5常用概率分布3
概率论与数理统计公式整理
概率论与数理统计公式整理在现代数学中,概率论与数理统计是两个重要的分支。
其中概率论是研究随机事件发生的可能性或概率的科学。
而数理统计则是利用概率论的方法,对已经发生的随机事件进行统计分析和推断。
本文将整理概率论与数理统计中常用的公式。
一、基本概率公式1.概率:$P(A)=\frac{n(A)}{n(S)}$其中,$P(A)$表示事件$A$发生的概率,$n(A)$表示事件$A$所包含的基本事件的个数,$n(S)$表示所有基本事件的个数。
2.加法原理:$P(A\cup B)=P(A)+P(B)-P(A\cap B)$其中,$A$和$B$是两个事件,$A\cup B$表示事件$A$和事件$B$中至少有一个发生的概率,$A\cap B$表示两个事件同时发生的概率。
3.条件概率:$P(B|A)=\frac{P(A\cap B)}{P(A)}$其中,$P(B|A)$表示在事件$A$发生的条件下,事件$B$发生的概率。
4.乘法定理:$P(A\cap B)=P(A)P(B|A)$其中,$P(A\cap B)$表示两个事件同时发生的概率,$P(B|A)$表示在事件$A$发生的条件下,事件$B$发生的概率。
二、概率分布1.离散随机变量的概率分布律:$\sum\limits_{i=1}^{+\infty}{p(x_i)}=1$其中,$p(x_i)$表示离散随机变量取值为$x_i$的概率。
2.连续随机变量的概率密度函数:$\int_{-\infty}^{+\infty}{f(x)}\mathrm{d}x=1$其中,$f(x)$表示连续随机变量在$x$处的概率密度。
3.数学期望:$E(x)=\sum\limits_{i=1}^{+\infty}{x_ip(x_i)}$或$E(x)=\int_{-\infty}^{+\infty}{xf(x)}\mathrm{d}x$其中,$E(x)$表示随机变量$x$的数学期望,$p(x_i)$表示$x_i$这一离散随机变量取到的带权概率。
16种常见概率分布概率密度函数、意义及其应用
目录1. 均匀分布 (1)2. 正态分布(高斯分布) (2)3. 指数分布 (2)4. Beta分布(:分布) (2)5. Gamm 分布 (3)6. 倒Gamm分布 (4)7. 威布尔分布(Weibull分布、韦伯分布、韦布尔分布) (5)8. Pareto 分布 (6)9. Cauchy分布(柯西分布、柯西-洛伦兹分布) (7)210. 分布(卡方分布) (7)8 11. t分布................................................9 12. F分布 ...............................................10 13. 二项分布............................................10 14. 泊松分布(Poisson 分布).............................11 15. 对数正态分布........................................1. 均匀分布均匀分布X ~U(a,b)是无信息的,可作为无信息变量的先验分布。
2. 正态分布(高斯分布)当影响一个变量的因素众多,且影响微弱、都不占据主导地位时,这个变量 很可能服从正态分布,记作X~N (」f 2)。
正态分布为方差已知的正态分布N (*2)的参数」的共轭先验分布。
1 空f (x ): —— e 2-J2 兀 o'E(X), Var(X) _ c 23. 指数分布指数分布X ~Exp ( )是指要等到一个随机事件发生,需要经历多久时间。
其 中,.0为尺度参数。
指数分布的无记忆性:Plx s t|X = P{X t}。
f (X )二 y oiE(X) 一4. Beta 分布(一:分布)f (X )二 E(X)Var(X)=(b-a)2 12Var(X)二1~2Beta 分布记为X 〜Be(a,b),其中Beta(1,1)等于均匀分布,其概率密度函数 可凸也可凹。
第三章 常用概率分布之正态分布
图4.13 离均差的绝对值≤1 , 2 和3 的概率值
随机变量x在区间( μ – kσ, μ + kσ )外取值的概率P ( x<μ – kσ ) + P( x>μ + kσ )为两尾概率,记为α P ( x<μ – kσ ) + P( x>μ + kσ )=α P ( x<μ – kσ ) = P( x>μ + kσ )=α/2 两尾分位数Uα
=0.0227
0.020
fN (x)
0.020
fN (x)
0.016
0.016
0.012
0.012
0.008
P( y 40) 0.9773
P( y 26) 0.2119
0.008
0.004
0.004
0.000 10 15 20 25 30 35 40 45
0.000 10 15 20 25 30 35 40 45
第三章
常用概率分布
第一节 事件与概率 第二节 概率分布 第三节 二项式分布 第四节 正态分布 第五节 样本平均数抽样分布与标准误 第六节 t分布,x2分布和F分布
第三章
常用概率分布
第一节 事件与概率 第二节 概率分布 第三节 二项式分布 第四节 正态分布 第五节 样本平均数抽样分布与标准误 第六节 t分布,x2分布和F分布
首先计算:
查附表2,当u=-0.8时,FN(26)=0.2119,说明这 一分布从-∞到26范围内的变量数占全部变量数的 21.19%,或者说,y≤26概率为0.2119. 同理可得: FN(40)=0.9773
所以:P(26<y≤40)=FN(40)-FN(26)=0.9773-0.2119
概率统计方法
第七章概率统计方法概率分布及数字特征;样本与统计量;参数估计法;案例分析:足球门的危险区域问题;案例分析:最优评卷问题。
1.一维随机变量与分布函数一.概率分布与数字特征随机变量:用数值表示的随机事件的函数。
分布函数:设ξ为一随机变量,对任意的实数x 有函数)()()(x P x P x F ≤=≤<-∞=ξξ称为随机变量ξ的分布函数。
对任意两个实数)(,2121x x x x <,则有)()()(1221x F x F x x P -=≤<ξ如果随机变量ξ所有取值有限个或可列无穷个数值,则这种随机变量为离散型随机变量。
非离散型的随机变量,则称为连续型的随机变量。
如果ξ为离散型随机变量,所有的取值为 ,2,1,=k x k ,则称 ,2,1,)(===k p x P k k ξ为随机变量ξ的分布列,其相应的分布函数为∑≤=x x k k px F )(。
如果ξ为连续型随机变量,则分布函数定义为 ⎰∞-=xdx x f x F )()(,其中)(x f 为一个非负可积函数,称之为随机变量ξ的分布密度,或密度函数。
具有下列性质: (1)0)(≥x f ; (2)1)(=⎰+∞∞-dx x f ;(3)dx x f a F b F b a P ba ⎰=-=≤<)()()()(ξ;(4)当)(x f 为连续函数时有)()(x f x F ='。
(1)数学期望设ξ为离散型随机变量,其分布列为 ,2,1,)(===k p x P k k ξ,如果级数∑∞=1k k k p x收敛,则称∑∞=1k k k p x 为随机变量ξ的数学期望,记为ξE ,即∑∞==1k k k p xE ξ。
2. 随机变量的数学期望与方差一.概率分布与数字特征设ξ为连续型随机变量,其分布密度函数为 )(x f ,如果dx x f x ⎰+∞∞-)(收敛,则称dx x xf ⎰+∞∞-)(为随机变量ξ的数学期望,记为ξE ,即dx x xf E ⎰+∞∞-=)(ξ。
概率论 常用统计分布
由中心极限定理得
n
lim P {
n
2 n n
2n
x}
x
lim P{ i 1
n
2 X i n
n
x}
1 2
t2 e 2 dt
即 2分布的极限分布是正态 分布,也即当 n
很大时,
2 n n
2n
2 服从N (0,1), 进而 n N ( n,2n).
Y12
Y22
~ 2 ( 2)
则C1 1 2 , C2 1 4 .
2. t 分布 历史上,正态分布由于其广泛的应用背景 和良好的性质,曾一度被看作是“万能分布”, 在这样的背景下,十九世纪初英国一位年轻 的酿酒化学技师Cosset. WS, 他在酒厂从事试验 数据分析工作,对数据误差有着大量感性的认 识,我们知道在总体均值和方差已知情况下, 样本均值的分布将随样本量 增大而接近正态分布,
n
x
1 2
e dt .
t2
2
2 证 由假设和定义5.6, n X i2 , 其中X 1 , X 2 ,, X n i 1
2 2 2 独立且每个X i ~ N (0,1),因而X1 , X2 ,, X n 独立同分布,
且
E( X i2 ) 1, D( X i2 ) 2 (i 1,2,, n)
(3) T的数字特征
E (T ) 0,
n D(T ) n2
( n 2).
例3 设总体X和Y相互独立, 且都服从N(0,9)
X 1 , X 2 ,, X 9和Y1 ,Y2 ,,Y9来自总体X ,Y的样本,
求统计量T的分布,其中
T Xi /
16种常见概率分布概率密度函数、意义及其应用
目录1. 均匀分布 ...................................................................................................... 1 2. 正态分布(高斯分布) ........................................................................... 2 3. 指数分布 ...................................................................................................... 2 4. Beta 分布(β分布) ............................................................................. 2 5. Gamma 分布 .................................................................................................. 3 6. 倒Gamma 分布 ............................................................................................. 4 7. 威布尔分布(Weibull 分布、韦伯分布、韦布尔分布) ................. 5 8. Pareto 分布 ................................................................................................ 6 9. Cauchy 分布(柯西分布、柯西-洛伦兹分布) . (7)10. 2χ分布(卡方分布) (7)11. t 分布 ........................................................................................................ 8 12. F 分布 ........................................................................................................ 9 13. 二项分布 ................................................................................................ 10 14. 泊松分布(Poisson 分布) ............................................................. 10 15.对数正态分布 .......................................................................................111. 均匀分布均匀分布~(,)X U a b 是无信息的,可作为无信息变量的先验分布。
常见概率分布期望方差以及分布图汇总
������������
������������ 2
指数分布(负指 数分布)
Γ(1, ������)
������ > 0
������
������ 2
注:指数分布是Γ分布的特殊情况 χ2 分布
������2 (������)
������ ≥ 1
负二项分布(帕
离 散 型
斯卡分布)
B0 (������, ������)
0<p<1 r≥1
K=r,r+1,… P{������ = ������} = (1 − ������)������−1 ������ K=1,2,…
������ ������ 1 ������ ������������ ������
������ 2 ∞ ������⁄ 2
0,n>1
������ , ������ > 2 ������ − 2
非中心 t 分布
������(������, ������)
������ ������ ≥ 1
������ − 1 ������Γ ( ) ������ 2 √ ������ 2 Γ( ) 2 (n>1)
常见的“概率分布表 + 分布图”汇总(内容源自书本,同时本人额外加了许多内容进去。此表可直接打印)整理人:算法君
说明,我们学过的各种概率分布公式较多且形式多样,各分布的数学期望及方差是常用的数据,为方便做题目,也方便记忆故作此表,并在此共享给大家希望给大家提供一定方便!
类
分布
单点分布(退化 分布) (0-1)分布(两点 分布或伯努利分 布) 二项分布
数学期望 a p np
常用概率分布间简介
其中 c 为常数,解方程(1)得
f ( ) c f ( )
f
(
)
k
e
1 2
c
2
,
k
为常数.
为使 f ( ) 为概率密度函数,
f
( )d
1,
即
k
e
1 2
c
2
dy
1
故必须 c 0 ,不妨令 c 1 ( 0 ),代入(2)解得 2
k 1 , 2 Biblioteka 于是f ( ) 1
2
e2 2 , R ,
2
这是均值为 0,方差为 2 的正态分布的概率密度函数.
.
X
~
N(0, 2)
,
则Y
X2
~
Ga(
1 2
,
1 2
2
)
.
(1) (2)
Ga( n , 1) 2(n) . 22
m
Xi ~ N(0,1) , i 1,2,,n 且相互独立 , 则 X
X
2 i
~
2(n) .
i 1
⒊ 相当误差(比率)的概率分布
m
设
Xi
~
N(0, 2 ) ,i
1,2,, m,m 1,,m n且相互独立,则
i 1
二、随机误差的概率分布
⒈ 高斯随机误差模型 随机变量的高斯分解
可观测的指标
X
不可观测的随机干扰
指标的标准值(生产控制参数,理论均值)
原始测量误差的概率分布
由棣莫弗提出,高斯推证,拉普拉斯再证,原始测量误差的概率分布为:
~ N (0 , 2 )
高斯的推证要点如下:
设测量误差 X 的密度函数为 f ( ) ,由“最大后验概率”的原则得
第3节 常用统计分布(三个常用分布)
例2
设X
~
N
(
,
2
),
Y
2
~
2 (n),且X ,Y相互独立,
试求 T X 的概率分布.
Yn
解 因为X ~ N(, 2),所以 X ~ N(0,1)
又Y
2
~
2 (n),且X ,Y独立,则
X
与Y
2
独立,
由定理得
T (X ) / X ~ t(n) (Y / 2) / n Y n
n
事实上,它们受到一个条件的约束:
Xi nX
i 1
n
i 1
Xi
X
1
n
(
i 1
Xi
nX )
1
0
0.
例1
设X1 ,
X 2 ,
,
X
为
6
来
自
正
态
总
体N
(0,1)的
一
组
样
本,
求C1
,
C
使
2
得
Y C1( X1 X 2 )2 C2( X 3 X4 X5 X6 )2
服 从 2分 布.
解
X1
2
4
则C1 1 2 ,C2 1 4 .
3. t 分布 定义 设 X ~ N (0, 1), Y ~ 2 (n), 且 X , Y
独立,则称随机变量 T X 服从自由度为 n Y /n
的 t 分布, 记为T ~ t(n).
t 分布又称学生氏(Student)分布. t(n) 分布的概率密度函数为
2. 2分布(卡方分布)
定义、设 X1, X 2 ,L , X n 相互独立,同服从 N (0, 1)
第三章 概率分布
第二节 概率分布
概率:一次试验某一个结果发生的可能性大小 概率分布:试验的全部可能结果及各种可能结果发生 的概率
一、随机变量 随机试验的所有可能结果中,若对于每一种可能结果 都有唯一的实数x与之对应,则称x为随机试验的随 机变量。
【例4.3】 对100头病畜用某种药物进行治疗,其可能 结果是“0头治愈”、 “1头治愈”、“2头治愈”、 “…”、“100头治愈”。若用x表示治愈头数,则x的 取值为0、1、2、…、100。
【例4.4】 孵化一枚种蛋可能结果只有两种,即“ 孵出小鸡”与“未孵出小鸡”。 若用变量x表示试验 的两种结果,则可令x=0表示“未孵出小鸡”,x=1表 示“孵出小鸡”。
【例4.5】 测定某品种猪初生重,表示测定结果的 变量x所取的值为一个特定范围(a,b),如0.5―1.5kg,x 值可以是这个范围内的任何实数。
但在相同条件下进行大量重复试验时,其试验结
果却呈现出某种固有的特定的规律性——频率的稳定
性,通常称之为随机现象的统计规律性
概率
论与数理统计
(二)随机试验与随机事件
1、随机试验 通常我们把根据某一研究目的 ,在一定条件下对 自然现象所进行的观察或试验统称为随机试验。
随机试验满足下述三个特性
(1)可重复性:试验可以在相同条件下多次重复进行; (2)结果多样性:每次试验的可能结果不止一个,并且事先 知道会有哪些可能的结果; (3)未知性:每次试验总是恰好出现这些可能结果中的一个, 但在一次试验之前却不能肯定这次试验会出现哪一个结果。
一类随机现象或不确定性现象:事前不可预言其 结果的,即在保持条件不变的情况下,重复进行观察, 其结果未必相同。即在个别试验中其结果呈现偶然性、 不确定性现象。例
随机现象特点:
《概率论》第3章§5两个随机变量的函数的分布
= P{X ≤ z,Y ≤ z}
则
Fmax (z) = F (z)
F (z) = P{min(X ,Y) ≤ z} min = FX1 (z)FX,2 (z)z} FXn (z) = 1 P{min(X Y) > F (z) =1P{{min(,Y 1,zX2 ,, Xn ) ≤ z } = P X > z X> } min n = 1∏ > } P(z > [ =1 P{X1zFXi {Y )] z} i =1 =1 ,[1,,{X 独立同分布于 F(x)时有 X1 X2 P Xn ≤ z}][1 P{Y ≤ z}] 特别当 n = 1[1 FX (z)][1 F (z)] n Y
z
2σ 2
∴
z e ,z ≥0 2 fZ (z) = σ 分布) (瑞利Rayleigh分布) 0 , z第三章 多维随机变量及其分布 <0
ρ d 2 =1 e 2σ2 2σ 2
z 2σ 2
(z ≥ 0)
§5 两个随机变量的函数的分布
11/15 11/15
设 X ~ FX (x),Y ~ F ( y) ,且 X,Y 相互独立 ,则 Y F (z) = P{max(X ,Y) ≤ z} max
∵ Fmax (z) = F (z) ∴ fmax (z) = 2 f (z)F(z)
2
= 2 f (z)∫∞ f (t)dt ∵ Fmin (z) = 1[1 F(z)]2
∴ fmax (z) = 2 f (z)[1 F(z)]
= 2 f (z)[1 ∫∞ f (t)dt]
概率分布及概率分布图
概率密度函数图
总结词
概率密度函数图是一种展示连续概率分布的图形,通过曲线的高低表示概率密度的大小。
详细描述
概率密度函数图是连续概率分布的图形表示,它通过曲线的高低表示概率密度的大小。在概率密度函数图中,曲 线下方的面积表示事件发生的概率。这种图形可以帮助我们了解连续随机变量的分布情况,并用于估计和预测未 来的事件。
02 离散概率分布
二项分布
01
02
03
定义
二项分布是描述在n次独 立重复的伯努利试验中成 功的次数的概率分布。
公式
$B(n, p) = C(n, k) p^k (1-p)^{n-k}$,其中C(n, k)是组合数,表示从n个 不同项中选取k个的方法 数。
应用场景
例如,抛硬币的结果(正 面或反面),或者给定数 量的独立事件中成功事件 的次数。
泊松分布
定义
泊松分布是描述在单位时间内(或单 位面积内)随机事件的次数,当这些 事件以小概率发生,并且这些事件之 间是独立的。
公式
应用场景
例如,放射性衰变或者网络中同时发 生的请求数。
$P(X=k) = frac{e^{lambda}lambda^k}{k!}$,其中 $lambda$是事件的平均发生率。
05 概率分布及概率分布图的 应用实例
在统计学中的应用
1 2 3
描述性统计
概率分布图可以用来描述数据的分布情况,如频 数分布图、直方图等,帮助我们了解数据的集中 趋势、离散程度等。
假设检验
在假设检验中,概率分布图可以用来表示样本数 据和理论分布之间的比较,帮助我们判断样本数 据是否符合预期的分布。
概率分布的种类
离散概率分布
描述离散随机变量的取值概率,如二项分布、泊 松分布等。
几种常见的概率分布率-(1)分解
➢ 标准正态分布的偏斜度γ1和峭度γ2均为零。
以下一些特征值很重要:
-3 -2 -1
1 23
68.27%
95.45%
99.73%
P(-1≤u<1)=0.6826 P(-2≤u<2)=0.9545 P(-3≤u<3)=0.9973
4.822),求:
(1)X<161cm的概率; (2)X>164cm的概率; (3)152<X<162的概率。
x-
=
161 - 156.2 4.82
=
1.00
x
=
164 - 156.2 4.82
=
1.62
x
=
152 - 156.2 4.82
=
-0.87
x
=
162 - 156.2 4.82
=
1.20
四、 正态分布的单侧分位数和双侧分位数
x
[(1-
-1
p) ]p - p(n-x)
(当n→∞时,系数的极限为1,且nφ =μ)Βιβλιοθήκη x!= x e-x!
1
-1
e = lim (1 z) z,lim (1 - p) p = e
z0
p0
二、 服从泊松分布的随机变量的特征数
➢ 平均数:μ=λ ➢ 方差: σ2 = λ
➢ 偏斜度: 1=
1
➢
峭度:
标轴从-∞到u所夹的面积,该曲线下的面积即表示随机 变量U 落入区间(-∞,u)的概率;
➢ 标准正态分布查表常用的几个关系式:
• P(0<U <u1)=F(u1)-0.5 • P(U >u1)=F(-u1)=1-F(u1) • P(∣U∣>u1)=2F(-u1) • P(∣U∣<u1)=1- 2F(-u1) • P(u1<U <u2)=F(u2)-F(u1)
简单样本的概率分布
简单样本的概率分布在统计学中,概率分布是描述随机变量取值概率的数学表达方式。
对于简单样本的概率分布,我们通常指的是连续型随机变量的概率分布,如正态分布、泊松分布等。
这些分布形式在各种应用场景中都有广泛的应用,例如金融、生物、医学等领域。
一、简单样本的概率分布概念简单样本的概率分布是指从一个总体中随机抽取若干个样本,每个样本具有相同的概率分布形式。
通常,我们抽取的样本数量越多,样本的概率分布就越接近总体概率分布。
因此,简单样本的概率分布可以用来估计总体的概率分布。
二、常见的简单样本概率分布1.正态分布正态分布是最常见的连续型概率分布之一,其概率密度函数呈钟形曲线。
正态分布在自然界和人类社会中广泛存在,如人类的身高、考试分数等都呈现出正态分布的特点。
正态分布的数学表达式为:f(x)=1σ2πe−(x−μ)22σ2f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}f(x)=2πσ21e−2σ2(x−μ)2其中,μ是均值,σ是标准差。
2.泊松分布泊松分布是一种离散型概率分布,常用于描述单位时间内随机事件发生的次数。
泊松分布在物理学、生物学、经济学等领域都有应用。
泊松分布的数学表达式为:P(X=k)=λke−λP(X=k) = \frac{\lambda^k}{k!} e^{-\lambda}P(X=k)=k!λke −λ其中,λ是泊松分布的参数,表示单位时间内随机事件发生的平均次数。
3.二项分布二项分布是一种离散型概率分布,常用于描述随机试验中成功的次数。
例如,抛硬币试验、扔骰子等都可以用二项分布来描述。
二项分布的数学表达式为:P(X=k)=Cnkpk(1−p)n−kP(X=k) = C_n^k p^k (1-p)^{n-k}P(X=k)=knpk(1−p)n−k 其中,CnkC_n^kCnk表示组合数,即从 n 个不同元素中取出 k 个元素的组合方式数;p 是每次试验成功的概率;n 是试验次数。
5.1 第三章 常用概率分布10.14
相等。
设有一个总体 ,总体平均数为 μ,方差为σ2,总 体中各变数为 x, 将 此总体称为原总体。现从这个 总体中随机抽取含量为n的样本,样本平均数记为 。 可以设想,从原总体中可抽出很多甚至无穷多个 x 含量为n的样本。由这些样本算得的平均数有大有小, 不尽相同,与原总体平均数μ相比往往表现出不同程 度的差异。这种差异是由随机抽样造成的 ,称为 抽 样误差(sampling error)。 显然,样本平均数也是一个随机变量,其概率分 布叫做样本平均数的抽样分布。由样本平均数构成的 总体称为样本平均数的抽样总体。
由(4-11) 式及正态分布的对称性可推出 下列关系式, 再借助附表1 , 便能很方便地 计算有关概率:
P(0≤u<u1)=Φ(u1)-0.5
P(u≥u1) =Φ(-u1)
P(|u|≥u1)=2Φ(-u1)
P(|u|<u1==1-2Φ(-u1)
P(u1≤u<u2)=Φ(u2)-Φ(u1)
【例4.6】 已知u~N(0,1),试求: (1) P(u<-1.64)=?
P(|u|≥1.96)=1-0.95=0.05
P(|u|≥2.58)=1-0.99=0.01
(二)一般正态分布的概率计算
正 态 分 布 密度曲线和横轴围成的一个区
域,其面积为1,这实际上表明了“随机变量x
取值在-∞与+∞之间”是一个必然事件,其概
率为1。
若随机变量 x服从正态分布N(μ,σ2),则x
即大数定理
x2 2. 若随机变量x服从平均数是 μ,方差是 σ2的分布(不是正态分布); x1, x 2 ,…, x n 是 x 由此总体得来的随机样本,则 统 计 量 x =Σx/n的概率分布,当n相当大时逼近正态分 布N(μ,σ2/n)。这就是中心极限定理。
第4章 几种常见的概率分布
6. 正态分布的单双侧临界值
面积为,已知 上侧临界值 P(U> u )= α ,下侧临界值 P (U <- u )= α (附表 3 上侧临界值)
若将一定曲线下面积α,平分到两侧尾区,则每侧曲线下面积为α/2,
即 P(
U U 2
)=
α,
U 这时的
U
2
称为α的双侧临界值。
面积为,已知
u 称为的上侧临界值。 附表3 (256页)给出了u的值。
N(0,1)
x=0 时,φ(x) 达到最大值
(1) 关于点(0,0.5)对称,该点也
是它的拐点
(2)x 取值离原点越远,φ (x) 值越小 (2) 曲线以 y = 0 和 y = 1 为渐近线;
(3)关于 y 轴对称,即φ(x)= φ (- x)
(3) Ф(1.960)-Ф(-1.960) = 0.95
种变量有它各自的概率而组成一个分布。这个分布就叫做二项概率分布,或简称二项分布
(binomial distribution) 由此得到计算二项分布任何一项概率的通式为:p(x) =Cnx φ
x(1- φ)n-x
二项分布是一种离散型随机变量的概率分布
性质
n
Cnx x (1 )nx 1
x0
m
一指定时间范围内或在指定的面积或体积内某一事件出现的个体数的分布 泊松分布是一种离散型随机变量的概率分布
实例 调查某种猪场闭锁育种群仔猪畸形数,共记录 200 窝, 畸形仔猪数的分布情况如下表所
示。试判断畸形仔猪数是否服从泊松分布。 畸形仔猪数统计分布
解:根据泊松分布的平均数与方差相等这一特征,若畸形仔猪数服从泊松分布,则由观察数 据计算的平均数和方差就近于相等。样本均数和方差 S2 计算结果如下:
常见的概率分布
常见的概率分布离散分布0-1分布(伯努利分布)它的分布律为:\[P\{X=k\}=p^k(1-p)^{1-k}, k=0,1, (0<p<1)\]0-1分布记作:\(X \sim b(1,p)\)期望:\(E(X)=p\)⽅差:\(D(X)=p(1-p)\)常⽤的场景:新⽣婴⼉性别的登记,招⽣考试的录取,产品的是否合格,硬币的正反⾯。
⼆项分布⼆项分布为\(n\)重伯努利实验的概率分布。
分布律为:\[P\{X=k\}=\begin{pmatrix}n\\k\end{pmatrix}p^k(1-p)^{n-k},k=0,1,2,...,n,(0<p<1)\]\[\sum\limits_{k=0}^{n}P\{X=k\}=\sum\limits_{k=0}^{n}\begin{pmatrix}n\\k\end{pmatrix}p^k(1-p)^{n-k}=(p+1-p)^n=1\]⼆项分布记作:\( X \sim b(n,p)\)期望:\(E(X)=np\)⽅差:\(D(X)=np(1-p)\)常⽤的场景:⽐如⼀个⼈射击\(n\)次,其中\(k\)次命中的概率,抽查50台设备,其中10台出故障的概率等等。
从下⾯的图中,我们可以看到命中次数先增加,到了3达到最⼤,之后⼜逐渐减少,⼀般来说,对于固定的\(n,p\),都具有这⼀性质。
(1)当\((n+1)p\)不为整数时,⼆项概率\(P\{X=k\}\)在\(k=[(n+1)p]\)时达到最⼤值;(2)当\((n+1)p\)为整数时,⼆项概率\(P\{X=k\}\)在\(k=(n+1)p,k=(n+1)p-1\)时达到最⼤值。
%每轮射击10次,命中概率0.3,射击10000轮,x中返回的是每轮中命中的次数x=binornd(10,0.3,10000,1);%bin的数⽬为10hist(x,10);N=100;p=0.4;k=0:N;%事件发⽣k次的概率pdf=binopdf(k,N,p);%事件发⽣不⼤于k次的概率cdf=binocdf(k,N,p);plotyy(k,pdf,k,cdf);grid on;多项分布多项式分布是⼆项式分布的扩展,在多项式分布所代表的实验中,⼀次实验会有多个互斥结果,⽽⼆项式分布所代表的实验中,⼀次实验只有两个互斥结果。
医学统计学:3概率分布
组段(g/100g) 3~ 8~ 13~ 18~ 23~ 28~ 33~ 38~ 43~ 48~ 53~ 58~63
频数 f 36 39 47 30 18 16 3 7 1 1 1 1
累计频数Σf 36 75 122 152 170 186 189 196 197 198 199 200
累计频率(%) 18.0 37.5 61.0 76.0 85.0 93.0 94.5 98.0 98.5 99.0 99.5 100.0
1
2
死生生
0.80.20.2=0.032
0.096
生死死
0.20.80.8=0.128
死生死
0.80.20.8=0.128
2
1
死死生
0.80.80.2=0.128
0.384
死死死
0.80.80.8=0.512
3
0
1.000
0.512
—————
1.000
概率的乘法法则 和加法法则
乘法法则 : 几个独立事件同时发生的概率,等于各 独立事件的概率之积。
否 是 否 0.9×0.1×0.9
否 否 是 0.9×0.9×0.1
2
是 是 否 0.1×0.1×0.9
是 否 是 0.1×0.9×0.1
否 是 是 0.9×0.1×0.1
3
是 是 是 0.1×0.1×0.1
0.729 0.243
0.027
0.001
由于实验是每个观察单位分别进行,因此实 验结果是互相独立的,如病人的治愈或未愈, 性别的雌雄,生存死亡,阳性或阴性。
请据此估计该地成年男子第一秒肺通气量的 95%参考值范围。
因为第一秒肺通气量仅过低属异常,故此参考值 范围属仅有下限的单侧参考值范围。又因此指标 近似正态分布,故可用正态分布法求其95%参考 值范围如下:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
P(x) 0.5 0.4 0.3 0.2 0.1 0
0 1 2 3 4 5 6 7 8
150
1 [8.471010 1.90108 ]
1
9 10 11 12 13 14 15
n=10,π =0.3
x
Poisson分布 (Poisson Distribution)
Siméon-Denis Poisson
二项分布的定义
总体阳性率 样本含量 n 在总体率为 的总体中随机抽样,抽取样本含量 为n的样本,有X例为阳性的概率:
P( X ) CnX X (1 ) n X
称X服从二项分布,记为:X~B(n,)
n! C X !(n X )!
X n
n! n( n 1 )( n 2 )1
Poisson分布(Poisson Distribution) 正态分布(Normal Distribution)
二项分布 (Binomial Distribution)
二项分布
0.20 1 0.80
n3
X
0
概率
0.8×0.8×0.8 0.2×0.8×0.8 0.8×0.2×0.8 0.8×0.8×0.2
150 ! P(10) 0.1310 0.87140 0.0055 10!(150 10)!
6 7 8 9 10 11 12 13 14 15
n=10,π =0.3
x
二项分布累计概率计算
二项分布出现阳性的次数至多为k次的概率为:
P( X k ) P( X ) p(0) p(1) ... p(k )
Poisson分布的定义
可以证明: 很小,n很大时,单位(面积、容 积、时间等)内某稀有事件发生数X的概率
P( X ) CnX X (1 ) n X
P( X ) e
X
X!
n
称X服从Poisson分布,记作X~Poisson( ) X=0,1,2,……。
21 June 1781 (Pitviers) - 25 Apr 1840 (Paris)
很小,n很大,
总体
0.0001 0.9999
X为单位(面积、容积、时间 等)内某稀有事件发生数。
10万(单位人口)人中某恶性 肿瘤的发生数;
1ml(单位体积)水中大肠杆菌 数;
1h(单位时间)内放射物质的 放射次数; 显微镜中1个视野(单位面积) 内血细胞的计数; 1cm3(单位体积)空气中粉尘 的计数; ……
二项分布的均数和标准差
如果每次试验出现阳性结果的概率均为π,进行n 次独立重复试验,出现X次阳性结果,则X的 总体均数: 总体方差:
X n n 1
2 X X
P(x) 0.5 0.4 0.3 0.2 0.1 0
0 1 2 3 4 5 6 7 8
总体标准差:
0.512
1
1 C3 0.21 (1 0.2) 2
0.384
2
P( X ) CnX X (1 ) n X
C 0.2 (1 0.2)
2 3 2
1
3
0.096 3 C3 0.23 (1 0.2) 0 0.008
0
1
2
3
0.512 0.384 0.096 0.008 (0.2 0.8)3 1
Poisson分布的应用条件
观察结果是二分类变量,如阳性与阴性、治愈与 未愈、生存与死亡等; 每个观察对象发生阳性结果的概率为,发生阴性 结果的概率为1- ; 各个观察对象的结果是相互独立的; 接近0或1。
某地20年间共出生肢短畸形儿10名,现随机抽取1年, 这1年中出生肢短畸形儿的人数为X,则X分别为0,1, 2,……的概率为?
n 总体标准差: (1 ) p n
6 7 8 9 10 11 12 13 14 15
n=10,π =0.3
x
实例:已知钩虫感染率为6.7%,如果随机 抽查某地150人,记样本钩虫感染率为p , 求 p 的标准差(抽样误差) p 。
p
(1 )
n
0.067(1 0.067) 0.96
P( X 4) P( X ) p(0) p(1) p(2) p(3) p(4)
X 0 4
e 0.96 0.960 e 0.96 0.961 e 0.96 0.962 e 0.96 0.963 e 0.96 0.964 0! 1! 2! 3! 4! 0.997
二项分布的应用条件
观察结果是二分类变量,如阳性与阴性、治愈与未 愈、生存与死亡等; 每个观察对象发生阳性结果的概率为,发生阴性 结果的概率为1- ; 各个观察对象的结果是相互独立的。
二项分布的图形(见pdf.sas)
P(x) 0.5 0.4 0.3 0.2 0.1 0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
X 0
k
P(x) 0.5 0.4 0.3 0.2 0.1 0
0 1 2
出现阳性的次数至少为k次的概率为:
P( X k ) P( X ) 1 p( X k 1)
X k
n
或p(k ) p(k 1) ... p(n)
3
4
5
6
7
8
9 10 11 12 13 14 15
X 0 X 0
P(x) 0.4 0.3 0.2 0.1 0
0 2 4 6 8 10 12 14 16 18 20 22
X
X!
至少为k次的概率为:
P( X k ) 1 P( X )
X 0
k 1
或p(k ) p(k 1) ... p(n)
λ =3
x
例4-8:如果某地新生儿先天性心脏病的发病概率 为8‰,那么该地120名新生儿中至多有4人患先天 性心脏病的概率有多大?
P( X ) e
X
X!
表4-2 某地每年出生肢短畸形儿概率分布
X P(X)
0 0.607
1 0.303
2 0.076
3 0.013
4 0.002
5 0.000
表4-2 某地每年出生肢短畸形儿概率分布
X P(X)
P(X)
0 0.607
1 0.303
2 0.076
3 0.013
4 0.002
n 120 0.008 0.96
P( X 4) e
X
e 0.96 0.964 0.014 X! 4!
λ =3
x
Poisson分布累计概率
如果稀有事件发生次数的总体均数为λ,那么该稀 有事件发生次数X至多为k次的概率为 :
k k
P( X k ) P( X ) e
n 1
9 10 11 12 13 14 15
n=10,π =0.3
x
二项分布的均数和标准差
X 如果出现阳性结果的频率为 p ,则p的 n
总体均数: 总体方差:
p
p
2
(1 )
P(x) 0.5 0.4 0.3 0.2 0.1 0
0 1 2 3 4 5
λ =1
P(x) 0.4 0.3 0.2 0.1 0
0 2 4 6 8 10 12 14 16
x
P(x) 0.4 0.3 0.2 0.1 0
18 20 22
0 2 4 6
λ =3
x
8
10
12
14
16
18
20
22
λ =6
x
λ =10
x
Poisson分布的图形特征
离散型分布 Poisson分布的图形与 有关。 愈小,分布 愈偏,随着 增大,分布趋于对称。
x
9 10 11 12 13 14 15
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15
n=10,π =0.3
x
n=20,π =0.3
x
图4-2 π=0.3时, 不同n值对应的二项分布
二项分布的图形
图4-1 π=0.5时,不同n值对应的二项分布
二项分布的图形特征
离散型分布
二项分布图的形态取决于n与,高峰在=n处 当接近0.5时,图形对称;离0.5愈远,对称性愈差, 但随着n的增大,分布趋于对称。 当n→∞时,只要不太靠近0或1, 二项分布近似于正 态分布。
P(x) 0.5 0.4 0.3 0.2 0.1 0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
n=3,π =0.3
P(x) 0.5 0.4 0.3 0.2 0.1 0
0 1 2 3 4 5 6 7 8
x
n=6,π =0.3
P(x) 0.5 0.4 0.3 0.2 0.1 0
10
1.9010 2.1110
8
7
2.31107
9 10 11 12 13 14 15
n=10,π =0.3
x
例4-6:某地钩虫感染率为13%,随机抽查当地150人,其中至少 有2名感染钩虫的概率有多大?
P( X 2) P( X ) 1 [ p(0) p(1)]
二项分布概率估计
例4-5 :如果某地钩虫感染率为13%,随机观察当 地150人,其中有10人感染钩虫的概率有多大?