小数,就从积的右边起数出几位,点上小数点.)乘得的积的小数位数不够要在积的前面用0补足,在点小数点.3.规律:(乘法中比较大小时)一个数(0除外)乘大于1的数,积大于这个数.一个数(0除外)乘小于1的数(0除外),积小于这个数.一个数(0除外)乘1,积等于这个数.4.小数乘法的验算方法(1).把因数的位置交换相乘. (2).用计算器来验算三.积的近似数1.先算出积,然后看要保留数位的下一位,再按四舍五入法求出结果,用约等号表示.2. 如果求得的近似数所求数位的数字是9而后一位数字又大于等于5需要进1,这是就要依次进一用0占位.如6.597 保留两位为6.60.四.连乘.乘加.乘减1.小数乘法要按照从左到右的顺序计算2.小数的乘加运算与整数的乘加运算顺序相同,先乘除,后加减.五.简便运算整数乘法的交换律.结合律和分配律,同样适用于小数乘法.常见乘法计算(敏感数字):25×4=100 125×8=1000第二单元位置1.行和列的意义:竖排叫做列,横排叫做行.2.数对可以表示物体的位置,也可以确定物体的位置.3.数对表示位置的方法:先表示列,再表示行.用括号把代表列和行的数字或字母括起来,再用逗号隔开.例如:(7,9)表示第七列第九行.4.两个数对,前一个数相同,说明它们所表示物体位置在同一列上.如:(2,4)和(2,7)都在第2列上.5.两个数对,后一个数相同,说明它们所表示物体位置在同一行上.如:(3,6)和(1,6)都在第6行上.6.物体向左.右平移,行数不变,列数减去或加上平移的格数.物体向下.上平移,列数不变,行数减去或加上平移的格数.第三单元《小数除法》1.小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算.如:2.6÷1.3表示已知两个因数的积2.6与其中的一个因数1.3,求另一个因数的运算.2.小数除法的计算方法:(可以先写商的小数点,再写商)(1)除数是整数的小数除法:按整数除法的计算方法去除,商的小数点要和被除数的小数点对齐,如果被除数的整数部分比除数小,不够商1,要在商的个位上写0,然后点上小数点,再继续除;如果除到被除数的末尾仍有余数时,就在余数的后面添0再继续除.(2)除数是小数的除法:先把除数转化成整数,除数的小数点向右移动几位,被除数的小数点也要向右移动几位,位数不够时,在被除数的末尾用0补足,然后按照除数是整数的小数除法进行计算.3.商不变的性质:两数相除,被除数与除数同时扩大或缩小相同的倍数(0除外),商不变.4.商的变化规律:两数相除,除数不变,被除数扩大或缩小几倍,商也随着扩大或缩小几倍.两数相除,被除数不变,除数扩大或缩小几倍,商也随着缩小或扩大几倍.5.除法中比较大小时的规律:一个数(0除外)除以大于1的数,商小于被除数一个数(0除外)除以1,商等于被除数一个数(0除外)除以小于1的数(0除外),商大于被除数6.取近似数的方法:取近似数的方法有三种:①四舍五入法②进一法③去尾法一般情况下,按要求取近似数时用四舍五入法,进一法.去尾法在解决实际问题的时候选择应用.取商的近似数时,保留到哪一位,一定要除到那一位的下一位,然后用四舍五入的方法取近似数.没有要求时,除不尽的一般保留两位小数.7.循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数.依次不断重复出现的数字,叫做这个循环小数的的循环节.8.循环小数的表示方法:(1)一种是用省略号表示,要写出两个完整的循环节,后面标上省略号.如:0.3636… 1.587587….(2)另一种是简写的方法:即只写出一组循环节,然后在循环节的第一个数字和最后一个数上面点上圆点.如:0.3。

人教版五年级上册数学知识点汇总

人教版五年级上册数学知识点汇总

人教版五年级上册数学知识点汇总第一单元小数乘法1、小数乘整数:意义——求几个相同加数的和的简便运算。

如:1.5×3表示1.5的3倍是多少或3个1.5是多少。

计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

2、小数乘小数:意义——就是求这个数的几分之几是多少。

如:1.5×0.8(整数部分是0)就是求1.5的十分之八是多少。

1.5×1.8(整数部分不是0)就是求1.5的1.8倍是多少。

计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。

3、规律:一个数(0除外)乘大于1的数,积比原来的数大;一个数(0除外)乘小于1的数,积比原来的数小。

4、求近似数的方法一般有三种:⑴四舍五入法;⑵进一法;⑶去尾法5、计算钱数,保留两位小数,表示计算到分。

保留一位小数,表示计算到角。

6、小数四则运算顺序跟整数是一样的。

7、运算定律和性质:加法:加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)乘法:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c或a×c+b×c=(a+b)×c (b=1时,省略b)变式:(a-b)×c=a×c-b×c或a×c-b×c=(a-b)×c减法:减法性质:a-b-c=a-(b+c)除法:除法性质:a÷b÷c=a÷(b×c)第二单元位置8、确定物体的位置,要用到数对(先列:即竖,后行即横排)。

人教版五年级数学上册知识点归纳

人教版五年级数学上册知识点归纳

人教版五年级数学上册知识点归纳
以下是人教版五年级数学上册的主要知识点归纳:
1. 数的认识:正整数、0、负整数、自然数、整数序列等概念。

2. 大数比大小:万以下数的大小比较,使用排列法和逐位比较法。

3. 小数的认识:小数的定义、小数点的作用、小数的大小比较等。

4. 分数的认识:分数的定义、分子、分母、真分数、假分数等概念。

5. 分数的加减运算:分数的加法、分数的减法、同分母分数的计算等。

6. 三位数的加法与减法:三位数的加法、减法的计算方法、借位与进位的操作等。

7. 三位数乘一位数:三位数乘以一位数的计算方法,注意进位和位置的关系。

8. 简便乘法:利用数的性质简化计算,如平方数的乘法、末尾是5的乘法等。

9. 三角形:三角形的定义、三边的关系、等边三角形、等腰三角形等。

10. 角的度数与弧度:角的度数定义、一周的度数、角的弧度定义等。

11. 三角形的周长和面积:三角形的周长计算、三角形的面积计算等。

12. 用分:分为单位的长度、质量、容量的换算,以及与小数的转换等。

13. 倍数与约数:倍数与因数的定义、寻找倍数与因数的方法、约数的性质等。

14. 市场价格:市场价格的定义、计算方法,单价与数量的关系等。

15. 不完全分数与混合数:不完全分数和混合数的相互转换、运算等。

以上是人教版五年级数学上册的主要知识点归纳,根据学校和地区的具体情况,可能还会有一些其他的知识点补充。

人教版五年级数学上册复习知识点归纳总结

人教版五年级数学上册复习知识点归纳总结

小学最新人教版五年级数学上册复习知识点归纳总结第一单元小数乘法1、小数乘整数:意义——求几个相同加数的和的简便运算。

如:1.5×3表示1.5的3倍是多少或3个1.5是多少。

计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

2、小数乘小数:意义——就是求这个数的几分之几是多少。

如:1.5×0.8(整数部分是0)就是求1.5的十分之八是多少。

1.5×1.8(整数部分不是0)就是求1.5的1.8倍是多少。

计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。

3、规律:一个数(0除外)乘大于1的数,积比原来的数大;一个数(0除外)乘小于1的数,积比原来的数小。

4、求近似数的方法一般有三种:⑴四舍五入法;⑵进一法;⑶去尾法5、计算钱数,保留两位小数,表示计算到分。

保留一位小数,表示计算到角。

6、小数四则运算顺序跟整数是一样的。

7、运算定律和性质:加法:加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)乘法:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)见2.5找4或0.4,见1.25找8或0.8 乘法分配律:(a+b)×c=a×c+b×c或a×c+b×c=(a+b)×c(b=1时,省略b)变式: (a-b)×c=a×c-b×c或a×c-b×c=(a-b)×c减法:减法性质:a-b-c=a-(b+c)除法:除法性质:a÷b÷c=a÷(b×c)第二单元位置8、确定物体的位置,要用到数对(先列:即竖,后行即横排)。

人教版小学五年级上册数学知识点总结

人教版小学五年级上册数学知识点总结

人教版小学五年级上册数学知识点总结一、数与代数(一)小数的乘法和除法1.小数乘法•计算方法:将小数乘法转化为整数乘法进行计算,然后再将结果转化为小数形式。

•运算律:乘法交换律、乘法结合律、乘法分配律在小数乘法中仍然适用。

•积的近似值:根据题目要求,对乘积进行四舍五入。

•特殊情况:当两个小数相乘时,如果其中一个因数比1小,那么积也比另一个因数小;如果其中一个因数比1大,那么积也比另一个因数大;如果两个因数都比1大或都比1小,那么积比1大或比1小。

2.小数除法•计算方法:将小数除法转化为整数除法进行计算,然后再将结果转化为小数形式。

•商的近似值:根据题目要求,对商进行四舍五入。

•循环小数:当一个数除以另一个数时,如果结果是一个无限重复的小数,那么这个小数就是循环小数。

例如,1÷3=0.333…。

•除法的性质:除数大于1,商小于被除数;除数小于1,商大于被除数;除数等于1,商等于被除数。

(二)整数、小数四则混合运算1.运算顺序:先乘除后加减,有括号则先计算括号内的运算。

2.简便计算:利用运算律(如交换律、结合律、分配律)进行简便计算。

3.估算:对结果进行大致的估计,以判断答案的合理性。

(三)用字母表示数1.代数式:用字母和数字通过有限次的四则运算得到的式子。

2.方程:含有未知数的等式。

3.方程的解:使方程左右两边相等的未知数的值。

二、空间与图形(一)平行四边形的面积1.平行四边形面积的计算:底×高。

2.特殊平行四边形:正方形和长方形是特殊的平行四边形。

正方形的四条边都相等,长方形的对边相等。

(二)三角形的面积1.三角形面积的计算:底×高÷2。

2.等底等高的三角形:等底等高的三角形面积相等。

(三)梯形的面积1.梯形面积的计算:(上底+下底)×高÷2。

2.特殊梯形:当梯形的上底为0时,梯形变为三角形;当梯形的上底与下底相等时,梯形变为平行四边形。

人教版五年级上册全册数学知识点归纳

人教版五年级上册全册数学知识点归纳

人教版五年级上册全册数学知识点归纳第一单元:小数乘法。

、小数乘整数------重点:理解小数乘整数的算理。

2、小数乘小数------重点:小数乘小数的计算方法。

3、积的近似数------重点:会用“四舍五入”法取积是小数的近似数。

难点:根据实际情况取近似值。

4、连乘、乘加、乘减------重点:小数连乘、乘加、乘减的运算顺序。

难点:引导学生理解解决问题中出现的解题思路。

、整数乘法运算定律推广到小数------重点:理解整数乘法的运算定律在小数乘法中同样适用。

第二单元:小数除法。

、小数除以整数------重点:小数除以整数的计算方法。

难点:让学生理解商的小数点是如何确定的。

2、一个数除以小数------重点:掌握除数是小数除法的计算方法。

3、商的近似数------重点:求商的近似数时,商中的小数位数要比要求保留的小数位数多一位。

4、循环小数------重点:理解循环小数的意义,会用简便方法读写循环小数。

难点:怎样判断除得的商是循环小数。

、解决问题------重点:训练学生解决问题的思路,让学生掌握分析问题的基本步骤。

第三单元:观察物体。

观察物体(一)------重点:从不同位置观察物体,所看到的形状是不同的。

观察物体(二)------重点:正确辨认从上面、侧面、正面观察到的立体组合图形。

第四单元:简易方程。

、用字母表示数------重点:会用字母表示数、运算定律及计算公式。

2、用含有字母的式子表示数量及数量关系------重点:用含有字母的式子表示数量。

3、方程的意义------重点:初步理解方程的意义。

4、解方程------重点:利用天平平衡的道理理解解比较简单的方程的方法。

、稍复杂的方程(一)------重点:学生自主探索通过列方程解决较复杂应用题的方法。

6、稍复杂的方程(二)------重点:分析数量关系。

难点:列方程和解方程。

7、稍复杂的方程(三)------重点:正确设未知数,找出等量关系列方程并解决问题。

人教版五年级数学上册(全册)知识点汇总

人教版五年级数学上册(全册)知识点汇总

人教版五年级数学上册(全册)知识点汇总第一单元小数乘法1、小数乘整数:@意义——求几个相同加数的和的简便运算。

如:1.5×3表示求3个1.5的和的简便运算(或1.5的3倍是多少)。

@计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

2、小数乘小数:@意义——就是求这个数的几分之几是多少。

如:1.5×0.8就是求1.5的十分之八是多少(或求1.5的1.8倍是多少)。

@计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

注意:按整数算出积后,小数末尾的0要去掉,也就是把小数化简;位数不够时,要用0占位。

3、规律:一个数(0除外)乘大于1的数,积比原来的数大;一个数(0除外)乘小于1的数,积比原来的数小。

4、求近似数的方法一般有三种:⑴四舍五入法;⑵进一法;⑶去尾法5、计算钱数,保留两位小数,表示计算到分;保留一位小数,表示计算到角。

6、小数四则运算顺序和运算定律跟整数是一样的。

7、运算定律和性质:@ 加法:加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)@ 减法:a-b-c=a-(b+c)a-(b+c)=a-b-c@ 乘法:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c【(a-b)×c=a×c-b×c】@ 除法:a÷b÷c=a÷(b×c)a÷(b×c) =a÷b÷c第二单元位置1、数对:由两个数组成,中间用逗号隔开,用括号括起来。

括号里面的数由左至右分别为列数和行数,即“先列后行”。

小学人教版五年级数学上册复习知识点归纳总结

小学人教版五年级数学上册复习知识点归纳总结

小学人教版五年级数学上册复习知识点归纳总结第一单园小数乘法1、小数乘整数:@意义——求几个相同加数的和的简便运算。

如:1.5×3表示求3个1.5的和的简便运算(或1.5的3倍是多少)。

@计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

2、小数乘小数:@意义——就是求这个数的几分之几是多少。

如:1.5×0.8就是求1.5的十分之八是多少(或求1.5的0.8倍是多少)。

@计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

注意:按整数算出积后,小数末尾的0要去掉,也就是把小数化简;位数不够时,要用0占位。

3、规律:一个数(0除外)乘大于1的数,积比原来的数大;一个数(0除外)乘小于1的数,积比原来的数小。

4、求近似数的方法一般有三种:⑴四舍五入法;⑵进一法;⑶去尾法5、计算钱数,保留两位小数,表示计算到分;保留一位小数,表示计算到角。

6、小数四则运算顺序和运算定律跟整数是一样的。

7、运算定律和性质:@ 加法:加法交换律:ab=ba加法结合律:(ab)c=a(bc)@ 减法:abc=a(bc)a(bc)=abc@ 乘法:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(ab)×c=a×cb×c【(ab)×c=a×cb×c】@ 除法:a÷b÷c=a÷(b×c)a÷(b×c) =a÷b÷c第二单园位置1、数对:由两个数组成,中间用逗号隔开,用括号括起来。

括号里面的数由左至右分别为列数和行数,即“先列后行”。

2、作用:一组数对确定唯一一个点的位置。

人教版五年级数学上册知识要点归纳

人教版五年级数学上册知识要点归纳

人教版小学数学五年级上册知识点归纳第一单元小数乘法1、小数乘整数:意义——求几个相同加数的和的简便运算。

如:1.5×3表示1.5的3倍是多少或3个1.5是多少。

计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

2、小数乘小数:意义——就是求这个数的几分之几是多少。

如:1.5×0.8(整数部分是0)就是求1.5的十分之八是多少。

1.5×1.8(整数部分不是0)就是求1.5的1.8倍是多少。

计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。

3、规律:一个数(0除外)乘大于1的数,积比原来的数大;一个数(0除外)乘小于1的数,积比原来的数小。

4、求近似数的方法一般有三种:⑴四舍五入法;⑵进一法;⑶去尾法5、计算钱数,保留两位小数,表示计算到分。

保留一位小数,表示计算到角。

6、小数四则运算顺序跟整数是一样的。

7、运算定律和性质:加法:加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)乘法:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c或a×c+b×c=(a+b)×c(b=1时,省略b)变式:(a-b)×c=a×c-b×c或a×c-b×c=(a-b)×c减法:减法性质:a-b-c=a-(b+c)除法:除法性质:a÷b÷c=a÷(b×c)第二单元位置8、确定物体的位置,要用到数对(先列:即竖,后行即横排)。

五年级上册数学人教版知识要点汇总

五年级上册数学人教版知识要点汇总

第二单元知识梳理位置1.确定物体的位置,要用到数对(有两个数组成,中间用逗号隔开,用括号括起来,括号里面的数由左至右分别为列数和行数,即“先列后行”)。

2.用数对要能解决两个问题:一是给出一对数对,要能在坐标途中标出物体所在位置的点。

二是给出坐标中的一个点,要能用数对表示。

第三单元知识梳理小数除法1、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。

如:0.6÷0.3表示已知两个因数的积0.6,一个因数是0.3,求另一个因数是多少。

2、小数除以整数的计算方法:小数除以整数,按整数除法的方法去除,商的小数点要和被除数的小数点对齐。

整数部分不够除,商0,点上小数点。

如果有余数,要添0再除。

3、除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按“除数是整数的小数除法”的法则进行计算。

注意:如果被除数的位数不够,在被除数的末尾用0补足。

4、在实际应用中,小数除法所得的商也可以根据需要用“四舍五入”法保留一定的小数位数,求出商的近似数。

5、除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。

②除数不变,被除数扩大(缩小),商随着扩大(缩小)。

③被除数不变,除数缩小,商反而扩大;被除数不变,除数扩大,商反而缩小。

6、循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。

循环节:一个循环小数的小数部分,依次不断重复出现的数字。

如6.3232……的循环节是32.简写作6.327、小数部分的位数是有限的小数,叫做有限小数。

小数部分的位数是无限的小数,叫做无限小数。

小数分为有限小数和无限小数。

8、规律:一个数(0除外)除以大于1的数,商比原来的数小,例如1÷2=0.5;一个数(0除外)除以小于1的数,商比原来的数大,例如1÷0.1=10.第四单元知识梳理可能性1、事件发生有三种情况:可能发生、不可能发生、一定发生。

人教版五年级上册数学知知识点汇总

人教版五年级上册数学知知识点汇总

人教版五年级上册数学知识点目录第一单元小数乘法 (2)第二单元位置 (4)第三单元小数除法 (4)第四单元可能性 (6)第五单元简易方程 (6)第六单元多边形的面积 (8)第七单元植树问题 (11)1、小数乘整数:意义——求几个相同加数的和的简便运算。

如:1.5×3表示1.5的3倍是多少或3个1.5是多少。

计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

2、小数乘小数:意义——就是求这个数的几分之几是多少。

如:1.5×0.8(整数部分是0)就是求1.5的十分之八是多少。

1.5×1.8(整数部分不是0)就是求1.5的1.8倍是多少。

计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。

3、规律:一个数(0除外)乘大于1的数,积比原来的数大;一个数(0除外)乘小于1的数,积比原来的数小。

4、求近似数的方法一般有三种:⑴四舍五入法;⑵进一法;⑶去尾法5、计算钱数,保留两位小数,表示计算到分。

保留一位小数,表示计算到角。

6、小数四则运算顺序跟整数是一样的。

7、运算定律和性质:加法:加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)乘法:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c或a×c+b×c=(a+b)×c(b=1时,省略b)变式:(a-b)×c=a×c-b×c或a×c-b×c=(a-b)×c减法:减法性质:a-b-c=a-(b+c)除法:除法性质:a÷b÷c=a÷(b×c)8、确定物体的位置,要用到数对(先列:即竖,后行即横排)。

人教版数学五年级上册知识点汇总

人教版数学五年级上册知识点汇总

一、整数1. 整数的认识整数是正整数、0和负整数的统称。

在数轴上,正整数在0的右边,负整数在0的左边,0既不是正整数也不是负整数。

2. 整数的比较整数与整数比较大小时,可以利用数轴的概念帮助比较大小,数字越大,数轴上的位置越靠右。

3. 整数的加减整数加减法的运算规律与非负整数的运算规律一致,加法是整数间的运算,要注意正负号的变化;减法可以看作加法的逆运算。

二、小数1. 小数的认识小数是分数的一种表示形式,除了能写成有限小数的分数还有些分数只能写成无限小数。

2. 小数的读法小数的读法很简单,将小数点读做“点”,小数的每一位数字都要读出来。

3. 小数的加减小数的加减法需要对齐小数点,将小数点对齐后进行加减法运算,最后保留小数点的位置。

三、分数1. 分数的认识分数是整数除以整数的结果,包括真分数和假分数两种形式,假分数的分子大于分母。

2. 分数的大小比较分数的大小比较需要找到它们的公共分母,然后按照分子的大小来比较大小。

3. 分数的加减分数的加减法需要找到它们的公共分母,然后将分数转化为公共分母后进行运算。

四、质数和合数1. 质数的认识质数是指除了1和本身以外没有其他因数的数,最小的质数是2。

2. 合数的认识合数是除了1和本身以外还有其他因数的数,例如6、8等。

3. 质数和合数的判定判定一个数是不是质数,可以利用试除法,看这个数能否被2到其平方根以内的数整除。

五、乘法1. 乘法的认识乘法是重复加法的结合,表示为a × b = c,a、b为因数,c为积。

2. 乘法法则乘法有分配律、结合律和交换律等法则,能够简化乘法运算的步骤。

3. 乘法的计算方法乘法的计算方法包括竖式、列竖式和横式,能够快速准确地进行乘法运算。

六、除法1. 除法的认识除法表示为a ÷ b = c,a为被除数,b为除数,c为商,其中b不能为0。

2. 除法法则除法中有相反数相乘法则、除法消去法则、综合除法原则等法则,有利于简化除法运算。

人教版五年级数学上册知识点归纳总结

人教版五年级数学上册知识点归纳总结

五年级上学期数学学问点总结第一单元小数乘法1、小数乘整数:意义——求几个一样加数的和的简便运算。

如:1.5×3表示1.5的3倍是多少或3个1.5的和的简便运算。

计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

2、小数乘小数:意义——就是求这个数的几分之几是多少。

如:1.5×0.8就是求1.5的非常之八是多少。

1.5×1.8就是求1.5的1.8倍是多少。

计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

留意:计算结果中,小数局部末尾的0要去掉,把小数化简;小数局部位数不够时,要用0占位。

3、规律:一个数(0除外)乘大于1的数,积比原来的数大;一个数(0除外)乘小于1的数,积比原来的数小。

4、求近似数的方法一般有三种:⑴四舍五入法;⑵进一法;⑶去尾法5、计算钱数,保存两位小数,表示计算到分。

保存一位小数,表示计算到角。

6、(P11)小数四则运算依次跟整数是一样的。

7、运算定律和性质:加法:加法交换 a+b=b+a加法结合律(a+b)+c=a+(b+c)减法:减法性质 a-b-c=a-(b+c) a-(b-c)=a-b+c乘法:乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c)乘法安排律:(a+b)×c=a×c+b×c【(a-b)×c=a×c-b×c】除法:除法性质a÷b÷c=a÷(b×c)第二单元位置数对(a,b) a表示第几列 b表示第几行列横数行竖数第三单元小数除法1、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。

如:0.6÷0.3表示已知两个因数的积0.6与其中的一个因数0.3,求另一个因数的运算。

人教版五年级上册数学知识点汇总

人教版五年级上册数学知识点汇总

人教版五年级上册数学知识点汇总一、小数乘法1.小数乘整数:o理解小数乘整数的意义,掌握计算方法。

o会用小数乘整数解决简单的实际问题。

2.小数乘小数:o掌握小数乘小数的计算方法,理解积的小数位数与乘数小数位数的关系。

o能进行小数乘法的简便计算。

3.积的近似数:o理解近似数的概念,学会用四舍五入法求积的近似数。

4.连乘、乘加、乘减:o掌握小数连乘、乘加、乘减的运算顺序和计算方法。

5.整数乘法运算定律推广到小数:o理解并应用加法交换律、结合律,乘法交换律、结合律和分配律进行小数计算。

二、位置1.用数对表示位置:o理解数对的概念,能用数对表示具体情境中物体的位置。

o能在方格纸上根据数对确定物体的位置。

三、小数除法1.小数除以整数:o理解小数除以整数的意义,掌握计算方法。

o能进行小数除以整数的估算和精确计算。

2.一个数除以小数:o掌握除数是小数的除法计算方法,理解商的变化规律。

3.商的近似数:o理解近似数的必要性,学会用四舍五入法求商的近似数。

4.循环小数:o认识循环小数,能用简便方法表示循环小数。

5.用计算器探索规律:o学会使用计算器进行复杂的小数计算,并通过计算探索数学规律。

四、可能性1.简单事件发生的可能性:o理解可能性的概念,能用“一定”、“可能”、“不可能”等词语描述简单事件发生的可能性。

2.游戏规则的公平性:o理解游戏规则的公平性,能设计简单的公平游戏。

五、简易方程1.用字母表示数:o理解用字母表示数的意义和作用,能用字母表示简单的数量关系。

2.方程的意义:o理解方程的概念,知道等式与方程的关系。

3.解简易方程:o掌握解简易方程的基本步骤和方法,如等式两边同时加、减、乘、除同一个数(不为0)。

4.列简易方程解决问题:o学会根据问题中的等量关系列简易方程,并解方程求解。

六、多边形的面积1.平行四边形的面积:o掌握平行四边形的面积计算公式,能正确计算平行四边形的面积。

2.三角形的面积:o掌握三角形的面积计算公式,理解等底等高的三角形面积相等。

人教版 五年级 数学 上册知识点汇总(全)

人教版 五年级 数学 上册知识点汇总(全)

人教版五年级数学上册各单元知识点小数加减法的计算方法:计算小数加减法,要先把小数点对齐,然后按照整数加减法的法则进行计算。

第一单元《小数乘法》知识点一、小数乘整数(利用因数的变化引起积的变化规律来计算小数乘法)知识点一:1、计算小数加法先把小数点对齐,再把相同数位上的数相加2、计算小数乘法末尾对齐,按整数乘法法则进行计算。

知识点二:积中小数末尾有0的乘法。

先计算出小数乘整数的乘积后,积的小数末尾出现0 ,要再根据小数的性质去掉小数末尾的0。

如:3.60 “0”应划去知识点三:如果乘得的积的小数位数不够要在前面用0补足,再点上小数点。

如0.02×2=0.04 知识点四:计算整数因数末尾有0的小数乘法时,要把整数数位中不是0的最右侧数字与小数的末尾对齐。

思考:小数乘整数与整数乘整数有什么不同?1、小数乘整数中有一个因数是小数,所以积一般来说也是小数。

2 小数乘法中积的小暑部分末尾如有0可以根据小数的基本性质去掉小数末尾的0而整数乘法中是不能去掉的。

二、小数乘小数知识点一:因数与积的小数位数的关系:因数中共有几位小数,积中就有几位小数。

知识点二:小数乘法的一般计算方法:先按整数乘法算出积,再给积点上小数点(看因数中一共有几位小数,就从积的右边起输出几位,点上小数点。

)乘得的积的小数位数不够要在积的前面用0补足,在点小数点。

知识点三:小数乘法的验算方法1、把因数的位置交换相乘2、用计算器来验算三、积的近似数知识点一:先算出积,然后看要保留数位的下一位,再按四舍五入法求出结果,用约等号表示。

知识点二:如果求得的近似数所求数位的数字是9而后一位数字又大于5需要进1,这是就要依次进一用0占位。

如6.597 保留两位为6.60四、连乘、乘加、乘减知识点一:小数乘法要按照从左到右的顺序计算知识点二:小数的乘加运算与整数的乘加运算顺序相同。

先乘法,后加法整数乘法的交换律、结合律和分配律,对于小数乘法也适用。

人教版小学五年级数学上册知识点总结和复习要点

人教版小学五年级数学上册知识点总结和复习要点

人教版小学五年级数学上册知识点总结和复习要点一、数与代数1整数的认识概念:整数包括正整数、零和负整数,不包括小数和分数。

性质:整数可以进行加减乘除四则运算,但除以零没有意义。

特点:整数在数轴上表示为离散的点。

举例:1、2、3、0、-1、-2等都是整数。

2小数的认识概念:小数是由整数部分、小数点和小数部分组成的数。

性质:小数可以进行加减乘除四则运算,但小数点要对齐。

特点:小数可以表示比整数更精确的数量。

举例:0.5、1.23、4.567等都是小数。

3分数的认识概念:分数表示整体的一部分,由分子、分母和分数线组成。

性质:分数可以进行加减乘除四则运算,运算时需要通分或约分。

特点:分数可以表示不可分割的数量关系。

举例:1/2、3/4、5/6等都是分数。

4因数与倍数概念:一个整数能被另一个整数整除,则后者是前者的因数,前者是后者的倍数。

性质:一个数的因数的个数是有限的,最小的因数是1,最大的因数是它本身;一个数的倍数的个数是无限的。

特点:一个数的所有因数中,1和它本身总是因数;一个数的倍数总是比这个数大。

举例:12的因数有1、2、3、4、6、12;12的倍数有12、24、36、48等。

5奇数与偶数概念:能被2整除的整数是偶数,不能被2整除的整数是奇数。

性质:奇数与偶数的和或差是奇数;奇数与偶数的积是偶数。

特点:除2外,任何偶数都是合数;任何奇数都不能被2整除。

举例:2、4、6、8等都是偶数;1、3、5、7等都是奇数。

二、空间与几何1图形的变换概念:图形的变换包括平移、旋转和轴对称等。

性质:平移不改变图形的大小和形状;旋转不改变图形的大小和形状,但改变图形的方向;轴对称图形关于对称轴对称。

特点:平移和旋转是图形位置的变化;轴对称是图形形状的对称性。

举例:推拉窗户是平移;旋转门是旋转;蝴蝶的翅膀是对称的。

2图形的面积概念:面积是指一个物体表面或平面图形所占的大小。

性质:面积可以用平方单位来衡量,如平方厘米、平方米等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精品教育文档,如果需要,请下载,希望能帮助到你们!
人教版小学五年级数学上册知识点归纳汇总
温馨提示:同学们,一个学期的学习已经结束,你记住咱们本学期学习的东西了吗?让我们一起来回顾下我们这学
期各单元重要知识点吧!最后,祝各位同学们在期末的考试里取得好成绩。

第一单元小数乘法
1、小数乘整数:
@意义——求几个相同加数的和的简便运算。

如:1.5×3表示求3个1.5的和的简便运算(或 1.5的3倍是多少)。

@计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中
一共有几位小数,就从积的右边起数出几位点上小数点。

2、小数乘小数:
@意义——就是求这个数的几分之几是多少。

如:1.5×0.8就是求1.5的十分之八是多少(或求 1.5的1.8倍是多少)。

@计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中
一共有几位小数,就从积的右边起数出几位点上小数点。

注意:按整数算出积后,小数末尾的0要去掉,也就是把小数化简;位数不够时,要用0占位。

3、规律:
一个数(0除外)乘大于1的数,积比原来的数大;
一个数(0除外)乘小于1的数,积比原来的数小。

4、求近似数的方法一般有三种:
⑴四舍五入法;⑵进一法;⑶去尾法
5、计算钱数,保留两位小数,表示计算到分;保留一位小数,表示计算到角。

6、小数四则运算顺序和运算定律跟整数是一样的。

7、运算定律和性质:
@ 加法:
加法交换律:a+b=b+a
加法结合律:(a+b)+c=a+(b+c)
@ 减法:
a-b-c=a-(b+c)
a-(b+c)=a-b-c
@ 乘法:
乘法交换律:a×b=b×a
乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:(a+b)×c=a×c+b×c【(a-b)×c=a×c-b×c】
@ 除法:
a÷b÷c=a÷(b×c)
a÷(b×c) =a÷b÷c
第二单元位置
1、数对:由两个数组成,中间用逗号隔开,用括号括起来。

括号里面的数由
左至右分别为列数和行数,即“先列后行”。

2、作用:一组数对确定唯一一个点的位置。

经度和纬度就是这个原理。

例:在方格图(平面直角坐标系)中用数对(3,5)表示(第三列,第五行)。

注:(1)在平面直角坐标系中X轴上的坐标表示列,y轴上的坐标表示行。

如:数对(3,2)表示第三列,第二行。

(2)数对(X,5)的行号不变,表示一条横线,(5,Y)的列号不变,表示一条竖线。

(有一个数不确定,不能确定一个点)。

相关文档
最新文档