九年级数学直线与圆的位置关系(含答案)
九年级 直线与圆的位置关系练习(含答案)
直线与圆的位置关系练习(含答案)一.选择题(共19小题)1.如图,已知PA、PB是⊙O的切线,A、B为切点,AC是⊙O的直径,∠P=40°,则∠BAC的大小是()A.70°B.40°C.50°D.20°2.已知⊙O的半径为4cm,如果圆心O到直线l的距离为3.5cm,那么直线l与⊙O的位置关系是()A.相交B.相切C.相离D.不确定3.如图,PA、PB切⊙O于点A、B,PA=10,CD切⊙O于点E,交PA、PB于C、D两点,则△PCD的周长是()A.10 B.18 C.20 D.224.已知⊙O的半径为3,圆心O到直线L的距离为2,则直线L与⊙O的位置关系是()A.相交B.相切C.相离D.不能确定5.如图,AB是⊙O的直径,PA切⊙O于点A,OP交⊙O于点C,连接BC.若∠P=20°,则∠B的度数是()A.20°B.25°C.30°D.35°6.如图,⊙O过正方形ABCD的顶点A、B,且与CD相切,若正方形ABCD的边长为2,则⊙O的半径为()A.1 B.C.D.7.如图,已知⊙O的直径AB与弦AC的夹角为35°,过C点的切线PC与AB的延长线交于点P,则∠P等于()A.15°B.20°C.25°D.30°8.如图,PA和PB是⊙O的切线,点A和B是切点,AC是⊙O的直径,已知∠P=40°,则∠ACB的大小是()A.60°B.65°C.70°D.75°9.如图,P为⊙O外一点,PA、PB分别切⊙O于A、B,CD切⊙O于点E,分别交PA、PB于点C、D,若PA=5,则△PCD的周长为()A.5 B.7 C.8 D.1010.如图,⊙C与∠AOB的两边分别相切,其中OA边与⊙C相切于点P.若∠AOB=90°,OP=6,则OC的长为()A.12 B.C.D.11.如图,已知直线AD是⊙O的切线,点A为切点,OD交⊙O于点B,点C在⊙O上,且∠ODA=36°,则∠ACB的度数为()A.54°B.36°C.30°D.27°12.AB是⊙O的直径,PA切⊙O于点A,PO交⊙O于点C;连接BC,若∠P=40°,则∠B等于()A.20°B.25°C.30°D.40°13.把直尺、三角尺和圆形螺母按如图所示放置于桌面上,∠CAB=60°,若量出AD=6cm,则圆形螺母的外直径是()A.12cm B.24cm C.6cm D.12cm14.如图,AB是⊙O的直径,PA切⊙O于点A,连结PO并延长交⊙O于点C,连结AC,AB=10,∠P=30°,则AC的长度是()A.B.C.5 D.15.已知⊙O的半径是5,直线l是⊙O的切线,P是l上的任一点,那么()A.0<OP<5 B.OP=5 C.OP>5 D.OP≥516.如图,△ABC的边AC与⊙O相交于C,D两点,且经过圆心O,边AB与⊙O相切,切点为B.如果∠A=34°,那么∠C等于()A.28°B.33°C.34°D.56°17.如图,AB是⊙O的直径,点C在⊙O上,过点C作⊙O的切线交AB的延长线于点D,连接OC,AC.若∠D=50°,则∠A的度数是()A.20°B.25°C.40°D.50°18.如图,PA、PB是⊙O的切线,切点分别是A,B,如果∠P=60°,那么∠AOB 等于()A.60°B.90°C.120° D.150°19.如图,AB、AC是⊙O的两条弦,∠A=25°,过点C的切线与OB的延长线交于点D,则∠D的度数()A.25°B.30°C.40°D.50°二.填空题(共16小题)20.如图,⊙M与x轴相切于原点,平行于y轴的直线交⊙M于P、Q两点,P 点在Q点的下方.若点P的坐标是(2,1),则圆心M的坐标是.21.如图,Rt△ABC中,∠C=90°,若AC=4,BC=3,则△ABC的内切圆半径r=.22.如图,AB与⊙O相切于点C,∠A=∠B,⊙O的半径为6,AB=16,则OA的长为.23.如图,PA、PB分别与⊙O相切于A、B两点,若∠C=65°,则∠P的度数为.24.如图,平面直角坐标系中,⊙P与x轴分别交于A、B两点,点P的坐标为(3,﹣1),AB=2.若将⊙P向上平移,则⊙P与x轴相切时点P的坐标为.25.一直角三角形的两条直角边长分别为6和8,则它的内切圆半径为.26.若⊙O的直径是4,圆心O到直线l的距离为3,则直线l与⊙O的位置关系是.27.如图,在平面直角坐标系中,⊙M与x轴相切于点A(8,0),与y轴分别交于点B(0,4)和点C(0,16),则圆心M的坐标为.28.如图,线段AB与⊙O相切于点B,线段AO与⊙O相交于点C,AB=12,AC=8,则⊙O的半径长为.29.如图,AC是⊙O的切线,切点为C,BC是⊙O的直径,AB交⊙O于点D,连接OD,若∠A=50°,则∠COD的度数为.30.在平面直角坐标系中,O是坐标原点,A、B两点的坐标分别为(3,0)、(0,4),则△AOB的内心与外心之间的距离是.31.P是⊙O的直径AB的延长线上一点,PC与⊙O相切于点C,∠APC的平分线交AC于Q,则∠PQC=.32.如图,AB、AC、BD是⊙O的切线,P、C、D为切点,如果AB=5,AC=3,则BD的长为.33.如图,PA、PB是⊙O的切线,A、B为切点,AC是⊙O的直径,∠P=50°,则∠BAC=.34.如图,AB是⊙O的直径,直线PA与⊙O相切于点A,PO交⊙O于点C,连接BC,∠P=40°,则∠ABC的度数为.35.如图,已知⊙O的外切△PCD切⊙O于A、B、E三点,(1)若PA=5,则PB=;(2)若∠P=40°,则∠COD=度.三.解答题(共15小题)36.如图,CD是⊙O的直径,并且AC=BC,AD=BD.求证:直线AB是⊙O的切线.37.如图,已知三角形ABC的边AB是⊙O的切线,切点为B.AC经过圆心O并与圆相交于点D、C,过C作直线CE丄AB,交AB的延长线于点E.(1)求证:CB平分∠ACE;(2)若BE=3,CE=4,求⊙O的半径.38.在Rt△ABC中,∠ACB=90°,BE平分∠ABC,D是边AB上一点,以BD为直径的⊙O经过点E,且交BC于点F.(1)求证:AC是⊙O的切线;(2)若BF=6,⊙O的半径为5,求CE的长.39.如图,在Rt△ABC中,∠ABC=90°,以AB为直径的⊙O与AC边交于点D,过点D作⊙O的切线交BC于点E,连接OE(1)证明OE∥AD;(2)①当∠BAC=°时,四边形ODEB是正方形.②当∠BAC=°时,AD=3DE.40.如图所示,AB是⊙O的直径,AD与⊙O相切于点A,DE与⊙O相切于点E,点C为DE延长线上一点,且CE=CB.(1)求证:BC为⊙O的切线;(2)若AB=4,AD=1,求线段CE的长.41.如图△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC.(1)求证:PA是⊙O的切线;(2)若PD=,求⊙O的直径.42.如图,四边形ABCD 内接于⊙O,BD是⊙O的直径,过点A作⊙O的切线AE交CD的延长线于点E,DA平分∠BDE.(1)求证:AE⊥CD;(2)已知AE=4cm,CD=6cm,求⊙O的半径.43.如图,已知AB为⊙O的弦,C为⊙O上一点,∠C=∠BAD,且BD⊥AB于B.(1)求证:AD是⊙O的切线;(2)若⊙O的半径为3,AB=4,求AD的长.44.如图所示,以Rt△ABC的直角边AB为直径作圆O,与斜边交于点D,E为BC边上的中点,连接DE.(1)求证:DE是⊙O的切线;(2)连接OE,AE,当∠CAB为何值时,四边形AOED是平行四边形?并在此条件下求sin∠CAE的值.45.已知:如图,△ABC中,AC=BC,以BC为直径的⊙O交AB于点D,过点D 作DE⊥AC于点E,交BC的延长线于点F.求证:(1)AD=BD;(2)DF是⊙O的切线.46.如图,AC是⊙O的直径,PA切⊙O于点A,点B是⊙O上的一点,且∠BAC=30°,∠APB=60°.(1)求证:PB是⊙O的切线;(2)若⊙O的半径为2,求弦AB及PA,PB的长.47.如图,AB为⊙O的直径,D为的中点,连接OD交弦AC于点F,过点D 作DE∥AC,交BA的延长线于点E.(1)求证:DE是⊙O的切线;(2)连接CD,若OA=AE=4,求四边形ACDE的面积.48.如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,切线DE 交AC于点E.(1)求证:∠A=∠ADE;(2)若AD=16,DE=10,求BC的长.49.如图,已知AB是⊙O的直径,CD与⊙O相切于C,BE∥CO.(1)求证:BC是∠ABE的平分线;(2)若DC=8,⊙O的半径OA=6,求CE的长.50.如图,AB是⊙O的直径,点D在AB的延长线上,点C在⊙O上,CA=CD,∠CDA=30°.(1)试判断直线CD与⊙O的位置关系,并说明理由;(2)若⊙O的半径为4,求点A到CD所在直线的距离.直线与圆的位置关系练习参考答案一.选择题(共19小题)1.D;2.A;3.C;4.A;5.D;6.D;7.B;8.C;9.D;10.C;11.D;12.B;13.D;14.A;15.D;16.A;17.A;18.C;19.C;二.填空题(共16小题)20.(0,2.5);21.1;22.10;23.50°;24.(3,2);25.2;26.相离;27.(8,10);28.5;29.80°;30.;31.45°;32.2;33.25°;34.25°;35.5;110;三.解答题(共15小题)36.;37.;38.;39.45;30;40.;41.;42.;43.;44.;45.;46.;47.;48.;49.;50.;。
人教版数学九年级上册24.2《点和圆、直线和圆的位置关系》知识点+例题+练习(精品)
点、直线、圆与圆的位置关系_知识点+例题+练习1.点和圆的位置关系2.(1)点与圆的位置关系有3种.设⊙O的半径为r,点P到圆心的距离OP=d,则有:3.①点P在圆外⇔d>r4.②点P在圆上⇔d=r5.①点P在圆内⇔d<r6.(2)点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.7.(3)符号“⇔”读作“等价于”,它表示从符号“⇔”的左端可以得到右端,从右端也可以得到左端.2.确定圆的条件不在同一直线上的三点确定一个圆.注意:这里的“三个点”不是任意的三点,而是不在同一条直线上的三个点,而在同一直线上的三个点不能画一个圆.“确定”一词应理解为“有且只有”,即过不在同一条直线上的三个点有且只有一个圆,过一点可画无数个圆,过两点也能画无数个圆,过不在同一条直线上的三点能画且只能画一个圆.3.三角形的外接圆与外心(1)外接圆:经过三角形的三个顶点的圆,叫做三角形的外接圆.(2)(2)外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.(3)(3)概念说明:(4)①“接”是说明三角形的顶点在圆上,或者经过三角形的三个顶点.(5)②锐角三角形的外心在三角形的内部;直角三角形的外心为直角三角形斜边的中点;钝角三角形的外心在三角形的外部.(6)③找一个三角形的外心,就是找一个三角形的两条边的垂直平分线的交点,三角形的外接圆只有一个,而一个圆的内接三角形却有无数个.4.反证法(了解)(1)对于一个命题,当使用直接证法比较困难时,可以采用间接证法,反证法就是一个间接证法.反证法主要适合的证明类型有:①命题的结论是否定型的.②命题的结论是无限型的.③命题的结论是“至多”或“至少”型的.(2)(2)反证法的一般步骤是:(3)①假设命题的结论不成立;(4)②从这个假设出发,经过推理论证,得出矛盾;(5)③由矛盾判定假设不正确,从而肯定原命题的结论正确.5.直线和圆的位置关系(1)直线和圆的三种位置关系:①相离:一条直线和圆没有公共点.②相切:一条直线和圆只有一个公共点,叫做这条直线和圆相切,这条直线叫圆的切线,唯一的公共点叫切点.③相交:一条直线和圆有两个公共点,此时叫做这条直线和圆相交,这条直线叫圆的割线.(2)判断直线和圆的位置关系:设⊙O的半径为r,圆心O到直线l的距离为d.①直线l和⊙O相交⇔d<r②直线l和⊙O相切⇔d=r③直线l和⊙O相离⇔d>r.6.切线的性质(1)切线的性质(2)①圆的切线垂直于经过切点的半径.(3)②经过圆心且垂直于切线的直线必经过切点.(4)③经过切点且垂直于切线的直线必经过圆心.(5)(2)切线的性质可总结如下:(6)如果一条直线符合下列三个条件中的任意两个,那么它一定满足第三个条件,这三个条件是:①直线过圆心;②直线过切点;③直线与圆的切线垂直.(7)(3)切线性质的运用(8)由定理可知,若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.7.切线的判定8.(1)切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.9.(2)在应用判定定理时注意:10.①切线必须满足两个条件:a、经过半径的外端;b、垂直于这条半径,否则就不是圆的切线.11.②切线的判定定理实际上是从”圆心到直线的距离等于半径时,直线和圆相切“这个结论直接得出来的.12.③在判定一条直线为圆的切线时,当已知条件中未明确指出直线和圆是否有公共点时,常过圆心作该直线的垂线段,证明该线段的长等于半径,可简单的说成“无交点,作垂线段,证半径”;当已知条件中明确指出直线与圆有公共点时,常连接过该公共点的半径,证明该半径垂直于这条直线,可简单地说成“有交点,作半径,证垂直”.8.切线的判定与性质(1)切线的性质①圆的切线垂直于经过切点的半径.②经过圆心且垂直于切线的直线必经过切点.③经过切点且垂直于切线的直线必经过圆心.(2)切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.(3)常见的辅助线的:①判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;②有切线时,常常“遇到切点连圆心得半径”.9.切线长定理(1)圆的切线定义:经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长.(2)(2)切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线,平分两条切线的夹角.(3)(3)注意:切线和切线长是两个不同的概念,切线是直线,不能度量;切线长是线段的长,这条线段的两个端点分别是圆外一点和切点,可以度量.(4)(4)切线长定理包含着一些隐含结论:(5)①垂直关系三处;(6)②全等关系三对;(7)③弧相等关系两对,在一些证明求解问题中经常用到.10.三角形的内切圆与内心(1)内切圆的有关概念:与三角形各边都相切的圆叫三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.三角形的内心就是三角形三个内角角平分线的交点.(2)任何一个三角形有且仅有一个内切圆,而任一个圆都有无数个外切三角形.(3)三角形内心的性质:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.11.圆与圆的五种位置关系(1)圆与圆的五种位置关系:①外离;②外切;③相交;④内切;⑤内含.如果两个圆没有公共点,叫两圆相离.当每个圆上的点在另一个圆的外部时,叫两个圆外离,当一个圆上的点都在另一圆的内部时,叫两个圆内含,两圆同心是内含的一个特例;如果两个圆有一个公共点,叫两个圆相切,相切分为内切、外切两种;如果两个圆有两个公共点叫两个圆相交.(2)圆和圆的位置与两圆的圆心距、半径的数量之间的关系:①两圆外离⇔d>R+r;②两圆外切⇔d=R+r;③两圆相交⇔R-r<d<R+r(R≥r);④两圆内切⇔d=R-r(R>r);⑤两圆内含⇔d<R-r(R>r).12.相切两圆的性质相切两圆的性质:如果两圆相切,那么连心线必经过切点.这说明两圆的圆心和切点三点共线,为证明带来了很大方便.13.相交两圆的性质(1)相交两圆的性质:(2)相交两圆的连心线(经过两个圆心的直线),垂直平分两圆的公共弦.(3)注意:在习题中常常通过公共弦在两圆之间建立联系.(4)(2)两圆的公切线性质:(5)两圆的两条外公切线的长相等;两圆的两条内公切线的长也相等.(6)两个圆如果有两条(内)公切线,则它们的交点一定在连心线上.4. 判断圆的切线的方法及应用判断圆的切线的方法有三种:(1)与圆有惟一公共点的直线是圆的切线;(2)若圆心到一条直线的距离等于圆的半径,则该直线是圆的切线;(3)经过半径外端,并且垂直于这条半径的直线是圆的切线.【例4】如图,⊙O的直径AB=4,∠ABC=30°,BC=34,D是线段BC的中点.(1)试判断点D与⊙O的位置关系,并说明理由.(2)过点D作DE⊥AC,垂足为点E,求证:直线DE是⊙O的切线.【例5】如图,已知O为正方形ABCD对角线上一点,以O为圆心,OA的长为半径的⊙O与BC相切于M,与AB、AD分别相交于E、F,求证CD与⊙O相切.【例6】如图,半圆O为△ABC的外接半圆,AC为直径,D为劣弧上一动点,P在CB 的延长线上,且有∠BAP=∠BDA.求证:AP 是半圆O 的切线.【知识梳理】1. 直线与圆的位置关系:2. 切线的定义和性质:3.三角形与圆的特殊位置关系:4. 圆与圆的位置关系:(两圆圆心距为d ,半径分别为21,r r )相交⇔2121r r d r r +<<-; 外切⇔21r r d +=;内切⇔21r r d -=; 外离⇔21r r d +>; 内含⇔210r r d -<<【注意点】与圆的切线长有关的计算.【例题精讲】例1.⊙O 的半径是6,点O 到直线a 的距离为5,则直线a 与⊙O 的位置关系为( )A .相离B .相切C .相交D .内含例 2. 如图1,⊙O 内切于ABC △,切点分别为D E F ,,.50B ∠=°,60C ∠=°,连结OE OF DE DF ,,,,则EDF ∠等于( )A .40°B .55°C .65°D .70°例3. 如图,已知直线L 和直线L 外两定点A 、B ,且A 、B 到直线L 的距离相等,则经过A 、B 两点且圆心在L 上的圆有( )A .0个B .1个C .无数个D .0个或1个或无数个例4.已知⊙O 1半径为3cm ,⊙O 2半径为4cm ,并且⊙O 1与⊙O 2相切,则这两个圆的圆心距为( ) A.1cm B.7cm C.10cm D. 1cm 或7cm例5.两圆内切,圆心距为3,一个圆的半径为5,另一个圆的半径为 例6.两圆半径R=5,r=3,则当两圆的圆心距d 满足___ ___•时,•两圆相交;•当d•满足___ ___时,两圆不外离.例7.⊙O 半径为6.5cm ,点P 为直线L 上一点,且OP=6.5cm ,则直线与⊙O•的位置关系是____例8.如图,PA 、PB 分别与⊙O 相切于点A 、B ,⊙O 的切线EF 分别交PA 、PB 于点E 、F ,切点C 在弧AB 上,若PA 长为2,则△PEF 的周长是 _.例9. 如图,⊙M 与x 轴相交于点(20)A ,,(80)B ,,与y 轴切于点C ,则圆心M 的坐标是例10. 如图,四边形ABCD 内接于⊙A ,AC 为⊙O 的直径,弦DB ⊥AC ,垂足为M ,过点D 作⊙O 的切线交BA 的延长线于点E ,若AC=10,tan ∠DAE=43,求DB 的长.【当堂检测】1.如果两圆半径分别为3和4,圆心距为7,那么两圆位置关系是( )A .相离B .外切C .内切D .相交2.⊙A 和⊙B 相切,半径分别为8cm 和2cm ,则圆心距AB 为( )A .10cmB .6cmC .10cm 或6cmD .以上答案均不对3.如图,P 是⊙O 的直径CB 延长线上一点,PA 切⊙O 于点A ,如果PA =3,PB =1,那么∠APC 等于( )A. 15B. 30C. 45D. 60O O2O14. 如图,⊙O 半径为5,PC 切⊙O 于点C ,PO 交⊙O 于点A ,PA =4,那么PC 的长等于( ) A )6 (B )25 (C )210 (D )2145.如图,在10×6的网格图中(每个小正方形的边长均为1个单位长).⊙A 半径为2,⊙B 半径为1,需使⊙A 与静止的⊙B 相切,那么⊙A 由图示的位置向左平移 个单位长.6. 如图,⊙O 为△ABC 的内切圆,∠C = 90,AO 的延长线交BC 于点D ,AC =4,DC =1,,则⊙O 的半径等于( )A. 45B. 54C. 43D. 657.⊙O 的半径为6,⊙O 的一条弦AB 长63,以3为半径⊙O 的同心圆与直线AB 的位置关系是( )A.相离B.相交C.相切D.不能确定8.如图,在ABC △中,12023AB AC A BC =∠==,°,,A ⊙与BC 相切于点D ,且交AB AC 、于M N 、两点,则图中阴影部分的面积是 (保留π).9.如图,B 是线段AC 上的一点,且AB :AC=2:5,分别以AB 、AC 为直径画圆,则小圆的面积与大圆的面积之比为_______.10. 如图,从一块直径为a+b 的圆形纸板上挖去直径分别为a 和b 的两个圆,则剩下的纸板面积是___.11. 如图,两等圆外切,并且都与一个大圆内切.若此三个圆的圆心围成的三角形的周长为18cm .则大圆的半径是______cm .12.如图,直线AB 切⊙O 于C 点,D 是⊙O 上一点,∠EDC=30º,弦EF ∥AB ,连结OC 交EF 于H 点,连结CF ,且CF=2,则HE 的长为_________.13. 如图,PA 、PB 是⊙O 的两条切线,切点分别为A 、B ,若直径AC=12cm ,∠P=60°.求弦AB 的长. 【中考连接】 一、选择题 1. 正三角形的内切圆半径为1,那么三角形的边长为( )A.2B.32C.3D.3 2.⊙O 是等边ABC △的外接圆,⊙O 的半径为2,则ABC △的边长为( )A .3B .5C .23D .253. 已知⊙O 的直径AB 与弦AC 的夹角为 30,过C 点的切线PC 与AB 延长线交于P 点.PC =5,则⊙O 的半径为 ( )A. 335 B. 635 C. 10 D. 54. AB 是⊙O 的直径,点P 在BA 的延长线上,PC 是⊙O 的切线,C 为切点,PC =26,PA =4,则⊙O 的半径等于( )A. 1B. 2C. 23D. 265.某同学制做了三个半径分别为1、2、3的圆,在某一平面内,让它们两两外O D C B ABPA OC 第3题图 第4题图 第5题图 第6题图 第8题图 第9题图 第11题图 第10题图 第12题图切,该同学把此时三个圆的圆心用线连接成三角形.你认为该三角形的形状为( )A.钝角三角形B.等边三角形C.直角三角形D.等腰三角形6.关于下列四种说法中,你认为正确的有( )①圆心距小于两圆半径之和的两圆必相交 ②两个同心圆的圆心距为零③没有公共点的两圆必外离 ④两圆连心线的长必大于两圆半径之差A.1个B.2个C.3个D.4个二、填空题 6. 如图,AB 、AC 是⊙O 的两条切线,切点分别为B 、C ,D 是优弧BC 上的一点,已知∠BAC =80°,那么∠BDC =__________度.7. 如图,AB 是⊙O 的直径,四边形ABCD 内接于⊙O ,,,的度数比为3∶2∶4,MN 是⊙O 的切线,C 是切点,则∠BCM 的度数为________.8.如图,在△ABC 中,5cm AB AC ==,cos B 35=.如果⊙O 的半径为10cm ,且经过点B 、C ,那么线段AO = cm .9.两个等圆⊙O 与⊙O ′外切,过点O 作⊙O ′的两条切线OA 、OB ,A 、B 是切点,则∠AOB = .10.如图6,直线AB 与⊙O 相切于点B ,BC 是⊙O 的直径,AC 交⊙O 于点D ,连结BD ,则图中直角三角形有 个.11.如图,60ACB ∠=°,半径为1cm 的O ⊙切BC 于点C ,若将O ⊙在CB 上向右滚动,则当滚动到O ⊙与CA 也相切时,圆心O 移动的水平距离是__________cm .12.如图, AB 与⊙O 相切于点B ,线段OA 与弦BC 垂直于点D ,∠AOB =60°,B C=4cm ,则切线AB = cm.13.如图,⊙A 和⊙B 与x 轴和y 轴相切,圆心A 和圆心B 都在反比例函数1y x =图象上,则阴影部分面积等于 .14. Rt △ABC 中,9068C AC BC ∠===°,,.则△ABC的内切圆半径r =______.15.⊙O 的圆心到直线l 的距离为d ,⊙O 的半径为r ,当d 、r 是关于x 的方程x 2-4x+m=0的两根,且直线l 与⊙O 相切时,则m 的值为_____.16.已知:⊙A 、⊙B 、⊙C 的半径分别为2、3、5,且两两相切,则AB 、BC 、CA 分别为 .17.⊙O 的圆心到直线l 的距离为d ,⊙O 的半径为r ,当d 、r 是关于x 的方程x 2-4x+m=0的两根,且直线l 与⊙O 相切时,则m 的值为_____.三、解答题18. 如图,AB 是⊙O 的弦,OA OC ⊥交AB 于点C ,过B 的直线交OC 的延长线于点E ,当BE CE =时,直线BE 与⊙O 有怎样的位置关系?请说明理由. 第3题图 第6题图 第7题图 第8题图 第10题图 第11题图 第12题图 第13题图19.如图1,在⊙O 中,AB 为⊙O 的直径,AC 是弦,4OC =,60OAC ∠=. (1)求∠AOC 的度数;(2)在图1中,P 为直径BA 延长线上的一点,当CP 与⊙O 相切时,求PO 的长;(3)如图2,一动点M 从A 点出发,在⊙O 上按A 照逆时针的方向运动,当MAO CAO S S =△△时,求动点M 所经过的弧长.第18题图。
人教版九年级数学上册《24.2 点和圆直线和圆的位置关系》同步练习题-附答案
人教版九年级数学上册《24.2 点和圆直线和圆的位置关系》同步练习题-附答案学校:___________班级:___________姓名:___________考号:___________考点1点与圆的位置关系1. 点与圆的位置关系:设⊙O的半径为r点P到圆心的距离为OP=d点P在⇔d>r点P在⇔d=r点P在⇔d<r。
2.三点圆:不在直线上的三个点一个圆。
3.三角形的外接圆:经过三角形的三个顶点可以作一个圆这个圆叫做三角形的圆.外接圆的圆心是三角形三条边的的交点叫做这个三角形的外心。
考点2直线和圆的位置关系1.直线与圆的位置关系:(1)直线和圆有两个公共点时我们说这条直线和圆.这条直线叫做圆的线。
(2)直线和圆只有一个公共点时我们说这条直线和圆.这条直线叫做圆的线这个点叫做点。
(3)直线和圆没有公共点时我们说这条直线和圆。
(4)设⊙O的半径为r圆心O到直线l的距离d直线l和⊙O⇔d<r直线l和⊙O⇔d=r直线l和⊙O⇔d>r。
2.切线的判定定理和性质定理(1)切线的判定定理:经过半径的外端并且于这条半径的直线是圆的切线。
(2)切线的性质定理:圆的切线于过切点的半径。
3.切线长定理:(1)切线长:经过圆外一点的圆的切线上这点和点之间线段的长叫做这点到圆的切线长。
(2)切线长定理:从圆外一点可以引圆的两条切线它们的切线长这一点和圆心的连线两条切线的夹角。
4.内切圆:与三角形各边都相切的圆叫做三角形的.内切圆的圆心是三角形三条的交点叫做三角形的内心。
限时训练:一选择题:在每小题给出的选项中只有一项是符合题目要求的。
1.(2024·全国·同步练习)以点P(1,2)为圆心r为半径画圆与坐标轴恰好有三个交点则r应满足( )A. r=2或√ 5B. r=2C. r=√ 5D. 2≤r≤√ 52.(2024·全国·同步练习)如图在△ABC中O是AB边上的点以O为圆心OB为半径的⊙O与AC相切于点D BD平分∠ABC AD=√ 3OD AB=12CD的长是( )A. 2√ 3B. 2C. 3√ 3D. 4√ 33.(2024·江苏省·同步练习)下列命题中真命题的个数是( ) ①经过三点可以作一个圆②一个圆有且只有一个内接三角形③一个三角形有且只有一个外接圆④三角形的外心到三角形的三个顶点的距离相等⑤直角三角形的外心是三角形斜边的中点。
九年级数学直线与圆的位置关系练习题及答案
九年级数学直线与圆的位置关系练习题及答案一、单选题1. 给定直线l :3x-4y=12,圆C:(x-1)^2+(y+3)^2=25,则l与C的位置关系是:A. 相切B. 相离C. 相交于两点D. 相交于一个点2. 若直线l的方程为x-2y+1=0,圆C的方程为(x-3)^2+(y+4)^2=16,则l与C的位置关系是:A. 相切B. 相离C. 相交于两点D. 相交于一个点3. 在直角坐标系中,直线l:y=2x+1与圆C:(x-4)^2+(y+2)^2=36的位置关系是:A. 相切B. 相离C. 相交于两点D. 相交于一个点二、填空题1. 直线y=3x+2与圆(x-1)^2+(y-3)^2=16的位置关系可以用___________表示。
2. 若直线l :2x+3y=6与圆C:(x-2)^2+(y-3)^2=9相交于点A(1,2),则点A到直线l的距离为_________。
三、解答题1. 已知直线l的方程为y=2x-1,圆C的方程为(x-2)^2+(y-1)^2=r^2,求当r=3时,l与C的位置关系。
2. 某圆C的圆心坐标为(3,-2),半径为4,直线l的方程为2x-y=5,则求l与C的位置关系并证明。
答案:一、单选题1. C2. A3. D二、填空题1. 相交于两点2. 3三、解答题1. 当r=3时,圆C的方程为(x-2)^2+(y-1)^2=9。
将直线l的方程代入圆C的方程,得到4x^2-4x+1+4x-4+y^2-2y+1=9,简化后为4x^2+y^2-2y-3=0。
该方程与圆C相交于两个点,故位置关系为相交于两点。
2. 圆C的圆心坐标为(3,-2),半径为4。
直线l的斜率为2,l的方程可以改写为y=2x-5,将直线l的方程代入圆C的方程,得到(x-3)^2+(2x-5+2)^2=16。
化简后得到5x^2-35x+60=0,解得x=2和x=6。
将x的值代入直线l的方程,得到相应的y值,分别为y=-1和y=7。
直线与圆的位置关系(含答案)
【知识清单】:
1.直线与圆的位置关系(半径r,圆心到直线的距离为d)
相离
相切
相交
图形
量化
方程观点
Δ<0
Δ=0
Δ>0
几何观点
d>r
d=r
d<r
2.圆与圆的位置关系(两圆半径r1,r2,d=|O1O2|)
相离
外切
相交
内切
内含
图形
量的关系
d>r1+r2
d=r1+r2
|r1-r2|<d<r1+r2
3.(2015·大连双基测试)圆x2+y2=1与直线y=kx+2没有公共点的充要条件是________.
解析:法一:将直线方程代入圆方程,得(k2+1)x2+4kx+3=0,直线与圆没有公共点的充要条件是Δ=16k2-12(k2+1)<0,解得k∈(- , ).
法二:圆心(0,0)到直线y=kx+2的距离d= ,直线与圆没有公共点的充要条件是d>1,
即 >1,
解得k∈(- , ).
答案:k∈(- , )
[谨记通法]:判断直线与圆的位置关系的2大策略
(1)若两方程已知或圆心到直线的距离易表达,则用几何法.
(2)若方程中含有参数,或圆心到直线的距离的表达较繁琐,则用代数法.能用几何法,尽量不用代数法.
1.(2015·广东高考)平行于直线2x+y+1=0且与圆x2+y2=5相切的直线的方程是()
A.x-y+5=0B.x+y-1=0
C.x-y-5=0D.2x+y+1=0
解析:选A由题意得圆的标准方程为(x+1)2+(y-2)2=5,则圆心C(-1,2).过圆心与点(-2,3)的直线l1的斜率为k= =-1.当直线l与l1垂直时,|AB|取得最小值,故直线l的斜率为1,所以直线l的方程为y-3=x-(-2),即x-y+5=0.
中考数学思维方法讲义【第13讲】直线和圆的位置关系(含答案)
状元廊学校数学思维方法讲义之十三 年级:九年级第13讲 直线和圆的位置关系圆的知识在平面几何中乃至整个初中教学中都占有重要的地位,而直线和圆的位置关系的应用又比较广泛,它是初中几何知识的综合运用,又是在学习了点和圆的位置关系的基础上进行的,在几何证明与计算中,将起到重要的作用,是中考必考查点。
【知识纵横】§Ⅰ直线和圆的位置关系:设圆的半径为r ,圆心到直线的距离为d .⑴直线与圆相交⇔d __ ____ r ; ⑵直线与圆相切⇔d __ ____ r ; ⑶直线与圆相离⇔d __ ____r 。
§Ⅱ圆的切线:1.一个定义:与圆只有一个公共点的直线叫做圆的__ ___;这个公共点叫做__ ___; 2.两种判定:⑴若圆心到直线的距离等于半径,则该直线是圆的切线;⑵经过直径的一端,并且垂直于这条直径的直线是圆的切线;3.判定直线和圆的位置,一般考虑如下“三步曲”:一“看”:看看题目中有没有告诉我们直线和圆有几个公共点;二“算”:算算圆心到直线的距离d 和圆的半径为r 之间的大小关系,然后根据上述关系作出判断;三“证明”: 证明直线是否经过直径的一端,并且与该直径的位置关系是否垂直。
4.四条性质:切线有许多重要性质 ⑴圆心到切线的距离等于圆的_ ____; ⑵过切点的半径垂直于_ ____;⑶经过圆心,与切线垂直的直线必经过___ __; ⑷经过切点,与切线垂直的直线必经过____ _。
5.弦切角定义 :顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角; 定理 :弦切角等于它所夹的弧所对的圆周角.推论 :a )两个弦切角所夹的弧相等,这两个弦切角也相等;b )弦切角的度数等于它所夹弧度数的一半。
【典例精析】考点1: 直线和圆的位置关系【例1】1、如图,已知⊙O 是以数轴的原点O 为圆心,半径为1的圆,45AOB ∠=︒,点P 在数轴上运动,若过点P 且与OA 平行的直线与⊙O 有公共点, 设OP x =,则x 的取值范围是__________.2、射线QN 与等边△ABC 的两边AB ,BC 分别交于点M ,N ,且AC ∥QN ,AM =MB =2cm ,QM =4cm .动点P 从点Q 出发,沿射线QN 以每秒1cm 的速度向右移动,经过t 秒,以点P 为圆心,3cm 为半径的圆与△ABC 的边相切(切点在边上),请写出t 可取的一切值 (单位:秒).变式一:1、如图,在Rt △ABC 中,∠C =90°,∠A =30°,AB =43D在线段AC 上(不与点A 、C 重合),过点D 作DE ⊥AC 交AB 边于点E . (1)当点D 运动到线段AC 中点时,DE = ;(2)点A 关于点D 的对称点为点F ,以FC 为半径作⊙C ,当DE = 时,⊙C 与直线AB 相切.2、如图,在直角梯形ABCD 中,已知AD ∥BC ,∠C =90°,且AB >AD+ BC ,AB 是⊙O 直径,则直线CD 与⊙O 的位置关系为_____ _.考点2: 圆的切线的性质基本运用【例2】已知直线PD 垂直平分⊙O 的半径OA 于点B ,PD 交⊙O 于点C 、D ,PE 是⊙O 的切线,E 为切点,连结AE ,交CD 于点F . (1)若⊙O 的半径为8,求CD 的长; (2)证明:PE =PF ;(3)若PF =13,sinA =513,求EF 的长.O AD变式二:如图,⊙O是△ABC的外接圆,FH是⊙O 的切线,切点为F,FH∥BC,连结AF交BC于E,∠ABC的平分线BD交AF于D,连结BF.(1)证明:AF平分∠BAC;(2)证明:BF=FD;(3)若EF=4,DE=3,求AD的长.考点3:切线的判定定理运用【例4】如图,在△ABC中,AB=AC,以AB为直径作半圆⊙O,交BC于点D,连接AD,过点D作DE⊥AC,垂足为点E,交AB的延长线于点F.(1)求证:EF是⊙O的切线;(2)如果⊙O的半径为5,sin∠ADE=45,求BF的长.【例5】如图,在⊙O中,直径AB⊥CD,垂足为E,点M在OC上,AM的延长线交⊙O于点G,交过C的直线于F,∠1=∠2,连结CB与DG交于点N.(1)求证:CF是⊙O的切线;(2)求证:△ACM∽△DCN;(3)若点M是CO的中点,⊙O的半径为4,cos∠BOC=14,求BN的长.变式三:如图,Rt ABC△中,90ABC∠=°,以AB为直径作O⊙交AC边于点D,E是边BC的中点,连接DE.(1)求证:直线DE是O⊙的切线;(2)连接OC交DE于点F,若OF CF=,求tan ACO∠的值.EDOAB C12NGEOBMCEBAOFD【思维拓展】【例6】如图,P A为⊙O的切线,A为切点,直线PO交⊙O与点E,F,过点A作PO的垂线AB垂足为D,交⊙O与点B,延长BO与⊙O交与点C,连接AC,BF.(1)求证:PB与⊙O相切;(2)试探究线段EF,OD,OP之间的数量关系,并加以证明;(3)若AC=12,tan∠F=12,求cos∠ACB的值.【例7】已知AB是⊙O的直径,AB=4,点C在线段AB的延长线上运动,点D在⊙O上运动(不与点B重合),连接CD,且CD=OA.(1)当OC=22,求证:CD是⊙O的切线;(2)当OC>22CD所在直线于⊙O相交,设另一交点为E,连接AE.①当D为CE中点时,求△ACE的周长;②连接OD,是否存在四边形AODE为梯形?若存在,请说明梯形个数并求此时AE•ED的值;若不存在,请说明理由.变式四:如图,在边长为2的正方形ABCD中,以点D为圆心、DC为半径作AC,点E在AB上,且与A、B两点均不重合,点M在AD上,且ME=MD,过点E作EF⊥ME,交BC于点F,连接DE、MF.(1)求证:EF是AC所在⊙D的切线;(2)当MA=34时,求MF的长;(3)试探究:△MFE能否是等腰直角三角形?若是,请直接写出MF的长度;若不是,请说明理由.ACM【课后测控】1、如图1,60ACB ∠=°,半径为1cm 的O ⊙切BC 于点C ,若将O ⊙在CB 上向右滚动,则当滚动到O ⊙与CA 也相切时,圆心O 移动的水平距离是__________cm .2、如图2,DB 为半圆的直径,A 为BD 延长线上一点,AC 切半圆于点E ,BC ⊥AC 于点C ,交半圆于点F .已知BD =2,设AD =x ,CF =y ,则y 关于x 的函数解析式是 .图1 图2 图33、如图,在Rt △AOB 中,OA =OB =3,⊙O 的半径为1,点P 是AB 边上的动点,过点P 作⊙O 的一条切线PQ (点Q 为切点),则切线PQ 的最小值为 .4、如图,AB 为半圆的直径,C 是半圆弧上一点,正方形DEFG 的一边DG 在直径AB 上,另一边DE 过ΔABC 的内切圆圆心O ,且点E 在半圆弧上。
直线与圆的位置关系-2020-2021学年九年级数学上册同步课堂帮帮帮(苏科版)(解析版)
直线与圆的位置关系知识点一、直线与圆的位置关系直线与圆有三种位置关系,如下所示:判定直线与圆的位置关系通常有以下两种方法:(1)根据直线与圆的公共点的个数判断;(2)根据圆心到直线的距离与半径的大小关系判断. 知识点二、切线的判定定理与切线的性质定理1. 切线的判定定理:经过半径外端并且垂直于这条半径的直线是圆的切线.如图所示,OA 的一条半径,直线l 经过点A 且OA ⊥l ,则l 的切线.判定一条直线是否是圆的切线共有以下三种方法:(1)定义法:当直线与圆有且只有一个公共点时,直线与圆相切;(2)数量关系法:当圆心到直线的距离等于半径时,直线与圆相切;(3)判定定理法:经过半径的外端,并且垂直于这条半径的直线是圆的切线.2.切线的性质定理:圆的切线垂直于经过切点的半径.如图所示:直线l的切线,切点为点A,则OA⊥l.例:如图,AB为⊙O的直径,PD切⊙O于点C,与BA的延长线交于点D,DE⊥PO交PO延长线于点E,连接PB,∠EDB=∠EPB.(1)求证:PB是的切线.(2)若PB=6,DB=8,求⊙O的半径.【解答】(1)见解析;(2)3【解析】(1)证明:∵在△DEO和△PBO中,∠EDB=∠EPB,∠DOE=∠POB,∴∠OBP=∠E=90°,∵OB为圆的半径,∴PB为圆O的切线;(2)在Rt△PBD中,PB=6,DB=8,根据勾股定理得,∵PD与PB都为圆的切线,∴PC=PB=6,∴DC=PD﹣PC=10﹣6=4,在Rt△CDO中,设OC=r,则有DO=8﹣r,根据勾股定理得:(8﹣r)2=r2+42,解得:r=3,则圆的半径为3.知识点三、三角形的内切圆1.定义:与三角形各边都相切的圆叫做三角形的内切圆.三角形内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.2.性质:三角形的内心就是三角形三条内角平分性的交点,内心到三角形各边的距离相等,任意三角形的内心都在三角形的内部.3.三角形的内切圆的作法:作三角形任意两个内角平分线,它们的交点就是内切圆的圆心,过圆心向任意一条边作垂线,垂线段的长度就是内切圆的半径.补充:三角形外心与内心对比:例:直角三角形的两条直角边分别为8和15,那么这个直角三角形最大能容纳一个直径为几的圆?【解答】6【解析】如图所示:由勾股定理可求出三角形斜边AB=17,设三角形的内切圆的半径为r即,解得半径,则直径为6.知识点四、切线长及切线长定理1.切线长定义:经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长;2.切线长定理:过圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.外一点P引两条切线PA、PB,切点分别为A、B,连接OA、OB、AB,延长PO并延长交圆于点E,则:①垂直:OA⊥PA,OB⊥PB,OD⊥AB;②全等:△OAP≌△OBP,△OCA≌△OCB,△ACP≌△BCP;③弧相等:.巩固练习一.选择题1.如图,PA、PB分别与⊙O相切于A、B两点,点C为⊙O上一点,连接AC、BC,若∠C=65°,则∠P的度数为()A.50°B.65°C.70°D.80°【解答】A【解析】连接OA 、OB ,∵PA 、PB 是⊙O 切线, ∴PA ⊥OA ,PB ⊥OB , ∴∠PAO =∠PBO =90°,∵∠P +∠PAO +∠AOB +∠PBO =360°, ∴∠P =180°﹣∠AOB , ∵∠ACB =65°,∴∠AOB =2∠ACB =130°, ∴∠P =180°﹣130°=50°, 故选A .2.平面直角坐标系中,⊙P 的圆心坐标为(﹣4,﹣5),半径为5,那么⊙P 与y 轴的位置关系是( ) A .相交 B .相离 C .相切 D .以上都不是【解答】A【解析】∵⊙P 的圆心坐标为(﹣4,﹣5), ∴⊙P 到y 轴的距离d 为4 ∵d =4<r =5 ∴y 轴与⊙P 相交 故选A .3.三角形的三边长分别为6,8,10,则它的边与半径为2的圆的公共点个数最多为( ) A .3 B .4 C .5 D .6【解答】B【解析】∵62+82=100,102=100, ∴三角形为直角三角形,设内切圆半径为r ,则12(6+8+10)r =12×6×8, 解得r =2,所以应分为五种情况:当一条边与圆相离时,有0个交点,当一条边与圆相切时,有1个交点,当一条边与圆相交时,有2个交点,当圆为三角形内切圆时,有3个交点,当两条边与圆同时相交时,有4个交点,故公共点个数可能为0、1、2、3、4个.∴则它的边与半径为2的圆的公共点个数最多为4个,故选B.4.如图,AB是圆O的直径.点P是BA延长线上一点,PC与圆O相切,切点为C,连接OC,BC,如果∠P =40°,那么∠B的度数为()A.40°B.25°C.35°D.45°【解答】B【解析】∵PC与圆O相切,切点为C,∴OC⊥PC,∴∠OCP=90°,∵∠P=40°,∴∠POC=90°﹣∠P=90°﹣40°=50°,∵OB=OC,∴∠B=∠OCB,∵∠POC=∠B+∠C,∠POC=25°.∴∠B=12故选B.5.如图,已知PA,PB是⊙O的两条切线,A,B为切点,线段OP交⊙O于点M.给出下列四种说法:①PA=PB;②OP⊥AB;③四边形OAPB有外接圆;④M是△AOP外接圆的圆心.其中正确说法的个数是()A.1 B.2 C.3 D.4【解答】C【解析】∵PA,PB是⊙O的两条切线,A,B为切点,∴PA=PB,所以①正确;∵OA=OB,PA=PB,∴OP垂直平分AB,所以②正确;∵PA,PB是⊙O的两条切线,A,B为切点,∴OA⊥PA,OB⊥PB,∴∠OAP=∠OBP=90°,∴点A、B在以OP为直径的圆上,∴四边形OAPB有外接圆,所以③正确;∵只有当∠APO=30°时,OP=2OA,此时PM=OM,∴M不一定为△AOP外接圆的圆心,所以④错误.故选C.6.如图,点D是△ABC中BC边的中点,DE⊥AC于E,以AB为直径的⊙O经过D,连接AD,有下列结论:AC;④DE是⊙O的切线.其中正确的结论是()①AD⊥BC;②∠EDA=∠B;③OA=12A.①②B.①②③C.②③D.①②③④【解答】D【解析】∵AB是⊙O直径,∴∠ADB=90°,∴AD⊥BC,选项①正确;连接OD,如图,∵D为BC中点,O为AB中点,∴DO为△ABC的中位线,∴OD∥AC,又DE⊥AC,∴∠DEA=90°,∴∠ODE=90°,∴DE为圆O的切线,选项④正确;又OB=OD,∴∠ODB=∠B,∵AB为圆O的直径,∴∠ADB=90°,∵∠EDA+∠ADO=90°,∠BDO+∠ADO=90°,∴∠EDA=∠BDO,∴∠EDA=∠B,选项②正确;由D为BC中点,且AD⊥BC,∴AD垂直平分BC,AB,∴AC=AB,又OA=12AC,选项③正确;∴OA=12则正确的结论为①②③④.故选D.7.如图,在矩形ABCD中,AB=5,BC=4,以CD为直径作⊙O.将矩形ABCD绕点C旋转,使所得矩形A'B'C'D'的边A'B'与⊙O相切,切点为E,边CD'与⊙O相交于点F,则CF的长为()A.2.5 B.1.5 C.3 D.4【解答】D【解析】如图,连接OE并延长交CF于点H,∵矩形ABCD 绕点C 旋转得矩形A 'B 'C 'D ', ∴∠B ′=∠B ′CD ′=90°,A ′B ′∥CD ′,BC =B ′C =4,∵边A 'B '与⊙O 相切,切点为E , ∴OE ⊥A ′B ′,∴四边形EB ′CH 是矩形, ∴EH =B ′C =4,OH ⊥CF ,∵AB =5,∴OE =OC =12AB =52, ∴OH =EH ﹣OE =32,在Rt △OCH 中,根据勾股定理,得CH =√OC 2−OH 2=√(52)2−(32)2=2,∴CF =2CH =4. 故选D .8.如图,△ABC 内接于⊙O ,BD 切⊙O 于点B ,AB =AC ,若∠CBD =40°,则∠ABC 等于( )A .40°B .50°C .60°D .70°【解答】D【解析】∵BD 切⊙O 于点B , ∴∠DBC =∠A =40°, ∵AB =AC , ∴∠ABC =∠C ,∴∠ABC =(180°﹣40°)÷2=70°.故选D.9.如图,PA,PB切⊙O于A、B两点,CD切⊙O于点E,交PA,PB于C,D.若△PCD的周长等于3,则PA 的值是()A.32B.23C.12D.34【解答】A【解析】∵PA,PB切⊙O于A、B两点,CD切⊙O于点E,交PA,PB于C,D,∴AC=EC,DE=DB,PA=PB∵△PCD的周长等于3,∴PA+PB=3,∴PA=32.故选A.10.如图,A、B、C、D为⊙O上的点,直线BA与DC相交于点P,PA=2,PC=CD=3,则PB=()A.6 B.7 C.8 D.9【解答】D【解析】∵PB,PD是⊙O的割线,∴PA•PB=PC•PD,∵PA=2,PC=CD=3,∴2PB=3×6解得:PB=9.故选D.11.如图,这条花边中有4个圆和4个正三角形,且这条花边的总长度AB为4,则花边上正三角形的内切圆半径为()A.√33B.23√3C.1 D.√3【解答】A【解析】如图,选择一个等边三角形和其内切圆,圆O是等边三角形ACE的内切圆,圆O切三角形的边CE于点D,∵这条花边的总长度AB为4,∴CE=2,连接OC,AD,则AD过点O,∴CD=DE=12CE=1,∵△ACE是等边三角形,∴∠ACE=60°,∵圆O是等边三角形ACE的内切圆,∴∠OCD=30°,∴OD=CD•tan30°=√33.∴花边上正三角形的内切圆半径为√33.故选A.二.填空题12.在矩形ABCD中,AB=6,BC=8,点O在对角线AC上,圆O的半径为2,如果圆O与矩形ABCD的各边都没有公共点,那么线段AO长的取值范围是.【解答】103<AO<203【解析】在矩形ABCD中,∵∠D=90°,AB=6,BC=8,∴AC=10,如图1,设⊙O与AD边相切于E,连接OE,则OE⊥AD,∴OE∥CD,∴△AOE∽△ACD,∴OECD =AOAC,∴AO10=26,∴AO=103,如图2,设⊙O与BC边相切于F,连接OF,则OF⊥BC,∴OF∥AB,∴△COF∽△CAB,∴OCAC =OFAB,∴OC10=26,∴OC=103,∴AO=203,∴如果圆O与矩形ABCD的各边都没有公共点,那么线段AO长的取值范围是103<AO<203,故答案为103<AO<203.13.如图,⊙O的半径为6cm,B为⊙O外一点,OB交⊙O于点A,AB=OA,动点P从点A出发,以πcm/s 的速度在⊙O上按逆时针方向运动一周回到点A立即停止.当点P运动的时间为时,BP与⊙O相切.【解答】2秒或10秒【解析】连接OP∵当OP⊥PB时,BP与⊙O相切,∵AB=OA,OA=OP,∴OB=2OP,∠OPB=90°;∴∠B=30°;∴∠O=60°;∵OA=6cm,=2π,弧AP=60π×6180∵圆的周长为:12π,∴点P运动的距离为2π或12π﹣2π=10π;∴当t=2秒或10秒时,有BP与⊙O相切.故答案为2秒或10秒.14.在Rt△ABC中,∠C=90°,AC=BC,若以点C为圆心,以2cm长为半径的圆与斜边AB相切,那么BC的长等于.【解答】2√2cm【解析】过C点作CD⊥AB于D,如图,∵⊙C与AB相切,∴CD为⊙C的半径,即CD=2,∵∠C=90°,AC=BC,∴∠B=45°,∴△CDB为等腰直角三角形,∴BC=√2CD=2√2(cm).故答案为2√2cm.15.如图,在矩形ABCD中,已知AB=6,BC=4,以CD为直径作⊙O,将矩形ABCD绕点C旋转,使所得矩形A′B′C′D′的边A′B′与⊙O相切,切点为M,边CD′与⊙O相交于点N,则CN的长为.【解答】4√2【解析】连接OM,延长MO交CD于点G,作OH⊥B′C于点H,则∠OMB′=∠OHB′=90°,∵矩形ABCD绕点C旋转所得矩形为A′B′C′D′,∴∠B′=∠B′CD′=90°,AB=CD=6,BC=B′C=4,∴四边形OMB′H和四边形MB′CG都是矩形,OE=OD=OC=3,∴B′H=OM=3,∴CH=B′C﹣B′H=1,∴CG=B′M=OH=√OC2−CH2=2√2,∵四边形MB′CG是矩形,∴∠OGC=90°,即OG⊥CD′,∴CN=2CG=4√2,故答案为4√2.16.如图,正方形ABCD的边长为8,E为AB中点,F为BC边上的动点,连接EF,以点F为圆心,EF长为半径作⊙F.当⊙F与AD边相切时,CF的长为.【解答】8﹣4√3【解析】当⊙F与直线AD相切时.设切点为K,连接FK,如图:则FK⊥AD,四边形FKDC是矩形.∴FE=FK=CD=2BE,∴BE=4,FE=8,在Rt△FBE中,FB=√FE2−BE2=√82−42=4√3,∴CF=BC﹣FB=8﹣4√3.故答案为8﹣4√3.17.一个菱形的周长是20cm,两对角线之比是4:3,则该菱形的内切圆的半径是cm.【解答】125【解析】如图所示:菱形ABCD,对角线AC,BD,可得菱形内切圆的圆心即为对角线交点,设AB与圆相切于点E,可得OE⊥AB,∵一个菱形的周长是20cm,两对角线之比是4:3,∴AB=5cm,设BO=4x,则AO=3x,故(4x)2+(3x)2=25,解得:x=1,则AO=3,BO=4,故EO•AB=AO•BO,解得:EO=12.5.故答案为12518.以正方形ABCD的AB边为直径作半圆O,过点C作直线切半圆于点F,交AB边于点E,若△CDE的周长为12,则直角梯形ABCE周长为.【解答】14【解析】设AE的长为x,正方形ABCD的边长为a,∵CE与半圆O相切于点F,∴AE=EF,BC=CF,∵EF+FC+CD+ED=12,∴AE+ED+CD+BC=12,∵AD=CD=BC=AB,∴正方形ABCD的边长为4;在Rt△CDE中,ED2+CD2=CE2,即(4﹣x)2+42=(4+x)2,解得:x=1,∵AE+EF+FC+BC+AB=14,∴直角梯形ABCE周长为14.故答案为14.19.如图,在△ABC中,∠C=90°,AC=3,BC=4,则△ABC的内切圆半径r=.【解答】1【解析】在△ABC中,∠C=90°,AC=3,BC=4,根据勾股定理,得AB=5,如图,设△ABC的内切圆与三条边的切点分别为D、E、F,连接OD、OE、OF,∴OD⊥AB,OE⊥BC,OF⊥AC,∵∠C=90°,∴四边形EOFC是矩形,根据切线长定理,得CE=CF,∴矩形EOFC是正方形,∴CE=CF=r,∴AF=AD=AC﹣FC=3﹣r,BE=BD=BC﹣CE=4﹣r,∵AD+BD=AB,∴3﹣r+4﹣r=5,解得r=1.则△ABC的内切圆半径r=1.故答案为1.20.已知△ABC的三边a、b、c满足b+|c﹣3|+a2﹣8a=4√b−1−19,则△ABC的内切圆半径=.【解答】1【解析】∵b+|c﹣3|+a2﹣8a=4√b−1−19,∴|c﹣3|+(a﹣4)2+(√b−1−2)2=0,∴c=3,a=4,b=5,∵32+42=25=52,∴c2+a2=b2,∴△ABC是直角三角形,∠ABC=90°,设内切圆的半径为r,根据题意,得S△ABC=12×3×4=12×3×r+12×4×r+12×r×5,∴r=1,故答案为1.21.如图,在Rt△AOB中,OB=2√3,∠A=30°,⊙O的半径为1,点P是AB边上的动点,过点P作⊙O 的一条切线PQ(其中点Q为切点),则线段PQ长度的最小值为.【解答】2√2【解析】连接OP、OQ,作OP′⊥AB于P′,∵PQ是⊙O的切线,∴OQ⊥PQ,∴PQ=√OP2−OQ2=√OP2−1,当OP最小时,线段PQ的长度最小,当OP⊥AB时,OP最小,在Rt△AOB中,∠A=30°,=6,∴OA=OBtanA在Rt△AOP′中,∠A=30°,OA=3,∴OP′=12∴线段PQ长度的最小值=√32−1=2√2,故答案为2√2.三.解答题22.如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,过点A和点D的圆,圆心O在线段AB上,⊙O交AB于点E,交AC于点F.(1)判断BC与⊙O的位置关系,并说明理由;(2)若AD=8,AE=10,求BD的长.【解答】(1)BC与⊙O相切,理由见解析;(2)BD=1207【解析】(1)BC与⊙O相切,理由:连接OD,∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠ODA=∠CAD,∴OD∥AC,∵∠C=90°,∴∠ODC=90°,∴OD⊥BC,∵OD为半径,∴BC是⊙O切线;(2)连接DE,∵AE是⊙O的直径,∴∠ADE=90°,∵∠C=90°,∴∠ADE=∠C,∵∠EAD=∠DAC,∴△ADE∽△ACD,∴AEAD =ADAC,10 8=8AC,∴AC =325,∴CD =√AD 2−AC 2=√82−(325)2=245, ∵OD ⊥BC ,AC ⊥BC ,∴OD ∥AC ,∴△OBD ∽△ABC ,∴OD AC=BD BC , ∴5325=BD BD+245, ∴BD =1207.23.如图,CD 为⊙O 的直径,弦AB ⊥CD ,垂足为H ,P 是CD 延长线上一点,DE ⊥AP ,垂足为E ,∠EAD =∠HAD .(1)求证:AE 为⊙O 的切线;(2)已知PA =2,PD =1,求⊙O 的半轻和DE 的长.【解答】(1)见解析;(2)DE 的长为35,⊙O 的半径为32 【解析】(1)证明:连接AO 并延长交⊙O 于点M ,连接MD ,如图,∵AB ⊥CD ,∴AD̂=BD ̂, ∴∠M =∠BAD ,∵∠EAD =∠HAD .∴∠M =∠EAD ,∵AM 为直径,∴∠ADM =90°,∴∠M +∠MAD =90°,∴∠EAD +∠MAD =90°,即∠MAE =90°,∴AM ⊥AE ,∴AE 为⊙O 的切线;(2)∵∠EAD =∠HAD ,DH ⊥AH ,DE ⊥AE ,AD =AD ,∴△AHD ≌△AED (AAS )∴DE =DH ,AH =AE ,设DE =x ,AH =y ,则DH =x ,AE =y ,∵∠EPD =∠HPA ,∠PED =∠PHA =90°,∴Rt △PED ∽Rt △PHA ,∴DE AH =PE PH =PD PA ,即x y =2−y 1+x =12, ∴解得x =35,y =65,即DE 的长为35,AH =65,设圆的半径为r ,则OH =r −35, 在Rt △OAH 中,(r −35)2+(65)2=r 2,解得r =32, 即⊙O 的半径为32.答:⊙O 的半轻和DE 的长分别为:32,35.24.如图,AB 是⊙O 的直径,AB =6,OC ⊥AB ,OC =5,BC 与⊙O 交于点D ,点E 是BD ̂的中点,EF ∥BC ,交OC 的延长线于点F .(1)求证:EF 是⊙O 的切线;(2)CG∥OD,交AB于点G,求CG的长.【解答】(1)见解析;(2)CG=173【解析】证明:(1)连接OE,交BD于H,∵点E是BD̂的中点,OE是半径,∴OE⊥BD,BH=DH,∵EF∥BC,∴OE⊥EF,又∵OE是半径,∴EF是⊙O的切线;(2)∵AB是⊙O的直径,AB=6,OC⊥AB,∴OB=3,∴BC=√OB2+OC2=√9+25=√34,∵S△OBC=12×OB×OC=12×BC×OH,∴OH=√34=15√3434,∵cos∠OBC=OBBC =BHOB,∴√34=BH3,∴BH=9√3434,∴BD=2BH=9√3417,∵CG∥OD,∴ODCG =BDBC,∴3CG =9√3417√34,∴CG=173.25.如图,△ABC中,BC=14,AC=9,AB=13,它的内切圆分别和BC,AB,AC切于点D,E,F,求AE,BD 和CF的长.【解答】AE=4,BD=9,CF=5【解析】设AE=x,∵△ABC的内切圆分别和BC,AB,AC切于点D,E,F,∴AF=AE=x,BE=BD,CD=CF,而BE=BA﹣AE=13﹣x,CF=CA﹣AF=9﹣x,∴BD=13﹣x,CD=9﹣x,而BD+CD=BC,∴13﹣x+9﹣x=14,解得x=4,∴AE=4,BD=9,CF=5.26.已知PA、PB分别切⊙O于A、B,E为劣弧AB上一点,过E点的切线交PA于C、交PB于D.(1)若PA=6,求△PCD的周长.(2)若∠P=50°求∠DOC.【解答】(1)△PCD的周长=12;(2)∠COD=65°【解析】(1)连接OE,∵PA、PB与圆O相切,∴PA=PB=6,同理可得:AC=CE,BD=DE,△PCD的周长=PC+PD+CD=PC+PD+CE+DE=PA+PB=12;(2)∵PA PB与圆O相切,∴∠OAP=∠OBP=90°∠P=50°,∴∠AOB=360°﹣90°﹣90°﹣50°=130°,在Rt△AOC和Rt△EOC中,{OA=OEOC=OC,∴Rt△AOC≌Rt△EOC(HL),∴∠AOC=∠COE,同理:∠DOE=∠BOD,∠AOB=65°.∴∠COD=1227.已知PA、PB、DE是⊙O的切线,切点分别为A、B、F,PO=13cm,⊙O的半径为5cm,求△PDE的周长.【解答】24cm【解析】连接OA,则OA⊥PA.在直角三角形APO中,PO=13cm,OA=5cm,根据勾股定理,得AP=12cm.∵PA、PB、DE是⊙O的切线,切点分别为A、B、F,∴PA=PB,DA=DF,EF=EB,∴△PDE的周长=2PA=24cm.28.如图,⊙O是梯形ABCD的内切圆,AB∥DC,E、M、F、N分别是边AB、BC、CD、DA上的切点.(1)求证:AB+CD=AD+BC;(2)求∠AOD的度数.【解答】(1)见解析;(2)∠AOD=90°【解析】(1)证明:∵⊙O切梯形ABCD于E、M、F、N,由切线长定理:AE=AN,BE=BM,DF=DN,CF=CM,∴AE+BE+DF+CF=AN+BM+DN+CM,∴AB+DC=AD+BC;(2)连OE、ON、OM、OF,∵OE=ON,AE=AN,OA=OA,∴△OAE≌△OAN,∴∠OAE=∠OAN.同理,∠ODN=∠ODF.∴∠OAN+∠ODN=∠OAE+∠ODE.又∵AB∥DC,∠EAN+∠CDN=180°,×180°=90°,∴∠OAN+∠ODN=12∴∠AOD=180°﹣90°=90°.。
中考数学直线与圆的位置关系专题含答案
【知识梳理】1、点与圆的位置关系:设⊙O的半径是r,点P到圆心O的距离为d,则有:d<r⇔点P在⊙O内;d=r⇔点P在⊙O上;d>r⇔点P在⊙O外。
2、直线和圆的位置关系:直线和圆有三种位置关系,具体如下:知识点梳理:直线与圆的位置关系______ ______ ______ 图形公共点的个数______ ______ 0公共点的名称交点______ 无直线名称割线______ 无d与r的关系d________r d________r d________r 【经典例题1】在矩形ABCD 中,AB=5,BC=12,点 A 在⊙B 上.如果⊙D 与⊙B 相交,且点 B 在⊙D 内,那么⊙D 的半径长可以等于.(只需写出一个符合要求的数)【解析】∵矩形ABCD中,AB=5,BC=12,∴AC=BD=13,∵点A在B上,∴B的半径为5,∵如果D与B相交,∴D的半径R满足8∵点B在D内,∴R>13,∴14符合要求,故答案为:14(答案不唯一).练习1-1在公园的O处附近有E,F,G,H四棵树,位置如图所示(图中小正方形的边长均相等).现计划修建一座以O为圆心,OA为半径的圆形水池,要求池中不留树木,则E,F,G,H四棵树中需要被移除的为 ()A.E,F,GB.F,G,HC.G,H,ED.H,E,F练习1-2已知☉O的直径等于12,圆心O到直线l的距离恰好为一元二次方程2x2-10x+3=0的两根的和,那么直线l和☉O的位置关系是.练习1-3如图,平面直角坐标系中,⊙P与x轴分别交于A、B两点,点P的坐标为(3,-1),AB=23.将⊙P沿着与y轴平行的方向平移,使⊙P与x轴相切,则平移距离为_____.练习1-4(20上海中考)如图,在矩形ABCD 中,AB=6,BC=8,点O 在对角线AC 上,⊙O 的半径为2,如果⊙O 与矩形ABCD 的各边都没有公共点,那么线段AO 长的取值范围是 .320310<<x练习1-5如图,已知矩形ABCD 中,AB=2,BC=32,O 是AC 上一点,AO=m ,且O 的半径长为1,求:(1)线段AB 与O 没有公共点时m 的取值范围。
九年级数学 直线与圆的位置关系 专题练习(含解析)
九年级数学直线与圆的位置关系专题练习一、选择题1.设⊙O的半径为3,点O到直线l的距离为d,若直线l与⊙O至少有一个公共点,则d 应满足的条件是()A.d=3 B.d≤3 C.d<3 D.d>3答案:B解析:解答:因为直线l与⊙O至少有一个公共点,所以包括直线与圆有一个公共点和两个公共点两种情况,因此d≤r,即d≤3,故选B.分析:当d=r时,直线与圆相切,直线l与圆有一个公共点;当d<r时,直线与圆相交,直线l与圆有两个公共点;当d>r时,直线与圆相离,直线L与圆没有公共点.2.在△ABC中,∠A=90°,AB=3cm,AC=4cm,若以A为圆心3cm为半径作⊙O,则BC与⊙O的位置关系是()A.相交B.相离C.相切D.不能确定答案:A解析:解答:做AD⊥BC,∵∠A=90°,AB=3cm,AC=4cm,若以A为圆心3cm为半径作⊙O,∴BC=5,∴AD×BC=AC×AB,解得:AD=2.4,2.4<3,∴BC与⊙O的位置关系是:相交.故选A.分析:首先求出点A与直线BC的距离,根据直线与圆的位置关系得出BC与⊙O的位置关系.3.在Rt△ABC中,∠C=90°,AC=6cm,则以A为圆心6cm为半径的圆与直线BC的位置关系是()A.相离B.相切C.相交D.外离解析:解答:根据题意得:点A到直线BC的距离=AC,∵AC=6cm,圆的半径=6cm,∴以A为圆心6cm为半径的圆与直线BC相切.故选B.分析:点A到直线BC的距离为线段AC的长度,正好等于圆的半径,则直线BC与圆相切.4.⊙O的半径为8,圆心O到直线l的距离为4,则直线l与⊙O的位置关系是()A.相切B.相交C.相离D.不能确定答案:B解析:解答:∵⊙O的半径为8,圆心O到直线l的距离为4,∵8>4,即:d<r,∴直线l与⊙O的位置关系是相交.故选:B.分析:根据圆O的半径和圆心O到直线L的距离的大小,相交:d<r;相切:d=r;相离:d>r;即可选出答案.5.已知⊙O的半径为5,圆心O到直线l的距离为3,则反映直线l与⊙O的位置关系的图形是()A.B.C.D.答案:B解析:解答:∵⊙O的半径为5,圆心O到直线l的距离为3,∵5>3,即:d<r,∴直线L与⊙O的位置关系是相交.故选B.分析:根据圆O的半径和圆心O到直线l的距离的大小,相交:d<r;相切:d=r;相离:d>r;即可选出答案.6.已知⊙O的半径为10cm,如果一条直线和圆心O的距离为10cm,那么这条直线和这个圆的位置关系为()A.相离B.相切C.相交D.相交或相离解析:解答:根据圆心到直线的距离10等于圆的半径10,则直线和圆相切.故选B.分析:直线和圆的位置关系与数量之间的联系:若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d>r,则直线与圆相离.7.圆O与直线L在同一平面上.若圆O半径为3公分,且其圆心到直线L的距离为2公分,则圆O和直线L的位置关系为()A.不相交B.相交于一点C.相交于两点D.无法判别答案:C解析:解答:∵圆心到直线的距离是2小于圆的半径3,∴直线和圆相交,∴直线和圆有2个公共点.故选C.分析:根据圆心到直线的距离是2小于圆的半径3,则直线和圆相交,此时直线和圆有2个公共点.8.已知⊙O的半径r,圆心O到直线l的距离为d,当d=r时,直线l与⊙O的位置关系是()A.相交B.相切C.相离D.以上都不对答案:B解析:解答:根据直线和圆的位置关系与数量之间的联系:当d=r时,则直线和圆相切.故选B.分析:若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d>r,则直线与圆相离.9.如图,在平面直角坐标系xOy中,半径为2的⊙P的圆心P的坐标为(-3,0),将⊙P 沿x轴正方向平移,使⊙P与y轴相切,则平移的距离为()A.1 B.1或5 C.3 D.5答案:B解析:解答:当⊙P位于y轴的左侧且与y轴相切时,平移的距离为1;当⊙P位于y轴的右侧且与y轴相切时,平移的距离为5.故选:B.分析:平移分在y轴的左侧和y轴的右侧两种情况写出答案即可.10.⊙O的直径为10,圆心O到直线l的距离为6,则直线l与⊙O的位置关系是()A.相交B.相切C.相离D.无法确定答案:C解析:解答:∵⊙O的直径为10∴r=5,∵d=6∴d>r∴直线l与⊙O的位置关系是相离故选C分析:因为⊙O的直径为10,所以圆的半径是5,圆心O到直线l的距离为6即d=6,所以d>r,所以直线l与⊙O的位置关系是相离.11.已知:⊙O的半径为2cm,圆心到直线l的距离为1cm,将直线l沿垂直于l的方向平移,使l与⊙O相切,则平移的距离是()A.1cm B.2cm C.3cm D.1cm或3cm答案:D解析:解答:如图,当l经过点B时,OB=1cm,则AB=1cm;当l移动到l″时,则BC=3cm;故选D.分析:根据直线和圆相切的数量关系,可得点O到l的距离为1cm,可向上或向下平移,使l与⊙O相切,即可得出答案.12.如图,已知线段OA交⊙O于点B,且OB=AB,点P是⊙O上的一个动点,那么∠OAP 的最大值是()A.30°B.45°C.60°D.90°答案:A解析:解答:如图:根据题意知,当∠OAP取最大值时,OP⊥AP;在Rt△AOP中,∵OP=OB,OB=AB,∴OA=2OP,∴∠OAP=30°.故选A.分析:根据题意找出当OP⊥AP时,∠OAP取得最大值.所以在Rt△AOP中,利用直角三角形中锐角三角函数的定义可以求得此时∠OAP的值.13.已知⊙O的半径为2,直线l上有一点P满足PO=2,则直线l与⊙O的位置关系是()A.相切B.相离C.相离或相切D.相切或相交答案:D解析:解答:当OP垂直于直线l时,即圆心O到直线l的距离d=2=r,⊙O与l相切;当OP不垂直于直线l时,即圆心O到直线l的距离d<2=r,⊙O与直线l相交.故直线l与⊙O的位置关系是相切或相交.故选D.分析:根据直线与圆的位置关系来判定.判断直线和圆的位置关系:①直线l和⊙O相交⇔d <r;②直线l和⊙O相切⇔d=r;③直线l和⊙O相离⇔d>r.分OP垂直于直线l,OP不垂直直线l两种情况讨论.14.如图,等边△ABC的周长为6π,半径是1的⊙O从与AB相切于点D的位置出发,在△ABC 外部按顺时针方向沿三角形滚动,又回到与AB相切于点D的位置,则⊙O自转了()A.2周B.3周C.4周D.5周答案:C解析:解答:圆在三边运动自转周数:6π÷2π =3,圆绕过三角形外角时,共自转了三角形外角和的度数:360°,即一周;可见,⊙O自转了3+1=4周.故选:C.分析:该圆运动可分为两部分:在三角形的三边运动以及绕过三角形的三个角,分别计算即可得到圆的自传周数.15.同学们玩过滚铁环吗?当铁环的半径是30cm,手柄长40cm.当手柄的一端勾在环上,另一端到铁环的圆心的距离为50cm时,铁环所在的圆与手柄所在的直线的位置关系为()A.相离B.相交C.相切D.不能确定答案:C解析:解答:根据题意画出图形,如图所示:由已知得:BC=30cm,AC=40cm,AB=50cm,∵2222502500AB==,+=+=+=,22BC AC304090016002500∴222+=BC AC AB∴∠ACB=90°,即AC⊥BC,∴AC为圆B的切线,则此时铁环所在的圆与手柄所在的直线的位置关系为相切.故选C.分析:根据题意画出相应的图形,由三角形ABC的三边,利用勾股定理的逆定理得出∠ACB=90°,根据垂直定义得到AC与BC垂直,再利用切线的定义:过半径外端点且与半径垂直的直线为圆的切线,得到AC为圆B的切线,可得出此时铁环所在的圆与手柄所在的直线的位置关系为相切.二、填空题16.在△ABC中,∠C=90°,AC=6,BC=8,以C为圆心r为半径画⊙C,使⊙C与线段AB 有且只有两个公共点,则r的取值范围是.答案:245<r≤6解析:解答:如图,∵BC>AC,∴以C为圆心,r为半径所作的圆与斜边AB只有一个公共点.根据勾股定理求得AB=10.圆与AB相切时,即r=CD=6×8÷5=24 5;∵⊙C与线段AB有且只有两个公共点,∴245<r≤6.分析:根据勾股定理以及直角三角形的面积计算出其斜边上的高,再根据位置关系与数量之间的联系进行求解.17.⊙O的直径为12,圆心O到直线l的距离为12,则直线l与⊙O的位置关系是. 答案:相离解析:解答:∵⊙O的直径为12∴r=6,∵d=12∴d>r∴直线l与⊙O的位置关系是相离.分析:因为⊙O的直径为12,所以圆的半径是6,圆心O到直线l的距离为12即d=12,所以d>r,所以直线l与⊙O的位置关系是相离.18.如图,⊙O的半径OC=5cm,直线l⊥OC,垂足为H,且l交⊙O于A、B两点,AB=8cm,则l沿OC所在直线向下平移cm时与⊙O相切.答案:2解析:解答:∵直线和圆相切时,OH=5,又∵在直角三角形OHA中,HA=AB÷2 =4,OA=5,∴OH=3.∴需要平移5-3=2cm.故答案为:2.分析:根据直线和圆相切,则只需满足OH=5.又由垂径定理构造直角三角形可求出此时OH的长,从而计算出平移的距离.19.⊙O的半径为R,点O到直线l的距离为d,R,d是方程2x-4x+m=0的两根,当直线l 与⊙O相切时,m的值为.答案:4解析:解答:∵d、R是方程-4x+m=0的两个根,且直线L与⊙O相切,∴d=R,∴方程有两个相等的实根,∴△=16-4m=0,解得,m=4,故答案为:4.分析:先根据切线的性质得出方程有且只有一个根,再根据△=0即可求出m的值.20.已知三角形的三边长分别为3,4,5,则它的边与半径为1的圆的公共点个数所有可能的情况是(写出符合的一种情况即可).答案:2解析:解答:∵2223425,525+==∴三角形为直角三角形,设内切圆半径为r,则1 2(3+4+5)r=12×3×4,解得r=1,所以应分为五种情况:当一条边与圆相离时,有0个交点,当一条边与圆相切时,有1个交点,当一条边与圆相交时,有2个交点,当圆与三角形内切时,有3个交点,当两条边与圆同时相交时,有4个交点,故公共点个数可能为0、1、2、3、4个.故答案为2.分析:根据勾股定理可得三角形为直角三角形,求出三角形内切圆的半径为1,圆在不同的位置和直线的交点从没有到最多4个.三、解答题21.已知⊙O的周长为6π,若某直线l上有一点到圆心O的距离为3,试判断直线l与⊙O的位置关系.答案:相切或相交解答:∵⊙O的周长为6π,∴⊙O的半径为3,∵直线l上有一点到圆心O的距离为3,∴圆心到直线的距离小于或等于3,∴直线l与⊙O的位置关系是相交或相切.解析:分析:首先根据圆的周长求得圆的半径,然后根据圆心到直线的距离与圆的半径的大小关系得到两圆的位置关系即可.22.如图,∠O=30°,C为OB上一点,且OC=6,以点C为圆心,试判断半径为3的圆与OA 的位置关系.答案:相切解答:过点C作CD⊥AO于点D,∵∠O=30°,OC=6,∴DC=3,∴以点C为圆心,半径为3的圆与OA的位置关系是:相切.解析:分析:利用直线l和⊙O相切⇔d=r,进而判断得出即可.23.已知圆的直径为13cm,如果直线和圆心的距离为4.5cm,那么直线和圆有几个公共点.答案:2解析:解答:已知圆的直径为13cm,则半径为6.5cm,又∵圆心距为4.5cm,小于半径,∴直线与圆相交,有两个交点.答:直线和圆有2个公共点.分析:欲求圆与直线的交点个数,即确定直线与圆的位置关系,关键是把直线和圆心的距离4.5cm与半径6.5cm进行比较.若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d >r,则直线与圆相离.(d为直线和圆心的距离,r为圆的半径)24.圆心O到直线L的距离为d,⊙O半径为r,若d、r是方程2x-6x+m=0的两个根,且直线L与⊙O相切,求m的值.答案:9解答:∵d、r是方程x2-6x+m=0的两个根,且直线L与⊙O相切,∴d=r,∴方程有两个相等的实根,∴△=36-4m=0,解得,m=9.解析:分析:先根据切线的性质得出方程有且只有一个根,再根据△=0即可求出m的值.25.如图,AB是⊙O的直径,点D在AB的延长线上,点C在⊙O上,CA=CD,∠CDA=30°.试判断直线CD与⊙O的位置关系,并说明理由.答案:相切解答:如图:∵△ACD是等腰三角形,∠D=30°,∴∠CAD=∠CDA=30°.连接OC,∵AO=CO,∴△AOC是等腰三角形,∴∠CAO=∠ACO=30°,∴∠COD=60°,在△COD中,又∵∠CDO=30°,∴∠DCO=90°∴CD是⊙O的切线,即直线CD与⊙O相切.解析:分析:已知点C在⊙O上,先连接OC,由已知CA=CD,∠CDA=30°,得∠CAO=30°,∠ACO=30°所以得到∠COD=60,根据三角形内角和定理得∠DCO=90°即能判断直线CD与⊙O的位置关系.。
九年级(下册)直线和圆的位置关系练习题及答案
九年级直线和圆的位置关系练习题一、填空题1.已知直线l与⊙O相切,若圆心O到直线l的距离是5,则⊙O的半径是.2.已知⊙O的半径为3cm,圆心O到直线l的距离是4cm,则直线l与⊙O的位置关是.3.P为⊙O外一点,PA、PB分别切⊙O于点A、B,∠APB=50°,点C为⊙O上一点(不与A、B)重合,则∠ACB的度数为。
4.如图,以O为圆心的两个同心圆中,大圆的弦AB是小圆的切线, C为切点,若两圆的半径分别为3cm和5cm,则AB的长为 cm。
5.如图,AB切⊙O于点A,BO交⊙O于点C,点D是ACm异于点C、A的一点,若∠ABO=032,则∠ADC的度数是 .6.如图, 已知△ABC,6==BCAC,︒=∠90C.O是AB的中点,⊙O与AC,BC分别相切于点D与点E.点F是⊙O与AB的一个交点,连结DF并延长交CB的延长线于点G. 则CG= . 二、选择题7.如图,正三角形的切圆半径为1,那么这个正三角形的边长为()A.2 B.3 C.3 D.238.如图,在Rt△ABC中,∠C = 90°,∠B = 30°,BC = 4 cm,以点C为圆心,以2 cm的长为半径作圆,则⊙C与AB的位置关系是().A.相离B.相切C.相交D.相切或相交9.如图,在△ABC中,AB=BC=2,以AB为直径的⊙0与BC相切于点B,则AC等于( ) A.2 B.3 c.22 D.2310.如图,PA、PB是O的切线,切点分别是A、B,如果∠P=60°,那么∠AOB等于()A.60°B.90°C.120°D.150°11.在平面直角坐标系中,以点(3,2)为圆心、3为半径的圆,一定()A.与x轴相切,与y轴相切B.与x轴相切,与y轴相C.与x轴相交,与y轴相切D.与x轴相交,与y轴相12.如图,已知⊙O是以数轴的原点O为圆心,半径为1的圆,45AOB∠=︒,点P在数轴上运动,若过点P且与OA平行的直线与⊙O有公共点, 设xOP=,则x的取值围是OCBAA.-1≤x≤1 B.2-≤x≤2C.0≤x≤2 D.x>213.如图,直线l1∥l2,⊙O与l1和l2分别相切于点A和点B.点M和点N分别是l1和l2上的动点,MN沿l1和l2平移.⊙O的半径为1,∠1=60°.下列结论错误..的是().(A)43MN=(B)若MN与⊙O相切,则3AM=(C)若∠MON=90°,则MN与⊙O相切(D)l1和l2的距离为214.如图,已知A、B两点的坐标分别为(2,0)、(0,2),⊙C的圆心坐标为(-1,0),半径为1.若D 是⊙C上的一个动点,线段DA与y轴交于点E,则△ABE面积的最小值是()A.2 B.1 C.22- D.22-三、解答题15.如图,在△ABC中,AB=AC,D是BC中点,AE平分∠BAD交BC于点E,点O是AB上一点,⊙O过A、E两点, 交AD于点G,交AB于点F.(1)求证:BC与⊙O相切;(2)当∠BAC=120°时,求∠EFG的度数.16.如图,已知CD是△ABC中AB边上的高,以CD为直径的⊙O分别交CA、CB于点E、F,点G是AD的中点.求证:GE是⊙O的切线.17.如图,点O在APB的平分线上,⊙O与PA相切于点C.(1) 求证:直线PB与⊙O相切;(2)PO的延长线与⊙O交于点E若⊙O的半径为3,PC=4,求弦CE的长.18.已知如图所示,△ABC中∠A=∠B=30°,CD是△ABC的角平分线,以C为圆心,CD为半径画圆,交CA所在直线于E、F两点,连接DE、DF。
人教版九年级上册数学试题课堂练习 第二十四章 24. 2 第1课时 直线和圆的位置关系(含答案)
课堂练习1.已知⊙O的半径为5 cm,圆心O到直线l的距离为5 cm,则直线l与⊙O的位置关系为()A.相交B.相切C.相离D.无法确定2.已知⊙O的半径为5,圆心O到直线l的距离为3,则反映直线l与⊙O的位置关系的图形是()3.在平面直角坐标系xOy中,以点(-3,4)为圆心,4为半径的圆()A.与x轴相交,与y轴相切B.与x轴相离,与y轴相交C.与x轴相切,与y轴相交D.与x轴相切,与y轴相离4.⊙O的半径为6,一条弦长63,以3为半径的同心圆与这条弦的位置关系是()A.相切B.相交C.相离D.相切或相交5.已知⊙O的直径等于12 cm,圆心O到直线l的距离为5 cm,则直线l与⊙O的交点个数为()A.0个B.1个C.2个D.无法确定6.直线l与半径为r的⊙O相交,且点O到直线l的距离为6,则r的取值范围是()A.r<6 B.r=6 C.r>6 D.r≥67.如图,在平面直角坐标系xOy中,半径为2的⊙P的圆心P的坐标为(-3,0),将⊙P沿x轴正方向平移,使⊙P与y轴相切,则平移的距离为( )A.1 B.1或5C.3 D.58.如图,两个同心圆,大圆的半径为5,小圆的半径为3,若大圆的弦AB与小圆有公共点,则弦AB的取值范围是( )A.8≤AB≤10 B.8<AB≤10C.4≤AB≤5 D.4<AB≤59.如图,在平面直角坐标系中,⊙O的半径为1,则直线y=x-2与⊙O的位置关系是( )A.相离B.相切C.相交D.以上都有可能10.⊙O的半径为R,点O到直线l的距离为d,R,d是方程x2-4x+m=0的两根,当直线l与⊙O相切时,m的值为 .11.已知⊙O的半径为2,直线l上有一点P满足PO=2,则直线l与⊙O的位置关系是.12.已知直线y=kx(k≠0)经过点(12,-5),将直线向上平移m(m>0)个单位,若平移后得到的直线与半径为6的⊙O相交(点O为坐标原点),则m的取值范围为_____________.13.在Rt△ABC中,∠C=90°,AB=4 cm,BC=2 cm,以C为圆心,r为半径的圆与AB有何种位置关系?(1)r=1.5 cm;(2)r= 3 cm;(3)r=2 cm.14.如图,P为正比例函数y=32x图象上的一个动点,⊙P的半径为3,设点P的坐标为(x,y).(1)求⊙P与直线x=2相切时点P的坐标;(2)请直接写出⊙P与直线x=2相交、相离时x的取值范围.15.如图,在平行四边形ABCD中,∠D=60°,以AB为直径作⊙O,已知AB=10,AD=m.(1)求O到CD的距离;(用含m的代数式表示)(2)若m=6,通过计算判断⊙O与CD的位置关系;(3)若⊙O与线段CD有两个公共点,求m的取值范围.16.已知∠MAN=30°,O为边AN上一点,以O为圆心,2为半径作⊙O,交AN于D,E两点,设AD=x.(1)如图①,当x取何值时,⊙O与AM相切?(2)如图②,当x取何值时,⊙O与AM相交于B,C两点,且∠BOC=90°?答案:1.B2.B3.C4.A5.C6.C7.B8.A9.B10.411.相切或相交12.0<m <13213.解:过点C 作CD ⊥AB ,垂足为D ,可求d =CD = 3 cm .(1)r =1.5 cm <d 时,圆与直线相离;(2)r = 3 cm 时=d ,圆与直线相切;(3)r =2 cm >d 时,圆与直线相交14.解:(1)过点P 作直线x =2的垂线,垂足为A.当点P 在直线x =2的右侧时,AP =x -2=3,∴x =5,∴P(5,152);当点P 在直线x =2的左侧时,PA =2-x =3,∴x =-1,∴P(-1,-32).综上所述,当⊙P 与直线x =2相切时,点P 的坐标为(5,152)或(-1,-32)(2)当-1<x<5时,⊙P 与直线x =2相交;当x<-1或x>5时,⊙P 与直线x =2相离15.解:(1)根据平行线间的距离相等,则O到CD的距离即为A到CD的距离.根据∠D=60°,AD=m,得O到CD的距离是3 2m(2)m=6时,32m=33>5,故⊙O与CD相离(3)若⊙O与线段CD有两个公共点,则该圆和线段CD相交,则5≤m<103 316.解:(1)过O作OC⊥AM于C,∵∠MAN=30°,∴OC=12OA,若⊙O与AM相切,则OC=OD=2,∴OA=4,∴x=AD=OA-OD=2(2)过O作OG⊥AM于G,当∠BOC=90°时,∵OB=OC=2,∴BC=2 2. 又∵OG⊥BC,∴BG=CG=2,∴OG=2,又∵∠A=30°,∴OA=22,∴x=AD=22-2。
人教版数学九年级上册:24.2.2 直线和圆的位置关系 教案(附答案)
24.2.2 直线和圆的位置关系第1课时 直线和圆的位置关系教学目标1.理解掌握同一平面内的直线与圆的三种位置关系.2.理解记忆割线、切线、切点等概念.3.能根据圆心到直线的距离d 与半径r 的大小关系,准确判断出直线与圆的位置关系. 预习反馈阅读教材P95~96,完成下列知识探究.1.直线和圆有两个公共点时,直线和圆相交,这条直线叫做圆的割线.2.直线和圆只有一个公共点时,直线和圆相切,这条直线叫做圆的切线,这个点叫做切点.3.直线和圆没有公共点时,直线和圆相离.4.设⊙O 的半径为r ,圆心O 到直线l 的距离为d ,则有:直线l 和⊙O 相交⇔d <r ;直线l 和⊙O 相切⇔d =r ;直线l 和⊙O 相离⇔d >r .例题讲解例1 在Rt △ABC 中,∠C =90°,AB =4 cm ,BC =2 cm ,以C 为圆心,r 为半径的圆与AB 有何种位置关系?请你写出判断过程.(1)r =1.5 cm ;(2)r = 3 cm ;(3)r =2 cm.【解答】 过点C 作CD ⊥AB ,垂足为D.∵AB =4 cm ,BC =2 cm ,∴AC =2 3 cm.又∵S △ABC =12AB ·CD =12BC ·AC ,∴CD =BC ·AC AB = 3 cm. (1)r =1.5 cm 时,相离;(2)r = 3 cm 时,相切;(3)r =2 cm 时,相交.【跟踪训练1】 在Rt △ABC 中,∠C =90°,AC =3 cm ,BC =4 cm ,以C 为圆心,r 为半径作圆.当r 满足0<r<125__cm 时,⊙C 与直线AB 相离;当r 满足r =125__cm 时,⊙C 与直线AB 相切;当r 满足r>125__cm 时,⊙C 与直线AB 相交. 【跟踪训练2】 已知⊙O 的半径为5 cm ,圆心O 到直线a 的距离为3 cm ,则⊙O 与直线a 的位置关系是相交.直线a 与⊙O 的公共点个数是2.例2 已知⊙O 的半径是3 cm ,直线l 上有一点P 到O 的距离为3 cm ,试确定直线l 和⊙O 的位置关系.【解答】 相交或相切.【跟踪训练2】 如图,在Rt △ABC 中,∠C =90°,AC =3,BC =4,若以C 为圆心,r 为半径的圆与斜边AB 只有一个公共点,则r 的取值范围是多少?【点拨】 分相切和相交两类讨论.解:r =2.4或3<r ≤4.巩固训练1.已知⊙O 的半径为5,直线l 是⊙O 的切线,则点O 到直线l 的距离是(C)A .2.5B .3C .5D .102.已知OA平分∠BOC,P是OA上任意的一点.若以点P为圆心的圆与OC相离,则⊙P 与OB的位置关系是(B)A.相切B.相离C.相交 D.相离或相切3.在△ABC中,AB=AC=5,BC=6,以点A为圆心,4为半径作⊙A,则BC与⊙A的位置关系是(C)A.相交 B.相离C.相切 D.不确定4.已知∠AOB=30°,M为OB上的一点,且OM=5 cm,以M为圆心,r为半径的圆与直线OA有怎样的位置关系?为什么?(1)r=2 cm;(2)r=4 cm;(3)r=2.5 cm.解:圆心M到OA的距离d=0.5OM=0.5×5=2.5(cm).(1)r=2 cm时,d>r,直线OA与⊙M相离;(2)r=4 cm时,d<r,直线OA与⊙M相交;(3)r=2.5 cm时,d=r,直线OA与⊙M相切.第2课时切线的判定和性质教学目标1.探索并掌握切线与过切点的半径之间的位置关系.2.能判定一条直线是否为圆的切线;会过圆上一点画圆的切线.3.会运用圆的切线的性质与判定来解决相关问题.预习反馈阅读教材P97~98,完成下列问题.1.切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.2.切线的性质:①切线和圆只有一个公共点;②切线到圆心的距离等于半径;③圆的切线垂直于过切点的半径.3.当已知一条直线是某圆的切线时,切点的位置是确定的,辅助线常常是连接圆心和切点,得到半径,那么半径垂直于切线.例题讲解例(教材P98例1)如图,△ABC为等腰三角形,O是底边BC的中点,腰AB与⊙O相切于点D,求证:AC是⊙O的切线.【解答】证明:过点O作OE⊥AC,垂足为E,连接OD,OA.∵⊙O与AB相切于点D,∴OD⊥AB.又△ABC为等腰三角形,O是底边BC的中点,∴AO是∠BAC的平分线.∴OE=OD,即OE是⊙O的半径.这样,AC经过⊙O的半径OE的外端E,并且垂直于半径OE,所以AC与⊙O相切.【方法归纳】在解决有关圆的切线问题时,常常需要作过切点的半径.【跟踪训练】 如图,AB 为⊙O 的直径,点E 在⊙O 上,C 为BE ︵的中点,过点C 作直线CD ⊥AE 于D ,连接AC.试判断直线CD 与⊙O 的位置关系,并说明理由.解:直线CD 与⊙O 相切,理由:连接OC.∵C 为BE ︵的中点,∴BC ︵=CE ︵.∴∠DAC =∠BAC.∵OA =OC ,∴∠BAC =∠OCA.∴∠DAC =∠OCA.∴OC ∥AD.∵AD ⊥CD ,∴OC ⊥CD.又∵OC 为⊙O 的半径,∴CD 是⊙O 的切线.巩固训练1.在正方形ABCD 中,点P 是对角线AC 上的任意一点(不包含端点),以P 为圆心的圆与AB 相切,则AD 与⊙P 的位置关系是(B)A .相离B .相切C .相交D .不能确定2.如图,A ,B 是⊙O 上的两点,AC 是过点A 的一条直线,如果∠AOB =120°,那么当∠CAB 的度数等于60°时,AC 才能成为⊙O 的切线.第2题图 第3题图3.如图,AB 是⊙O 的直径,点D 在AB 的延长线上,DC 切⊙O 于C.若∠A =25°,则∠D =40°.4.如图,在△ABC 中,AB =AC ,以AC 为直径的⊙O 交BC 于点D ,交AB 于点E ,过点D 作DF ⊥AB ,垂足为F ,连接DE.求证:直线DF 与⊙O 相切.证明:连接OD.∵AB =AC ,∴∠B =∠C.∵OD =OC ,∴∠ODC =∠C.∴∠ODC =∠B.∴OD ∥AB.∵DF ⊥AB ,∴OD ⊥DF.又∵点D 在⊙O 上,∴直线DF与⊙O相切.课堂小结1.有圆的切线时,常常连接圆心和切点得切线垂直于半径;2.“连半径证垂直”与“作垂直证半径”——判定直线与圆相切.①当直线与圆有公共点时,只需“连半径、证垂直”即可;②当已知条件中没有指出圆与直线有公共点时,常运用“d=r”进行判断,辅助线的作法是过圆心作已知直线的垂线,证明垂线段的长等于半径.第3课时切线长定理教学目标1.理解并掌握切线长定理,能熟练运用所学定理来解答问题.2.了解三角形的内切圆及内心的特点,会画三角形的内切圆.预习反馈阅读教材P99~100,完成下列知识探究.1.经过圆外一点作圆的切线,这点和切点之间线段的长叫做这点到圆的切线长.图中的切线长为PA,PB.2.切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,图中相等的线段有PA,PB,这一点和圆心的连线平分两条切线的夹角,图中相等的角为∠APO=∠BPO.3.与三角形各边都相切的圆叫做三角形的内切圆.4.三角形内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心,它到三边的距离相等.例题讲解例(教材P100例2)如图,△ABC的内切圆⊙O与BC,CA,AB分别相切于点D,E,F,且AB=9,BC=14,CA=13.求AF,BD,CE的长.【解答】设AF=x,则AE=x,CD=CE=AC-AE=13-x,BD=BF=AB-AF=9-x.由BD+CD=BC,可得(13-x)+(9-x)=14.解得x=4.因此AF=4,BD=5,CE=9.【跟踪训练】如图,已知⊙O是Rt△ABC(∠C=90°)的内切圆,切点分别为D,E,F.(1)求证:四边形ODCE 是正方形;(2)设BC =a ,AC =b ,AB =c ,求⊙O 的半径r.解:(1)证明:∵BC ,AC 分别与⊙O 相切于D ,E ,∴∠ODC =∠OEC =∠C =90°.∴四边形ODCE 为矩形.又∵OE =OD ,∴矩形ODCE 是正方形.(2)由(1)得CD =CE =r ,∴a +b =BD +AE +2r =BF +AF +2r =c +2r ,解得r =a +b -c 2. 巩固训练1.如图,Rt △ABC 中,∠C =90°,AC =6,BC =8,则△ABC 的内切圆半径r =2.第1题图 第2题图 第3题图2.如图,AD ,DC ,BC 都与⊙O 相切,且AD ∥BC ,则∠DOC =90°.3.如图,点O 为△ABC 的外心,点I 为△ABC 的内心.若∠BOC =140°,则∠BIC =125°.4.如图,△ABC 切⊙O 于D ,E ,F 三点,内切圆⊙O 的半径为1,∠C =60°,AB =5,则△ABC 的周长为课堂小结1.切线长定理. 2.三角形的内切圆及内心. 3.直角三角形内切圆半径公式.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直线与圆的位置关系中考要求重难点1.理解直线与圆的位置关系;2.能够证明切线及利用切线解决相关问题.课前预习切线(tangent line )几何上,切线指的是一条刚好触碰到曲线上某一点的直线。
更准确的说,当切线经过曲线上的某点(即切点)时,切线的方向与曲线上该点的方向是相同的,此时,“切线在切点附近的部分”最接近“曲线在切点附近的部分”(无限逼近思想)。
tangent 在拉丁语中就是to touch 的意思。
类似的概念也可以推广到平面相切等概念中。
曲线切线和法线的定义P 和Q 是曲线C 上邻近的两点,P 是定点,当Q 点沿着曲线C 无限地接近P 点时,割线PQ 的极限位置PT 叫做曲线C 在点P 的切线,P 点叫做切点;经过切点P 并且垂直于切线PT 的直线PN 叫做曲线C 在点P 的法线(无限逼近的思想)说明:平面几何中,将和圆只有一个公共交点的直线叫做圆的切线.这种定义不适用于一般的曲线;PT 是曲线C 在点P 的切线,但它和曲线C 还有另外一个交点;相反,直线l 尽管和曲线C 只有一个交点,但它却不是曲线C 的切线.例题精讲模版一 直线与圆位置关系的确定设O ⊙的半径为r ,圆心O 到直线l 的距离为d ,则直线和圆的位置关系如下表:1. 切线的性质(1) 定理:圆的切线垂直于过切点的半径.推论1:经过圆心且垂直于切线的直线必经过切点. 推论2:经过切点且垂直于切线的直线必经过圆心.(2) 注意:这个定理共有三个条件,即一条直线满足:①垂直于切线②过切点③过圆心①过圆心,过切点⇒垂直于切线.AB 过圆心,AB 过切点M ,则AB l ⊥. ②过圆心,垂直于切线⇒过切点.AB 过圆心,AB l ⊥,则AB 过切点M . ③过切点,垂直于切线⇒过圆心.AB l ⊥,AB 过切点M ,则AB 过圆心.l2. 切线的判定(1) 定义法:和圆只有一个公共点的直线是圆的切线; (2) 距离法:和圆心距离等于半径的直线是圆的切线;(3) 定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.注意:定理的题设是①“经过半径外端”,②“垂直于半径”,两个条件缺一不可;定理的结论是“直线是圆的切线”.因此,证明一条直线是圆的切线有两个思路:①连接半径,证直线与此半径垂直;②作垂直,证垂直在圆上.l3.切线长和切线长定理(1)切线长:在经过圆外一点的圆的切线上,这点和切点之间的线段的长,叫做这点到圆的切线长.(2)切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角.三.三角形的内切圆1.三角形的内切圆:和三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.2.多边形的内切圆:和多边形的各边都相切的圆叫做多边形的内切圆,这个多边形叫做圆的外切多边形.3.直角三角形内切圆的半径与三边的关系cbc baO FEDCBAC BACBA设a.b.c分别为ABC△中A∠.B∠.C∠的对边,面积为S,则内切圆半径为srp=,其中()12p a b c=++.若90C∠=︒,则()12r a b c=+-.【例1】(2011•成都)已知O的面积为29cmπ,若点O到直线l的距离为cmπ,则直线l与O的位置关系是()A.相交B.相切C.相离D.无法确定【难度】1星【解析】设圆O的半径是r,根据圆的面积公式求出半径,再和点O到直线l的距离π比较即可.【答案】设圆O的半径是r,则29rππ=,∴3r=,∵点O 到直线l 的距离为π, ∵3π<, 即:r d <,∴直线l 与O 的位置关系是相离, 故选C .【点评】本题主要考查对直线与圆的位置关系的理解和掌握,解此题的关键是知道当r d <时相离;当r d =时相切;当r d > 时相交.【巩固】(2010•湘西州)如果一个圆的半径是8cm ,圆心到一条直线的距离也是8cm ,那么这条直线和这个圆的位置关系是( ) A .相离B .相交C .相切D .不能确定【难度】1星【解析】欲求圆与AB 的位置关系,关键是求出点C 到AB 的距离d ,再与半径r 进行比较.若d r <,则直线与圆相交;若d r =,则直线于圆相切;若d r >,则直线与圆相离.【答案】∵圆的半径是8cm ,圆心到直线的距离也是8cm ,∴直线与圆相切. 故选C .【点评】本题考查的是直线与圆的位置关系,解决此类问题可通过比较圆心到直线距离d 与圆半径大小关系完成判定.【巩固】已知⊙O 的半径为3cm ,点P 是直线l 上一点,OP 长为5cm ,则直线l 与O 的位置关系为( )A .相交B .相切C .相离D .相交.相切.相离都有可能【难度】1星【解析】直线和圆的位置关系与数量之间的联系:若d r <,则直线与圆相交;若d r =,则直线于圆相切;若d r >,则直线与圆相离.【答案】∵垂线段最短,∴圆心到直线的距离小于等于5.此时和半径3的大小不确定,则直线和圆相交.相切.相离都有可能. 故选D .【点评】判断直线和圆的位置关系,必须明确圆心到直线的距离.特别注意:这里的5不一定是圆心到直线的距离.【巩固】ABC △中,90C ∠=︒,3AC =,4BC =.给出下列三个结论:(1)以点C 为圆心,2.3 cm 长为半径的圆与AB 相离; (2)以点C 为圆心,2.4 cm 长为半径的圆与AB 相切; (3)以点C 为圆心,2.5 cm 长为半径的圆与AB 相交; 则上述结论中正确的个数是( ) A .0个B .1个C .2个D .3个【难度】2星【解析】此题是判断直线和圆的位置关系,需要求得直角三角形斜边上的高.先过C 作CD AB ⊥于D ,根据勾股定理得5AB =,再根据直角三角形的面积公式,求得 2.4CD =.(1),即d r >,直线和圆相离,正确;(2),即d r =,直线和圆相切,正确;(3),d r <,直线和圆相交,正确.共有3个正确.【答案】(1),d r >,直线和圆相离,正确;(2),d r =,直线和圆相切,正确;(3),d r <,直线和圆相交,正确.故选D .【点评】此题首先根据勾股定理以及直角三角形的面积公式求得直角三角形斜边上的高.掌握直线和圆的位置关系与数量之间的联系时解决问题的关键.【拓展】已知:点P 到直线L 的距离为3,以点P 为圆心,r 为半径画圆,如果圆上有且只有两点到直线L的距离均为2,则半径r 的取值范围是( ) A .1r >B .2r >C .24r <<D .15r <<【解析】首先要确定所画的圆与直线的位置关系.根据题意可知,圆与直线有两种情况符合题意:当圆与直线l 外离时,1r >即可;当圆与直线相交时,要求5r >,所以15r <<.【答案】根据题意可知,若使圆上有且只有两点到直线L 的距离均为2,则当圆与直线l 外离时,1r >; 当圆与直线相交时,5r <; 所以15r <<. 故选D .【点评】此题主要考查了圆与直线的位置关系.要掌握直线与圆的三种位置关系中各自的特点,并根据特殊的位置关系求出相对应的半径的长度是解题的关键.【例2】 如图,在Rt ABC △中,90C ∠=︒,30B ∠=︒,4BC cm =,以点C 为圆心,以2cm 的长为半径作圆,则C 与AB 的位置关系是()A .相离B .相切C .相交D .相切或相交【难度】2星【解析】作CD AB ⊥于点D .根据三角函数求CD 的长,与圆的半径比较,作出判断. 【答案】作CD AB ⊥于点D .∵30B ∠=︒,4BC cm =, ∴2CD cm =,等于半径. ∴AB 与C 相切. 故选B .【点评】此题考查直线与圆的位置关系的判定方法.通常根据圆的半径R 与圆心到直线的距离d 的大小判断:当R d >时,直线与圆相交;当R d =时,直线与圆相切;当R d <时,直线与圆相离.【巩固】如图,在直角梯形ABCD 中,AD BC ∥,90C ∠=︒,且AB AD BC >+,AB 是O 的直径,则直线CD 与O 的位置关系为( )A .相离B .相切C .相交D .无法确定【难度】2星【解析】要判断直线CD 与O 的位置关系,只需求得AB 的中点到CD 的距离,根据梯形的中位线定理进行求解.根据直线和圆的位置关系与数量之间的联系进行判断:若d r <,则直线与圆相交;若d r =,则直线于圆相切;若d r >,则直线与圆相离.【答案】作OE CD ⊥于E .∵AD BC ∥,90C ∠=︒,OE CD ⊥, ∴AD OE BC ∥∥,又OA OB =, ∴DE CE =. ∴2AD BCOE +=. 又AB AD BC >+, ∴2AB OE <, 即圆心到直线的距离小于圆的半径,则直线和圆相交. 故选C .【点评】此题要利用梯形的中位线定理,得到圆心到直线的距离和圆的半径之间的数量关系,从而解决问题.【巩固】正方形ABCD 中,点P 是对角线AC 上的任意一点(不包括端点),以P 为圆心的圆与AB 相切,则AD 与P 的位置关系是( ) A .相离B .相切C .相交D .不确定【难度】2星【解析】根据正方形的对角线平分一组对角,以及角平分线上的点到角两边的距离相等,得点P 到AD 的距离等于点P 到AB 的距离.所以若以P 为圆心的圆与AB 相切,则AD 与P 的位置关系是相切.【答案】∵点P 到AD 的距离等于点P P 到AB 的距离,以P 为圆心的圆与AB 相切,∴AD 与P 的位置关系是相切. 故选B .【点评】综合运用了正方形的性质和角平分线的性质.【拓展】如图,矩形ABCG (AB BC <)与矩形CDEF 全等,点B C D ,,在同一条直线上,APE ∠的顶点P 在线段BD 上移动,使APE ∠为直角的点P 的个数是( )A .0B .1C .2D .3【难度】3星【解析】要判断直角顶点的个数,只要判定以AE为直径的圆与线段BD的位置关系即可,相交时有2个点,相切时有1个,外离时有0个,不会出现更多的点.【答案】连接AE.AC.CE,如图在AEC△中,∵ABC CDE≌△△,∴90ACE∠=︒,然后画出以AE为直径半圆,发现存在的P点实际上有两个【点评】本题主要是根据直径所对的圆周角是直角,把判定顶点的个数的问题,转化为直线与圆的位置关系的问题来解决.【例3】如图,点P在y轴上,P交x轴于A B,两点,连接BP并延长交P于C,过点C的直线交x轴于D,且P5,4AB=.若函数kyx=(0x<)的图象过C点,则k的值是()yxOPDCBAA.4±B.﹣4 C.5-D.4【难度】3星【解析】本题的关键是求出C点的坐标,由于BC是P的直径,那么连接AC后三角形ACB就是直角三角形,已知BC,AB的长,可通过勾股定理求出AC的值,那么即可得出C点的坐标,将C的坐标代入反比例函数的解析式中即可求出k的值.【答案】连接AC,则AC AB⊥,如图所示:在Rt ABC △中,4AB =,BC =, ∴2AC =,∵OP AB ⊥,AC AB ⊥, ∴AC OP ∥, ∵BP PC =,4AB =, ∴2OA OB ==,∴C 的坐标为()22-,,将C 的坐标代入ky x=(0k <)中,可得4k xy ==-故选B . 【点评】本题主要考查了用待定系数法求反比例函数的方法,难度适中,主要掌握用数形结合的思想求出C 点的坐标是解题的关键.【巩固】已知在直角坐标系中,以点()03A ,为圆心,以3为半径作A ,则直线2y kx =+(0k ≠)与A 的位置关系是( ) A .相切B .相交C .相离D .与k 值有关【解析】要判断直线2y kx =+(0k ≠)与A 的位置关系,只需求得直线和y 轴的交点与圆心的距离,再根据点到直线的所有线段中,垂线段最短,进行分析.【答案】因为直线2y kx =+与y 轴的交点是()02B ,,所以1AB =. 则圆心到直线的距离一定小于1,所以直线和A 一定相交.故选B .【点评】考查了直线和圆的位置关系与数量之间的联系.【例4】 如图所示,在直角坐标系中,A 点坐标为()32--,,A 的半径为1,P 为x 轴上一动点,PQ 切A 点Q ,则当PQ 最小时,P 点的坐标为( )A .(﹣4,0)B .(﹣2,0)C .(﹣4,0)或(﹣2,0)D .(﹣3,0)【难度】3星【解析】此题根据切线的性质以及勾股定理,把要求PQ 的最小值转化为求AP 的最小值,再根据垂线段最短的性质进行分析求解.【答案】连接AQ ,AP .根据切线的性质定理,得AQ PQ ⊥; 要使PQ 最小,只需AP 最小,则根据垂线段最短,则作AP x ⊥轴于P ,即为所求作的点P ; 此时P 点的坐标是()03,. 故选D .【点评】此题应先将问题进行转化,再根据垂线段最短的性质进行分析.【巩固】如图,在ABC △中,15AB =,12AC =,9BC =,经过点C 且与边AB 相切的动圆与CB 、CA分别相交于点E 、F ,则线段EF 长度的最小值是( ) A .512B .365C .152D .8【难度】3星【解析】取EF 中点O ,作OG AB ⊥于点G 点,连接CO ,当连接CG ,根据COG △三边关系∵CG CO OG <+,当C O G 、、三点共线时,直径EF 取得最小值,∴365AC BC EF AB ⋅==【答案】B【巩固】如图,已知A 、B 两点的坐标分别为(2,0)、(0,2),⊙C 的圆心坐标为(-1,0),半径为1.若D是⊙C 上的一个动点,线段DA 与y 轴交于点E ,则△ABE 面积的最小值是A .2B .1C .22-D .2【难度】3星【解析】过E 点作EH AB ⊥,△ABE 面积的最小值,即EH 最小,故BAE ∠最小,EAO∠最大,即AD 为C 的切线,∵ADC AOE △∽△,故1222222ABE OE BE S BE AO ==-=⋅=-,,△【答案】C模版二 切线的性质及判定 ☞切线的性质【例5】 如图,AB 与O ⊙相切于点B ,线段OA 与弦BC 垂直于点D ,60AOB ∠=︒,4cm BC =,则切线AB =cm .【题型】填空 【解析】略 【答案】4【巩固】如图,若O 的直径AB 与弦AC 的夹角为30︒,切线CD 与AB 的延长线交于点D ,且O 的半径为2,则CD 的长为() A .B .C .2D .4A【难度】2星【解析】根据切线的性质结合三角函数求线段长度,所以答案选A . 【答案】A【巩固】如图,P 是半圆O 的直径BC 延长线上一点,PA 切半圆于点A ,AH BC ⊥于H ,若1PA =,4PB PC +=,则PH =___________.【考点】切线的性质及判定,公共边型的相似问题 【题型】填空 【难度】3星 【关键词】 【解析】连结AO ,()22PB PC PC BC PC PC CO PO +=++=+=,∴2PO =,∵PA 是半圆的切线,∴AO PA ⊥, 又AH BC ⊥,∴2PA PH PO =⋅,∴212PA PH PO ==.【答案】12☞切线的判定【例6】 如图所示,AB 是O ⊙直径,OD ⊥弦BC 于点F ,且交O ⊙于点E ,若AEC ODB ∠=∠.判断直线BD 和O ⊙的位置关系,并给出证明;B【难度】3星 【解析】倒角B【答案】∵AEC ODB ∠=∠,AEC ABC ∠=∠,∴ABC ODB ∠=∠.∵OD ⊥BC ,∴90DBC ODB ∠+∠=°.∴90DBC ABC ∠+∠=°. 即90DBO ∠=°.∴直线BD 和O ⊙相切.【巩固】如图,已知O ⊙的弦AB 垂直于直径CD ,垂足为F ,点E 在AB 上,且EA EC =,延长EC 到点P ,连结PB ,若PB PE =,试判断PB 与O ⊙的位置关系,并说明理由.【难度】3星 【解析】略【答案】连结OB AC 、∵PB PE =,∴PEB PBE ∠=∠∵EA EC =,∴ECA EAC ∠=∠,∴2BEC BAC ∠=∠ ∵2BOC BAC ∠=∠,∴BOC BEC PBE ∠=∠=∠ ∵AB CD ⊥,∴90BOC FBO ∠+∠=︒ ∴90PBE FBO ∠+∠=︒,即90PBO ∠=︒ ∴PB 与O ⊙相切.【巩固】已知:如图,ABC∠=∠.求证:AD是O的∆内接于O,AD是过A的一条射线,且B CAD切线.【难度】3星【解析】略【答案】如图,过A作O的直径'AB,连接'CB∵'AB为O直径,∴'90B B AC∠+∠=︒,∠=︒,∴''90ACB又∵'B B∠=∠,B CAD∠=∠∴'B CAD∠=∠,∴'90∠=︒,B ADCAD B AC∠+∠=︒,即'90∴OA AD⊥∴AD为O切线.点评:若已知直线与圆有公共点时,则连接圆心和公共点,只要证明这条直线垂直于经过这个公共点的半径(有时候过这个公共点作直径更方便)即可.【巩固】已知:如图,AB是O∠.求⊥于D,AC平分DAB⊙上一点,MN过C点,AD MN⊙的直径,C为O证:MN为O⊙的切线.【难度】3星【解析】略【答案】连结OC∵AC平分DAB∠,∴CAD CAO∠=∠∵OA OC∠=∠=,∴OCA OAC∴OCA CAD∠=∠,∴AD OC∥∵AD MN⊥,∴OC MN⊥∴MN为O⊙的切线.☞求线段长【例7】已知:如图,ABC△中,AB AC⊥=,PD是O的切线,以AB为直径的O交BC于点P,PD AC 于点D.若120∠=︒,2CABAB=,求BC的值.【难度】2星【解析】连接AP,根据已知可求得BP的长,从而可求得BC的长.【答案】连接AP,∵AB是直径,∴90∠=︒;APB∵2∠=︒,CAB==,120AB AC∴60∠=︒,BAP∴3BP=,∴23BC=.【巩固】如图,在O中,直径AB垂直于弦CD,垂足为E,连接AC,将ACD△,△沿AC翻折得到ACF 直线FC与直线AB相交于点G.若2OB BG==,求CD的长.【难度】3星【解析】连接OC ,证OC FG ⊥即可.根据题意AF FG ⊥,证FAC ACO ∠=∠可得OC AF ∥,从而OC FG ⊥,得证;根据垂径定理可求CE 后求解.在Rt OCG △中,根据三角函数可得60COG ∠=︒.结合2OC =求CE ,从而得解.【答案】连接CO∵OA OC =,∴12∠=∠.由翻折得,13∠=∠,90F AEC ∠=∠=︒. ∴23∠=∠,∴OC AF ∥. ∴90OCG F ∠=∠=︒. ∴直线FC 与O 相切. 在Rt OCG △中,1cos 22OC OC COG OG OB ∠===, ∴60COG ∠=︒.在Rt OCE △中,3sin 6023CE OC =⋅︒==. ∵直径AB 垂直于弦CD , ∴223CD CE ==.【点评】此题考查了切线的判定、垂径定理、解直角三角形等知识点,难度中等.【巩固】如图,O 的直径13AC =,弦12BC =.过点A 作直线MN ,使12BAM AOB ∠=∠.延长CB 交MN于点D ,求AD 的长.NM DBCOA【解析】先证明AD 为O 的切线,然后利用相似【答案】∵12BAM AOB∠=∠=ACB∠∵90 ABC ABD∠=∠=︒∴ABC DBA△∽△∴AB ADBC AC=,51213AD=∴6512 AD=课堂检测1.已知60ABC∠=︒,点O在ABC∠的平分线上,5cmOB=,以O为圆心3cm为半径作圆,则O与BC 的位置关系是________.【难度】2星【解析】结合直角三角形30°所对直角边是斜边一半求出O到直线BC的距离,从而根据圆半径判断直线与圆的位置关系,答案是相交.【答案】相交2.如图,以等腰ABC∆中的腰AB为直径作O,交BC于点D.过点D作DE AC⊥,垂足为E.(1)求证:DE为O的切线;(2)若O的半径为5,60BAC∠=︒,求DE的长.C【难度】3星【解析】(1)证明:连接AD,OD.∵AB是直径,∴90ADB∠=︒,即AD BC⊥又∵AB AC=,∴CD BD=,∴OD AC∥又∵DE AC⊥,∴OD DE⊥∴DE是O的切线(2)易知10AD AB==∴12DE AD==【答案】见解析总结复习1.通过本堂课你学会了.2.掌握的不太好的部分 . 3.老师点评:① .② .③ .课后作业1. 如图所示在Rt ABC ∆中,90B ∠=︒,A ∠的平分线交BC 于D ,E 为AB 上一点,DE DC =,以D 为圆心,以DB 的长为半径画圆.求证:(1)AC 是D ⊙的切线;(2)AB EB AC +=.EBE B【难度】3星 【解析】略 【答案】(1)如图所示,过点D 作DF AC ⊥于F .∵AB 为D ⊙的切线,AD 平分BAC ∠, ∴BD DF =∴AC 是D ⊙的切线;(2)在Rt BDE ∆和Rt DCF ∆中, ∵BD DF =,DE DC =, ∴BDE FDC ∆∆≌ ∴EB FC = 又AB AF =∴AB EB AC +=.2. 已知:如图,C 为O ⊙上一点,DA 交O ⊙于B ,连结AC BC 、,且DCB CAB ∠=∠.求证:(1)DC为O ⊙的切线;(2)2CD AD BD =⋅.【难度】3星 【解析】略 【答案】(1)连结OC 并延长交O ⊙于E ,连结BE .可知CE 是O ⊙的直径,∴90CBE ∠=︒,∴90E BCE ∠+∠=︒ ∵CAB E DCB CAB ∠=∠∠=∠,,∴DCB E ∠=∠, ∴90DCB BCE ∠+∠=︒∵CE 是直径,∴CD 是O ⊙的切线.. (2)∵DCB CAB D ∠=∠∠,是公共角, ∴BDC CDA ∆∆∽,∴CD BDAD DC=,即2CD AD BD =⋅. 点评:不是所有证明切线的问题只要连半径就都能解决,例如此题,遇到圆周角的关系,只连半径就不太好用了,就要变半径为直径.“弦切角”已经从初中课本中删除,作为预习课我们这里也不作介绍,如果学生水平较高,这里老师也可以稍微提一下.3. 如图,四边形ABCD 内接于O ,BD 是O 的直径,AE CD ⊥,垂足为E ,DA 平分BDE ∠.(1)求证:AE 是O 的切线;(2)若301cm DBC DE ∠==,,求BD 的长.【难度】3星 【解析】略 【答案】(1)证明:连接OA ,∵DA 平分BDE ∠,∴BDA EDA ∠=∠.∵OA OD =,∴ODA OAD ∠=∠.∴OAD EDA ∠=∠.∴OA CE ∥.∵AE DE ⊥,∴90AED ∠=︒,90OAE DEA ∠=∠=︒ ∴AE OA ⊥.∴AE 是O 的切线.(2)∵BD 是直径,∴90BCD BAD ∠=∠=︒. ∵30DBC ∠=︒,60BDC ∠=︒ ∴120BDE ∠=︒.∵DA 平分BDE ∠,∴60BDA EDA ∠=∠=︒ ∴30ABD EAD ∠=∠=︒.在Rt AED △中,90AED ∠=︒,30EAD ∠=︒,∴2AD DE =.在Rt ABD △中,90BAD ∠=︒,30ABD ∠=︒,∴24BD AD DE ==. ∵DE 的长时1cm ,∴BD 的长是4cm .。