函数列及其一致收敛性

合集下载

一致收敛函数列与函数项级数的性质

一致收敛函数列与函数项级数的性质

1 n 1
12n
2
(2n 2n2x)dx

1
lim
0 n
1
1 0dx
n
fn (x)dx
1 2
0
不相等
(2) 定理的条件是充分的, 但不必要
例3 fn (x) nxenx n 1, 2,... 在区间[0,1]上讨论.
f
(x)
lim
n
fn (x)
lim nxenx
n
0
x [0,1]
但在[0,1]上, fn(x) nxenx n 1, 2,...不一致收敛. 事实上,
{ fn(x)}的每一项在[a,b]上有连续的导数, 且{ fn(x)}在[a,b]上一致收敛,

d dx
f
(x)
d (lim dx n
fn (x))
lim n
d dx
fn (x)
3. 可微性
定理13.10 设{ fn (x)}为定义在[a,b]上的函数列, x0 [a,b]为{ fn(x)}的收敛点,
f (x)
f (x0 )
lim lim
xx0 n
fn (x)
f (x0 )
又 lim n
fn (x0 )
f (x0 )
lim
x x0
fn (x)
fn (x0 )
lim lim
n xx0
fn (x)
f (x0 )
所以
lim lim
xx0 n
fn
(x)
lim
n
lim
x x0
fn (x)
★ 在一致收敛条件下, 关于x与n极限可以交换极限顺序
fn (x) nxenx 在[0,1]的最大值为:

函数列与函数项级数一致收敛性解析

函数列与函数项级数一致收敛性解析

第十三章函数列与函数项级数§1 一致收敛性(一) 教学目的:掌握函数序列与函数项级数一致收敛性的定义,函数序列与函数项级数一致收敛性判别的柯西准则,函数项级数一致收敛性的魏尔斯特拉斯判别法.(二) 教学内容:函数序列与函数项级数一致收敛性的定义;函数序列与函数项级数一致收敛性判别的柯西准则;函数项级数一致收敛性的魏尔斯特拉斯判别法.基本要求:1)掌握函数序列与函数项级数一致收敛性的定义,函数序列与函数项级数一致收敛性判别的柯西准则,函数项级数一致收敛性的魏尔斯特拉斯判别法.(2) 较高要求:掌握狄利克雷判别法和阿贝尔判别法.2、教学基本要求:理解并掌握函数列与函数项级数的概念及一致收敛的概念和性质;掌握函数项级数的几个重要判别法,并能利用它们去进行判别;掌握一致收敛函数列与函数项级数的极限与和函数的连续性,可积性,可微性,并能应用它们去解决问题。

3、教学重点难点:重点是函数列一致收敛的概念、性质;难点是一致收敛性的概念、判别及应用。

(三) 教学建议:(1) 要求学生必须掌握函数序列与函数项级数一致收敛性的定义,函数序列与函数项级数一致收敛性判别的柯西准则,函数项级数一致收敛性的魏尔斯特拉斯判别法.(2) 对较好学生可要求他们掌握狄利克雷判别法和阿贝尔判别法.————————————————————一函数列及其一致收敛性对定义在区间I 上的函数列E x x f n ∈},)({,设 E x ∈0,若数列 })({0x f n 收敛,则称函数列})({x f n 在点0x 收敛,0x 称为函数列})({x f n 收敛点;若数列 })({0x f n 发散,则称函数列})({x f n 在点0x 发散。

使函数列})({x f n 收敛的全体收敛点集合称为函数列})({x f n 收敛域( 注意定义域与收敛域的区别 )。

若函数列})({x f n 在数集E D ⊂上每一点都收敛,则称函数列})({x f n 在数集D 上收敛,这时D 上每一点x ,都有函数列的一个极限值)()(lim x f x f n n =∞→与之对应,由这个对应关系所确定的函数,称为函数列})({x f n 的极限函数。

第1节一致收敛性

第1节一致收敛性

当x 1有 f n (1) f (1) 0 ,
f n ( x )在(1,1]上收敛, 且其极限函数为
0, f ( x) 1,
n
x 1 x 1
当 x 1, 有 x ( n ),
x 1, 有 1,1,1,发散 .
x n 在(1.,1]外均发散
( 2) nx(1 x )n


nx x f ( x) 解 : (1)x [0,1], 有 lim n 1 n x
nx 而 sup f n ( x ) f ( x ) sup x x[ 0 ,1] x[ 0 ,1] 1 n x
x(1 x ) 2 sup n x[ 0,1] 1 n x
而 ln(1 an )或 an收敛 lim an 0
n
ln(1 an ) lim 1, 由比较判别法知 : n an
ln(1 a
n
)与 an同敛散 .
CH13.函数列与函数项级数
第一节 一致收敛性
第二节 一致收敛函数列与 函数项级数的性质
第一节 一致收敛性
2.若一致收敛, 则必收敛; 反之不真.
定理1 : (函数列的一致收敛性)函数列 f n 在数集D上
一致收敛 0, N 0, 使得n, m N
对于一切x D,均有 f n ( x ) f m ( x ) f ( n ), x D 证明 : (必要性)设 f n
1 且f n ( x ) n f ( x ) f ( x ) , 则函数列 f n ( x ) n 在[, ] (a, b)一致收敛于函数f ( x ).
证明: r (, b), x [, ], N1 0, n N1 , 有

一致收敛性

一致收敛性
lim sup | Rn ( x ) | lim sup | S ( x ) Sn ( x ) | 0.
n xD n xD
数学分析选讲
多媒体教学课件
三、函数项级数的一致收敛性判别法 定理5(维尔斯特拉斯判别法)设函数项级数un(x)定义 在数集D上, Mn为收敛的正项级数,若对一切xD,有
n 1
由f(x)的连续性,
1 1 k lim f n( x) lim f( x ) f( x t) dt. 0 n n n k 0 n n 1
数学分析选讲
多媒体教学课件
n 1
| fn ( x)
1
0
1 1 k f ( x t )dt || f ( x ) f ( x t )dt | 0 n k 0 n
n n充分大时, x 2 n 2 单调递减收敛于0.故原级数为莱布
尼兹级数.且
n 1 1 | rn ( x ) || 2 , 2 x ( n 1) n 1
故原级数一致收敛.
数学分析选讲
多媒体教学课件
例4 证明函数列
x f n ( x ) n ln(1 )( n 1, 2,) n
k 1 n k n
k | f ( x ) f ( x t ) | dt | n
数学分析选讲
多媒体教学课件
由于
k k 1 t [ , ] n n
所以
k k 1 | x ( x t ) || t | , n n n
故取n 充分大,使1/ n <,则
k | f ( x ) f ( x t ) | . n
n 1

在[a, b]上一致收敛.
数学分析选讲

判断函数收敛发散的方法总结

判断函数收敛发散的方法总结

判断函数收敛发散的方法总结
判断函数收敛发散的方法可以总结如下:
1.极限存在性:判断函数在某点处的极限是否存在,如果存在,则函数在该点处收敛,反之则发散。

2.数列收敛性:利用数列与函数之间的关系来判断函数的收敛发散性。

例如,通过取函数在某点处的数列极限,判断该极限是否存在、唯一以及与函数在该点处的函数值是否相等,如果满足条件,则函数在该点处收敛。

3. Cauchy收敛准则:对于实数函数,如果对于任意正实数ε,存在正实数δ,使得当两个自变量值的差小于δ时,函数值之差的绝对值小于ε,那么该函数是Cauchy收敛的,即可认为函数在该点处收敛。

4.一致收敛性:如果函数在其定义域上任意一个区间内均收敛,则称该函数在该定义域上一致收敛。

5.瑕点收敛性:对于一个拓展实数域上的函数,在其定义域上的一切点除了有限极点外,均有极限,那么该函数在其定义域上就是瑕点收敛的。

dini定理证明函数列一致收敛

dini定理证明函数列一致收敛

dini定理证明函数列一致收敛1.引言在实际问题中,许多数学模型和现象都涉及到一系列函数,例如傅里叶级数、泰勒级数、广义傅里叶级数等等。

要研究这些函数列的性质,我们需要了解函数列的收敛性质。

函数列一致收敛是函数分析中常常被研究的问题。

本文将介绍Dini定理,该定理是一种判定函数列一致收敛的方法。

2.函数列的一致收敛一般地,如果函数列$\{f_n(x)\}$在定义域$D$上的每一点$x$都有极限$f(x)$,那么我们称$\{f_n(x)\}$在$D$上收敛于函数$f(x)$。

另外,如果对于任意的$\epsilon>0$,存在$N$,使得对于任意的$n>N$和$x\in D$,都有$|f_n(x)-f(x)|<\epsilon$,那么我们称函数列$\{f_n(x)\}$在$D$上一致收敛于函数$f(x)$。

一致收敛是强收敛的一种形式,它要求在整个定义域上,函数列中的函数都以同样的速度趋于极限函数。

柯西收敛准则和魏尔斯特拉斯判别法都可以用来判断函数列的一致收敛性。

3.Dini定理Dini定理是函数分析中的一条著名定理,它提供了一种判定函数列一致收敛的方法。

首先,我们来看一下Dini定理的表述:Dini定理:若函数列$\{f_n(x)\}$在定义域$[a,b]$上单调增加(或单调递减),并且收敛于$f(x)$,那么该函数列在$[a,b]$上一致收敛于$f(x)$。

以上定理意味着单调收敛的函数列一定可以保证一致收敛性。

也就是说,如果我们能够找到一严格递增或递减的函数列,使得它们都收敛于同一个函数,那么该函数列就能够保证一致收敛。

现在,我们来证明一下Dini定理。

4.证明为了方便,我们令$f_n(x)$单调递减,$f_n(x)$收敛于$f(x)$。

假设该函数列不一致收敛。

那么,我们可以找到一个$\epsilon>0$,以及任意的$n$和$x_n\in[a,b]$,使得$|f_n(x_n)-f(x_n)|\geq\epsilon$。

§13..2一致收敛性质

§13..2一致收敛性质
2015年11月23日星期一 11
例1 设函数
1 2 n x , 0 x , n 2n 1 1 f n ( x ) 2 n 2n n x , x , 2n n 1 x 1, 0, n
y
n 1, 2, .
(其图象如图13-6所示). 显然 { f n ( x )}是 [0, 1] 上的 连续函数列, 且对任意
O
1 2n
1 n
1
x
因此, { f n ( x )} 在 [0, 1] 上一致 收敛于 0 的充要条件是 n 0( n ) .
2015年11月23日星期一
13
fn ( x)
f ( x ) 当且仅当 lim n 0.
n

1
0
f n ( x )dx
n
2n
,
0
1
f n ( x )dx f ( x )dx 0 当且仅当 l i m n 0. 0 n

I
f(x).
f n ( x ) x n , x ( 1,1],
0, x 1, 其极限函数:f ( x ) 1, x 1.
所以 在x=1不连续,
fn ( x)
I
f(x).
7
2015年11月23日星期一
定理13.9
若 fn ( x)
f ( x)
x I,
则f ( x)也在I上连续 . 且n, f n ( x )在I连续,
即极限号与求导符号可交换。 注:在本定理条件下,可推出
fn ( x)
f ( x)
15
2015年11月23日星期一

设f n ( x0 ) A,

函数序列一致收敛性的分析与证明

函数序列一致收敛性的分析与证明

函数序列一致收敛性的分析与证明
函数序列的收敛性是数学分析中一个重要的概念,它指的是一系列函数的值在某一点上收敛到一个特定的值。

函数序列的收敛性可以用来分析函数的性质,以及函数的极限行为。

函数序列的收敛性可以用数学证明的方法来分析。

首先,我们需要定义一个函数序列,它是一系列函数的集合,每个函数都有一个参数,这个参数可以是实数或者复数。

然后,我们需要证明这个函数序列在某一点上收敛到一个特定的值。

为了证明函数序列的收敛性,我们需要使用数学归纳法。

首先,我们需要证明函数序列的第一个函数收敛到一个特定的值。

然后,我们需要证明函数序列的第二个函数也收敛到这个特定的值。

最后,我们需要证明函数序列的第n个函数也收敛到这个特定的值。

如果我们能够证明这一点,那么我们就可以证明函数序列的收敛性。

总之,函数序列的收敛性是一个重要的概念,它可以用数学证明的方法来分析。

通过使用数学归纳法,我们可以证明函数序列在某一点上收敛到一个特定的值,从而分析函数的性质和极限行为。

函数列一致连续和一致收敛及等度连续的关系

函数列一致连续和一致收敛及等度连续的关系

285
N (ε) , 使得当时 n > N 时 , 对一切 x ∈ I, 都有 fn ( x ) - f ( x )
是有界区间 , 所以 fn ( a + 0 ) , fn ( b - 0 ) , f ( a + 0 ) ,
f ( b - 0 ) 存在且有限 , fn ( x ) , f ( x ) 在 I 上连续
fn ( x ) - f ( x ) ≤ fn ( x ) - fn ( ai ) fn ( ai ) - f ( ai )

证毕 . 反之不一定成立 . 2 2 2 例如 { fn ( x ) } = { x / ( x + ( 1 = nx ) ) } , f ( x ) = - 0, 显然 lim fn ( x ) = f ( x ) ( x ∈ [ 0, 1 ] )
fn ( x ) - f ( x ) ≤ fn ( x ) - fn ( x λ) fn ( x λ) - f(x λ)
ε ε ε + + =ε 3 3 3 对剩下的 f1 ( x ) , …, fN ( x ) , 由一致连续性 , 每 个 fi ( x ) ( i = 1, 2, …, N ) , 都存在正数 δ , x″ i , 当 x′ ∈ I, x ′ - x ″ <δ i 时 ,有 ε ) - fi ( x ″ ) < fi ( x ′ 3 这时取 δ = m in {δ , x″ 0 ,δ 1 , …, δ N } , 则对任意的 x ′ ∈ I, 当 x ′ - x ″ <δ 时 , 对一切 n, 恒有
[1]

.
则称函数列 { fn ( x ) }在 I上一致收敛于 f ( x ) , 记作 fn ( x ) ] f ( x ) ( n →∞) ; x ∈ I 定义 4 设函数列 { fn ( x ) }定义在区间 I上 , 若对任意正数 ε, 存在正数 δ=δ(ε) , 使得当 x1 , x2 ∈ I且 x1 - x2 <δ 时 , 对一切的 n 有 fn ( x1 ) - fn ( x2 ) <ε

函数列的收敛与一致收敛

函数列的收敛与一致收敛

函数列的收敛与一致收敛作者:时杰来源:《新课程·教师》2016年第01期摘要:从收敛和一致收敛的概念出发,讨论数学分析中函数列的收敛与一致收敛的关系,这为如何掌握并进一步研究函数列的收敛与一致收敛问题提供了方法。

关键词:函数列;收敛;一致收敛函数列收敛与一致收敛理论是数学分析中的重要概念之一,同时也是教与学的难点。

但是学生往往对定义理解不透彻,生搬硬套“?着-N”语言,加之各种版本的数学分析教科书将函数列的收敛问题与函数项级数的收敛问题放在一起,使得教与学更为困难。

本文从实数数列的收敛问题中引出函数列的收敛,进而引出一致收敛,逐步推进,使得这部分内容更易学习并掌握。

实数序列的收敛问题是定义在实数集上的,其实函数序列的收敛性也是如此,函数序列的收敛性反映的是函数列在点集上的局部性质,也就是说,函数列在点集上的收敛性就是实数序列的收敛问题。

下面就从这个角度讨论函数列的收敛与一致收敛问题。

一、收敛的几个定义实数列的收敛性定义定义1:设xn是实数序列,a是实数,若对任意给定的正数?着,都存在相应的正整数N,使得当n>N时,恒有xn-a几何上,xn→a的意思是:数轴上跳动的点xn与定点a之间的距离,随着n的无限变大而无限变小,无论?着是怎样小的数,做点a的?着邻域(a-?着,a+?着),跳动的点迟早有一次将跳进去,再也跳不出来,这个次数便可作为N。

但是例如序列:(1+ ),(1+ )2,(1+ )3,…,(1+ )n,…有极限ex,这个序列的特点是每一项都是函数,极限也是x的函数,这样构成的序列就不是实数序列了,而是函数序列,可以记为:fn(x),收敛定义如下:定义2:设函数列fn(x)每一项fn(x)及函数f(x)均在数集E上有定义,若?坌x∈E,函数列fn(x)收敛于f(x),则称函数列fn(x)在E上收敛于f(x),并称函数f (x)是函数列fn(x)的极限函数。

定义2也可以用“?着-N”语言描述:设函数列fn(x)每一项fn(x)及函数f(x)均在数集E上有定义,对?坌x∈E,?坌?着>0存在正数N,使得当n>N时,总有fn(x)-f(x)我们发现,函数列fn(x)的收敛问题不仅要考虑fn(x)的趋向,还要考虑极限函数f (x),但是我们也发现取定x0∈E时,代入fn(x)即得实数序列:f1(x0),f2(x0),…,fn(x0)…,这时就是实数序列的收敛性问题了。

数学分析13.1一致收敛性

数学分析13.1一致收敛性

第十三章 函数列与函数项级数1 一致收敛性一、函数列及其一致收敛性概念:设f 1,f 2,…,f n ,…是一列定义在同一数集E 上的函数,称为定义在E 上的函数列,也可以简单地写作{f n }或f n , n=1,2,…. 设x 0∈E ,以x 0代入函数列可得数列:f 1(x 0),f 2(x 0),…,f n (x 0),…. 若该数列收敛,则称对应的函数列在点x 0收敛,x 0称为该函数列的收敛点. 若数列发散,则称函数列在点x 0发散. 若函数列在数集D ⊂E 上每一点都收敛,则称该函数列在数集D 上收敛. 这时D 上每一点x 都有数列{f n (x)}的一个极限值与之相对应,由这个对应法则所确定的D 上的函数,称为原函数的极限函数. 若把此极限函数记作f ,则有∞n lim +→f n (x)=f(x), x ∈D ,或f n (x)→f(x) (n →∞), x ∈D.使函数列{f n }收敛的全体收敛点集合,称为函数列{f n }的收敛域.函数列极限的ε-N 定义:对每一个固定的x ∈D ,任给正数ε, 恒存在正数N(ε,x),使得当n>N 时,总有|f n (x)-f(x)|< ε.例1:设f n (x)=x n , n=1,2,…为定义在R 上的函数列,证明它的收敛域是(-1,1]且有极限函数f(x)=⎩⎨⎧=<1x 11|x |0,,.证:任给正数ε<1, 当|x|<1时,∵|f n (x)-f(x)|=|x|n , ∴只要取N(ε,x)=|x |ln ln ε,当n>N 时,就有|f n (x)-f(x)|< ε.当x=0或x=1时,对任何正整数n ,都有|f n (x)-f(x)|=0< ε. ∴f n (x)在(-1,1]上收敛,且有极限函数f(x) =⎩⎨⎧=<1x 11|x |0,,.又当|x|>1时,有|x|n →∞ (n →∞),当x=-1时,对应的数列为: -1,1,-1,1…发散. ∴函数列{x n }在(-1,1]外都是发散的. 得证!例2:证明:函数列f n (x)=nsinnx, n=1,2,…的收敛域是R ,极限函数f(x)=0. 证:∵对任意实数x ,都有n sinnx ≤n 1,∴任给ε>0,只要n>N=ε1, 就有0nsinnx-< ε,得证!定义1:设函数列{f n }与函数f 定义在同一数集D 上,若对任给的正数ε,总存在某一正整数N ,使得当n>N 时,对一切x ∈D ,都有 |f n (x)-f(x)|< ε,则称函数列{f n }在D 上一致收敛于f ,记作 f n (x)⇉f(x) (n →∞), x ∈D.注:反之,若存在某正数ε0,对任何正数N ,都有D 上某一点x ’与正整数n ’>N ,使|f n (x ’)-f(x ’)|≥ε0,则函数列{f n }在D 上不一致收敛于f. 如:例1中的函数列{x n }在(0,1)上收敛于f(x)=0,但不一致收敛.∵令ε0=21,对任何正数N ,取正整数n>N+1及x ’=21n 11⎪⎭⎫ ⎝⎛-∈(0,1),则有|x ’2 -0|=1-n 1≥21. ∴函数列{x n }在(0,1)上不一致收敛于f(x)=0.函数列一致收敛于f 的几何意义:对任何正数ε,存在正整数N ,对于一切序号大于N 的曲线y=f n (x),都落在以曲线y=f(x)+ ε与y=f(x)- ε为边(即以y=f(x)为“中心线”,宽度为2ε)的带形区域内(如图1).(图1)(图2)函数列{x n }在(0,1)内不一致收敛,即对于某个事先给定的正数ε<1, 无论N 多么大,总有曲线y=x n (n>N)不能全部落在以y=ε与y=-ε为边的带形区域内(如图2). 若函数列{x n }只限于在区间(0,b) (b<1)内讨论,则只要n>lnbln ε(其中0<ε<1),曲线y=x n 就全部落在y=ε与y=-ε为边的带形区域内,所以{x n }在区间(0,b)内一致收敛.定理13.1:(函数列一致收敛的柯西准则)函数列{f n }在数集D 上一致收敛的充要条件是:对任给ε>0,总存在正数N ,使得当n,m>N 时, 对一切x ∈D ,都有|f n (x)-f m (x)|< ε.证:[必要性]若f n (x)⇉f(x) (n →∞), x ∈D ,则∀ε>0,∃正数N , 使得当n,m>N 时,对一切x ∈D ,都有|f n (x)-f(x)|<2ε及|f m (x)-f(x)|<2ε. ∴|f n (x)- f m (x)|≤|f n (x)-f(x)|+ |f m (x)-f(x)|<2ε+2ε= ε. [充分性]若|f n (x)-f m (x)|< ε, 则由数列收敛的柯西准则知, {f n }在D 上任一点都收敛,记其极限函数f(x),则有∞m lim +→|f n (x)-f m (x)|=|f n (x)-f(x)|<ε,由定义1知f n (x)⇉f(x) (n →∞), x ∈D.定理13.2:函数列{f n }在区间D 上一致收敛于f 的充要条件是:Dx ∞n sup lim ∈+→|f n (x)-f(x)|=0.证:[必要性]若f n (x)⇉f(x) (n →∞), x ∈D ,则∀ε>0,∃正整数N ,当n>N 时,有|f n (x)-f(x)|<ε, x ∈D.由上确界定义,有Dx sup ∈|f n (x)-f(x)|≤ε. ∴Dx ∞n sup lim ∈+→|f n (x)-f(x)|=0. [充分性]若Dx ∞n sup lim ∈+→|f n (x)-f(x)|=0,则∀ε>0,∃正整数N , 使得当n>N 时,有Dx sup ∈|f n (x)-f(x)|<ε. 又对一切x ∈D ,总有|f n (x)-f(x)|≤Dx sup ∈|f n (x)-f(x)|<ε,∴{f n }在D 上一致收敛于f.推论:函数列{f n }在D 上不一致收敛于f 的充要条件是: 存在{x n }⊂D ,使得{f n (x n )-f(x n )}不收敛于0.例3:设f n (x)=nx 2-nx e , x ∈D=R +,n=1,2,….判别{f n (x)}在D 上的一致收敛性.解法一:对任意x ∈R +, ∞n lim +→nx 2-nx e=0=f(x). 又当f ’n (x)=222ex 2n -n =0时, x=2n1,且f ”(2n1)=-2e 2n2n <0, ∴在R +上,每个nx 2-nx e 只有一个极大值点x n =2n1,而Dx ∞n sup lim ∈+→|f n (x)-f(x)|=∞n lim +→f n (x n )=2enlim∞n +→=+ ∞≠0, ∴{f n (x)}在D 上不一致收敛于f.解法二:取x n =n1∈R +,则∞n lim +→f n (x n )=n 1-∞n e lim +→=1≠0, ∴{f n }在D 上不一致收敛于f.定义1:设函数列{f n }与f 定义在区间I 上,若对任意闭区间[a,b]⊂I, {f n }在[a,b]上一致收敛于f ,则称{f n }在I 上内闭一致收敛于f.注:若I 为有界闭区间,则{f n }在I 上内闭一致收敛于f 与{f n }在I 上一致收敛于f 是一致的.例1中函数列{x n }在[0,1)上不一致收敛于0,但对任意δ>0,]δ,0[x sup ∈|x n |≤δn→0 (n →∞),∴{f n }在[0,1)上内闭一致收敛于0.例3中函数列{f n }在R +上不一致收敛于0,但对任意[a,b]⊂R +,]b ,a [x sup ∈|nx 2-nx e |≤nb 2-na e →0 (n →∞),∴{f n }在R +上内闭一致收敛于0.二、函数项级数及其一致收敛性概念:设{u n (x)}是定义在数集E 上的一个函数列,表达式: u 1(x)+ u 2(x)+…+u n (x)+…, x ∈E称为定义在E 上的函数项级数,简记为∑∞=1n n (x )u 或∑(x)u n .称S n (x)=∑=n1k k (x )u , x ∈E, n=1,2,…为函数项级数∑(x)u n 的部分和函数.若x 0∈E, 数项级数u 1(x 0)+ u 2(x 0)+…+u n (x 0)+…收敛,即部分和 S n (x 0)=∑=n1k 0k )(x u 当n →∞时极限存在,则称级数∑(x)u n 在点x 0收敛,x 0称为级数∑(x)u n 的收敛点.若级数∑)(x u 0n 发散,则称级数∑(x)u n 在点x 0发散.若∑(x)u n 在E 的某个子集D 上每点都收敛,则称∑(x)u n 在D 上收敛. 若D 为级数∑(x)u n 全部收敛点的集合,则称D 为∑(x)u n 的收敛域. 级数∑(x)u n 在D 上每一点x 0与其所对应的数项级数∑)(x u 0n 的和S(x 0)构成一个定义在D 上的函数,称为级数∑(x)u n 的和函数,并写作: S(x)=u 1(x)+ u 2(x)+…+u n (x)+…, x ∈D 即∞n lim +→S n (x)=S(x), x ∈D ,于是函数项级数的收敛性等价于它的部分和函数列{S n (x)}的收敛性.例4:判别函数项级数(几何级数)1+x+x 2+…+x n +…在R 上的收敛性.解:几何级数的部分和函数为S n (x)=x-1x -1n .当|x|<1时,S(x)=∞n lim +→S n (x)=x-11; 当|x|≥1时,S(x)=∞n lim +→S n (x)=+∞.∴几何级数在(-1,1)内收敛于和函数S(x)=x-11;当|x|≥1时,发散.定义3:设{S n (x)}函数项级数∑(x)u n 的部分和函数列. 若{S n (x)}在数集D 上一致收敛于S(x),则称∑(x)u n 在D 上一致收敛于S(x). 若∑(x)u n 在任意闭区间[a,b]⊂I 上一致收敛,则称∑(x)u n 在I 上内闭一致收敛.定理13.3:(一致收敛的柯西准则)函数项级数∑(x)u n 在数集D 上一致收敛的充要条件是:对任给ε>0,总存在某正整数N ,使得当n>N 时, 对一切x ∈D 和一切正整数p ,都有|S n+p (x)-S n (x)|< ε或∑++=pn 1n k k(x)u< ε.推论:函数项级数∑(x)u n 在数集D 上一致收敛的必要条件是函数列{u n (x)}在D 上一致收敛于0.注:设函数项级数∑(x)u n 在数集D 上的和函数为S(x), 称 R n (x)=S(x)-S n (x)为函数项级数∑(x)u n 的余项.定理13.4:函数项级数∑(x)u n 在数集D 上一致收敛于S(x)的充要条件是:Dx ∞n sup lim∈+→|R n (x)|=Dx ∞n sup lim ∈+→|S(x)-S n (x)|=0.注:几何级数∑n x 在(-1,1)上不一致收敛,因为)(-1,1x sup ∈|S(x)-S n (x)|=1-x x sup n )(-1,1x ∈≥1n n -11n n n+⎪⎭⎫⎝⎛+=n 1-n 1n n ⎪⎭⎫ ⎝⎛+ →∞ (n →∞). 又对任意a(0<a<1),]a -a,[x sup ∈|S(x)-S n (x)|=1-x x sup n]a -a,[x ∈=a -1a n →0 (n →∞).∴几何级数∑n x 在(-1,1)上内闭一致收敛.三、函数项级数的一致收敛性判别法定理13.5:(魏尔斯特拉斯判别法或M 判别法或优级数判别法) 设函数项级数∑(x)u n 定义在数集D 上,∑n M 为收敛的正项级数, 若对一切x ∈D ,有|u n (x)|≤M n , n=1,2,…, 则函数项级数∑(x)u n 在D 上一致收敛.证:∵∑n M 为收敛的正项级数,根据数项级数的柯西准则, ∀ε>0,∃正整数N ,使得当n>N 及任何正整数p ,有∑++=pn 1n k kM=∑++=pn 1n k kM< ε,又对一切x ∈D ,有|u n (x)|≤M n , n=1,2,…,∴∑++=pn 1n k k(x)u≤∑++=pn 1n k k(x )u≤∑++=pn 1n k kM< ε,由函数项级数一致收敛的柯西准则知,级数∑(x)u n 在D 上一致收敛.例5:证明函数项级数∑2n nx sin 和∑2n cosnx在R 上一致收敛. 证:∵对一切x ∈R ,有2n nx sin ≤2n 1,∑2n cosnx ≤2n1. 又级数∑2n 1收敛,∴函数项级数∑2n nx sin 和∑2n cosnx在R 上一致收敛.注:当级数∑(x)u n 与级数∑n M 在 [a,b]上,都有|u n (x)|≤M n , n=1,2,…时,称级数∑n M 在[a,b]优于∑(x)u n ,或称∑n M 为∑(x)u n 的优级数.定理13.6:(阿贝尔判别法)设 (1)∑(x)u n 在区间I 上一致收敛; (2)对每一个x ∈I ,{v n (x)}是单调的;(3){v n (x)}在I 上一致有界,即对一切x ∈I 和正整数n ,存在正数M ,使得|v n (x)|≤M ,则级数∑(x)(x)v u n n 在I 上一致收敛. 证:由条件(1),∀ε>0,∃某正整数N ,使得 当n>N 及任何正整数p ,对一切x ∈I ,有∑++=pn 1n k k(x)u< ε.又由条件(2),(3),根据阿贝尔引理得:∑++=pn 1n k k k(x)(x)v u≤[|v n+1(x)|+2|v n+p (x)|]ε≤3M ε.由函数项级数一致收敛的柯西准则知,∑(x)(x)v u n n 在I 上一致收敛.定理13.7:(狄利克雷判别法)设(1)∑(x)u n 的部分和函数列S n (x)=∑=n1k k (x )u , (n=1,2,…)在I 上一致有界;(2)对于每一个x ∈I ,{v n (x)}是单调的; (3)在I 上v n (x)⇉0 (n →∞), 则级数∑(x)(x)v u n n 在I 上一致收敛.证:由条件(1),存在正数M ,对一切x ∈I ,有|S n (x)|≤M , ∴当n,p 为任何正整数时,∑++=pn 1n k k(x)u=|S n+p (x)-S n (x)|<2M.对任何一个x ∈I ,由条件(2)及阿贝尔引理得:∑++=pn 1n k k k(x)(x)v u≤2M[|v n+1(x)|+2|v n+p (x)|]又由条件(3),∀ε>0,∃正数N ,使得当n>N 时,对一切x ∈I , 有|v n (x)|<ε. ∴∑++=pn 1n k k k(x)(x)v u<6M ε.由函数项级数一致收敛的柯西准则知,∑(x)(x)v u n n 在I 上一致收敛.例6:证明:函数项级数∑++-1n nn n )n x ()1(在[0,1]上一致收敛. 证:记u n (x)=n )1(n -, v n (x)=nn x 1⎪⎭⎫⎝⎛+,则∑(x)u n 在[0,1]上一致收敛;又{v n (x)}单调增,且1≤v n (x)≤e, x ∈[0,1],即{ v n (x)}在[0,1]上一致有界.根据阿贝尔判别法知数∑++-1n n n )n x ()1(在[0,1]上一致收敛.例7:证明:若数列{a n }单调且收敛于0,则级数∑cosnx a n 在[α,2π-α] (0<α<π)上一致收敛.证:∵∑=n1k coskx = 21-2x 2sin x 21n sin ⎪⎭⎫ ⎝⎛+≤2x sin21+21≤2α2sin 1+21, x ∈[α,2π-α],∴级数∑cosnx 的部分和函数列在[α,2π-α]上一致有界. 令u n (x)=cosnx, v n (x)=a n ,∵数列{a n }单调且收敛于0, 根据狄利克雷判别法知,级数∑cosnx a n 在[α,2π-α]上一致收敛.注:只要{a n }单调且收敛于0,那么级数∑cosnx a n 在不包含2k π (k 为整数)的任何闭区间上都一致收敛.习题1、讨论下列函数列在所示区间D 上是否一致收敛或内闭一致收敛,并说明理由: (1)f n (x)=22n1x +, n=1,2,…,D=(-1,1); (2)f n (x)=22xn 1x+, n=1,2,…,D=R ;(3)f n (x)=⎪⎩⎪⎨⎧≤<++≤≤++-1x 1n 101n 1x 01x )1n (,,, n=1,2,…; (4)f n (x)=n x, n=1,2,…,D=[0,+∞);(5)f n (x)=nxsin , n=1,2,…,D=R.解:(1)∞n lim +→f n (x)=22∞n n 1x lim ++→ =|x|=f(x), x ∈D=(-1,1);又 D x sup ∈|f n (x)-f(x)|=|x |n 1x sup 22D x -+∈=|x |n1x n 1sup 222D x ++∈≤n 1→0(n →∞).∴22n 1x +⇉|x| (n →∞),x ∈(-1,1). (2)∞n lim +→f n (x)=22∞n x n 1xlim++→ =0=f(x), x ∈D=R ;又Dx sup ∈|f n (x)-f(x)|=22D x xn 1x sup+∈≤nx 2x =n 21→0(n →∞). ∴22x n 1x+⇉0 (n →∞),x ∈R.(3)当x=0时,∞n lim +→f n (x)=1;当0<x ≤1时,只要n>x1-1,就有f n (x)=0, ∴f n (x)在[0,1]上的极限函数为f(x)= ⎩⎨⎧≤<=1x 000x 1,,.又]1,0[x ∞n sup lim ∈+→|f n (x)-f(x)|=1≠0. ∴f n (x)在[0,1]上不一致收敛. (4)∞n lim +→f n (x)=nxlim ∞n +→=0=f(x), x ∈D=[0,+∞);又 )∞[0,+x ∞n sup lim ∈+→|f n (x)-f(x)|=nxsuplim )∞[0,+x ∞n ∈+→=+∞, ∴f n (x)在[0,+∞)上不一致收敛. 在任意[0,a]上,a][0,x ∞n sup lim∈+→|f n (x)-f(x)|=nalim ∞n +→=0, ∴f n (x)在[0,+∞)上内闭一致收敛.(5)∞n lim +→f n (x)=nx sin lim ∞n +→=0=f(x), x ∈D=R ;又 Rx ∞n sup lim ∈+→|f n (x)-f(x)|=nxsinsup lim Rx ∞n ∈+→=1, ∴f n (x)在R 上不一致收敛. 在任意[-a,a]上,a][-a,x ∞n sup lim∈+→|f n (x)-f(x)|=nx sin sup lim a][-a,x ∞n ∈+→≤n a lim ∞n +→=0, ∴f n (x)在R 上内闭一致收敛.2、证明:设f n (x)→f(x), x ∈D , a n →0(n →∞) (a n >0). 若对每一个正整数n 有|f n (x)-f(x)|≤a n , x ∈D ,则{f n }在D 上一致收敛于f. 证:∵|f n (x)-f(x)|≤a n , x ∈D ,且a n →0(n →∞),∴a][-a,x ∞n sup lim∈+→|f n (x)-f(x)|= 0,∴f n (x)⇉f(x) (n →∞),x ∈D.3、判别下列函数项级数在所示区间上的一致收敛性:(1)∑1)!-(n x n , x ∈[-r,r];(2)∑+n221-n )x (1x (-1), x ∈R ;(3)∑n x n , |x|>r>1; (4)∑2n n x , x ∈[0,1];(5)∑+n x (-1)21-n , x ∈R ;(6)∑+1-n 22)x (1x , x ∈R. 解:(1)∀x ∈[-r,r], 有1)!-(n x n≤1)!-(n r n ,记u n =1)!-(n r n ,则n 1n u u +=n r →0(n →∞),∴∑1)!-(n r n 收敛,∴∑1)!-(n x n在[-r,r]上一致收敛.(2)记u n (x)=(-1)n-1, v n (x)=n22)x (1x +,则对任意的x ∈R ,有 |∑=n1k k (x )u |≤1, (n=1,2,…),即{u n (x)}的部分和函数列在R 上有界;又{v n (x)}单调减,且由0≤n22)x (1x +≤n 1→0(n →∞)知,v n (x)⇉0 (n →∞), 由狄利克雷判别法知∑+n221-n )x (1x (-1)在R 上一致收敛. (3)∀|x|>r>1, 有n x n <n r n ,记u n =nrn,则n 1n u u +=rn 1n +→r 1<1 (n →∞), ∴∑n r n 收敛,∴∑n xn在|x|>r>1上一致收敛. (4)∀x ∈[0,1], 有2nnx ≤2n 1, 又∑2n 1收敛,∴∑2n n x 在[0,1]上一致收敛.(5)方法一:记u n (x)=(-1)n-1, v n (x)=nx 12+,则对任意的x ∈R ,有 |∑=n1k k (x )u |≤1, (n=1,2,…),即{u n (x)}的部分和函数列在R 上有界;又{v n (x)}单调减,且由0<nx 12+≤n 1→0(n →∞)知,v n (x)⇉0 (n →∞), 由狄利克雷判别法知∑+n x (-1)21-n 在R 上一致收敛.方法二:|∑++=+pn 1n k 21-k kx (-1)|≤1n x 12+++p n x 12++≤n 2.∀ε>0,只要取N=⎥⎦⎤⎢⎣⎡ε2,则当n>N 及任意自然数p ,就有|∑++=+pn 1n k 21-k kx (-1)|<ε,由柯西准则知,∑+n x (-1)21-n 在R 上一致收敛.方法三:由莱布尼兹判别法知,对R 上的任意一点x ,∑+nx (-1)21-n 收敛.又)x (R sup lim n R x ∞n ∈+→=1n 1lim ∞n ++→=0,∴∑+nx (-1)21-n 在R 上一致收敛.(6)当x ≠0时,该函数项级数的部分和函数S n (x)=x 2+22x 1x ++…+1-n 22)x (1x +=1+x 2-1-n 2)x (11+→1+x 2=S(x) (n →∞), ∴Rx sup ∈|R n (x)|=1-n 2Rx )x (11sup+∈=1→/0 (n →∞), ∴∑+1-n 22)x (1x 在R 上不一致收敛.4、设函数项级数∑)x (u n 在D 上一致收敛于S(x),函数g(x)在D 上有界. 证明:级数∑)x (g(x)u n 在D 上一致收敛于g(x)S(x).证:可设|g(x)|≤M ,x ∈D. ∵∑)x (u n 在D 上一致收敛于S(x), ∴∀ε>0,∃N>0,当n>N 时,对一切x ∈D ,都有|∑=n1k k (x )u -S(x)|<Mε. ∴|∑=n 1k k (x )g(x )u - g(x)S(x)|=|g(x)|·|∑=n1k k (x )u -S(x)|< ε. 得证!5、若区间I 上,对任何正整数n ,|u n (x)|≤v n (x),证明: 当∑)x (v n 在I 上一致收敛时,级数∑)x (u n 在I 上也一致收敛. 证:∵|u n (x)|≤v n (x),∴∑=+p1k k n |(x )u |≤∑=+p1k k n (x )v .又∑)x (v n 在I 上一致收敛,∴∀ε>0,∃N>0,当n>N 时, 对一切x ∈I 和一切自然数p ,都有|∑=+p1k k n (x )v |<ε.∴|∑=+p 1k k n (x )u |≤∑=+p 1k k n |(x )u |≤∑=+p 1k k n (x )v ≤|∑=+p1k k n (x )v |<ε,得证!6、设u n (x)(n=1,2,…)是[a,b]上的单调函数,证明:若∑)a (u n 与∑)b (u n 都绝对收敛,则∑)x (u n 在[a,b]绝对且一致收敛. 证:∵u n (x)(n=1,2,…)在[a,b]上单调,∴|u n (x)|≤|u n (a)|+|u n (b)|, 又∑|)a (u |n 与∑|)b (u |n 都收敛,∴正项级数|))b (u ||)a (u (|n n +∑收敛; 根据优级数判别法知,∑)x (u n 在[a,b]绝对且一致收敛.7、证明:{f n } 区间I 上内闭一致收敛于f 的充要条件是:对任意x 0∈I ,存在x 0的邻域U(x 0),使{f n }在U(x 0)∩I 上一致收敛于f. 证: [必要性]设{f n } 区间I 上内闭一致收敛于f ,对任意x 0∈I ,任意邻域U(x 0)∩I ⊂I ,根据内闭一致收敛的定义, {f n }在U(x 0)∩I 上一致收敛于f.[充分性]设任意x 0∈I ,存在x 0的一个邻域U(x 0), 使得{f n }在U(x 0)∩I 上一致收敛于f ,即 对一切x ∈I ,{f n }一致收敛于f ,∴{f n }在I 上一致收敛,从而内闭一致收敛.8、在[0,1]上定义函数列u n (x)=⎪⎩⎪⎨⎧≠=n 1x 0n 1x n1,,,证明: 级数∑)x (u n 在[0,1]上一致收敛,但它不存在优级数.证:∵|∑=+p1k k n (x )u |=⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧+=⋯+=+==+⋯++++=++⋯+⋯+=+⋯++++=+⋯+++其它点p n 1x 2n 1x 1n 1x 00000p n 1p n 102n 102n 101n 1001n 1,,,,,∴当0≤x<1时,恒有|∑=+p1k k n (x )u |<n1,于是∀ε>0,取N=[ε1],则当n>N 时,对一切x ∈[0,1]和一切自然数p ,都有|∑=+p1k k n (x )u |<ε,∴级数∑)x (u n 在[0,1]上一致收敛.若∑)x (u n 在[0,1]上存在优级数∑n M ,取x=n1,则M n ≥|u n (x)|=|u n (n 1)|=n 1>0. 由∑n M 收敛知∑n1收敛,不合理! ∴∑)x (u n 不存在优级数.9、讨论下列函数列或函数项级数在所示区间D 上的一致连续性: (1)∑∞=++2n 2222]1)-(n )[x n (x 2n -1, D=[-1,1];(2)∑nn3x sin 2, D=R +; (3)∑++)nx 1](1)x -(n [1x 222, D=R +;(4)∑nx n , D=[-1,0]; (5)∑++1n 2x (-1)12n n, D=(-1,1);(6)∑∞=1n n sinnx, D=(0,2π).解:(1)∵∑++=++pn 1n k 2222]1)-(k )[x k (x 2k -1=2222n x 1p)(n x 1+-++<22n x 1+≤2n 1; ∴∀ε>0,取N=[ε1]+1,当n>N 时,对一切x ∈[-1,1]和一切自然数p ,都有∑++=++pn 1n k 2222]1)-(k )[x k (x 2k-1<ε,∴原级数在[-1,1]上一致收敛. (2)对任意自然数n ,取x n =n 32π⋅∈R +,有|n n 3x sin 2|=2n →/ 0 (n →∞), ∵原级数在R +上不一致收敛. (3)S n (x)=∑=⎥⎦⎤⎢⎣⎡+-+n1k 22kx 111)x-(k 11=1-2nx 11+→1(n →∞),+∈R x sup |S n (x)-1|=≥2n 1n 11⎪⎭⎫ ⎝⎛+=21(n=1,2,…);∵原级数在R +上不一致收敛.(4)记u n (x)=(-1)n, v n (x)=n(-x)n,则对任意的x ∈[-1,0],有|∑=n1k k (x )u |≤1, (n=1,2,…),即{u n (x)}的部分和函数列在[-1,0]上有界;又{v n (x)}单调减,且由0<n(-x)n≤n1→0(n →∞)知,v n (x)⇉0 (n →∞),由狄利克雷判别法知原级数在[-1,0]上一致收敛.(5)记u n (x)=(-1)n, v n (x)=1n 2x 12n ++,则对任意的x ∈(-1,1),有|∑=n1k k (x )u |≤1, (n=1,2,…),即{u n (x)}的部分和函数列在(-1,1)上有界;又{v n (x)}单调减,且由0<1n 2x 12n ++≤1n 21+→0(n →∞)知,v n (x)⇉0 (n →∞),由狄利克雷判别法知原级数在(-1,1)上一致收敛. (6)取ε0=21sin 31,对任意自然数N ,存在n=N ,p=N+1,x 0=1)2(N 1+∈(0,2π),使∑++=pn 1n k 0k )(x u =∑++=+1N 21N k 1)2(N k sin k1>∑++=1N 21N k 2k 1sin >21sin 21>ε0.∴原级数在(0,2π)上不一致收敛.10、证明:级数∑∞=-0n n n )x 1(x (-1)在[0,1]上绝对收敛并一致收敛,但由其各项绝对值组成的级数在[0,1]上却不一致收敛. 证:易见|R n |≤(1-x)x n+1. 又由((1-x)x n+1)’=(n+1)(1-x)x n -x n+1=(n+1)x n -(n+2)x n+1=(n+2)x n (2n 1n ++-x),知 当x=2n 1n ++时,|R n |≤(1-2n 1n ++)1n 2n 1n +⎪⎭⎫ ⎝⎛++=1n 2n 1n 2n 1+⎪⎭⎫ ⎝⎛+++<2n 1+, ∴[0,1]x ∞n sup lim ∈+→|R n |≤2n 1lim ∞n ++→=0. ∴原级数在[0,1]上一致收敛. 对级数∑∞=-0n nn)x 1(x (-1)各项绝对值组成的级数∑∞=-0n n )x 1(x ,∵)x 1(x lim n ∞n -+→=0, x ∈[0,1],∴原级数在[0,1]上绝对收敛.又∞n lim +→S n (x)=∞n lim +→(1-x)∑=nk k x =∞n lim +→(1-x n )=⎩⎨⎧=<≤1x 01x 01,,,可见[0,1]x ∞n sup lim ∈+→|R n |=1→/ 0 (n →∞),得证.11、设f 为定义在区间(a,b)内的任一函数,记f n (x)=n[nf(x)], n=1,2,…, 证明:函数列{f n }在(a,b)内一致收敛于f. 证:由|R n |=|n [nf(x)]-f(x)|=n nf(x )-[nf(x )]≤n11→0 (n →∞),得证!12、设{u n (x)}为[a,b]上正的递减且收敛于零的函数列,每一个u n (x)都是[a,b]上的单调函数. 证明:级数u 1(x)-u 2(x)+u 3(x)-u 4(x)+…在[a,b]上不仅收敛,而且一致收敛. 证:根据莱布尼茨判别法,该级数在[a,b]上收敛. 记v n (x)=(-1)n-1,则对任意的x ∈[a,b],有|∑=n1k k (x )v |≤1, (n=1,2,…),即{v n (x)}的部分和函数列在[a,b]上有界;又u n (x)在[a,b]上单调,且u n (a),u n (b)都收敛于零,∴0<u n (x)<u n (a)+u n (b)→0(n →∞),∴u n (x)⇉0 (n →∞), 由狄利克雷判别法知该级数在[a,b]上一致收敛.13、证明:若{f n (x)}在区间I 上一致收敛于0,则存在子列{in f },使得∑=n1k n if在I 上一致收敛.证:∵{f n (x)}在区间I 上一致收敛于0,∴对任意自然数i ,总存在自然数n i ,使得∀x ∈I ,有|i n f |<2i 1,又级数∑=n1k 2i1收敛,由魏尔斯特拉斯判别法知,∑=n1k n if 在I 上一致收敛.。

(整理)一致收敛性判别及应用.

(整理)一致收敛性判别及应用.

(整理)⼀致收敛性判别及应⽤.⼀致收敛性判别及应⽤摘要:函数是⾼等数学中重要的内容之⼀,但是函数项级数与函数列的⼀致收敛性问题往往是初学者学习函数的最⼤障碍,本⽂对函数项级数、函数列的⼀致收敛性的常⽤判别⽅法进⾏简单分析并阐述其应⽤。

关键词:函数项级数函数列⼀致收敛判别法及应⽤设(){}n x ?为定义在区间Z 上的函数序列,假如那么就存在x 1,x 2∈Z ,当|x 1-x 2|<,对于⼀切n 有|()()12n -n X X ??|<,则称之为函数序列(){}n x ?在区间Z 上等度连续。

假设函数列{}n ?与函数?定义在区间Z 上,假如对于任意给的正数|()()n x -x ??|<以上情况则称之为{}n ?在区间Z 上⼀致收敛于?。

⼀、函数列及其⼀致收敛性假设1?,2?,,n ?,是⼀列定义在同⼀数集Z 上的函数,那么则称为定义在Z 上的函数列,可以表达为:{}n ?或n ?,n=1,2,。

(1)以x 0∈Z 带⼊以上数列,可以得出以下数列:(2)假如数列(2)收敛,那么则称为数列(1)在点0X 收敛,x 0则是函数列(1)的收敛点,当函数列(1)在数集D Z 上每⼀个收敛点都出现收敛时,则称(1)在数集D 上收敛,这时候D 上⾯的每⼀个点x 都有相应的数列(){}n x ?的⼀个极限值与之相对应,根据这个对应法则所确定的D 上的函数,则称为函数列(1)的极限函数假如将此极限函数记作为?,那么则有:或者是:(),x ∈D例 1 设,n=1,2,,为定义在(-,。

证明:设>0,当>0时,由于有:||=|n x |,只要N (=,当n >(||=|x n |<|x|N =.当x=0,x=1,对于任何正整数n ,都存在||=0<,||=0<.以上结果证明了{}n ?在(]-1,1上收敛。

例2 定义在()-∞∞,上的函数列,n=1,2,。

由于对于任何的实数x ,都存在sin nx n ≤1n,因此,对于任意>0,只要符合n >N=,就存在sin nx-0n<所以,函数列{}sin nx/n 的收敛域为()-∞∞,。

第十三章 函数列与函数项级数

第十三章 函数列与函数项级数
函数列(1)不一致收敛于的f充要条件:
存在某个正整数 0对任何正数N ,都有
D上某一点x'与自然数n' N , 使得
fn' (x') f (x') 0
定理13.1: 函数列{ fn}在数集D上一致收敛的充要条件
是:对任给正数,总存在正数N , 使得当n, m N时,对一切x D,都有 fn (x) fm (x)
第十三章 函数列与函数项级数
∮1 一致收敛性
㈠ 函数列及其一致收敛性
函数列: f1, f2.., fn ,..(1) 是一列定义在同一数集E上的函数,则称之为 定义在E上的函数列。
设x0 E,以x0代入(1)可得函数列: f1( x0 ), f2 ( x0 ),..fn ( x0 ),..(2)
fn (0) f (0) 0 , fn (1) f (1) 0 ,
即证得{ fn}在(1,1]上收敛,且有如题所示 的极限函数。
例2: 定义在(,)上的函数列fn (x) sin nx / n, n 1,2,...由. 于对任何实数x,都有sin nx / n
1/ n,故对任给的 0,只要n N 1/ , 就有sin nx / n 0 .
证明:必要性
设fn (x) f (x)(n ), x D,即对给任何 0
存在正数N,使得当n N时,对一切x D都
有 fn (x) f (x) / 2,于是当n, m N时,就可
得 fn (x) fm (x) fn (x) f (x) f (x) fm (x)
fn(x) f (x) f (x) fm(x) / 2 / 2
..
xn
..的部分和函数为Sn
(x)
1 xn 1 x

13_1 一致收敛性

13_1 一致收敛性
lim
n x ( , )
su p
sin n x n
sin n x n
0 lim
0
1 n
n
0,
所 以 在 ( , )上 ,
( n ).
前页 后页 返回
例3 定义在[0,1]上的函数列
2 2n x, 2 fn ( x ) 2n 2n x, 0, 0 x 1 2n 1 n


2


2
.
充分性 若条件 (4) 成立, 由数列收敛的柯西准则,
{ f n } 在D上任一点都收敛,
记其极限函数为
f ( x ),
前页 后页 返回
x D . 现 固 定 ( 4 )式 中 的 n , 让 m , 于 是 当 n N 时 , 对 一 切 x D 都 有 | f n ( x ) f ( x ) | . fn ( x ) f ( x )
f n ( x ) f ( x )( n ) , x D .
由定义看到, 一致收敛就是对 D 上任何一点, 函数列 趋于极限函数的速度是 “一致” 的. 这种一致性体现
前页 后页 返回
为: 与 相对应的 N 仅与 有关, 而与 x 在 D 上的
取值无关, 因而把这个对所有 x 都适用的 N 写作
x0 称
为函数列(1)的收敛点. 如果数列(2)发散, 则称函数 列(1)在点 x 0 发散. 当函数列(1)在数集 D E 上每一 点都收敛时, 就称(1)在数集 D 上收敛. 这时 D 上每 一点
x
都有数列 {
f n ( x )} 的一个极限值与之相对应
,

函数列一致收敛性的充要条件

函数列一致收敛性的充要条件

函数列一致收敛性的充要条件例1 设() ,2,1,==n x x f n n 为定义在()∞∞-,上的函数列,证明它的收敛域是(—1,1],且有极限函数()⎩⎨⎧=<=.1,1,1,0x x x f (3) 证 任给0>ε (不妨设1<ε),当10<<x 时,由于()(),nn x x f x f =- 只要取(),ln ln ,xx N εε=当()x N n ,ε>时,就有 ()().ε<-x f x f n当0=x 和1=x 时,则对任何正整数n ,都有()()()().011,000εε<=-<=-f f f f n n这就证得{}n f 在(]1,1-上收敛,且有(3)式所表示的极限函数. 当1>x 时,则有(),∞→+∞→n x n ,当1-=x 时,对应的数列为.,1,1,1,1 --它显然是发散的.所以函数列{}n x叫区间(]1,1-外都是发散的. 例 2 定义在()+∞∞-,上的函数列().2,1,sin ==n nnx x f n 由于对任何实数x ,都有 ,1sin nn nx ≤ 故对任给的,0>ε,只要,1ε=>N n 就有.0sin ε<-nnx 所以函数列⎭⎬⎫⎩⎨⎧n nx sin 的收敛域为无限区间()+∞∞-,,极限函数().0=x f 对于函数列,我们不仅要讨论它在哪些点上收敛,而更重要的是要研究极限函数所具有的解析性质.比如能否由函数列每项的连续性,判断出极限函数的连续性.又如极限函数的导数或积分,是否分别是函数列每项导数或积分的极限.对这些问题的讨论,只要求函数列在数集D 上的收敛是不够的,必须对它在D 上的收敛性提出更高的要求才行,这就是以下所要讨论的一致收敛性问题.定义1 设函数列{}n f 与函数f 定义在同一数集D 上,若对任给的正数ε,总存在某一正整数N ,使得当n>N 时,对一切,D x ∈都有()(),ε<-x f x f n则称函数列{}n f 在D 上一致收敛于f ,记作()()x f x f n →→ (),∞→n .D x ∈ 由定义看到,如果函数列{}n f 在D 上一致收敛,那么对于所给的ε,不管D 上哪一点x ,总存在公共的()εN (即N 的选取仅与ε有关,与x 的取值无关),只要n>N ,都有()().ε<-x f x f n由此看到函数列{}n f 在D 上一致收敛,必在D 上每一点都收敛.反之,在D 上每一点都收敛的函数列{}n f ,在D 上不一定一致收敛.如上述例2中函数列⎭⎬⎫⎩⎨⎧n nx sin ,对任给正数ε,不管x 取()∞∞+-,上什么值,都可取ε1=N (它仅依赖于ε的值),当n>N 时,恒有,sin ε<n nx 所以函数列⎭⎬⎫⎩⎨⎧n nx sin ,在()+∞∞-,上一致收敛于函数()0=x f .函数列{}n f 在D 上不一致收敛于函数f ,是指它们不满足定义1的条件.但也可以根据定义1对不一致收敛给予正面的陈述.即函数列(1)在D 上不一致收敛于f 的充要条件是:存在某正数o ε,对任何正数N ,都有D 上某一点'x 与正整数N n >'(注意:'x 与'n 的取值与N 有关),使得()().''ε≥-x f x f n从前面例1中知道,函数列{}nx 在(0,1)上收敛于()0=x f 。

函数列的收敛与一致收敛

函数列的收敛与一致收敛

函数列的收敛与一致收敛函数列收敛与一致收敛理论是数学分析中的重要概念之一,同时也是教与学的难点。

但是学生往往对定义理解不透彻,生搬硬套“?着-N”语言,加之各种版本的数学分析教科书将函数列的收敛问题与函数项级数的收敛问题放在一起,使得教与学更为困难。

本文从实数数列的收敛问题中引出函数列的收敛,进而引出一致收敛,逐步推进,使得这部分内容更易学习并掌握。

实数序列的收敛问题是定义在实数集上的,其实函数序列的收敛性也是如此,函数序列的收敛性反映的是函数列在点集上的局部性质,也就是说,函数列在点集上的收敛性就是实数序列的收敛问题。

下面就从这个角度讨论函数列的收敛与一致收敛问题。

一、收敛的几个定义实数列的收敛性定义定义1:设xn是实数序列,a是实数,若对任意给定的正数?着,都存在相应的正整数N,使得当nN时,恒有xn-a?着,则称实数列xn收敛于a,记为limxn→∞=a,或简记为xn→a(n→∞)。

几何上,xn→a的意思是:数轴上跳动的点xn与定点a之间的距离,随着n的无限变大而无限变小,无论?着是怎样小的数,做点a的?着邻域(a-?着,a+?着),跳动的点迟早有一次将跳进去,再也跳不出来,这个次数便可作为N。

但是例如序列:(1+ ),(1+ )2,(1+ )3,…,(1+ )n,…有极限ex,这个序列的特点是每一项都是函数,极限也是x的函数,这样构成的序列就不是实数序列了,而是函数序列,可以记为:fn(x),收敛定义如下:定义2:设函数列fn(x)每一项fn(x)及函数f(x)均在数集E上有定义,若?坌x∈E,函数列fn(x)收敛于f(x),则称函数列fn(x)在E上收敛于f(x),并称函数f(x)是函数列fn(x)的极限函数。

定义2也可以用“?着-N”语言描述:设函数列fn(x)每一项fn (x)及函数f(x)均在数集E上有定义,对?坌x∈E,?坌?着0存在正数N,使得当nN时,总有fn(x)-f(x)?着,则称函数列fn(x)在E上收敛于f(x),并称函数f(x)是函数列fn(x)的极限函数,记为limf(x)→∞=f(x)。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

对每一个x I, 0,N N ,n N , 有 | fn ( x) f ( x) | .
例1 设fn ( x) xn , 证明其在(0,1)收敛.
证:x (0,1),有 lim xn 0, n 0,要使不等式
| fn ( x) f ( x) || xn 0 | xn
成立, 解得n ln , 取N [ ln ]
lim{sup |
n xI
fn(x)
f
( x) |} 0.
函数列及其一致收敛性
§9.2 函数项级数
证:必要性 函数列{ fn ( x)}在区间I一致收敛于极限函数f ( x)
即 0, N N ,n N ,x I , 有 | fn ( x) f ( x) |
sup | fn( x) f ( x) | .
的所有曲线 y fn( x) (n N ),
都落在曲线 y f ( x) 与
y f (x) 所夹的带状区域内. O
y f (x) y f (x)
a
y f (x) y fn(x)
bx
函数列及其一致收敛性
§9.2 函数项级数
定理1 (函数列的柯西一致收敛准则) 函数列{ fn( x)}
2) 0
1 3
0, N
N , n0
N , x0
(
1
)
1 n0
3
[0,1), 有
|
fn0 ( x0 )
f
(
x0
)
|
[(
1 3
)
1 n0
]n0
1 3
0.
即函数列{ xn }在区间[0,1)非一致收敛.
函数列 fn( x) 一致收敛于 f ( x) 的 y
几何意义:
0, N N , 对于序号大于N
函数列及其一致收敛性
§9.2 函数项级数
函数列{ fn( x)}在区间I非一致收敛于极限函数f ( x)
lim{sup |
n xI
fn(x)
f
( x) |}
0.
方法:先求极限函数,一般将| fn ( x) f ( x) | 放大,即放大到
只含有n且容易求极限的时候,当不容易放大时,可转而
求最大值.
例4、判别下列函数列在区间[0,1]的一致收敛性:
nx
1){
}
1n x
解:x [0,1],有 lim nx x
n 1 n x 即极限函数f ( x) x.
函数列及其一致收敛性
§9.2 函数项级数
|
fn( x)
f ( x) || nx x | 1n x
x(1 x) 1n x
2 1 n
n0 N , x0 I , 有 | fn0 ( x0 ) f ( x0 ) | 0 .
函数列及其一致收敛性
§9.2 函数项级数
例3 证明:函数列 fn( x) xn
1)在区间[0, ](0 1)一致收敛;
2)在区间[0,1)非一致收敛.
证:x [0,1),有 lim xn 0, n 即函数列 {xn}在[0,1)的极限函数f ( x) 0. 1) 0,x [0, ], 要使不等式
在区间I一致收敛 0, N N ,n N ,p N ,x I ,
有 | fn p( x) fn( x) | .
注 柯西准则的特点是不需要知道极限函数是什么, 只是根据函数列本身的特性来判断函数列是否一致 收敛.
定理2 函数列{ fn ( x)}在区间I一致收敛于极限函数f ( x)
xI
即lim{sup | n xI
fn(x)
f ( x) |} 0.
充分性
lim{sup |
n xI
fn(x)
f
( x) |}
0.
即 0, N N ,n N ,x I , 有 sup| fn( x) f ( x) |
xI
x I , 有 | fn( x) f ( x) |
函数列{ fn ( x)}在区间I一致收敛于极限函数f ( x)
f1( x0 ), f2( x0 ), , fn( x0 ), . 若此数列收敛,则称{ fn ( x)}在x0收敛,x0为{ fn( x)}的 收敛点; 若此数列发散,则称{ fn ( x)}在x0发散,x0为{ fn( x)}的 发散点;
若{ fn( x)}在数集E上每一点都收敛,则称{ fn( x)}在数集E上收敛.
设函数列{ fn ( x)}在区间I收敛于极限函数f ( x),若 0,
N N ,n N ,x I , 有 | fn ( x) f ( x) | .
则称函数列{ fn ( x)}在区间I一致收敛于极限函数f ( x).
{ fn ( x)}在区间I非一致收敛于极限函数f ( x) 0 0,N N ,
§9.2 函数项级数
一、函数列及其一致收敛性
1、定义: 设f1( x), f2( x), , fn( x), 是一列定义在同一数集 E 上的函数,称为定义在E上的函数列.
记为{ fn( x)} 或 fn( x), n 1, 2, . 2、函数列的收敛
设x0 E,以x 0代入{ fn ( x)}得数列:
ln x
ln x
函数列及其一致收敛性
§9.2 函数项级数
例2
设fn ( x)
1 n
, 证明其在(0,1)收敛. x
证:x (0,1),有 lim 1 0,
n n x
0, 要使不等式
|
fn( x)
f ( x) ||
1 n
x
0|
1 n
x
1 n
成立, 解得n 1 , 取N [ 1 ]
4、函数列的一致收敛
sup |
x[ 0 ,1]
fn(x)
f
( x) |
2. 1n
显然,lim{ sup | n x[0,1]fn(x) f
( x) |}
0.
函数列及其一致收敛性
§9.2 函数项级数
使{ fn( x)}收敛的全体收敛点的集合,称为{ fn( x)}的收敛域.
3、函数列的极限
若对每一个x
I, 有 lim n
fn(
x)
f ( x),则称f ( x)为{ fn( x)}的
极限函数,或称{ fn ( x)}在区间I收敛于f ( x).
{ fn ( x)}在区间I收敛于f ( x)
| fn ( x) f ( x) || xn 0 | xn n
成立,
解 得n
ln
, 取N
ln
[
]
ln
ln
于 是 ,
0, N
ln
[
ln
]
N ,n
N ,x [0,
],有 |
xn
0 |
.
即函数列{ xn }在区间[0, ](0 1)一致收敛.
函数列及其一致收敛性
§9.2 函数项级数
相关文档
最新文档