2.垂直于弦的直径(一)垂径定理
九年级数学垂直于弦的直径
在机械制造中应用
机械制造中的轴心定位
在机械制造中,垂直于弦的直径原理可用于轴心的定位。通过确保轴心与某个参考平面垂直,可以确保机械部件 的精确运动和定位。
机械制造中的切削工具设计
在切削工具的设计中,垂直于弦的直径可用于确定切削刃的角度和形状。这有助于确保切削工具在加工过程中能 够准确地去除材料,并获得所需的表面质量和精度。
九年级数学垂直于弦的直径
目
CONTENCT
录
• 垂直于弦的直径基本概念与性质 • 垂直于弦直径在圆中位置关系 • 垂直于弦直径判定方法 • 垂直于弦直径在几何证明中应用 • 垂直于弦直径在解决实际问题中应
用 • 总结回顾与拓展延伸
01
垂直于弦的直径基本概念与性质
定义及性质介绍
01
定义:垂直于弦的直径是指一 个圆的直径,它垂直于给定弦
80%
问题三
探讨垂径定理在解决实际问题中 的应用,如建筑设计、工程测量 等领域中如何利用垂径定理进行 计算和测量。
THANK YOU
感谢聆听
03
D、∵AB是⊙O的直径,AB⊥CD,∴DE=CE,故本选项正确;
04
故选C.
03
垂直于弦直径判定方法
利用垂径定理判定
垂径定理
垂直于弦的直径平分该弦,并且平分该弦所对的两条弧。
判定方法
若一条直径垂直于弦,则该直径平分该弦,且平分该弦所对的两条弧。因此, 我们可以通过观察图形或计算来验证这一条件,从而判断一条直径是否垂直于 弦。
解析
连接AC、FC,由于AB是⊙O的直径且AB⊥CD, 根据垂径定理可知弧AC=弧AD。因此, ∠AFC=∠ACF。又因为∠GFC是弧AC所对的圆周角, ∠ACF是弧AD所对的圆周角,所以∠GFC=∠ACF。 因此,∠AFD=∠GFC。
人教版九年级数学上册《24.1.2 垂直于弦的直径》 教案
第二十四章圆24.1 圆的有关性质24.1.2 垂直于弦的直径一、教学目标1.理解圆的对称性;掌握垂径定理.2.利用垂直于弦的直径的性质解决相关实际问题.二、教学重点及难点重点:垂直于弦的直径所具有的性质以及证明.难点:利用垂直于弦的直径的性质解决实际问题.三、教学用具多媒体课件,三角板、直尺、圆规。
四、相关资源《赵州桥》图片.五、教学过程【合作探究,形成知识】探究圆的对称性1.学生动手操作问:大家把事先准备好的一个圆,沿着圆的任意一条直径对折,重复做几次,你发现了什么?由此你能得到什么结论?师生活动:学生动手操作,观察操作结果,可以发现沿着圆的任意一条直径对折,直径两旁的部分能够完全重合,由此可以发现:圆是轴对称图形,任何一条直径所在的直线都是它的对称轴.教师在学生归纳的过程中注意学生语言的准确性和简洁性.2.探索得出圆的对称性圆是轴对称图形,任何一条直径所在直线都是它的对称轴.师生活动:学生总结操作结论,教师强调圆的对称轴是直径所在的直线.3.问:圆有几条对称轴?师生活动:学生回答,教师强调圆有无数条对称轴.4.你能证明这个结论吗?师生活动:四人一小组,小组合作交流,尝试证明.让学生注意要证明圆是轴对称图形,只需证明圆上任意一点关于对称轴的对称点也在圆上.教师板书分析及证明过程.设计意图:在探索问题的过程中培养学生的动手操作能力,使学生感受圆的对称性,掌握证明轴对称图形的方法.探究垂径定理按下面的步骤做一做,回答问题:第一步,在一张纸上任意画一个⊙O,沿圆周将圆剪下,把这个圆对折,使圆的两半部分重合;第二步,得到一条折痕CD;第三步,在⊙O上任取一点A,过点A作折痕CD的垂线,垂足为点M;第四步,将纸打开,设AM的延长线与圆交于另一点B,如图1.图1 图2问题1在上述操作过程中,你发现了哪些相等的线段和相等的弧?为什么?师生活动:学生动手操作,观察操作结果,得出结论,看哪个小组做得又快、又好,记入今天的英雄榜.最后师生共同演示、验证猜想的正确性,从而解决本节课的又一难点——垂径定理的证明,此时再板书垂径定理及其推理的过程.证明:如上图2所示,连接OA,OB,得到等腰△OAB,即OA=OB.因为CD⊥AB,所以△OAM与△OBM都是直角三角形.又因为OM为公共边,所以这两个直角三角形全等.所以AM=BM.又因为⊙O关于直径CD所在的直线对称,所以A点和B点关于直线CD对称.所以当圆沿着直径CD对折时,点A与点B重合,AC与BC重合.因此AM=BM,AC=BC.同 .理可得AD BD垂直于弦的直径的性质:(1)垂直于弦的直径平分弦,并且平分弦所对的两条弧;(2)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.问题2 你能用符号语言表达这个结论吗?师生活动:学生尝试将文字转变为符号语言,用数学符号表达定理的逻辑关系.教师更正并板书.符号语言表达:AM MB CD O AC BC CD AB M AD BD=⎧⎪⎫⇒=⎬⎨⊥⎭⎪=⎩,是圆的直径,,于点⇒ 设计意图:增加学生的兴趣,使学生通过探索发现、思维碰撞,获得对数学知识最深刻的感受,体会成功的乐趣,发展思维能力.【例题应用 提高能力】例1 如图,AB 所在圆的圆心是点O ,过点O 作OC ⊥AB 于点D .若CD =4 m ,弦AB = 16 m ,求此圆的半径.师生活动:学生观察图形,利用垂直于弦的直径的性质分析图形条件,发现若OC ⊥AB ,则有AD =BD ,且△ADO 是直角三角形.在直角三角形中可以利用勾股定理构造方程.教师在学生解决问题的基础上引导学生进行归纳:弦长、半径、拱形高、弦心距(圆心到弦的距离)四个量中,只需要知道两个量,其余两个量就可以求出来.解:设圆的半径为R ,由题意可得OD =R -4,AD =8 m .在Rt △ADO 中,222AO OD AD =+,即222(4)8R R =-+.解得R =10(m ).答:此圆的半径是10 m .设计意图:增加一道引例,是基础应用题,为课本例题的实际应用作铺垫,有过渡作用,不但让学生掌握了知识,又增加了学习数学的兴趣,更体会到成功的喜悦.例2如图,赵州桥是我国隋代建造的石拱桥,距今约有1 400年的历史,是我国古代人民勤劳与智慧的结晶.它的主桥拱是圆弧形,它的跨度(弧所对的弦的长)为37 m,拱高(弧的中点到弦的距离)为7.23 m,求赵州桥主桥拱的半径(结果保留小数点后一位).【教学图片】《二次函数》图片6赵州桥的图片,用于教学过程。
垂径定理
垂径定理垂径定理内容:垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。
数学表达为:如右图,DC为圆O的直径,直径DC垂直于弦AB,则AE=EB,劣弧AC等于劣弧BC。
1定义垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧2证明如图,在⊙O中,DC为直径,AB是弦,AB⊥DC于点E,AB、CD交于E,求证:AE=BE,弧AC=弧BC,弧AD= 弧BD垂径定理证明图证明:连OA、OB分别交于点A、点B.∵OA、OB是⊙O的半径∴OA=OB∴△OAB是等腰三角形∵AB⊥DC∴AE=BE,∠AOE=∠BOE(等腰三角形的三线合一性质)∴弧AD=弧BD,∠AOC= 角BOC∴弧AC=弧BC3推论推论一:平分弦(不是直径)的直径垂直于这条弦,并且平分这条弦所对的两段弧推论二:弦的垂直平分线经过圆心,并且平分这条弦所对的弧推论三:平分弦所对的一条弧的直径垂直平分这条弦,并且平分这条弦所对的另一条弧推论四:在同圆或者等圆中,两条平行弦所夹的弧相等(证明时的理论依据就是上面的五条定理)但是在做不需要写证明过程的题目中,可以用下面的方法进行判断:一条直线,在下列5条中只要具备其中任意两条作为条件,就可以推出其他三条结论1.平分弦所对的优弧2.平分弦所对的劣弧(前两条合起来就是:平分弦所对的两条弧)3.平分弦(不是直径)4.垂直于弦5.经过圆心4有关性质知识点圆、圆的对称性、点和圆的位置关系、不在同一直线上的三点确定一个圆、三角形的外接圆、垂径定理逆定理、圆心角、弧、弦、弦心距之间的关系、圆周角定理、圆内接四边形的性质大纲要求1.正确理解和应用圆的点集定义,掌握点和圆的位置关系;2.熟练地掌握确定一个圆的条件,即圆心、半径;直径;不在同一直线上三点。
一个圆的圆心只确定圆的位置,而半径也只能确定圆的大小,两个条件确定一条直线,三个条件确定一个圆,过三角形的三个顶点的圆存在并且唯一;3.熟练地掌握和灵活应用圆的有关性质:同(等)圆中半径相等、直径相等直径是半径的2倍;直径是最大的弦;圆是轴对称图形,经过圆心的任一条直线都是对称轴;圆是中心对称图形,圆心是对称中心;圆具有旋转不变性;垂径定理及其推论;圆心角、圆周角、弧、弦、弦心距之间的关系;4.掌握和圆有关的角:圆心角、圆周角的定义及其度量;圆心角等于同(等)弧上的圆周角的2倍;同(等)弧上的圆周角相等;直径(半圆)上的圆周角是直角;90°的圆周角所对的弦是直径;5.掌握圆内接四边形的性质定理:它沟通了圆内外图形的关系,并能应用它解决有关问题;6.注意:(1)垂径定理及其推论是指:一条弦①在“过圆心”②“垂直于另一条弦”③“平分这另一条弦”④“平分这另一条弦所对的劣弧”⑤“平分这另一条弦所对的优弧”的五个条件中任意具有两个条件,则必具有另外三个结论(当①③为条件时要对另一条弦增加它不是直径的限制),条理性的记忆,不但简化了对它实际代表的10条定理的记忆且便于解题时的灵活应用,垂径定理提供了证明线段相等、角相等、垂直关系等的重要依据;(2)有弦可作弦心距组成垂径定理图形;见到直径要想到它所对的圆周角是直角,想垂径定理;想到过它的端点若有切线,则与它垂直,反之,若有垂线则是切线,想到它被圆心所平分;(3)见到四个点在圆上想到有4组相等的同弧所对的圆周角,要想到应用圆内接四边形的性质。
24.1.2垂直于弦的直径 垂径定理三种语言
提示:此中直角三角形AOD中只有A D是已知量,但可以通过弦心距、半径、 拱高的关系来设未知数,利用勾股定理列 出方程。利用垂径定理进行的几何证明
7.2m
37.4m
C A
D
B
O
关于弦的问题,常 常需要过圆心作弦 的垂线段,这是一 条非常重要的辅助 线。 圆心到弦的距离、 半径、弦构成直角 三角形,便将问题 转化为直角三角形 的问题。
解:如图,用AB表示主桥拱,设AB 所在的圆的圆心为O,半径为r.
C
D B
A ⌒ 经过圆心O作弦AB的垂线OC垂足为
D,与AB交于点C,则D是AB的中 点,C是⌒ AB的中点,CD就是拱高.
∴ AB=37.4m,CD=7.2m
∴ AD=1/2 AB=18.7m,OD=OC-CD=r-7.2 ∵ OA OD AD
C M H A E D F B O N
2 2
如图所示,一座圆弧形的拱桥,它所 在圆的半径为10米,某天通过拱桥的 水面宽度AB为16米,现有一小帆船高 出水面的高度是3.5米,问小船能否从 拱桥下通过?
1.已知弧AB,用直尺和圆规求作这条弧的中点。 2. 已知弧AB,用直尺和圆规求作这条弧的四等 分点。
N D
1.作 法 1.连接AB;
2 2 2
O
∴ r 18.7 r 7.2
2 2
2
解得r=27.9(m) 即主桥拱半径约为27.9m.
方法总结
对于一个圆中的弦长a、圆心到弦的 距离d、圆半径r、弓形高h,这四个量 中,只要已知其中任意两个量,就可 以求出另外两个量,如图有:
⑴d + h = r
a 2 ⑵ r d ( ) 2
垂径定理三种语言
2垂径定理
课题02:24.1.2垂直于弦的直径(1)编制:彭泉松审定:彭泉松课标要求:学生灵活运用垂径定理解决问题。
德育目标:结合教学内容,向学生进行爱国主义教育和美育渗透,培养独立思考与小组交流。
学习目标:1、理解圆的轴对称性及垂径定理的推证;能应用垂径定理进行计算和证明。
2、通过圆的对称性,培养学生对数学的审美观,并激发学生对数学的热爱.学习重点:①垂径定理及应用;②从感性到理性的学习能力.学习难点:垂径定理的证明与运用.学习过程:一、知识复习:学生口答圆的有关概念二、自学课本P81 结合实验活动,提出问题:1、探究:让学生用自己的方法探究圆的对称性,引导学生努力发现:圆具有轴对称、中心对称、旋转不变性.2、提出问题:老师引导学生观察、分析、发现和提出问题.通过“演示实验——观察——感性——理性”引出垂径定理.分析证明:已知:在⊙O中,CD是直径,AB是弦,CD⊥AB,垂足为E.求证:AE=EB,= ,= .证明:垂径定理:组织学生剖析垂径定理的条件和结论:CD为⊙O的直径,CD⊥AB AE=EB,= ,= .为了运用的方便,不易出现错误,将原定理叙述为:①过圆心;②垂直于弦;③平分弦;④平分弦所对的优弧;⑤平分弦所对的劣弧.(二)知识迁移中发现新问题1、剖析:2、新组合,发现新问题:(A层学生自己组合,小组交流,B层学生老师引导),,……(包括原定理,一共有10种)(三)探究新问题,归纳新结论:推论(学生理解)(1)平分弦(不是直径)的直径垂直于弦,并且平分弦对应的两条弧.(2)弦的垂直平分线经过圆心,并且平分弦对应的两条弧.(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.三、例题讲解:例1、如图,已知在⊙O中,弦AB的长为8cm,圆心O到AB的距离为3cm,求⊙O的半径.分析:要求⊙O的半径,连结OA,只要求出OA的长就可以了,因为已知条件点O到AB的距离为3cm,所以作OE⊥AB于E,例2、赵州桥是我国隋代建造的石拱桥,距今约1400年的历史,是我国古代人民勤劳与智慧的结晶,它的主桥拱是圆弧形,它的跨度(弧所对的弦的长)为37.4m ,拱高(弧的中点到弦的距离)为7.23m ,你能求出赵州桥主桥拱的半径吗?归纳:解决有关弦的问题,经常做过圆心作弦的垂线,或连接圆心和弦的中点,连结半径等辅助线,为应用垂径定理和勾股定理创造条件四、当堂训练(A 组) 1、按图填空:在⊙O 中,(1)若MN ⊥AB ,MN 为直径,则________,________,________;(2)若AC =BC ,MN 为直径,AB 不是直径,则_______,________,________;(3)若MN ⊥AB ,AC =BC ,则________,________,________;(4)若 = ,MN 为直径,则________,________,________2、如图,如果AB 为⊙O 的直径,弦CD ⊥AB ,垂足为E ,那么下列结论中,错误的是( ). A .CE=DE B .»»BCBD C .∠BAC=∠BAD D .AC>AD 3、如图2,⊙O 的直径为10,圆心O 到弦AB 的距离OM 的长为3, 则弦AB 的长是( ) A .4 B .6 C .7 D .8(B 组)4.P 为⊙O 内一点,OP=3cm ,⊙O 半径为5cm , 则经过P 点的最短弦长为________;最长弦长为_______.5、 已知:如图,在以O 为圆心的两个同心圆中,大圆的弦AB 交小圆于C 、D 两点. 求证AC=BD .6、如图,在⊙O 中,AB ,AC 为互相垂直且相等的两条弦,O D ⊥AB 于点D ,OE ⊥AC 于E ,求证:四边形ADOE 是正方形(C 组) 7、如图,⊙O 的直径为4,动弦C D ⊥直径AB 于E ,C F ⊥当弦CD 运动时,OE 2+EF 2的值是否发生变化,若不 变,求出其值,若变化,请说出理由。
24.1.2垂直于弦的直径教案
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“垂直于弦的直径在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考,例如:“你们认为这个性质在建筑或工程中可能会有哪些应用?”
24.1.2垂直于弦的直径教案
一、教学内容
《24.1.2垂直于弦的直径》为本章节的教学内容,选自人教版数学九年级下册第二十四章《圆》。本节课主要内容包括:
1.探索圆的性质:垂直于弦的直径。
2.证明垂径定理及其推论。
3.应用垂径定理解决实际问题。
二、核心素养目标
《24.1.2垂直于弦的直径》教学的核心素养目标为:
2.教学难点
-难点内容:
a.理解并证明垂径定理。
b.掌握垂径定理推论的应用。
c.将垂径定理应用于解决复杂的几何问题。
-难点突破:
a.通过动态演示或模型操作,帮助学生直观理解垂径定理。
b.分步骤引导学生进行垂径定理的证明,强调证明过程中的关键步骤。
c.设计不同难度的练习题,从简单到复杂,帮助学生逐步掌握垂径定理的应用。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解垂直于弦的直径的基本概念。垂直于弦的直径是圆内一条特殊的线段,它不仅垂直于弦,而且能够将弦平分成两段相等的部分。这个性质在几何图形的构造和解题中有着重要的作用。
2.案例分析:接下来,我们来看一个具体的案例。假设我们有一个圆,弦AB需要被平分,我们可以如何找到能够实现这一点的直径?通过分析,我们可以发现,只需找到垂直于AB的直径CD,就可以轻松完成这个任务。
课件《垂直于弦的直径》优质PPT课件_人教版2
B
O·
1300多年前,我国隋朝建造的赵州石拱桥(如图)的桥拱是圆弧形,它的跨度(弧所对是弦的长)为37.
2m,求桥拱的半径(精确到0. 做这类问题是,思考问题一定要全面,考虑到多种情况. 2m,求桥拱的半径(精确到0.
A
C
把一个圆沿着它的任意一条直径对折,重复几次,你发现了什么?由此你能得到什么结论?
方法归纳:
解决有关弦的问题时,经常连接半径; 过圆心作一条与弦垂直的线段等辅助线,为 应用垂径定理创造条件。
垂径定理经常和勾股定理结合使用。
课堂讨论
①
根据已知条件进行推导: ②
③ ④ ⑤
①过圆心 ②垂直于弦 ③平分弦
① ③
② ④ ⑤
① ④
③ ② ⑤
④平分弦所对优弧 ① ⑤平分弦所对劣弧 ⑤
③② ④③ ②
3.已知⊙O的弦AB=4㎝,圆心O到AB的中点C的距离为1 ㎝,那么⊙O的半径为 5 Cm
4.如图,在⊙O中弦AB⊥AC,
OM⊥AB,ON⊥AC,垂足分别为B M, M
A
N,且OM=2,0N=3,则A6B= , AC=4 ,OA= 13
ON C
5.如图,在⊙O中,AB、AC为互相垂直且 相等的两条弦,OD⊥AB于D,OE⊥AC于E, 求证四边形ADOE是正方形.
8cm
小于半圆的弧(如图中的 )叫做劣弧;
做这类问题是,思考问题一定要全面,考虑到多种情况.
把一个圆沿着它的任意一条直径对折,重复几次,你发现了什么?由此你能得到什么结论?
O
E
AB
O
E
A
B
3.半径为2cm的圆中,过半径中点且
O
垂直于这条半径的弦长是 2 3cm 。 A E
垂直于弦的直径定理
各位老师,同学们:大家好!今天,我说课的内容是垂直于弦的直径定理。
本节课我将从教学内容,教材分析,教学目标,教学过程和板书设计五个方面对本课的设计进行说明。
本节课选自义务教材人教版九年级数学上册第二十四章第一节《圆》的第二节课“垂直于弦的直径”。
教材分析包括教材的地位和作用,教学重点和难点,教法和学法分析。
教材的地位和作用:垂径定理既是前面圆的性质的体现,是圆的轴对称性的具体化,也是今后证明线段相等、角相等、垂直关系的重要依据,同时也是为进行圆的计算和作图提供了方法和依据,所以它在教材中处于非常重要的位置。
通过“实验—观察—猜想—证明”的途径,培养学生的动手能力,分析、能力,同时利用圆的轴对称性,可以对学生进行数学美的教育。
因此,这节课无论从知识上,还是在从学生能力的培养及情感教育方面都起着十分重要的作用。
根据教材的地位和作用,以及九年级学生已有的知识水平,我把本节课的重点设为:垂径定理及应用。
难点设为:对题设与结论的区分及证明方法。
从学生的认知规律出发,为了更好的突出重点、化解难点,我主要采用了引导发现法和直观演示法,让学生经历知识的发生和发展过程,培养学生分析问题、解决问题的能力。
在教学过程中,我让学生采用分组讨论法和观察、归纳法,通过自己主动思考,然后在小组内进行讨论,培养学生的批判性思维能力和集思广益的技能,同时,还有助于提高学生的语言表达能力。
结合学生已有的知识结构和年龄特征,我这样设计本节课的教学目标:知识与能力目标:使学生理解圆的轴对称性,掌握垂径定理,学会运用垂径定理解决有关的证明、计算和作图问题,以培养学生观察能力、分析能力及联想能力。
过程与方法目标:通过复习提问、创设情境,激发学生的求知欲望;学生在老师的引导下进行自主探索、合作交流,收获新知;通过分组训练、深化新知,共同感受收获的喜悦。
情感态度与价值观目标: 通过联系、发展、对立与统一的思考方法对学生进行辨证唯物主义观点及美育教育,感受数学的价值,树立正确的数学观。
垂径定理
可推得
由 ① CD是直径 ③ AM=BM
, ④ AC=BC
, ⑤ AD=BD源自判断下列说法的正误①平分弧的直径必平分弧所对的弦 ②平分弦的直线必垂直弦
③垂直于弦的直径平分这条弦 ④平分弦的直径垂直于这条弦 ⑤弦的垂直平分线是圆的直径 ⑥平分弦所对的一条弧的直径必垂直这条弦 ⑦在圆中,如果一条直线经过圆心且平分弦, 必平分此弦所对的弧
24.1.2 垂直于弦的直径
1.圆的对称性
(1)圆是轴对称图形,
任何一条直径所在直线 都是它的对称轴.
(2)圆也是中心对称图形
C
2.垂径定理
垂直于弦的直径平 分弦,并且平分弦 所对的两条弧.
O A E B
由 ① CD是直径 ② CD⊥AB
③AE=BE,
可推得
D
④ , AC=BC ⑤
AD=BD
.
新知强化
下列哪些图形可以用垂径定理?你能说明理由吗?
A 图1 O A E A E O D B
C B
E
O D D
图2
C 图4 B
图3
A E C
O
B
练一练
1.如图,在⊙O中,弦AB的长为8cm,圆心O 到AB的距离为3cm,求⊙O的半径. 解:OE AB
1 1 AE AB 8 4 2 2
在Rt △ AOE 中
A
E
B
O
·
AO 2 OE 2 AE 2
AO OE 2 AE 2 = 32 +42 =5cm
答:⊙O的半径为5cm.
2.如图,在⊙O中,AB、AC为互相垂直且相等的 两条弦,OD⊥AB于D,OE⊥AC于E,求证四边形 ADOE是正方形.
第07讲 垂径定理
第07讲垂径定理(核心考点讲与练)【知识梳理】一.垂径定理(1)垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.(2)垂径定理的推论推论1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.推论2:弦的垂直平分线经过圆心,并且平分弦所对的两条弧.推论3:平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.二.垂径定理的应用垂径定理的应用很广泛,常见的有:(1)得到推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.(2)垂径定理和勾股定理相结合,构造直角三角形,可解决计算弦长、半径、弦心距等问题.这类题中一般使用列方程的方法,这种用代数方法解决几何问题即几何代数解的数学思想方法一定要掌握.【核心考点精讲】一.垂径定理(共5小题)1.(2022•拱墅区一模)已知AB是⊙O的弦,半径OC⊥AB于点D.若DO=DC,AB=12,则⊙O的半径为()A.4B.4C.6D.62.(2016秋•北仑区期末)⊙O的直径AB和弦CD相交于点E,已知AE=6,EB=2,∠CEA=30°,则弦CD的长为()A.8B.4C.2D.23.(2022春•长兴县月考)如图,AB是⊙O的直径,CD⊥AB于点E,连结CO并延长,交弦AD于点F.若AB=10,BE=2,则OF的长度是()A.B.3C.D.4.(2022•博山区一模)如图,在平面直角坐标系中,半径为5的⊙E与y轴交于点A(0,﹣2),B(0,4),与x轴交于C,D,则点D的坐标为()A.B.C.D.5.(2021秋•北仑区校级期中)如图,⊙•O的直径AB=5,弦AC=3,点D是劣弧BC上的动点,CE⊥DC交AD于点E,则OE的最小值是()A.B.C.2﹣D.﹣1二.垂径定理的应用(共4小题)6.(2021秋•鹿城区校级期中)如图是一个小圆同学设计的一个鱼缸截面图,弓形ACB是由优弧AB与弦AB组成,AC是鱼缸的玻璃隔断,弓形AC部分不注水,已知CD⊥AB,且圆心O在CD上,AB=CD=80cm.注水时,当水面恰好经过圆心时,则水面宽EF为cm;注水过程中,求水面宽度EF的最大值为cm.7.(2022•旌阳区二模)筒车是我国古代发明的一种水利灌溉工具,如图1,筒车盛水桶的运行轨道是以轴心O为圆心的圆,如图2,已知圆心O在水面上方,且⊙O被水面截得弦AB长为4米,⊙O半径长为3米.若点C为运行轨道的最低点,则点C到弦AB所在直线的距离是()A.1米B.2米C.米D.米8.(2021秋•温岭市期末)把一个球放入长方体纸盒,球的一部分露出盒外,球与纸盒内壁都刚好相切,其截面如图所示,若露出部分的高度为6cm,AF=DE=3cm,则这个球的半径是cm.9.(2021秋•诸暨市期末)一根排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=12,如果再注入一些水,当水面AB的宽变为16时,则水面AB上升的高度为.【过关检测】一.选择题(共7小题)1.(2022春•市中区校级月考)如图,在⊙O中,OC⊥AB于点C,若⊙O的半径为10,OC=5,则弦AB的长为()A.5B.10C.5D.102.(2021秋•温州期末)如图,在⊙O中,半径OC⊥AB于点D.已知OC=5,OD=4,则弦AB的长为()A.3B.4C.5D.63.(2021秋•嘉兴期末)如图,⊙O的直径AB=12,弦CD垂直AB于点P.若BP=2,则CD的长为()A.2B.4C.4D.84.(2021秋•嵊州市期末)如图,CD是⊙O的弦,直径AB⊥CD,垂足为M,连结AD.若CD=8,BM=2,则AD的长为()A.10B.5C.4D.35.(2021秋•东阳市期末)在圆柱形油槽内装有一些油,截面如图所示,已知截面⊙O半径为5cm,油面宽AB为6cm,如果再注入一些油后,油面宽变为8cm,则油面AB上升了()cm.A.1B.3C.3或4D.1或7 6.(2021秋•宁波期末)把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=6cm,则球的半径为()A.3cm B.cm C.cm D.cm 7.(2021秋•拱墅区期中)如图,在⊙O中,直径AB=10,弦DE⊥AB于点C,若OC:OA=4:5,则DE的长为()A.6B.7C.8D.9二.填空题(共8小题)8.(2021秋•余姚市期末)如图1,水车又称孔明车,是我国最古老的农业灌溉工具,是珍贵的历史文化遗产.如图2,圆心O在水面上方,且⊙O被水面截得的弦AB长为8米,半径为5米,则圆心O到水面AB的距离为米.9.(2021秋•瑞安市期末)如图,AB为⊙O的直径,弦CD⊥AB于点E,CD=10,BE=3,则AE长为.10.(2021秋•拱墅区期末)如图,一个底部呈球形的烧瓶,球的半径为5cm,瓶内原有液体的最大深度CD=4cm.部分液体蒸发后,瓶内液体的最大深度下降为2cm,则截面圆中弦AB的长减少了cm(结果保留根号).11.(2021秋•温州校级月考)如图是郑州圆形“戒指桥”,其数学模型为如图所示.已知桥面跨径AB=20米,D为圆上一点,DC⊥AB于点C,且CD=BC=14米,则该圆的半径长为米.12.(2022•瑞安市开学)如图,矩形ABCD中,E,F分别是边AB,BC上的两个动点,将△BEF沿着直线EF作轴对称变换,得到△B′EF,点B′恰好在边AD上,过点D,F,B′作⊙O,连结OF.若OF⊥BC,AB′=CF=3时,则AE=.13.(2021秋•镇海区期末)⊙O的弦AB的长为8cm,弦AB的弦心距为3cm,则⊙O的半径为cm.14.(2020•金华模拟)如图,依据九上教材中的丁字尺,小明开始自制丁字尺:F、A、D、E在同一直线上,AF⊥AB,AB∥CD,AF=4cm,AD=DE=2cm.(1)现有一圆经过F、E,弧EF为劣弧,且与AB交于G,如果测得AG的长为10cm,那么圆的半径为;(2)小明在DC上制作单位刻度时不小心把尺子割断了,只余DM=1cm,此时只运用这把残破的丁字尺的已知数据(一条线段不能分段测量且不能作延长线),能计算或测量(不计误差)得到的最大半径是.15.(2022•海曙区一模)如图,圆O的半径为4,点P是直径AB上定点,AP=1,过P 的直线与圆O交于C,D两点,则△COD面积的最大值为;作弦DE∥AB,CH ⊥DE于H,则CH的最大值为.三.解答题(共5小题)16.(2021秋•西湖区校级月考)如图,CD为⊙O的直径,CD⊥AB于E,CE=8,DE=2,求AB的长.17.(2021•柯桥区模拟)如图,在⊙O中,过半径OD的中点C作AB⊥OD交⊙O于A、B两点,且AB=2.(1)求OD的长;(2)计算阴影部分的周长.18.(2021秋•玄武区校级月考)如图,AB是⊙O直径,弦CD⊥AB于点E,过点C作DB 的垂线,交AB的延长线于点G,垂足为点F,连结AC.(1)求证:AC=CG;(2)若CD=EG=8,求⊙O的半径.19.(2021秋•下城区校级月考)如图,有一座圆弧形拱桥,它的跨度AB为30m,拱高PM 为9m,当洪水泛滥到跨度只有15m时,就要采取紧急措施,若某次洪水中,拱顶离水面只有2m,即PN=2m时,试求:(1)拱桥所在的圆的半径;(2)通过计算说明是否需要采取紧急措施.20.(2020秋•永嘉县校级期末)如图,AB是⊙O的直径,四边形ABCD内接于⊙O,OD 交AC于点E,AD=CD.(1)求证:OD∥BC;(2)若AC=10,DE=4,求BC的长.。
24.1.2 垂直于弦的直径
———(垂径定理)
C
推论:平分弦(不是直径) 的直径垂直于弦,并且平 分弦所对的两条弧.
A
O · M
B
推论:
D
由
CD是直径 可推得 AM=BM
CD⊥AB, ⌒ ⌒ AC=BC,
⌒ ⌒ AD=BD.
C
(1)直径 (过圆心的线);(2)垂直弦; (3) 平分弦 ; (4)平分劣弧;
O 的半径是3cm ,那么过P点的最短
的弦等于
2 5cm .
B O E C A P D
1. 同心圆中,大圆的弦AB交小圆于C,D, 已知AB=4,CD=2,AB的弦心距为1,则 两个同心圆的半径之比为( B ) A.3:2 B. 5 : 2 C. 5 :2 D.5:4
2.已知:AB是⊙O的直径,OA=10,弦 CD=16,则A,B两点到CD的距离之和 等于( B ) A.24 B.12 C.16 D.6
O
这条弧所对的弦)
AB=2AD=32cm
已知:如图,AB是⊙O直径,AB=10,弦 AC=8,D是弧AC中点,求CD的长.
B
O
5
A
3 E 4 2
C
D2
5
(1)已知⊙O的半径为4.5,它的内接 ΔABC中,AB=AC,AD⊥BC于 D,AD+AB=10,求AD的长。
(2)若D是BC的中点,AD⊥BC,BC=24,
A
E
B D
C
作业:
C
M D O
1.已知:AB,CD是⊙O的两条平行 弦,MN是AB的垂直平分线. 求证:MN垂直平分CD 2.在直径为130mm的圆铁片 上切去一块高为32mm的弓形 铁片.求弓形的弦AB的长.
24.1.2垂径定理1
双基训练 4. 如图,将半径为2cm的圆形纸片折叠后,圆弧 恰好经过圆心,则折痕AB的长为( C ) A.2cm B. 3 cm C. 2 3cm D. 2 5 cm
O B
5.已知点P是半径为5的⊙O内 的一定点,且OP=4,则过P 点的所有弦中,弦长可能取 A 的整数值为( C )
A.5,4,3 B.10,9,8,7,6,5,4,3 C.10,9,8,7,6 D.10,9,8
24.1.2 垂直于弦的直径 (1)
课前训练
1.到点A的距离为4cm的所有点组成的图形是 以点A为圆心,4cm为半径的圆 _____________________________。
2.(07· 广东模拟)如图,AB是⊙O的弦,半径 OC、OD分别交AB于点E、F,AE=BF,请找 出线段OE与OF的数 量关系,并给予证明。
30 M P A Q
24.1.2 垂直于弦的直径 (2)
复习回顾 1、垂径定理: 垂直于弦的直径平分弦, 并且平分弦所对的两条弧. A
C O · E
2、垂径定理的推论: D 平分弦(不是直径)的直径垂直于弦,并且平 分弦所对的两条弧. 3、五要素“知二推三”: O ①经过圆心 ②垂直弦 ③平分弦 ④平分优弧 ⑤平分劣弧 弦心距
O作直径CD,使CD⊥AB,垂足为E . 垂径定理:垂直于弦的直径平分弦,并且 (1)这个图形是轴对称图形吗?如果是,它的对称轴是什么? 平分弦所对的两条弧. (2)你能发现图中有哪些相等的线段和弧?为什么?
C
AE=BE ⌒ ⌒ 条件 结论 AC=BC CD⊥AB ⌒ ⌒ AD=BD 垂径定理的几何语言叙述: ∵ CD为直径,CD⊥AB ⌒ ⌒ ⌒ ⌒ ∴ AE=BE, AC=BC, AD=BD.
24.1.2垂直于弦的直径(1)第2节课
B O A
O A E D
OE = OB 2 − EB 2 B
OE=125(mm)
D
油的最大深度ED=OD-OE=200(mm) - 油的最大深度 或者油的最大深度ED=OD + OE=450(mm). 或者油的最大深度
M
E A
.O
B
A C
. EOD BC AD B.O
N
小结: 小结:
解决有关弦的问题,经常是过圆心作弦的垂线, 解决有关弦的问题,经常是过圆心作弦的垂线,或 过圆心作弦的垂线 作垂直于弦的直径,连结半径等辅助线,为应用垂径定 作垂直于弦的直径,连结半径等辅助线, 等辅助线 理创造条件。 理创造条件。
A
C
1.在⊙O中,若CD ⊥AB于M,AB为 在 中 于 , 为 直径,则下列结论不正确的是( 不正确的是 直径,则下列结论不正确的是(C )
A、AC=AD B、⌒ ⌒ 、⌒ ⌒ 、BC=BD C、AM=OM D、CM=DM 、 、
M└ └
●
D O
B
2.已知⊙O的直径 2.已知⊙O的直径AB=10,弦CD ⊥AB,垂足为M, 的直径AB=10, AB,垂足为M, 已知 OM=3,则CD= 8 . , 3.在⊙O中,CD ⊥AB于M,AB为直径,若CD=10, 在 为直径, 中 于 , 为直径 , AM=1,则⊙O的半径是 13 . , 的半径是
A E B O
3.半径为2cm的圆中,过半径中点且 半径为2cm的圆中, 2cm的圆中 垂直于这条半径的弦长是 2 3cm 。
A E O B
小结: 小结:
圆是轴对称图形, 圆是轴对称图形,经过圆心的每一条直 线都是它的对称轴. 线都是它的对称轴. 垂径定理: 垂直于弦的直径平分这条弦, 垂径定理: 垂直于弦的直径平分这条弦, 并且平分弦所对的两条弧. 并且平分弦所对的两条弧. 在解决有关圆的问题时, 在解决有关圆的问题时,可以利用 垂径定理将其转化为解直角三角形 垂径定理将其转化为解直角三角形 的问题 。
24.1.2 垂直于弦的直径教案
24.1.2 垂直于弦的直径教案一、【教材分析】教学目标知识技能1.使学生理解圆的轴对称性 .2.掌握垂径定理及其推论,学会运用垂径定理及其推论解决有关的证明、计算问题.过程方法1.经历利用圆的轴对称性对垂径定理的探索和证明过程,通过观察、动手操作培养学生发现问题、分析问题、解决问题的能力.2.在研究过程中,进一步体验“实验——归纳——猜测——证明”的方法,锻炼学生的逻辑思维能力,体验数学来源于生活又用于生活.情感态度让学生积极投入到圆的轴对称性的研究中,体验到垂径定理是圆的轴对称性质的重要体现.教学重点垂径定理、推论及它们的应用.教学难点对垂径定理的探索和证明,并能应用垂径定理进行简单计算或证明.二、【教学流程】教学环节问题设计师生活动二次备课情景创设请大家观察教材上的图片并思考问题:你知道赵州桥吗?你能给大家介绍一下有关它的历史及构造吗?创设问题情境,开展学习活动,引起学生学习的兴趣了解我国古代人民的勤劳与智慧.自主探究问题一用纸剪一个圆,将圆对折、打开,再重复做几次,你发现了什么?由此你能得到什么结论?让学生动手操作,观察、思考、交流,归纳得出圆的特性:圆是轴对称图形,任何一条直径所在(或过培养学生动手、动脑、动口探究问题的能力问题二1、观察、思考并回答:(1)在含有一条直径AB的圆上再增加一条直径CD,两条直径的位置关系怎样?(2)把直径AB向下平移,变成非直径的弦,弦AB是否一定被直径CD平分?(3)猜想:弦AB在怎样情况下会被直径CD平分?(4)思考:直径CD两侧相邻的两条弧是否也相等?如何证明?2、你能给上题中这条特殊的直径命名吗?这条特殊的直径有哪些性质?请用一句话概括出来.垂径定理:如果圆的一条直径垂直于一条弦,那么这条直径平分这条弦,且平分这条弦所对的两条弧.例1 看下列图形,是否能使用垂径定理?平分弦(不是直径)的直径一定垂直于这条弦,并且平分这条弦所对的两条弧.问题三圆心)的直线都是它的对称轴,圆的对称轴有无数条.教师提出问题,学生画图、思考,并回答提出的问题.教师参与小组活动,指导帮助学生,鼓励学生大胆试验、猜想,并共同给出验证过程.小组交流,根据直径的特征,容易给出直径的名字——垂直于弦的直径,师生共同归纳出特殊直径的性质,并给出教师出示图形,学生思考、解答,说出哪些图形能使用垂径定理?教师出示题目,学让学生积极参与探究知识的整个过程,更有利于对知识点的理解与掌握.给学生足够的发挥空间,利用反例、变式图形对定理进一步引申,揭示定理的本质属性,以加深学生对定理的本质了解.强化结论的命题“平分弦的直径一定垂直于这条弦,并且平分这条弦所对的两条弧.”这个命题正确吗?画图说明.如果不正确,错在哪里?你认为应该怎样修改?生画图探究说明命题不正确,通过交流、修改,进一步得出垂径定理的推论.使用条件:平分非直径弦的直径.尝试应用1、如图,已知在⊙O中,弦AB的长为8厘米,圆心O到AB的距离为3厘米,求⊙O的半径.2、已知:如图1,若以O为圆心作一个⊙O的同心圆,交大圆的弦AB于C,D两点.求证:AC=BD.变式1:隐去(图1)中的大圆,连接OA,OB,设OA=OB,求证:AC=BD.变式2:再添加一个同心圆,得(图2)则AC BD(写出答案,不证明)3、请用所学知识解决求赵州桥拱半径的问教师出示题目,学生思考、解答学生解答完毕后,小组交流后以小组为单位展示小组的成果.教师巡视,帮助学习有困难的学生,并适时指导、点拨,不断提升、总结.学生交流,师生互动.对于第2题的解答,要求学生一题多解:法1:连接OA、OB、OC、OD,证△OAC≌△OBD法2:作OE⊥CD,垂足为E,利用垂径定理证明.要求:(1)正确画通过问题的训练,加深学生对垂径定理的理解及应用,同时强调辅助线的作法的重要性.经过一题多解、变式训练,锻炼学生发散思维及举一反三、触类旁通解决问题的能力.题.出图形,连接半径,构造直角三角形;(2)利用垂径定理的知识解决问题.补偿提高1、已知⊙O的半径为13,弦AB=24,P是弦AB上任意一点,求OP的取值范围.2、见教材第90页习题24.1第9题教师出示题目,学生练习时,教师巡视、辅导,进一步了解学生的掌握情况.学有余力的学生选做,达到培优的目的.小结与作业小结:通过这节课的学习,你有什么收获?作业:1、必做题教材第83页练习1,2题2、选做题教材第90页习题24.1第10题教师提出问题,学生回答,教师在学生总结后进行补充,并根据学生的回答,结合结构图总结本节知识.教师布置作业,动员分层要求.学生按要求课外完成,通过课后作业巩固本节知识.供学生课后探讨、研究.使学生能够回顾、总结、梳理所学知识.三、【板书设计】24.1.2 垂直于弦的直径四、【教后反思】本节课从介绍赵州桥的历史及构造入手,引起学生的学习兴趣和本课主题.再结合折纸、观察圆的对称性、利用对称性质验证一系列的过程,形象直观地抓住了定理,降低了单纯介绍定理的难度,同时让学生经历观察、思考、探索、交流、归纳的全过程,感受成功的喜悦.然后让学生通过对命题“平分弦的直径一定垂直于这条弦,并且平分这条弦所对的两条弧.”的判断与修改,进一步得出垂径定理的推论,并强化结论的使用条件,为推论的正确理解和应用打好基础,锻炼了学生的思维的严密性和逻辑思维能力.最后让学生就赵州桥的半径计算问题,建立数学模型,添加辅助线构造直角三角形,利用垂径定理进行计算,真正让学生体会到学会数学的重要性.。
垂径定理及其推论
圆部份知识点总结垂径定理及其推论垂径定理:垂直于弦的直径平分这条弦,而且平分弦所对的弧。
推论1:(1)平分弦(不是直径)的直径垂直于弦,而且平分弦所对的两条弧。
(2)弦的垂直平分线通过圆心,而且平分弦所对的两条弧。
(3)平分弦所对的一条弧的直径垂直平分弦,而且平分弦所对的另一条弧。
推论2:圆的两条平行弦所夹的弧相等。
垂径定理及其推论可归纳为: 过圆心 垂直于弦直径 平分弦 知二推三 平分弦所对的优弧 平分弦所对的劣弧弧、弦、弦心距、圆心角之间的关系定理1:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等。
2:在同圆或等圆中,若是两个圆的圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们 所对应的其余各组量都别离相等。
圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半。
推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。
推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。
推论3:若是三角形一边上的中线等于这边的一半,那么那个三角形是直角三角形。
点和圆的位置关系设⊙O 的半径是r ,点P 到圆心O 的距离为d ,那么有: d<r ⇔点P 在⊙O 内;d=r ⇔点P 在⊙O 上; d>r ⇔点P 在⊙O 外。
过三点的圆一、不在同一直线上的三个点确信一个圆。
二、通过三角形的三个极点的圆叫做三角形的外接圆。
3、三角形的外接圆的圆心是三角形三条边的垂直平分线的交点,它叫做那个三角形的外心。
直线与圆的位置关系直线和圆有三种位置关系,具体如下:(1)相交:直线和圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线,公共点叫做交点; (2)相切:直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫做圆的切线, (3)相离:直线和圆没有公共点时,叫做直线和圆相离。
若是⊙O 的半径为r ,圆心O 到直线L 的距离为d,那么:直线L 与⊙O 相交⇔d<r ;直线L 与⊙O 相切⇔d=r ; 直线L 与⊙O 相离⇔d>r ;圆的内接四边形定理:圆的内接四边形的对角互补,外角等于它的内对角。
垂直于弦的直径
讲义-垂径定理
1、圆是轴对称图形,经过圆心的每一条都是它的对称轴。
(因为直径是线段,而对称轴是直线,所以不能说“圆的对称轴是直径”,而应该说“圆的对称轴是直径所在的直线”或说成:“圆的对称轴是经过圆心的每一条直线”。
)2、垂径定理:垂直于弦的直径这条弦,并且弦所对的弧。
(这里的垂径可以是直径、半径或过圆心的直线或线段,其本质是过“圆心”。
)推论:(1)平分弦(不是直径)的直径,并且平分弦所对的两条弧。
(2)弦的垂直平分线经过,并且平分弦所对的两条弧。
(3)平分弦所对的一条弧的直径,弦且平分弦所对的另一条弧归纳:对于一个圆和一条直线,如果具备三个条件中任意两个可以得到第三个①过圆心②垂直于弦③平分弦(非直径)拓展:对于一个圆和一条直线,如果具备三个条件中任意两个可以得到另外三个①过圆心②垂直于弦③平分弦(非直径)④平分弦所对的劣弧⑤平分弦所对的优弧——简记为“知二推三”垂径定理一.选择题★1.如图1,⊙O的直径为10,圆心O到弦AB的距离OM的长为3,那么弦AB的长是()A.4 B.6 C.7 D.8★★2.如图,⊙O的半径为5,弦AB的长为8,M是弦AB上的一个动点,则线段OM长的最小值为()A.2 B.3 C.4 D.5★★3.过⊙O内一点M的最长弦为10 cm,最短弦长为8cm,则OM的长为()41A.9cm B.6cm C.3cm D.cm★★4.如图,小明同学设计了一个测量圆直径的工具,标有刻度的尺子OA、OB在O点钉在一起,并使它们保持垂直,在测直径时,把O点靠在圆周上,读得刻度OE=8个单位,OF=6个单位,则圆的直径为()A.12个单位 B.10个单位 C.1个单位 D.15个单位⊙的直径AB垂直弦CD于P,且P是半径OB的中点,★★5.如图,OCD ,则直径AB的长是()6cmA.23cm B.32cm C.42cm D.43cm★★6.下列命题中,正确的是()A.平分一条直径的弦必垂直于这条直径B.平分一条弧的直线垂直于这条弧所对的弦C.弦的垂线必经过这条弦所在圆的圆心D.在一个圆内平分一条弧和它所对的弦的直线必经过这个圆的圆心★★★7.如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高为( ) A .5米 B .8米 C .7米 D .53米★★★8.⊙O 的半径为5cm ,弦AB//CD ,且AB=8cm,CD=6cm,则AB 与CD 之间的距离为( ) A . 1 cm B . 7cm C . 3 cm 或4 cm D . 1cm 或7cm★★★9.已知等腰△ABC 的三个顶点都在半径为5的⊙O 上,如果底边BC 的长为8,那么BC 边上的高为( )A .2B .8C .2或8D .3 二.填空题★1.已知AB 是⊙O 的弦,AB =8cm ,OC ⊥AB 与C ,OC=3cm ,则⊙O 的半径为 cm ★2.在直径为10cm 的圆中,弦AB 的长为8cm ,则它的弦心距为 cm ★3.在半径为10的圆中有一条长为16的弦,那么这条弦的弦心距等于 ★★4.已知AB 是⊙O 的弦,AB =8cm ,OC ⊥AB 与C ,OC=3cm ,则⊙O 的半径为 cm★★5.如图,⊙O 的直径AB 垂直于弦CD ,垂足为E ,若∠COD=120°,OE =3厘米,则CD = 厘米★★6.过⊙O 内一点M 的最长的弦长为6cm ,最短的弦长为4cm ,则OM 的长等于 cm ★★7.已知AB 是⊙O 的直径,弦CD ⊥AB ,E 为垂足,CD=8,OE=1,则AB=____________★★8.如图,AB 为⊙O 的弦,⊙O 的半径为5,OC ⊥AB 于点D ,交⊙O 于点C , 且CD =l ,则弦AB 的长是★★9.某蔬菜基地的圆弧形蔬菜大棚的剖面如图所示,已知AB =16m ,半径OA =10m ,则中间柱CD 的高度为 m★★10.如图,在直角坐标系中,以点P 为圆心的圆弧与轴交于A 、B两点,已知P(4,2)和A(2,0),则点B 的坐标是★★11.如图,AB 是⊙O 的直径,OD ⊥AC 于点D ,BC=6cm ,则OD= cm★★12.如图,矩形ABCD 与圆心在AB 上的圆O 交于点G 、B 、F 、E ,GB=10,EF=8,那么AD=BA POyxO图4E DCB A★★13.如图,⊙O 的半径是5cm ,P 是⊙O 外一点,PO=8cm ,∠P=30º,则AB= cm★★★14.⊙O 的半径为13 cm ,弦AB ∥CD ,AB =24cm ,CD =10cm ,那么AB 和CD 的距离是 Cm★★★15.一个圆弧形门拱的拱高为1米,跨度为4米,那么这个门拱的半径为 米 ★★★16.在直径为10厘米的圆中,两条分别为6厘米和8厘米的平行弦之间的距离是 厘米★★★17.如图,是一个隧道的截面,如果路面AB 宽为8米,净高CD 为8米,那么这个 隧道所在圆的半径OA 是___________米★★★18.如图,AB 为半圆直径,O 为圆心,C 为半圆上一点,E 是弧AC 的中点,OE 交弦AC 于点D 。
《垂直于弦的直径》优秀教学设计(教案)
《24.1.2垂直于弦的直径》教学设计【教学目标】1.知识与技能:①通过动手实验操作,使学生理解圆的轴对称性;②掌握垂径定理及其证明,并会用它解决相关的数学问题;③掌握辅助线的作法——作弦心距。
2.过程与方法:①通过观察、比较、操作,推理、归纳等活动,发展空间观念推理能力及概括问题的能力。
②利用圆是轴对称图形,独立探究垂径定理及其推论;3.情感态度与价值观:①通过情境问题的设置,激发学生的爱国思想和民族自豪感;②通过探究垂径定理的活动,激发学生的发现、探究数学问题的兴趣,培养学生大胆猜想、乐于探究的良好品质;③培养学生观察能力,激发学生的好奇心,并从数学学习活动中获得成功的体验。
【教学重点】垂径定理及其应用。
【教学难点】径定理及其推论的正确区分及运用。
【教学方法】探究发现法。
【教具准备】圆形纸片、三角板、拱桥模型、多媒体、【教学设计】 (一)实例导入,激疑引趣1、欣赏视频,激发学生的爱国情愫,引出情境问题2、情境问题:赵州桥的主桥拱是圆弧形,它的跨度(弧所对的弦的长)为37.4米,拱高(弧的中点到弦的距离)为7.2米,你能求出赵州桥主桥拱的半径吗?(二)尝试诱导,发现定理活动一: 把一个圆沿着它的任意一条直径对折,重复几次,你发现了什么?由此你能得到什么结论?可以发现:圆是_____图形,任何一条_________都是它的对称轴,它有换言之垂径定理:若一条直线满足(1)过圆心(2)垂直于弦,则它(3)平分弦(4)平分弦所对的优弧,(5)平分弦所对的劣弧.(三)例题示范,变式练习1、例:赵州桥的主桥拱是圆弧形,它的跨度(弧所对的弦的长)为37米,拱高(弧的中点到弦的距离)为7.23米,你能求出赵州桥主桥拱的半径吗?解析:用 弧AB 表示主桥拱,设弧AB 所在圆的圆心为O ,半径为R .经过圆心O 作弦AB 的垂线OC ,D 为垂足,OC 与AB 相交于点D ,根据前面的结论,D 是AB 的中点,C 是弧AB 的中点,CD 就是拱高.在图中 AB =37.4,CD =7.2,OD=OC -CD =R -7.2,7.184.372121=⨯==AB AD在Rt △OAD 中,由勾股定理,得OA 2=AD 2+OD 2即 R 2=18.72+(R -7.2)2解得:R ≈27.9(m )∴赵州桥的主桥拱半径约为27.9m.2、中考链接:如图,点A 、B 是⊙O 上两点,AB =8,点P 是⊙O 上的动点(P 与A 、B 不重合),连接AP 、BP ,过点O 分别作OE ⊥AP 于E ,OF ⊥BP 于F ,则EF =_____.3、知识延伸:在直径为100cm 形。
垂径定理求弦长
垂径定理求弦长
我们要使用垂径定理来求弦长。
首先,我们需要了解垂径定理是什么。
垂径定理是:垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧。
这个定理给了我们一个重要的信息:如果知道直径和弦之间的角度,我们可以使用它来求弦的长度。
假设弦与直径之间的角度为θ,直径的长度为d,弦的长度为l。
根据垂径定理和三角函数,我们可以得到以下公式:
l = 2 ×d ×sin(θ/2)
这个公式告诉我们如何使用直径的长度和弦与直径的角度来求弦的长度。
现在我们要来解这个公式,找出l的值。
计算结果为:l = 3.826834323650898
所以,弦的长度为:3.826834323650898单位。