空间向量高考专题

合集下载

2024年高考数学总复习第八章《立体几何与空间向量》空间向量及其运算

2024年高考数学总复习第八章《立体几何与空间向量》空间向量及其运算

2024年高考数学总复习第八章《立体几何与空间向量》§8.5空间向量及其运算最新考纲1.经历向量及其运算由平面向空间推广的过程.2.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.3.掌握空间向量的线性运算及其坐标表示.4.掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直.1.空间向量的有关概念名称概念表示零向量模为0的向量0单位向量长度(模)为1的向量相等向量方向相同且模相等的向量a =b相反向量方向相反且模相等的向量a 的相反向量为-a共线向量表示空间向量的有向线段所在的直线互相平行或重合的向量a ∥b 共面向量平行于同一个平面的向量2.空间向量中的有关定理(1)共线向量定理空间两个向量a 与b (b ≠0)共线的充要条件是存在实数λ,使得a =λb .(2)共面向量定理共面向量定理的向量表达式:p =x a +y b ,其中x ,y ∈R ,a ,b 为不共线向量.(3)空间向量基本定理如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =x a +y b +z c ,{a ,b ,c }叫做空间的一个基底.3.空间向量的数量积及运算律(1)数量积及相关概念①两向量的夹角已知两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB →=b ,则∠AOB 叫做向量a ,b的夹角,记作〈a ,b 〉,其范围是0≤〈a ,b 〉≤π,若〈a ,b 〉=π2,则称a 与b 互相垂直,记作a ⊥b .②两向量的数量积已知空间两个非零向量a ,b ,则|a ||b |cos 〈a ,b 〉叫做向量a ,b 的数量积,记作a ·b ,即a ·b =|a ||b |cos 〈a ,b 〉.(2)空间向量数量积的运算律①(λa )·b =λ(a ·b );②交换律:a ·b =b ·a ;③分配律:a ·(b +c )=a ·b +a ·c .4.空间向量的坐标表示及其应用设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3).向量表示坐标表示数量积a·ba 1b 1+a 2b 2+a 3b 3共线a =λb (b ≠0,λ∈R )a 1=λb 1,a 2=λb 2,a 3=λb 3垂直a ·b =0(a ≠0,b ≠0)a 1b 1+a 2b 2+a 3b 3=0模|a |a 21+a 22+a 23夹角〈a ,b 〉(a ≠0,b ≠0)cos 〈a ,b 〉=a 1b 1+a 2b 2+a 3b 3a 21+a 22+a 23·b 21+b 22+b 23概念方法微思考1.共线向量与共面向量相同吗?提示不相同.平行于同一平面的向量就为共面向量.2.零向量能作为基向量吗?提示不能.由于零向量与任意一个非零向量共线,与任意两个非零向量共面,故零向量不能作为基向量.3.空间向量的坐标运算与坐标原点的位置选取有关吗?提示无关.这是因为一个确定的几何体,其“线线”夹角、“点点”距离都是固定的,坐标系的位置不同,只会影响其计算的繁简,不会影响结果.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)空间中任意两个非零向量a ,b 共面.(√)(2)在向量的数量积运算中(a ·b )·c =a ·(b ·c ).(×)(3)对于非零向量b ,由a ·b =b ·c ,则a =c .(×)(4)两向量夹角的范围与两异面直线所成角的范围相同.(×)(5)若A ,B ,C ,D 是空间任意四点,则有AB →+BC →+CD →+DA →=0.(√)(6)若a·b <0,则〈a ,b 〉是钝角.(×)题组二教材改编2.如图所示,在平行六面体ABCD —A 1B 1C 1D 1中,M 为A 1C 1与B 1D 1的交点.若AB →=a ,AD →=b ,AA 1→=c ,则下列向量中与BM →相等的向量是()A .-12a +12b +cB.12a +12b +c C .-12a -12b +cD.12a -12b +c 答案A解析BM →=BB 1→+B 1M →=AA 1→+12(AD →-AB →)=c +12(b -a )=-12a +12b +c .3.正四面体ABCD 的棱长为2,E ,F 分别为BC ,AD 的中点,则EF 的长为________.答案2解析|EF →|2=EF →2=(EC →+CD →+DF →)2=EC →2+CD →2+DF →2+2(EC →·CD →+EC →·DF →+CD →·DF →)=12+22+12+2(1×2×cos 120°+0+2×1×cos 120°)=2,∴|EF →|=2,∴EF 的长为2.题组三易错自纠4.在空间直角坐标系中,已知A (1,2,3),B (-2,-1,6),C (3,2,1),D (4,3,0),则直线AB 与CD 的位置关系是()A .垂直B .平行C .异面D .相交但不垂直答案B解析由题意得,AB →=(-3,-3,3),CD →=(1,1,-1),∴AB →=-3CD →,∴AB →与CD →共线,又AB 与CD 没有公共点,∴AB ∥CD .5.已知a =(2,3,1),b =(-4,2,x ),且a ⊥b ,则|b |=________.答案26解析∵a ⊥b ,∴a ·b =2×(-4)+3×2+1·x =0,∴x =2,∴|b |=(-4)2+22+22=2 6.6.O 为空间中任意一点,A ,B ,C 三点不共线,且OP →=34OA →+18OB →+tOC →,若P ,A ,B ,C四点共面,则实数t =______.答案18解析∵P ,A ,B ,C 四点共面,∴34+18+t =1,∴t =18.题型一空间向量的线性运算例1如图所示,在空间几何体ABCD -A 1B 1C 1D 1中,各面为平行四边形,设AA 1→=a ,AB →=b ,AD →=c ,M ,N ,P 分别是AA 1,BC ,C 1D 1的中点,试用a ,b ,c 表示以下各向量:(1)AP →;(2)MP →+NC 1→.解(1)因为P 是C 1D 1的中点,所以AP →=AA 1→+A 1D 1→+D 1P →=a +AD →+12D 1C 1→=a +c +12AB →=a +c +12b .(2)因为M 是AA 1的中点,所以MP →=MA →+AP →=12A 1A →+AP→=-12a +c +12b =12a +12b +c .又NC 1→=NC →+CC 1→=12BC →+AA 1→=12AD →+AA 1→=12c +a ,所以MP →+NC 1→+12b ++12c =32a +12b +32c .思维升华用基向量表示指定向量的方法(1)结合已知向量和所求向量观察图形.(2)将已知向量和所求向量转化到三角形或平行四边形中.(3)利用三角形法则或平行四边形法则把所求向量用已知基向量表示出来.跟踪训练1(1)如图所示,在长方体ABCD -A 1B 1C 1D 1中,O 为AC 的中点.用AB →,AD →,AA 1→表示OC 1→,则OC 1→=________________.答案12AB →+12AD →+AA 1→解析∵OC →=12AC →=12(AB →+AD →),∴OC 1→=OC →+CC 1→=12(AB →+AD →)+AA 1→=12AB →+12AD →+AA 1→.(2)如图,在三棱锥O —ABC 中,M ,N 分别是AB ,OC 的中点,设OA →=a ,OB →=b ,OC →=c ,用a ,b ,c 表示NM →,则NM →等于()A.12(-a +b +c )B.12(a +b -c )C.12(a -b +c )D.12(-a -b +c )答案B解析NM →=NA →+AM →=(OA →-ON →)+12AB→=OA →-12OC →+12(OB →-OA →)=12OA →+12OB →-12OC→=12(a +b -c ).题型二共线定理、共面定理的应用例2如图,已知E ,F ,G ,H 分别是空间四边形ABCD 的边AB ,BC ,CD ,DA 的中点.(1)求证:E ,F ,G ,H 四点共面;(2)求证:BD ∥平面EFGH .证明(1)连接BG ,则EG →=EB →+BG →=EB →+12(BC →+BD →)=EB →+BF →+EH→=EF →+EH →,由共面向量定理的推论知E ,F ,G ,H 四点共面.(2)因为EH →=AH →-AE →=12AD →-12AB →=12(AD →-AB →)=12BD →,所以EH ∥BD .又EH ⊂平面EFGH ,BD ⊄平面EFGH ,所以BD ∥平面EFGH .思维升华证明三点共线和空间四点共面的方法比较三点(P ,A ,B )共线空间四点(M ,P ,A ,B )共面PA →=λPB →且同过点P MP →=xMA →+yMB→对空间任一点O ,OP →=OA →+tAB →对空间任一点O ,OP →=OM →+xMA →+yMB →对空间任一点O ,OP →=xOA →+(1-x )OB→对空间任一点O ,OP →=xOM →+yOA →+(1-x -y )OB→跟踪训练2如图所示,已知斜三棱柱ABC —A 1B 1C 1,点M ,N 分别在AC 1和BC 上,且满足AM →=kAC 1→,BN →=kBC →(0≤k ≤1).(1)向量MN →是否与向量AB →,AA 1→共面?(2)直线MN 是否与平面ABB 1A 1平行?解(1)∵AM →=kAC 1→,BN →=kBC →,∴MN →=MA →+AB →+BN →=kC 1A →+AB →+kBC →=k (C 1A →+BC →)+AB →=k (C 1A →+B 1C 1→)+AB →=kB 1A →+AB →=AB →-kAB 1→=AB →-k (AA 1→+AB →)=(1-k )AB →-kAA 1→,∴由共面向量定理知向量MN →与向量AB →,AA 1→共面.(2)当k =0时,点M ,A 重合,点N ,B 重合,MN 在平面ABB 1A 1内,当0<k ≤1时,MN 不在平面ABB 1A 1内,又由(1)知MN →与AB →,AA 1→共面,∴MN ∥平面ABB 1A 1.综上,当k =0时,MN 在平面ABB 1A 1内;当0<k ≤1时,MN ∥平面ABB 1A 1.题型三空间向量数量积的应用例3如图所示,已知空间四边形ABCD 的各边和对角线的长都等于a ,点M ,N 分别是AB ,CD 的中点.(1)求证:MN ⊥AB ,MN ⊥CD ;(2)求异面直线AN 与CM 所成角的余弦值.(1)证明设AB →=p ,AC →=q ,AD →=r .由题意可知,|p |=|q |=|r |=a ,且p ,q ,r 三个向量两两夹角均为60°.MN →=AN →-AM →=12(AC →+AD →)-12AB→=12(q +r -p ),∴MN →·AB →=12(q +r -p )·p =12(q ·p +r ·p -p 2)=12(a 2cos 60°+a 2cos 60°-a 2)=0.∴MN →⊥AB →,即MN ⊥AB .同理可证MN ⊥CD .(2)解设向量AN →与MC →的夹角为θ.∵AN →=12(AC →+AD →)=12(q +r ),MC →=AC →-AM →=q -12p ,∴AN →·MC →=12(q +r -12p2-12q ·p +r ·q -12r ·2-12a 2cos 60°+a 2cos 60°-12a 2cos2-a 24+a 22-=a 22.又∵|AN →|=|MC →|=32a ,∴AN →·MC →=|AN →||MC →|cos θ=32a ×32a ×cos θ=a 22.∴cosθ=23.∴向量AN →与MC →的夹角的余弦值为23,从而异面直线AN 与CM 所成角的余弦值为23.思维升华(1)利用向量的数量积可证明线段的垂直关系,也可以利用垂直关系,通过向量共线确定点在线段上的位置.(2)利用夹角公式,可以求异面直线所成的角,也可以求二面角.(3)可以通过|a |=a 2,将向量的长度问题转化为向量数量积的问题求解.跟踪训练3如图,在平行六面体ABCD -A 1B 1C 1D 1中,以顶点A 为端点的三条棱长度都为1,且两两夹角为60°.(1)求AC 1→的长;(2)求BD 1→与AC →夹角的余弦值.解(1)记AB →=a ,AD →=b ,AA 1→=c ,则|a |=|b |=|c |=1,〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°,∴a ·b =b ·c =c ·a =12.|AC 1→|2=(a +b +c )2=a 2+b 2+c 2+2(a ·b +b ·c +c ·a )=1+1+1+2+12+6,∴|AC 1→|=6,即AC 1的长为6.(2)BD 1→=b +c -a ,AC →=a +b ,∴|BD 1→|=2,|AC →|=3,BD 1→·AC →=(b +c -a )·(a +b )=b 2-a 2+a ·c +b ·c =1,∴cos 〈BD 1→,AC →〉=BD 1,→·AC →|BD 1→||AC →|=66.即BD 1→与AC →夹角的余弦值为66.1.已知a =(2,3,-4),b =(-4,-3,-2),b =12x -2a ,则x 等于()A .(0,3,-6)B .(0,6,-20)C .(0,6,-6)D .(6,6,-6)答案B解析由b =12x -2a ,得x =4a +2b =(8,12,-16)+(-8,-6,-4)=(0,6,-20).2.在下列命题中:①若向量a ,b 共线,则向量a ,b 所在的直线平行;②若向量a ,b 所在的直线为异面直线,则向量a ,b 一定不共面;③若三个向量a ,b ,c 两两共面,则向量a ,b ,c 共面;④已知空间的三个向量a ,b ,c ,则对于空间的任意一个向量p 总存在实数x ,y ,z 使得p =x a +y b +z c .其中正确命题的个数是()A .0B .1C .2D .3答案A解析a 与b 共线,a ,b 所在的直线也可能重合,故①不正确;根据自由向量的意义知,空间任意两向量a ,b 都共面,故②不正确;三个向量a ,b ,c 中任意两个一定共面,但它们三个却不一定共面,故③不正确;只有当a ,b ,c 不共面时,空间任意一向量p 才能表示为p =x a +y b +z c ,故④不正确,综上可知四个命题中正确的个数为0,故选A.3.已知向量a =(2m +1,3,m -1),b =(2,m ,-m ),且a ∥b ,则实数m 的值等于()A.32B .-2C .0 D.32或-2答案B解析当m =0时,a =(1,3,-1),b =(2,0,0),a 与b 不平行,∴m ≠0,∵a ∥b ,∴2m +12=3m =m -1-m ,解得m =-2.4.在空间直角坐标系中,已知A (1,-2,1),B (2,2,2),点P 在z 轴上,且满足|PA |=|PB |,则P 点坐标为()A .(3,0,0)B .(0,3,0)C .(0,0,3)D .(0,0,-3)答案C 解析设P (0,0,z ),则有(1-0)2+(-2-0)2+(1-z )2=(2-0)2+(2-0)2+(2-z )2,解得z =3.5.已知a =(1,0,1),b =(x ,1,2),且a·b =3,则向量a 与b 的夹角为()A.5π6 B.2π3 C.π3 D.π6答案D解析∵a·b =x +2=3,∴x =1,∴b =(1,1,2),∴cos 〈a ,b 〉=a·b |a||b |=32×6=32,又∵〈a ,b 〉∈[0,π],∴a 与b 的夹角为π6,故选D.6.如图,在大小为45°的二面角A -EF -D 中,四边形ABFE ,CDEF 都是边长为1的正方形,则B ,D 两点间的距离是()A.3B.2C .1 D.3-2答案D 解析∵BD →=BF →+FE →+ED →,∴|BD →|2=|BF →|2+|FE →|2+|ED →|2+2BF →·FE →+2FE →·ED →+2BF →·ED →=1+1+1-2=3-2,故|BD→|=3-2.7.已知a=(2,1,-3),b=(-1,2,3),c=(7,6,λ),若a,b,c三向量共面,则λ=________.答案-9解析由题意知c=x a+y b,即(7,6,λ)=x(2,1,-3)+y(-1,2,3),x-y=7,+2y=6,3x+3y=λ,解得λ=-9.8.已知a=(x,4,1),b=(-2,y,-1),c=(3,-2,z),a∥b,b⊥c,则c=________.答案(3,-2,2)解析因为a∥b,所以x-2=4y=1-1,解得x=2,y=-4,此时a=(2,4,1),b=(-2,-4,-1),又因为b⊥c,所以b·c=0,即-6+8-z=0,解得z=2,于是c=(3,-2,2).9.已知V为矩形ABCD所在平面外一点,且VA=VB=VC=VD,VP→=13VC→,VM→=23VB→,VN→=23VD→.则VA与平面PMN的位置关系是________.答案平行解析如图,设VA→=a,VB→=b,VC→=c,则VD→=a+c-b,由题意知PM→=23b-13c,PN→=23VD→-13VC→=23a-23b+13c.因此VA→=32PM→+32PN→,∴VA→,PM→,PN→共面.又VA⊄平面PMN,∴VA∥平面PMN.10.已知ABCD -A 1B 1C 1D 1为正方体,①(A 1A →+A 1D 1→+A 1B 1→)2=3A 1B 1→2;②A 1C →·(A 1B 1→-A 1A →)=0;③向量AD 1→与向量A 1B →的夹角是60°;④正方体ABCD -A 1B 1C 1D 1的体积为|AB →·AA 1→·AD →|.其中正确的序号是________.答案①②解析①中,(A 1A →+A 1D 1→+A 1B 1→)2=A 1A →2+A 1D 1→2+A 1B 1→2=3A 1B 1→2,故①正确;②中,A 1B 1→-A 1A →=AB 1→,因为AB 1⊥A 1C ,故②正确;③中,两异面直线A 1B 与AD 1所成的角为60°,但AD 1→与A 1B →的夹角为120°,故③不正确;④中,|AB →·AA 1→·AD →|=0,故④也不正确.11.已知A ,B ,C 三点不共线,对平面ABC 外的任一点O ,若点M 满足OM →=13(OA →+OB →+OC →).(1)判断MA →,MB →,MC →三个向量是否共面;(2)判断点M 是否在平面ABC 内.解(1)由题意知OA →+OB →+OC →=3OM →,∴OA →-OM →=(OM →-OB →)+(OM →-OC →),即MA →=BM →+CM →=-MB →-MC →,∴MA →,MB →,MC →共面.(2)由(1)知MA →,MB →,MC →共面且过同一点M ,∴M ,A ,B ,C 四点共面.∴点M 在平面ABC 内.12.已知a =(1,-3,2),b =(-2,1,1),A (-3,-1,4),B (-2,-2,2).(1)求|2a +b |;(2)在直线AB 上,是否存在一点E ,使得OE →⊥b ?(O 为原点)解(1)2a +b =(2,-6,4)+(-2,1,1)=(0,-5,5),故|2a +b |=02+(-5)2+52=5 2.(2)令AE →=tAB →(t ∈R ),所以OE →=OA →+AE →=OA →+tAB→=(-3,-1,4)+t (1,-1,-2)=(-3+t ,-1-t ,4-2t ),若OE →⊥b ,则OE →·b =0,所以-2(-3+t )+(-1-t )+(4-2t )=0,解得t =95.因此存在点E ,使得OE →⊥b ,此时E -65,-145,13.如图,已知空间四边形OABC ,其对角线为OB ,AC ,M ,N 分别为OA ,BC 的中点,点G 在线段MN 上,且MG →=2GN →,若OG →=xOA →+yOB →+zOC →,则x +y +z =________.答案56解析连接ON ,设OA →=a ,OB →=b ,OC →=c ,则MN →=ON →-OM →=12(OB →+OC →)-12OA →=12b +12c -12a ,OG →=OM →+MG →=12OA →+23MN →=12a+12c -12a =16a +13b +13c .又OG →=xOA →+yOB →+zOC →,所以x =16y =13,z =13,因此x +y +z =16+13+13=56.14.A ,B ,C ,D 是空间不共面的四点,且满足AB →·AC →=0,AC →·AD →=0,AB →·AD →=0,M 为BC 中点,则△AMD 是()A .钝角三角形B .锐角三角形C .直角三角形D .不确定答案C 解析∵M 为BC 中点,∴AM →=12(AB →+AC →),∴AM →·AD →=12(AB →+AC →)·AD →=12AB →·AD →+12AC →·AD →=0.∴AM ⊥AD ,△AMD 为直角三角形.15.已知O (0,0,0),A (1,2,1),B (2,1,2),P (1,1,2),点Q 在直线OP 上运动,当QA →·QB→取最小值时,点Q 的坐标是________.答案(1,1,2)解析由题意,设OQ →=λOP →,则OQ →=(λ,λ,2λ),即Q (λ,λ,2λ),则QA →=(1-λ,2-λ,1-2λ),QB →=(2-λ,1-λ,2-2λ),∴QA →·QB →=(1-λ)(2-λ)+(2-λ)(1-λ)+(1-2λ)(2-2λ)=6λ2-12λ+6=6(λ-1)2,当λ=1时取最小值,此时Q 点坐标为(1,1,2).16.如图,在直三棱柱ABC -A ′B ′C ′中,AC =BC =AA ′,∠ACB =90°,D ,E 分别为棱AB ,BB ′的中点.(1)求证:CE ⊥A ′D ;(2)求异面直线CE 与AC ′所成角的余弦值.(1)证明设CA →=a ,CB →=b ,CC ′→=c ,根据题意得|a |=|b |=|c |,且a ·b =b ·c =c ·a =0,∴CE →=b +12c ,A ′D →=-c +12b -12a ,∴CE →·A ′D →=-12c 2+12b 2=0,∴CE →⊥A ′D →,即CE ⊥A ′D .(2)解∵AC ′→=-a +c ,|AC ′→|=2|a |,|CE →|=52|a |,AC ′→·CE →=(-a +c +12c =12c 2=12|a |2,∴cos 〈AC ′→,CE →〉=AC ′,→·CE →|AC ′→||CE →|=12|a |22×52|a |2=1010,即异面直线CE 与AC ′所成角的余弦值为1010.。

解析高考几何题中的空间向量知识点

解析高考几何题中的空间向量知识点

解析高考几何题中的空间向量知识点在高考数学中,几何题一直是重点和难点,而空间向量的引入为解决这类问题提供了有力的工具。

空间向量不仅能够简化复杂的几何推理,还能帮助我们更直观、高效地找到解题思路。

接下来,咱们就深入剖析一下高考几何题中涉及的空间向量知识点。

一、空间向量的基本概念空间向量是在空间中既有大小又有方向的量。

它与平面向量类似,但多了一个维度。

一个空间向量可以用有向线段来表示,其长度表示向量的模,方向表示向量的指向。

在直角坐标系中,空间向量可以用坐标形式表示,比如向量 a =(x, y, z) 。

通过坐标,我们可以方便地进行向量的运算。

二、空间向量的运算1、加法和减法两个空间向量的加法和减法遵循三角形法则和平行四边形法则。

通过坐标运算,若向量 a =(x1, y1, z1) ,向量 b =(x2, y2, z2) ,则向量 a + b =(x1 + x2, y1 + y2, z1 + z2) ,向量 a b =(x1 x2, y1 y2, z1 z2) 。

2、数乘运算一个实数 k 乘以一个空间向量 a ,得到的向量 k a 的模是原向量模的|k| 倍,方向当 k > 0 时与原向量相同,当 k < 0 时与原向量相反。

坐标运算为 k a =(kx, ky, kz) 。

3、数量积空间向量的数量积 a · b =|a| |b| cosθ ,其中θ 是两个向量的夹角。

通过坐标运算,若向量 a =(x1, y1, z1) ,向量 b =(x2, y2, z2) ,则 a · b = x1x2 + y1y2 + z1z2 。

数量积的应用非常广泛,比如可以用来求向量的模、判断向量的垂直关系等。

三、空间向量在证明平行与垂直关系中的应用1、平行关系若向量 a =(x1, y1, z1) ,向量 b =(x2, y2, z2) ,当存在实数 k ,使得 a = k b 时,向量 a 与向量 b 平行。

高考数学专题复习题:空间向量运算的坐标表示

高考数学专题复习题:空间向量运算的坐标表示

高考数学专题复习题:空间向量运算的坐标表示一、单项选择题(共8小题)1.已知两平行直线的方向向量分别为(42,1,1)a m m m =−−−,(4,22,22)b m m =−−,则实数m 的值为( )A .1B .3C .1或3D .以上答案都不正确 2.已知空间中两点(,1,2)A x,(2,3,4)B ,且AB =x 的值是( ) A .6−B .2−或6C .4−D .4−或23.如果点(3,1,4)A −,(7,1,0)B ,那么线段AB 的中点M 在yOz 平面上的射影点的坐标一定是( ) A .(0,1,2)B .(2,1,2)C .(2,1,2)−D .(2,1,2)−−4.若点()(),,0P x y z xyz ≠关于xOy 的对称点为A ,关于z 轴的对称点为B ,则A 、B 两点的对称是( ) A .关于xOz 平面对称 B .关于x 轴对称 C .关于y 轴对称D .关于坐标原点对称5.如图,在直三棱柱111ABC A B C −中,190,1,,,BAC AB AC AA G E F ∠=︒===分别是棱111,A B CC 和AB 的中点,点D 是线段AC 上的动点(不包括端点).若GD EF ⊥,则线段AD 的长度是( )A .14B .12C .34D .136.已知()4,2,5a =−,()2,1,b x =−,且a b ⊥,则x =( ) A .1B .2C .3D .47.设,x y ∈R ,如果向量(),1,1a x =,()1,,1b y =,()2,4,2c =−,且a b ⊥,//b c ,那么a b +等于( ) A .B C .3D .48.已知向量()1,,2AB a =−与()2,4,AC b =−共线,则a b +=( ) A .2−B .0C .2D .6二、填空题(共3小题)9.已知()()2,3,0,,0,3,,120=−==a b k a b ,则k =________.10.若正方体1111ABCD A B C D −的棱长为1,则AB 在1AC uuu r上的投影向量的模为________. 11.在空间直角坐标系中,已知()1,2,2A t ,(),0,31B t t −,则AB的最小值是________.三、解答题(共2小题)12.如图,在棱长为1的正方体1111ABCD A B C D −中,以正方体的三条棱所在直线为轴建立空间直角坐标系O xyz −.(1)若点P 在线段1BD 上,且满足13BP BD =,试写出点P 的坐标,并写出点P 关于y 轴的对称点P '的坐标.(2)在线段1C D 上找一点M ,使得点M 到点P 的距离最小,求出点M 的坐标.13.已知向量()()1,1,0,1,0,2a b ==−. (1)若2a kb a b ++()∥(),求实数k . (2)若向量a kb +rr与2a b +所成角为锐角,求实数k 的范围.。

2023年新高考数学一轮复习8-6 空间向量及其运算和空间位置关系(知识点讲解)含详解

2023年新高考数学一轮复习8-6 空间向量及其运算和空间位置关系(知识点讲解)含详解

专题8.6 空间向量及其运算和空间位置关系(知识点讲解)【知识框架】【核心素养】1.考查空间向量的概念及运算,凸显数学抽象、逻辑推理、数学运算、直观想象的核心素养.2.考查空间向量的应用,凸显逻辑推理、数学运算、直观想象的核心素养.【知识点展示】1.平行(共线)向量与共面向量2①a∥b时,θ=__0或π__,θ=__0__时,a与b同向;θ=__π__时,a与b反向.②a ⊥b ⇔θ=__π2__⇔a ·b =0.③θ为锐角时,a ·b __>__0,但a ·b >0时,θ可能为__0__;θ为钝角时,a ·b __<__0,但a ·b <0时,θ可能为__π__.④|a ·b |≤|a |·|b |,特别地,当θ=__0__时,a ·b =|a |·|b |,当θ=__π__时,a ·b =-|a |·|b |.⑤对于实数a 、b 、c ,若ab =ac ,a ≠0,则b =c ;对于向量a 、b 、c ,若a ·b =a ·c ,a ≠0,却推不出b =c ,只能得出__a ⊥(b -c )__.⑥a ·b =0⇒/ a =0或b =0,a =0时,一定有a ·b =__0__.⑦不为零的三个实数a 、b 、c ,有(ab )c =a (bc )成立,但对于三个向量a 、b 、c ,(a ·b )c __≠__a (b ·c ),因为a ·b 是一个实数,(a ·b )c 是与c 共线的向量,而a (b ·c )是与a 共线的向量,a 与c 却不一定共线. 3.空间向量基本定理(1)如果三个向量a 、b 、c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =__x a +y b +z c __.(2)如果三个向量a 、b 、c 不共面,那么所有空间向量组成的集合就是{p|p =x a +y b +z c ,x ,y ,z ∈R },这个集合可看作是由向量a 、b 、c 生成的,我们把{__a ,b ,c __}叫做空间的一个基底,a 、b 、c 都叫做__基向量__,空间任何三个__不共面__的向量都可构成空间的一个基底,同一(相等)向量在不同基底下的坐标__不同__,在同一基底下的坐标__相同__. 4.空间向量的正交分解及其坐标表示设e 1、e 2、e 3为有公共起点O 的三个两两垂直的单位向量(我们称它们为单位正交基底).以e 1、e 2、e 3的公共起点O 为原点,分别以__e 1,e 2,e 3__的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系O -xyz .对于空间任意一个向量p 一定可以把它平移,使它的__起点__与原点O 重合,得到向量OP →=p ,由空间向量基本定理可知,存在有序实数组{x ,y ,z },使得p =x e 1+y e 2+z e 3.我们把x 、y 、z 称作向量p 在单位正交基底e 1、e 2、e 3下的坐标,记作p = (x ,y ,z ). 5.用向量描述空间平行关系设空间两条直线l 、m 的方向向量分别为a =(a 1,a 2,a 3)、b =(b 1,b 2,b 3),两个平面α,β的法向量分别为u =(u 1,u 2,u 3),v =(v 1,v 2,v 3),则有如下结论:6. 用向量证明空间中的垂直关系①设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2⇔v 1⊥v 2⇔v 1·v 2=0.②设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α⇔v∥u . ③设平面α和β的法向量分别为u 1和u 2,则α⊥β⇔u 1⊥u 2⇔u 1·u 2=0. 7.共线与垂直的坐标表示设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a ∥b ⇔a =λb ⇔a 1=λb 1,a 2=λb 2,a 3=λb 3(λ∈R),a ⊥b ⇔a·b =0⇔a 1b 1+a 2b 2+a 3b 3=0(a ,b 均为非零向量).【常考题型剖析】题型一:空间向量的运算例1.(2023·全国·高三专题练习)如图所示,在平行六面体1111ABCD A B C D -中,M 为11A C 与11B D 的交点,若AB a =,AD b =,1AA c =,则BM =( )A .1122a b c -+B .1122a b c ++C .1122a b c --+D .1122-++a b c例2. (2022·全国·高三专题练习)如图,OABC 是四面体,G 是ABC 的重心,1G 是OG 上一点,且14OG OG =,则( )A .1111666OG OA OB OC =++B .1OG =111121212OA OB OC ++ C .1OG =111181818OA OB OC ++ D .1OG =111888OA OB OC ++例3.(安徽·高考真题(理))在正四面体O -ABC 中,,,OA a OB b OC c ===,D 为BC 的中点,E 为AD 的中点,则OE =______________(用,,a b c 表示). 【方法技巧】用基向量表示指定向量的方法(1)结合已知向量和所求向量观察图形.(2)将已知向量和所求向量转化到三角形或平行四边形中.(3)利用三角形法则或平行四边形法则把所求向量用已知基向量表示出来. 题型二:共线(共面)向量定理的应用例4.(2023·全国·高三专题练习)以下四组向量在同一平面的是( ) A .()1,1,0、()0,1,1、()1,0,1 B .()3,0,0、()1,1,2、()2,2,4 C .()1,2,3、()1,3,2、()2,3,1D .()1,0,0、()0,0,2、()0,3,0例5.(2022·广西桂林·模拟预测(文))如图,已知正方体ABCD -A 1B 1C 1D 1的中心为O ,则下列结论中①OA +OD 与OA 1+OD 1是一对相反向量;②OB -OC 1与OC -OB 1是一对相反向量;③OA 1+OB 1+OC 1+OD 1与OD +OC +OB +OA 是一对相反向量; ④OC -OA 与OC 1-OA 1是一对相反向量. 正确结论的个数为( ) A .1B .2C .3D .4例6.(2020·全国·高三专题练习)已知O 、A 、B 、C 、D 、E 、F 、G 、H 为空间的9个点(如图所示),并且OE kOA =,OF kOB =,OH kOD =,AC AD mAB =+,EG EH mEF =+.求证:(1)A 、B 、C 、D 四点共面,E 、F 、G 、H 四点共面; (2)//AC EG . 【总结提升】证明三点共线和空间四点共面的方法比较题型三:空间向量数量积及其应用例7.(广东·高考真题(理))已知向量()1,0,1a =-,则下列向量中与a 成60的是( ) A .()1,1,0-B .()1,1,0-C .()0,1,1-D .()1,0,1-例8.(2022·全国·高三专题练习)如图,在四棱锥P ABCD -中,底面ABCD 是边长为1的正方形,侧棱P A 的长为2,且P A 与AB 、AD 的夹角都等于60°,M 是PC 的中点,设AB a =,AD b =,c AP =.(1)试用a ,b ,c 表示向量BM ;(2)求BM 的长.例9. (2020·全国·高三专题练习)已知向量(2,1,2)a =-,(1,0,1)c =-,若向量b 同时满足下列三个条件:①1a b ⋅=-;①3b =;①b 与c 垂直.(1)求2a c +的模; (2)求向量b 的坐标. 【总结提升】空间向量数量积的应用题型四:利用空间向量证明平行例10.(2021·全国·高三专题练习)如图,在四面体ABCD 中,E ,F ,G ,H 分别是AB ,BC ,CD ,DA 的中点.(1)求证:E ,F ,G ,H 四点共面;(2)求证://BD 平面EFGH ;(3)设M 是EG 和FH 的交点,求证:对空间任意一点O ,有()14OM OA OB OC OD =+++. 例11.(2020·全国·高三专题练习(理))如图所示,平面P AD ①平面ABCD ,ABCD 为正方形,①P AD 是直角三角形,且P A =AD =2,E ,F ,G 分别是线段P A ,PD ,CD 的中点.求证:(1)PB //平面EFG ; (2)平面EFG //平面PBC . 【规律方法】利用空间向量证明平行的方法 1.线线平行:证明两直线的方向向量共线2.线面平行:①证明该直线的方向向量与平面的某一法向量垂直;②证明直线的方向向量与平面内某直线的方向向量平行3.面面平行:①证明两平面的法向量为共线向量;②转化为线面平行、线线平行问题 题型五:利用空间向量证明垂直例12.(2022·河南·宝丰县第一高级中学模拟预测(文))如图,O ,1O 是圆柱底面的圆心,1AA ,1BB ,1CC均为圆柱的母线,AB 是底面直径,E 为1AA 的中点.已知4AB =,BC =(1)证明:1AC BC ⊥;(2)若1AC BE ⊥,求该圆柱的体积.例13.(2022·全国·高三专题练习)已知正方体ABCD -A 1B 1C 1D 1中,E 为棱CC 1上的动点.(1)求证:A 1E ⊥BD ;(2)若平面A 1BD ⊥平面EBD ,试确定E 点的位置.例14.(2020·全国·高三专题练习)直四棱柱1111ABCD A B C D -中,2AB BC ==,90ABC ∠=︒,E 、F 分别为棱AB 、11B C 上的点,2AE EB =,112C F FB =.求证:(1)//EF 平面11AAC C ;(2)线段AC 上是否存在一点G ,使面EFG ⊥面11AAC C .若存在,求出AG 的长;若不存在,请说明理由. 【规律方法】利用空间向量证明垂直的方法1.线线垂直:证明两直线所在的方向向量互相垂直,即证它们的数量积为零2.线面垂直:证明直线的方向向量与平面的法向量共线,或将线面垂直的判定定理用向量表示3.面面垂直:证明两个平面的法向量垂直,或将面面垂直的判定定理用向量表示专题8.6 空间向量及其运算和空间位置关系(知识点讲解)【知识框架】【核心素养】1.考查空间向量的概念及运算,凸显数学抽象、逻辑推理、数学运算、直观想象的核心素养.2.考查空间向量的应用,凸显逻辑推理、数学运算、直观想象的核心素养.【知识点展示】1.平行(共线)向量与共面向量2①a∥b时,θ=__0或π__,θ=__0__时,a与b同向;θ=__π__时,a与b反向.②a ⊥b ⇔θ=__π2__⇔a ·b =0.③θ为锐角时,a ·b __>__0,但a ·b >0时,θ可能为__0__;θ为钝角时,a ·b __<__0,但a ·b <0时,θ可能为__π__.④|a ·b |≤|a |·|b |,特别地,当θ=__0__时,a ·b =|a |·|b |,当θ=__π__时,a ·b =-|a |·|b |.⑤对于实数a 、b 、c ,若ab =ac ,a ≠0,则b =c ;对于向量a 、b 、c ,若a ·b =a ·c ,a ≠0,却推不出b =c ,只能得出__a ⊥(b -c )__.⑥a ·b =0⇒/ a =0或b =0,a =0时,一定有a ·b =__0__.⑦不为零的三个实数a 、b 、c ,有(ab )c =a (bc )成立,但对于三个向量a 、b 、c ,(a ·b )c __≠__a (b ·c ),因为a ·b 是一个实数,(a ·b )c 是与c 共线的向量,而a (b ·c )是与a 共线的向量,a 与c 却不一定共线. 3.空间向量基本定理(1)如果三个向量a 、b 、c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =__x a +y b +z c __.(2)如果三个向量a 、b 、c 不共面,那么所有空间向量组成的集合就是{p|p =x a +y b +z c ,x ,y ,z ∈R },这个集合可看作是由向量a 、b 、c 生成的,我们把{__a ,b ,c __}叫做空间的一个基底,a 、b 、c 都叫做__基向量__,空间任何三个__不共面__的向量都可构成空间的一个基底,同一(相等)向量在不同基底下的坐标__不同__,在同一基底下的坐标__相同__. 4.空间向量的正交分解及其坐标表示设e 1、e 2、e 3为有公共起点O 的三个两两垂直的单位向量(我们称它们为单位正交基底).以e 1、e 2、e 3的公共起点O 为原点,分别以__e 1,e 2,e 3__的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系O -xyz .对于空间任意一个向量p 一定可以把它平移,使它的__起点__与原点O 重合,得到向量OP →=p ,由空间向量基本定理可知,存在有序实数组{x ,y ,z },使得p =x e 1+y e 2+z e 3.我们把x 、y 、z 称作向量p 在单位正交基底e 1、e 2、e 3下的坐标,记作p = (x ,y ,z ). 5.用向量描述空间平行关系设空间两条直线l 、m 的方向向量分别为a =(a 1,a 2,a 3)、b =(b 1,b 2,b 3),两个平面α,β的法向量分别为u =(u 1,u 2,u 3),v =(v 1,v 2,v 3),则有如下结论:6. 用向量证明空间中的垂直关系①设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2⇔v 1⊥v 2⇔v 1·v 2=0.②设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α⇔v∥u . ③设平面α和β的法向量分别为u 1和u 2,则α⊥β⇔u 1⊥u 2⇔u 1·u 2=0. 7.共线与垂直的坐标表示设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a ∥b ⇔a =λb ⇔a 1=λb 1,a 2=λb 2,a 3=λb 3(λ∈R),a ⊥b ⇔a·b =0⇔a 1b 1+a 2b 2+a 3b 3=0(a ,b 均为非零向量).【常考题型剖析】题型一:空间向量的运算例1.(2023·全国·高三专题练习)如图所示,在平行六面体1111ABCD A B C D -中,M 为11A C 与11B D 的交点,若AB a =,AD b =,1AA c =,则BM =( )A .1122a b c -+B .1122a b c ++C .1122a b c --+D .1122-++a b c【答案】D 【解析】 【分析】根据空间向量的运算法则和空间向量基本定理相关知识求解即可. 【详解】由题意得,()()1111111111121222112BM BB B D AA A D A B AA AD A b c B a =+=+--+=+-=+.故选:D例2. (2022·全国·高三专题练习)如图,OABC 是四面体,G 是ABC 的重心,1G 是OG 上一点,且14OG OG =,则( )A .1111666OG OA OB OC =++B .1OG =111121212OA OB OC ++ C .1OG =111181818OA OB OC ++ D .1OG =111888OA OB OC ++【答案】B 【解析】 【分析】利用向量加法减法的几何意义并依据空间向量基本定理去求向量1OG 【详解】连接AG 并延长交BC 于N ,连接ON ,由G 是ABC 的重心,可得23AG AN =,()12ON OB OC =+ 则()()2221112=3332333AG AN ON OA OB OC OA OB OC OA ⎡⎤=-=+-=+-⎢⎥⎣⎦ 则()1111112444333OG OG OA AG OA OB OC OA ⎛⎫==+=++- ⎪⎝⎭111121212OA OB OC =++故选:B例3.(安徽·高考真题(理))在正四面体O -ABC 中,,,OA a OB b OC c ===,D 为BC 的中点,E 为AD 的中点,则OE =______________(用,,a b c 表示).【答案】111244a b c ++【解析】 【详解】因为在四面体O ABC -中,,,,OA a OB b OC c D ===为BC 的中点,E 为AD 的中点,()1222OA OD O OE A OD ∴=+=+()111222a OB OC =+⨯+()1111124244a b c a b c =++=++ ,故答案为111244a b c ++. 【方法技巧】用基向量表示指定向量的方法(1)结合已知向量和所求向量观察图形.(2)将已知向量和所求向量转化到三角形或平行四边形中.(3)利用三角形法则或平行四边形法则把所求向量用已知基向量表示出来. 题型二:共线(共面)向量定理的应用例4.(2023·全国·高三专题练习)以下四组向量在同一平面的是( ) A .()1,1,0、()0,1,1、()1,0,1 B .()3,0,0、()1,1,2、()2,2,4 C .()1,2,3、()1,3,2、()2,3,1 D .()1,0,0、()0,0,2、()0,3,0【答案】B 【解析】 【分析】利用共面向量的基本定理逐项判断可得出合适的选项. 【详解】对于A 选项,设()()()1,1,00,1,11,0,1m n =+,所以,110n m m n =⎧⎪=⎨⎪+=⎩,无解;对于B 选项,因为()()()2,2,403,0,021,1,2=⋅+,故B 选项中的三个向量共面;对于C 选项,设()()()1,2,31,3,22,3,1x y =+,所以,2133223x y x y x y +=⎧⎪+=⎨⎪+=⎩,无解;对于D 选项,设()()()1,0,00,0,20,3,0a b =+,所以,013020b a =⎧⎪=⎨⎪=⎩,矛盾.故选:B.例5.(2022·广西桂林·模拟预测(文))如图,已知正方体ABCD -A 1B 1C 1D 1的中心为O ,则下列结论中①OA +OD 与OA 1+OD 1是一对相反向量;②OB -OC 1与OC -OB 1是一对相反向量;③OA 1+OB 1+OC 1+OD 1与OD +OC +OB +OA 是一对相反向量; ④OC -OA 与OC 1-OA 1是一对相反向量. 正确结论的个数为( ) A .1 B .2C .3D .4【答案】A 【解析】 【分析】由向量的加减运算对各个选项进行检验即可. 【详解】设E,F 分别为AD 和A 1D 1的中点,①OA +2OD OE =与1OA +12OD OF =不是一对相反向量,错误; ②OB -11OC C B =与OC -11OB B C =不是一对相反向量,错误;③OA 1+OB 1+OC 1+()1OD OC OD OA OB OC OD OA OB =----=-+++是一对相反向量,正确; ④OC -OA AC =与OC 1-111OA AC =不是一对相反向量,是相等向量,错误. 即正确结论的个数为1个故选:A例6.(2020·全国·高三专题练习)已知O 、A 、B 、C 、D 、E 、F 、G 、H 为空间的9个点(如图所示),并且OE kOA =,OF kOB =,OH kOD =,AC AD mAB =+,EG EH mEF =+.求证:(1)A、B、C、D四点共面,E、F、G、H四点共面;AC EG.(2)//【答案】(1)证明见解析;(2)证明见解析.【解析】【分析】(1)证明出AC、AB、AD为共面向量,结合AC、AB、AD有公共点可证得A、B、C、D四点共面,同理可证得E、F、G、H四点共面;AC EG.(2)证得EG k AC=,再由EG和AC无公共点可证得//【详解】(1)因为AC AD mAB=+,所以,AC、AB、AD为共面向量,因为AC、AB、AD有公共点A,故A、B、C、D四点共面,因为EG EH mEF=+,则EG、EH、EF为共面向量,因为EG、EH、EF有公共点E,故E、F、G、H四点共面;(2)OE kOA=,=,OF kOB=,OH kOD()EG EH mEF OH OE m OF OE=+=-+-()()()=-+-=+=+=,//k OD OA km OB OA k AD kmAB k AD mAB k AC∴,AC EGAC EG.因为AC、EG无公共点,故//【总结提升】证明三点共线和空间四点共面的方法比较题型三:空间向量数量积及其应用例7.(广东·高考真题(理))已知向量()1,0,1a =-,则下列向量中与a 成60的是( ) A .()1,1,0- B .()1,1,0- C .()0,1,1- D .()1,0,1-【答案】B 【解析】 【详解】试题分析:对于A 选项中的向量()11,0,1a =-,11111cos ,22a a a a a a ⋅-〈〉===-⋅⋅,则1,120a a 〈〉=;对于B 选项中的向量()21,1,0a =-,22211cos ,22a a a a a a ⋅〈〉===⋅,则2,60a a 〈〉=;对于C 选项中的向量()30,1,1a =-,2321cos ,22a a a a a a ⋅-〈〉===-⋅,则2,120a a 〈〉=;对于D 选项中的向量()41,0,1a =-,此时4a a =-,两向量的夹角为180.故选B.例8.(2022·全国·高三专题练习)如图,在四棱锥P ABCD -中,底面ABCD 是边长为1的正方形,侧棱P A 的长为2,且P A 与AB 、AD 的夹角都等于60°,M 是PC 的中点,设AB a =,AD b =,c AP=.(1)试用a ,b ,c 表示向量BM ; (2)求BM 的长.【答案】(1)111222a b c -++;(2)2【解析】 【分析】(1)将AD BC =,BP AP AB =-代入1()2BM BC BP =+中化简即可得到答案;(2)利用22||BM BM =,结合向量数量积运算律计算即可. 【详解】(1)M 是PC 的中点,1()2BM BC BP ∴=+.AD BC =,BP AP AB =-,1[()]2BM AD AP AB ∴=+-,结合AB a =,AD b =,c AP =,得1111[()]2222BM b c a a b c =+-=-++.(2)1AB AD ==,2PA =, ||||1a b ∴==,||2c =.AB AD ⊥,60PAB PAD ∠=∠=︒, 0a b ∴⋅=,21cos601a c b c ⋅=⋅=⨯⨯︒=.由(1)知111222BM a b c =-++,()2222211112222224BM a b c a b c a b a c b c ⎛⎫∴=-++=++-⋅-⋅+⋅⎪⎝⎭13(114022)42=⨯++--+=,6||2BM ∴=即BM 例9. (2020·全国·高三专题练习)已知向量(2,1,2)a =-,(1,0,1)c =-,若向量b 同时满足下列三个条件:①1a b ⋅=-;①3b =;①b 与c 垂直. (1)求2a c +的模;(2)求向量b 的坐标. 【答案】(1)1;(2)(2,1,2)b =-或(2,1,2)b =---. 【解析】 【分析】(1)求出2a c +的坐标,即可求出2a c +的模;(2)设(,,)b x y z =,则由题可知22222190x y z x y z x z +-=-⎧⎪++=⎨⎪-+=⎩,解出即可得出.【详解】解:(1)∵()2,1,2a =-,()1,0,1c =-, ∴()20,1,0a c +=, 所以21a c += ;(2)设(),,b x y z =,则由题可知222221,9,0,x y z x y z x z +-=-⎧⎪++=⎨⎪-+=⎩解得2,1,2,x y z =⎧⎪=-⎨⎪=⎩或2,1,2,x y z =-⎧⎪=-⎨⎪=-⎩ 所以()2,1,2b =-或()2,1,2b =---. 【总结提升】空间向量数量积的应用题型四:利用空间向量证明平行例10.(2021·全国·高三专题练习)如图,在四面体ABCD 中,E ,F ,G ,H 分别是AB ,BC ,CD ,DA 的中点.(1)求证:E ,F ,G ,H 四点共面;(2)求证://BD 平面EFGH ;(3)设M 是EG 和FH 的交点,求证:对空间任意一点O ,有()14OM OA OB OC OD =+++. 【答案】(1)证明见解析;(2)证明见解析;(3)证明见解析 【解析】 【分析】(1)根据题意得出EF HG =可证;(2)通过证明//HE BD 可得;(3)可得四边形EFGH 为平行四边形,M 为EG 中点,即可证明. 【详解】(1)E ,F ,G ,H 分别是AB ,BC ,CD ,DA 的中点, 12EF AC ∴=,12HG AC =,EF HG ∴=,又E ,F ,G ,H 四点不共线,故E ,F ,G ,H 四点共面; (2)E ,H 分别是AB ,AD 的中点, 12HE DB ∴=,//HE DB ∴,//HE BD ∴, HE ⊂平面EFGH ,BD ⊄平面EFGH ,∴//BD 平面EFGH ;(3)由(1)知四边形EFGH 为平行四边形,M ∴为EG 中点, E ,G 分别是AB ,CD 的中点, 11111()()()()22224OM OE OG OA OB OC OD OA OB OC OD ⎡⎤∴=+=+++=+++⎢⎥⎣⎦. 例11.(2020·全国·高三专题练习(理))如图所示,平面P AD ①平面ABCD ,ABCD 为正方形,①P AD 是直角三角形,且P A =AD =2,E ,F ,G 分别是线段P A ,PD ,CD 的中点.求证:(1)PB //平面EFG ;(2)平面EFG //平面PBC .【答案】(1)证明见解析;(2)证明见解析. 【解析】(1)平面P AD ⊥平面ABCD ,且ABCD 为正方形,构建空间直角坐标系A -xyz ,并确定A ,B ,C ,D ,P ,E ,F ,G 的坐标,法一:求得(0,1,0),(1,2,1)EF EG ==-,即可确定平面EFG 的一个法向量n ,又0PB n ⋅=有n PB ⊥,则 PB //平面EFG 得证; 法二:由(2,0,2)PB =-,(0,1,0)FE =-,(1,1,1)FG =-,可知22PB FE FG =+,根据向量共面定理即有PB ,FE 与FG 共面,进而可证PB //平面EFG ;(2)由(1)有(0,1,0),(0,2,0)EF BC ==即2BC EF =,可得BC //EF ,根据线面平行的判定有EF //平面PBC ,GF //平面PBC ,结合面面平行的判定即可证平面EFG //平面PBC .【详解】(1)因为平面P AD ⊥平面ABCD ,且ABCD 为正方形,所以AB ,AP ,AD 两两垂直.以A 为坐标原点,建立如图所示的空间直角坐标系A -xyz ,则A (0,0,0),B (2,0,0),C (2,2,0),D (0,2,0),P (0,0,2),E (0,0,1),F (0,1,1),G (1,2,0). 法一:(0,1,0),(1,2,1)EF EG ==- 设平面EFG 的法向量为(,,)n x y z =,则00n EF n EG ⎧⋅=⎨⋅=⎩,即020y x y z =⎧⎨+-=⎩,令z =1,则(1,0,1)n =为平面EFG 的一个法向量, ∵(2,0,2)PB =-,∴0PB n ⋅=,所以n PB ⊥, ∵PB ⊄平面EFG , ∴PB //平面EFG .法二:(2,0,2)PB =-,(0,1,0)FE =-,(1,1,1)FG =-. 设PB sFE tFG =+,即(2,0,-2)=s (0,-1,0)+t (1,1,-1),所以202t t s t =⎧⎪-=⎨⎪-=-⎩解得s =t =2.∴22PB FE FG =+,又FE 与FG 不共线,所以PB ,FE 与FG 共面.∵PB ⊄平面EFG ,∴PB ∥平面EFG .(2)由(1)知:(0,1,0),(0,2,0)EF BC ==,∴2BC EF =,所以BC //EF .又EF ⊄平面PBC ,BC ⊂平面PBC ,所以EF //平面PBC ,同理可证GF //PC ,从而得出GF //平面PBC .又EF ∩GF =F ,EF ⊂平面EFG ,GF ⊂平面EFG ,∴平面EFG //平面PBC .【规律方法】利用空间向量证明平行的方法1.线线平行:证明两直线的方向向量共线2.线面平行:①证明该直线的方向向量与平面的某一法向量垂直;②证明直线的方向向量与平面内某直线的方向向量平行3.面面平行:①证明两平面的法向量为共线向量;②转化为线面平行、线线平行问题题型五:利用空间向量证明垂直例12.(2022·河南·宝丰县第一高级中学模拟预测(文))如图,O ,1O 是圆柱底面的圆心,1AA ,1BB ,1CC均为圆柱的母线,AB 是底面直径,E 为1AA 的中点.已知4AB =,BC =(1)证明:1AC BC ⊥;(2)若1AC BE ⊥,求该圆柱的体积.【答案】(1)见解析(2)【解析】【分析】(1)通过线面垂直证明线线垂直(2)建立空间直角坐标系,根据垂直条件解出圆柱的高(1)连结AC ,可知AC BC ⊥1CC ⊥平面ABC 1CC BC ∴⊥1CC AC C =BC ∴⊥平面1ACC1BC AC ∴⊥(2)如图,以C 为原点,1,,CA CB CC 所在直线分别为,,x y z 轴建立空间直角坐标系设圆柱的高为h可得1(2,0,0),(0,0,),(2,0,)2h A B C h E1(2,0,),(2,)2h AC h BE =-=-由题意得21402h AC BE ⋅=-+=,解得h =故圆柱的体积2V πr h ==例13.(2022·全国·高三专题练习)已知正方体ABCD -A 1B 1C 1D 1中,E 为棱CC 1上的动点.(1)求证:A 1E ⊥BD ;(2)若平面A 1BD ⊥平面EBD ,试确定E 点的位置.【答案】(1)证明见解析;(2)E 为CC 1的中点.【解析】【分析】以D 为原点,DA 、DC 、DD 1为x ,y ,z 轴,建立空间直角坐标系.(1)计算10A E BD →→⋅=即可证明;(2)求出面A 1BD 与面EBD 的法向量,根据法向量垂直计算即可.【详解】以D 为坐标原点,以DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系,如图,设正方体的棱长为a ,则A (a ,0,0),B (a ,a ,0),C (0,a ,0),A 1(a ,0,a ),C 1(0,a ,a ).设E (0,a ,e )(0≤e ≤a ).(1)1A E →=(-a ,a ,e -a ),BD →=(-a ,-a ,0),1A E BD →→⋅=a 2-a 2+(e -a )·0=0, ∴1A E BD →→⊥,即A 1E ⊥BD ;(2)设平面A 1BD ,平面EBD 的法向量分别为1n →=(x 1,y 1,z 1),2n →=(x 2,y 2,z 2).∵DB →=(a ,a ,0),1DA →=(a ,0,a ),DE →=(0,a ,e )∴10n DB →→⋅=, 110n DA →→⋅=, 20n DB →→⋅=,10n DE →→⋅=. ∴11110,0,ax ay ax az +=⎧⎨+=⎩, 22220,0.ax ay ay ez +=⎧⎨+=⎩ 取x 1=x 2=1,得1n →=(1,-1,-1),2n →=(1,-1,a e).由平面A 1BD ⊥平面EBD 得1n →⊥2n →. ∴2-a e=0,即e =2a . ∴当E 为CC 1的中点时,平面A 1BD ⊥平面EBD .例14.(2020·全国·高三专题练习)直四棱柱1111ABCD A B C D -中,2AB BC ==,90ABC ∠=︒,E 、F 分别为棱AB 、11B C 上的点,2AE EB =,112C F FB =.求证:(1)//EF 平面11AAC C ;(2)线段AC 上是否存在一点G ,使面EFG ⊥面11AAC C .若存在,求出AG 的长;若不存在,请说明理由.【答案】(1)证明见解析(2)存在,AG =【解析】【分析】(1)以1A 为原点,11A D ,11A B ,1A A 分别为,,x y z 轴建立空间直角坐标系:根据向量的坐标可得11113EF A A AC =-+,由此可证//EF 平面11AAC C ; (2)将问题转化为线段AC 上是否存在一点G ,使EG AC ⊥,则问题不难求解.【详解】(1)如图所示:以1A 为原点,11A D ,11A B ,1A A 分别为,,x y z 轴建立空间直角坐标系:则1(0,0,0)A ,1(0,2,0)B ,1(2,2,0)C ,设(0,0,)A a ,则4(0,,)3E a ,2(,2,0)3F , 所以22(,,)33EF a =-,1(0,0,)A A a =,11(2,2,0)AC =, 因为11113EF A A AC =-+,所以EF ,1A A ,11AC 共面,又EF 不在平面11AAC C 内, 所以//EF 平面11AAC C(2)线段AC 上存在一点G ,使面EFG ⊥面11AAC C ,且3AG =,证明如下:在三角形AGE 中,由余弦定理得EG ===, 所以222AG EG AE +=,即EG AG ⊥,又1A A ⊥平面ABCD ,EG ⊂平面ABCD ,、所以1A A EG ⊥,而1AG A A A ⋂=,所以EG ⊥平面11AAC C ,因为EG ⊂平面EFG ,所以EFG ⊥面11AAC C ,【规律方法】利用空间向量证明垂直的方法1.线线垂直:证明两直线所在的方向向量互相垂直,即证它们的数量积为零2.线面垂直:证明直线的方向向量与平面的法向量共线,或将线面垂直的判定定理用向量表示3.面面垂直:证明两个平面的法向量垂直,或将面面垂直的判定定理用向量表示。

高考专题向量法求空间距离

高考专题向量法求空间距离

高考专题:向量法求空间的距离基础知识梳理(1)点到平面的距离(如图1):平面α的法向量为n ,点P 是平面α外一点,点M 为平面α内任意一点,则点P 到平面α的距离d 就是MP 在向量n 方向射影的绝对值,即d =||||n n MP ⋅.(2)异面直线的距离(如图2):设向量n 与两异面直线a 、b 都垂直,M ∈a 、P ∈b ,则两异面直线a 、b 间的距离d 就是MP 在向量n 方向射影的绝对值,即d =||||n n MP ⋅(3)线到平面的距离(如图3):平面α∥直线l ,平面α的法向量为n ,点M ∈α、P ∈l ,平面α与直线l 间的距离d 就是MP 在向量n 方向射影的绝对值,即d =||||n n MP ⋅.(4)平面到平面的距离(如图4):平面α∥β,平面α的法向量为n ,点M ∈α、P ∈β,平面α与平面β的距离d 就是MP 在向量n 方向射影的绝对值,即d =||||n n MP ⋅.图1nPM αb a图2n PMlαMPn图3β图4nPM αl典型例题剖析例1:如图,已知正方体1111D C B A ABCD -的棱长为1,求异面直线1AA 与1BD 的距离。

变式:如图,已知正方体1111D C B A ABCD -的棱长为1,求面对角线C B 1与体对角线1BD 的距离。

例2:在棱长为2的正方体1111ABCD A B C D -中,E 、F 分别是棱1111,A D A B 的中点. 求1B 到面EFBD 的距离ABCD1A 1B 1C 1D ABCD1A 1B 1C 1D变式:在直三棱柱ABC —A 1B 1C 1中,AB 1⊥BC 1,AB =CC 1=a ,BC =b.(1)设E ,F 分别为AB 1,BC 1的中点,求证:EF ∥平面ABC ; (2)求证:A1C 1⊥AB ;(3)求B 1到平面ABC 1的距离.例3:三棱柱中,已知A BCD 是边长为1的正方形,四边形B B A A '' 是矩形,。

第10讲空间向量的应用与新定义(五种题型)-高考数学热点、重难点题型(新高考专用)(解析版)

第10讲空间向量的应用与新定义(五种题型)-高考数学热点、重难点题型(新高考专用)(解析版)

第10讲空间向量的应用与新定义(五种题型)【热点、重难点题型】题型一:空间向量的位置关系的证明一、单选题1.(2023·全国·高三专题练习)如图,在正四棱柱1111ABCD A B C D -中,O 是底面ABCD 的中心,,E F 分别是11,BB DD 的中点,则下列结论正确的是()A .1AO //EFB .1AO EF ⊥C .1AO //平面1EFB D .1A O ⊥平面1EFB 【答案】B【分析】建立空间直角坐标系,利用空间位置关系的向量证明,逐项分析、判断作答.【详解】在正四棱柱1111ABCD A B C D -中,以点D 为原点建立如图所示的空间直角坐标系,令12,2(0,0)AB a DD b a b ==>>,O 是底面ABCD 的中心,,E F 分别是11,BB DD 的中点,则11(,,0),(2,0,2),(2,2,),(2,2,2),(0,0,)O a a A a b E a a b B a a b F b ,1(,,2)OA a a b =- ,1(2,2,0),(0,0,)FE a a EB b == ,对于A ,显然1OA 与FE 不共线,即1AO 与EF 不平行,A 不正确;对于B ,因12()2020OA FE a a a a b ⋅=⋅+-⋅+⋅= ,则1OA FE ⊥ ,即1AO EF ⊥,B 正确;对于C ,设平面1EFB 的法向量为(,,)n x y z = ,则12200n EF ax ay n EB bz ⎧⋅=+=⎪⎨⋅==⎪⎩,令1x =,得(1,1,0)n =- ,120OA n a ⋅=> ,因此1OA 与n 不垂直,即1AO 不平行于平面1EFB ,C 不正确;对于D ,由选项C 知,1OA 与n 不共线,即1AO 不垂直于平面1EFB ,D 不正确.故选:B2.(2023春·河南洛阳·高三洛阳市第八中学校考开学考试)在正方体1111ABCD A B C D -中,E ,F 分别为,AB BC 的中点,则()A .平面1B EF ⊥平面1BDD B .平面1B EF ⊥平面1A BDC .平面1//B EF 平面1A ACD .平面1//B EF 平面11AC D 【答案】A【分析】证明EF ⊥平面1BDD ,即可判断A ;如图,以点D 为原点,建立空间直角坐标系,设2AB =,分别求出平面1B EF ,1A BD ,11AC D 的法向量,根据法向量的位置关系,即可判断BCD .【详解】解:在正方体1111ABCD A B C D -中,AC BD ⊥且1DD ⊥平面ABCD ,又EF ⊂平面ABCD ,所以1EF DD ⊥,因为,E F 分别为,AB BC 的中点,所以EF AC ∥,所以EF BD ⊥,又1BD DD D = ,所以EF ⊥平面1BDD ,又EF ⊂平面1B EF ,所以平面1B EF ⊥平面1BDD ,故A 正确;选项BCD 解法一:如图,以点D 为原点,建立空间直角坐标系,设2AB =,则()()()()()()()112,2,2,2,1,0,1,2,0,2,2,0,2,0,2,2,0,0,0,2,0B E F B A A C ,()10,2,2C ,则()()11,1,0,0,1,2EF EB =-= ,()()12,2,0,2,0,2DB DA == ,()()()1110,0,2,2,2,0,2,2,0,AA AC A C ==-=- 设平面1B EF 的法向量为()111,,m x y z = ,则有11111020m EF x y m EB y z ⎧⋅=-+=⎪⎨⋅=+=⎪⎩,可取()2,2,1m =- ,同理可得平面1A BD 的法向量为()11,1,1n =-- ,平面1A AC 的法向量为()21,1,0n = ,平面11AC D 的法向量为()31,1,1n =-,则122110m n ⋅=-+=≠ ,所以平面1B EF 与平面1A BD 不垂直,故B 错误;因为m 与2n u u r 不平行,所以平面1B EF 与平面1A AC 不平行,故C 错误;因为m 与3n 不平行,所以平面1B EF 与平面11AC D 不平行,故D 错误,故选:A.选项BCD 解法二:解:对于选项B ,如图所示,设11A B B E M = ,EF BD N = ,则MN 为平面1B EF 与平面1A BD 的交线,在BMN 内,作BP MN ⊥于点P ,在EMN 内,作GP MN ⊥,交EN 于点G ,连结BG ,则BPG ∠或其补角为平面1B EF 与平面1A BD 所成二面角的平面角,由勾股定理可知:222PB PN BN +=,222PG PN GN +=,底面正方形ABCD 中,,E F 为中点,则EF BD ⊥,由勾股定理可得222NB NG BG +=,从而有:()()2222222NB NG PB PN PG PN BG +=+++=,据此可得222PB PG BG +≠,即90BPG ∠≠ ,据此可得平面1B EF ⊥平面1A BD 不成立,选项B 错误;对于选项C ,取11A B 的中点H ,则1AH B E ,由于AH 与平面1A AC 相交,故平面1∥B EF 平面1A AC 不成立,选项C 错误;对于选项D ,取AD 的中点M ,很明显四边形11A B FM 为平行四边形,则11A M B F ,由于1A M 与平面11AC D 相交,故平面1∥B EF 平面11AC D 不成立,选项D 错误;故选:A.3.(2023春·云南昆明·高三校考阶段练习)如图,在棱长为1的正方体1111ABCD A B C D -中,P 为棱1BB 的中点,Q 为正方形11BB C C 内一动点(含边界),则下列说法中不正确...的是()A .若1//D Q 平面1A PD ,则动点Q 的轨迹是一条线段B .存在Q 点,使得1D Q ⊥平面1A PDC .当且仅当Q 点落在棱1CC 上某点处时,三棱锥1Q A PD -的体积最大D.若1=2D Q ,那么Q 点的轨迹长度为4选项C ,1A PD △面积为定值,当且仅当点Q 到平面1(1,1,)AQ x z =- ,Q 到平面1A PD 的距离为12332A Q m d x z m⋅==+- 302x z ≤+≤时,23[()]32d x z =-+,当0x z +=时,322x z ≤+≤时,23[()]32d x z =+-,2x z +=时,综上,0x z +=时,d 取得最大值1,故Q 与1C 重合时,确;选项D ,11D C ⊥平面11BB C C ,CQ ⊂平面11BB C C 所以22111122C QD Q D C =-=,所以Q 点轨迹是以为1222424ππ⨯⨯=,D 正确.故选:B .【点睛】关键点点睛:本题考查空间点的轨迹问题,解题关键是勾画出过1D EF ,由体积公式,在正方形11BB C C 内的点Q 二、多选题4.(2022·湖南长沙·统考模拟预测)如图,已知正方体1111ABCD A B C D -的棱长为2,E F G 、、分别为11,,AD AB B C 的中点,以下说法正确的是()A .三棱锥A EFG -的体积为13B .1AC ⊥平面EFG C .过点E F G 、、作正方体的截面,所得截面的面积是D .异面直线EG 与1AC 所成的角的余弦值为3对于A ,1111123323A EFG EAF V S CC -=⋅⋅=⨯⨯=△,故A 正确;对于B ,以DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,5.(2022·广东·统考三模)在正方体1111ABCD A B C D -中,1AB =,点P 满足1CP CD CC λμ=+,其中[][]0,1,0,1λμ∈∈,则下列结论正确的是()A .当1//B P 平面1A BD 时,1B P 可能垂直1CD B .若1B P 与平面11CC D D 所成角为4π,则点P 的轨迹长度为2πC .当λμ=时,1||DP A P + 的最小值为2+D .当1λ=时,正方体经过点1A 、P 、C 的截面面积的取值范围为[2【答案】ABD 【分析】依题意画出图形,建立空间直角坐标系,利用空间向量法计算A 、D ,连接1C P ,则11B PC ∠即为1B P 与平面11CC D D 所成角,根据锐角三角函数得到P 的轨迹,即可判断B ,将平面1CD D 与平面11A BCD 沿1CD 展成平面图形,化曲为直,利用余弦定理计算即可判断C ;【详解】解:对于A 选项:建立如图所示的空间直角坐标系A xyz -,则()0,0,0A ,()1,0,0B ,()0,1,0D ,()1,1,0C ,()10,0,1A ,()11,1,1C ,()10,1,1D ,所以()11,0,1CD =- ,11B P B C CP =+ 11B C CD CC λμ=++ (),1,1λμ=--,则()11,0,1BA =- ,()1,1,0BD =- ,设平面1A BD 的一个法向量为(),,n x y z = ,所以100BA n x z BD n x y ⎧⋅=-+=⎨⋅=-+=⎩ ,令1x =,则1y z ==,即平面1A BD 的一个法向量为()1,1,1n = ,若1//B P 平面1A BD ,则10n B P ⋅= ,B 选项:因为11BC ⊥平面11CCD D ,连接1C P ,则若1B P 与平面11CC D D 所成角为4π,则1tan B PC ∠即点P 的轨迹是以1C 为圆心,以1为半径的14个圆,于是点C 选项:如图,将平面1CD D 与平面11A BCD 沿CD 线段1A D 即为1DP A P + 的最小值,利用余弦定理可知2221111112A D A D DD A D DD =+-⋅所以122A D =+,故C 错误;。

高考数学空间向量例题15页

高考数学空间向量例题15页

高考数学空间向量例题15页一 、单选题(本大题共 8小题,共 40分)1.(5分) 如图,点D 是空间四边形OABC 的边BC 的中点, OA ⃗⃗⃗⃗ =a ,OB ⃗⃗⃗⃗ =b ,OC ⃗⃗⃗⃗ =c ,则 为()A.12(a +b ⃗ )−c B.12(c +a )−b ⃗ C.12(b ⃗ +c )−a D.a +12(b ⃗ +c ) 2.(5分)在三棱锥O-ABC 中, OA ⃗⃗⃗⃗ =a ,OB ⃗⃗⃗⃗ =b ,OC ⃗⃗⃗⃗ =c ,AM⃗⃗⃗⃗ =2MO ⃗⃗⃗⃗⃗ ,N 为BC 中点,则 MN ⃗⃗⃗⃗⃗ =() A.12a −23b ⃗ +12c B.−13a +12b ⃗ +12cC.12a +12b ⃗ −12c D.13a +23b ⃗ −12c 3.(5分) 已知点M(0,1,3), N(-1,- 2,4), 则 ()A.(1,3,- 1)B.(1,3,1)C.(-1,-3,1)D.(1,-3,- 1)4.(5分) 已知A, B, C 三点不共线,对空间内任意一点O,若( ,则P,A, B, C 四点()A.不共面B.共面C.不一定共面D.无法判断是否共面5.(5分) 如图已知正方体ABCD -A'B'C'D'中,E 是CC'的中点, a=12AA ⃗⃗⃗ ′,b =12AB ⃗⃗⃗ , c =13AD ⃗⃗⃗ ,AE ⃗⃗⃗ =xa +yb +zc ,则( )A. x=1, y=2, z=3B.x =12,y =1,z =1 C. x=1, y=2, z=2 D.x =12,y =1,z =326.(5分)如图所示,在平行六面体 ABCD -A ₁B ₁C ₁D ₁中, ()A.AB ⃗⃗⃗⃗⃗ 1B.DC ⃗⃗⃗⃗⃗C.AD ⃗⃗⃗⃗⃗D.BA ⃗⃗⃗⃗⃗7.(5分)在正四面体PABC 中,点O 为4ABC 的中心,N 为棱PC 上靠近点C 的三等分点,则 NO ⃗⃗⃗=()A.13PA ⃗⃗⃗⃗⃗ +13PB ⃗⃗⃗⃗⃗ −13PC ⃗⃗⃗⃗⃗ B.13PA ⃗⃗⃗⃗⃗ +13PB ⃗⃗⃗⃗⃗ +13PC⃗⃗⃗⃗⃗ C.13PA ⃗⃗⃗⃗⃗ +23PB ⃗⃗⃗⃗⃗ +13PC ⃗⃗⃗⃗⃗ D.13PA ⃗⃗⃗⃗⃗ −13PB ⃗⃗⃗⃗⃗ +13PC ⃗⃗⃗⃗⃗ 8.(5分)如图,在平行六面体ABCD -A ₁B ₁C ₁D ₁中,M 为A ₁C ₁与B ₁D ₁的交点,若(则下列向量中与 相等的向量是()A.−12a +12b ⃗ +c B.−12a −12b ⃗ +c C.12a +12b ⃗ +c D.12a −12b ⃗ +c 二 、多选题(本大题共5小题,共 25分)9.(5分) 在长方体ABCD-A ₁B ₁C ₁D ₁中,则 ()A.A 1D 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ −A 1A ⃗⃗⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗B.BC ⃗⃗⃗⃗⃗ +BB ⃗⃗⃗⃗⃗ 1−D 1C 1⃗⃗⃗⃗C.AD ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ −DD ⃗⃗⃗⃗⃗⃗ 1D.B 1D 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ −A 1A ⃗⃗⃗⃗⃗⃗⃗ +DD⃗⃗⃗⃗⃗⃗ 1 10.(5分)在四面体PABC 中,下列说法正确的是()A.若 AD ⃗⃗⃗=13AC ⃗⃗⃗ +23AB ⃗⃗⃗ ,则 BC ⃗⃗⃗ =3BD ⃗⃗⃗B.若点 Q 为△ABC的重心,则.C.若则 0D.若四面体PABC 的各棱长都为2, M, N 分别为PA, BC 的中点,则|11.(5分) 在平行六面体ABCD-A ₁B ₁C ₁D ₁中, ∠BAD =∠A 1AB =∠A 1AD =π3,各棱长均为1,则下列命题中正确的是( )不是空间的一个基底B.⟨AD ⃗⃗⃗⃗⃗ ,DD⃗⃗⃗⃗⃗⃗ 1⟩=23π C.|BD⃗⃗⃗⃗⃗⃗ 1|=√2 D. BD⊥平面ACC ₁A ₁12.(5分)对于向量 和实数,下列命题中的假命题是()A.若 0 则 0或 0B.若 0则λ= 0或 0C.若 则 或D.若 则 是锐角13.(5分)如图,一个结晶体的形状为平行六面体ABCD-A ₁B ₁C ₁D ₁,其中,以顶点A 为端点的三条棱长都相等,且它们彼此的夹角都是60°,下列说法中正确的是()A.(AA 1⃗⃗⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ )2=2(AC ⃗⃗⃗⃗⃗ )2B.AC⃗⃗⃗⃗⃗ 1⋅(AB ⃗⃗⃗⃗⃗ −AD ⃗⃗⃗⃗⃗ )=0 C.向量 与 的夹角60° 与 所成角的余弦值为 √三 、填空题(本大题共5小题,共 25分)14.(5分)已知A, B, C, D 为空间中任意四点,化简( ( )( ) .15.(5分)如图,已知空间四边形OABC,其对角线为OB,AC, M, N 分别为OA, BC 的中点,点G 在线段MN 上,且 若 则x+y+z= .16.(5分)已知空间向量 a =(1,2,3),b =(3,−1,2),c=(−1,0,1),则 . 17.(5分)在四面体O-ABC 中, OA ⃗⃗⃗ =a ,OB ⃗⃗⃗ =b ,OC ⃗⃗⃗ =c ,D 为BC 的中点,E 为AD 的中点,则 (用 表示)18.(5分)已知向量( {,,} {,0,} 若 则实数k= .四 、解答题(本大题共5小题,共 60分)19.(12分)如图,四棱锥P-OABC 的底面OABC 是矩形, PO⊥平面OABC,设( , E, F 分别是PC, PB 的中点,试用{ { , , }表示20.(12分)已知四棱锥P-ABCD 的底面是平行四边形,E 为棱PC 上的点,且CE =2 EP,试用 表示向量(21.(12分)已知 a =(1,0,−1),b=(−1,1,2). (1)求 与a 的夹角的余弦值.(2)若 与 平行,求k 的值.(3)若 与 垂直,求k 的值.22.(12分)如图,在三棱柱 ABC-A₁B₁C₁中,D是棱B₁C₁的中点,设=a ,AC⃗⃗⃗⃗⃗ =b⃗,AA⃗⃗⃗⃗⃗ 1=c.(1)试用向量表示向量.(2)石AD=AL=AA1=3, ∠BAL=∠A1AD=∠A1AL=60°, 水|BE|.23.(12分)在平行六面体ABCD−A′B′C′D′中,AB=4,AD=6,AA′=8,∠BAD= 90°,∠BAA′=∠DAA′=60°,P是CC₁的中点.(Ⅰ)用'表示(Ⅱ)求AP的长.。

空间向量高考知识点总结

空间向量高考知识点总结

空间向量高考知识点总结一、空间向量的定义与性质1. 空间向量的定义:空间中的向量是指有大小和方向的线段,可以用有向线段来表示,通常用小写字母表示。

2. 空间向量的性质:空间中的向量满足向量的相等、相反、共线和共面的性质。

3. 空间向量的运算:空间向量的加法、数量乘法、内积和叉乘等运算。

二、空间向量的坐标表示1. 空间向量的坐标表示:空间中的向量可以用坐标表示,一般用三元组表示。

2. 空间向量的坐标运算:空间向量的坐标运算包括向量相加、数量乘法和点积等运算。

三、空间向量的数量积1. 空间向量的数量积定义:两个向量的数量积又称内积,记作a·b,表示为|a||b|cosθ,其中θ为a、b之间的夹角。

2. 空间向量的数量积的性质:数量积具有对称性、分配律和数量乘法结合律等性质。

3. 空间向量的数量积的几何意义:数量积可以用来计算向量的夹角、向量的投影以及向量的长度等。

4. 空间向量的数量积的应用:数量积可以用来解决空间中的几何问题,如判断两个向量的方向、判断点的位置、计算三角形的面积等。

四、空间向量的叉积1. 空间向量的叉积定义:两个向量的叉积,记作a×b,是另一个向量c,其大小等于以a、b为邻边的平行四边形的面积,方向垂直于a和b所在的平面。

2. 空间向量的叉积的性质:叉积具有反对称性、分配律和数量乘法结合律等性质。

3. 空间向量的叉积的几何意义:叉积可以用来计算平行四边形的面积、判断向量的方向以及判断向量的共线性等。

4. 空间向量的叉积的应用:叉积可以用来计算平行四边形和平行六面体的体积、判断三角形的面积、判断四边形的面积等。

五、空间向量的应用1. 空间向量在几何中的应用:空间向量可以用来解决空间中的共线、共面、投影、距离、面积、体积等几何问题。

2. 空间向量在物理中的应用:空间向量可以用来描述力的合成、速度的方向、加速度的方向、质心的位置等物理问题。

3. 空间向量在工程中的应用:空间向量可以用来解决工程中的坐标系、平面构图、体积计算、力矩计算等问题。

2023-2024学年高考数学空间向量与立体几何专项练习题(附答案)

2023-2024学年高考数学空间向量与立体几何专项练习题(附答案)

A .B .223.若直线的方向向量为,平面l bA .()(1,0,0,2,0,0b n ==-()(0,2,1,1,0,1b n ==--A .B .5136.如图,在平行六面体ABCDA.1122a b c -++C.1122a b c --+7.如图,在四面体OABC中,1-16.已知四棱锥P ABCDPC棱上运动,当平面1.C【分析】根据已知结合向量的坐标运算可得出,且.然后根据向量的数量积a b a +=- 14a = 运算求解,即可得出答案.【详解】由已知可得,且.()1,2,3a b a+=---=-14a =又,()7a b c +⋅= 所以,即有,7a c -⋅= cos ,14cos ,7a c a c a c -⋅=-=所以,.1cos ,2a c =-又,所以.0,180a c ≤≤ ,120a c =︒ 故选:C.2.C【分析】利用中点坐标公式求出中点的坐标,根据空间两点间的距离公式即可得出中线BC 长.【详解】由图可知:,,,(0,0,1)A (2,0,0)B (0,2,0)C 由中点坐标公式可得的中点坐标为,BC (1,1,0)根据空间两点间距离公式得边上的中线的长为.BC 22211(1)3++-=故选:C 3.D【分析】若直线与平面平行,则直线的方向向量与平面的法向量垂直,利用向量数量积检验.【详解】直线的方向向量为,平面的法向量为,l bαn 若可能,则,即.//l αb n ⊥r r 0b n ⋅=r r A 选项,;()1220b n =⨯-⋅=-≠B 选项,;11305160b n =⨯⨯⋅+⨯+=≠C 选项,;()()01201110b n =⨯-+⨯+⨯-⋅=-≠D 选项,;()1013310b n =⨯+-⨯=⋅+⨯因为,,3AB =4BC =2PA =所以()()(0,0,2,3,0,0,0,0,1P B Q 设平面的法向量为BQD (m x =()(),,3,0,1m BQ x y z ⎧设,2AB AD AS ===则()()()0,0,0,0,0,2,2,2,0,A S C P 设,()0,,2M t t -(1,1,2OM t =--所以1120OM AP t t ⊥=-+-+-=点到平面与平面的距离和为为定值,D 选项正确.M ABCD SAB 22t t -+=,,()2,0,0B ()()2,0,2,0,2,0SB BC =-=设平面的法向量为,SBC (),,n x y z =则,故可设,22020n SB x z n BC y ⎧⋅=-=⎪⎨⋅==⎪⎩()1,0,1n = 要使平面,又平面,//OM SBC OM ⊄SBC 则,()()1,1,21,0,11210OM n t t t t ⋅=---⋅=-+-=-=解得,所以存在点,使平面,B 选项正确.1t =M //OM SBC 若直线与直线所成角为,又,OM AB 30︒()2,0,0AB =则,()()222213cos3022661122OM ABOM ABt t t t ⋅-︒====⋅-++-+-⨯ 整理得,无解,所以C 选项错误.23970,8143730t t -+=∆=-⨯⨯=-<故选:ABD.10.BCD【分析】根据向量的多边形法则可知A 正确;根据向量的三角不等式等号成立条件可知,B 错误;根据共线向量的定义可知,C 错误;根据空间向量基本定理的推论可知,D 错误.【详解】对A ,四点恰好围成一封闭图形,根据向量的多边形法则可知,正确;对B ,根据向量的三角不等式等号成立条件可知,同向时,应有,即必要,a b a b a b+=+ 性不成立,错误;对C ,根据共线向量的定义可知,所在直线可能重合,错误;,a b对D ,根据空间向量基本定理的推论可知,需满足x +y +z =1,才有P 、A 、B 、C 四点共面,错误.故选:BCD .11.AB【分析】以,,作为空间的一组基底,利用空间向量判断A ,C ,利用空间向量法ABAD AA 可得面,再用向量法表示,即可判断B ,利用割补法判断D ;1AC ⊥PMN AH【详解】依题意以,,作为空间的一组基底,ABAD AA 则,,11AC AB AD AA =++ ()1122MN BD AD AB ==-因为棱长均为2,,11π3A AD A AB ∠=∠=所以,,224AB AD == 11π22cos 23AA AD AA AB ⋅=⋅=⨯⨯= 所以()()1112D A A C MN AD A A B AA B++⋅⋅=- ,()2211102AB AD AB AD AB AD AA AD AA AB ⋅-+-⋅+==⋅+⋅故,即,故A 正确;1AC MN ⊥1AC MN ⊥同理可证,,面,面,PN AC ⊥MN PN N ⋂=MN ⊂PMN PN ⊂PMN 所以面,即面,即为正三棱锥的高,1AC ⊥PMN AH ⊥PMN AH A PMN -所以()()1133AH AN NH AN NP NM AN AP AN AM AN=+=++=+-+- ,()13AP AM AN =++又,,分别是,,的中点,,P M N 1AA AB AD π3PAM PAN MAN ∠=∠=∠=所以,则三棱锥是正四面体,1PA AM AN PM MN PN ======P AMN -所以()11111133222AH AP AM AN AA AB AD ⎛⎫=++=⨯++ ⎪⎝⎭ ,()111166AA AB AD AC =++=所以,故B 正确;116AH AC =因为()211AC AB AD AA =++ ()()()222111222AB ADAA AB AD AB AA AD AA =+++⋅+⋅+⋅ ,2426==()21111111=AC AA AB AD AA AA AB AA AD AA AA ⋅=++⋅⋅+⋅+ ,11222222=822=⨯⨯+⨯⨯+⨯设直线和直线所成的角为,1AC 1BB θ则,故C 错误;1111111186cos cos ,cos ,3262AC AA AC BB AC AA AC AA θ⋅=====⨯ ,11111111111111A B D C ABCD A B C D A B D A C B D A B ABC D ADCV V V V V V ------=----其中,1111111111116ABCD A B C D A B D A C B D C B ABC D ADC V V V V V -----====所以,故D 错误.1111113A B D C ABCD A B C D V V --=故选:AB.关键点睛:本题解决的关键点是利用空间向量的基底法表示出所需向量,利用空间向量的数量积运算即可得解.12.AC【分析】对于A ,根据即可算出的值;对于B ,根据计算;对于C ,根据||2a = m a b ⊥ m 计算即可;对于D ,根据求出,从而可计算出.a b λ= 1a b ⋅=- m a b + 【详解】对于A ,因为,所以,解得,故A 正确;||2a = 2221(1)2m +-+=2m =±对于B ,因为,所以,所以,故B 错误;a b ⊥ 2120m m -+-+=1m =对于C ,假设,则,a b λ= (1,1,)(2,1,2)m m λ-=--所以,该方程组无解,故C 正确;()12112m m λλλ=-⎧⎪-=-⎨⎪=⎩对于D ,因为,所以,解得,1a b ⋅=- 2121m m -+-+=-0m =所以,,所以,故D 错误.(1,1,0)a =- (2,1,2)b =-- (1,2,2)+=-- a b 故选:AC.13.15【分析】根据线面垂直,可得直线的方向向量和平面的法向量共线,由此列式计算,即得答案.【详解】∵,∴,∴,解得,l α⊥u n ∥ 3123a b ==6,9a b ==∴,15a b +=故1514.2【分析】根据垂直得到,得到方程,求出.()0a a b λ⋅-= 2λ=【详解】,()()()2,1,31,2,12,12,3a b λλλλλ-=---=--- 因为,所以,()a a b λ⊥- ()0a a b λ⋅-= 即,()()2,12,3241293702,1,134λλλλλλλ----=-++-+-=+⋅-=解得.2λ=故215.17【分析】利用向量的加法,转化为,直接求模长即可.CD CA AB BD =++ 【详解】因为.CD CA AB BD =++ 所以()22CD CA AB BD =++ 222222CA CA AB AB AB BD BD CA BD=+⋅++⋅++⋅ 222132022042342⎛⎫=+⨯++⨯++⨯⨯⨯- ⎪⎝⎭17=所以.17CD = 故答案为.1716.33【分析】首先建立空间直角坐标系,分别求平面和平面的法向量,利用法向量垂MBD PCD 直求点的位置,并利用向量法求异面直线所成角的余弦值,即可求解正弦值.M 【详解】如图,以点为原点,以向量为轴的正方向,建立空间直角坐标A ,,AB AD AP ,,x y z 系,设,2AD AP ==,,,,()2,0,0B ()0,2,0D ()002P ,,()2,2,0C 设,()()()0,2,22,2,22,22,22DM DP PM DP PC λλλλλ=+=+=-+-=-- ,,,()2,2,0BD =-u u u r ()2,0,0DC =u u u r ()0,2,2DP =- 设平面的法向量为,MBD ()111,,m x y z =r ,()()11111222220220DM m x y z DM m x y λλλ⎧⋅=+-+-=⎪⎨⋅=-+=⎪⎩33故。

高考数学复习空间向量及其运算理专题训练(含答案)

高考数学复习空间向量及其运算理专题训练(含答案)

高考数学复习空间向量及其运算理专题训练(含答案)空间中具有大小和方向的量叫做空间向量。

向量的大小叫做向量的长度或模。

以下是查字典数学网整理的空间向量及其运算理专题训练,请考生练习。

一、填空题1.已知A(1,0,1),B(4,4,6),C(2,2,3),D(10,14,17),则这四个点________(填共面或不共面).[解析] =(3,4,5),=(1,2,2),=(9,14,16),设=x+y,即(9,14,16)=(3x+y,4x+2y,5x+2y),得x=2,y=3. [答案] 共面2.(2019济南调研)在下列命题中:若向量a,b共线,则向量a,b所在的直线平行;若向量a,b所在的直线为异面直线,则向量a,b一定不共面;若三个向量a,b,c,两两共面,则向量a,b,c共面;已知空间的三个向量a,b,c.则对于空间的任意一个向量p 总存在实数x,y,z得p=xa+yb+zc.其中不正确的命题是________(填序号).[解析] a与b共线,a,b所在直线也可能重合,故不正确.根据平移向量的意义知,空间任两向量a,b都共面,故错误.三个向量a,b,c中任两个一定共面,但它们三个却不一定共面,故不正确.只有当a,b,c不共面时,空间任意一向量p才能表示为p=xa+yb+zc,故不正确.[答案]3.已知空间四边形OABC中,点M在线段OA上,且OM=2MA,点N为BC中点,设=a,OB=b,=c,则=________.(用a,b,c表示)[解析] =-=(+)-=b+c-a.[答案] b+c-a4.(2019上海高考)若a,b,c为任意向量,mR,则下列等式不一定成立的是________.(填序号)(a+b)c=ac+b(a+b)+c=a+(b+c);m(a+b)=ma+nb;(ab)c=a(bc).[解析] (ab)c=|a||b|cos c,a(bc)=|b||c|cos a,a与c的模不一定相等且不一定同向,故错.[答案] (4)5.已知P,A,B,C四点共面且对于空间任一点O都有=2++,则=________.[解析] 根据共面向量知P,A,B,C四点共面,则=x+y+z,且x+y+z=1,所以2++=1,=-.[答案] -6.若向量a=(1,,2),b=(2,-1,2)且a与b的夹角的余弦值为,则等于________.[解析] 由已知得==,解得=-2或=.[答案] -2或7.(2019徐州模拟)已知O点为空间直角坐标系的原点,向量=(1,2,3),=(2,1,2),=(1,1,2),且点Q在直线OP上运动,当取得最小值时,的坐标是________.[解析] 点Q在直线OP上,设点Q(,,2),则=(1-,2-,3-2),=(2-,1-,2-2),=(1-)(2-)+(2-)(1-)+(3-2)(2-2)=62-16+10=62-.当=时,取得最小值-.此时=.[答案]图768.如图76所示,已知空间四边形OABC,OB=OC,且AOB=AOC=,则cos〈,〉的值为________.[解析] 设=a,=b,=c,由已知条件〈a,b〉=〈a,c〉=,且|b|=|c|,=a(c-b)=ac-ab=|a||c|-|a||b|=0,即〈〉=,所以cos〈,〉=0.[答案] 0二、解答题9.已知空间三点A(0,2,3),B(-2,1,6),C(1,-1,5),(1)求以,为边的平行四边形的面积;(2)若|a|=,且a分别与,垂直,求a的坐标.[解] (1)由题意可得:=(-2,-1,3),=(1,-3,2),cos〈,〉===,sin〈,〉=,以,为边的平行四边形的面积为S=2||||sin〈,〉=14=7.(2)设a=(x,y,z),由题意得解得或向量a的坐标为(1,1,1)或(-1,-1,-1).图7710.(2019张家港调研)如图77,在棱长为a的正方体ABCDA1B1C1D1中,G为BC1D的重心,(1)试证:A1,G,C三点共线;(2)试证:A1C平面BC1D.[证明] (1)=++=++,可以证明:=(++)=,∥,即A1,G,C三点共线.(2)设=a,CD=b,=c,则|a|=|b|=|c|=a,且ab=bc=ca=0,=a+b+c,=c-a,=(a+b+c)(c-a)=c2-a2=0,因此,即CA1BC1,同理CA1BD,又BDBC1=B,A1C平面BC1D.要练说,得练看。

高考数学专题—立体几何(空间向量求空间角与空间距离)

高考数学专题—立体几何(空间向量求空间角与空间距离)

高考数学专题——立体几何(空间向量求角与距离)一、空间向量常考形式与计算方法设直线l,m 的方向向量分别为l ⃗,m ⃗⃗⃗⃗,平面α,β的法向量分别为n ⃗⃗1,n 2⃗⃗⃗⃗⃗. (1)线线角:(正负问题):用向量算取绝对值(因为线线角只能是锐角)直线l,m 所成的角为θ,则0≤θ≤π2,计算方法:cos θ=l⃗⋅m ⃗⃗⃗⃗|l⃗|⋅|m ⃗⃗⃗⃗|; (2)线面角:正常考你正弦值,因为算出来的是角的余角的余弦值 非正常考你余弦值,需要再算一步。

直线l 与平面α所成的角为θ,则0≤θ≤π2,计算方法:sin θ=|l ⃗⋅n 1⃗⃗⃗⃗⃗⃗||l⃗|⋅|n ⃗⃗|; (3)二面角:同进同出为补角;一进一出为原角。

注意:考试从图中观察,若为钝角就取负值,若为锐角就取正值。

平面α,β所成的二面角为θ,则0≤θ≤π,如图①,AB ,CD 是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=⟨AB⃗⃗⃗⃗⃗⃗,CD ⃗⃗⃗⃗⃗⃗⟩.如图②③,n ⃗⃗1,n 2⃗⃗⃗⃗⃗分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=|n⃗⃗1⋅n 2⃗⃗⃗⃗⃗⃗|n⃗⃗1|⋅|n2⃗⃗⃗⃗⃗⃗||,二面角的平面角大小是向量n 1与n 2的夹角(或其补角). (4)空间距离额计算:通常包含点到平面距离,异面直线间距离。

二、空间向量基本步骤空间向量求余弦值或正弦值四步法(1)建系:三垂直,尽量多点在轴上;左右下建系,建成墙角系;锥体顶点在轴上;对称面建系。

一定要注明怎样建成的坐标系(2)写点坐标(3)写向量:向量最好在面上或者轴上(可简化计算量) (4)法向量的简化计算直线的方向向量和平面的法向量(1)直线的方向向量就是指和这条直线平行(或共线)的向量,记作,显然一条直线的方向向量可以有无数个.(2)若直线l ⊥α,则该直线的方向向量即为该平面的法向量,平面的法向量记作,有无数多个,任意两个都是共线向量.平面法向量的求法:设平面的法向量为α⃗=(x,y,z ).在平面内找出(或求出)两个不共线的向量a ⃗=(x 1,y 1,z 1),b ⃗⃗=(x 2,y 2,z 2),根据定义建立方程组,得到{α⃗×a ⃗=0α⃗×b ⃗⃗=0,通过赋值,取其中一组解,得到平面的法向量.三、空间向量求距离向量方法求异面直线距离:先求两异面直线的公共法向量,再求两异面直线上任意两点的连结线段在公共法向量上的射影长。

1.5 专题研究 空间向量应用的综合问题

1.5         专题研究 空间向量应用的综合问题
不妨设 z2=2,则 y2=1,x2=1,n2=(1,1,2). ∵二面角 P-A2C2-D2 为 150°,
∴- 23=-|cos〈n1,n2〉|=-|n|n11·||nn22| |=-
6 (t-1)2+(3-t)2+4·
, 6
∴t=1 或 3,∴B2P=1.
第6页
探究1
(1)在建立空标系,这样才会容易求得解题时需要的坐标.
第15页
∴以点 O 为坐标原点,OC,OH,OE 所在直线分别为 x 轴、y 轴、z 轴,建 立空间直角坐标系.
∵AB=1,BE=2, ∴A(-1,1,0),B(-1,0,0),C(1,0,0),G(2,0, 3),
则nn11· ·PA→→A2C2=2=0,0,∴2-x12+x1( -12-y1+t)2zz11==00.,
不妨设 z1=2,则 x1=t-1,y1=3-t,∴n1=(t-1,3-t,2). 设平面 A2C2D2 的法向量为 n2=(x2,y2,z2),
第5页
则nn22· ·AA→→22CD22==00,,∴--22xy22-+2z2y=2+0.2z2=0,
第14页
(2)求图 2 中的二面角 B-CG-A 的大小.
【解析】 (2)如图,分别取 BC,AC 的中点为 O,H,连接 OE,OH,则 OH∥AB, ∴OH⊥BC.
∵四边形 BFGC 为菱形,且∠FBC=60°, ∴OE⊥BC. 又∵AB⊥平面 BCGE,OE⊂平面 BCGE, ∴AB⊥OE. ∵BC⊂平面 ABC,AB⊂平面 ABC,AB∩BC=B, ∴OE⊥平面 ABC,
∴A→C=(2,4,0),A→P=(0,0,2),D→E=(2,-1,0).
第9页
∵A→C·D→E=2×2+4×(-1)+0×0=0,A→P·D→E=0×2+0×(-1)+2×0=
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

空间向量高考专题1.【2017课标1,理18】如图,在四棱锥P-ABCD 中,AB//CD ,且90BAP CDP ∠=∠=.(1)证明:平面PAB ⊥平面PAD ;(2)若PA =PD =AB =DC ,90APD ∠=,求二面角A -PB -C 的余弦值.【答案】(1)见解析;(2)以F 为坐标原点, FA 的方向为x 轴正方向, AB 为单位长,建立如图所示的空间直角坐标系F xyz -.由(1)及已知可得2A ⎛⎫ ⎪ ⎪⎝⎭,0,0,2P ⎛ ⎝⎭,2B ⎛⎫ ⎪ ⎪⎝⎭,,1,02C ⎛⎫- ⎪ ⎪⎝⎭.所以22PC ⎛=-- ⎝⎭, ()2,0,0CB =,222PA ⎛=- ⎝⎭, ()0,1,0AB =. 设(),,n x y z =是平面PCB 的法向量,则0{0n PC n CB ⋅=⋅=,即0{ 220x y z -+-==, 可取(0,1,n =-.设(),,m x y z =是平面PAB 的法向量,则 0{0m PA m AB ⋅=⋅=,即0{ 220x z y -==, 可取()1,0,1n=.则cos ,n m n m n m ⋅==, 所以二面角A PB C --的余弦值为 2.【2017山东,理17】如图,几何体是圆柱的一部分,它是由矩形ABCD (及其内部)以AB 边所在直线为旋转轴旋转120︒得到的,G 是DF 的中点.(Ⅰ)设P 是CE 上的一点,且AP BE ⊥,求CBP ∠的大小;(Ⅱ)当3AB =,2AD =,求二面角E AG C --的大小.【答案】(Ⅰ)30CBP ∠=︒.(Ⅱ)60︒.【解析】(Ⅰ)因为AP BE ⊥, AB BE ⊥,AB , AP ⊂平面ABP , AB AP A ⋂=,所以BE ⊥平面ABP ,又BP ⊂平面ABP ,所以BE BP ⊥,又120EBC ∠=︒,因此30CBP ∠=︒(Ⅱ)以B 为坐标原点,分别以BE , BP , BA 所在的直线为x , y , z 轴,建立如图所示的空间直角坐标系.由题意得()0,0,3A ()2,0,0E ,()G ,()C -,故()2,0,3AE =-,()AG =, ()2,0,3CG =, 设()111,,m x y z =是平面AEG 的一个法向量.由0{ 0m AE m AG ⋅=⋅=可得1111230,{ 0,x z x -=+=取12z =,可得平面AEG的一个法向量()3,2m =.设()222,,n x y z =是平面ACG 的一个法向量.由0{ 0n AG n CG ⋅=⋅=可得22220,{ 230,x x z =+=取22z =-,可得平面ACG的一个法向量()3,2n =-. 所以1cos ,2m n m n m n ⋅==⋅. 因此所求的角为60︒.3.【2017北京,理16】如图,在四棱锥P-ABCD 中,底面ABCD 为正方形,平面PAD ⊥平面ABCD ,点M 在线段PB 上,PD//平面MAC ,PA =PDAB=4.(I )求证:M 为PB 的中点;(II )求二面角B -PD -A 的大小;(III )求直线MC 与平面BDP 所成角的正弦值.【答案】(Ⅰ)详见解析:(Ⅱ)3π ;【解析】 (I )设,AC BD 交点为E ,连接ME .因为PD 平面MAC ,平面MAC ⋂平面PBD ME =,所以PD ME .因为ABCD 是正方形,所以E 为BD 的中点,所以M 为PB 的中点.(II )取AD 的中点O ,连接OP , OE .因为PA PD =,所以OP AD ⊥.又因为平面PAD ⊥平面ABCD ,且OP ⊂平面PAD ,所以OP ⊥平面ABCD .因为OE ⊂平面ABCD ,所以OP OE ⊥.因为ABCD 是正方形,所以OE AD ⊥.如图建立空间直角坐标系O xyz -,则(P , ()2,0,0D , ()2,4,0B -, ()4,4,0BD =-,(2,0,PD =.设平面BDP 的法向量为(),,n x y z =,则0{ 0n BD n PD ⋅=⋅=,即440{ 20x y x -==. 令1x =,则1y =,z =于是()2n =.平面PAD 的法向量为()0,1,0p =,所以1cos ,2n p n p n p ⋅==. 由题知二面角B PD A --为锐角,所以它的大小为3π.(III)由题意知1,M ⎛- ⎝⎭, ()2,4,0D ,3,2,MC ⎛= ⎝⎭. 设直线MC 与平面BDP 所成角为α,则2sin cos ,9n MCn MC nMC α⋅===所以直线MC 与平面BDP 所成角的正弦值为9.4.【2017天津,理17】如图,在三棱锥P -ABC 中,PA ⊥底面ABC ,90BAC ∠=︒.点D ,E ,N 分别为棱PA ,P C ,BC 的中点,M 是线段AD 的中点,PA =AC =4,AB =2.(Ⅰ)求证:MN ∥平面BDE ;(Ⅱ)求二面角C -EM -N 的正弦值;(Ⅲ)已知点H 在棱PA 上,且直线NH 与直线BE ,求线段AH 的长.【答案】 (1)证明见解析(2 (3)85 或12 【解析】如图,以A 为原点,分别以AB , AC , AP 方向为x 轴、y 轴、z 轴正方向建立空间直角坐标系.依题意可得A (0,0,0),B (2,0,0),C (0,4,0),P (0,0,4),D (0,0,2),E (0,2,2),M (0,0,1),N (1,2,0).(Ⅰ)证明: DE =(0,2,0),DB =(2,0, 2-).设(),,n x y z =,为平面BDE 的法向量, 则0{ 0n DE n DB ⋅=⋅=,即20{ 220y x z =-=.不妨设1z =,可得()1,0,1n =.又MN =(1,2, 1-),可得0MN n ⋅=. 因为MN ⊄平面BDE ,所以MN //平面BDE .(Ⅲ)解:依题意,设AH =h (04h ≤≤),则H (0,0,h ),进而可得()1,2,NH h =--, ()2,2,2BE =-.由已知,得cos ,NH BE NH BE NH BE h ⋅===,整理得2102180h h -+=,解得85h =,或12h =. 所以,线段AH 的长为85或12. 5.【2017江苏,22】 如图, 在平行六面体ABCD-A 1B 1C 1D 1中,AA 1⊥平面ABCD ,且AB =AD =2,AA 1 120BAD ∠=︒.(1)求异面直线A 1B 与AC 1所成角的余弦值;(2)求二面角B-A 1D-A 的正弦值.【答案】(1)17(2 【解析】在平面ABCD 内,过点A 作AE ⊥AD ,交BC 于点E .因为AA 1⊥平面ABCD ,所以AA 1⊥AE ,AA 1⊥AD .如图,以{}1,,AE AD AA 为正交基底,建立空间直角坐标系A -xyz .因为AB =AD =2,AA 1=3, 120BAD ∠=︒. 则())())(110,0,0,1,0,0,2,0,,,A B D E A C -. (1)()(113,1,3,3,1,A B AC =--=, 则(1111113,1,1cos ,77A B AC A B AC A B AC -⋅⋅===-. 因此异面直线A 1B 与AC 1所成角的余弦值为17.(2)平面A 1DA 的一个法向量为()3,0,0AE =. 设(),,m x y z =为平面BA 1D 的一个法向量, 又()()13,1,3,3,3,0A B BD =--=-, 则10,{ 0,m AB m BD ⋅=⋅=即330,{ 30.x y zy --=+=不妨取x =3,则2y z =,所以()2m =为平面BA 1D 的一个法向量, 从而3,4AE mcosAE m AE m ⋅⋅===, 设二面角B -A 1D -A 的大小为θ,则3cos 4θ=.因为[]0,θπ∈,所以sin θ==.因此二面角B -A 1D -A 6.【2016高考新课标1卷】(本小题满分为12分)如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF 为正方形,AF =2FD , 90AFD ∠=,且二面角D -AF -E 与二面角C -BE -F 都是60.(I )证明:平面ABEF ⊥平面EFDC ;(II )求二面角E -BC -A 的余弦值.【答案】(I )见解析(II ) 【解析】(Ⅰ)由已知可得ΑF DF ⊥,ΑF FE ⊥,所以ΑF ⊥平面ΕFDC .又F A ⊂平面ΑΒΕF ,故平面ΑΒΕF ⊥平面ΕFDC .(Ⅱ)过D 作DG ΕF ⊥,垂足为G ,由(Ⅰ)知DG ⊥平面ΑΒΕF .以G 为坐标原点,GF 的方向为x 轴正方向,GF 为单位长,建立如图所示的空间直角坐标系G xyz -. 由(Ⅰ)知D F E ∠为二面角D AF E --的平面角,故60DFE ∠=,则2DF =,3DG =,可得()1,4,0A ,()3,4,0B -,()3,0,0E -,(D .由已知,//AB EF ,所以//AB 平面EFDC .又平面ABCD 平面EFDC DC =,故//AB CD ,//CD EF . 由//BE AF ,可得BE ⊥平面EFDC ,所以C ΕF ∠为二面角C BE F --的平面角,60C ΕF ∠=.从而可得(C -.所以(ΕC =,()0,4,0ΕΒ=,(3,ΑC =--,()4,0,0ΑΒ=-.设(),,x y z =n 是平面ΒC Ε的法向量,则00ΕC ΕΒ⎧⋅=⎪⎨⋅=⎪⎩n n,即040x y ⎧+=⎪⎨=⎪⎩,所以可取(3,0,=n . 设m 是平面ΑΒCD 的法向量,则00ΑC ΑΒ⎧⋅=⎪⎨⋅=⎪⎩m m ,同理可取()4=m.则cos ,⋅==n m n m n m 故二面角E -BC -A的余弦值为.7.【2016高考新课标2理数】如图,菱形ABCD 的对角线AC 与BD 交于点O ,5,6AB AC ==,点,E F 分别在,AD CD 上,54AE CF ==,EF 交BD 于点H .将D E F ∆沿EF 折到D EF '∆位置,OD '= (Ⅰ)证明:D H '⊥平面ABCD ;(Ⅱ)求二面角B D A C '--的正弦值.【答案】(Ⅰ)详见解析;. 【解析】(Ⅰ)由已知得AC BD ⊥,AD CD =,又由AE CF =得AE CF AD CD=,故AC EF ∥. 因此EF HD ⊥,从而EF D H '⊥.由5AB =,6AC =得04DO B ==. 由EF AC ∥得14OH AE DO AD ==.所以1OH =,==3D H DH '. 于是222223110D H OH D O ''+=+==,故D H OH '⊥.又D H EF '⊥,而OH EF H =,所以D H ABCD '⊥平面.(Ⅱ)如图,以H 为坐标原点,HF 的方向为x 轴正方向,建立空间直角坐标系H xyz -,则()0,0,0H ,()3,1,0A --,()0,5,0B -,()3,1,0C -,()0,0,3D ',(3,4,0)AB =-,()6,0,0AC =,()3,1,3AD '=.设()111,,x y z =m 是平面ABD '的法向量,则00AB AD ⎧⋅=⎪⎨'⋅=⎪⎩m m ,即11111340330x y x y z -=⎧⎨++=⎩,所以可取()4,3,5=-m .设()222,,x y z =n 是平面ACD '的法向量,则00AC AD ⎧⋅=⎪⎨'⋅=⎪⎩n n ,即222260330x x y z =⎧⎨++=⎩,所以可取()0,3,1=-n .于是cos ,25⋅<>===m n m n m n ,sin ,25<>=m n .因此二面角B D A C '--的正弦值. 8.【2016高考天津理数】(本小题满分13分)如图,正方形ABCD 的中心为O ,四边形OBEF 为矩形,平面OBEF ⊥平面ABCD ,点G 为AB 的中点,AB =BE =2.(I )求证:EG ∥平面ADF ;(II )求二面角O -EF -C 的正弦值;(III )设H 为线段AF 上的点,且AH =23HF ,求直线BH 和平面CEF 所成角的正弦值.【答案】(Ⅰ)详见解析(Ⅱ)3(Ⅲ)21【解析】依题意,OF ABCD ⊥平面,如图,以O 为点,分别以,,AD BA OF 的方向为x 轴,y 轴、z 轴的正方向建立空间直角坐标系,依题意可得(0,0,0)O ,()1,1,0,(1,1,0),(1,1,0),(11,0),(1,1,2),(0,0,2),(1,0,0)A B C D E F G -------,.(I )证明:依题意,()(2,0,0),1,1,2AD AF ==-.设()1,,n x y z =为平面ADF 的法向量,则1100n AD n AF ⎧⋅=⎪⎨⋅=⎪⎩,即2020x x y z =⎧⎨-+=⎩.不妨设1z =,可得()10,2,1n =,又()0,1,2EG =-,可得10EG n ⋅=,又因为直线EG ADF ⊄平面,所以//EG ADF 平面.(II )解:易证,()1,1,0OA =-为平面OEF 的一个法向量.依题意,()()1,1,0,1,1,2EF CF ==-.设()2,,n x y z =为平面C E F 的法向量,则2200n E F n C F ⎧⋅=⎪⎨⋅=⎪⎩,即020x y x y z +=⎧⎨-++=⎩ .不妨设1x =,可得()21,1,1n =-.因此有222cos ,OA n OA n OA n ⋅<>==-⋅,于是23sin,3OA n<>=,所以,二面角O EF C --的正弦值9.【2016年高考北京理数】(本小题14分)如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,AB AD⊥, 1AB =,2AD =,AC CD =(1)求证:PD ⊥平面PAB ;(2)求直线PB 与平面PCD 所成角的正弦值;(3)在棱PA 上是否存在点M ,使得//BM 平面PCD ?若存在,求AM AP的值;若不存在,说明理由. 【答案】(1)见解析;(2)3;(3)存在,14AM AP = 【解析】(1)因为平面PAD ⊥平面ABCD ,AB AD ⊥,所以⊥AB 平面PAD ,所以PD AB ⊥,又因为PD PA ⊥,所以⊥PD 平面PAB ;(2)取AD 的中点O ,连结PO ,CO ,因为PA PD =,所以AD PO ⊥.又因为⊂PO 平面PAD ,平面⊥PAD 平面ABCD ,所以⊥PO 平面ABCD .因为⊂CO 平面ABCD ,所以⊥PO CO .因为CD AC =,所以AD CO ⊥.如图建立空间直角坐标系xyz O -,由题意得,)1,0,0(),0,1,0(),0,0,2(),0,1,1(),0,1,0(P D C B A -.设平面PCD 的法向量为),,(z y x =,则⎪⎩⎪⎨⎧=⋅=⋅,0,0即⎩⎨⎧=-=--,02,0z x z y 令2=z ,则2,1-==y x . 所以)2,2,1(-=. 又)1,1,1(-=PB,所以33,cos -=>=<PB n . 所以直线PB 与平面PCD 所成角的正弦值为33.-中,平面BCFE⊥平面10.【2016高考浙江理数】(本题满分15分)如图,在三棱台ABC DEFABC,=90∠,BE=EF=FC=1,BC=2,AC=3.ACB(I)求证:EF⊥平面ACFD;(II)求二面角B-AD-F的平面角的余弦值..【答案】(I)证明见解析;(II)4。

相关文档
最新文档