利用网格线巧求三角函数值

合集下载

解读特殊背景中三角函数的求法

解读特殊背景中三角函数的求法

C . 三

D.— 4
— 一
图 3
图 5

【 分析 】 图中的背 景 比较 多 , 是前 三种
1 4
T n t e l I i g e n t ma t h e ma t i c s
1 ■ ■敦 掌
C H U ZH o I 、 I G S HEN G S H l JI E

三 、以 圆 为 背景
3 . ( 2 0 0 7 ・ 山 东烟 台 ) 吹 图 4 , 已知 4B 是 半 圆 D的 直 径 , 弦 A D, B C相 交 于 点 P, 若

以 网 格 为 背 景
) .
B.
1 . 正 方 形 网格 中 , 厶4 0 B如 图 1放 置 ,
晰, 因 此 常 常 犯 以下 错 误 .

s i n c  ̄ .

忽视 正 弦 、 余 弦 的有 界 性
例1计 算 l 2 一 c 。 s 4 0 o l + 、 /
【 错解】 原式= ÷一 c 0 s 4 0 。 + s i n 5 0 。 - 1
:s i n5 0 ̄ -s i n5 0。 一 2 1


【 正解 】 原式= c o s 4 0 。l 2 +l -s i n5 0。
:s i n 50  ̄ -s i n 50 。 +

1 2
二 、函 数 值 与 边 长 大 小 无 关
例2 在R t AAB C中 , 如 果各 边 长 度 都
类 型 的综 合 . 仔 细 观 察 图形 发 现 : 1 是 圆
则 C O S AOB的 值 为 (

网格中的三角函数

网格中的三角函数

1网格中的锐角三角函数网格是同学们从小就熟悉的图形,在网格中隐含的条件有:1.直角;2.单位长度。

所以在网格中可以求一个锐角的三角函数,是近几年中考的热点,下面举例说明。

一、在网格中与勾股定理现结合求一个锐角的三角函数。

【例1】 三角形在正方形网格纸中的位如图1,则sin α的值是( ).[解析] 本题在网格中考查锐角的正弦的意义,首先要用勾股定理计算直角三角形斜边的长.一般情况下,为了减小计算量,把小正方形的边长设为1.选C .练习1(广州市2014)如图2,在边长为1的小正方形组成的网格中,的三个顶点均在格点上,则( ).(A ) (B ) (C ) (D )练习2 (2014年福州)如图3,在边长为1个单位长度的小正方形所组成的网格中,△ABC 的顶点均在格点上,344543B .; C .35;D .A. 35图3图22sinB 的值是 .3.(2011四川)如图4,在4×4的正方形网格中, tanα= .A .1B .2C .12D4.(2011甘肃兰州)如图5,A 、B 、C 三点在正方形网格线的交点处,若将△ACB 绕着点A 逆时针旋转得到△AC’B’,则tanB’的值为 .A .12B .13C .14 D3. (2011江苏连云港)如图6,△ABC 的顶点都在方格纸的格点上,则sin A =_______.在网格中求一个锐角的三角函数时,根据图中角的位置。

充分利用网格中的直角和边,然后根据勾股定理求出相应的边长,最后利用三角函数公式进行计算,达到解决问题的目的。

二、在网格中与辅助线相结合求一个锐角的三角函数。

【例2】 (2014•贺州)如图7-1网格中的每个小正方形的边长都是1,△ABC 每个顶点都在网格的交点处,则sinA= .[解析] 虽然网格中隐含直角,但是∠A 是△ABC中图7-1图7-2图4图6图5的一个锐角,而△ABC不是直角三角形,不能直接运用三角函数公式进行计算,必须先做辅助线构造直角三角形,使∠A在一个直角三角形中,然后求出所对应的斜边和对边,而后解决问题。

锐角三角函数值的求解攻略

锐角三角函数值的求解攻略

锐角三角函数值的求解攻略浙江嘉善县泗洲中学(314100)杨晓霞[摘要]锐角三角函数是历年中考数学的重点和热点内容,研究锐角三角函数对中考应用题的复习备考乃至中考数学命题模式的把握都有非常重要的指导意义.[关键词]三角函数;锐角;求解[中图分类号]G633.6[文献标识码]A[文章编号]1674-6058(2021)08-0020-02一、定义法[例1]如图1,在Rt△ABC中,∠ACB=90°,BC=3,AC=15,AB的垂直平分线DE交BC的延长线于点D,垂足为E,求sin∠CAD的值.分析:在图1中,∠CAD为直角三角形CAD的一个内角,根据锐角的正弦的定义,可知sin∠CAD=CDAD.因此,本题的解题关键是求出∠CAD的对边CD和斜边AD的长度.根据线段的垂直平分线的性质易知AD=BD.已知条件BC=3,可表示出CD长.在Rt△CAD中运用勾股定理求解.当然,这里最好引入一个未知数,以简便表示相关线段长度.解:因为AB的垂直平分线DE交BC的延长线于点D,所以有AD=BD.不妨设AD=BD=x,又BC=3,则CD=x-3,而AC=15,在Rt△CAD中,根据勾股定理知AC2+CD2=AD2,即15+()x-32=x2,解得x=4.即AD=4,CD=1,所以sin∠CAD=CDAD=14.点评:本题主要考查锐角三角函数中正弦的定义,并检测学生对一元二次方程的求解的掌握程度,勾股定理在解题中起了关键作用.二、参数法[例2]如图2,在△ABC中,∠C=90°,sin A=25,求sin B的值.分析:根据已知条件中的sin A=25,可以结合锐角三角函数中正弦的定义,引入一个参数,设出角A的对边CB和斜边AB的长度,再运用勾股定理求得角A的邻边AC的长度后,问题得解.解:因为∠C=90°,sin A=25,根据此比值可设CB=2x,AB=5x,其中x>0,再由勾股定理得AC2=AB2-CB2=21x2,即AC=21x,结合锐角三角函数中正弦的定义可知,sin B=ACAB=21x5x=点评:熟练掌握锐角三角函数中正弦的定义是解决本题的关键所在,若已知条件中给出具体角的比值,通常的做法是引入一个大于0的参数,根据比值设出相应边的长度,然后根据勾股定理求解.三、构造法1.三角形中的构造[例3]如图3,在直角△BAD中,延长斜边BD到点C,使得DC=12BD,连接AC,若tan B=53,求tan∠CAD的值.分析:本题要求tan∠CAD,但由于∠CAD不在图中已知的直角三角形中,需要另外构造直角三角形,使得∠CAD置于其中.可以过点D作边AD的垂线,构造出直角三角形ADH来解决.解:过点D作边AD的垂线DH交AC于H,垂足为D,如图4所示,根据△BAD为直角三角形可知,∠BAD=∠ADH=90°,所以AB∥DH,易证得△CDH∽△CBA,进而得到DH AB=CD CB,因为已知条件中有DC=12BD,则DH AB=CD CB=13,又在Rt△BAD中,tan B=53,不妨设AD=5k,AB=3k,这样DH=k,故在Rt△ADH中,有tan∠CAD=DHAD=k5k=15.点评:如果在三角形中求相关角的三角函数值时,所求角并不在已知直角三角形中,这时我们就需要通过作垂线段来构造直角三角形,从而将所求角置于直角三角形中,再结合三角函数值的定义求解.本题还运用了相似三角形的相关性质.此外,本题亦可图1图2图3图4[基金项目]本文系全国教育科学“十三五”规划2017年度教育部重点课题“核心素养视角下的中学数学命题模式研究”(批准号:DHA17035)成果.数学·解题研究过点C 作直线AD 的垂线,通过构造出两个相似的直角三角形,利用相似比计算出相应的边长求解.2.圆中的构造[例4]如图5,在半径为3的圆O 中,直径AB 与弦CD 相交于点E ,连接AC ,BD ,若AC =2,求tan D 的值.分析:题中已知条件提及直径AB ,又要求角D 的正切值,自然联想到这里应该是要借助“直径AB 所对的圆周角为直角”这一性质来构造直角三角形,然后将角D 置于其中求解.解:连接BC ,如图6所示,因为AB 为直径,则∠ACB =90°,这样在直角三角形ACB 中,有tan A =BCAC,根据圆周角的性质,不难发现∠A =∠D ,故tan D =BCAC,又圆O 的半径为3,AC =2,那么BC =AB 2-AC 2=36-4=42,所以tan D =BCAC=422=22.点评:在圆中求锐角三角函数值时,利用直径来构造直角三角形是最常用的构造方法,一般还会利用“同弧(或等弧)所对的圆周角相等”这一性质,将目标角进行等量转化.3.网格中的构造[例5]如图7所示,已知△ABC 的三个顶点均在格点上,则cos A 的值为.图7图8分析:因为网格中无直角三角形,所以需要借助网格格点构造直角三角形,不妨通过点B 来构造,连接格点B 、D ,如图8所示,易知△ABD 为直角三角形.解:如图8所示,连接格点B 、D ,根据正方形的对角线的特征,易知△ABD 为直角三角形,可设小正方形的边长为1,则AB =10,AD =22,所以cos A =AD AB =2210=255.点评:在网格中求锐角三角函数值,一般都是借助网格中的格点去构造直角三角形,通常构造的方法也不是唯一的,本题也可以通过补网格,利用格点C 来构造直角三角形.四、等量转化法1.网格中的转化[例6]如图9,在边长相同的小正方形网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,AB 、CD 相交于点P,则tan∠APD 的值为.图9图10分析:本题可将∠APD 转化为∠BPC ,然后通过小正方形的对角线构造直角三角形解决.解析:连接格点B 、Q ,交DC 于点H ,如图10所示,则BH ⊥DC ,所以tan∠APD =tan∠BPH =BHPH ,若设小正方形的边长为1,那么BH=易知△BDP ∽△ACP ,则DP PC =BD AC =13,所以DP =14DC=那么PH =DH -DP 故tan∠APD =BH PH =22=2.点评:在网格中,若对所求角直接构造直角三角形较困难,可以进行适当的等量转化.本题将∠APD 等量转化为∠BPC 是解题的关键.2.折叠中的转化[例7]如图11,在△ABC 中,∠ACB =90°,AC =BC =4,将△ABC 折叠,使点A 落在BC边上的点D 处,EF 为折痕,若AE =3,则sin∠BFD =.分析:根据折叠的性质,∠A =∠EDF =45°,注意到∠BFD =180°-∠B -∠BDF =135°-∠BDF ,∠CDE =180°-∠EDF -∠BDF =135°-∠BDF .这样将∠BFD 等量转化成∠CDE ,再在Rt△CDE 中求解.解析:由题意知,∠A =∠EDF =∠B =45°,在△BFD 中,∠BFD =180°-∠B -∠BDF =135°-∠BDF ,又因为∠CDE =180°-∠EDF -∠BDF =135°-∠BDF ,所以∠BFD =∠CDE ,易知CE =1,DE =3,故sin∠BFD =sin∠CDE =CE DE =13.点评:折叠问题中,要紧扣相关角、边之间的等量关系.将∠BFD 等量转化成∠CDE 是成功解决本题的关键一步.锐角三角函数值的求解是中考数学的必考题型,其涉及的题目类型多变,可采用的解题策略也较多,在平时的教学过程中,教师要注意归纳、小结各种解题方法,以便学生在解题时可以信手拈来.(责任编辑黄桂坚)图5图6图11数学·解题研究。

例谈网格中求锐角三角函数值问题

例谈网格中求锐角三角函数值问题

例谈网格中求锐角三角函数值问题●胡永强 (阳山实验初级中学校,江苏苏州 215151) 摘 要:文章研究了在网格中求锐角三角函数值的问题,分别给出两类问题的解决策略,从“化斜为直、转化、方程”等数学思想方法角度对多种解法进行了总结.关键词:网格;锐角三角函数;化斜为直思想;转化思想;方程思想中图分类号:O124.1 文献标识码:A 文章编号:1003 6407(2020)03 0016 03 网格是一种研究数学问题的常用工具,如在图形的各种变换(如平移、翻折、旋转、位似)、函数图像、相似三角形的判定、确定圆弧的圆心、图案设计与面积计算、求锐角三角函数值等问题中有着广泛的应用.据说笛卡尔也曾受到蜘蛛结网的启发,在网格中发明了坐标系,发展出解析几何这门新的数学分支,说明网格与数学问题关系密切.本文主要探讨在网格中求锐角三角函数值问题.1 正方形网格正方形网格中主要有两大类题型:一是角的顶点在格点上;二是角的顶点不在格点上.顶点在格点上的又包括残缺三角形类型和非直角三角形类型两种.对于残缺型需补全三角形,再利用勾股定理求出相关边长即可解决;对于顶点在格点上的非直角三角形类型,常在三角形内部作高线构造直角三角形,利用勾股定理和等面积公式等知识计算出相关线段的长度即可解决;对于角的顶点不在格点上的类型通常作所求角某一条边的平行线,构造所求角的顶点在格点上的同位角,再依托其同位角构造一个直角三角形来解决.下面选取几道例题加以说明.1.1 残缺的格点三角形———补全 例1 如图1,点A,B,C是小正方形的顶点,(上接第15页)体对应关系不容易看出来,但是有了这样的观念,才会在“数形结合”思想的引领下,引入参数,顺藤摸瓜,最后让潜在的事实浮出水面.又比如几何直观的意识在问题探索中的作用.文中在一般化和特殊化原则的互动下,用动态的眼光分析问题,从图3、图4联想到图5、图6,使得一些属性呈现出高度的统一.3.2 教师要成为解题方面学生学习的典范在解题中学会解题,在解题过程的回顾中捕捉看似“浪费”的信息,学会思维环节的取舍.比如文中提及的“两条直线的斜率是互为相反数,即kAC+kBC=0,”这一特殊的数量关系,一旦察觉,就能捕捉到两个等腰三角形,从而开阔了视野.教师在解题教学时引用的例题,正是自己在问题解决过程中经历了“是什么,怎么做,为什么”这样的层层逼近,逐渐“从明确走向深刻”,甚至是领悟到“众里寻他千百度,蓦然回首,那人却在灯火阑珊处”的妙处,因此迫不及待地想把这份体验带给学生.教师应该就自己解题时所经历的“千转百回”和“顿悟”转化为教学形态,从而成为解题方面学生学习的典范.参 考 文 献[1] 波利亚.怎样解题[M].上海:上海科技教育出版社,2007:序言.[2] 裴光亚.教学的底线[J].中学数学教学参考:中旬,2018(4):1.[3] 罗增儒.中学数学解题的理论与实践[M].南宁:广西教育出版社,2008:182.·61·中学教研(数学)2020年第3期收文日期:2019 09 23;修订日期:2019 10 25基金项目:江苏省苏州市教育规划课题(192010343)作者简介:胡永强(1981—),男,江苏新沂人,中学高级教师.研究方向:数学教育.且每个小正方形的边长为1,则tan∠BAC的值为( )A.12 B.1 C.槡33槡 D.3图1图2分析 要计算tan∠BAC的值,需要将∠BAC放到一个直角三角形中.联结BC,如图2,可通过证明△ABE≌△BCD推导出∠ABC是直角,再运用勾股定理求出∠BAC的对边BC和邻边AB的长,进而求出tan∠BAC的值.另外也可由△ABE≌△BCD得出AB=BC,再结合∠ABC是直角,可以根据正切的定义得出tan∠BAC的值为1.1.2 非直角三角形的格点三角形———作高例2 如图3,网格中的每一个正方形的边长都是1,△ABC的每一个顶点都在网格的格点处,则sinA的值为.图3图4分析 要求出sinA的值,需要把∠BAC放到一个直角三角形中,可以过点B或点C作△ABC的高线.受网格所限,如图4,可作BD⊥AC,垂足为点D,运用勾股定理求出边AB的长,运用等面积法求出高BD的长,从而计算出sinA的值.1.3 角的顶点不在格点上类型———平移图5例3 如图5,网格中的每一个正方形的边长都是1,点A,B,C,D都在格点处,AB与CD相交于点O,则tan∠BOD的值为.分析 ∠BOD的顶点O不在格点上,添加高线构造出直角三角形后,边长的计算比较困难.可以考虑平移∠BOD的某一条边,将∠BOD的顶点O平移到某一格点上,进而依托此格点在给定的网格中构造出一个格点直角三角形,这样就可以求出相关锐角的三角函数值,再根据同位角相等进行等量代换,从而解决问题.本题可以平移边OB,也可平移边OD,下面各举一例:1)如图6,平移∠BOD的边OB,使点O平移到点C处,作CE∥AB,过点D作CE的垂线,交CE于点E,得到Rt△CDE.在Rt△CDE中,求出tan∠ECD的值,由CE∥AB可得∠BOD=∠ECD,从而得到tan∠BOD的值.图6图72)如图7,平移∠BOD的边OD至AF处,过点F作AF的垂线交AB于点G,构造Rt△AGF,在Rt△AGF中完成计算.2 非正方形网格除了正方形网格之外,非正方形网格问题近来也频频出现,如矩形网格、菱形网格、等边三角形网格等.这些非正方形网格中问题的解决思路和方法与正方形网格类似,可以将正方形网格中的解题思路和方法迁移过来.2.1 矩形网格———添线例4 图8是一个长方形网格,组成网格的小长方形的长是宽的2倍,△ABC的顶点都是网格中的格点处,则sin∠BAC的值是.图8图9分析 根据网格小长方形的长为宽的2倍,可以添加两条垂线将其转化为正方形网格,如图9所示,将其转化为1.2中的问题,然后通过作高法解决.·71·2020年第3期中学教研(数学)2.2 菱形网格———求角例5 如图10,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角∠O=60°,点A,B,C都在格点上,则tan∠ABC的值是.图10图11分析 此图属于残缺型问题,如图11所示,可以通过延长BC到点D,联结AD构造△ABD,结合∠O=60°这一条件及菱形每条对角线平分一组对角的性质可证明∠ADB是直角,再结合等腰三角形和勾股定理等知识求出线段AD和线段BD的长,从而求出tan∠ABC的值.2.3 等边三角形网格———组合例6 在由10个完全相同的等边三角形构成的网格图中,∠α,∠β如图12所示,则cos(α+β)=.图12图13分析 如图13,将各个点标上字母,联结DE,利用等边三角形的性质及三角形内角和定理可得出∠α=30°.同理可得∠CDE=∠CED=30°=∠α,由∠AEC=60°结合∠AED=∠AEC+∠CED可得出∠AED=90°,设每个小等边三角形的边长为a,则AE=2a,DE=槡3a.在Rt△ADE中,利用勾股定理可得出AD的长,再结合余弦的定义即可求出cos(α+β)的值.3 此类问题中蕴含的几种思想方法3.1 化斜为直思想在初中阶段,求锐角三角函数值常常需要将锐角放在直角三角形中求解,因此构造直角三角形是解决这类问题的首要条件.常用的构造方法是作高线,可以在三角形内部作高,也可以在外部作高,具体作哪条边的高线要结合题目特点作出选择,通常选取较为方便计算的一种情形.在菱形及等边三角形网格中,也需要添加适当的辅助线构造直角三角形以解决问题.3.2 转化思想转化思想是解决数学问题中一种十分常用的数学思想,它是将数学问题由难变易、由陌生变熟悉的过程.转化思想在解决此类问题中比比皆是,如将非直角三角形转化为直角三角形;将顶点不在格点上的角通过作平行线构造同位角转化为顶点在格点上的角;将非格点三角形的情形转化为格点三角形的情形;将长方形网格转化为正方形网格等都体现了转化的思想.3.3 方程思想在求锐角三角函数值的过程中,通常需要先构造直角三角形,再计算出所求三角函数值所需要的边.格点三角形的边长常常借助其形外的直角三角形使用勾股定理作为等量关系列出方程,完成计算;在格点三角形内部构造高线后,常需要用同一图形面积相等作为等量关系列出方程,完成计算;有时候还需要借助网格线的平行关系寻找相似三角形,将相似三角形对应边成比例这条定理作为等量关系列出方程,完成计算.由此可见,方程思想在解决此类问题中意义重大.4 结束语网格中可供研究的数学问题是非常丰富的,本文只是笔者在网格长河中采撷的一朵浪花,列举出在网格中求锐角三角函数值的几种类型及相应的解题策略,结合思考和分析问题的过程归纳出解决此类问题的几种常用数学思想方法.由于水平和经验有限,文中必定存在诸多瑕疵,望读者多批评指正.同时,文中所阐述的解题策略还不够完善,必然还存在其他更多优秀的解法,待广大师生在解题实践过程中不断探索和完善[1].参 考 文 献[1] 姜晓翔.初中数学命题方法之延续策略[J].中国数学教育,2019(6):39 43.·81·中学教研(数学)2020年第3期。

方格纸中求三角函数值

方格纸中求三角函数值

tan∠ABC 的值是

4.如图是由边长相同的小正方形组成的网格 ,A、B、 P、Q四点均在正方形网格的格点上 ,线段AB、PQ每个小的四边
形都是相同的正方形,A,B,C,D都在格点
上,AB与CD相交于O,则tan∠BOD的值等


6.如图,把n个边长为1的正方形拼接成一排,求
tan∠BA1C=
,tan∠BA2C=
tan∠BA3C=
,tan∠BA4C=
…按此规律,写出tan∠BAnC=
数式表示).

, .(用含n的代
方格纸中求三角函数值
1.如图,在网格中,小正方形的边长均为1,
点A,B,C都在网格上,则∠ABC的正切值


2.如图,在5×7的网格中,若△ABC的三条
边共经过4个格点,则tan B的值为

3.如图,6 个形状、大小完全相同的菱形组成
网格,菱形的顶点称为格点.已知菱形的一
个角∠O为 60°,A,B,C都在格点上,则

三角函数专题之网格中的三角函数

三角函数专题之网格中的三角函数

三角函数专题训练--网格中的三角函数第一节:网格中的正弦和余弦1.在边长为1的正方形网格中,点A 、B 、C 、D 都在格点上,AB 与CD 相交于点O ,则∠AOD 的正弦值为()A .12B .2C D 2.如图,在2×2正方形网格中,以格点为顶点的△ABC 的面积等于32,则sin ∠CAB =()A .2B .35C .5D .3103.如图,在边长为1的小正方形网格中,点A 、B 、C 、C 都在这些小正方形的顶点上,AB 、CD 相交于点O ,则cos AOD ∠=()A .2B .2C .3D 4.如图,点A ,B ,C 在正方形网格的格点上,则sin ∠BAC 等于()A B C .5D .105.如图,在边长1正网格中,A 、B 、C 都在网格线上,AB 与CD 相交于点D ,则sin ADC ∠是()A B C D 6.如图,点A ,B ,C 在正方形网格的格点上,则sin ∠BAC=()A .6B .26C .13D .137.如图,在45⨯的正方形网格中,每个小正方形的边长都是1,ABC 的顶点都在这些小正方形的顶点上,那么sin ACB ∠的值为().A B C .35D .458.如图,在正方形网格中,△ABC 的位置如图,其中点A 、B 、C 分别在格点上,则sinA 的值是()A B .13C D9.如图,在5×4的正方形网格中,每个小正方形的边长都是l ,△ABC 的顶点都在这些小正方形的顶点上,则cos ∠BAC 的值为()A .43B .34C .35D .4510.在正方形网格中,△ABC 的位置如图所示,则cos ∠B 的值为()A .12B .2C D .311.三角形在方格纸中的位置如图所示,则cos 的值是()A .35B C .45D 12.如图,△ABC 的顶点都是正方形网格中的格点,则cos ∠ABC 等于()AB C D .2313.如图是一个3×2的长方形网格,组成网格的小长方形长为宽的2倍,△ABC 的顶点都是网格中的格点,则cos ∠ABC 的值是()A .23B .25C .35D .4514.如图,△ABC 的顶点都在正方形网格的格点上,则cos ∠BAC 的值为()A .34B .25C .35D .4515.如图,在下列网格中,小正方形的边长均为1,点A 、B 、O 都在格点上,则AOB ∠的正弦值是()A .10B .12C .13D .1016.如图,在正方形网格中,小正方形的边长为1,点A 、B 、C 、D 都在格点上,AB 与CD 相交于点O ,则∠AOC 的正弦值是__.17.如图,已知△ABC 的三个顶点均在格点上,则cosA 的值为_______.18.如图所示,AOB ∠是放置在正方形网格中的一个角,则sin AOB ∠的值是________.19.如图所示方格纸中每个小正方形的边长为1,其中有三个格点A 、B 、C ,则sin ∠ABC=_____.20.如图是4×4的正方形网格,点C在∠BAD的一边AD上,且A、B、C为格点,sin∠BAD的值是___________.∠=______.21.如图在边长相同的小正方形组成的网格中,点A、B、O在小正方形的顶点上,则cos OAB22.如图,在4×4的正方形方格图形中,小正方形的顶点称为格点,△ABC的顶点都在格点上,则∠BAC 的余弦值是____.23.如图,在6x6的正方形网格中,△ABC的顶点都在小正方形的顶点上,则cos∠BAC的值是_____.24.如图,在边长为1的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点O,则cos∠AOD=___.25.如图,在4×4的正方形网格图中有△ABC,则∠ABC的余弦值为_____.26.如图,∠AOB是放置在正方形网格中的一个角,则cos∠AOB的值是_____.27.如图,在5×5的正方形网格中,每个小正方形的边长均为1,点A、B、C都在格点上,则cos∠BAC 的值为_____.的顶点都在小正方形的格点上,28.如图,在44⨯的正方形网格(每个小正方形的边长都是1)中,ABC∠=_______.则sin ACB29.如图,每个小正方形的边长都是1,点A,B,C都在小正方形的顶点上,则∠ABC的正弦值为____.第二节:网格中的正切1.如图,在边长相同的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB与CD相交于点P,则tan∠APD的值为()A .2BC .3D2.如图,将△ABC 放在每个小正方形的边长为1的网格中,点A ,B ,C 均在格点上,则tan C 的值是()A .2B .43C .1D .343.如图,A 、B 、C 是小正方形的顶点,且每个小正方形的边长为1,则tan ∠BAC 的值为()A .12B .1C .3D 4.如图是由边长相同的小正方形组成的网格,A ,B ,P ,Q 四点均在正方形网格的格点上,线段AB ,PQ 相交于点M ,则图中∠QMB 的正切值是()A .12B .1CD .25.如图,ABC 的顶点在正方形网格的格点处,则tan C 的值为()A .12B .13C .2D .16.如图,将 ABC 放在每个小正方形的边长为1的网格中,点A ,B ,C 均在格点上,则∠A 的正切值是()A B C .2D .127.如图,在54⨯的正方形网格中,每个小正方形的边长都是1,ABC 的顶点都在这些小正方形的顶点上,则tan BAC ∠的值为()A .43B .34C .35D .458.如图,A ,B ,C ,三点在正方形网格线的交点处,若将ABC 绕着点A 逆时针旋转得到AC B ''△,则tan B '的值为()A .12B .13C .14D .49.如图所示,ABC ∆的顶点在正方形网格的格点上,则tan A 的值为()A .12B .2C .2D .10.在图网格中,小正方形的边长为1,点A 、B 、C 、D 都在格点上,AB 与CD 相交于点O ,则∠AOC 的正切值是()A .23B .32C .35D .5311.如图,在方格纸中,点A ,B ,C 都在格点上,则tan ∠ABC 的值是()A .2B .12C D 12.如图,在边长为1的小正方形组成的网格中,△ABC 的三个顶点均在格点上,则tan ∠ABC 的值为()A .35B .34C .5D .113.如图,∠AOB 是放置在正方形网格中的一个角,则tan ∠AOB ()A .3B C .1D .2514.∠BAC 放在正方形网格纸的位置如图,则tan ∠BAC 的值为()A .16B .15C .13D .1215.如图,在55 的正方形网格中,每个小正方形的边长均为1,ABC 的顶点均在格点(网格线的交点)上,则tan B 的值为______.16.如图,点A ,B ,C ,D 在正方形网格的格点上,连接AB 、CD 交于点P ,则tan ∠APC =________________.17.如图,在8×4的矩形网格中,每格小正方形的边长都是1,若△ABC 的三个顶点在图中相应的格点上,则tan ∠ACB 的值为_____.18.如图,在5×4的正方形网格中,每个小正方形的边长都是1,ABC 的顶点都在这些小正方形的顶点上,则tan ABC ∠的值为_______.19.如图,在边长为1的正方形网格中,连接格点A ,B 和C ,D ,AB 与CD 相交于点E ,则tan AEC ∠=___.20.如图,在4×5的正方形网格中点A ,B ,C 都在格点上,则tan ∠ABC =_____.21.如图,把n 个边长为1的正方形拼接成一排,求得tan 1BA C ∠=1,tan 2BA C ∠=13,31tan 7BA C ∠=,计算4tan BA C ∠=_________________.22.如图,将BAC ∠放置在55⨯的正方形网格中,如果顶点A 、B 、C 均在格点上,那么BAC ∠的正切值为______.23.如图,在边长相同的小正方形组成的网格中,点A 、B 、C 都在这些小正方形的顶点上,则tan ∠ABC 的值为_____.24.如图,在Rt △ABC 纸片上可按如图所示方式剪出一正方体表面展开图,直角三角形的两直角边与正方体展开图左下角正方形的边共线,斜边恰好经过两个正方形的顶点,已知BC =24cm ,则这个展开图可折成的正方体的体积为_____cm 3.25.如图,在边长为1的小正方形组成的网格中,△ABC 的三个顶点均在格点上,则tan C =__.26.如图,在正方形网格中,三角形ABC 的三个顶点都在网格中的格点上,则tan ∠B 的值为_____.27.如图,在边长相同的小正方形组成的网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,线段AB 、CD ,相交于点P ,则tan APD ∠的值是__________.28.如图,在边长都为1的小正方形组成的网格中,点A ,B ,C ,D 都在这些小正方形的顶点上,AB ,CD 相交于点P ,则tan ∠APD 的值是____________.29.如图,把n 个边长为1的正方形拼接成一排,求得1tan 1BA C ∠=,21tan 3BA C ∠=,31tan 7BA C ∠=,计算4tan BA C ∠=__________,……按此规律,写出tan n BA C ∠=__________(用含n 的代数式表示).。

网格线中的三角函数问题

网格线中的三角函数问题

网格线中的三角函数问题作者:周宏伟来源:《初中生世界·九年级》2016年第12期在我们常见的网格线中,有很多三角函数求值问题,题中蕴含着很多思想方法,为便于大家复习,现归纳如下,供大家在学习过程中参考.一、补形的策略例1 (2015·山西)如图1,在网格中,小正方形的边长均为1,点A、B、C都在格点上,则∠ABC的正切值是().A.2B.[255]C.[55]D.[12]【方法探究】如何把∠ABC放在某个直角三角形中是解决本题的关键,仔细观察可以发现:AB在小正方形的对角线上,能联想到45°角,只要连接AC即可构造出直角,然后在直角三角形中运用三角函数的定义求解.【过程展示】如图2,连接AC,则∠CAB=90°,在Rt△ABC中,tan∠ABC=[ACAB]=[12].故选D.例2 (2016·福建福州)如图3,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角(∠O)为60°,A、B、C都在格点上,则tan∠ABC的值是 .【方法探究】观察网格的特点,首先考虑如何将∠ABC放到一个直角三角形中,这是解决问题的关键.【过程展示】如图4,连接DA,DC,则点B、C、D在同一直线上,设菱形的边长为a,由题意得∠ADF=30°,∠BDF=60°,∴∠ADB=90°,AD=[3a],DB=2a,tan∠ABC=[ADBD]=[3a2a]=[32],故答案为[32].二、转化的思想例3 (2012·江苏泰州)如图5,在由边长相同的小正方形组成的网格中,点A、B、C、D 都在这些小正方形的顶点上,AB、CD相交于点P,则tan∠APD的值为 .【方法探究】直接求∠APD的正切值比较困难,可以考虑利用线段的平移对∠APD进行转化,找出它的“替身”,然后进行求解,以达到化难为易的目的.【过程展示】如图6,取小正方形的顶点E,连接AE、BE,由图可知CD∥BE,∴∠APD=∠ABE,在Rt△ABE中,tan∠ABE=2,∴tan∠APD=2.例4 (2016·山东淄博)图7是由边长相同的小正方形组成的网格,A、B、P、Q四点均在正方形网格的格点上,线段AB、PQ相交于点M,则图中∠QMB的正切值是().A.[12]B.1C.[3]D.2【方法探究】如果直接求tan∠QMB可考虑连接AP、BQ,运用△APM∽△BQM求出AM或BM,然后在Rt△APM或Rt△BQM中求解;如果间接求解,应考虑对∠QMB进行转化,最好的思路是考虑线段的平移.①如图8,平移AB至A′Q,在Rt△A′PQ中求tan∠Q;②如图9,平移AB至PB′,在Rt△B′PQ中求tan∠P;③如图10,平移PQ使其经过线段AB中点D,然后在Rt△ACD中求tan∠ADC.【过程展示】以第①种平移为例,如图8,平移AB至A′Q后,∠Q=∠QMB,在Rt△A′PQ中,tan∠Q=[A′PA′Q]=2,所以tan∠QMB=2.故选D.三、等积法例5 (2015·四川乐山)如图11,已知△ABC的三个顶点均在格点上,则cosA的值为().A.[33]B.[55]C.[233]D.[255]【方法探究】通过作三角形的高构造直角三角形,先利用等积法(或勾股定理)求出高,然后运用余弦的定义解答.【过程展示】如图11,设小正方形的边长为1,过点B作AC边上的高BD.由勾股定理得:AC=[32],AB=[10],由等积法可得:[12]BC∙h=[12]∙AC∙BD,即[12]×2×3=[12]×[32]∙BD,解得BD=[2],由勾股定理,得AD=[AB2-BD2]=[22],∴cosA=[ADAB]=[2210]=[255].故选D.例6 (2014·广西贺州)如图12,网格中的每个小正方形的边长都是1,△ABC每个顶点都在网格的交点处,则sinA= .【方法探究】在替换与∠A相等的角比较困难的情况下,可以考虑通过作高进行构造,把∠A放在某个直角三角形中进行求解.【过程展示】如图12,过点C作CE⊥AB,垂足为E,连接AD,则AD⊥BC,从不同的角度把△ABC的面积计算两次得:S△ABC=[12]AB∙CE=[12]BC∙AD,所以[12]×[25]×CE=[12]×[22]×[32],所以CE=[655],在Rt△ACE中,sin∠CAE=[CEAC]=[65525]=[35].由此可见,遇到网格中的锐角三角函数求值问题,我们通常有两种思路:一是原地不动,想办法构造直角三角形求解;二是转移该角,如利用平行线进行转化.一般情况下,遇到求三角函数问题优先考虑转化,在没有好的转化思路的情况下再考虑如何构造.(作者单位:江苏省东台市新街镇中学)。

九年级数学下册常考点微专题提分精练(网格中求正切(解析版)

九年级数学下册常考点微专题提分精练(网格中求正切(解析版)

专题23 网格中求正切【法一】构造直角三角形求如图是由边长为1的小正方形组成的44⨯网格,则tan BAC ∠=________.【详解】解:连接BC ,由勾股定理可知:22125AC =+=,222425BC =+=,22345AB =+=,∵2225(5)(25)=+,∵222AB AC BC =+,∵ABC 为直角三角形,∵25tan 25BC BAC AC ∠===, 故答案为:2. 如图,A ,B ,C ,D 均为网格图中的格点,线段AB 与CD 相交于点P ,则∵APD 的正切值为( )A .3B .2C .2D .32【详解】:连接CM ,DN ,由题意得:CM ∵AB ,∵∵APD =∵NCD ,由题意得:CN 2=12+12=2,DN 2=32+32=18,∵2,1832CN DN ===,∵tan∵DCN =DN CN =322=3, ∵∵APD 的正切值为:3,故选:A .如图,网格中小正方形的边长均为1,点A,B、O都在格点(小正方形的顶点)上,则tan AOB∠的值是______.解:作AC OB⊥交于点C,由图可知:=416=25+OB,∵11=22?·22AOBS AC OB⨯⨯=,∵2=5AC,∵22OA=,∵2246 855=-=-=OC OA AC,∵1 tan3∠==ACAOBOC,故答案为:1 31.如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∵ABC的正切值是()A.2B25C5D.12【答案】D【分析】连接AC,根据网格图不难得出=90CAB∠︒,求出AC、AB的长度即可求出ABC∠的正切值.【详解】连接AC,A.1B C D.22A .13B .35C .23 D .12根据图象可知454590ADB ∠=︒+︒=︒,的值是_____.【答案】1【分析】根据已知图形得出45CAD ∠=︒,再求解即可.【详解】连接CD,∠若A,C,B′三点共线,则tan∵B′CB=________.【答案】2【点睛】本题考查了勾股定理、勾股定理的逆定理和锐角三角函数关系,得出BD⊥CB′是解题的关键.6.如图,在边长相同的小正方形组成的网格中,点A、B、C都在这些小正方形的顶点上,则∵ABC的正切值是.【答案】2因为所以考点:勾股定理的正方形方格图形中,小正方形的顶点称为格点,ABC的顶点都在格点∠的正切值是______.上,则ABC【答案】2【分析】先根据勾股定理的逆定理判断出∵ABC的形状,再由锐角三角函数的定义即可得出结论.【详解】解:由图可知,AC2=22+42=20,BC2=12+22=5,AB2=32+42=25,∵∵ABC是直角三角形,且∵ACB=90°,∠=_____________相交于点P,则tan APC∵四边形BCED是正方形,切值为_____.【答案】1∵由勾股定理得:AB2=32+12=10,BC2=22+12=5,AC2=22+12=5点.(1)CD的长度为______;(2)CD与网格线交于E,则DE=______;(3)若AB与CD所夹锐角为α,则tanα=______.(3)取各点M,连接CM,则CM∵AB,取格点H,连接MH,使MH交CD于N,如图,.【点睛】此题考查勾股定理,相似三角形的判定及性质,旋转的性质,锐角三角函数,正确__________.【点睛】本题考查网格中求角的正切值问题,关键是把给的角转移到三角形中,掌握正方形相应的格点上则tan A的值为______.1则∵ABD是直角三角形,∵ABD=90°,a12ABC S ∆=12ABC S ∆=∴322BD ⋅BD ∴=【点睛】本题考查了解直角三角形,掌握勾股定理和直角三角形的边角间关系是解决本题的三、解答题15.如图,在边长为1的小正方形组成的网格中,△ABC 的三个顶点均在格点上, 请按要求完成下列各题:(1)用2B 铅笔画AD∵BC (D 为格点),连接CD ;(2)线段CD 的长为 ;(3)请你在△ACD 的三个内角中任选一个锐角,若你所选的锐角是 ,则它所对应的正弦函数值是;(4)若E为BC中点,则tan∵CAE的值是.D点即为所求;BC=2三边的长分别为,求∵A 的正切值.小华是这样解决问题的:如图2所示,先在一个正方形网格(每个小正方形的边长均为1)中画出格点∵ABC (∵ABC 三个顶点都在小正方形的顶点处),然后在这个正方形网格中再画一个和∵ABC 相似的格点∵DEF ,从而使问题得解.(1)图2中与A ∠相等的角为 , A ∠的正切值为 ;(2)参考小华解决问题的方法,利用图4中的正方形网格(每个小正方形的边长均为1)解决问题:如图3,在∵GHK 中,HK=2,HG=KG=延长HK ,求+αβ∠∠的度数.11正方形的顶点上.(1)在图中画一个以线段AB为斜边的等腰直角三角形ABE,点E在小正方形的顶点上,并直接写出BE的长;(2)在图中画一个钝角三角形CDF,点F在小正方形的顶点上,并且三角形CDF的面积为92,3tan4DCF∠=.【点睛】本题考查了作图-应用与设计作图、勾股定理、等腰直角三角形、解直角三角形等。

一文搞定初中数学网格问题

一文搞定初中数学网格问题

一、网格题型在中考数学中的10大考点梳理网格问题,近年来在一些省市的中考试卷中频频出现,这类问题虽然出现在小网格中,却隐藏着大智慧,从中可以开发智力,发展思维.笔者以中考试题为例,说明小网格中的大智慧.一、正方形网格(一)全网格形全网格形是指有完整的网格的题型.1.网格中求坐标例1:如图1,在一单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,…都是斜边在x轴上、斜边长分别为2,4,6,…的等腰直角三角形.若△A1A2A3的顶点坐标分别为A t(2,0),A2(1,-1),A3(0,0),则依图中所示规律,A2012的坐标为________.分析:由于2012是4的倍数,故A1~A4;A5~A8;…每4个为一组,可见,A2012在x轴上方,横坐标为2,再根据纵坐标变化找到规律即求得纵坐标为1006.答案:(2,1006)2.网格与等腰三角形例2:如图2所示的正方形网格中,网格线的交点称为格点°已知A、B是两格点,如果C 也是图中的格点,且使得△ABC为等腰三角形,则点G的个数是()(A)6(B)7(C)8(D)9分析:有两种情况:①AB为等腰△ABC底边,C在A B的中垂线上,因此,符合条件的C点有4个;②AB为等腰ABC其中的一条腰,符合条件的C点有4个,应选C.本题考查了等腰三角形的判定,解答本题关键是根据题意,画出符合实际条件的图形.3.网格与直角三角形例3:如图3,在网格中有一个直角三角形(网格中的每个小正方形的边长均为1个单位长度).若以该三角形一边为公共边画一个新三角形与原来的直角三角形一起组成一个等腰三角形,要求新三角形与原来的直角三角形除了有一条公共边外,没有其它的公共点,新三角形的顶点不一定在格点上.那么符合要求的新三角形有()(A)4个(B)6个(C)7个(D)9个分析:根据题意可知:如图4,以原三角形AB边为公共边的三角形有4个,分别如图上D1,D2,D3,D4;以原三角形BC边为公共边的三角形有2个,分别如图上D5,D6;以原三角形AC边为公共边的三角形只有1个,如图上D.符合要求新三角形有7个,选C例4:如图5是5×5的正方形网格,△ABC的顶点都在小正方形的顶点上,像△ABC这样的三角形叫格点三角形.画与△ABC有一条公共边且全等的格点三角形,这样的格点三角形最多可以画出_______个.分析:如图6,以BC为公共边可画出△BDC,△BEC,△BFC三个三角形和原三角形全等;以AB为公共边可画出三个三角形△ABC、△ABM、△AB H和原三角形全等,所以可画出6个.5.网格与相似例5:图7所示4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC相似的三角形所在的网格图形是()[来源学*科*网][来源学科网Z XX K]分析:根据勾股定理,得BC=,AB,AC;根据勾股定理的逆定理可判断△ABC为直角三角形,∠ABC=90°,BC:AB=1:2.在四个图形中,显然答案B中的三角形为直角三角形且两条直角边的比为1:2,选B.例6:如图8,在3×5的正方形网格中,每个小正方形的边长为1,求图中点A到P Q的距离A H的长.分析:连结A P,AQ组成一个三角形.你可以用长方形面积减去三个直角三角形求得[来源学科网]出△A P Q的面积,而S△A P Q=12P Q×A H,P Q的长用勾股定理计算,求得答案为755.7.网格中求三角函数[来源:Z xx k.C o m]例7:如图9,在正方形网格中有△ABC,则s i n∠ABC的值等于()(A)31010(B)1010(C)13(D)10分析:首先利用勾股定理分别算出AB、BC、AC的长度,再利用勾股定理的逆定理得出∠ACB=90°,最后根据锐角三角函数的定义求出s i n∠ABC的值,选B.8.网格与圆例8:如图10,边长为1的小正方形构成的网格中,半径为1的⊙O 的圆心O 在格点上,点A 、B 、C 、E 也都在格点上,CB 与⊙O 相交于点D ,连结ED ,则∠AED 的正切值等于_______.分析:本题是锐角三角函数的定义和圆周角的运用,解答本题的关键是利用同弧所对的圆周角相等把求∠AED 的正切值转化成求∠ACB 的正切值.tan ∠AED =tan ∠ABC =12AC AB .(二)局部网格形局部网格形指是网格图案的一部分,需要通过添线补全网格的题型.例9:如图11(1),每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为()(A )90°(B )60°(C )45°(D )30°分析:先把局部网格补全成如图11(2)所示,易见△ACD 与△CBE 全等,可得出AC =BC ,∠ACB =90°,所以∠ABC =45°.选C .二、长方形网格例10:如图12,在长方形网格中,每个小长方形的长为2,宽为1,A、B两点在网格格点上,若点C也在网格格点上,以A、B、C为顶点的三角形面积为2,则满足条件的点C 个数是()(A)2(B)3(C)4(D)5[来源学科网]分析:底和高分别是4和1的有两个,底和高分别是2和2的有两个,选C.二、中考网格型试题赏析近几年中考中,网格型试题可谓大放异彩,这类试题构思精巧、形式活泼,能很好地考查图形变换、勾股定理、相似等数学知识,体现分类讨论、数形结合等重要的数学思想,当网格作为背景与双曲线、抛物线、圆、三角形结合时,更会出现许多让人意想不到的思路、方法,使我们在解题中感受到无穷的乐趣,本文撷取其中的几例进行解析,供参考.一、网格与双曲线结合例1:在边长为1的4×4方格上建立直角坐标系(如图1),在第一象限内画出反比例函数16y x =、6y x =、4y x=的图象,它们分别经过方格中的一个格点、二个格点、三个格点;在边长为1的10×10方格上建立直角坐标系(如图2),在第一象限内画出反比例函数的图象,使它们经过方格中的三个或四个格点,则最多可画出()条.(A )12(B )13(C )25(D )50分析:易知系数k 为合数,且能分解成两个均不超过10的正整数的乘积的形式.如4=1×4=2×2,则反比例函数4y x=的图象经过以下3个格点:(1,4),(2,2),(4,1).6=1×6=2×3,则反比例函数6y x =的图象经过以下4个格点:(1,6),(2,3),(3,2),(6,1).经过尝试,符合条件的k 值共有13个,分别为:4,6,8,9,10,12,16,18,20,24,30,36,40.所以,经过方格中的三个或四个格点的反比例函数的图象最多可以画出13条.故选B .二、网格与抛物线结合例2:已知图3中的每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点,请你在图中任意画一条抛物线,问所画的抛物线最多能经过81个格点中的多少个?()(A )6(B )7(C )8(D )9分析:我们先解决如下问题:对于抛物线y =ax 2+bx +c ,当a 、b 、c 满足什么条件时,当x 取任意整数时,函数值y 都是整数?(为叙述方便,不妨假设抛物线开口向上.)当x =0时,y =c ;当x =l 时,y =a +b +c .∴c 为整数,a +b +c 为整数,∴a +b 必为整数,又∵当x =2时,y =4a +2b +c =2a +2(a +b )+c 是整数,∴2a 必为整数,∴a 应为12的整数倍,即a =12,1,32,2,…从对称的角度考虑,建立如图4所示的平面直角坐标系.(1)若抛物线的顶点在格点上,要使抛物线尽可能多地经过格点,显然应使抛物线过原点.所画抛物线y =ax 2(n =12,1,32,2,…)最多能经过5个格点.(2)若抛物线的顶点不在格点上,要使抛物线尽可能多地经过格点,显然应使抛物线),=ax 2+bx +c 过原点和(1,0).所画抛物线y =ax (x -1)(a =12,1,32,2,…)最多能经过8个格点.此时a =12,这8个格点分别为:(-3,6),(-2,3),(-1,1),(0,0),(1,0),(2,1),(3,3),(4,6).[来源学&科&网Z&X &X &K]综上所述,抛物线最多能经过81个格点中的8个,故选C .三、网格与圆结合例3:请你在12×12的网格图形中任意画一个圆,则所画的圆最多能经过169个格点中的____个格点.分析:从对称的角度考虑,建立如图5所示的平面直角坐标系.(1)如图5,若圆心在格点上,要使圆尽可能多地经过格点,显然应使圆心过原点,所画圆最多能经过12个格点,此时圆的半径为5.这12个格点分别为:(0,5),(3,4),(4,3),(5,0),[来源学§科§网](4,-3),(3,-4),(0,-5),(-3,-4),(-4,-3),(-5,0),(-4,3),(-3,4).(2)如图6,若圆心不在格点上,要使圆尽可能多地经过格点,显然应使圆心过(12,12),所画圆最多能经过16个格点,此时圆的半径为2,这16个格点分别为:(2,6),(4,5),(5,4),(6,2),(6,-1),(5,-3),(4,-4),(2,-5),(-1,-5),(-3,-4),(-4,-3),(-5,-1),(-5,2),(-4,4),(-3,5),(-1,6).综上所述,所画的圆最多能经过169个格点中的16个格点.四、网格与三角形结合例4:如图7,将△ABC 放在每个小正方形的边长为1网格中,点A 、B 、C 均落在格点上.(1)△ABC 的面积等于____;(2)若四边形DEF G 是△ABC 中所能包含的面积最大的正方形,请你在如图7所示的网格中,用直尺和三角尺画出该正方形,并简要说明画图的方法.分析:(1)S △ABC =12×4×3=6;(2)如果正方形的一边落在三角形的一边上,其余两个顶点分别在三角形的另外两条边上,则这样的正方形面积是最大的.如图8,在△ABC 中,AB =c ,AB 边上的高CN =h c ,△ABC 的面积为S ,正方形的一边DE 落在AB 上,其余两个顶点F 、G 分别在BC 、AC 上.设正方形DEF G 的边长是x.所以,图8中正方形一边落在AB 边上,另两个顶点落在其他两边上时,121212744x ==+;图8中正方形一边落在BC边上,另两个顶点落在其他两边上时,图8中正方形一边落在AC 边上,另两个顶点落在其他两边上时,[来源学科网Z|X X|K]∴当正方形一边落在BC边上时,正方形DEF G的面积最大.画法一:如图9,在AB上任取一点P,作P Q⊥BC于点Q,以P Q为一边在△ABC内部画正方形P QMN;作射线BN交AC于点D,过点D作D G⊥BC于点G,作DE⊥D G交AB 于点E,过点E作EF⊥BC于点F,则四边形DEF G即为所求.证明:由画图过程易得四边形DEF G为矩形,∵D G⊥BC,NM⊥BC,∴D G//NM,画法二:如图10,取格点P,连结P C,过点A画P C的平行线,与BC交于点Q,连结P Q 与AC相交得点D;过点D画CB的平行线,与AB相交得点E,分别过点D、E画P C的平行线,与CB相交得点G、F,则四边形DEF G即为所求.证明:由画图过程易得四边形DEF G为平行四边形,[来源学科网]由格点P的位置易判断P C=CB,且P C⊥CB,∴D G⊥CB,∴平行四边形DEF G为矩形。

网格中的三角函数

网格中的三角函数

网格中的三角函数【构造直角】例:如图,网格中的每个小正方形的边长都是1,△ABC 每个顶点都在网格的交点处,则sin ∠ABP变式1:网格中的每个小正方形的边长都是1,△ABC 每个顶点都在网格的交点处,求tan 12∠BAP 的值。

变式2:网格中的每个小正方形的边长都是1,△ABC 每个顶点都在网格的交点处,求tan2∠BAP 的值1.网格中的每个小正方形的边长都是1,△ABC 每个顶点都在网格的交点处,则sinA 的=______________.【解析】如图,过点C 作CE ⊥AB ,则=A sin AC CE =52CE ,利用等积法,可知CE AB 21AD BC 21⋅⋅=⋅⋅,∴CE 5221232221⋅⋅=⋅⋅,∴556CE =,∴=A sin 5352556=【等角转换】 2.如图,在边长相同的小正方形组成的网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,AB 、CD 相交于点P ,则tan ∠APD 的值是 .【解析】思路一:构造直角连接BE ,由四边形EDBC 为正方形可知,CD ⊥BE ,∴tan△APD=tan△BPF=PFBF,设小正方形边长为2(可自己思考一下为什么?),可得BF=1,CD=2,由△APC ∽△BPD ,且相似比为3:1可得3DP PC =,∴43CD PC =,∴PC=432⋅=23,∴PF=PC —CF=21,∴tan△BPF=2211=思路二:角度转换连接BE ,可知BE ∥CD ,∴△APD=△BPF=△ABE ,连接AE ,∵AE 和BE 均为正方形对角线,易得AE ⊥BE ,∴tan△ABE=2BEAE=3.如图,在边长相同的小正方形网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,AB ,CD 相交于点P , 则PBAP的值= ,tan ∠APD 的值= .4.如图,在4×4的正方形方格图形中,小正方形的顶点称为格点,△ABC 的顶点都在格点上,则图中△ABC 的余弦值是_________.5.如图,在网格中,小正方形的边长均为1,点A ,B ,C 都在格点上,则△ABC 的正切值是________.6.如图,在正方形网格中,△ABC 的顶点都在格点上,则tan ∠ACB 的值为 .7.如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角(∠O )为60°,A ,B ,C 都在格点上,则tan ∠ABC 的值是 .8.如图,网格中的四个格点组成菱形ABCD ,则tan ∠DBC 的值为_________.9.如图1是由边长为1的小正方形组成的网格,点A 、B 、C 、D 都在网格的格点上,AC 、BD 相交于点O .10.(一)探索发现(1)如图1,当AB=2时,连接AD ,则∠ADO=90°,BO=2DO ,AD=2,BO=232,tan ∠AOD=_________.如图2,当AB=3时,画AH ⊥BD 交BD 的延长线于H ,则AH=223, BO=________,tan ∠AOD=________. 如图3,当AB=4时,tan ∠AOD=__________.(2)猜想:当AB=n (n >0)时,tan ∠AOD=______________.(结果用含n 的代数式表示),请证明你的猜想. (二)解决问题(3)如图,两个正方形的一边CD 、CG 在同一直线上,连接CF 、DE 相交于点O ,若tan ∠COE=1317,求正方形ABCD 和正方形CEFG 的边长之比.【解析】(一)探索发现(1)如图1,当AB=2时,∵BO=2DO ,BO=232, ∴OD=32,又∵∠ADO=90°,AD=2,∴tan ∠AOD=322ODAD==3,即tan ∠AOD=3. 如图2,设DCBE 为正方形,连接CE ,交BD 于F . ∵四边形BCDE 是正方形, ∴DF=CF=BF=21BD=21CE ,BD ⊥CE . 根据题意得:AB ∥DC ,∴△AOB ∽△COD ,∴DO :BO=CD :AB .当AB=3时,DO :BO=1:3,∴BO=423. ∵S △ABD =21BD •AH=21AB •ED ,∴BD •AH=AB •ED , ∴AH=22323BD ED AB ==⋅, DO :BO=CD :AB=1:3,∴DO :DF=1:2,∴OF :DF=1:2,即OF :CF=1:2. 在Rt △OCF 中,tan ∠COF=OFCF=2, ∵∠AOD=∠COF ,∴tan ∠AOD=2;如图3,当AB=4时,DO :BO=CD :AB=1:4, ∴DO :DF=1:2.5=2:5,∴OF :DF=3:5,即OF :CF=3:5. 在Rt △OCF 中,tan ∠COF=35OF CF =, ∵∠AOD=∠COF ,∴tan ∠AOD=35;故答案是:3;423;2;35;(2)猜想:当AB=n (n >0)时,tan ∠AOD=1-n 1n +(结果用含n 的代数式表示). 证明:过点A 作AH ⊥BH 于点H ,则AH=BH=22n . ∵AB ∥OD ,∴△AOB ∽△COD ,∴1nCD AB OD OB ==, ∴OB=1n n 2+.∴OH=BH ﹣OB=22n ﹣1n n 2+.∴tan ∠AOD=1-n 1n +; 故答案是:1-n 1n +;(二)解决问题(3)解:如图4,过点D 作DH ⊥CF 于点H ,则tan ∠DOH=HODH. ∵∠DOH=∠COE , ∴tan ∠DOH=1317, 又由(一)结论得:13171-n 1n =+, ∴n=215 ∴正方形ABCD 和正方形CEFG 的边长之比为215. 强化训练11.阅读下面的材料:某数学学习小组遇到这样一个问题: 如果α,β都为锐角,且tan α=,tan β=,求α+β的度数.该数学课外小组最后是这样解决问题的:如图1,把α,β放在正方形网格中,使得∠ABD=α,∠CBE=β,且BA ,BC 在直线BD 的两侧,连接AC . (1)观察图象可知:α+β= °;(2)请参考该数学小组的方法解决问题:如果α,β都为锐角,当tan α=3,tan β=时,在图2的正方形网格中,画出∠MON=α﹣β,并求∠MON 的度数.12.问题呈现如图1,在边长为1的正方形网格中,连接格点D ,N 和E ,C ,DN 和EC 相交于点P ,求tan ∠CPN 的值. 方法归纳求一个锐角的三角函数值,我们往往需要找出(或构造出)一个直角三角形.观察发现问题中∠CPN不在直角三角形中,我们常常利用网格画平行线等方法解决此类问题,比如连接格点M,N,可得MN∥EC,则∠DNM=∠CPN,连接DM,那么∠CPN就变换到Rt△DMN中.问题解决(1)直接写出图1中tan∠CPN的值为;(2)如图2,在边长为1的正方形网格中,AN与CM相交于点P,求cos∠CPN 的值;思维拓展(3)如图3,AB⊥BC,AB=4BC,点M在AB上,且AM=BC,延长CB到N,使BN=2BC,连接AN交CM的延长线于点P,用上述方法构造网格求∠CPN 的度数.13.(1)在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.如图1,某同学在解答这道题时,先建立一个每个小正方形的边长都是1的网格,再在网格中画出边长符合要求的格点三角形ABC(即△ABC三个顶点都在小正方形的顶点处),这样不需要求△ABC的高,而借用网格就能就算出它的面积.请你将△ABC的面积直接填写在横线上.思维拓展:(2)已知△ABC三边的长分别为a(a>0),求这个三角形的面积.我们把上述求△ABC面积的方法叫做构图法.如图2,网格中每个小正方形的边长都是a,请在网格中画出相应的△ABC,并求出它的面积.类比创新:(3)若△ABC三边的长分别为(m>0,n >0,且m≠n),求出这个三角形的面积.如图3,网格中每个小长方形长、宽都是m,n,请在网格中画出相应的△ABC,用网格计算这个三角形的面积.14.如图,在每个小正方形的边长为1的网格中,点A,B,C均在格点上.(1)AB的长等于;(2)在△ABC的内部有一点P,满足S△PAB :S△PBC:S△PCA=1:2:3,请在如图所示的网格中,用无刻度的直尺,画出点P,并简要说明点P的位置是如何找到的(不要求证明).15.如图,在由完全相同的小正方形组成的网格中,△ABC的三个顶点都在格点上.(1)请在网格中找一个格点P,连接PB、PC,使∠BPC=∠BAC,并简要说明理由;(2)直接写出此时tan∠BPC的值.16.如图,在正方形网格中,每个小正方形的边长都为1,点A点B在网格中的位置如图所示.(1)建立适当的平面直角坐标系,使点A点B的坐标分别为(1,2)(4,3);(2)点C的坐标为(3,6),在平面直角坐标系中找到点C的位置,连接AB、BC、CA,则∠ACB=°;(3)将点A、B、C的横坐标都乘以﹣1,纵坐标不变,分别得到点A1、B1、C1,在图中找到点A1、B1、C1并顺次连接点A1、B1、C1,得到△A1B1C1,则这两个三角形关于对称.17.如图,在正方形网格中建立平面直角坐标系,格点O为原点,格点A的坐标为(﹣1,3).(1)画出点A关于y轴对称的格点B,并写出点B的坐标(,);(2)将线段OA绕着原点O顺时针旋转90°,点A落在格点C处,画出线段OA扫过的平面区域(用阴影表示),则AC的长为;(3)过点C作AC的切线CD,D为格点,设直线CD的解析式为y=kx+b,y 随x的增大而;(填“增大”或“减小”)(4)连接BC,则tan∠BCD的值等于.。

Excel公式和函数 基本三角函数

Excel公式和函数  基本三角函数

Excel 公式和函数 基本三角函数在基本三角函数中,不仅包含正弦、余弦、正切等函数的应用,还包含其对应的一些反函数的用法。

由于三角函数的周期性,故反函数的定义域是有一定范围的。

本节主要学习三角函数的应用方法。

1.SIN 函数该函数返回给定角度的正弦值。

其中,正弦值是在直角三角形中,对边与斜边的比值。

语法:SIN(number)。

在SIN 函数中,只包含一个参数Number ,该参数为需要求解的正弦角度,以弧度表示。

例如,已知一个直角三角形ABC 中,角C 为直角,角A 的度数为60,求角B 的正弦值。

在工作表中,创建如图12-1所示的表格,并在B4单元格中,输入“=SIN((90-60)*PI()/180)”公式,即可计算出角B 的正弦值。

图12-1 计算正弦值 在计算角B 的正弦值时,可以首先求出角B 的度数,即(90-60)=30即为角B 的度数。

然后,运用SIN 函数求解正弦值,此时需先求出参数Number (弧度),其值为(90-60)*PI()/180。

最后得出角B 的正弦值为=SIN((90-60)*PI()/180)=0.5。

另外,可以使用RADIANS 函数直接将角度转化为弧度。

然后,直接计算正弦值。

下面来介绍RADIANS 函数的用法。

语法:RADIANS(angle)其中,参数Angle 为需要转换成弧度的角度。

例如,借助RADIANS 函数来求解角B 的正弦值。

在B4单元格中,输入“=SIN(RADIANS(90-60))”公式,即可求出角度B 的正弦值,如图12-2所示。

图12-2 求解正弦值提 示 由于RADIANS(30)返回的为弧度,故直接运用SIN(number)=SIN(RADIANS(90-60))公式,即可求得角B 的正弦值为0.5。

2.SINH 函数该函数为双曲线正弦函数,用于返回某一数字的双曲正弦值。

其语法为:SINH(number)。

其中,Number 为任意实数。

2022-2023学年山西省太原市第五十三中学九年级数学第一学期期末教学质量检测试题含解析

2022-2023学年山西省太原市第五十三中学九年级数学第一学期期末教学质量检测试题含解析

2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题(每题4分,共48分)1.下列图形中,是中心对称图形但不是轴对称图形的是 ( )A .B .C .D .2.如图,在边长为1的小正方形网格中,点,,A B C 都在这些小正方形的顶点上,则CBA ∠的余弦值是( )A .313B .23C .21313D .313133.二次函数2y ax bx c ++=的部分图象如图所示,有以下结论:①30a b ﹣=;②240b ac ﹣>;③520ab c +﹣>;④430b c +>,其中错误结论的个数是( )A .1B .2C .3D .44.已知如图:为估计池塘的宽度BC ,在池塘的一侧取一点A ,再分别取AB 、AC 的中点D 、E ,测得DE 的长度为20米,则池塘的宽BC 的长为( )A .30米B .60米C .40米D .25米5.一个高为3 cm 的圆锥的底面周长为8π cm ,则这个圆锥的母线长度为( )A .3 cmB .4 cmC .5 cmD .5π cm6.下列说法:①三点确定一个圆;②任何三角形有且只有一个内切圆;③相等的圆心角所对的弧相等;④正多边形一定是中心对称图形,其中真命题有( )A .1个B .2个C .3个D .4个7.若一元二次方程220x mx ++=有两个相等的实数根,则m 的值是( )A .2B .2±C .8±D .22±8.如图所示的几何体的俯视图是( )A .B .C .D .9.已知29x mx -+是关于x 的一个完全平方式,则m 的值是( ).A .6B .6±C .12D .8±10. 若函数y =(a -1)x 2-4x +2a 的图象与x 轴有且只有一个交点,则a 的值为( ).A .-1或2B .-1或1C .1或2D .-1或2或111.如图,以扇形 OAB 的顶点 O 为原点,半径 OB 所在的直线为 x 轴,建立平面直角坐标系,点 B 的坐标为(2,0),若抛物线 2y x n =+(n 为常数)与扇形 OAB 的边界总有两个公共点则 n 的取值范围是( )A .n>-4B .14n <C .1 -4n 4<<D .1 -4n 4≤≤12.如图,一次函数y=2x 与反比例函数y=k x (k >0)的图象交于A ,B 两点,点P 在以C (﹣2,0)为圆心,1为半径的⊙C 上,Q 是AP 的中点,已知OQ 长的最大值为32,则k 的值为( )A .4932 B .2518C .3225D .98 二、填空题(每题4分,共24分) 13.若关于x 的一元二次方程2(2)x m +=有两个相等的实数根,则m 的值为_________.14.图形之间的变换关系包括平移、______、轴对称以及它们的组合变换.15.如图,在平面直角坐标系中,抛物线232y x x =-+与x 轴交于A 、B 两点,与y 轴交于点C ,点D 是对称轴右侧抛物线上一点,且tan 3DCB ∠=,则点D 的坐标为___________.16.已知在正方形ABCD 中,点E 、F 分别为边BC 与CD 上的点,且∠EAF=45°,AE 与AF 分别交对角线BD 于点M 、N ,则下列结论正确的是_____.①∠BAE+∠DAF=45°;②∠AEB=∠AEF=∠ANM ;③BM+DN=MN ;④BE+DF=EF17.已知57y x =,则+-x y x y =_____________. 18.ABC ∆中,若6AB =,8BC =,120B ∠=︒,则ABC ∆的面积为________.三、解答题(共78分)19.(8分)如图,已知ABC ∆三个顶点的坐标分别为(1,2),(3,4),(2,6)A B C ---,在给出的平面直角坐标系中;(1)画出ABC ∆绕点A 顺时针旋转90︒后得到的11AB C ∆;并直接写出1B ,1C 的坐标;(2)计算线段AB 旋转到1AB 位置时扫过的图形面积.20.(8分)如图,AB 是⊙O 的直径,AC BC =,E 是OB 的中点,连接CE 并延长到点F ,使EF CE =.连接AF 交⊙O 于点D ,连接BD BF ,.(1)求证:直线BF 是⊙O 的切线;(2)若5AF =,求⊙O 的半径.21.(8分)如图,抛物线23y ax bx =++经过点A (1,0),B (4,0)与y 轴交于点C .(1)求抛物线的解析式;(2)如图①,在抛物线的对称轴上是否存在点P ,使得四边形PAOC 的周长最小?若存在,求出四边形PAOC 周长的最小值;若不存在,请说明理由.(3)如图②,点Q是线段OB上一动点,连接BC,在线段BC上是否存在这样的点M,使△CQM为等腰三角形且△BQM为直角三角形?若存在,求M的坐标;若不存在,请说明理由.22.(10分)如图⑴,在△ABC中,∠C=90°,AC=8cm,BC=6cm.点M由点B出发沿BA方向向点A匀速运动,同时点N由点A出发沿AC方向向点C匀速运动,它们的速度均为2cm/s .连接MN,设运动时间为t(s)﹙0<t<4﹚,解答下列问题:⑴设△AMN的面积为S,求S与t之间的函数关系式,并求出S的最大值;⑵如图⑵,连接MC,将△MNC沿NC翻折,得到四边形MNPC,当四边形MNPC为菱形时,求t的值;⑶当t的值为,△AMN是等腰三角形.23.(10分)若二次函数y=ax2+bx+c(a≠0)中,函数值y与自变量x的部分对应值如表:x …-2 -1 0 1 2 …y …0 -2 -2 0 4 …(1)求该二次函数的表达式;(2)当y≥4时,求自变量x的取值范围.24.(10分)以下各图均是由边长为1的小正方形组成的网格,图中的点A、B、C、D均在格点上.(1)在图①中,PC:PB=.(2)利用网格和无刻度的直尺作图,保留痕迹,不写作法.①如图②,在AB上找一点P,使AP=1.②如图③,在BD上找一点P,使△APB∽△CPD.25.(12分)某市百货商店服装部在销售中发现“米奇”童装平均每天可售出20件,每件获利40元.为了扩大销售,减少库存,增加利润,商场决定采取适当的降价措施,经过市场调查,发现如果每件童装每降价1元,则平均每天可多售出2件,要想平均每天在销售这种童装上获利1200元,那么每件童装应降价多少元?26.某校一课外活动小组为了了解学生最喜欢的球类运动况,随机抽查了本校九年级的200名学生,调查的结果如图所示,请根据该扇形统计图解答以下问题:(1)图中x 的值是________;(2)被查的200名生中最喜欢球运动的学生有________人;(3)若由3名最喜欢篮球运动的学生(记为123A A A 、、),1名最喜欢乒乓球运动的学生(记为B ),1名最喜欢足球运动的学生(记为C )组队外出参加一次联谊活动.欲从中选出2人担任组长(不分正副),列出所有可能情况,并求2人均是最喜欢篮球运动的学生的概率.参考答案一、选择题(每题4分,共48分)1、D【分析】根据中心对称图形和轴对称图形的定义即可得解.【详解】A 、不是中心对称图形,也不是轴对称图形,此项错误B 、是中心对称图形,也是轴对称图形,此项错误C 、不是中心对称图形,是轴对称图形,此项错误D 、是中心对称图形,但不是轴对称图形,此项正确故选:D .【点睛】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2、D【分析】由题意可知AD=2,BD=3,利用勾股定理求出AB 的长,再根据余弦的定义即可求出答案.【详解】解:如下图,根据题意可知,AD=2,BD=3, 由勾股定理可得:224913AB AD BD =++= ∴CBA ∠3131313=. 故选:D .【点睛】本题考查的知识点是利用网格求角的三角函数值,解此题的关键是利用勾股定理求出AB 的长.3、A 【分析】①对称轴为32x =-,得3b a =; ②函数图象与x 轴有两个不同的交点,得240b ac ∆=﹣>;③当1x =-时,0a b c +﹣>,当3x =-时,930a b c +﹣>,得520a b c +﹣>;④由对称性可知1x =时对应的y 值与4x =-时对应的y 值相等,当1x =时0433333330a b c b c b b c b a c a b c +++++++++<,===()<【详解】解:由图象可知00a c <,>,对称轴为32x =-, 322b x a∴=-=-, 3,b a ∴=,①正确;∵函数图象与x 轴有两个不同的交点,240b ac ∴∆=﹣>,, ②正确;当1x =﹣时,0a b c +->,当3x =-时,930a b c +﹣>,10420a b c ∴+﹣>,520a b c ∴+﹣>,③正确;由对称性可知1x =时对应的y 值与4x =-时对应的y 值相等,∴当1x =时0a b c ++<,3b a =,433333330b c b b c b a c a b c ∴+++++++===()<,430b c ∴+<,④错误;故选A .【点睛】考查二次函数的图象及性质;熟练掌握从函数图象获取信息,将信息与函数解析式相结合解题是关键.4、C【分析】根据三角形中位线定理可得DE=12BC ,代入数据可得答案. 【详解】解:∵线段AB ,AC 的中点为D ,E ,∴DE=12BC , ∵DE=20米,∴BC=40米,故选:C .【点睛】此题主要考查了三角形中位线定理,关键是掌握三角形的中位线平行于第三边,并且等于第三边的一半.5、C【分析】由底面圆的周长公式算出底面半径,圆锥的正视图是以母线长为腰,底面圆直径为底的等腰三角形,高、底面半径和母线长三边构成直角三角形,再用勾股定理算出母线长即可.【详解】解:由圆的周长公式2r=8ππ 得82r ππ= =4 由勾股定理222l h r =+l =故选:C .【点睛】本题考查了圆锥的周长公式,圆锥的正视图勾股定理等知识点.6、A【分析】根据圆的性质、三角形内切圆的性质、圆心角的性质以及中心对称图形的知识,依次分析可得出正确的命题,即可得出答案.【详解】①不共线的三点确定一个圆,错误,假命题;②任何三角形有且只有一个内切圆,正确,真命题;③在同一个圆中,圆心角相等所对的弧也相等,错误,假命题;④正五边形、正三角形都不是中心对称图形,错误,假命题;故答案为A.【点睛】本题考查了圆的性质、三角形内切圆的性质、圆心角的性质以及中心对称图形的知识,解题时记牢性质和判定方法是关键.7、D【分析】根据一元二次方程根的判别式0∆=,即可得到答案【详解】解:∵一元二次方程220x mx ++=有两个相等的实数根,∴24120m ∆=-⨯⨯=,解得:m =±故选择:D.【点睛】本题考查了一元二次方程根的判别式,解题的关键是熟练掌握利用根的判别式求参数的值.8、D【解析】试题分析:根据俯视图的作法即可得出结论.从上往下看该几何体的俯视图是D .故选D .考点:简单几何体的三视图.9、B【分析】这里首末两项是x 和3这两个数的平方,那么中间一项为加上或减去x 和3积的2倍,故m=±1.【详解】∵(x ±3)2=x 2±1x+32,∴29x mx -+是关于x 的一个完全平方式,则m=±1.故选:B .【点睛】本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.10、D【解析】当该函数是一次函数时,与x 轴必有一个交点,此时a -1=0,即a =1.当该函数是二次函数时,由图象与x 轴只有一个交点可知Δ=(-4)2-4(a -1)×2a =0,解得a1=-1,a2=2.综上所述,a =1或-1或2.故选D.11、D【分析】根据∠AOB =45°求出直线OA 的解析式,然后与抛物线解析式联立求出有一个公共点时的n 值,即为一个交点时的最大值,再求出抛物线经过点B 时的n 的值,即为一个交点时的最小值,然后写出n 的取值范围即可.【详解】解:由图可知,∠AOB =45°,∴直线OA 的解析式为y =x ,联立2y x n y x⎧=+⎨=⎩得:20x x n -+=, 24140b ac n ∆=-=-=,得14n =时,抛物线与OA 有一个交点, 此交点的横坐标为12, ∵点B 的坐标为(2,0),∴OA =2,∴点A 的横坐标与纵坐标均为:2sin 45⨯︒=,∴点A ,∴交点在线段AO 上;当抛物线经过点B (2,0)时,40n +=,解得n=-4,∴要使抛物线2y x n =+与扇形OAB 的边界总有两个公共点,则实数n 的取值范围是1-4n 4≤≤, 故选:D .【点睛】 本题考查了二次函数的性质,主要利用了联立两函数解析式确定交点个数的方法,根据图形求出有一个交点时的最大值与最小值是解题的关键.12、C【解析】如图,连接BP ,由反比例函数的对称性质以及三角形中位线定理可得OQ=12BP ,再根据OQ 的最大值从而可确定出BP 长的最大值,由题意可知当BP 过圆心C 时,BP 最长,过B 作BD ⊥x 轴于D ,继而根据正比例函数的性质以及勾股定理可求得点B 坐标,再根据点B 在反比例函数y=k x (k >0)的图象上,利用待定系数法即可求出k 的值.【详解】如图,连接BP ,由对称性得:OA=OB ,∵Q 是AP 的中点,∴OQ=12BP , ∵OQ 长的最大值为32, ∴BP 长的最大值为32×2=3, 如图,当BP 过圆心C 时,BP 最长,过B 作BD ⊥x 轴于D ,∵CP=1,∴BC=2,∵B 在直线y=2x 上,设B (t ,2t ),则CD=t ﹣(﹣2)=t+2,BD=﹣2t ,在Rt △BCD 中,由勾股定理得: BC 2=CD 2+BD 2,∴22=(t+2)2+(﹣2t )2,t=0(舍)或t=﹣45, ∴B (﹣45,﹣85), ∵点B 在反比例函数y=k x (k >0)的图象上,∴k=﹣45×(-85)=3225, 故选C .【点睛】本题考查的是代数与几何综合题,涉及了反比例函数图象上点的坐标特征,中位线定理,圆的基本性质等,综合性较强,有一定的难度,正确添加辅助线,确定出BP 过点C 时OQ 有最大值是解题的关键.二、填空题(每题4分,共24分)13、0【分析】根据一元二次方程根的判别式∆的正负判断即可.【详解】解:原方程可变形为2440x x m ++-=,由题意可得164(4)40m m ∴∆=--==所以0m =故答案为:0 【点睛】本题考查了一元二次方程,掌握根的判别式与一元二次方程的根的情况是解题的关键.14、旋转【分析】图形变换的形式包括平移、旋转和轴对称.【详解】图形变换的形式,分别为平移、旋转和轴对称故答案为:旋转.【点睛】本题考查了图形变换的几种形式,分别为平移、旋转和轴对称,以及他们的组合变换.15、715,24⎛⎫ ⎪⎝⎭【分析】根据已知条件tan 3DCB ∠=,需要构造直角三角形,过D 做DH ⊥CR 于点H,用含字母的代数式表示出PH 、RH,即可求解.【详解】解:过点D 作DQ ⊥x 轴于Q,交CB 延长线于R,作DH ⊥CR 于H,过R 做RF ⊥y 轴于F,∵抛物线232y x x =-+与x 轴交于A 、B 两点,与y 轴交于点C , ∴A(1,0), B(2,0)C(0,2)∴直线BC 的解析式为y=-x+2设点D 坐标为(m,m ²-3m+2),R(m,-m+2),∴DR=m ²-3m+2-(-m+2)=m ²-2m∵OA=OB=2∴∠CAO=ACO=45°=∠QBR=∠RDH,∴2m ,2(2)DH RH m ==- 222(2)(4)CH CR HR m m m ∴=-=--=- ∵tan 3DCB ∠=2(2)232(4)m DH CH m m -∴==- 72m ∴= 经检验是方程的解.2277153232224m m ⎛⎫∴-+=-⨯+= ⎪⎝⎭715(,)24D ∴ 故答案为:715(,)24D 【点睛】本题考查了函数性质和勾股定理逆定理的应用还有锐角三角函数值的应用,本题比较复杂,先根据题意构造直角三角形.16、①②④【分析】由∠EAF=45°,可得∠BAE+∠DAF=45°,故①正确;如图,把△ADF 绕点A 顺时针旋转90°得到△ABH ,根据三角形的外角的性质得到∠ANM=∠AEB ,于是得到∠AEB=∠AEF=∠ANM ;故②正确;由旋转的性质得,BH=DF ,AH=AF ,∠BAH=∠DAF ,由已知条件得到∠EAH=∠EAF=45°,根据全等三角形的性质得到EH=EF ,∴∠AEB=∠AEF ,求得BE+BH=BE+DF=EF ,故④正确;BM 、DN 、MN 存在BM 2+DN 2=MN 2的关系,故③错误.【详解】解:∵∠EAF=45°,∴∠BAE+∠DAF=45°,故①正确;如图,把△ADF 绕点A 顺时针旋转90°得到△ABH ,由旋转的性质得,BH=DF ,AH=AF ,∠BAH=∠DAF ,∵∠EAF=45°,∴∠EAH=∠BAH+∠BAE=∠DAF+∠BAE=90°-∠EAF=45°,∴∠EAH=∠EAF=45°,在△AEF 和△AEH 中, 45AH AF EAH EAF AE AE =⎧⎪∠=∠=︒⎨⎪=⎩,∴△AEF ≌△AEH (SAS ),∴EH=EF ,∴∠AEB=∠AEF ,∴BE+BH=BE+DF=EF ,故④正确;∵∠ANM=∠ADB+∠DAN=45°+∠DAN , ∠AEB=90°-∠BAE=90°-(∠HAE-∠BAH )=90°-(45°-∠BAH )=45°+∠BAH , ∴∠ANM=∠AEB ,∴∠AEB=∠AEF=∠ANM ;故②正确;BM 、DN 、MN 满足等式BM 2+DN 2=MN 2,而非BM+DN=MN ,故③错误.故答案为①②④.【点睛】本题考查了正方形的性质,全等三角形的判定与性质,等腰直角三角形的性质,勾股定理,熟记各性质并利用旋转变换作辅助线构造成全等三角形是解题的关键.17、6【分析】根据等比设k 法,设7,5x k y k ==则,代入即可求解 【详解】∵57y x = ∴设7,5x k y k ==则∴75126752x y k k k x y k k k++===-- 故答案为6【点睛】本题考查比例的性质,遇到等比引入新的参数是解题的关键。

在网格中巧求三角函数值

在网格中巧求三角函数值
求tanC的值
巩固练习
求tanC的值
求tanAOB的值
求tanAOB的值
求sin。
求sin∠BAC的值。
课后作业
1号,2号《同步训练》P49-53 3号—5号《同步训练》P49-52
面积法
D
例2 如图,在边长为1的小正方形组成的网格中 ,点A、B、C、D都在这些小正方形的顶点上,AB、 CD相交于点P,求tan∠APD的值。
E
O
例2 如图,在边长为1的小正方形组成的网格中 ,点A、B、C、D都在这些小正方形的顶点上,AB、 CD相交于点P,求tan∠APD的值。
O
巩固练习
在网格中求锐角三角函数值
例1(2015•山西)如图,在网格中,小正方形的 边长均为1,点A,B,C都在格点上,求∠ABC的正切 值。
利用互相垂直的相似矩形 的对角线构造直角三角形
例1(2015•山西)如图,在网格中,小正方形的 边长均为1,点A,B,C都在格点上,求∠ABC的正切 值。
例3(2015•南京二模)如图,方格纸中有三个格点A 、B、C,求sin∠ABC的值。

中考中的网格题都考些什么?

中考中的网格题都考些什么?

中考中的网格题都考些什么?一、根据作图分析判断图形之间的位置关系和数量关系【分析】根据勾股定理可以得到BC、CD、BD的长,再根据勾股定理的逆定理可以得到△BCD的形状,利用相似三角形的判定与性质,可以得到EF的长,然后即可得到CE的长,从而可以得到CE和BD的关系;根据图形,很容易判断△ABC≌△CBD和AC=CD不成立;再根据锐角三角函数可以得到∠ABC和∠CBD的关系.二、利用网格作图【仅用无刻度的直尺作图】2、(2021武汉中考)如图是由小正方形组成的5×7网格,每个小正方形的顶点叫做格点,矩形ABCD的四个顶点都是格点.仅用无刻度的直尺在给定网格中完成画图。

(1)在图(1)中,先在边AB上画点E,使AE=2BE,使EF平分矩形ABCD的面积;(2)在图(2)中,先画△BCD的高CG,再在边AB上画点H ,使 DH = BH 。

【分析】(1)如图取格点T,连接DT交AB于点E,连接BD,取BD 的中点F,作直线EF即可.(2)取格点M,N,连接MN,交AB于点O , 连接O C交BD于点G, 线段CG即为所求.取如图(2)中所示的小正方形的四个顶点(格点)连接对角线交于点S, 取BD的中点R, 作直线RS交AB于H,连接DH,点H即为所求.【解答】解:(1)如图,直线EF即为所求.(2)如图,线段CG就是所要求作的△BCD的高.3、(2021荆州中考)如图,在5×5的正方形网格图形中,小正方形的边长都为1,线段ED与AD的端点都在网格小正方形的顶点(称为格点)上.请在网格图形中画图:(1)以线段AD为边画正方形ABCD,再以线段DE为斜边画等腰直角三角形DEF,其中顶点F在正方形ABCD外;(2)在(1)中所画图形基础上,以点B为其中一个顶点画一个新正方形,使新正方形的面积为正方形ABCD和△DEF面积之和,其它顶点也在格点上.4、如图,在每个小正方形的边长为1的网格中,△ABC的顶点A,C均落在格点上,点B在网格线上.(Ⅰ)线段AC的长等于;(Ⅱ)以AB为直径的半圆的圆心为O,在线段AB上有一点P,满足AP=AC.请用无刻度的直尺,在如图所示的网格中,画出点P,并简要说明点P的位置是如何找到的(不要求证明).(2)如图,点P即为所要求作的点。

利用网格线巧求三角函数值课件

利用网格线巧求三角函数值课件

实例二:利用网格线求斜率对应的三角函数值
总结词
通过网格线确定斜率,利用三角函数关系求解
详细描述
在直角坐标系中,利用网格线将斜率划分为若干个小的等分,根据三角函数的关系(如正 弦、余弦的平方和等于1),计算出每个小斜率对应的三角函数值。
实例计算
假设要求斜率为tan(45度)的值,可以先确定45度的正切值,然后利用三角函数关系计算 出对应的余弦值和正弦值。
通过观察角度所在的网格线,可以快 速得出角度对应的三角函数值。
详细描述
在直角坐标系中,将角度所在的网格 线与x轴或y轴重合,根据三角函数的 定义,可以得出角度对应的正弦、余 弦和正切值。
方法二:利用网格线求斜率对应的三角函数值
总结词
通过观察斜率所在的网格线,可以快速得出斜率对应的三角 函数值。
详细描述
利用网格线确定三角函数值的符号
通过观察函数图像在网格线上的位置,可以确定三角函数值的正负符号,进而 简化计算过程。
利用网格线绘制三角函数图像
通过在坐标系中按照网格线进行绘图,可以更直观地理解三角函数的性质和变 化规律。
01
利用网格线求三角 函数值的方法
方法一:利用网格线求角度对应的三角函数值
总结词
传统方法求解三角函 数值较为繁琐,需要 记忆大量公式和技巧。
课程目标
掌握网格线法的基本原理和步骤。
能够利用网格线法求解任意角度 的三角函数值。
理解网格线法在解决实际问题中 的应用,提高数学应用能力。
01
网格线的概念和性 质
网格线的定义
01
网格线是指在坐标系中,按照一 定规则排列的纵横线交点所形成 的线段。
01
实例分析
实例一:利用网格线求角度对应的三角函数值

2021-2022学年人教版九年级数学下册第二十八章-锐角三角函数定向训练试题(含详细解析)

2021-2022学年人教版九年级数学下册第二十八章-锐角三角函数定向训练试题(含详细解析)

人教版九年级数学下册第二十八章-锐角三角函数定向训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图所示,九(二)班的同学准备在坡角为α的河堤上栽树,要求相邻两棵树之间的水平距离为8 m,那么这两棵树在坡面上的距离AB为()A.8cosαm B.8cosαm C.8sina m D.8sinαm2、如图,ABC中,90ACB∠=︒,AC BC=,点D是边AC上一动点,连接BD,以CD为直径的圆交BD于点E.若AB长为4,则线段AE长的最小值为()A 1B .2C .D 3、如图,在平面直角坐标系xoy 中,直线14y k x =+与y 轴交于点C ,与反比例函数2k y x =在第一象限内的图象交于点B ,连接BO ,若2OBC S ∆=,1tan 5BOC ∠=,则2k 的值是( )A .-20B .20C .-5D .54、在△ABC 中,∠ACB =90°,AC =1,BC =2,则sin B 的值为( )A B C .12 D 5、如图,有一个弓形的暗礁区,弓形所含的圆周角50C ∠=︒,船在航行时,为保证不进入暗礁区,则船到两个灯塔A ,B 的张角ASB ∠应满足的条件是( )A .sin sin 25ASB ∠>︒ B .sin sin50ASB ∠>︒C .sin sin55ASB ∠>︒D .cos cos50ASB ∠>︒6、如图,琪琪一家驾车从A 地出发,沿着北偏东60︒的方向行驶,到达B 地后沿着南偏东50︒的方向行驶来到C 地,且C 地恰好位于A 地正东方向上,则下列说法正确的是( )A .B 地在C 地的北偏西40︒方向上B .A 地在B 地的南偏西60︒方向上C .50∠=°ACBD .sin BAC ∠=7、某山坡坡面的坡度i =100米,小刚上升了( )A .B .50米C . D8、△ABC 中,tan A =1,cos B =2,则△ABC 的形状是( ) A .等腰三角形B .直角三角形C .等腰直角三角形D .锐角三角形9、三角形在正方形网格纸中的位置如图所示,则tanα的值是()A.12B.43C.35D.4510、如图,在ABC中,∠C=90°,∠ABC=30°,D是AC的中点,则tan∠DBC的值是()A.3 B.23 C.32D.36第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,矩形ABCD中,DE⊥AC于点E,∠ADE=α,cosα=35,AB=4,AD长为_____.2、如图,△ABC的顶点都在正方形网格的格点上,则tan∠A的值为__________.3、如图, 小明沿着坡度1:2.4i=的坡面由B到A直行走了 13 米时, 他上升的高度AC= _______米.4、若x为锐角,且cos(x x=___.5、如图所示为4×4的网格,每个小正方形的边长均为1,则四边形AECF的面积为________;tan∠FAE=_______三、解答题(5小题,每小题10分,共计50分)1、某镇为创建特色小镇,助力乡村振兴,决定在辖区的一条河上修建一座步行观光桥.如图,河旁有一座小山,山高80m BC =,点C 、A 与河岸E 、F 在同一水平线上,从山顶B 处测得河岸E 和对岸F 的俯角分别为45DBE ∠=︒,31DBF ∠=︒.若在此处建桥,求河宽EF 的长.(结果精确到1m )[参考数据:sin310.52︒≈,cos310.86︒≈,tan310.60︒≈]2、如图,等腰Rt△ABC 中,AB =AC ,D 为线段BC 上的一个动点,E 为线段AB 上的一个动点,使得CD=.连接DE ,以D 点为中心,将线段DE 顺时针旋转90°得到线段DF ,连接线段EF ,过点D 作射线DR ⊥BC 交射线BA 于点R ,连接DR ,RF .(1)依题意补全图形;(2)求证:△BDE ≌△RDF ;(3)若AB =AC =2,P 为射线BA 上一点,连接PF ,请写出一个BP 的值,使得对于任意的点D ,总有∠BPF 为定值,并证明.3、如图1所示的是一辆混凝土布料机的实物图,图2是其工作时部分示意图,AC 是可以伸缩的布料臂,其转动点A 离地面BD 的高度AH 为3.2米.当布料臂AC 长度为8米,张角HAC ∠为118︒时,求布料口C 离地面的高度.(结果保留一位小数;参考数据:sin 280.47︒≈,cos280.88︒≈,tan 280.53︒≈)4、如图,ABC 内接于O ,AD 平分BAC ∠交BC 边于点E ,交O 于点D ,过点A 作AF BC ⊥于点F ,设O 的半径为3,4AF =.(1)过点D 作直线MN //BC ,求证:MN 是O 的切线;(2)求AB AC ⋅的值;(3)设2BAC α∠=,求AB AC AD+的值(用含α的代数式表示).5、(1)计算:(2sin60︒ ;(2)先化简,再求值:()222211121a a a a a a +-÷++--+,其中a 满足2340a a --=.---------参考答案-----------一、单选题1、B【分析】运用余弦函数求两树在坡面上的距离AB .【详解】解:∵坡角为α,相邻两树之间的水平距离为8米, ∴两树在坡面上的距离8cos AB α=(米). 故选:B .【点睛】此题主要考查解直角三角形中的坡度坡角问题及学生对坡度坡角的掌握及三角函数的运用能力.2、D【分析】如图,连接,CE 由CD 为直径,证明E 在以BC 的中点O 为圆心,BC 为直径的O 上运动,连接,AO 交O 于点,E 则此时AE AO OE 最小,再利用锐角的正弦与勾股定理分别求解,AO OE ,即可得到答案.【详解】解:如图,连接,CE 由CD 为直径,90,CED BECE ∴在以BC 的中点O 为圆心,BC 为直径的O 上运动,连接,AO 交O 于点,E 则此时AE AO OE 最小,90ACB ∠=︒,AC BC =,4,AB =45,ABC BAC ∴∠=∠=︒sin4522,2,AC BC AB OB OC OE2222210,AO10 2.AE故选D【点睛】本题考查的是勾股定理的应用,圆外一点与圆的最短距离的理解,锐角的正弦的应用,掌握“圆外一点与圆的最短距离求解线段的最小值”是解本题的关键.3、D【分析】先根据直线解析式求得点C的坐标,然后根据△BOC的面积求得BD的长,然后利用正切函数的定义求得OD的长,从而求得点B的坐标,利用待定系数法将点B坐标代入即可求得结论.【详解】解:∵直线y=k1x+4与x轴交于点A,与y轴交于点C,∴点C的坐标为(0,4),∴OC=4,过B作BD⊥y轴于D,∵S△OBC=2,∴1142 22OC BD BD⋅=⨯⋅=,∴BD =1,∵tan∠BOC =15, ∴15BD OD =, ∴OD =5,∴点B 的坐标为(1,5), ∵反比例函数2k y x=在第一象限内的图象交于点B , ∴k 2=1×5=5.故选:D .【点睛】本题考查了反比例函数与一次函数的交点坐标,锐角三角函数,三角形面积,待定系数法求分别列函数解析式,解题的关键是作辅助线构造直角三角形.4、A【分析】先根据勾股定理求出斜边AB 的值,再利用正弦函数的定义计算即可.【详解】解:∵在△ABC 中,∠ACB =90°,AC =1,BC =2,∴AB,∴sin B =AC AB 故选:A .【点睛】本题考查了锐角三角函数的定义,勾股定理.解决此类题时,要注意前提条件是在直角三角形中,此外还有熟记三角函数的定义.5、D【分析】本题利用了三角形外角与内角的关系和圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.【详解】如图,AS 交圆于点E ,连接EB ,由圆周角定理知,∠AEB =∠C =50°,而∠AEB 是△SEB 的一个外角,由∠AEB >∠S ,即当∠S <50°时船不进入暗礁区.所以,两个灯塔的张角∠ASB 应满足的条件是∠ASB <50°.∴cos∠ASB >cos50°,故选:D .【点睛】本题考查三角形的外角的性质,圆周角定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题.6、B【分析】根据题意可知60BAD ∠=︒,50CBP ∠=︒,由此即可得到50BCE CBP ∠∠==︒即可判断A ;由60ABP ∠=︒可以判断B ;由9040ACB BCE ∠∠=︒-=︒可以判断C ;求出30BAC ∠=︒即可判断D .【详解】解:如图所示:由题意可知,60BAD ∠=︒,50CBP ∠=︒,50BCE CBP ∠∠∴==︒,即B 在C 处的北偏西50,故A 不符合题意;60ABP ∠=︒,A ∴地在B 地的南偏西60︒方向上,故B 不符合题意;9040ACB BCE ∠∠=︒-=︒,故C 错误.60BAD ∠=︒,30BAC ∴∠=︒,1sin 2BAC ∠∴=,故D 不符合题意. 故选B .【点睛】本题考查的是解直角三角形和方向角问题,熟练掌握方向角的概念是解题的关键.7、B【分析】设出垂直高度,表示出水平距离,利用勾股定理求解即可.【详解】解:设小刚上升了x 米.根据勾股定理可得:)222100x+=.解得50x=.即此时该小车离水平面的垂直高度为50米.故选:B.【点睛】考查了解直角三角形的应用-坡度坡角问题和勾股定理,熟悉且会灵活应用公式:坡度=垂直高度÷水平宽度是解题的关键.8、C【分析】先根据△ABC中,tanA=1,cosB A及∠B的度数,进而可得出结论.【详解】解:∵△ABC中,tanA=1,cosB∴∠A=45°,∠B=45°,∴∠C=90°,∴△ABC是等腰直角三角形.故选:C.【点睛】本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.9、A【分析】根据在直角三角形中,正切值等于对边比上邻边进行求解即可.【详解】解:如图所示,在直角三角形ABC 中∠ACB =90°,AC =2,BC =4,∴tan α=αααα=24=12,故选A .【点睛】本题主要考查了求正切值,解题的关键在于能够熟练掌握正切的定义.10、D【分析】根据正切的定义以及tan 30︒=AC =,则3BC a =,结合题意求得DC ,进而即可求得tan DBC ∠. 【详解】 解:在ABC 中,∠C =90°,∠ABC =30°,tan tan 30AC ABC BC ∴∠==︒=AC =,则3BC a =, D 是AC 的中点,12DC AC ∴==2tan 3DC DBC BC a ∴∠== 故选D【点睛】本题考查了正切的定义,特殊角的三角函数值,掌握正切的定义是解题的关键.二、填空题1、163【解析】【分析】将已知角度的三角函数转换到所需要的三角形中,得到∠ADE =∠DCE =α,求出AC 的值,再由勾股定理计算即可.【详解】∵∠ADC =∠AED =90°,∠DAE +∠ADE =∠ADE +∠CDE =90°∴∠DAE =∠CDE又∵∠DCE +∠CDE =90°∴∠ADE =∠DCE =α∴cosα=35=CD AC又∵矩形ABCD 中AB =CD =4∴AC =203在ADC 中满足勾股定理有163AD =故答案为:163.【点睛】本题考查了已知余弦长求边长,将已知余弦长转换到所需要的三角形中是解题的关键.2、56【解析】【分析】利用网格构造直角三角形,再找到对应的直角边长,最后根据三角函数的意义求解即可.【详解】解:如图,过点B作BD⊥AC的延长线于点D,∴在Rt ABD△中,BD=5,AD=6,∴tan∠α=αααα=56.故答案为:56.【点睛】此题考查了求网格问题中锐角的三角函数值,掌握利用网格构造直角三角形、正切的定义是解决此题3、5【解析】【分析】 根据坡度的定义求得512AC BC =,即可求得AC 的长 【详解】解:∵1:2.4i = ∴15tan 2.412AC B BC === 设5AC k =,则12BC k =根据勾股定理可得13AB k =13AB =1k ∴=5AC ∴=故答案为:5【点睛】考查了解直角三角形的应用一坡度坡角问题和勾股定理,熟悉且会灵活应用公式:坡度=垂直高度÷水平宽度是解题的关键。

初中数学精品试题:网格问题讲义及练习

初中数学精品试题:网格问题讲义及练习

专题2:中考热点之网格问题(1)网格类问题是近几年中考热点考题之一.所谓网格,就是由一个简单的正多边形经过图形变换而形成的网状图形.网格的基本几何元素是:点和线.组成网格的每个小正多边形可看作单位图形.常见的单位图形有:正三角形、正方形、正六边形等.本节主要研究单位图形为正方形的网格.例:问题呈现:如图1,在边长为1的正方形网格中,连接格点D,N和E,C,DN 和EC相交于点P,求tan∠CPN的值.方法归纳求一个锐角的三角函数值,我们往往需要找出(或构造出)一个直角三角形.观察发现问题中∠CPN不在直角三角形中,我们常常利用网格画平行线等方法解决此类问题,比如连接格点M,N,可得MN∥EC,则∠DNM=∠CPN,连接DM,那么∠CPN就变换到Rt△DMN中.问题解决(1)直接写出图1中tan∠CPN的值为;(2)如图2,在边长为1的正方形网格中,AN与CM相交于点P,求cos∠CPN的值;思维拓展(3)如图3,AB⊥BC,AB=4BC,点M在AB上,且AM=BC,延长CB到N,使BN=2BC,连接AN交CM的延长线于点P,用上述方法构造网格,求∠CPN的度数.分析(1)tan∠CPN=tan∠DNM =DMMN=222=2;(2)过点C作CD∥AN,D为格点,得∠DCM=∠CPN=45°;(3)利用网格及线段间的关系,构造等腰直角三角形来解决.解:(1) (2) (3) 课内练习在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.以顶点都是格点的正方形ABCD 的边为斜边,向内作四个全等的直角三角形,使四个直角顶点E ,F ,G ,H 都是格点,且四边形EFGH 为正方形,我们把这样的图形称为格点弦图.例如,在如图1所示的格点弦图中,正方形ABCD 的边长为65,此时正方形EFGH 的面积为5.问:当格点弦图中的正方形ABCD 的边长为65时,正方形EFGH 的面积的所有可能值是__ ___(不包括5). MPB C NAE图3作业题1.下列4⨯4的正方形网格图中,每个小正方形的边长都是1,三角形的顶点都在格点上,那么与如图中△ABC相似的三角形所在的网格图是()2.如图,在平面直角坐标系xOy中,点4 (,)3A m m-绕坐标原点O顺时针旋转90°后,恰好落在右图中阴影区域(包括边界)内,求m的取值范围是.3.定义:我们知道,四边形的一条对角线把这个四边形分成了两个三角形,如果这两个三角形相似(不全等...) ,我们就把这条对角线叫做这个四边形的“相似对角线”.(1)如图1,已知Rt△ABC在正方形网格中,请你只用无刻度的直尺......在网格中找到一格点D,使四边形ABCD是以AC为“相似对角线”的四边形(找出2个即可);(2)如图2,在四边形ABCD中,∠ABC=80°,∠ADC=140°,对角线BD平分∠ABC.求证:BD是四边形ABCD的“相似对角线”;(3)如图3,已知FH是四边形EFGH的“相似对角线”,点E与点H为对应点,∠EFH=∠HFG=30°,连接EG,若△EFG的面积为23,求FH的长.。

正弦函数sin在Excel中的使用方法

正弦函数sin在Excel中的使用方法

正弦函数sin在Excel中的使用方法
一、sin函数公式介绍
语法:SIN(number)
Number 为需要求正弦的角度,以弧度表示。

说明:如果参数的单位是度,则可以乘以PI()/180 或使用RADIANS 函数将其转换为弧度。

二、sin函数使用方法
当然,有时候也可以直接来使用,请看下面的例子:
=SIN(PI()) pi 弧度的正弦值(0,近似)
=SIN(PI()/2) pi/2 弧度的正弦值 (1)
=SIN(30*PI()/180) 30 度的正弦值 (0.5)
=SIN(RADIANS(30)) 30 度的正弦值 (0.5)
已知弧度或度(°),使用SIN函数结果
正弦函数:=SIN(A2),此时单元格A2内数值应为弧度表示形式,若A2为以“度”为单位,求其正弦值的公式书写为“=SIN((A2*PI()/180)”;
正弦函数、余弦、正切、余切分别为“=COS(A2)”、“=TAN(A2)”、)”、“=1/TAN(A2)”、其他同正弦函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档