高中数学 1.3.2单调性与最大(小)值课件2 新人教A版必修1
合集下载
高中数学 1.3.1.2 第2课时 函数的最大值、最小值课件 新人教A版必修1
(2)存在x0∈I,使 _f_(x_0_)=__M__
结论
M是函数y=f(x)的最 大值
M是函数y=f(x)的 最小值
第五页,共42页。
1.函数 f(x)(-2≤x≤2) 的图象如图所示,则函数 的最大值、最小值分别为
()
A.f(2),f(-2) C.f(12),f(-32) 答案(dáàn): C
第二十页,共42页。
2.已知函数 f(x)=x-a 1(x∈[2,6])的 最大值为 2,求 a 的值. 解析: 首先讨论 f(x)在[2,6]上的单调性: 设 x1,x2∈[2,6],且 x1<x2,则 f(x1)-f(x2)=x1-a 1-x2-a 1 =x1a-x12-xx2-1 1. ∵2≤x1<x2≤6, ∴x2-x1>0,x1-1>0,x2-1>0.
当x=0
最小值
时,y=0是所有函数值中_______.而对于f(x)
=_最__-大__x值_2_来.说,x=0时,y=0是所有函数值中
第三页,共42页。
2.二次函数的最值 二次函数 y=ax2+bx+c(a≠0)的图象为抛物线, 当 a>0 时,ymin=4ac4-a b2, 当 a<0 时,ymax=4ac4-a b2.
第八页,共42页。
3.函数(hánshù)y=x2-4x+5,x∈[0,3]的最大 值为________. 解析: ∵y=(x-2)2+1,x∈[0,3], ∴原函数(hánshù)在[0,2]上为减函数(hánshù), 在[2,2]上为增函数(hánshù). ∴最大值为f(0)与f(3)中的最大者,而f(0)=5, f(3)=2, ∴最大值为5. 答案: 5
第二十八页,共42页。
②当 t≤1≤t+1, 即 0≤t≤1 时, f(x)在区间[t,t+1]上先减再增, 故当 x=1 时,f(x)取得最小值, 此时 g(t)=f(1)=2. ③当 t+1<1,即 t<0 时,f(x)在[t,t+1]上单 调递减,
新人教A版高中数学必修第一册3.2.1 单调性与最大(小)值 课件(2)
定 D 上的_任__意__两个自变量的值 x1,x2,当 x1<x2 时,都有
义
f(x1) __<___f(x2)
那么就说函数 f(x)在区间 D 上
f(x1) __>___f(x2)
那么就说函数 f(x)在区间 D
是增函数
上是减函数
图
象 函数 f(x)在区间 D 上的图象是 函数 f(x)在区间 D 上的图象
0,即 f(x1)>f(x2). 所以函数 f(x)=x-2 1是区间[2,6]上的减函数.
因此,函数 f(x)=x-2 1在区间[2,6]的两个端点处分别取得最大值与最小
值,即在 x=2 时取得最大值,最大值是 2,在 x=6 时取得最小值,最
小值是 0.4.
题型五 函数单调性的应用
例5 已知函数f(x)在区间(0,+∞)上是减函数,试比较f(a2-a+1)
[跟踪训练四]
解:设 x1,x2 是区间[2,6]上的任意两个实数,且 x1<x2,则 f(x1)-f(x2)
= x
1-2 1-x
2-2 1=2[xx21--11-x2x-1-11]=x
12-x12-xx2-1 1.
由 2≤x1<x2≤6,得 x2-x1>0,(x1-1)(x2-1)>0,于是 f(x1)-f(x2) >
特 _上__升__的
是下__降___的
征
图 示
2.单调性与单调区间 如果函数y=f(x)在区间D上是增函数或减函数,那么
就说函数y=f(x)在这一区间上具有(严格的)__单__调_性___,区 间D叫做y=f(x)的_单__调_区__间__.
[点睛] 一个函数出现两个或者两个以上的单调1 区间时,不能用 “+∪∞” )上连单接调,递而减应,该却用不“能,表”述连为接:.函如数函y数=y=1x 在x (在-(∞-,∞0,)∪0)(,0(,0, +∞)上单调递减.
【2024版】单调性与最大(小)值(第2课时)课件-高一上学期数学人教A版(2019)必修第一册
能的图象(示意图),并说出所画函数的单调区间.
单调递增区间为[8, 12], [13, 18];
单调递减区间为[12, 13], [18, 20].
P81页练习
2. 设函数f(x)的定义域为[-6, 11]. 如果f(x)在区间[-6, -2]上单调递减,
在区间[-2, 11]上单调递增,画出f(x)的一个大致的图象,从图象上可以发
x2 1
x 2x 2 1 1
3
∞),且
2 ,则
∞),且x11x<x
f(x2)2-f(x
) -f(x
-f(x
)=f(
).
)=f(
).
1 <x
2 ,则f(x
1)=f(x
2)+f( )=f( ).
1)=f(x
2)+f(
1)=f(x
2)+f(
f( )=-1,
而
x 1<x在
f(x 2) x 1x 1 (3)由于
(2)存在x0∈I,使得f(x0) = M
那么,称M是函数y=f(x)的最小值
思考2:若函数f(x)≤M,则M一定是函数的最大值吗?
提示:不一定,只有定义域内存在一点x0,使f(x0)=M时,M才
是函数的最大值,否则不是.
函数的最值与值域有怎样的关系?
(1)函数的值域一定存在,函数的最值不一定存在.
-4
x 12x 2 f(x
1x12-x
2设 21≤x
[ 解]xx1x1-x
1 <x
2x<2,则
-x
-x
2- .=x
1
2
x 2 1)-f(x 2)=x
x 1x 2 1+x
x
x
单调递增区间为[8, 12], [13, 18];
单调递减区间为[12, 13], [18, 20].
P81页练习
2. 设函数f(x)的定义域为[-6, 11]. 如果f(x)在区间[-6, -2]上单调递减,
在区间[-2, 11]上单调递增,画出f(x)的一个大致的图象,从图象上可以发
x2 1
x 2x 2 1 1
3
∞),且
2 ,则
∞),且x11x<x
f(x2)2-f(x
) -f(x
-f(x
)=f(
).
)=f(
).
1 <x
2 ,则f(x
1)=f(x
2)+f( )=f( ).
1)=f(x
2)+f(
1)=f(x
2)+f(
f( )=-1,
而
x 1<x在
f(x 2) x 1x 1 (3)由于
(2)存在x0∈I,使得f(x0) = M
那么,称M是函数y=f(x)的最小值
思考2:若函数f(x)≤M,则M一定是函数的最大值吗?
提示:不一定,只有定义域内存在一点x0,使f(x0)=M时,M才
是函数的最大值,否则不是.
函数的最值与值域有怎样的关系?
(1)函数的值域一定存在,函数的最值不一定存在.
-4
x 12x 2 f(x
1x12-x
2设 21≤x
[ 解]xx1x1-x
1 <x
2x<2,则
-x
-x
2- .=x
1
2
x 2 1)-f(x 2)=x
x 1x 2 1+x
x
x
函数的单调性-(新教材)人教A版高中数学必修第一册上课用PPT
探索点三 函数单调性的应用 【例 3】 【例 3】 (1)已知函数 f(x)=x2+2(a-1)x+2 在区间(-∞,4]
上是减函数,则实数 a 的取值范围为 (-∞,-3] .
解析:f(x)=x2+2(a-1)x+2=[x+(a-1)]2-(a -1)2+2, 所以此二次函数的对称轴为直线x=1-a . 所以f(x)的单调递减区间为(-∞,1-a]. 因为f(x)在(-∞,4]上是减函数, 所以直线x=1-a必须在直线x=4的右侧 或与其 重合, 所以1-a≥4,解得a≤-3,即实数a的取值范 围为(- ∞,-3].
(2) 已 知 y=f(x) 在 定 义 域 (-1,1) 上 是 减 函 数 , 且
f(1-a)<f(2a-1),则 a 的取值范围是
.
3函.2数.1的第单1课调时性-【函新数教的材单】调人性教-A【版新高教中材数】学人必教修A第版 一(册20优19 秀)课高件中 数学必 修第一 册课件( 共28张 PPT)
函数的单调性-【新教材】人教A版高 中数学 必修第 一册优 秀课件
[基础测试] 1.判断.(正确的画“√”,错误的画“×”) (1)已知 f(x)= ,因为 f(-1)<f(2),所以函数 f(x)是增函数.
() 解析:由函数单调性的定义可知,要证明一个函数是 增函数,需对定义域内的任意的自变量都满足自变量越大, 函数值也越大,而不是个别的自变量. 答案:×
解析:观察图象可知,y=f(x)的单调区间有[-5,-2], [2,1],[1,3],[3,5]. 其 中 y=f(x) 在 区 间 [-5,-2],[1,3] 上 是 增 函 数,在区间[-2,1],[3,5]上是减函数.
上是减函数,则实数 a 的取值范围为 (-∞,-3] .
解析:f(x)=x2+2(a-1)x+2=[x+(a-1)]2-(a -1)2+2, 所以此二次函数的对称轴为直线x=1-a . 所以f(x)的单调递减区间为(-∞,1-a]. 因为f(x)在(-∞,4]上是减函数, 所以直线x=1-a必须在直线x=4的右侧 或与其 重合, 所以1-a≥4,解得a≤-3,即实数a的取值范 围为(- ∞,-3].
(2) 已 知 y=f(x) 在 定 义 域 (-1,1) 上 是 减 函 数 , 且
f(1-a)<f(2a-1),则 a 的取值范围是
.
3函.2数.1的第单1课调时性-【函新数教的材单】调人性教-A【版新高教中材数】学人必教修A第版 一(册20优19 秀)课高件中 数学必 修第一 册课件( 共28张 PPT)
函数的单调性-【新教材】人教A版高 中数学 必修第 一册优 秀课件
[基础测试] 1.判断.(正确的画“√”,错误的画“×”) (1)已知 f(x)= ,因为 f(-1)<f(2),所以函数 f(x)是增函数.
() 解析:由函数单调性的定义可知,要证明一个函数是 增函数,需对定义域内的任意的自变量都满足自变量越大, 函数值也越大,而不是个别的自变量. 答案:×
解析:观察图象可知,y=f(x)的单调区间有[-5,-2], [2,1],[1,3],[3,5]. 其 中 y=f(x) 在 区 间 [-5,-2],[1,3] 上 是 增 函 数,在区间[-2,1],[3,5]上是减函数.
函数的单调性与最大(小)值(第一课时)课件-高一数学人教A版(2019)必修第一册
符号语言、文字语言三方面类比得到增函数的定义,最终归纳
总结,并阐述单调区间的定义,加深同学们对函数单调性的理
解。
教学过程
教材分析
学情分析
教学目标
教法学法
教学过程
板书设计
三、知识应用
通过练习和例题讲解:
1、让学生学会通过图像来判断函数的单调区间及
在各区间的单调性,加深对概念的理解。
2、使学生掌握利用定义证明函数的单调性方法,
那么就称函
f ( x数
)在 区 间
I上 单 调 递 增 ( 如
1)图
.)(
特别地,函数 f(x)在它的定义域上单调递增时,
我们就称它是增函数.
如果x1 , x2 I,当x1 x2时,都有f ( x1 ) f ( x2 ),
那么就称函数f ( x)在区间I上单调递减(如图(2))
.
特别地,函数f(x) 在它的定义域上单调递减时,我们就称它是减函数.
1.函数单调性的定义:
2.判断函数的单调性:(1)图象法;
(2)定义法.
3.用定义证明单调性的步骤:
(1)取值;(2)作差;(3)变形;
(4)定号;(79页
练习题 第2题
第3题
2.预习下节课内容——最大(小)
值。
一
板书设计
3.3函数的单调性
一、单调性定义
二、单调区间
取值
作差变形
定号
结论
定号
结论
方法总结
函数的单调性
用定义证明函数的单调性的步骤:
1.取值:任取x1,x2∈I,且x1<x2;
2.作差变形:f(x1)-f(x2);通常是因式分解和配方;
3.定号:判断差f(x1)-f(x2)的正负;
总结,并阐述单调区间的定义,加深同学们对函数单调性的理
解。
教学过程
教材分析
学情分析
教学目标
教法学法
教学过程
板书设计
三、知识应用
通过练习和例题讲解:
1、让学生学会通过图像来判断函数的单调区间及
在各区间的单调性,加深对概念的理解。
2、使学生掌握利用定义证明函数的单调性方法,
那么就称函
f ( x数
)在 区 间
I上 单 调 递 增 ( 如
1)图
.)(
特别地,函数 f(x)在它的定义域上单调递增时,
我们就称它是增函数.
如果x1 , x2 I,当x1 x2时,都有f ( x1 ) f ( x2 ),
那么就称函数f ( x)在区间I上单调递减(如图(2))
.
特别地,函数f(x) 在它的定义域上单调递减时,我们就称它是减函数.
1.函数单调性的定义:
2.判断函数的单调性:(1)图象法;
(2)定义法.
3.用定义证明单调性的步骤:
(1)取值;(2)作差;(3)变形;
(4)定号;(79页
练习题 第2题
第3题
2.预习下节课内容——最大(小)
值。
一
板书设计
3.3函数的单调性
一、单调性定义
二、单调区间
取值
作差变形
定号
结论
定号
结论
方法总结
函数的单调性
用定义证明函数的单调性的步骤:
1.取值:任取x1,x2∈I,且x1<x2;
2.作差变形:f(x1)-f(x2);通常是因式分解和配方;
3.定号:判断差f(x1)-f(x2)的正负;
高中数学人教A版必修第一册3.2.1单调性与最大(小)值课件
8.函数 f (x) x2 3| x | 2 的单调递减区间是__-_∞__,_-__23__∪____0_,_23____.
解析:
f
(x)
x2
3
|
x
|
2
x2
x2
3x 3x
2 ,x 2 ,x
0 0
,
f
(x)
x x
3 2
3 2
2
2
1 4
1 4
,x ,x
0 0
,
结合二次函数的图象可得,
所以函数
f
(x)
2 x 1
在区间 [2, 6]
上单调递减.
因此函数
f
(x)
2 x 1
在区间 [2, 6]
的两个端点上分别取得最大值与最小值.
在 x 2 时取得最大值,最大值是 2;在 x 6 时取得最小值,最小值是 0.4.
课堂小测
C 1.函数 y 2x2 2x 1 在区间[ 1,1] 上的最小值为( )
f
(x2 )
2
x1 1
2 x2 1
=
2(x2 1) (x1 1)
(x1 1)(x2 1)
= 2(x2 x1) (x1 1)(x2 1)
.
由 2 x1 x2 6 ,得 x2 x1 0 , (x1 1)(x2 1) 0 ,
于是 f (x1) f (x2 ) 0 ,即 f (x1) f (x2 ) .
C.
4.某公司在甲、乙两地同时销售一种品牌车,销售 x 辆该品牌车的利润(单位:
万元)分别为 L1 x2 21x 和 L2 2x .若该公司在两地共销售 15 辆该品牌车,
C 则能获得的最大利润为( )
新教材高中数学第三章函数的概念与性质 单调性与最大小值第2课时函数的最大小值课件新人教A版必修第一册
巩固训练2 求函数y=x−21在区间[2,6]上的最大值和最小值.
解析:设x1,x2是区间[2,6]上的任意两个实数,且x1<x2,则
f(x1)-f(x2)=x12−1
−
2=
x2−1
2 x2−x1 x1−1 x2−1
由于2<x1<x2<6, 得x2- x1>0,(x1-1)(x2-1)>0,于是f(x1)-f(x2)>0,f(x1)>f(x2)
当a
2
≤
12,即a≤1时,f(x)的最大值为f(1)=2-a;
当2a>12,即a>1时,f(x)的最大值为f(0)=1.
综上f(x)max=ቊ2
− 1,
a, a ≤ a>1
1.
方法归纳
求二次函数最值问题的解题策略 一般都是讨论函数的定义域与对称轴的位置关系,往往分三种情况: (1)定义域在对称轴左侧;(2)对称轴在定义域内;(3)定义域在对称轴 右侧.在讨论时可结合函数图象,便于分析、理解.
所以,函数y=x−21在区间[2,6]上单调递减.
x=2时取最大值,最大值是2,在x=6时取最小值,最小值为2.
5
题型 3 求二次函数的最值 例3 (1)已知函数f(x)=x2-2x-3,若x∈[0,2],求函数f(x)的最值.
解析:∵函数f(x)=x2-2x-3开口向上,对称轴x=1,∴f(x)在 [0,1]上单调递减,在[1,2]上单调递增,且f(0)=f(2).
方法归纳
图象法求最值的一般步骤
巩固训练1 的最大值为(
A.2 C.-1
若x∈R,f(x)是y=2-x2,y=x这两个函数中的较小者,则f(x)
) B.1 D.无最大值
人教高中数学必修一A版《函数的基本性质》函数的概念与性质说课教学课件复习(函数的单调性)
函数,则实数 a 的取值范围是________.
(2)已知函数 y=f(x)是(-∞,+∞)上的增函数,且 f(2x-3)>f(5x-6), 课件 课件 课件 课件 课件 课件 课件 课件 课件 课件 课件 课件 课件 课件
课件 课件
课件 课件
课件
课件
课件
课件
则实数 x 的取值范围为________.
D.y=1-x
栏目导航
3.函数 f(x)=x2-2x+3 的单调
(-∞,1] [因为 f(x)=x2-2x+3
减区间是________.
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
课件
是图象开口向上的二次函数,其对称 轴为 x=1,所以函数 f(x)的单调减区
所以 a 的取值范围为(-∞,-3]∪[-2,+∞).
栏目导航
2.(变条件)若本例(2)的函数 f(x)是定义在(0,+∞)上的减函数,求 x
的范围.
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
课件
[解] 由题意可知,
2x-3>0,
5x-6>0, 2x-3<5x-6,
若函数 f(x)是其定义域上的减函数,那么当 f(a)>f(b)时,a<b.
2.决定二次函数 f(x)=ax2+bx+c 单调性的因素有哪些? 提示:开口方向和对称轴的位置,即字母 a 的符号及-2ba的大小.
新教材高中数学第三章函数概念与性质 单调性与最大小值课件新人教A版必修第一册
(x1-x2)[f(x1)-f(x2)]>0 或fxx11- -fx2x2>0.对减函数的判断,对任意 x1<x2,都 有 f(x1)>f(x2),相应地也可用一个不等式来替代:(x1-x2)[f(x1)-f(x2)]<0 或 fxx11- -fx2x2<0.
3.函数的最值与值域、单调性之间的联系 (1)对一个函数来说,其值域是确定的,但它不一定有最值,如函数y= .如果有最值, 则最值一定是值域中的一个元素. (2)若函数f(x)在闭区间[a,b]上单调,则f(x)的最值必在区间端点处取得.即最大值是 f(a)或f(b),最小值是f(b)或f(a). 4.二次函数在闭区间上的最值 探求二次函数在给定区间上的最值问题,一般要先作出y=f(x)的草图,然后根据图 象的增减性进行研究.特别要注意二次函数的对称轴与所给区间的位置关系,它是 求解二次函数在已知区间上最值问题的主要依据,并且最大(小)值不一定在顶点处 取得.
(3)区间A一定是连续的,如果中间有断裂,则无法称 作单调递增或者单调递减.如图示的函数.
单调性的定义
函数单调性定义的等价形式(对于任意的
):
【1】
在D上为增函数;
【2】
在D上为减函数;
【3】
在D上为增函数;
【4】
在D上为减函数.
即自变量之差与函数值之差的乘积同号,函数为增函数; 自变量之差与函数值之差的乘积同号,函数为减函数;
反之,函数在区间端点处无定义时,书写单调区间时就 不能包括端点.
单调性的应用 【例题1】根据定义,研究函数
的单调性.
【解】函数 ,
的定义域是R,对于任意的
且
由
知
,所以:
①当
时,
3.函数的最值与值域、单调性之间的联系 (1)对一个函数来说,其值域是确定的,但它不一定有最值,如函数y= .如果有最值, 则最值一定是值域中的一个元素. (2)若函数f(x)在闭区间[a,b]上单调,则f(x)的最值必在区间端点处取得.即最大值是 f(a)或f(b),最小值是f(b)或f(a). 4.二次函数在闭区间上的最值 探求二次函数在给定区间上的最值问题,一般要先作出y=f(x)的草图,然后根据图 象的增减性进行研究.特别要注意二次函数的对称轴与所给区间的位置关系,它是 求解二次函数在已知区间上最值问题的主要依据,并且最大(小)值不一定在顶点处 取得.
(3)区间A一定是连续的,如果中间有断裂,则无法称 作单调递增或者单调递减.如图示的函数.
单调性的定义
函数单调性定义的等价形式(对于任意的
):
【1】
在D上为增函数;
【2】
在D上为减函数;
【3】
在D上为增函数;
【4】
在D上为减函数.
即自变量之差与函数值之差的乘积同号,函数为增函数; 自变量之差与函数值之差的乘积同号,函数为减函数;
反之,函数在区间端点处无定义时,书写单调区间时就 不能包括端点.
单调性的应用 【例题1】根据定义,研究函数
的单调性.
【解】函数 ,
的定义域是R,对于任意的
且
由
知
,所以:
①当
时,
新教材高中数学 函数的概念与性质2函数的基本性质 单调性与最大小值第一课时课件新人教A版必修第一册
知识点二 单调性与单调区间 如果函数y=f(x)在区间D上单调递增或单调递减,那么就说函 数y=f(x)在这一区间具有(严格的)___单__调__性___,区间D叫做 y=f(x)的___单__调__区__间_____.
【思辨】 判断正误(请在括号中打“√”或“×”). (1)函数的单调区间是函数定义域的子集.( √ ) (2)函数f(x)=- 的单调递增区间是(-∞,0)∪(0,+∞).
例3 已知函数f(x)在区间(-1,1)上单调递减,且f(a-1)>f(1-4a),
求a的取值范围.
-1<a-1<1,
1
解:由题意知-1<1-4a<1, 解得 0<a<2 . ①
又因为函数 f(x)在区间(-1,1)上单调递减,
且 f(a-1)>f(1-4a),
所以 a-1<1-4a,得 a<25 .②由①②得,0<a<25 ,
(×) (3)函数f(x)=x2-2x(x∈[-1,2])的单调递增区间是[1,2],单
调递减区间是[-1,1].( √) (4)函数y=2x+1在[0,3]上单调递增,则[0,3]是函数的单调
递增区间.( × )
2 【解析】 (2)函数 f(x)=-x 的单调递增区间是(-∞,0) 和(0,+∞).注意两个区间之间要用逗号或“和”连接. (4)函数在定义域内的某区间递增,这个区间不一定是函数 的单调递增区间,它可能是单调区间的子集.
因为 x1<x2,且 x1,x2∈(0,+∞),
所以 x2-x1>0,x1+3>0,x2+3>0.
所以函数 f(x2)-f(x1)>0,即 f(x2)>f(x1),
3.2.1+单调性与最大(小)值(共2课时)高一数学优秀课件(人教A版2019必修第一册)
【答案】(−∞, 1)和
3
2
,2
【解析】当 ≥ 2或 ≤ 1时, ( ) = 2 − 3 + 2,
3
对称轴为 = 2 ,
当1 < < 2时, ( ) = − 2 + 3 − 2,对称轴为
3
= 2,
作出 ( )的图象如图所示,
3
由图可知 ( )单调递减区间为(−∞, 1) 和 ( 2 , 2),
(2)用定义法证明: 在 2,6 上单调递增;
【解析】(1)函数 =
2−3
有意义,则
−1
− 1 ≠ 0,
即 ≠ 1,
所以函数 =
2 −3
的定义域为
−1
−∞, 1 ⋃ 1, +∞ .
(2)任取2 ≤ 1 < 2 ≤ 6,
2 − 1 =
2 2 −3
区间D为f(x)的单调递减区间.
图
示
注意:①当函数在其定义域上单调递增(减)时,则称f(x)是增(减)函数.
②若f(x)在区间D上单调递增(减),则称f(x)在区间D具有严格的单调性.
新知:单调性的定义
问题2:(1)设是区间上某些自变量的值组成的集合,而且∀1 ,2 ∈ ,当1 < 2 时,
则 1 − 2 =
= 1 − 2 +
= 1 − 2
1
1−
∵ 0 < 1 < 2 <
,
1
−
+ 1 −
2
1 2
2
∵
− 2
= 1 − 2 +
= 1 − 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
「自我感悟」
函数最值与函数的单调性研究方法的 联系与区别
「自我检测」
检测1: 函y数 x1x2的最小 __值 __。 是 __
「自我检测」
检测1: 函y数 x1x2的最小 __值 __。 是 __ 检测2:
函y数 2x x1的 最 小 __值 __是 。 __
「自我探究」
探究1: 不用定义法法 和, 图你 象还能研究函 y2x x1的最值吗?
方法是否有改变?
拓展2: 你对拓1的 展复合函数单调性怎又样有 的猜想?你的猜想到能问得题,“判断函 y 1 1的单调性”的验证了吗
x
拓展3:
你能对y函 数1 1,利用复合函数 x
观 点 研 究 单 调 性猜 ,想 得并 出得 到 证 明 吗
拓展4:
求y函-x数 2x3的最值。
「家庭作业」
1. 《考一本》第10课时 单调性与最大(小) 值(2);
2. 自学教材P33-P36 : (1)奇偶性研究的方法有鸡哥? (2)与单调性研究相比,有哪些方法上 异同
(3)能否说存在一个实数x0,使f(x0)= f(-x0),我们就说函数f(x)是偶函数?试举例 说明。
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
探究2:
教 x1
(x2, 6) 求 函 数 的 最 大小值值和”最,
你还有其它方法吗?
探究3: 根据上述探究你对函数单调性的研究
有怎样的认识?
「思维拓展」
拓展1:
若将教P3材 1例4中的“函f数 (x)
2, x1
改成“函f数 (u) 2,且u x1,你研究的 u
函数最值与函数的单调性研究方法的 联系与区别
「自我检测」
检测1: 函y数 x1x2的最小 __值 __。 是 __
「自我检测」
检测1: 函y数 x1x2的最小 __值 __。 是 __ 检测2:
函y数 2x x1的 最 小 __值 __是 。 __
「自我探究」
探究1: 不用定义法法 和, 图你 象还能研究函 y2x x1的最值吗?
方法是否有改变?
拓展2: 你对拓1的 展复合函数单调性怎又样有 的猜想?你的猜想到能问得题,“判断函 y 1 1的单调性”的验证了吗
x
拓展3:
你能对y函 数1 1,利用复合函数 x
观 点 研 究 单 调 性猜 ,想 得并 出得 到 证 明 吗
拓展4:
求y函-x数 2x3的最值。
「家庭作业」
1. 《考一本》第10课时 单调性与最大(小) 值(2);
2. 自学教材P33-P36 : (1)奇偶性研究的方法有鸡哥? (2)与单调性研究相比,有哪些方法上 异同
(3)能否说存在一个实数x0,使f(x0)= f(-x0),我们就说函数f(x)是偶函数?试举例 说明。
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
探究2:
教 x1
(x2, 6) 求 函 数 的 最 大小值值和”最,
你还有其它方法吗?
探究3: 根据上述探究你对函数单调性的研究
有怎样的认识?
「思维拓展」
拓展1:
若将教P3材 1例4中的“函f数 (x)
2, x1
改成“函f数 (u) 2,且u x1,你研究的 u