中考数学函数知识点

合集下载

中考数学函数知识点汇总

中考数学函数知识点汇总

2021广州中考数学二次函数知识点1 .定义:一般地,如果 y = ax?+bx + c(a, b, c 是常数,a#0),那么y 叫做x 的二次函数22 .二次函数y = ax 的性质(1)抛物线y = ax 2的顶点是坐标原点,对称轴是 y 轴.(2)函数y =ax 2的图像与a 的符号关系.①当a>0时= 抛物线开口向上 a 顶点为其最低点; ②当a<0时之 抛物线开口向下 u 顶点为其最高点.(3)顶点是坐标原点,对称轴是y 轴的抛物线的解析式形式为 y = ax 2 (a ¥ 0).3 .二次函数y =a **bx4c 的图像是对称轴平行于(包括重合) y轴的抛物线.224 . 一次函数 y=ax +bx+c 用配万法可化成:y = a(x — h)十k 的形式,其中b 4ac -b 2 —,k 二 ----------- 2a 4a①a 的符号决定抛物线的开口方向:当 a>0时,开口向上;当 a<0时,开口向下;a相等,抛物线的开口大小、形状相同②平行于y 轴(或重合)的直线记作 x = h .特别地,y 轴记作直线x = 0. 7.顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数 a 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同.一■. 222一上b ' 4ac-by=ax +bx + c = ax + 一 i + ------------------8.求抛物线的顶点、对称轴的方法(1)公式法: I 2a l 4a ,,顶2/ b 4ac -b xb(一一, ----------- ) x=———点是 2a 4a ,对称轴是直线2a.(2)配方法:运用配方的方法,将抛物线的解析式化为y= a (x - h f + k 的形式,得到顶点为(h , k ),对称轴是直线x = h .(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直 平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点^用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失^29.抛物线y = ax +bx +c 中,a,b,c 的作用_2(1) a 决定开口方向及开口大小,这与 y =ax中的a 完全一样.(2) b 和a 共同决定抛物线对称轴的位置.由于抛物线y = ax2 + bx * c 的对称轴是直线2a ,故:①b = 0时,对称轴为y 轴;②a (即a 、b 同号)时,对称轴在y 轴左侧;③a (即a 、b 异号)时,^^称轴在 y 轴右侧.(3)c 的大小决定抛物线y =a x2 +bx + c 与y 轴交点的位置.当x = 0时,y=c , .•.抛物线y =ax2 +bx +c 与y 轴有且只有一个交点(0, c):①c = 0,抛物线经过原点;②c > 0,与y 轴交于正半轴;③ c < 0,与y 轴交于负半轴5.二次函数由特殊到一般,可分为以下几种形式:①④ y =a(x -h 2 +k ;⑤ y = ax 2 +bx + c .6.抛物线的三要素:开口方向、对称轴、顶点 .2 2 2y=ax ^y = ax +k ;③ y = a 〔x -h 〕.b x =--b0 以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在y轴右侧,那么a10.(1) 一般式:y =ax2 +bx + c.图像上三点或三对X、y的值,通常选择一般式(2)顶点式:y=a(x-hf+k.图像的顶点或对称轴,通常选择顶点式.(3)交点式:图像与X轴的交点坐标X1、x2,通常选用交点式:y = a(x-x i J X-X2).12.直线与抛物线的交点(1) y轴与抛物线y=ax *bx+c得交点为(0, c).22(2)与y轴平行的直线x = h与抛物线y-ax +bx + c有且只有一个交点(h,ah +bh+c).(3)抛物线与x轴的交点二次函数y =ax2 +bx *c的图像与x轴的两个交点的横坐标x1、x2,是对应一元二次方程2ax +bx+c=0的两个实数根.抛物线与x轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点仁4 >00抛物线与x轴相交;②有一个交点(顶点在x轴上)u &=0二抛物线与x轴相切;③没有交点=△ < 0仁抛物线与x轴相离.(4)平行于x轴的直线与抛物线的交点同(3) 一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,2设纵坐标为k ,那么横坐标是ax + bx + c = k的两个实数根.(5)7次函数y=kx+n(k=0柚图像l与二次函数丫= »2+似+ 0^*0)的图像6的交点, y = kx n2由方程组y—ax bx c的解的数目来确定:①方程组有两组不同的解时-l与G有两个交点;②方程组只有一组解时u l与G只有一个交点;③方程组无解时u l与G没有交点.(6)抛物线与x轴两交点之间的距离:假设抛物线y = ax +bx + c与x轴两交点为A%,0) B(x2,0 )由于x1、x2是方程ax2 +bx+c = 0的两个根,故X1 X2 = -b,X1 X2=&a在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系. 其中,水平的数轴叫做 x 轴或横轴,取向右为正方向;铅直的数轴叫做 向;两轴的交点 O (即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面.为了便于描述坐标平面内点的位置,把坐标平面被 x 轴和y 轴分割而成的四个局部,分别叫做第 象限、第二象限、第三象限、第四象限.注意:x 轴和y 轴上的点,不属于任何象限.2、点的坐标的概念点的坐标用(a, b)表示,其顺序是横坐标在前,纵坐标在后,中间有置不能颠倒.平面内点的坐标是有序实数对,当 a#b 时,(a, b)和(b, a)是两个不同点的坐标. 考点二、不同位置的点的坐标的特征(3分)1、各象限内点的坐标的特征位于平行于x 轴的直线上的各点的纵坐标相同. 位于平行于y 轴的直线上的各点的横坐标相同. 关于x 轴、y 轴或远点对称的点的坐标的特征P 与点p'关于x 轴对称匕 横坐标相等,纵坐标互为相反数 P 与点p'关于y 轴对称二纵坐标相等,横坐标互为相反数 P 与点p'关于原点对称 u 横、纵坐标均互为相反数 点到坐标轴及原点的距离 P(x,y)到坐标轴及原点的距离: 1、变量与常量 在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量.一般地,在某一变化过程中有两个变量 x 与y,如果对于x 的每一个值,y 都有唯一确定的值与它对应,那么就说x 是自变量,y 是x 的函数.AB = x 1 - x 2-.x 1 - x 2=Y (x1 +x 2 2 -4x1x 2 =一次函数与反比例函数考点一、平面直角坐标系1、平面直角坐标系(3分)y 轴或纵轴,取向上为正方 〞分开,横、纵坐标的位点P(x,y)在第一象限点 2、 点 点点 3、点 点 4、P(x,y)在第二象限 P(x,y)在第三象限P(x,y)在第四象限坐标轴上的点的特征P(x,y)在x 轴上匕 yP(x,y)在y 轴上N x=x 0, y 0 x ::0, y 0x ::0, y :: 0 x0, y :: 0,x 为任意实数 ,y为任意实数P(x,y)既在x 轴上,又在y 轴上u x, y 同时为零,即点 P 坐标为(0, 0)两条坐标轴夹角平分线上点的坐标的特征P(x,y)在第一、三象限夹角平分线上 w P(x,y)在第二、四象限夹角平分线上 之和坐标轴平行的直线上点的坐标的特征 与y 相等 与y 互为相反数5、 点点点6、 点(1)占 八P(x,y)到x 轴的距离等于(2) 占 八P(x,y)到y 轴的距离等于(3) 占 八P(x,y)到原点的距离等号考点三、函数及其相关概念..x 2 y 2(3~8 分)2、函数解析式用来表示函数关系的数学式子叫做函数解析式或函数关系式.使函数有意义的自变量的取值的全体,叫做自变量的取值范围.3、函数的三种表示法及其优缺点(1)解析法两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法.(2)列表法把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法.(3)图像法用图像表示函数关系的方法叫做图像法.4、由函数解析式画其图像的一般步骤(1)列表:列表给出自变量与函数的一些对应值(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点(3)连线:根据自变量由小到大的顺序,把所描各点用平滑的曲线连接起来.考点四、正比例函数和一次函数(3~10分)1、正比例函数和一次函数的概念一般地,如果y=kx+b(七b是常数,k=0),那么y叫做x的一次函数.特别地,当一次函数y =kx +b中的b为0时,y=kx(k为常数,k*0).这时,y叫做x的正比例函数.2、一次函数的图像所有一次函数的图像都是一条直线3、一次函数、正比例函数图像的主要特征:一次函数y "kx'b的图像是经过点(0, b)的直线;正比例函数y=kx的图像是经过原点(0, 0)的直线.(1)当k>0时,图像经过第一、三象限,(2)当k<0时,图像经过第二、四象限, (1)当k>0时,y 随x 的增大而增大(2)当k<0时,y 随x 的增大而减小6、正比例函数和一次函数解析式确实定确定一个正比例函数,就是要确定正比例函数定义式 数,需要确定一次函数定义式 y =kx +b (k#0)中的常数k 和bo 解这类问题的一般方法是待定系数法.考点五、反比例函数(3~10分)1、反比例函数的概念ky 1一般地,函数 x (k 是常数,k #0)叫做反比例函数.反比例函数的解析式也可以写成 y kx的形式.自变量 x 的取值范围是x=0的一切实数,函数的取值范围也是一切非零实数.2、反比例函数的图像反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限, 它们关于原点对称.由于反比例函数中自变量x-0,函数y 0 0,所以,它的图像与 x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴.0 xb<0yN-------------- ►x \图像经过二、三、四象限, y 随x的增大而减小.注:当 b=0时,一次函数变为正比例函数,正比例函数是一次函数的特例.4、正比例函数的性质,般地,正比例函数 y = kx 有以下性质: y 随x 的增大而增大; y随x 的增大而减小.y = kx +b 有以下性质:5、一次函数的性质, 般地,一次函数 y = kx (k#0)中的常数 k .确定一个一次函ky=一,一人工一一,,一工x 中,只有一个待定系数,因此只需要一对对应值或图像上的一个点的坐标,即可求出k 的值, 5、反比例函数中反比例系数的几何意义k y = k (k = 0) 如以下图,过反比例函数x 图像上任一点kPMON 的面积 S=PM ・PN= y *X = Xy .x,二次函数考点一、二次函数的概念和图像 (3~8分)1、二次函数的概念一般地,如果y =ax 2 +b x +c (a ,b,c 是常数,a¥0),那么y 叫做x 的二次函数.y =a x2 +b x +c(a ,b ,c 是常数,a * 0)叫做二次函数的一般式.2、二次函数的图像b x 二一 二次函数的图像是一条关于 2a 对称的曲线,这条曲线叫抛物线.抛物线的主要特征:①有开口方向;②有对称轴;③有顶点.3、二次函数图像的画法五点法:(1)先根据函数解析式,求出顶点坐标,在平面直角坐标系中描出顶点M ,并用虚线画出对称轴(2)求抛物线y = ax +bx +c 与坐标轴的交点:当抛物线与x 轴有两个交点时,描出这两个交点 A,B 及抛物线与y 轴的交点C,再找到点C 的对称 点D .将这五个点按从左到右的顺序连接起来,并向上或向下延伸,就得到二次函数的图像.当抛物线与x 轴只有一个交点或无交点时,描出抛物线与 y 轴的交点C 及对称点D .由C 、M 、D 三点可粗略地画出二次函数的草图.如果需要画出比拟精确的图像,可再描出一对对称点 A 、B,然后顺 次连接五点,画出二次函数的图像.考点二、二次函数的解析式 (10~16分) 二次函数的解析式有三种形式:(1)一般式: y = ax 2,bx ,c(a,b,渥常数,a = 0)(2)顶点式:y = a(x -h)2 +k(a, h,k 是常数,a *0)(3)当抛物线y =ax2*bx *c 与x 轴有交点时,即对应二次好方程ax 2+bx + c = 0有实根x 1和x 2 22存在时,根据二次三项式的分解因式 ax +bx +c =a(x _x 1)(x_x 2),二次函数y = ax +bx + c 可转化为两根式y =a(x -x 1)(x -x 2).如果没有交点,那么不能这样表示.考点三、二次函数的最值(10分)如果自变量的取值范围是全体实数,那么函数在顶点处取得确定及谈是的方法仍是待定系数法.由于在反比例函数 从而确定其解析式.P 作x 轴、y 轴的垂线PM , PN,那么所得的矩形xy = k, S = k. ,2b 4ac-bx ——y最值=最大值(或最小值),即当2a时, 4a .b二次函数y = ax2+bx+c(a,b,c是常数,a 0 0)a>0(1)抛物线开口向上,并向上无限延伸;b(2)对称轴是x=--,顶点坐标是(2a(1)抛物线开口向下,并向下无限延伸;b(2)对称轴是x= —-,顶点坐标是(2a4ac -b2、--------- );4a的增大而减小;在对称轴的右侧,即当x> -2时,y随x的增大而增大,简记左减2a右增;x的增大而增大;在对称轴的右侧,即当x> 一2 时,y随x的增大而减小,简记左2a增右减;(4)抛物线有最低点,当x=--b时y有最小2a (4)抛物线有最高点,当x=-也时y有最2a图像(3)在对称轴的左侧,即当x< --时,y随2a (3)在对称轴的左侧,即当x< --时,y随2a值,y最小值24ac -b4a大值,y最大值24ac 一b4a如果自变量的取值范围是b x i-x - x2,那么,首先要看2a是否在自变量取值范围xi'xWx2内, 4ac - b2假设在此范围内,那么当x= 2a时, y最值4a;假设不在此范围内,围内的增减性,如果在此范围内,y随x的增大而增大,那么当x = x2时, 时,y最小=a x; +b x1 *C ;如果在此范围内,y随x的增大而减小,那么当2当X=x2 时,y最小=a x2 +b x2 +c.考点四、’二次函数的性质(6〜14分)1、二次函数的性质那么需要考虑函数在x1w x w x2范y最大=ax;+bx2 + c 当X =X1x = x1时y 最大=ax; +bx I +ca<02ab2a, 4ac -b2、-------- );4a性质2、二次函数y=ax +bx+c 〔a ,b ,c 是常数,a#°〕中,a 、b 、c 的含义:a 表示开口方向:a >0 时,抛物线开口向上,… a <0时,抛物线开口向下bb 与对称轴有关:对称轴为 x= - 2ac 表示抛物线与y 轴的交点坐标:〔0, C 〕3、二次函数与一元二次方程的关系一元二次方程的解是其对应的二次函数的图像与x 轴的交点坐标.,2.因此一元二次方程中的 A=b -4ac,在二次函数中表示图像与 x 轴是否有交点. 当△ >0时,图像与x 轴有两个交点; 当△ =0时,图像与x 轴有一个交点; 当A <0时,图像与x 轴没有交点. 补充:1、两点间距离公式〔当遇到没有思路的题时,可用此方法拓展思路,以寻求解题方法〕如图:点A 坐标为〔xi, y"点B 坐标为〔x2, y2〕3,点斜i=i4,斜截斜截式方程,简称斜截式:y=kx+b 〔kw0〕5 ,截距 由直线在x 轴和y 轴上的截距确定的直线的截距 --=i式方程,简称截距式:a b记牢可大幅提升运算速度设两条直线分别为,|i : y =k i x+bi I 2: y = k 2x +b 2假设 11 〃 1 2 ,那么有 L 〃 l 2 U k i 二 k 2 且 b i ' b 2.那么AB 间的距离,即线段 AB 的长度为2 2x i -x 2 小-y2、函数平移规律〔中测试题中,只占 大大节省做题的时间〕3分,但掌握这个知识点,对提升做题速度有很大帮助,可以3、直线斜率:4、直线方程:1, 一般 2,两点k = tan: = &一y 1 x 2 -x i一般两点斜截距b 为直线在y 轴上的截距一般直线方程ax+by+c=0--最最常用,记牢11 - 12k1 k2 - -1石d =点 P (x0, y0)到直线 y=kx+b(即:kx-y+b=0)的距离: 对于点P (x0, y0)到直线滴一般式方程ax+by+c=0滴距离有ax .十 by .十 c d — — a 2 b 2中考点击考点分析:内容要求1、函数的概念和平面直角坐标系中某些点的坐标特点I 2、自变量与函数之间的变化关系及图像的识别,理解图像与变量的关系 I 3、一次函数的概念和图像I 4、一次函数的增减性、象限分布情况,会作图n 5、反比例函数的概念、图像特征,以及在实际生活中的应用n 6、二次函数的概念和性质,在实际情景中理解二次函数的意义,会利用二次 函数刻画实际问题中变量之间的关系并能解决实际生活问题n命题预测:函数是数形结合的重要表达,是每年中考的必考内容,函数的概念主要用选择、填空的 形式考查自变量的取值范围,及自变量与因变量的变化图像、平面直角坐标系等,一般占 2%左右.一次函数与一次方程有紧密地联系,是中考必考内容,一般以填空、选择、解做题及综合题的形式考查,占 5%左右.反比例函数的图像和性质的考查常以客观题形式出现,要关注反比例函数与实际问题的联系,突出应用价值,3-6分;二次函数是初中数学的一个十分重要的内容,是中考的热点,多以压轴题出现 在试卷中.要求:能通过对实际问题情景分析确定二次函数的表达式,并体会二次函数的意义;会用描 点法画二次函数图像,能丛图像上分析二次函数的性质;会根据公式确定图像的顶点、开口方向和对称 轴,并能解决实际问题.会求一元二次方程的近似值.分析近年中考,尤其是课改实验区的试题,预计 2007年除了继续考查自变量的取值范围及自变量与因变量之间的变化图像,一次函数的图像和性质,在实际问题中考查对反比例函数的概念及性质的理 解.同时将注重考查二次函数,特别是二次函数的在实际生活中应用.初中数学助记口诀(函数局部)特殊点坐标特征:坐标平面点(x,y),横在前来纵在后;(+,+),(-,+),(-,-) 和(+,-),四个象限分前后;X 轴上y 为0,x 为0在Y 轴.对称点坐标:对称点坐标要记牢,相反数位置莫混淆,X 轴对称y 相反,Y 轴对称,x 前面添负号;原点 对称最好记,横纵坐标变符号.自变量的取值范围:分式分母不为零,偶次根下负不行;零次哥底数不为零,整式、奇次根全能行. 函数图像的移动规律:假设把一次函数解析式写成y=k (x+0) +b 、二次函数的解析式写成y=a (x+h).......................... .... ............................................ 〞2+k 的形式,那么用下面后的口诀 同左上加,异右下减.一次函数图像与性质口诀:一次函数是直线,图像经过任象限;正比例函数更简单 ,经过原点一直线;两个系数k 与b,作用之大莫小看,k 是斜率定夹角,b 与Y 轴来相见,k 为正来右上斜,x 增减y 增减;k 为 负来左下展,变化规律正相反;k 的绝对值越大,线离横轴就越远.二次函数图像与性质口诀:二次函数抛物线,图象对称是关键;开口、顶点和交点,它们确定图象现; 开口、大小由a 断,c 与Y 轴来相见,b 的符号较特别,符号与 a 相关联;顶点位置先找见, Y 轴作为参考 线,左同右异中为0,牢记心中莫混乱;顶点坐标最重要 ,一般式配方它就现,横标即为对称轴 ,纵标函数 最值见.假设求对称轴位置,符跖-y ()+b |22..k 2(-1)2常用记牢号反,一般、顶点、交点式,不同表达能互换.反比例函数图像与性质口诀:反比例函数有特点,双曲线相背离的远;k为正,图在一、三〔象〕限,k为负,图在二、四〔象〕限;图在一、三函数减,两个分支分别减.图在二、四正相反 ,两个分支分别添;线越长越近轴,永远与轴不沾边.正比例函数是直线,图象一定过圆点, k的正负是关键,决定直线的象限,负k经过二四限,x增大y在减,上下平移k不变,由引得到一次线,向上加b向下减,图象经过三个限,两点决定一条线,选定系数是关键.反比例函数双曲线,待定只需一个点,正k落在一三限,x增大y在减,图象上面任意点,矩形面积都不变,对称轴是角分线x、y的顺序可交换.二次函数抛物线,选定需要三个点, a的正负开口判,c的大小y轴看,△的符号最简便,x轴上数交点,a、b同号轴左边抛物线平移a不变,顶点牵着图象转,三种形式可变换,配方法作用最关键.1. 一元一次不等式解题的一般步骤:去分母、去括号,移项时候要变号;同类项、合并好,再把系数来除掉;两边除〔以〕负数时,不等号改向别忘了.2. 特殊点坐标特征:坐标平面点〔x,y〕,横在前来纵在后;〔+,+〕,〔-,+〕,〔-,-〕和〔+,-〕,四个象限分前后;X轴上y为0,x为0在Y轴.3. 平行某轴的直线:平行某轴的直线,点的坐标有讲究,直线平行X轴,纵坐标相等横不同;直线平行于丫轴,点的横坐标仍照旧.4. 对称点坐标:对称点坐标要记牢,相反数位置莫混淆,X轴对称y相反,Y轴对称,x前面添负号;原点对称最好记,横纵坐标变符号.5. 自变量的取值范围:分式分母不为零,偶次根下负不行;零次哥底数不为零,整式、奇次根全能行.6. 函数图像的移动规律:假设把一次函数解析式写成y=k 〔x+0〕 +b,二次函数的解析式写成y=a 〔x+h〕 2+k的形式,那么用下面后的口诀:“左右平移在括号,上下平移在末稍, 左正右负须牢记,上正下负错不了〞.7. 一次函数图像与性质口诀:一次函数是直线,图像经过任象限;正比例函数更简单,经过原点一直线;两个系数k与b,作用之大莫小看,k是斜率定夹角,b与Y轴来相见,k为正来右上斜,x增减y增减;k为负来左下展,变化规律正相反;k的绝对值越大,线离横轴就越远.8. 二次函数图像与性质口诀:二次函数抛物线,图象对称是关键;开口、顶点和交点,它们确定图象限;开口、大小由a断,c与Y轴来相见,b的符号较特别,符号与a相关联;顶点位置先找见, Y轴作为参考线,左同右异中为0,牢记心中莫混乱;顶点坐标最重要 ,一般式配方它就现,横标即为对称轴 ,纵标函数最值见.假设求对称轴位置,符号反,一般、顶点、交点式,不同表达能互换.9. 反比例函数图像与性质口诀:反比例函数有特点,双曲线相背离的远;k为正,图在一、三〔象〕限;k为负,图在二、四〔象〕限;图在一、三函数减,两个分支分别减;图在二、四正相反,两个分支分别添;线越长越近轴,永远与轴不沾边.函数学习口决:正比例函数是直线,图象一定过原点, k的正负是关键,决定直线的象限,负k经过二四限,x增大y在减,上下平移k不变,由引得到一次线,向上加b向下减,图象经过三个限,两点决定一条线,选定系数是关键;反比例函数双曲线,待定只需一个点,正k落在一三限,x增大y在减,图象上面任意点,矩形面积都不变,对称轴是角分线x、y的顺序可交换;二次函数抛物线,选定需要三个点, a的正负开口判,c的大小y轴看,△的符号最简便,x轴上数交点,a、b同号轴左边抛物线平移a不变,顶点牵着图象转,三种形式可变换,配方法作用最关键.10. 求定义域:求定义域有讲究,四项原那么须留意.负数不能开平方,分母为零无意义.指是分数底正数,数零没有零次哥.限制条件不唯一,满足多个不等式.求定义域要过关,四项原那么须注意.负数不能开平方,分母为零无意义.分数指数底正数,数零没有零次哥. 限制条件不唯一,不等式组求解集.11. 解一元一次不等式:先去分母再括号,移项合并同类项.系数化“1〞有讲究,同乘除负要变向.先去分母再括号,移项别忘要变号.同类各项去合并,系数化“1〞注意了.同乘除正无防碍,同乘除负也变号.12. 解一元一次不等式组:大于头来小于尾,大小不一中间找. 大大小小没有解,四种情况全来了.同向取两边,异向取中间. 中间无元素,无解便出现.13.首先化成一般式,构造函数第二站. 判别式值假设非负,曲线横轴有交点.a 正开口它向上,大于零那么取两边. 代数式假设小于零,解集交点数之间.方程假设无实数根,口上大零解为全. 小于零将没有解,开口向下正相反.12.1 用公式法解一元二次方程要用公式解方程,首先化成一般式. 调整系数随其后,使其成为最简比. 确定参数abc,计算方程判别式. 判别式值与零比,有无实根便得知. 有实根可套公式,没有实根要告之.14. 用常规配方法解一元二次方程:左未右已先别离,二系化“1〞是其次.一系折半再平方,两边同加没问题. 左边分解右合并,直接开方去解题. 该种解法叫配方,解方程时多练习.15. 用间接配方法解一元二次方程:未知先别离,因式分解是其次. 调整系数等互反,和差积套恒等式. 完全平方等常数,间接配方显优势 【注】恒等式16. 解一■元二次方程:方程没有一次项,直接开方最理想. 如果缺少常数项,因式分解没商量.b 、c 相等都为零,等根是零不要忘. b 、c 同时不为零,因式分解或配方,也可直接套公式,因题而异择良方.17. 正比例函数的鉴别:判断正比例函数,检验当分两步走. 一"量表示另 一■量, 有没有.假设有再去看取值,全体实数都需要. 区分正比例函数,衡量可分两步走. 一量表示另一量, 是与否. 假设有还要看取值,全体实数都要有.18. 正比例函数的图象与性质:幼儿园小鬼当家, 敬老院以老为荣, 军营里没老没少. 大大小小解集空.〔同小相对取较小 〔同大就要取较大 〔大小小大就是它 〔小小大大哪有哇 ) ) ) )正比函数图直线,经过和原点.K 正一三负二四,变化趋势记心间.K 正左低右边高,同大同小向爬山.K 负左高右边低,一大另小下山峦.19. 一次函数:一次函数图直线,经过点.K 正左低右边高,越走越高向爬山.K 负左高右边低,越来越低很明显.K 称斜率b截距,截距为零变正函.20. 反比例函数:反比函数双曲线,经过点.K 正一三负二四,两轴是它渐近线.K 正左高右边低,一三象限滑下山.K 负左低右边高,二四象限如爬山.21. 二次函数:二次方程零换y,二次函数便出现. 全体实数定义域,图像叫做抛物线. 抛物线有对称轴,两边单调正相反.A 定开口及大小,线轴交点叫顶点. 顶点非高即最低.上低下高很显眼. 如果要画抛物线,平移也可去描点, 提取配方定顶点,两条途径再挑选. 列表描点后连线,平移规律记心间. 左加右减括号内,号外上加下要减. 二次方程零换y,就得到二次函数. 图像叫做抛物线,定义域全体实数.A 定开口及大小,开口向上是正数. 绝对值大开口小,开口向下A负数. 抛物线有对称轴,增减特性可看图.线轴交点叫顶点,顶点纵标最值出.如果要画抛物线,描点平移两条路提取配方定顶点,平移描点皆成图列表描点后连线,三点大致定全图假设要平移也不难,先画根底抛物线,顶点移到新位置,开口大小随根底.【注】根底抛物线22. 列方程解应用题:列方程解应用题,审设列解双检答.审题弄清已未知,设元直问两方法.列表画图造方程,解方程时守章法.检验准且合题意,问求同一才作答.23. 两点间距离公式:。

深圳中考数学知识点归纳

深圳中考数学知识点归纳

深圳中考数学知识点归纳
一、代数与函数
1.整式与分式的加减乘除运算
2.一元一次方程与一元一次方程组的解法
3.二元一次方程组的解法
4.二次根式的化简与运算
5.平方根与立方根的运算
6.简单的二次方程的解法
7.二次函数的图像与性质
8.一次函数与一次函数的图像与性质
9.函数的概念与性质
10.等差数列与等比数列的概念与性质
11.数列的通项公式与前n项和公式
12.正比例函数与反比例函数的概念与性质
二、几何与图形
1.平面图形的性质与判定
2.直线与角的性质与判定
3.三角形的性质与判定
4.四边形的性质与判定
5.折线与多边形的性质与判定
6.圆的性质与判定
7.圆的面积与周长的计算
8.三角形的面积与周长的计算
9.直角三角形的性质与判定
10.三角形内角与外角的关系
11.空间图形的性质与判定
三、数据与统计
1.数的性质与运算
2.有理数与无理数的概念与性质
3.整数的性质与运算
4.分数的概念与性质
5.百分数与比例的计算
6.数据的收集与整理
7.数据的统计分析与图示
四、概率与统计
1.概率的概念与性质
2.事件的概念与性质
3.概率的计算与应用
4.排列与组合的概念与计算
5.统计与抽样的概念与应用
以上是深圳中考数学的主要知识点归纳,考生在备考过程中可以结合教材内容进行系统学习和复习。

同时,还应注重理论与实践相结合,多做相关的习题和真题,以提升解题能力和应试能力。

祝愿考生能够在深圳中考数学科目取得好成绩!。

函数应用中考知识点总结

函数应用中考知识点总结

函数应用中考知识点总结一、函数的定义函数是一种特殊的关系,它将一个或多个输入值映射到一个输出值。

函数通常用字母表示,例如f(x),其中x表示输入值,f(x)表示输出值。

函数的定义包括定义域、值域和对应关系。

其中,定义域是指函数可以接受的输入值的范围,值域是函数输出值的集合,对应关系则描述了输入值与输出值之间的映射关系。

例如,对于函数f(x)=x^2,其定义域为实数集,值域为非负实数集,对应关系为x与x^2的映射关系。

二、函数的性质在中考中,学生需要掌握函数的一些基本性质,包括奇偶性、周期性和单调性等。

其中,奇偶性是指函数图像关于原点对称时称为奇函数,关于y轴对称时称为偶函数;周期性是指函数在一定范围内具有重复的规律性;单调性是指函数在定义域内的增减规律。

这些性质对于理解函数的图像和求解函数的最值等问题具有重要的作用。

三、函数的图像函数的图像是函数在平面直角坐标系中的几何表现,它可以帮助我们直观地理解函数的性质和特点。

在中考中,学生需要学会绘制函数的图像,并理解函数图像与函数性质之间的关系。

例如,对于一元二次函数f(x)=ax^2+bx+c,学生可以通过绘制函数的图像来理解函数的开口方向、顶点坐标和对称轴等特点,从而更好地理解函数的性质和应用。

四、函数的应用函数在实际问题中具有广泛的应用,它可以帮助我们描述和求解各种实际问题。

在中考中,学生需要学会应用函数解答与函数相关的问题,例如函数的定义域、值域和逆函数的求解等。

此外,函数还可以帮助我们求解各种实际问题,如函数模型的建立和函数方程的求解等。

通过学习函数的应用,学生可以更好地理解函数的概念和性质,并将其运用到实际问题中去。

总之,函数是数学和计算机科学中的重要概念,它在解决问题和设计算法时起着至关重要的作用。

在中考中,函数也是一个重要的知识点,学生需要掌握函数的定义、性质和应用等方面的知识。

通过本文的总结,相信学生们可以更好地理解函数的相关知识,从而更好地应对中考中与函数相关的各种问题。

中考数学函数知识点复习资料归纳

中考数学函数知识点复习资料归纳

中考数学函数知识点复习资料归纳数学函数是中考数学中非常重要的一个知识点,也是许多学生感到困难的一个难点。

本文将梳理和总结中考数学函数知识点的基础概念、性质、图像、题型,为大家提供一份复习资料归纳,帮助大家举一反三,打好数学函数这个重要难点。

一、基本概念1. 函数的定义简单来说,函数是一种将自变量与因变量对应起来的规律。

具体来讲,函数f是集合A到集合B的一种映射,它将集合A中的每个元素x映射到集合B中的一个唯一确定的元素y。

通常用f(x)表示。

2. 定义域、值域和坐标轴定义域是指函数自变量可以取的全部实数值的集合。

值域是指函数因变量可以取的全部实数值的集合。

常用R表示实数集合。

坐标轴有两个,横坐标轴称为x轴,纵坐标轴称为y轴,坐标系是由x轴和y轴组成的。

3. 基本函数基本函数是函数的最基础的形式,学习基本函数能够更好地理解其他函数。

基本函数有:常函数,一次函数,二次函数,指数函数,对数函数。

二、函数性质1. 函数的奇偶性若对于定义域内任何实数x,有f(-x)=f(x),则函数f称为偶函数;若对于定义域内任何实数x,有f(-x)=-f(x),则函数f称为奇函数;若函数f既不是偶函数,也不是奇函数,则称f为既非偶函数也非奇函数的函数。

2. 函数的单调性设函数f在[a,b]上可导,若在[a,b]上f(x)>0,则f单调递增;若在[a,b]上f(x)<0,则f单调递减。

3. 函数的周期性设T>0,如果对于定义域内任何实数x,均有f(x+T)=f(x),则函数f称为周期为T的函数。

三、函数的图像1. 常函数图像常函数的图像是一条平行于x轴的一条直线,方程为f(x)=a(a为常数)。

2. 一次函数图像一次函数的图像是一条经过原点的斜率为k的直线,方程为f(x)=kx。

3. 二次函数图像二次函数的图像是一个开口向上或向下的抛物线(又称U 型曲线或n型曲线),方程为f(x)=ax²+bx+c(a≠0)。

九年级数学--初中各种函数知识点总结

九年级数学--初中各种函数知识点总结

初中各种函数知识点陈述总结知识点一、平面直角坐标系1、平面直角坐标系在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。

其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;两轴的交点O(即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。

为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。

注重:x轴和y轴上的点,不属于任何象限。

2、点的坐标的概念点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。

平面内点的坐标是有序实数对,当ba≠时,(a,b)和(b,a)是两个不同点的坐标。

知识点二、不同位置的点的坐标的特征1、各象限内点的坐标的特征点P(x,y)在第一象限0x⇔y,0>>点P(x,y)在第二象限0⇔yx<,0>点P(x,y)在第三象限0⇔yx,0<<点P(x,y)在第四象限0x⇔y,0<>2、坐标轴上的点的特征点P(x,y)在x轴上0⇔y,x为任意实数=点P(x,y)在y轴上0⇔x,y为任意实数=点P(x,y)既在x轴上,又在y轴上⇔x,y同时为零,即点P坐标为(0,0)3、两条坐标轴夹角平分线上点的坐标的特征点P(x,y)在第一、三象限夹角平分线上⇔x与y相等点P(x,y)在第二、四象限夹角平分线上⇔x与y互为相反数4、和坐标轴平行的直线上点的坐标的特征位于平行于x轴的直线上的各点的纵坐标相同。

位于平行于y 轴的直线上的各点的横坐标相同。

5、关于x 轴、y 轴或远点对称的点的坐标的特征点P 与点p ’关于x 轴对称⇔横坐标相等,纵坐标互为相反数 点P 与点p ’关于y 轴对称⇔纵坐标相等,横坐标互为相反数 点P 与点p ’关于原点对称⇔横、纵坐标均互为相反数6、点到坐标轴及原点的距离 点P (x ,y )到坐标轴及原点的距离: (1)点P (x ,y )到x 轴的距离等于y (2)点P (x ,y )到y 轴的距离等于x(3)点P (x ,y )到原点的距离等于22y x +知识点三、函数及其相关概念1、变量与常量在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。

中考复习——平面直角坐标系、一次函数、反比例函数及其图象 知识点汇总及典例分析

中考复习——平面直角坐标系、一次函数、反比例函数及其图象 知识点汇总及典例分析

中考复习——平面直角坐标系、一次函数、反比例函数【知识梳理】一、平面直角坐标系1. 坐标平面上的点与 有序实数对 构成一一对应;2. 各象限点的坐标的符号;3. 坐标轴上的点的坐标特征.4. 点P (a ,b )关于x 轴对称的点的坐标为 ;关于y 轴对称的点的坐标为 ;关于原点对称的点的坐标为5.两点之间的距离二、函数的概念1.概念:在一个变化过程中有两个变量x 与y ,如果对于x 的每一个值,y 都有 的值与它对应,那么就说x 是自变量,y 是x 的函数.2.自变量的取值范围: (1)使解析式 (2)实际问题具有 意义3.函数的表示方法; (1) (2) (3) 三、一次函数的概念、图象、性质1.正比例函数的一般形式是 ( ),一次函数的一般形式是 (k≠0). 2. 一次函数y kx b =+的图象是经过( , )和( , )两点的一条直线.4.若两个一次函数解析式中,k 相等,表示两直线 ;若两直线垂直,则 。

5.的大小决定直线的倾斜程度,越大,直线越 ;四、反比例函数的概念、图象、性质1.反比例函数:一般地,如果两个变量x 、y 之间的关系可以表示成y = 或 或 (k 为常数,k≠0)的形式,那么称y 是x 的反比例函数. 2. 反比例函数的图象和性质k >0,b >0k >0,b <0k <0,b >0k <0,21212211P P )0()0()2(y y y P y P -=, ,,,21212211P P )0()0()1(x x x P x P -=, , ,, 3.k 的几何含义:反比例函数y =k x(k≠0)中比例系数k 的几何意义,即过双曲线y =k x(k≠0)上任意一点P 作x 轴、y 轴垂线,设垂足分别为A 、B ,则所得矩形OAPB 的面积为 。

【例题精讲】 例1.函数22y x =-中自变量x 的取值范围是 ;函数y =x 的取值范围是 .例2.已知点(13)A m -,与点(21)B n +,关于x 轴对称,则m = ,n = . 例3.如图,在平面直角坐标系中,点A 的坐标是(10,0),点B 的 坐标为(8,0),点C 、D 在以OA 为直径的半圆M 上,且四边形OCDB 是平行四边形,点C 的坐标为例4.一次函数y=(3a+2)x -(4-b),求满足下列条件的a 、b 的取值范围。

中考数学函数知识点梳理

中考数学函数知识点梳理

中考数学函数知识点梳理函数是数学中一种非常重要的概念。

它在中考数学中也是必考的内容之一。

了解函数的概念和性质,掌握函数的基本运算和图像特征对于中考数学的学习至关重要。

本文将对中考数学函数知识点进行梳理和总结。

一、函数的概念函数是一种特殊的对应关系,它将一个数集中的每个元素(称为自变量)映射到另一个数集中的唯一元素(称为因变量)。

函数通常用f(x)表示,其中f表示函数的名称,x表示自变量。

二、函数的表示方法1. 函数的显式表示:y = f(x),其中f(x)表示函数关系,y表示因变量,x表示自变量。

2. 函数的隐式表示:F(x,y) = 0,其中F(x,y)表示函数关系,x和y 是自变量。

三、函数的定义域和值域1. 定义域:函数能够接受的自变量的取值范围,通常用D(f)表示。

2. 值域:函数所有可能的因变量的取值范围,通常用R(f)表示。

四、函数的分类1. 一次函数:y = kx + b,其中k和b为常数,k不等于零。

2. 二次函数:y = ax^2 + bx + c,其中a、b、c为常数,a不等于零。

3. 幂函数:y = x^a,其中a为常数,a不等于零。

4. 指数函数:y = a^x,其中a为正常数且不等于1。

5. 对数函数:y = loga(x),其中a为正常数且不等于1。

五、函数的性质和运算1. 函数的奇偶性:函数f(x)满足f(-x) = f(x)时,称为偶函数;函数f(x)满足f(-x) = -f(x)时,称为奇函数。

2. 函数的单调性:对于函数f(x),如果在定义域上x1 < x2时有f(x1) < f(x2),则称f(x)在区间上是增函数;如果在定义域上x1 < x2时有f(x1) > f(x2),则称f(x)在区间上是减函数。

3. 函数的图像特征:根据函数的定义、性质和运算,可以确定函数的图像特征,如图像的开口方向、对称轴、顶点坐标等。

六、函数的应用函数在实际问题中有着广泛的应用,如数学建模、经济分析、物理问题等。

中考数学必背知识点(精简必背)

中考数学必背知识点(精简必背)

中考数学必背知识点(精简必背)中考数学必背知识点一、不为零的量1.分式 $\frac{A}{B}$,分母 $B\neq 0$;2.二次方程 $ax^2+bx+c=0$($a\neq 0$);3.一次函数 $y=kx+b$($k\neq 0$);4.反比例函数 $y=\frac{k}{x}$($k\neq 0$);5.二次函数 $y=ax^2+bx+c=0$($a\neq 0$)。

二、非负数1.$|a|\geq 0$;2.$a\geq 0$($a\geq 0$);3.$a^{2n}\geq 0$($n$ 为自然数)。

三、绝对值:$|a|=\begin{cases}a。

& a\geq 0\\-a。

& a<0\end{cases}$四、重要概念1.平方根与算术平方根:如果 $x^2=a$($a\geq 0$),则称 $x$ 为 $a$ 的平方根,记作:$x=\pm\sqrt{a}$,其中$x=\sqrt{a}$ 称为 $x$ 的算术平方根;2.负指数:$a^{-p}=\frac{1}{a^p}$;3.零指数:$a=1$($a\neq 0$);4.科学计数法:$a\times 10^n$($n$ 为整数,$1\leqa<10$)。

五、重要公式一)幂的运算性质1.同底数幂的乘法法则:$a^m\timesa^n=a^{m+n}$($a\neq 0$,$m$,$n$ 都是正数);2.幂的乘方法则:$(a^m)^n=a^{mn}$($m$,$n$ 都是正数);3.积的乘方法则:$(ab)^n=a^n\times b^n$($n$ 为正整数);4.同底数幂的除法法则:$\frac{a^m}{a^n}=a^{m-n}$($a\neq 0$,$m$,$n$ 都是正数,且 $m>n$)。

二)整式的运算1.平方差公式:$(a+b)(a-b)=a^2-b^2$;2.完全平方公式:$(a\pm b)^2=a^2\pm 2ab+b^2$。

湖南中考数学考点知识点(四)

湖南中考数学考点知识点(四)

湖南中考数学考点知识点(四)1.函数自变量的取值范围自变量的取值范围必须使含有自变量的表达式都有意义.①当表达式的分母不含有自变量时,自变量取全体实数.例如y=2x+13中的x.②当表达式的分母中含有自变量时,自变量取值要使分母不为零.例如y=x+2x﹣1.③当函数的表达式是偶次根式时,自变量的取值范围必须使被开方数不小于零.④对于实际问题中的函数关系式,自变量的取值除必须使表达式有意义外,还要保证实际问题有意义.2.函数的图象函数的图象定义对于一个函数,如果把自变量与函数的每一对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形就是这个函数的图象.注意:①函数图形上的任意点(x,y)都满足其函数的解析式;②满足解析式的任意一对x、y的值,所对应的点一定在函数图象上;③判断点P(x,y)是否在函数图象上的方法是:将点P(x,y)的x、y的值代入函数的解析式,若能满足函数的解析式,这个点就在函数的图象上;如果不满足函数的解析式,这个点就不在函数的图象上..3.动点问题的函数图象函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.用图象解决问题时,要理清图象的含义即会识图.4.分段函数(1)一次函数与常函数组合的分段函数.分段函数是在不同区间有不同对应方式的函数.(注意:在解决分段函数问题时,要特别注意自变量取值范围的划分,既要科学合理,又要符合实际.)(2)由文字图象信息确定分段函数.根据图象读取信息时,要把握住以下三个方面:①横、纵轴的意义,以及横、纵轴分别表示的量.②关于某个具体点,要求向横、纵轴作垂线来求得该点的坐标.③在实际问题中,要注意图象与x轴、y轴交点坐标代表的具体意义.【规律方法】用图象描述分段函数的实际问题需要注意的四点1.自变量变化而函数值不变化的图象用水平线段表示.2.当两个阶段的图象都是一次函数(或正比例函数)时,自变量变化量相同,而函数值变化越大的图象与x轴的夹角就越大.3.各个分段中,准确确定函数关系.4.确定函数图象的最低点和最高点.5.一次函数的图象(1)一次函数的图象的画法:经过两点(0,b)、(﹣,0)或(1,k+b)作直线y=kx+b.注意:①使用两点法画一次函数的图象,不一定就选择上面的两点,而要根据具体情况,所选取的点的横、纵坐标尽量取整数,以便于描点准确.②一次函数的图象是与坐标轴不平行的一条直线(正比例函数是过原点的直线),但直线不一定是一次函数的图象.如x=a,y =b分别是与y轴,x轴平行的直线,就不是一次函数的图象.(2)一次函数图象之间的位置关系:直线y=kx+b,可以看做由直线y=kx平移|b|个单位而得到.当b>0时,向上平移;b<0时,向下平移.注意:①如果两条直线平行,则其比例系数相等;反之亦然;②将直线平移,其规律是:上加下减,左加右减;③两条直线相交,其交点都适合这两条直线.6.一次函数的性质一次函数的性质:k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.由于y=kx+b与y轴交于(0,b),当b>0时,(0,b)在y轴的正半轴上,直线与y轴交于正半轴;当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.7.一次函数与一元一次不等式(1)一次函数与一元一次不等式的关系从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.(2)用画函数图象的方法解不等式kx+b>0(或<0)对应一次函数y=kx+b,它与x轴交点为(﹣,0).当k>0时,不等式kx+b>0的解为:x>,不等式kx+b<0的解为:x<;当k<0,不等式kx+b>0的解为:x<,不等式kx+b<0的解为:x>.8.两条直线相交或平行问题直线y=kx+b,(k≠0,且k,b为常数),当k相同,且b不相等,图象平行;当k不同,且b相等,图象相交;当k,b都相同时,两条线段重合.(1)两条直线的交点问题两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.(2)两条直线的平行问题若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.例如:若直线y1=k1x+b1与直线y2=k2x+b2平行,那么k1=k2.9.一次函数综合题(1)一次函数与几何图形的面积问题首先要根据题意画出草图,结合图形分析其中的几何图形,再求出面积.(2)一次函数的优化问题通常一次函数的最值问题首先由不等式找到x的取值范围,进而利用一次函数的增减性在前面范围内的前提下求出最值.(3)用函数图象解决实际问题从已知函数图象中获取信息,求出函数值、函数表达式,并解答相应的问题.10.反比例函数的图象用描点法画反比例函数的图象,步骤:列表﹣﹣﹣描点﹣﹣﹣连线.(1)列表取值时,x≠0,因为x=0函数无意义,为了使描出的点具有代表性,可以以“0”为中心,向两边对称式取值,即正、负数各一半,且互为相反数,这样也便于求y值.(2)由于函数图象的特征还不清楚,所以要尽量多取一些数值,多描一些点,这样便于连线,使画出的图象更精确.(3)连线时要用平滑的曲线按照自变量从小到大的顺序连接,切忌画成折线.(4)由于x≠0,k≠0,所以y≠0,函数图象永远不会与x轴、y轴相交,只是无限靠近两坐标轴.11.反比例函数的性质反比例函数的性质(1)反比例函数y=(k≠0)的图象是双曲线;(2)当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;(3)当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.注意:反比例函数的图象与坐标轴没有交点.12.反比例函数图象上点的坐标特征反比例函数y=k/x(k为常数,k≠0)的图象是双曲线,①图象上的点(x,y)的横纵坐标的积是定值k,即xy=k;②双曲线是关于原点对称的,两个分支上的点也是关于原点对称;③在y=k/x图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.13.二次函数的图象(1)二次函数y=ax2(a≠0)的图象的画法:①列表:先取原点(0,0),然后以原点为中心对称地选取x值,求出函数值,列表.②描点:在平面直角坐标系中描出表中的各点.③连线:用平滑的曲线按顺序连接各点.④在画抛物线时,取的点越密集,描出的图象就越精确,但取点多计算量就大,故一般在顶点的两侧各取三四个点即可.连线成图象时,要按自变量从小到大(或从大到小)的顺序用平滑的曲线连接起来.画抛物线y=ax2(a≠0)的图象时,还可以根据它的对称性,先用描点法描出抛物线的一侧,再利用对称性画另一侧.(2)二次函数y=ax2+bx+c(a≠0)的图象二次函数y=ax2+bx+c(a≠0)的图象看作由二次函数y=ax2的图象向右或向左平移||个单位,再向上或向下平移||个单位得到的.14.二次函数的性质二次函数y=ax2+bx+c(a≠0)的顶点坐标是(﹣,),对称轴直线x=﹣,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<﹣时,y随x的增大而减小;x>﹣时,y随x的增大而增大;x=﹣时,y取得最小值,即顶点是抛物线的最低点.②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<﹣时,y随x的增大而增大;x>﹣时,y随x的增大而减小;x=﹣时,y取得最大值,即顶点是抛物线的最高点.③抛物线y=ax2+bx+c(a≠0)的图象可由抛物线y=ax2的图象向右或向左平移|﹣|个单位,再向上或向下平移||个单位得到的.15.二次函数图象与系数的关系二次函数y=ax2+bx+c(a≠0)①二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;|a|还可以决定开口大小,|a|越大开口就越小.②一次项系数b和二次项系数a共同决定对称轴的位置.当a与b同号时(即ab>0),对称轴在y轴左侧;当a与b异号时(即ab<0),对称轴在y轴右侧.(简称:左同右异)③.常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).④抛物线与x轴交点个数.△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.16.二次函数图象上点的坐标特征二次函数y=ax2+bx+c(a≠0)的图象是抛物线,顶点坐标是(﹣,).①抛物线是关于对称轴x=﹣成轴对称,所以抛物线上的点关于对称轴对称,且都满足函数函数关系式.顶点是抛物线的最高点或最低点.②抛物线与y轴交点的纵坐标是函数解析中的c值.③抛物线与x轴的两个交点关于对称轴对称,设两个交点分别是(x1,0),(x2,0),则其对称轴为x=.17.二次函数综合题(1)二次函数图象与其他函数图象相结合问题解决此类问题时,先根据给定的函数或函数图象判断出系数的符号,然后判断新的函数关系式中系数的符号,再根据系数与图象的位置关系判断出图象特征,则符合所有特征的图象即为正确选项.(2)二次函数与方程、几何知识的综合应用将函数知识与方程、几何知识有机地结合在一起.这类试题一般难度较大.解这类问题关键是善于将函数问题转化为方程问题,善于利用几何图形的有关性质、定理和二次函数的知识,并注意挖掘题目中的一些隐含条件.(3)二次函数在实际生活中的应用题从实际问题中分析变量之间的关系,建立二次函数模型.关键在于观察、分析、创建,建立直角坐标系下的二次函数图象,然后数形结合解决问题,需要我们注意的是自变量及函数的取值范围要使实际问题有意义.18.含30度角的直角三角形(1)含30度角的直角三角形的性质:在直角三角形中,30°角所对的直角边等于斜边的一半.(2)此结论是由等边三角形的性质推出,体现了直角三角形的性质,它在解直角三角形的相关问题中常用来求边的长度和角的度数.(3)注意:①该性质是直角三角形中含有特殊度数的角(30°)的特殊定理,非直角三角形或一般直角三角形不能应用;②应用时,要注意找准30°的角所对的直角边,点明斜边.19.菱形的性质(1)菱形的定义:有一组邻边相等的平行四边形叫做菱形.(2)菱形的性质①菱形具有平行四边形的一切性质;②菱形的四条边都相等;③菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;④菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线.(3)菱形的面积计算①利用平行四边形的面积公式.②菱形面积=ab.(a、b是两条对角线的长度)20.正方形的性质(1)正方形的定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.(2)正方形的性质①正方形的四条边都相等,四个角都是直角;②正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;③正方形具有四边形、平行四边形、矩形、菱形的一切性质.④两条对角线将正方形分成四个全等的等腰直角三角形,同时,正方形又是轴对称图形,有四条对称轴.21.解直角三角形(1)解直角三角形的定义在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.(2)解直角三角形要用到的关系①锐角、直角之间的关系:∠A+∠B=90°;②三边之间的关系:a2+b2=c2;③边角之间的关系:sin A==,cos A==,tan A==.(a,b,c分别是∠A、∠B、∠C的对边)。

函数知识点大全

函数知识点大全

────────────────────────────────────────────函数总结大全一次函数一、定义与定义式:自变量x和因变量y有如下关系:y=kx+b则此时称y是x的一次函数。

特别地,当b=0时,y是x的正比例函数。

即:y=kx (k为常数,k≠0)二、一次函数的性质:1.y的变化值与对应的x的变化值成正比例,比值为k即:y=kx+b (k为任意不为零的实数b取任何实数)2.当x=0时,b为函数在y轴上的截距。

三、一次函数的图像及性质:1.作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像——一条直线。

因此,作一次函数的图像只需知道2点,并连成直线即可。

(通常找函数图像与x轴和y轴的交点)2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。

(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。

3.k,b与函数图像所在象限:当k>0时,直线必通过一、三象限,y随x的增大而增大;当k<0时,直线必通过二、四象限,y随x的增大而减小。

当b>0时,直线必通过一、二象限;当b=0时,直线通过原点当b<0时,直线必通过三、四象限。

特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。

这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。

四、确定一次函数的表达式:已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。

(1)设一次函数的表达式(也叫解析式)为y=kx+b。

(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。

所以可以列出2个方程:y1=kx1+b……①和y2=kx2+b……②(3)解这个二元一次方程,得到k,b的值。

(4)最后得到一次函数的表达式。

五、一次函数在生活中的应用:1.当时间t一定,距离s是速度v的一次函数。

中考数学必背知识点及公式

中考数学必背知识点及公式

中考数学必背知识点及公式
1. 一次函数的标准式:y = kx + b;斜率 k 的计算公式:k =
(y2 - y1) ÷ (x2 - x1)
2. 二元一次方程组:ax + by = c;dx + ey = f;解法有消元法和代入法。

3. 垂直、平行线的判定方法:(1)两条直线斜率乘积等于-1,则它们垂直;(2)两条直线斜率相等,则它们平行。

4. 三角形内角和公式:三角形内角和等于 180 度。

5. 相似三角形边长、角度的关系:(1)相似三角形的对应边
长成比例;(2)相似三角形的对应内角相等。

6. 直角三角形中的三角函数公式:正弦函数:sinθ = 对边 ÷斜边;余弦函数:cosθ = 邻边 ÷斜边;正切函数:tanθ = 对边 ÷
邻边。

7. 平面坐标系中两点间的距离公式:√[(x2 - x1)² + (y2 - y1)²]
8. 平行四边形的面积公式:S = 底 ×高。

9. 三角形的面积公式:S = 底 ×高 ÷ 2。

10. 圆的周长公式:C = 2πr 或C = πd (其中 r 为圆的半径,d
为圆的直径)。

11. 圆的面积公式:S = πr²。

12. 锐角三角形中任意两边的关系:两边之和大于第三边。

13. 任意三角形中角度与对边的关系:(1)任意两边之间的夹角小于对应的角的大小;(2)任意两角之间的棱长比大于角对应的正弦值。

2023年中考数学----《函数基础知识--函数的三种表示方法》知识点总结与专项练习题(含答案解析)

2023年中考数学----《函数基础知识--函数的三种表示方法》知识点总结与专项练习题(含答案解析)

2023年中考数学----《函数基础知识--函数的三种表示方法》知识点总结与专项练习题(含答案解析)知识点总结1. 解析式法表达函数:根据题意列函数表达式。

函数表达式等号左边不能出现平方与绝对值以及正负号,右边不能出现正负号。

2. 列表法表达函数:表格中不同自变量不能对应同一函数值。

3. 图像法表达函数:①判断图像是否为函数图像,只需做一条与x 轴垂直的直线,看直线与图像的交点个数,若出现两个即两个以上的交点,则不是函数图像。

②函数图像与信息表达。

练习题1、(2022•益阳)已知一个函数的因变量y 与自变量x 的几组对应值如表,则这个函数的表达式可以是( )A .y =2xB .y =x ﹣1C .y =x 2D .y =x 2【分析】观察表中x ,y 的对应值可以看出,y 的值恰好是x 值的2倍.从而求出y 与x 的函数表达式.【解答】解:根据表中数据可以看出:y 的值是x 值的2倍.∴y =2x .故选:A .2、(2022•大连)汽车油箱中有汽油30L .如果不再加油,那么油箱中的油量y (单位:L )随行驶路程x (单位:km )的增加而减少,平均耗油量为0.1L /km .当0≤x ≤300时,y 与x 的函数解析式是( )A .y =0.1xB .y =﹣0.1x +30C .y =x 300D .y =﹣0.1x 2+30x【分析】直接利用油箱中的油量y =总油量﹣耗油量,进而得出函数关系式,即可得出答案.【解答】解:由题意可得:y =30﹣0.1x ,(0≤x ≤300).故选:B .3、(2022•常州)某城市市区人口x 万人,市区绿地面积50万平方米,平均每人拥有绿地y 平方米,则y 与x 之间的函数表达式为( )A .y =x +50B .y =50xC .y =x 50D .y =50x 【分析】根据题意列出函数关系式即可得出答案.【解答】解:由城市市区人口x 万人,市区绿地面积50万平方米,则平均每人拥有绿地y =.故选:C .4、(2022•巴中)甲、乙两人沿同一直道从A 地到B 地,在整个行程中,甲、乙离A 地的距离S 与时间t 之间的函数关系如图所示,下列说法错误的是( )A .甲比乙早1分钟出发B .乙的速度是甲的速度的2倍C .若甲比乙晚5分钟到达,则甲用时10分钟D .若甲出发时的速度为原来的2倍,则甲比乙提前1分钟到达B地【分析】根据函数图象得出甲比乙早1分钟出发,及列一元一次方程依次进行判断即可.【解答】解:A 、由图象得,甲比乙早1分钟出发,选项正确,不符合题意;B 、由图可得,甲乙在t =2时相遇,甲行驶的时间为2分钟,乙行驶的时间为1分钟,路程相同,∴乙的速度是甲的速度的2倍,选项正确,不符合题意;C 、设乙用时x 分钟到达,则甲用时(x +5+1)分钟,由B 得,乙的速度是甲速度的2倍,∴乙用的时间是甲用的时间的一半,∴2x =x +5+1,解得:x=6,∴甲用时12分钟,选项错误,符合题意;D、若甲出发时的速度为原来的2倍,此时甲乙速度相同,∵甲比乙早1分钟出发,∴甲比乙提前1分钟到达B地,选项正确,不符合题意;故选:C.5、(2022•青海)2022年2月5日,电影《长津湖》在青海剧场首映,小李一家开车去观看.最初以某一速度匀速行驶,中途停车加油耽误了十几分钟,为了按时到达剧场,小李在不违反交通规则的前提下加快了速度,仍保持匀速行驶.在此行驶过程中,汽车离剧场的距离y(千米)与行驶时间t(小时)的函数关系的大致图象是()A.B.C.D.【分析】首先看清横轴和纵轴表示的量,然后根据实际情况:汽车离剧场的距离y(千米)与行驶时间t(小时)的函数关系采用排除法求解即可.【解答】解:随着时间的增多,汽车离剧场的距离y(千米)减少,排除A、C、D;由于途中停车加油耽误了几分钟,此时时间在增多,汽车离剧场的距离y没有变化;后来加快了速度,仍保持匀速行进,所以后来的函数图象的走势应比前面匀速前进的走势要陡.故选:B.6、(2022•河池)东东用仪器匀速向如图容器中注水,直到注满为止.用t表示注水时间,y表示水面的高度,下列图象适合表示y与t的对应关系的是()A.B.C.D.【分析】根据题目中的图形可知,刚开始水面上升比较慢,紧接着水面上升较快,最后阶段水面上升最快,从而可以解答本题.【解答】解:因为底部的圆柱底面半径较大,所以刚开始水面上升比较慢,中间部分的圆柱底面半径较小,故水面上升较快,上部的圆柱的底面半径最小,所以水面上升最快,故适合表示y与t的对应关系的是选项C.故选:C.7、(2022•烟台)周末,父子二人在一段笔直的跑道上练习竞走,两人分别从跑道两端开始往返练习.在同一直角坐标系中,父子二人离同一端的距离s(米)与时间t(秒)的关系图象如图所示.若不计转向时间,按照这一速度练习20分钟,迎面相遇的次数为()A.12B.16C.20D.24【分析】先求出二人速度,即可得20分钟二人所走路程之和,再总结出第n次迎面相遇时,两人所走路程之和(400n﹣200)米,列方程求出n的值,即可得答案.【解答】解:由图可知,父子速度分别为:200×2÷120=(米/秒)和200÷100=2(米/秒),∴20分钟父子所走路程和为20×60×(+2)=6400(米),父子二人第一次迎面相遇时,两人所走路程之和为200米,父子二人第二次迎面相遇时,两人所走路程之和为200×2+200=600(米),父子二人第三次迎面相遇时,两人所走路程之和为400×2+200=1000(米),父子二人第四次迎面相遇时,两人所走路程之和为600×2+200=1400(米),…父子二人第n次迎面相遇时,两人所走路程之和为200(n﹣1)×2+200=(400n﹣200)米,令400n﹣200=6400,解得n=16.5,∴父子二人迎面相遇的次数为16,故选:B.8、(2022•潍坊)地球周围的大气层阻挡了紫外线和宇宙射线对地球生命的伤害,同时产生一定的大气压,海拔不同,大气压不同.观察图中数据,你发现()A.海拔越高,大气压越大B.图中曲线是反比例函数的图象C.海拔为4千米时,大气压约为70千帕D.图中曲线表达了大气压和海拔两个量之间的变化关系【分析】根据图中数据,进行分析确定答案即可.【解答】解:海拔越高大气压越低,A选项不符合题意;代值图中点(2,80)和(4,60),由横、纵坐标之积不同,说明图中曲线不是反比例函数的图象,B选项不符合题意;海拔为4千米时,图中读数可知大气压应该是60千帕左右,C选项不符合题意;图中曲线表达的是大气压与海拔两个量之间的变化关系,D选项符合题意.故选:D.9、(2022•北京)下面的三个问题中都有两个变量:①汽车从A地匀速行驶到B地,汽车的剩余路程y与行驶时间x;②将水箱中的水匀速放出,直至放完,水箱中的剩余水量y与放水时间x;③用长度一定的绳子围成一个矩形,矩形的面积y与一边长x.其中,变量y与变量x之间的函数关系可以用如图所示的图象表示的是()A.①②B.①③C.②③D.①②③【分析】(1)根据汽车的剩余路程y随行驶时间x的增加而减小判断即可;(2)根据水箱中的剩余水量y随放水时间x的增大而减小判断即可;(3)根据矩形的面积公式判断即可.【解答】解:汽车从A地匀速行驶到B地,根据汽车的剩余路程y随行驶时间x的增加而减小,故①符合题意;将水箱中的水匀速放出,直至放完,根据水箱中的剩余水量y随放水时间x的增大而减小,故②符合题意;用长度一定的绳子围成一个矩形,周长一定时,矩形面积是长x的二次函数,故③不符合题意;所以变量y与变量x之间的函数关系可以用如图所示的图象表示的是①②.故选:A.10、(2022•遵义)遵义市某天的气温y1(单位:℃)随时间t(单位:h)的变化如图所示,设y2表示0时到t时气温的值的极差(即0时到t时范围气温的最大值与最小值的差),则y2与t的函数图象大致是()A.B.C.D.【分析】利用函数的定义,根据数形结合的思想求解.【解答】解:因为极差是该段时间内的最大值与最小值的差.所以当t从0到5时,极差逐渐增大;t从5到气温为20℃时,极差不变;当气温从20℃到28℃时极差达到最大值.直到24时都不变.只有A符合.故选:A.11、(2022•哈尔滨)一辆汽车油箱中剩余的油量y(L)与已行驶的路程x(km)的对应关系如图所示.如果这辆汽车每千米的耗油量相同,当油箱中剩余的油量为35L时,那么该汽车已行驶的路程为()A.150km B.165km C.125km D.350km【分析】由图象可知,汽车行驶10km耗油1L,据此解答即可.【解答】解:当油箱中剩余的油量为35L时,那么该汽车已行驶的路程为:(50﹣35)×(500÷50)=150(km),故选:A.12、(2022•临沂)甲、乙两车从A城出发前往B城,在整个行程中,汽车离开A城的距离y(单位:km)与时间x(单位:h)的对应关系如图所示,下列说法中不正确的是()A.甲车行驶到距A城240km处,被乙车追上B.A城与B城的距离是300kmC.乙车的平均速度是80km/hD.甲车比乙车早到B城【分析】根据“速度=路程÷时间”,得出两车的速度,再逐一判断即可.【解答】解:由题意可知,A城与B城的距离是300km,故选项B不合题意;甲车的平均速度是:300÷5=60(km/h),乙车的平均速度是:240÷(4﹣1)=80(km/h),故选项C不合题意;设乙车出发x小时后追上甲车,则60(x+1)=80x,解得x=3,60×4=240(km),即甲车行驶到距A城240km处,被乙车追上,故选项A不合题意;由题意可知,乙车比甲车早到B城,故选项D符合题意.故选:D.13、(2022•湖北)如图,边长分别为1和2的两个正方形,其中有一条边在同一水平线上,小正方形沿该水平线自左向右匀速穿过大正方形,设穿过的时间为t,大正方形的面积为S1,小正方形与大正方形重叠部分的面积为S2,若S=S1﹣S2,则S随t变化的函数图象大致为()A.B.C.D.【分析】根据题意,列出函数解析式,再选择出适合的图象.【解答】解:由题意得:当0≤t<1时,S=4﹣t,当1≤t≤2时,S=3,当2<<t≤3时,S=t+1,故选:A.14、(2022•雅安)一辆公共汽车从车站开出,加速行驶一段后开始匀速行驶.过了一段时间,汽车到达下一个车站.乘客上、下车后汽车开始加速,一段时间后又开始匀速行驶.下面的哪一幅图可以近似地刻画出汽车在这段时间内的速度变化情况()A.B.C.D.【分析】横轴表示时间,纵轴表示速度,根据加速、匀速、减速,加速、匀速的变化情况,进行选择.【解答】解:公共汽车经历加速、匀速、减速到站,加速、匀速的过程,故选:B.15、(2022•永州)学校组织部分师生去烈士陵园参加“不忘初心,牢记使命”主题教育活动.师生队伍从学校出发,匀速行走30分钟到达烈士陵园,用1小时在烈士陵园进行了祭扫和参观学习等活动,之后队伍按原路匀速步行45分钟返校.设师生队伍离学校的距离为y 米,离校的时间为x分钟,则下列图象能大致反映y与x关系的是()A.B.C.D.【分析】根据已知,结合各选项y与x的关系图象即可得到答案.【解答】解:根据已知0≤x≤30时,y随x的增大而增大,当30<x≤90时,y是一个定值,当90<x≤135时,y随x的增大而减小,∴能大致反映y与x关系的是A,故选:A.17、(2022•宜昌)如图是小强散步过程中所走的路程s(单位:m)与步行时间t(单位:min)的函数图象.其中有一时间段小强是匀速步行的.则这一时间段小强的步行速度为()A .50m /minB .40m /minC .7200m /minD .20m /min【分析】根据小强匀速步行时的函数图象为直线,根据图象得出结论即可.【解答】解:由函数图象知,从30﹣70分钟时间段小强匀速步行,∴这一时间段小强的步行速度为=20(m /min ), 故选:D .18、(2022•随州)已知张强家、体育场、文具店在同一直线上,下面的图象反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后又走到文具店去买笔,然后散步走回家.图中x 表示时间,y 表示张强离家的距离,则下列结论不正确的是( )A .张强从家到体育场用了15minB .体育场离文具店1.5kmC .张强在文具店停留了20minD .张强从文具店回家用了35min【分析】由函数图象分别得出选项的结论然后作出判断即可.【解答】解:由图象知,A 、张强从家到体育场用了15min ,故A 选项不符合题意;B 、体育场离文具店2.5﹣1.5=1(km ),故B 选项符合题意;C 、张强在文具店停留了65﹣45=20(min ),故C 选项不符合题意;D 、张强从文具店回家用了100﹣65=35(min ),故D 选项不符合题意;故选:B .19、(2022•台州)吴老师家、公园、学校依次在同一条直线上,家到公园、公园到学校的距离分别为400m ,600m .他从家出发匀速步行8min 到公园后,停留4min ,然后匀速步行6min到学校.设吴老师离公园的距离为y(单位:m),所用时间为x(单位:min),则下列表示y与x之间函数关系的图象中,正确的是()A.B.C.D.【分析】在不同时间段中,找出y的值,即可求解.【解答】解:吴老师从家出发匀速步行8min到公园,则y的值由400变为0,吴老师在公园停留4min,则y的值仍然为0,吴老师从公园匀速步行6min到学校,则在18分钟时,y的值为600,故选:C.20、(2022•武汉)匀速地向一个容器内注水,最后把容器注满.在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为一折线).这个容器的形状可能是()A.B.C.D.【分析】根据每一段函数图象的倾斜程度,反映了水面上升速度的快慢,再观察容器的粗细,作出判断.【解答】解:注水量一定,函数图象的走势是平缓,稍陡,陡;即随着时间的变化,水面高度变化的快慢不同,与所给容器的底面积有关.则相应的排列顺序就为选项A.故选:A.21、(2022•江西)甲、乙两种物质的溶解度y(g)与温度t(℃)之间的对应关系如图所示,则下列说法中,错误的是()A.甲、乙两种物质的溶解度均随着温度的升高而增大B.当温度升高至t2℃时,甲的溶解度比乙的溶解度大C.当温度为0℃时,甲、乙的溶解度都小于20gD.当温度为30℃时,甲、乙的溶解度相等【分析】利用函数图象的意义可得答案.【解答】解:由图象可知,A、B、C都正确,当温度为t1℃时,甲、乙的溶解度都为30g,故D错误,故选:D.22、(2022•重庆)如图,曲线表示一只蝴蝶在飞行过程中离地面的高度h(m)随飞行时间t(s)的变化情况,则这只蝴蝶飞行的最高高度约为()A.5m B.7m C.10m D.13m【分析】根据函数的图象的最高点对应的函数值即可得出答案.【解答】解:观察图象,当t=3时,h=13,∴这只蝴蝶飞行的最高高度约为13m,故选:D.23、(2022•西藏)周末时,达瓦在体育公园骑自行车锻炼身体,他匀速骑行了一段时间后停车休息,之后继续以原来的速度骑行.路程s(单位:千米)与时间t(单位:分钟)的关系如图所示,则图中的a=.【分析】根据函数图象可知,达瓦20分钟所走的路程为6千米,可得速度为6÷20=0.3千米/分钟,20~35分钟休息,求出继续骑行9千米的时间即可.【解答】解:由达瓦20分钟所走的路程为6千米,可得速度为6÷20=0.3(千米/分钟),休息15分钟后又骑行了9千米所用时间为9÷0.3=30(分钟),∴a=35+30=65.故答案为:65.。

中考直角函数知识点归纳

中考直角函数知识点归纳

中考直角函数知识点归纳直角函数,也称为三角函数,是数学中研究直角三角形边与角之间关系的函数。

在中考中,直角函数是一个重要的知识点,以下是对直角函数知识点的归纳:1. 三角函数的定义:- 正弦函数(sin):直角三角形中,一个锐角的对边与斜边的比值。

- 余弦函数(cos):直角三角形中,一个锐角的邻边与斜边的比值。

- 正切函数(tan):直角三角形中,一个锐角的对边与邻边的比值。

- 余切函数(cot):直角三角形中,一个锐角的邻边与对边的比值。

- 正割函数(sec):直角三角形中,斜边与邻边的比值。

- 余割函数(csc):直角三角形中,斜边与对边的比值。

2. 三角函数的符号:- 正弦函数通常用sin表示,余弦函数用cos表示,正切函数用tan表示,依此类推。

3. 特殊角的三角函数值:- 30°、45°、60°等特殊角的三角函数值需要熟记,例如sin30°=1/2,cos60°=1/2,tan45°=1等。

4. 三角函数的图像:- 正弦函数和余弦函数是周期函数,具有周期性,正弦函数的图像是波形,余弦函数的图像是倒置的波形。

- 正切函数的图像是周期性的,但在每个周期内都有无穷多个渐近线。

5. 三角函数的性质:- 正弦函数和余弦函数的值域为[-1,1],正切函数和余切函数的值域为全体实数。

- 三角函数具有奇偶性,例如sin(-x)=-sin(x),cos(-x)=cos(x)。

6. 三角恒等式:- 基本的三角恒等式需要掌握,如Pythagorean identities:sin²θ + cos²θ = 1。

- 其他恒等式如sin(θ + φ) = sinθcosφ + cosθsinφ等也需要了解。

7. 三角函数的应用:- 三角函数在解决实际问题中有广泛应用,如测量、物理、工程等领域。

8. 解题技巧:- 熟练掌握三角函数的变换和化简技巧,如使用和差化积公式、积化和差公式等。

广州中考数学专题复习:函数

广州中考数学专题复习:函数

初三数学讲义函数知识点一:一次函数1) 一次函数y kx b =+的图象 k 、b 的符号 k >0,b >0 k >0,b <0 k <0,b >0 k <0, b <0 图像的大致位置经过象限 第 象限第 象限第 象限第 象限性质 y 随x 的增大而 y 随x 的增大而 y 随x 的增大而 y 随x 的增大而2)已知直线y =2x +8与x 轴和y 轴的交点的坐标分别是_______、_______;与两条坐标轴围成的三角形的面积是__________.3.当实数x 的取值使得2-x 有意义时,函数y=4x+1中y 的取值范围是( ) A.y ≥-7 B. y ≥9 C. y>9 D. y ≤94.一次函数,1)2(++=x m y 若y 随x 的增大而增大,则m 的取值范围是___________ .5.如图11,在方格纸上建立平面直角坐标系,线段AB 的两个端点都在格点上,直线MN 经过坐标原点,且点M 的坐标是(1,2)。

(1)写出点A 、B 的坐标;(2)求直线MN 所对应的函数关系式;(3)利用尺规作出线段AB 关于直线MN 的对称图形(保留作图痕迹,不写作法)。

知识点二.:反比例函数1)反比例函数xky =的图像 k 、b 的符号 k >0 k <0 图像的大致位置经过象限 第 象限 第 象限性质 y 随x 的增大而 y 随x 的增大而A.2x y =B. 1-=x yC. x y 43=D. xy 1= 3. 已知函数xy 2=,当x =1时,y 的值是________ 4.如图3,正比例函数x ky 11=和反比例函数xky 22=的图象交于A(-1,2)、(1-2)两点。

若y 1<y 2,则x 的取值范围是( )。

(A )、x <-1或x >-1 (B )、 x <-1或0<x <1(C )、-1<x <0或0<x <1 (D )、-1<x <0或x >15.如图,已知A(-4,2)、B(n ,-4)是一次函数y kx b =+的图象与反比例函数my x=的图象的两个交点.(1) 求此反比例函数和一次函数的解析式;(2) 根据图象写出使一次函数的值小于反比例函数的值的x 的取值范围. (3)求△AOB 的面积.6.如图3,正比例函数x ky 11=和反比例函数xky 22=的图象交于A(-1,2)、B (1,-2)两点。

中考知识点函数的最大值与最小值

中考知识点函数的最大值与最小值

中考知识点函数的最大值与最小值函数的最大值和最小值是中考数学中的一个重要知识点。

在解题过程中,我们需要运用一些方法来求解函数的最大值和最小值。

本文将介绍三种常见的方法:图像法、导数法和附加条件法,以帮助大家更好地理解和应用这一知识点。

一、图像法使用图像法求解函数的最大值和最小值,一般需要绘制函数的图像。

在中考中,我们通常采用手绘图像的方式进行计算。

下面以一个例题来说明图像法的具体步骤。

例题:已知函数$f(x)=x^2-6x+5$,求$f(x)$的最大值和最小值。

解题步骤:(1)首先,我们绘制出函数$f(x)=x^2-6x+5$的图像。

为了方便计算,我们可以计算出函数的顶点坐标。

由二次函数的性质可知,函数的顶点坐标为$(p,q)$,其中$p$的值等于二次项系数的相反数的一半,$q$的值等于函数在$p$处的取值。

可以求得顶点坐标为$p=3$,$q=-4$。

将这个顶点坐标标在函数图像上。

(2)根据图像,我们可以看出函数$f(x)$的最大值为$q=-4$,对应的$x$值为$p=3$;最小值为$q=-\infty$(无穷小),对应的$x$值为$x\to \infty$。

因此,函数$f(x)=x^2-6x+5$的最大值为$-4$,最小值为$-\infty$。

二、导数法使用导数法求解函数的最大值和最小值,可以利用函数的导数来判断函数的增减性。

下面以一个例题来说明导数法的具体步骤。

例题:已知函数$g(x)=3x^2+4x+2$,求$g(x)$的最大值和最小值。

解题步骤:(1)首先,我们需要求出函数$g(x)$的导函数$g'(x)$。

对于一次或二次函数,我们可以通过对函数的表达式进行求导来得到导函数。

对函数$g(x)$进行求导,得到$g'(x)=6x+4$。

(2)根据导数的定义,导数表示函数在某一点的变化率。

根据函数的导数可以判断函数的增减性。

当导数大于$0$时,函数递增;当导数小于$0$时,函数递减。

初中数学中考复习(5):一次函数

初中数学中考复习(5):一次函数

【例题讲解】知识点一:函数的概念1. 函数: 一般地,在某个变化过程中,有两个变量x 和y ,如果给定一个x 值,相应地就确定了一个y 值,那么我们称y 是x 的函数,其中x 是自变量,y 是因变量。

2. 使函数有意义的自变量的取值的全体,叫做自变量的取值范围。

一般从整式(取全体实数),①分式(分母不为0)、②二次根式(被开方数为非负数)、③实际意义几方面考虑3. 常量:在某变化过程中不发生改变的量。

变量:在某变化过程中发生改变的量。

4. 函数的表示方法:①列表法;②关系式(解析)法;③图像法。

题型一:函数概念例1:根据函数图象的定义,下列几个图象表示函数的是( )A .B .C .D .例2:下列等式中,是x 的函数的有( )个(1)123=-y x ;(2)122=+y x ;(3)1=xy ;(4)x y =. A .1个 B .2个 C .3个 D .4个 题型二:函数自变量取值范围 例1:(2013•湛江)函数3+=x y 中,自变量x 的取值范围是( )A .3->xB .3-≥xC .3-≠xD .3-≤x例2:(2013•包头)在函数131y x =-中,自变量x 的取值范围是( ) A.13x < B. 13x ≠- C. 13x ≠ D. 13x >例3:(2012•自贡) 函数112-+-=x x y 中,自变量x 的取值范围是 .举一反三:1. (2012•怀化)在函数23y x =-中,自变量x 的取值范围是( )A .x >32B .32x ≤C .32x ≠D .32x ≥2. (2013•眉山)函数12y x =-中自变量x 的取值范围是( )A .2=xB .2≠xC .2>xD .2<x3. (2013•南通)函数21x y x +=-的自变量x 的取值范围是( ) A .1>x B .2-≥x C .1≠x D .1<x 4. (2013•内江)函数112-+=x x y 中自变量x 的取值范围是 。

(完整版)初中数学中考复习函数知识点总结,推荐文档

(完整版)初中数学中考复习函数知识点总结,推荐文档

初中数学中考复习函数知识点总结(掌握函数的定义、性质和图像)函数的基本知识:基本概念1、变量:在一个变化过程中可以取不同数值的量。

常量:在一个变化过程中只能取同一数值的量。

2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。

*判断A是否为B的函数,只要看B取值确定的时候,A是否有唯一确定的值与之对应3、确定函数定义域的方法:(1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。

4、函数的图像一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.5.函数解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做解析式。

6、描点法画函数图形的一般步骤第一步:列表(表中给出一些自变量的值及其对应的函数值);第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。

7、函数的表示方法:列表法、解析式法、图象法一次函数图象和性质【知识梳理】一、一次函数的基础知识1、定义:一般地,形如y=kx +b(k,b 是常数,k≠0),那么y 叫做x 的一次函数当b=0时,y=kx +b 即y=kx ,称为正比倒函数,所以说正比例函数是一种特殊的一次函数.一次函数的一般形式: y=kx+b (k≠0)说明: ① k 不为零 ②x 指数为1 ③ b 取任意实数2、解析式:y=kx+b(k 、b 是常数,k 0)≠3、图像:一次函数y=kx+b 的图象是经过(0,b )和(-,0)两点的一条直线,我们称它为直线y=kx+b, kb4、增减性(单调性): k>0,y 随x 的增大而增大(单调增);k<0,y 随x 而增大而减小(单调减)5、必过点:(0,b )和(-,0):理由如下:y=kx+b 中,kb⑴当x=o,时,y=?? 所以,该函数经过( , )点⑵当y=o,时,x=??所以,该函数经过( ,)点所以,一次函数的图象是必经过(,0)和(0,b )两点的一条直线.,注:两点y kx b =+kb-确定一条直线。

中考数学函数知识点总结

中考数学函数知识点总结

中考数学函数知识点总结①位置的确定与平面直角坐标系49、位置的确定50、坐标变换51、平面直角坐标系内点的特点52、平面直角坐标系内点坐标的符号与点的象限位置53、对称问题:P(x,y)→Q(x,- y)关于x轴对称P(x,y)→Q(- x,y)关于y轴对称P(x,y)→Q(- x,- y)关于原点对称54、变量、自变量、因变量、函数的定义55、函数自变量、因变量的取值范畴(使式子有意义的条件、图象法)56、函数的图象:变量的变化趋势描述②一次函数与正比例函数57、一次函数的定义与正比例函数的定义58、一次函数的图象:直线,画法59、一次函数的性质(增减性)60、一次函数y=kx+b(k≠0)中k、b符号与图象位置61、待定系数法求一次函数的解析式(一设二列三解四回)62、一次函数的平移问题63、一次函数与一元一次方程、一元一次不等式、二元一次方程的关系(图象法)64、一次函数的实际应用65、一次函数的综合应用(1)一次函数与方程综合(2)一次函数与其它函数综合(3)一次函数与不等式的综合(4)一次函数与几何综合③反比例函数66、反比例函数的定义67、反比例函数解析式的确定68、反比例函数的图象:双曲线69、反比例函数的性质(增减性质)70、反比例函数的实际应用71、反比例函数的综合应用(四个方面、面积问题)④二次函数72、二次函数的定义73、二次函数的三种表达式(一样式、顶点式、交点式)74、二次函数解析式的确定(待定系数法)75、二次函数的图象:抛物线、画法(五点法)76、二次函数的性质(增减性的描述以对称轴为分界)77、二次函数y=ax2+bx+c(a≠0)中a、b、c、△与专门式子的符号与图象位置关系78、求二次函数的顶点坐标、对称轴、最值79、二次函数的交点问题80、二次函数的对称问题81、二次函数的最值问题(实际应用)课本、报刊杂志中的成语、名言警句等俯首皆是,但学生写作文运用到文章中的甚少,即使运用也专门难做到恰如其分。

初中数学函数知识点和常见题型总结

初中数学函数知识点和常见题型总结

函数知识点及常见题型总结函数在初中数学中考中分值大约有20~25分,一次函数、二次函数和反比例函数都会考查,其中一次函数和反比例函数分值共约占其中的50%,二次函数约占另一半。

函数的题型以下归纳总结了11种,当然这并不包括所有可能出现的情况,仅仅只是较为常见的。

函数有时是以下题型组合起来构成的较为复杂的题型,因此,我们必须掌握住以下题型才能寻求突破。

换句话说,我们掌握住以下题型,复杂的题型分解开来,我们也能各个突破,最终解决掉。

一、核心知识点总结1、函数的表达式1)一次函数:y=kx+b(,k b 是常数,0k ≠) 2)反比例函数:函数xky =(k 是常数,0k ≠)叫做反比例函数。

注意:0x ≠ 3)二次函数:)0,,(2≠++=a c b a c bx ax y 是常数,, 2、点的坐标与函数的关系1)点的坐标用(),a b 表示,横坐标在前,纵坐标在后,中间有“,”分开。

平面内点的坐标是有序实数对,当b a ≠时,(),a b 和(),b a 是两个不同点的坐标。

2)点的坐标:从点向x 轴和y 轴引垂线,横纵坐标的绝对值对应相对应线段的长度。

3)若某一点在某一函数图像上,则该点的坐标可代入函数的表达式中,要将函数图像上的点与坐标一一联系起来。

3、函数的图像 1)一次函数一次函数by=的=的图像是经过点(0,b)的直线;正比例函数kxy+kx图像是经过原点(0,0)的直线。

2)反比例函数3)二次函数4、函数图像的平移① 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ② 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:③平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”.【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位二、常见题型:1、求函数的表达式常见求函数表达式的方法是待定系数法,假设出函数解析式,将函数上的点的坐标代入函数,求出未知系数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年中考数学函数知识点一次函数与反比例函数考点一、平面直角坐标系 1、平面直角坐标系在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。

其中,水平的数轴叫做x 轴或横轴,取向右为正方向;铅直的数轴叫做y 轴或纵轴,取向上为正方向;两轴的交点O (即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。

为了便于描述坐标平面内点的位置,把坐标平面被x 轴和y 轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。

注意:x 轴和y 轴上的点,不属于任何象限。

2、点的坐标的概念点的坐标用(a ,b )表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。

平面内点的坐标是有序实数对,当b a ≠时,(a ,b )和(b ,a )是两个不同点的坐标。

考点二、不同位置的点的坐标的特征 1、各象限内点的坐标的特征 点P(x,y)在第一象限0,0>>⇔y x点P(x,y)在第二象限0,0><⇔y x 点P(x,y)在第三象限0,0<<⇔y x 点P(x,y)在第四象限0,0<>⇔y x 2、坐标轴上的点的特征点P(x,y)在x 轴上0=⇔y ,x 为任意实数 点P(x,y)在y 轴上0=⇔x ,y 为任意实数点P(x,y)既在x 轴上,又在y 轴上⇔x ,y 同时为零,即点P 坐标为(0,0) 3、两条坐标轴夹角平分线上点的坐标的特征 点P(x,y)在第一、三象限夹角平分线上⇔x 与y 相等 点P(x,y)在第二、四象限夹角平分线上⇔x 与y 互为相反数 4、和坐标轴平行的直线上点的坐标的特征 位于平行于x 轴的直线上的各点的纵坐标相同。

位于平行于y 轴的直线上的各点的横坐标相同。

5、关于x 轴、y 轴或远点对称的点的坐标的特征点P 与点p ’关于x 轴对称⇔横坐标相等,纵坐标互为相反数点P 与点p ’关于y 轴对称⇔纵坐标相等,横坐标互为相反数 点P 与点p ’关于原点对称⇔横、纵坐标均互为相反数 6、点到坐标轴及原点的距离点P(x,y)到坐标轴及原点的距离: (1)点P(x,y)到x 轴的距离等于y (2)点P(x,y)到y 轴的距离等于x (3)点P(x,y)到原点的距离等于22y x + 考点三、函数及其相关概念 1、变量与常量在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。

一般地,在某一变化过程中有两个变量x 与y ,如果对于x 的每一个值,y 都有唯一确定的值与它对应,那么就说x 是自变量,y 是x 的函数。

2、函数解析式用来表示函数关系的数学式子叫做函数解析式或函数关系式。

使函数有意义的自变量的取值的全体,叫做自变量的取值范围。

3、函数的三种表示法及其优缺点 (1)解析法两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。

(2)列表法把自变量x 的一系列值和函数y 的对应值列成一个表来表示函数关系,这种表示法叫做列表法。

(3)图像法用图像表示函数关系的方法叫做图像法。

4、由函数解析式画其图像的一般步骤(1)列表:列表给出自变量与函数的一些对应值(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。

考点四、正比例函数和一次函数 1、正比例函数和一次函数的概念一般地,如果b kx y +=(k ,b 是常数,k ≠0),那么y 叫做x 的一次函数。

特别地,当一次函数b kx y +=中的b 为0时,kx y =(k 为常数,k ≠0)。

这时,y 叫做x 的正比例函数。

2、一次函数的图像所有一次函数的图像都是一条直线3、一次函数、正比例函数图像的主要特征:一次函数b kx y +=的图像是经过点(0,b )的直线;正比例函数kx y =的图像是经过原点(0,0)的直线。

k 的符号b 的符号 函数图像 图像特征k>0b>0图像经过一、二、三象限,y随x 的增大而增大。

b<0图像经过一、三、四象限,y随x 的增大而增大。

K<0b>0 y图像经过一、二、四象限,y随x 的增大而减小b<0图像经过二、三、四象限,y随x 的增大而减小。

注:当b=0时,一次函数变为正比例函数,正比例函数是一次函数的特例。

4、正比例函数的性质 一般地,正比例函数kx y 有下列性质:(1)当k>0时,图像经过第一、三象限,y 随x 的增大而增大; (2)当k<0时,图像经过第二、四象限,y 随x 的增大而减小。

5、一次函数的性质一般地,一次函数b kx y +=有下列性质: (1)当k>0时,y 随x 的增大而增大 (2)当k<0时,y 随x 的增大而减小 6、正比例函数和一次函数解析式的确定确定一个正比例函数,就是要确定正比例函数定义式kx y =(k ≠0)中的常数k 。

确定一个一次函数,需要确定一次函数定义式b kx y +=(k ≠0)中的常数k 和b 。

解这类问题的一般方法是待定系数法。

考点五、反比例函数 1、反比例函数的概念一般地,函数xky =(k 是常数,k ≠0)叫做反比例函数。

反比例函数的解析式也可以写成1-=kx y 的形式。

自变量x 的取值范围是x ≠0的一切实数,函数的取值范围也是一切非零实数。

2、反比例函数的图像反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。

由于反比例函数中自变量x ≠0,函数y ≠0,所以,它的图像与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。

3、反比例函数的性质反比例函数 )0(≠=k x k yk 的符号k>0 k<0图像性质①x 的取值范围是x ≠0, y 的取值范围是y ≠0;②当k>0时,函数图像的两个分支分别 在第一、三象限。

在每个象限内,y 随x 的增大而减小。

①x 的取值范围是x ≠0, y 的取值范围是y ≠0; ②当k<0时,函数图像的两个分支分别 在第二、四象限。

在每个象限内,y 随x 的增大而增大。

4、反比例函数解析式的确定确定及诶是的方法仍是待定系数法。

由于在反比例函数xky =中,只有一个待定系数,因此只需要一对对应值或图像上的一个点的坐标,即可求出k 的值,从而确定其解析式。

5、反比例函数中反比例系数的几何意义如下图,过反比例函数)0(≠=k xky 图像上任一点P 作x 轴、y 轴的垂线PM ,PN ,则所得的矩形PMON 的面积S=PM •PN=xy x y =•。

k S k xy xky ==∴=,,Θ。

第七章 二次函数考点一、二次函数的概念和图像 (3~8分) 1、二次函数的概念一般地,如果)0,,(2≠++=a c b a c bx ax y 是常数,,那么y 叫做x 的二次函数。

)0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数的一般式。

2、二次函数的图像二次函数的图像是一条关于abx 2-=对称的曲线,这条曲线叫抛物线。

抛物线的主要特征:①有开口方向;②有对称轴;③有顶点。

3、二次函数图像的画法 五点法:(1)先根据函数解析式,求出顶点坐标,在平面直角坐标系中描出顶点M ,并用虚线画出对称轴(2)求抛物线c bx ax y ++=2与坐标轴的交点:当抛物线与x 轴有两个交点时,描出这两个交点A,B 及抛物线与y 轴的交点C ,再找到点C 的对称点D 。

将这五个点按从左到右的顺序连接起来,并向上或向下延伸,就得到二次函数的图像。

当抛物线与x 轴只有一个交点或无交点时,描出抛物线与y 轴的交点C 及对称点D 。

由C 、M 、D 三点可粗略地画出二次函数的草图。

如果需要画出比较精确的图像,可再描出一对对称点A 、B ,然后顺次连接五点,画出二次函数的图像。

考点二、二次函数的解析式 (10~16分)二次函数的解析式有三种形式:(1)一般式:)0,,(2≠++=a c b a c bx ax y 是常数, (2)顶点式:)0,,()(2≠+-=a k h a k h x a y 是常数,(3)当抛物线c bx ax y ++=2与x 轴有交点时,即对应二次好方程02=++c bx ax有实根1x 和2x 存在时,根据二次三项式的分解因式))((212x x x x a c bx ax --=++,二次函数c bx ax y ++=2可转化为两根式))((21x x x x a y --=。

如果没有交点,则不能这样表示。

考点三、二次函数的最值 (10分)如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当abx 2-=时,a b ac y 442-=最值。

如果自变量的取值范围是21x x x ≤≤,那么,首先要看ab2-是否在自变量取值范围21x x x ≤≤内,若在此范围内,则当x=ab2-时,a b ac y 442-=最值;若不在此范围内,则需要考虑函数在21x x x ≤≤范围内的增减性,如果在此范围内,y 随x 的增大而增大,则当2x x =时,c bx ax y ++=222最大,当1x x =时,c bx ax y ++=121最小;如果在此范围内,y 随x 的增大而减小,则当1x x =时,c bx ax y ++=121最大,当2x x =时,c bx ax y ++=222最小。

考点四、二次函数的性质 (6~14分) 1、二次函数的性质 函数二次函数)0,,(2≠++=a c b a c bx ax y 是常数,图像a>0a<0x性质(1)抛物线开口向上,并向上无限延伸; (2)对称轴是x=a b 2-,顶点坐标是(1)抛物线开口向下,并向下无限延伸;(2)对称轴是x=ab 2-,顶点坐标是(ab2-,a b ac 442-);(3)在对称轴的左侧,即当x<a b 2-时,y 随x 的增大而减小;在对称轴的右侧,即当x>a b2-时,y 随x 的增大而增大,简记左减右增; (4)抛物线有最低点,当x=a b 2-时,y 有最小值,a b ac y 442-=最小值(ab2-,a b ac 442-);(3)在对称轴的左侧,即当x<ab2-时,y 随x 的增大而增大;在对称轴的右侧,即当x>ab2-时,y 随x 的增大而减小,简记左增右减;(4)抛物线有最高点,当x=ab 2-时,y 有最大值,ab ac y 442-=最大值2、二次函数)0,,(2≠++=a c b a c bx ax y 是常数,中,c b 、、a 的含义:a 表示开口方向:a >0时,抛物线开口向上 a <0时,抛物线开口向下b 与对称轴有关:对称轴为x=ab 2-c 表示抛物线与y 轴的交点坐标:(0,c )3、二次函数与一元二次方程的关系一元二次方程的解是其对应的二次函数的图像与x 轴的交点坐标。

相关文档
最新文档