人教中考数学平行四边形-经典压轴题及答案
中考数学与平行四边形有关的压轴题含答案解析
本题考查四边形综合题、等腰直角三角形的判定和性质、等边三角形的判定和性质、等腰三角形的性质、锐角三角函数等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题.
7.(1)问题发现:
如图①,在等边三角形ABC中,点M为BC边上异于B、C的一点,以AM为边作等边三角形AMN,连接CN,NC与AB的位置关系为;
6.问题情境
在四边形ABCD中,BA=BC,DC⊥AC,过点D作DE∥AB交BC的延长线于点E,M是边AD的中点,连接MB,ME.
特例探究
(1)如图1,当∠ABC=90°时,写出线段MB与ME的数量关系,位置关系;
(2)如图2,当∠ABC=120°时,试探究线段MB与ME的数量关系,并证明你的结论;
∴∠DEC=90°,
∴∠DCE=∠CDE=45°,
∴EC=ED,∵MC=MD,
∴EM垂直平分线段CD,EM平分∠DEC,
∴∠MEC=45°,
∴△BME是等腰直角三角形,
∴BM=ME,BM⊥EM.
故答案为BM=ME,BM⊥EM.
(2)ME= MB.
证明如下:连接CM,如解图所示.
∵DC⊥AC,M是边AD的中点,
∴ AB•CF= AC•PE﹣ AB•PD.
∵AB=AC,
∴CF=PD﹣PE;
结论运用:过点E作EQ⊥BC,垂足为Q,如图④,
∵四边形ABCD是长方形,
∴AD=BC,∠C=∠ADC=90°.
∵AD=16,CF=6,
∴BF=BC﹣CF=AD﹣CF=5,
由折叠可得:DF=BF,∠BEF=∠DEF.
∴DF=5.
∴PG+PH的值为8;
迁移拓展:如图,
由题意得:A(0,8),B(6,0),C(﹣4,0)
中考数学复习《四边形》经典题型及测试题(含答案)
中考数学复习《四边形》经典题型及测试题(含答案)命题点分类集训命题点1 平行四边形的判定与计算【命题规律】1.考查内容:①平行四边形的性质及其相关计算;②平行四边形的判定.2.考查形式:①根据平行四边形的性质考查结论判断;②利用平行四边形的性质求角度、线段或面积;③添加条件使四边形为平行四边形.3.考查题型:性质在选择和填空题中考查居多,判定题近年来多在解答题中考查,有时会在二次函数压轴题中探究平行四边形的存在问题.【命题预测】平行四边形是四边形中主要的图形之一,性质与判定常常考查,是近年命题的重点. 1. 已知四边形ABCD 是平行四边形,对角线AC 、BD 交于点O ,E 是BC 的中点,以下说法错误的是( )A . OE =12DC B . OA =OC C . ∠BOE =∠OBA D . ∠OBE =∠OCE1. D第1题图 第2题图2. 如图,在▱ABCD 中,BM 是∠ABC 的平分线交CD 于点M ,且MC =2,▱ABCD 的周长是14,则DM 等于( )A . 1B . 2C . 3D . 42. C 【解析】∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠ABM =∠CMB ,∵BM 平分∠ABC ,∴∠ABM =∠CBM ,∴∠CBM =∠CMB ,∴CB =MC =2,∴AD =BC =2,∵▱ABCD 的周长是14,∴AB =CD =5,∴DM =DC -MC =3.3. 如图所示,四边形ABCD 的对角线相交于点O ,若AB ∥CD ,请添加一个条件________(写一个即可),使四边形ABCD 是平行四边形. 3. AD ∥BC (答案不唯一)第3题图 第4题图 第5题图 4. 如图,▱ABCD 中,AC =8,BD =6,AD =a ,则a 的取值范围是________.4. 1<a <7 【解析】如解图,对角线AC ,BD 相交于点O ,则OA =12AC =4,OD =12BD =3,在△OAD中,OA -OD <AD <OA +OD ,即1<a <7.5. 如图所示,在▱ABCD 中,∠C =40°,过点D 作AD 的垂线,交AB 于点E ,交CB 的延长线于点F ,则∠BEF 的度数为__________. 5. 50°6. 如图,将▱ABCD 的AD 边延长至点E ,使DE =12AD ,连接CE ,F 是BC 边的中点,连接FD.(1)求证:四边形CEDF 是平行四边形; (2)若AB =3,AD =4,∠A =60°,求CE 的长.6. (1)证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AD =BC , ∴DE ∥FC.∵F 是BC 的中点, ∴FC =12BC =12AD ,∵DE =12AD ,∴FC =DE ,∴四边形CEDF 是平行四边形. (2)解:如解图,过点D 作DH ⊥BC 于点H. 由(1)知四边形DECF 是平行四边形,∴DF =CE.∵四边形ABCD 是平行四边形,∠A =60°,AB =3,AD =4, ∴BC =4,CD =3,∠BCD =60°, 在Rt △DHC 中,HC =DC·cos ∠HCD =32,DH =DC ·sin ∠HCD =332,∵F 是BC 的中点, ∴FC =2,∴FH =FC -HC =2-32=12,在Rt △DFH 中,由勾股定理得DF =DH 2+FH 2=(332)2+(12)2=7,∴CE =7.命题点2 矩形的判定与计算【命题规律】考查形式:①利用矩形性质,结合勾股定理求线段长或面积;②矩形的判定,一般在解答题中考查,也常在二次函数综合题中考查矩形的存在性问题;③矩形折叠的相关计算与证明(见命题点6:图形折叠的相关计算).【命题预测】矩形性质将勾股定理、全等、相似等重要知识综合考查,是全国命题趋势之一. 7. 如图,在矩形ABCD 中(AD >AB),点E 是BC 上一点,且DE =DA ,AF ⊥DE ,垂足为点F.在下列结论中,不一定正确的是( )A . △AFD ≌△DCEB . AF =12AD C . AB =AF D . BE =AD -DF7. B 【解析】逐项分析如下表:选项逐项分析正误A∵四边形ABCD 是矩形,AF ⊥DE ,∴∠C =90°=∠AFD ,AD ∥BC ,∴∠ADF =∠CED ,∵AD =DE ,∴△AFD ≌△DCE (AAS)√B只有当∠ADF =30°时,才有AF =12AD 成立×C由△AFD ≌△DCE 可知,AF =DC ,∵矩形ABCD 中,AB =DC ,∴AB =AF√D∵△AFD ≌△DCE ,∴DF =CE ,∴BE =BC -CE =AD -DF √8. 已知矩形的对角线AC 与BD 相交于点O ,若AO =1,那么BD =________. 8. 2第7题图 第8题图 第9题图 9. 如图,矩形ABCD 的面积是15,边AB 的长比AD 的长大2,则AD 的长是________.9. 3 【解析】本题主要考查了一元二次方程的实际应用问题. 设AD =x ,由题知,AB =x +2,又∵矩形ABCD 的面积为15,则x(x +2)=15,得到x 2+2x -15=0,解得,x 1=-5(舍) , x 2=3,∴AD =3. 10. 如图所示,△ABC 中,D 是BC 边上一点,E 是AD 的中点,过点A 作BC 的平行线AF 交CE 的延长线于F ,且AF =BD ,连接BF. (1)求证:D 是BC 的中点;(2)若AB =AC ,试判断四边形AFBD 的形状,并证明你的结论.10. (1)证明:∵点E 是AD 的中点, ∴AE =DE. ∵AF ∥BC ,∴∠AFE =∠DCE ,∠FAE =∠CDE , ∴△EAF ≌△EDC(AAS ), ∴AF =DC. ∵AF =BD , ∴BD =DC ,即D 是BC 的中点.(2)解:四边形AFBD 是矩形.证明如下: ∵AF ∥BD ,AF =BD ,∴四边形AFBD 是平行四边形.∵AB =AC ,又由(1)可知D 是BC 的中点, ∴AD ⊥BC ,∴四边形AFBD 是矩形.11. 如图,点P 在矩形ABCD 的对角线AC 上,且不与点A ,C 重合,过点P 分别作边AB ,AD 的平行线,交两组对边于点E ,F 和点G ,H. (1)求证:△PHC≌△CFP;(2)证明四边形PEDH 和四边形PFBG 都是矩形,并直接写出它们面积之间的关系.11. (1)证明:∵四边形ABCD 是矩形,∴DC ∥AB ,AD ∥BC ,∠DCB =90°.∵EF ∥AB ,GH ∥AD ,∴EF ∥CD ,GH ∥BC , ∴四边形PFCH 是矩形, ∴∠PHC =∠PFC =90°,PH =CF ,HC =PF , ∴△PHC ≌△CFP(SAS ).(2)证明:由(1)知AB ∥EF ∥CD , AD ∥GH ∥BC ,∴四边形PEDH 和四边形PGBF 都是平行四边形, ∵四边形ABCD 是矩形, ∴∠D =∠B =90°,∴四边形PEDH 和四边形PGBF 都是矩形, ∴S 矩形PEDH =S 矩形PGBF .命题点3 菱形的判定与计算【命题规律】1.考查内容和形式:①根据菱形性质判断结论正误;②菱形的判定;③根据菱形的性质求角度、周长和面积;④与二次函数压轴题结合考查菱形的存在性问题.2.三大题型均会出现.【命题预测】菱形是特殊平行四边形中的重要内容,是中考常考知识,对菱形的性质与判定应做到牢固掌握.12. 如图,在▱ABCD 中,对角线AC 与BD 交于点O.若增加一个条件,使▱ABCD 成为菱形,下列给出的条件不正确...的是( ) A . AB =AD B . AC ⊥BD C . AC =BD D . ∠BAC =∠DAC12. C 【解析】邻边相等的平行四边形是菱形,所以A 正确;对角线互相垂直的平行四边形是菱形,所以B 正确;对角线相等的平行四边形是矩形,所以C 错误;由∠BAC =∠DAC 可得对角线是角平分线,所以D 正确.第12题图 第13题图13. 已知菱形OABC 在平面直角坐标系的位置如图所示,顶点A(5,0),OB =45,点P 是对角线OB 上的一个动点,D(0,1),当CP +DP 最短时,点P 的坐标为( )A . (0,0)B . (1,12) C . (65,35) D . (107,57)13. D 【解析】如解图,连接CA 、AD ,CA 与OB 相交于点E ,过点E 作EF ⊥OA ,交OA 于点F .由题知点C 关于OB 的对称点是点A ,AD 与BO 的交点即为点P .根据菱形的性质,菱形的对角线互相垂直且平分两组对角,可知△COE ∽△EOF ,∴CO EO =EO OF ,∵OC =OA =5,OE =OB 2=25,∴OF =OE 2CO =(25)25=4,根据勾股定理可得EF =OE 2-OF 2=(25)2-42=2,点E 的坐标为(4,2),易得直线OE 的函数解析式为y =12x ,直线AD 的函数解析式是y =-15x +1,联立得:⎩⎨⎧y =12x y =-15x +1,解得⎩⎨⎧x =107y =57,∴点P 的坐标为(107,57).14. 如图,在菱形ABCD 中,E 、F 分别是AD 、BD 的中点,若EF =2,则菱形ABCD 的周长为________. 14. 16 【解析】∵E ,F 分别是AD ,BD 的中点,∴AB =2EF =4,∴菱形ABCD 周长是4AB =16.第14题图 第15题图15. 如图,在菱形ABCD 中,AB =5,AC =8,则菱形的面积是________.15. 24 【解析】如解图,连接BD 交AC 于点O ,∵四边形ABCD 是菱形,AB =5,AC =8,且菱形的对角线互相垂直平分,∴OA =4,在Rt △AOB 中,由勾股定理得OB =3,∴BD =6,∴S 菱形ABCD =12AC ·BD=12×8×6=24. 16. 在菱形ABCD 中,∠A =30°,在同一平面内,以对角线BD 为底边作顶角为120°的等腰三角形BDE ,则∠EBC 的度数为________.16. 105°或45° 【解析】如解图,∵四边形ABCD 是菱形,∠A =30°,∴∠ABC =150°,∠ABD =∠DBC =75°,且顶角为120°的等腰三角形的底角是30°.分为以下两种情况:(1)当点E 在△ABD 内时,∠E 1BC =∠E 1BD +∠DBC =30°+75°=105°;(2)当点E 在△DBC 内时,∠E 2BC =∠DBC -∠E 2BD =75°-30°=45°.综上所述,∠EBC 的度数为105°或45°.17. 如图,在Rt △ABC 中,∠B =90°,点E 是AC 的中点,AC =2AB ,∠BAC 的平分线AD 交BC 于点D ,作AF∥BC,连接DE 并延长交AF 于点F ,连接FC. 求证:四边形ADCF 是菱形.17. 证明:∵∠B =90°,AC =2AB , ∴sin ∠ACB =12,∴∠ACB =30°, ∴∠CAB =60°, ∵AD 平分∠CAB ,∴∠CAD =12∠CAB =30°,∠CAD =∠ACD ,∴AD =CD , ∵AF ∥CD ,∴∠DCE =∠FAE ,∠AFE =∠CDE , 又∵AE =CE ,∴△AFE ≌△CDE(AAS ), ∴AF =CD , 又AF ∥CD ,∴四边形ADCF 是平行四边形, 又AD =CD ,∴四边形ADCF 是菱形.命题点4 正方形的判定与计算【命题规律】正方形的考查相对比较综合,难度较大,常在选择或填空的压轴题位置出现,考查知识点综合性强,涉及到正方形面积、边长和周长的计算.【命题预测】正方形综合了所有特殊四边形的性质,因此以正方形为背景出题更具有对知识的检验性,倍受命题人青睐,考生应加以关注.18. 如图,正方形ABCD 的面积为1,则以相邻两边中点连线EF 为边的正方形EFGH 的周长为( )A . 2B . 2 2C . 2+1D . 22+118. B 【解析】∵正方形ABCD 的面积为1,∴BC =CD =1,∵E 、F 是边的中点,∴CE =CF =12,∴EF=(12)2+(12)2=22,则正方形EFGH 的周长为4×22=2 2. 19. ▱ABCD 的对角线AC 与BD 相交于点O ,且AC⊥BD,请添加一个条件:________,使得▱ABCD 为正方形. 19. ∠BAD =90°(答案不唯一)20. 如图,在正方形ABCD 中,点E ,N ,P ,G 分别在边AB ,BC ,CD ,DA 上,点M ,F ,Q 都在对角线BD 上,且四边形MNPQ 和AEFG 均为正方形,则S 正方形MNPQS 正方形AEFG的值等于________.20. 89【解析】设BD =3a ,∠CDB =∠CBD =45°,且四边形PQMN 为正方形,∴DQ =PQ =QM =NM=MB ,∴正方形MNPQ 的边长为a ,正方形AEFG 的对角线AF =12BD =32a ,∵正方形对角线互相垂直,∴S 正方形AEFG =12×32a ×32a =98a 2,∴S 正方形MNPQ S 正方形AEFG =a 298a 2=89.第20题图 第21题图21. 如图,正方形ABCD 的边长为22,对角线AC ,BD 相交于点O ,E 是OC 的中点,连接BE ,过点A 作AM⊥BE 于点M ,交BD 于点F ,则FM 的长为________. 21.55【解析】∵四边形ABCD 为正方形,∴AO =BO ,∠AOF =∠BOE =90°,∵AM ⊥BE ,∠AFO =∠BFM ,∴∠FAO =∠EBO ,在△AFO 和△BEO 中,⎩⎪⎨⎪⎧∠AOF =∠BOE AO =BO ∠FAO =∠EBO ,∴△AFO ≌△BEO(ASA ),∴FO =EO ,∵正方形ABCD 的边长为22,E 是OC 的中点,∴FO =EO =1=BF ,BO =2,∴在Rt △BOE 中,BE =12+22=5,由∠FBM =∠EBO ,∠FMB =∠EOB ,可得△BFM ∽△BEO ,∴FM EO =BF BE ,即FM1=15,∴FM =55.22. 如图,已知四边形ABCD 和四边形DEFG 为正方形,点E 在线段DC 上,点A ,D ,G 在同一条直线上,且AD =3,DE =1,连接AC ,CG ,AE ,并延长AE 交CG 于点H. (1)求sin ∠EAC 的值; (2)求线段AH 的长.22.解:(1)由题意知EC =2,AE =10,如解图,过点E 作EM ⊥AC 于点M , ∴∠EMC =90°,易知∠ACD =45°, ∴△EMC 是等腰直角三角形, ∴EM =2,∴sin ∠EAC =EM AE =55.(2)在△GDC 与△EDA 中,⎩⎪⎨⎪⎧DG =DE ∠GDC =∠EDA DC =DA, ∴△GDC ≌△EDA(SAS ),∴∠GCD =∠EAD , 又∵∠HEC =∠DEA ,∴∠EHC =∠EDA =90°, ∴AH ⊥GC ,∵S △AGC =12×AG ×DC =12×GC ×AH ,∴12×4×3=12×10×AH , ∴AH =6510.命题点5 多边形及其性质【命题规律】1.考查内容:①多边形的内外角和公式;②正多边形的有关计算.2.考查形式:①已知正多边形一个内角或外角的度数或内角之间的关系求边数;②已知正多边形的边数求内角度数;③求多边形的内外角和.【命题预测】多边形是三角形和四边形的延伸拓展,也是中考命题不容忽视的知识点. 23. 六边形的内角和是( )A . 540°B . 720°C . 900°D . 1080°23. B24. 一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为( )A . 7B . 7或8C . 8或9D . 7或8或924. D 【解析】分类讨论:(1)切去一个角,减少一条边,设减少一条边后的边数是n ,则180°(n -2)=1080°,得出n =8,所以原多边形的边数是9;(2)切去一个角,增加一条边,设增加一条边后的边数是n ,则180°(n -2)=1080°,得出n =8,所以原多边形的边数是7;(3)切去一个角,边数无改变,设边数没有改变时的边数是n ,则180°(n -2)=1080°,得出n =8,所以原多边形的边数是8,综上所述,原多边形的边数是9,7,8都符合题意,答案选择D.25. 若一个多边形的内角和是它的外角和的2倍,则这个多边形的边数是________.25. 6 【解析】设这个多边形的边数为n ,则内角和为(n -2)·180°,外角和为360°,则根据题意有:(n -2)·180°=2×360°,解得n =6. 26. 一个正多边形的一个外角为45°,则这个正多边形的边数是________.26. 8 【解析】由正多边形的每一个外角都是45°,其外角和为360°,可得这个正多边形的边数是360°45°=8.方法指导设正多边形的边数为n ,正多边形的外角和为360°,内角和为(n -2)×180°,每个内角的度数为180°×(n -2)n.命题点6 图形折叠的相关证明与计算【命题规律】考查内容和形式:图形折叠计算以矩形折叠考查居多,常考查:①图形的折叠计算角度;②图形的折叠计算线段长或边长;③图形折叠的证明和计算结合;④图形折叠的操作探究.【命题预测】图形折叠将原有图形变得可操作化,且又很好地引入了对称知识,使问题升华,有效地考查学生的知识迁移能力和掌握程度,是全国命题的主流趋势之一,值得每位考生关注.27. 如图,把一张矩形纸片ABCD 沿对角线AC 折叠,点B 的对应点为B′,AB ′与DC 相交于点E ,则下列结论一定正确的是( )A .∠DAB ′=∠CAB′ B .∠ACD =∠B′CDC .AD =AE D .AE =CE27. D28. 如图,把正方形纸片ABCD 沿对边中点所在的直线对折后展开,折痕为MN ,再过点B 折叠纸片,使点A 落在MN 上的点F 处,折痕为BE.若AB 的长为2,则FM 的长为( )A . 2B . 3C . 2D . 128. B第28题图 第29题图29. 如图,把一张矩形纸片ABCD 沿EF 折叠后,点A 落在CD 边上的点A′处,点B 落在点B′处.若∠2=40°,则图中∠1的度数为( )A . 115°B . 120°C . 130°D . 140°29. A 【解析】由折叠的性质知∠EA ′B ′=∠A =90°,∵∠2=40°,∴∠B ′A ′C =50°,∴∠EA ′D =40°,∠DEA ′=50°,∴∠AEA ′=130°,∴∠AEF =∠FEA ′=12∠AEA ′=65°,∵AD ∥BC ,∴∠1=180°-65°=115°.30. 如图,将▱ABCD 沿对角线AC 折叠,使点B 落在点B′处.若∠1=∠2=44°,则∠B 为( )A . 66°B . 104°C . 114°D . 124°30. C 【解析】设∠ACD =x ,∠B =y ,则根据题意可列方程组⎩⎪⎨⎪⎧x +y +44°=180°180°-y -(44°-x )=44°,解得y =114°.第30题图 第31题图 第32题图31. 如图,将△ABC 沿直线DE 折叠,使点C 与点A 重合,已知AB =7,BC =6,则△BCD 的周长为________. 31. 13 【解析】由折叠的性质可得:CD =AD ,∴△BCD 的周长=BC +CD +BD =BC +AD +BD =BC +BA =6+7=13.32. 如图,在▱ABCD 中,E 为边CD 上一点,将△ADE 沿AE 折叠至△AD′E 处,A D′与CE 交于点F ,若∠B =52°,∠DAE =20°,则∠FED′的大小为________.32. 36° 【解析】∵在▱ABCD 中,∠D =∠B =52°,∴∠AEF =∠DAE +∠D =20°+52°=72°,∴∠AED=180°-∠AEF =108°,由折叠的性质得,∠AED ′=∠AED =108°,∴∠FED ′=∠AED′-∠AEF =108°-72°=36°.33.如图,将矩形纸片ABCD(AD >AB)折叠,使点C 刚好落在线段AD 上,且折痕分别与边BC ,AD 相交.设折叠后点C,D的对应点分别为点G,H,折痕分别与边BC,AD相交于点E,F.(1)判断四边形CEGF的形状,并证明你的结论;(2)若AB=3,BC=9,求线段CE的取值范围.33. 解:(1)四边形CEGF是菱形,理由如下:∵四边形ABCD是矩形,∴AD∥BC,∴∠GFE=∠FEC,∵图形翻折后点G与点C重合,EF为折痕,∴∠GEF=∠FEC,∴∠GFE=∠GEF,∴GF=GE,∵图形翻折后EC与GE完全重合,FC与FG重合,∴GE=EC=GF=FC,∴四边形CEGF为菱形.(2)如解图①,当点F与点D重合时,四边形CEGF是正方形,此时CE最小,且CE=CD=3;如解图②,当点G与点A重合时,CE最大.设EC=x,则BE=9-x,由折叠性质知,AE=CE=x,在Rt△ABE中,AB2+BE2=AE2,即9+(9-x)2=x2,解得x=5,∴CE=5,所以,线段CE的取值范围为3≤CE≤5.34.如图,▱ABCD中,AB=2,AD=1,∠ADC=60°,将▱ABCD沿过点A的直线l折叠,使点D落到AB边上的点D′处,折痕交CD边于点E.(1)求证:四边形BCED′是菱形;(2)若点P是直线l上的一个动点,请计算PD′+PB的最小值.34. (1)证明:∵四边形ABCD是平行四边形,∴∠B=∠D=60°,由折叠性质可知,∠D=∠AD′E=60°,∴∠AD′E=∠B=60°,∴ED′∥BC,又∵EC∥D′B,∴四边形BCED′是平行四边形,∴ED′=BC=AD=1,∴DE=ED′=1,又DC=AB=2,∴EC =1, ∴EC =ED′,∴四边形BCED′是菱形. (2)解:如解图所示,由折叠性质PD′=PD ,BD 之长即为所求, 作DG ⊥BA 的延长线于点G , ∵∠DAB =120°, ∴∠DAG =60°, ∵∠G =90°, ∴∠ADG =30°,在Rt △ADG 中,AD =1, ∴AG =12,DG =32,∵AB =2, ∴BG =52,在Rt △BDG 中,由勾股定理得:BD 2=BG 2+DG 2=7, ∴BD =7,即PD′+PB 的最小值为7.方法指导“将军饮马”模型:直线同侧两定点,在直线上确定一点使该点到两定点的距离和最小.作法:作其中一点关于直线的对称点,连接另一点和对称点的线段即是最短距离和;最短距离计算方法:构造以最短距离线段为斜边的直角三角形,利用勾股定理求解.中考冲刺集训一、选择题1.关于▱ABCD 的叙述,正确的是( )A . 若A B⊥BC,则▱ABCD 是菱形B . 若AC⊥BD,则▱ABCD 是正方形C . 若AC =BD ,则▱ABCD 是矩形 D . 若AB =AD ,则▱ABCD 是正方形2.设四边形的内角和等于a ,五边形的外角和等于b ,则a 与b 的关系是( )A . a >bB . a =bC . a <bD . b =a +180°3.如图,正五边形ABCDE 放入某平面直角坐标系后,若顶点A ,B ,C ,D 的坐标分别是(0,a),(-3,2),(b ,m),(c ,m).则点E 的坐标是( )A . (2,-3)B . (2,3)C . (3,2)D . (3,-2)第3题图 第4题图4.如图,▱ABCD 的对角线AC 、BD 相交于点O ,且AC +BD =16,CD =6,则△ABO 的周长是( )A . 10B . 14C . 20D . 225.菱形ABCD 的对角线AC ,BD 相交于点O ,E ,F 分别是AD ,CD 边上的中点,连接EF.若EF =2,BD =2,则菱形ABCD 的面积为( )A . 2 2B . 4 2C . 6 2D . 8 2第5题图 第6题图 第7题图6.如图,平行四边形ABCD 的周长是26 cm ,对角线AC 与BD 交于点O ,AC ⊥AB ,E 是BC 中点,△AOD 的周长比△AOB 的周长多3 cm ,则AE 的长度为( )A . 3 cmB . 4 cmC . 5 cmD . 8 cm7.如图,正方形ABCD 的边长为9,将正方形折叠,使顶点D 落在BC 边上的点E 处,折痕为GH ,若BE∶EC =2∶1,则线段CH 的长是( )A . 3B . 4C . 5D . 68.如图,在正方形ABCD 中,AC 为对角线,E 为AB 上一点,过点E 作EF∥AD,与AC 、DC 分别交于点G 、F2H 为CG 的中点,连接DE 、EH 、DH 、FH.下列结论:①EG =DF ;②∠AEH+∠ADH=180°;③△EHF≌△DHC;④若AE AB =23,则3S △EDH =13S △DHC ,其中结论正确的有( )A . 1个B . 2个C . 3个D . 4个二、填空题9.如图,在▱ABCD 中,BE ⊥AB 交对角线AC 于点E ,若∠1=20°,则∠2的度数为________.10.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,且AC =8,BD =6,则菱形ABCD 的高DH =________.第9题图 第10题图 第11题图11.如图,延长矩形ABCD 的边BC 至点E ,使CE =BD ,连接AE.如果∠ADB=30°,则∠E=________度. 12.如图,正方形ABCO 的顶点C ,A 分别在x 轴,y 轴上,BC 是菱形BDCE 的对角线,若∠D=60°,BC =2,则点D 的坐标是________.第12题图 第13题图 第14题图 13.如图,正十二边形A 1A 2…A 12,连接A 3A 7,A 7A 10,则∠A 3A 7A 10=________°.14.如图,菱形ABCD 的面积为120 cm 2,正方形AECF 的面积为50 cm 2,则菱形的边长为________cm . 15.如图,在矩形纸片ABCD 中,AB =6,BC =10.点E 在CD 上,将△BCE 沿BE 折叠,点C 恰落在边AD 上的点F 处;点G 在AF 上,将△ABG 沿BG 折叠,点A 恰落在线段BF 上的点H 处.有下列结论: ①∠EBG =45°;②△DEF∽△ABG;③S △ABG =32S △FGH ;④AG +DF =FG.其中正确的是______________.(把所有正确结论的序号都选上)第15题图 第16题图16.如图,正方形ABCD 的面积为3 cm 2,E 为BC 边上一点,∠BAE =30°,F 为AE 的中点,过点F 作直线分别与AB ,DC 相交于点M ,N.若MN =AE ,则AM 的长等于________cm . 三、解答题17.如图,在▱ABCD 中,连接BD ,在BD 的延长线上取一点E ,在DB 的延长线上取一点F ,使BF =DE ,连接AF 、CE. 求证:AF∥CE.18.如图,菱形ABCD的对角线AC与BD交于点O,∠ABC∶∠BAD=1∶2,BE∥AC,CE∥BD.(1)求tan∠DBC的值;(2)求证:四边形OBEC是矩形.19.如图,▱ABCD中,BD是它的一条对角线,过A、C两点作AE⊥BD,CF⊥BD,垂足分别为E、F,延长AE、CF分别交CD、AB于点M、N.(1)求证:四边形CMAN是平行四边形;(2)已知DE=4,FN=3,求BN的长.20.如图,△ABC≌△ABD,点E在边AB上,CE∥BD,连接DE.求证:(1)∠CEB=∠CBE;(2)四边形BCED是菱形.21.已知:如图,在正方形ABCD中,点E在边CD上,AQ⊥BE于点Q,DP⊥AQ于点P.(1)求证:AP=BQ;(2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ长.22.已知正方形ABCD中,BC=3,点E、F分别是CB、CD延长线上的点,DF=BE,连接AE、AF,过点A作AH⊥ED于H点.(1)求证:△ADF≌△ABE;(2)若BE=1,求tan∠AED的值.23.如图,已知△ABC 中,AB =AC ,把△ABC 绕A 点沿顺时针方向旋转得到△ADE,连接BD 、CE 交于点F. (1)求证:△AEC≌△ADB;(2)若AB =2,∠BAC =45°,当四边形ADFC 是菱形时,求BF 的长.24.如图,将矩形ABCD 沿AF 折叠,使点D 落在BC 边的点E 处,过点E 作EG∥CD 交AF 于点G ,连接DG. (1)求证:四边形EFDG 是菱形;(2)探究线段EG 、GF 、AF 之间的数量关系,并说明理由; (3)若AG =6,EG =25,求BE 的长.答案与解析:1. C2. B3. C4. B5. A 【解析】∵E ,F 分别是 AD ,CD 边上的中点,即EF 是△ACD 的中位线,∴AC =2EF =22,则菱形ABCD 的面积=12AC ·BD =12×22×2=2 2.6. B 【解析】在▱ABCD 中,AD =BC ,AB =CD ,BO =DO ,∵平行四边形ABCD 的周长为26 cm ,∴AB +BC =13 cm ,又∵△AOD 的周长比△AOB 的周长多3 cm ,∴AD -AB =BC -AB =3 cm ,解得AB =5 cm ,BC =8 cm ,又AB ⊥AC ,E 是BC 的中点,∴AE =BE =CE =12BC =4 cm.7. B 【解析】设CH =x ,∵BE ∶EC =2∶1,BC =9,∴EC =3,由折叠可知,EH =DH =9-x ,在Rt △ECH 中,由勾股定理得:(9-x )2=32+x 2,解得:x =4.8. D 【解析】逐项分析如下表:序号逐项分析正误难点突破对于多选项判断正误性的题目,几乎每个选项之间都是紧密联系的,单独判断其中每个的正误或跳跃式判断往往使题目变得复杂而无法求解,本题目难点在于④中,需将S △FDH 与已知条件AE AB =23联系起来,并用含相同未知数的代数式分别表示出S △EDH 和S △DHC ,继而求解.9. 110° 【解析】 ∵四边形ABCD 是平行四边形,∴CD ∥AB ,∴∠CAB =∠1=20°,∵BE ⊥AB 交对角线AC 于点E ,∴∠ABE =90°,∴∠2=∠CAB +∠ABE =20°+90°=110°.10. 4.8 【解析】∵S =1AC·BD =2AB·DH ,∴AC ·BD =2AB·DH.∵四边形ABCD 是菱形,∴∠AOB =90°,AO =12AC =4,BO =12BD =3,∴在Rt △AOB 中,AB =42+32=5,∴DH =8×62×5=4.8.第11题解图11. 15 【解析】如解图,连接AC.∵四边形ABCD 是矩形,∴AD =BC ,AC =BD ,又∵AB =BA ,∴△DAB ≌△CBA(SSS ),∴∠ACB =∠ADB =30°,∵CE =BD ,∴AC =CE ,∴∠E =∠CAE =12∠ACB=15°.第12题解图12. (3+2,1) 【解析】如解图,过点D 作DG ⊥BC 于G ,DF ⊥x 轴于F ,∵在菱形BDCE 中,BD =CD ,∠BDC =60°,∴△BCD 是等边三角形,∴DF =CG =12BC =1,CF =DG =3,∴OF =3+2,∴D(3+2,1).13. 75 【解析】∵多边形A 1A 2…A 12是正十二边形,作它的外接圆⊙O ,∴劣弧A 10A 3的度数=5×360°12=150°,∴∠A 3A 7A 10=12×150°=75°.第14题解图14. 13 【解析】如解图,连接AC 、BD 交于O ,则有12AC·BD =120,∴AC ·BD =240,又∵菱形对角线互相垂直平分,∴2OA ·2OB =240,∴ OA ·OB =60,∵AE 2=50, OA 2+OE 2= AE 2,OA =OE ,∴OA =5,∴OB =12,∴AB =OA 2+OB 2=122+52=13.15. ①③④ 【解析】由折叠的性质得,∠CBE =∠FBE ,∠ABG =∠FBG ,∴∠EBG =∠FBE +∠FBG =12×90°=45°,故①正确;由折叠的性质得,BF =BC =10,BA =BH =6,∴HF =BF -BH =4,AF =BF 2-BA 2=102-62=8,设GH =x ,则GF =8-x ,在Rt △GHF 中,x 2+42=(8-x)2,∴x =3,∴GF =5,∴AG =3,同理在Rt △FDE 中,由FD 2=EF 2-ED 2,得ED =83,EF =103,∴ED FD =43≠ABAG =2,∴△DEF 与△ABG 不相似,故②不正确;S △ABG =12×3×6=9,S △FGH =12×3×4=6,∴S △ABG S =96=32,故③正确;∵AG =3,DF =AD -AF =2,∴FG =5,∴AG +DF =FG =5,故④正确.综上,答案是①③④.第16题解图16.233或33【解析】如解图,过N 作NG ⊥AB ,交AB 于点G ,∵四边形ABCD 为正方形,∴AB =AD =NG = 3 cm ,在Rt △ABE 中,∠BAE =30°,AB = 3 cm ,∴BE =1 cm ,AE =2 cm ,∵F 为AE 的中点,∴AF =12AE =1 cm ,在Rt △ABE 和Rt △NGM 中,⎩⎪⎨⎪⎧AB =NG AE =NM ,∴Rt △ABE ≌Rt △NGM(HL ),∴BE =GM ,∠BAE =∠MNG =30°,∠AEB =∠NMG =60°,∴∠AFM =90°,即MN ⊥AE ,在Rt △AMF 中,∠FAM =30°,AF =1 cm ,∴AM =AF cos 30°=132=233 cm ,由对称性得到AM′=BM =AB -AM =3-233=33 cm ,综上,AM 的长等于233或33 cm . 17. 证明:∵四边形ABCD 是平行四边形,第17题解图∴AD ∥BC ,AD =BC , ∴∠1=∠2, 又∵BF =DE ,∴BF +BD =DE +BD , 即DF =BE.∴△ADF ≌△CBE(SAS ). ∴∠AFD =∠CEB ,∴AF ∥CE.18. (1)【思路分析】根据四边形ABCD 是菱形,∠ABC ∶∠BAD =1∶2,可求出∠DBC 的度数,其正切值可求出.解:∵四边形ABCD 是菱形,∴AD ∥BC ,∠DBC =12∠ABC ,∴∠ABC +∠BAD =180°, 又∵∠ABC ∶∠BAD =1∶2, ∴∠ABC =60°, ∴∠DBC =12∠ABC =30°,∴tan ∠DBC =tan 30°=33. (2)【思路分析】由BE ∥AC ,CE ∥BD 可知四边形BOCE 是平行四边形,再结合菱形对角线垂直的性质即可证明四边形BOCE 是矩形.证明:∵四边形ABCD 是菱形, ∴AC ⊥BD ,即∠BOC =90°, ∵BE ∥AC ,CE ∥BD , ∴BE ∥OC ,CE ∥OB ,∴四边形OBEC 是平行四边形,且∠BOC =90°,∴四边形OBEC 是矩形.19. (1)证明:∵AE ⊥BD ,CF ⊥BD , ∴AM ∥CN ,又∵四边形ABCD 是平行四边形, ∴MC ∥AN ,∴四边形CMAN 是平行四边形.(2)解:∵四边形ABCD 是平行四边形, ∴∠ADE =∠CBF ,AD =CB , 又∵∠AED =∠CFB =90°, ∴△AED ≌△CFB(AAS ), ∴DE =BF =4,∴在Rt △BFN 中,BN =32+42=5.20. (1)【思路分析】要证∠CEB =∠CBE ,结合CE ∥DB ,可得到∠CEB =∠DBE ,从而只需证明∠CBE =∠DBE ,结合△ABC ≌△ABD 即可得证.证明:∵△ABC ≌△ABD , ∴∠ABC =∠ABD , ∵CE ∥BD ,∴∠CEB =∠DBE ,∴∠CEB =∠CBE.(2)证明:∵△ABC ≌△ABD ,∴BC =BD , 由(1)得∠CEB =∠CBE , ∴CE =CB , ∴CE =BD , ∵CE ∥BD ,∴四边形BCED 是平行四边形, ∵BC =BD ,∴四边形BCED 是菱形.21. (1)证明:∵四边形ABCD 是正方形, ∴AB =AD, ∠BAQ +∠DAP =90°=∠DAB , ∵DP ⊥AQ ,∴∠DAP +∠ADP =90°, ∴∠BAQ =∠ADP.在△DAP 和△ABQ 中, ⎨⎪⎧∠APD =∠AQB =90°∠ADP =∠BAQ ,∴△DAP ≌△ABQ(AAS ),∴AP =BQ.(2)解:①AQ 和AP ;②DP 和AP ;③AQ 和BQ ;④DP 和BQ.【解法提示】①由题图直接得:AQ -AP =PQ ;②∵△ABQ ≌△DAP ,∴AQ =DP ,∴DP -AP = AQ -AP =PQ ;③∵△ABQ ≌△DAP ,∴BQ =AP ,∴AQ -BQ =AQ -AP =PQ ;④∵△ABQ ≌△DAP ,∴DP =AQ ,BQ =AP ,∴DP -BQ =AQ -AP =PQ.22. (1)证明:在△ADF 和△ABE 中,⎩⎪⎨⎪⎧AB =AD ∠ABE =∠ADF =90°EB =FD, ∴△ADF ≌△ABE(SAS ).(2)解:∵AB =3,BE =1,∴AE =10,EC =4,∴ED =CD 2+EC 2=5,设AH =x ,EH =y ,在Rt △AHE 和Rt △AHD 中,⎩⎪⎨⎪⎧x 2+y 2=10x 2+(5-y )2=9, 解得,x =1.8,y =2.6,∴tan ∠AED =AH EH =x y =1.82.6=913. 23. (1)证明:∵△ADE 是由△ABC 绕点A 沿顺时针方向旋转而得,∴AD =AB ,AE =AC ,∠BAC =∠DAE ,∵AB =AC ,∴AD =AB =AE =AC ,∠EAC =∠DAB ,在△AEC 和△ADB 中∵⎩⎪⎨⎪⎧AD = AE ∠EAC =∠DAB AB =AC, ∴△AEC ≌△ADB(SAS ).(2)解:当四边形ADFC 是菱形时,AC =DF ,AC ∥DF ,∴∠BAC =∠ABD ,又∵∠BAC =45°,∴∠ABD =45°,又∵△ADE 是由△ABC 绕点A 沿顺时针方向旋转而得,∴AD =AB ,∴∠DAB =90°,又∵AB =2,由勾股定理可得:BD =AD 2+AB 2=2AB =22,在菱形ADFC 中,DF =AD =AB =2,∴BF =BD -DF =22-2.24. (1)【思路分析】根据折叠的性质,易得DF =EF ,DG =EG ,∠AFD =∠AFE ,再由EG ∥DC ,可得∠EGF =∠AFD ,从而得出EG =EF.根据四条边都相等的四边形是菱形得证;证明:由折叠的性质可得,EF =FD ,∠AEF =∠ADF =90°,第24题解图∠EFA =∠DFA ,EG =GD.∵EG ∥DC ,∴∠DFA =∠EGF ,∴∠EFA =∠EGF ,∴EF =EG =FD =GD ,∴四边形EFDG 是菱形.(2)【思路分析】由(1)可知EG =EF ,连接DE ,则DE 与GF 相互垂直平分,证得Rt △FHE ∽Rt △FEA ,列比例式,结合FH =12GF 得到EG 、GF 、AF 的关系; 解:如解图,连接ED ,交AF 于点H ,∵四边形EFDG 是菱形,∴DE ⊥AF ,FH =GH =12GF ,EH =DH =12DE. ∵∠FEH =∠FAE =90°-∠EFA ,∴Rt △FEH ∽Rt △FAE ,∴EF FH =AF EF,即EF 2=FH·AF , ∴EG 2=12GF·AF. (3)【思路分析】把AG ,EG 代入(2)中的关系式,求得GF ,AF 的值,根据勾股定理求得AD ,DE ,再证Rt △ADF ∽Rt △DCE ,可求出EC ,从而可求出BE 的值.解:∵AG =6,EG =25,EG 2=12GF·AF , ∴(25)2=12(6+GF)·GF ,∴GF =4, ∴AF =10.∵DF =EG =25,∴AD =BC =AF 2-DF 2=45,DE =2EH =2EG 2-(12GF )2=8. ∵∠CDE +∠DFA =90°,∠DAF +∠DFA =90°,∴∠CDE =∠DAF ,∴Rt △ADF ∽Rt △DCE ,∴EC DF =DE AF ,即EC 25=810, ∴EC =855, ∴BE =BC -EC =AD -EC =45-855=1255.。
2020-2021中考数学复习《平行四边形》专项综合练习及答案解析
2020-2021中考数学复习《平行四边形》专项综合练习及答案解析一、平行四边形1.已知:如图,在平行四边形ABCD中,O为对角线BD的中点,过点O的直线EF分别交AD,BC于E,F两点,连结BE,DF.(1)求证:△DOE≌△BOF.(2)当∠DOE等于多少度时,四边形BFDE为菱形?请说明理由.【答案】(1)证明见解析;(2)当∠DOE=90°时,四边形BFED为菱形,理由见解析.【解析】试题分析:(1)利用平行四边形的性质以及全等三角形的判定方法得出△DOE≌△BOF (ASA);(2)首先利用一组对边平行且相等的四边形是平行四边形得出四边形EBFD是平行四边形,进而利用垂直平分线的性质得出BE=ED,即可得出答案.试题解析:(1)∵在▱ABCD中,O为对角线BD的中点,∴BO=DO,∠EDB=∠FBO,在△EOD和△FOB中,∴△DOE≌△BOF(ASA);(2)当∠DOE=90°时,四边形BFDE为菱形,理由:∵△DOE≌△BOF,∴OE=OF,又∵OB=OD,∴四边形EBFD是平行四边形,∵∠EOD=90°,∴EF⊥BD,∴四边形BFDE为菱形.考点:平行四边形的性质;全等三角形的判定与性质;菱形的判定.2.如图,ABCD是正方形,点G是BC上的任意一点,DE⊥AG于E,BF∥DE,交AG于F.求证:AF=BF+EF.【答案】详见解析.【解析】【分析】由四边形ABCD 为正方形,可得出∠BAD 为90°,AB=AD ,进而得到∠BAG 与∠EAD 互余,又DE 垂直于AG ,得到∠EAD 与∠ADE 互余,根据同角的余角相等可得出∠ADE=∠BAF ,利用AAS 可得出△ABF ≌△DAE ;利用全等三角的对应边相等可得出BF=AE ,由AF-AE=EF ,等量代换可得证.【详解】∵ABCD 是正方形,∴AD=AB ,∠BAD=90°∵DE ⊥AG ,∴∠DEG=∠AED=90°∴∠ADE+∠DAE=90°又∵∠BAF+∠DAE=∠BAD=90°,∴∠ADE=∠BAF .∵BF ∥DE ,∴∠AFB=∠DEG=∠AED .在△ABF 与△DAE 中,AFB AED ADE BAF AD AB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABF ≌△DAE (AAS ).∴BF=AE .∵AF=AE+EF ,∴AF=BF+EF .点睛:此题考查了正方形的性质,全等三角形的判定与性质,矩形的判定与性质,熟练掌握判定与性质是解本题的关键.3.图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,每个小正方形的顶点叫做格点.(1)在图1中画出等腰直角三角形MON ,使点N 在格点上,且∠MON=90°;(2)在图2中以格点为顶点画一个正方形ABCD ,使正方形ABCD 面积等于(1)中等腰直角三角形MON 面积的4倍,并将正方形ABCD 分割成以格点为顶点的四个全等的直角三角形和一个正方形,且正方形ABCD 面积没有剩余(画出一种即可).【答案】(1)作图参见解析;(2)作图参见解析.【解析】试题分析:(1)过点O 向线段OM 作垂线,此直线与格点的交点为N ,连接MN 即可;(2)根据勾股定理画出图形即可.试题解析:(1)过点O 向线段OM 作垂线,此直线与格点的交点为N ,连接MN ,如图1所示;(2)等腰直角三角形MON 面积是5,因此正方形面积是20,如图2所示;于是根据勾股定理画出图3:考点:1.作图﹣应用与设计作图;2.勾股定理.4.如图①,四边形ABCD 是知形,1,2AB BC ==,点E 是线段BC 上一动点(不与,B C 重合),点F 是线段BA 延长线上一动点,连接,,,DE EF DF EF 交AD 于点G .设,BE x AF y ==,已知y 与x 之间的函数关系如图②所示.(1)求图②中y 与x 的函数表达式;(2)求证:DE DF ⊥;(3)是否存在x 的值,使得DEG △是等腰三角形?如果存在,求出x 的值;如果不存在,说明理由【答案】(1)y =﹣2x +4(0<x <2);(2)见解析;(3)存在,x =5432. 【解析】【分析】(1)利用待定系数法可得y 与x 的函数表达式;(2)证明△CDE ∽△ADF ,得∠ADF =∠CDE ,可得结论;(3)分三种情况:①若DE =DG ,则∠DGE =∠DEG ,②若DE =EG ,如图①,作EH ∥CD ,交AD 于H ,③若DG =EG ,则∠GDE =∠GED ,分别列方程计算可得结论.【详解】(1)设y =kx +b ,由图象得:当x =1时,y =2,当x =0时,y =4,代入得:24k b b +=⎧⎨=⎩,得24k b =-⎧⎨=⎩, ∴y =﹣2x +4(0<x <2);(2)∵BE =x ,BC =2∴CE =2﹣x , ∴211,4222CE x CD AF x AD -===-, ∴CE CD AF AD=, ∵四边形ABCD 是矩形,∴∠C =∠DAF =90°,∴△CDE ∽△ADF ,∴∠ADF =∠CDE ,∴∠ADF +∠EDG =∠CDE +∠EDG =90°,∴DE ⊥DF ;(3)假设存在x 的值,使得△DEG 是等腰三角形,①若DE =DG ,则∠DGE =∠DEG ,∵四边形ABCD 是矩形,∴AD ∥BC ,∠B =90°,∴∠DGE =∠GEB ,∴∠DEG =∠BEG ,在△DEF 和△BEF 中,FDE B DEF BEF EF EF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DEF ≌△BEF (AAS ),∴DE =BE =x ,CE =2﹣x ,∴在Rt △CDE 中,由勾股定理得:1+(2﹣x )2=x 2,x =54; ②若DE =EG ,如图①,作EH ∥CD ,交AD 于H ,∵AD ∥BC ,EH ∥CD ,∴四边形CDHE 是平行四边形,∴∠C =90°,∴四边形CDHE 是矩形,∴EH =CD =1,DH =CE =2﹣x ,EH ⊥DG ,∴HG =DH =2﹣x ,∴AG =2x ﹣2,∵EH ∥CD ,DC ∥AB ,∴EH ∥AF ,∴△EHG ∽△FAG , ∴EH HG AF AG =, ∴124222x x x -=--,∴12x x ==(舍), ③若DG =EG ,则∠GDE =∠GED ,∵AD ∥BC ,∴∠GDE =∠DEC ,∴∠GED =∠DEC ,∵∠C =∠EDF =90°,∴△CDE ∽△DFE , ∴CE DE CD DF=, ∵△CDE ∽△ADF , ∴12DE CD DF AD ==, ∴12CE CD =, ∴2﹣x =12,x =32,综上,x =54或32. 【点睛】 本题是四边形的综合题,主要考查了待定系数法求一次函数的解析式,三角形相似和全等的性质和判定,矩形和平行四边形的性质和判定,勾股定理和逆定理等知识,运用相似三角形的性质是解决本题的关键.5.如图1,已知正方形ABCD 的边CD 在正方形DEFG 的边DE 上,连接AE ,GC .(1)试猜想AE 与GC 有怎样的关系(直接写出结论即可);(2)将正方形DEFG 绕点D 按顺时针方向旋转,使点E 落在BC 边上,如图2,连接AE 和CG .你认为(1)中的结论是否还成立?若成立,给出证明;若不成立,请说明理由.(3)在(2)中,若E 是BC 的中点,且BC =2,则C ,F 两点间的距离为 .【答案】(1) AE =CG ,AE ⊥GC ;(2)成立,证明见解析; .【解析】【分析】(1)观察图形,AE 、CG 的位置关系可能是垂直,下面着手证明.由于四边形ABCD 、DEFG都是正方形,易证得△ADE≌△CDG,则∠1=∠2,由于∠2、∠3互余,所以∠1、∠3互余,由此可得AE⊥GC.(2)题(1)的结论仍然成立,参照(1)题的解题方法,可证△ADE≌△CDG,得∠5=∠4,由于∠4、∠7互余,而∠5、∠6互余,那么∠6=∠7;由图知∠AEB=∠CEH=90°﹣∠6,即∠7+∠CEH=90°,由此得证.(3)如图3中,作CM⊥DG于G,GN⊥CD于N,CH⊥FG于H,则四边形CMGH是矩形,可得CM=GH,CH=GM.想办法求出CH,HF,再利用勾股定理即可解决问题.【详解】(1)AE=CG,AE⊥GC;证明:延长GC交AE于点H,在正方形ABCD与正方形DEFG中,AD=DC,∠ADE=∠CDG=90°,DE=DG,∴△ADE≌△CDG(SAS),∴AE,CG,∠1=∠2∵∠2+∠3=90°,∴∠1+∠3=90°,∴∠AHG=180°﹣(∠1+∠3)=180°﹣90°=90°,∴AE⊥GC.(2)答:成立;证明:延长AE和GC相交于点H,在正方形ABCD和正方形DEFG中,AD=DC,DE=DG,∠ADC=∠DCB=∠B=∠BAD=∠EDG=90°,∴∠1=∠2=90°﹣∠3;∴△ADE≌△CDG(SAS),∴AE=CG,∠5=∠4;又∵∠5+∠6=90°,∠4+∠7=180°﹣∠DCE=180°﹣90°=90°,∴∠6=∠7,又∵∠6+∠AEB=90°,∠AEB=∠CEH,∴∠CEH+∠7=90°,∴∠EHC=90°,∴AE⊥GC.(3)如图3中,作CM⊥DG于G,GN⊥CD于N,CH⊥FG于H,则四边形CMGH是矩形,可得CM=GH,CH=GM.∵BE=CE=1,AB=CD=2,∴AE=DE=CG═DG=FG∵DE=DG,∠DCE=∠GND,∠EDC=∠DGN,∴△DCE≌△GND(AAS),∴GCD=2,∵S△DCG=12•CD•NG=12•DG•CM,∴2×2,∴CM=GH=5,∴MG=CH5,∴FH=FG﹣FG,∴CF..【点睛】本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是正确寻找全等三角形解决问题,属于中考压轴题.6.菱形ABCD中、∠BAD=120°,点O为射线CA上的动点,作射线OM与直线BC相交于点E,将射线OM绕点O逆时针旋转60°,得到射线ON,射线ON与直线CD相交于点F.(1)如图①,点O与点A重合时,点E,F分别在线段BC,CD上,请直接写出CE,CF,CA三条段段之间的数量关系;(2)如图②,点O在CA的延长线上,且OA=13AC,E,F分别在线段BC的延长线和线段CD的延长线上,请写出CE,CF,CA三条线段之间的数量关系,并说明理由;(3)点O在线段AC上,若AB=6,BO=CF=1时,请直接写出BE的长.【答案】(1)CA=CE+CF.(2)CF-CE=43AC.(3)BE的值为3或5或1.【解析】【分析】(1)如图①中,结论:CA=CE+CF.只要证明△ADF≌△ACE(SAS)即可解决问题;(2)结论:CF-CE=43AC.如图②中,如图作OG∥AD交CF于G,则△OGC是等边三角形.只要证明△FOG≌△EOC(ASA)即可解决问题;(3)分四种情形画出图形分别求解即可解决问题.【详解】(1)如图①中,结论:CA=CE+CF.理由:∵四边形ABCD是菱形,∠BAD=120°∴AB=AD=DC=BC,∠BAC=∠DAC=60°∴△ABC,△ACD都是等边三角形,∵∠DAC=∠EAF=60°,∴∠DAF=∠CAE,∵CA=AD,∠D=∠ACE=60°,∴△ADF≌△ACE(SAS),∴DF=CE,∴CE+CF=CF+DF=CD=AC,∴CA=CE+CF.(2)结论:CF-CE=43 AC.理由:如图②中,如图作OG∥AD交CF于G,则△OGC是等边三角形.∵∠GOC=∠FOE=60°,∴∠FOG=∠EOC,∵OG=OC,∠OGF=∠ACE=120°,∴△FOG≌△EOC(ASA),∴CE=FG,∵OC=OG,CA=CD,∴OA=DG,∴CF-EC=CF-FG=CG=CD+DG=AC+13AC=43AC,(3)作BH⊥AC于H.∵AB=6,AH=CH=3,∴,如图③-1中,当点O在线段AH上,点F在线段CD上,点E在线段BC上时.∵,∴=1,∴OC=3+1=4,由(1)可知:CO=CE+CF,∵OC=4,CF=1,∴CE=3,∴BE=6-3=3.如图③-2中,当点O在线段AH上,点F在线段DC的延长线上,点E在线段BC上时.由(2)可知:CE-CF=OC,∴CE=4+1=5,∴BE=1.如图③-3中,当点O在线段CH上,点F在线段CD上,点E在线段BC上时.同法可证:OC=CE+CF,∵OC=CH-OH=3-1=2,CF=1,∴CE=1,∴BE=6-1=5.如图③-4中,当点O在线段CH上,点F在线段DC的延长线上,点E在线段BC上时.同法可知:CE-CF=OC,∴CE=2+1=3,∴BE=3,综上所述,满足条件的BE的值为3或5或1.【点睛】本题属于四边形综合题,考查了全等三角形的判定和性质,等边三角形的性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.7.如图,点O是正方形ABCD两条对角线的交点,分别延长CO到点G,OC到点E,使OG=2OD、OE=2OC,然后以OG、OE为邻边作正方形OEFG.(1)如图1,若正方形OEFG的对角线交点为M,求证:四边形CDME是平行四边形.(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转,得到正方形OE′F′G′,如图2,连接AG′,DE′,求证:AG′=DE′,AG′⊥DE′;(3)在(2)的条件下,正方形OE′F′G′的边OG′与正方形ABCD的边相交于点N,如图3,设旋转角为α(0°<α<180°),若△AON是等腰三角形,请直接写出α的值.【答案】(1)证明见解析;(2)证明见解析;(3)α的值是22.5°或45°或112.5°或135°或157.5°.【解析】【分析】(1)由四边形OEFG是正方形,得到ME=12GE,根据三角形的中位线的性质得到CD∥GE,CD=12GE,求得CD=GE,即可得到结论;(2)如图2,延长E′D交AG′于H,由四边形ABCD是正方形,得到AO=OD,∠AOD=∠COD=90°,由四边形OEFG 是正方形,得到OG′=OE′,∠E′OG′=90°,由旋转的性质得到∠G′OD=∠E′OC ,求得∠AOG′=∠COE′,根据全等三角形的性质得到AG′=DE′,∠AG′O=∠DE′O ,即可得到结论;(3)分类讨论,根据三角形的外角的性质和等腰三角形的性质即可得到结论.【详解】(1)证明:∵四边形OEFG 是正方形,∴ME=12GE , ∵OG=2OD 、OE=2OC ,∴CD ∥GE ,CD=12GE , ∴CD=GE ,∴四边形CDME 是平行四边形;(2)证明:如图2,延长E′D 交AG′于H ,∵四边形ABCD 是正方形,∴AO=OD ,∠AOD=∠COD=90°,∵四边形OEFG 是正方形,∴OG′=OE′,∠E′OG′=90°,∵将正方形OEFG 绕点O 逆时针旋转,得到正方形OE′F′G′,∴∠G′OD=∠E′OC ,∴∠AOG′=∠COE′,在△AG′O 与△ODE′中,OA OD AOG DOE OG OE ⎧⎪∠'∠'⎨⎪''⎩===,∴△AG′O ≌△ODE′∴AG′=DE′,∠AG′O=∠DE′O ,∵∠1=∠2,∴∠G′HD=∠G′OE′=90°,∴AG′⊥DE′;(3)①正方形OE′F′G′的边OG′与正方形ABCD 的边AD 相交于点N ,如图3,Ⅰ、当AN=AO时,∵∠OAN=45°,∴∠ANO=∠AON=67.5°,∵∠ADO=45°,∴α=∠ANO-∠ADO=22.5°;Ⅱ、当AN=ON时,∴∠NAO=∠AON=45°,∴∠ANO=90°,∴α=90°-45°=45°;②正方形OE′F′G′的边OG′与正方形ABCD的边AB相交于点N,如图4,Ⅰ、当AN=AO时,∵∠OAN=45°,∴∠ANO=∠AON=67.5°,∵∠ADO=45°,∴α=∠ANO+90°=112.5°;Ⅱ、当AN=ON时,∴∠NAO=∠AON=45°,∴∠ANO=90°,∴α=90°+45°=135°,Ⅲ、当AN=AO时,旋转角a=∠ANO+90°=67.5+90=157.5°,综上所述:若△AON是等腰三角形时,α的值是22.5°或45°或112.5°或135°或157.5°.【点睛】本题主要考查了正方形的性质、全等三角形的判定与性质、锐角三角函数、旋转变换的性质的综合运用,有一定的综合性,分类讨论当△AON是等腰三角形时,求α的度数是本题的难点.8.如图,现将平行四边形ABCD沿其对角线AC折叠,使点B落在点B′处.AB′与CD交于点E.(1)求证:△AED ≌△CEB ′;(2)过点E 作EF ⊥AC 交AB 于点F ,连接CF ,判断四边形AECF 的形状并给予证明.【答案】(1)见解析(2)见解析【解析】【分析】(1)由题意可得AD=BC=B'C ,∠B=∠D=∠B',且∠AED=∠CEB',利用AAS 证明全等,则结论可得;(2)由△AED ≌△CEB′可得AE=CE ,且EF ⊥AC ,根据等腰三角形的性质可得EF 垂直平分AC ,∠AEF=∠CEF .即AF=CF ,∠CEF=∠AFE=∠AEF ,可得AE=AF ,则可证四边形AECF 是菱形.【详解】证明:(1)∵四边形ABCD 是平行四边形∴AD =BC ,CD ∥AB ,∠B =∠D∵平行四边形ABCD 沿其对角线AC 折叠∴BC =B'C ,∠B =∠B'∴∠D =∠B',AD =B'C 且∠DEA =∠B'EC∴△ADE ≌△B'EC(2)四边形AECF 是菱形∵△ADE ≌△B'EC∴AE =CE∵AE =CE ,EF ⊥AC∴EF 垂直平分AC ,∠AEF =∠CEF∴AF =CF∵CD ∥AB∴∠CEF =∠EFA 且∠AEF =∠CEF∴∠AEF =∠EFA∴AF =AE∴AF =AE =CE =CF∴四边形AECF 是菱形【点睛】本题考查了折叠问题,全等三角形的判定和性质,平行四边形的性质,菱形的判定,熟练掌握这些性质和判定是解决问题的关键.9.在ABC 中,ABC 90∠=,BD 为AC 边上的中线,过点C 作CE BD ⊥于点E ,过点A 作BD 的平行线,交CE 的延长线于点F ,在AF 的延长线上截取FG BD =,连接BG ,DF .()1求证:BD DF =;()2求证:四边形BDFG 为菱形;()3若AG 5=,CF =BDFG 的周长.【答案】(1)证明见解析(2)证明见解析(3)8【解析】【分析】()1利用平行线的性质得到90CFA ∠=,再利用直角三角形斜边上的中线等于斜边的一半即可得证,()2利用平行四边形的判定定理判定四边形BDFG 为平行四边形,再利用()1得结论即可得证,()3设GF x =,则5AF x =-,利用菱形的性质和勾股定理得到CF 、AF 和AC 之间的关系,解出x 即可.【详解】()1证明:AG //BD ,CF BD ⊥, CF AG ∴⊥, 又D 为AC 的中点,1DF AC 2∴=, 又1BD AC 2=, BD DF ∴=, ()2证明:BD//GF ,BD FG =, ∴四边形BDFG 为平行四边形, 又BD DF =,∴四边形BDFG 为菱形,()3解:设GF x =,则AF 5x =-,AC 2x =,在Rt AFC 中,222(2x)(5x)=+-,解得:1x 2=,216x (3=-舍去), GF 2∴=,∴菱形BDFG 的周长为8.【点睛】本题考查了菱形的判定与性质直角三角形斜边上的中线,勾股定理等知识,正确掌握这些定义性质及判定并结合图形作答是解决本题的关键.10.如图,抛物线交x 轴的正半轴于点A ,点B (,a )在抛物线上,点C 是抛物线对称轴上的一点,连接AB 、BC ,以AB 、BC 为邻边作□ABCD ,记点C 纵坐标为n , (1)求a 的值及点A 的坐标;(2)当点D 恰好落在抛物线上时,求n 的值;(3)记CD 与抛物线的交点为E ,连接AE ,BE ,当△AEB 的面积为7时,n =___________.(直接写出答案)【答案】(1), A (3,0);(2)【解析】 试题解析:(1)把点B 的坐标代入抛物线的解析式中,即可求出a 的值,令y =0即可求出点A 的坐标.(2)求出点D 的坐标即可求解;(3)运用△AEB 的面积为7,列式计算即可得解.试题解析:(1)当时, 由 ,得(舍去),(1分) ∴A (3,0)(2)过D 作DG ⊥轴于G ,BH ⊥轴于H.∵CD∥AB,CD=AB∴,∴,∴(3)11.如图1,矩形ABCD中,AB=8,AD=6;点E是对角线BD上一动点,连接CE,作EF⊥CE交AB边于点F,以CE和EF为邻边作矩形CEFG,作其对角线相交于点H.(1)①如图2,当点F与点B重合时,CE=,CG=;②如图3,当点E是BD中点时,CE=,CG=;(2)在图1,连接BG,当矩形CEFG随着点E的运动而变化时,猜想△EBG的形状?并加以证明;(3)在图1,CGCE的值是否会发生改变?若不变,求出它的值;若改变,说明理由;(4)在图1,设DE的长为x,矩形CEFG的面积为S,试求S关于x的函数关系式,并直接写出x的取值范围.【答案】(1)245,185,5,154;(2)△EBG是直角三角形,理由详见解析;(3)3 4;(4)S=34x2﹣485x+48(0≤x≤325).【解析】【分析】(1)①利用面积法求出CE,再利用勾股定理求出EF即可;②利用直角三角形斜边中线定理求出CE,再利用相似三角形的性质求出EF即可;(2)根据直角三角形的判定方法:如果一个三角形一边上的中线等于这条边的一半,则这个三角形是直角三角形即可判断;(3)只要证明△DCE∽△BCG,即可解决问题;(4)利用相似多边形的性质构建函数关系式即可;【详解】(1)①如图2中,在Rt△BAD中,,∵S△BCD=12•CD•BC=12•BD•CE,∴CE=245.185.②如图3中,过点E作MN⊥AM交AB于N,交CD于M.∵DE=BE,∴CE=12BD=5,∵△CME∽△ENF,∴CM EN CE EF=,∴CG=EF=154,(2)结论:△EBG是直角三角形.理由:如图1中,连接BH .在Rt △BCF 中,∵FH=CH ,∴BH=FH=CH ,∵四边形EFGC 是矩形,∴EH=HG=HF=HC ,∴BH=EH=HG ,∴△EBG 是直角三角形.(3)F 如图1中,∵HE=HC=HG=HB=HF , ∴C 、E 、F 、B 、G 五点共圆, ∵EF=CG ,∴∠CBG=∠EBF ,∵CD ∥AB ,∴∠EBF=∠CDE ,∴∠CBG=∠CDE ,∵∠DCB=∠ECG=90°,∴∠DCE=∠BCG ,∴△DCE ∽△BCG , ∴6384CG BC CE DC ===. (4)由(3)可知: 34CG CD CE CB ==, ∴矩形CEFG ∽矩形ABCD , ∴2264CEFG ABCD S CE CE S CD ==矩形矩形(), ∵CE 2=(325-x )2+245)2,S 矩形ABCD =48, ∴S 矩形CEFG =34[(325-x )2+(245)2]. ∴矩形CEFG 的面积S=34x 2-485x+48(0≤x≤325). 【点睛】本题考查相似三角形综合题、矩形的性质、相似三角形的判定和性质、勾股定理、直角三角形的判定和性质、相似多边形的性质和判定等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造相似三角形或直角三角形解决问题,属于中考压轴题.12.如图1,在长方形纸片ABCD中,AB=mAD,其中m⩾1,将它沿EF折叠(点E. F分别在边AB、CD上),使点B落在AD边上的点M处,点C落在点N处,MN与CD相交于点P,连接EP.设AMnAD=,其中0<n⩽1.(1)如图2,当n=1(即M点与D点重合),求证:四边形BEDF为菱形;(2)如图3,当12n=(M为AD的中点),m的值发生变化时,求证:EP=AE+DP;(3)如图1,当m=2(即AB=2AD),n的值发生变化时,BE CFAM-的值是否发生变化?说明理由.【答案】(1)证明见解析;(2)证明见解析;(3)值不变,理由见解析.【解析】试题分析:(1)由条件可知,当n=1(即M点与D点重合),m=2时,AB=2AD,设AD=a,则AB=2a,由矩形的性质可以得出△ADE≌△NDF,就可以得出AE=NF,DE=DF,在Rt△AED中,由勾股定理就可以表示出AE的值,再求出BE的值就可以得出结论.(2)延长PM交EA延长线于G,由条件可以得出△PDM≌△GAM,△EMP≌△EMG由全等三角形的性质就可以得出结论.(3)如图1,连接BM交EF于点Q,过点F作FK⊥AB于点K,交BM于点O,通过证明△ABM∽△KFE,就可以得出EK KFAM AB=,即BE BK BCAM AB-=,由AB=2AD=2BC,BK=CF就可以得出BE CFAM-的值是12为定值.(1)∵四边形ABCD是矩形,∴AB=CD,AD=BC,∠A=∠B=∠C=∠D=90°.∵AB=mAD,且n=2,∴AB=2AD.∵∠ADE+∠EDF=90°,∠EDF+∠NDF=90°,∴∠ADE=∠NDF.在△ADE和△NDF中,∠A=∠N,AD=ND,∠ADE=∠NDF,∴△ADE≌△NDF(ASA).∴AE=NF,DE=DF.∵FN=FC,∴AE=FC.∵AB=CD ,∴AB-AE="CD-CF." ∴BE="DF." ∴BE=DE .Rt △AED 中,由勾股定理,得222AE DE AD =-,即2222AE AD AE AD ()=--,∴AE=34AD. ∴BE=2AD-34AD=54.∴554334ADBE AE AD ==. (2)如图3,延长PM 交EA 延长线于G ,∴∠GAM=90°. ∵M 为AD 的中点,∴AM=DM .∵四边形ABCD 是矩形,∴AB=CD ,AD=BC ,∠A=∠B=∠C=∠D=90°,AB ∥CD. ∴∠GAM=∠PDM .在△GAM 和△PDM 中,∠GAM =∠PDM ,AM =DM ,∠AMG =∠DMP , ∴△GAM ≌△PDM (ASA ).∴MG=MP .在△EMP 和△EMG 中,PM =GM ,∠PME =∠GME ,ME =ME , ∴△EMP ≌△EMG (SAS ).∴EG=EP . ∴AG+AE=EP .∴PD+AE=EP ,即EP=AE+DP .(3)12BE CF AM -=,值不变,理由如下: 如图1,连接BM 交EF 于点Q ,过点F 作FK ⊥AB 于点K ,交BM 于点O , ∵EM=EB ,∠MEF=∠BEF ,∴EF ⊥MB ,即∠FQO=90°. ∵四边形FKBC 是矩形,∴KF=BC ,FC=KB. ∵∠FKB=90°,∴∠KBO+∠KOB=90°.∵∠QOF+∠QFO=90°,∠QOF=∠KOB ,∴∠KBO=∠OFQ. ∵∠A=∠EKF=90°,∴△ABM ∽△KFE. ∴EK KF AM AB =即BE BK BC AM AB-=.∵AB=2AD=2BC ,BK=CF ,∴12BE CF AM -=. ∴BE CFAM-的值不变.考点:1.折叠问题;2.矩形的性质;3.全等三角形的判定和性质;4.勾股定理;5.相似三角形的判定和性质.13.如图,在平面直角坐标系xOy 中,四边形OABC 的顶点A 在x 轴的正半轴上,OA=4,OC=2,点D 、E 、F 、G 分别为边OA 、AB 、BC 、CO 的中点,连结DE 、EF 、FG 、GD . (1)若点C 在y 轴的正半轴上,当点B 的坐标为(2,4)时,判断四边形DEFG 的形状,并说明理由.(2)若点C 在第二象限运动,且四边形DEFG 为菱形时,求点四边形OABC 对角线OB 长度的取值范围.(3)若在点C 的运动过程中,四边形DEFG 始终为正方形,当点C 从X 轴负半轴经过Y 轴正半轴,运动至X 轴正半轴时,直接写出点B 的运动路径长.【答案】(1)正方形(2)6OB <<(3)2π 【解析】分析:(1)连接OB ,AC ,说明OB ⊥AC ,OB=AC ,可得四边形DEFG 是正方形.(2)由四边形DEFG 是菱形,可得OB=AC ,当点C 在y 轴上时,AC=C 在x 轴上时,AC=6, 故可得结论; (3)根据题意计算弧长即可.详解:(1)正方形,如图1,证明连接OB ,AC ,说明OB ⊥AC ,OB=AC ,可得四边形DEFG 是正方形.OB<(2)6如图2,由四边形DEFG是菱形,可得OB=AC,当点C在y轴上时,AC=C在xOB<;轴上时,AC=6, ∴6(3)2π.如图3,当四边形DEFG是正方形时,OB⊥AC,且OB=AC,构造△OBE≌△ACO,可得B点在以E(0,4)为圆心,2为半径的圆上运动.所以当C点从x轴负半轴到正半轴运动时,B点的运动路径为2π .图1 图2 图3点睛:本题主要考查了正方形的判定,菱形的性质以及弧长的计算.灵活运用正方形的判定定理和菱形的性质运用是解题的关键.14.倡导研究性学习方式,着力教材研究,习题研究,是学生跳出题海,提高学习能力和创新能力的有效途径.下面是一案例,请同学们认真阅读、研究,完成“类比猜想”的问题.习题如图(1),点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF,则EF=BE+DF,说明理由.解答:∵正方形ABCD中,AB=AD,∠BAD=∠ADC=∠B=90°,∴把△ABE绕点A逆时针旋转90°至△ADE′,点F、D、E′在一条直线上.∴∠E′AF=90°-45°=45°=∠EAF,又∵AE′=AE,AF=AF∴△AE′F≌△AEF(SAS)∴EF=E′F=DE′+DF=BE+DF.类比猜想:(1)请同学们研究:如图(2),在菱形ABCD中,点E、F分别在BC、CD上,当∠BAD=120°,∠EAF=60°时,还有EF=BE+DF吗?请说明理由.(2)在四边形ABCD中,点E、F分别在BC、CD上,当AB=AD,∠B+∠D=180°,∠EAF=∠BAD时,EF=BE+DF吗?请说明理由.【答案】证明见解析.【解析】试题分析:(1)把△ABE绕点A逆时针旋转120°至△ADE′,如图(2),连结E′F,根据菱形和旋转的性质得到AE=AE′,∠EAF=∠E′AF,利用“SAS”证明△AEF≌△AE′F,得到EF=E′F;由于∠ADE′+∠ADC=120°,则点F、D、E′不共线,所以DE′+DF>EF,即由BE+DF>EF;(2)把△ABE绕点A逆时针旋转∠BAD的度数至△ADE′,如图(3),根据旋转的性质得到AE′=AE,∠EAF=∠E′AF,然后利用“SAS”证明△AEF≌△AE′F,得到EF=E′F,由于∠ADE′+∠ADC=180°,知F、D、E′共线,因此有EF=DE′+DF=BE+DF;根据前面的条件和结论可归纳出结论.试题解析:(1)当∠BAD=120°,∠EAF=60°时,EF=BE+DF不成立,EF<BE+DF.理由如下:∵在菱形ABCD中,∠BAD=120°,∠EAF=60°,∴AB=AD,∠1+∠2=60°,∠B=∠ADC=60°,∴把△ABE绕点A逆时针旋转120°至△ADE′,如图(2),连结E′F,∴∠EAE′=120°,∠1=∠3,AE′=AE,DE′=BE,∠ADE′=∠B=60°,∴∠2+∠3=60°,∴∠EAF=∠E′AF,在△AEF和△AE′F中,∴△AEF≌△AE′F(SAS),∴EF=E′F,∵∠ADE′+∠ADC=120°,即点F、D、E′不共线,∴DE′+DF>EF∴BE+DF>EF;(2)当AB=AD,∠B+∠D=180°,∠EAF=∠BAD时,EF=BE+DF成立.理由如下:如图(3),∵AB=AD,∴把△ABE绕点A逆时针旋转∠BAD的度数至△ADE′,如图(3),∴∠EAE′=∠BAD,∠1=∠3,AE′=AE,DE′=BE,∠ADE′=∠B,∵∠B+∠D=180°,∴∠ADE′+∠D=180°,∴点F、D、E′共线,∵∠EAF=∠BAD,∴∠1+∠2=∠BAD,∴∠2+∠3=∠BAD,∴∠EAF=∠E′AF,在△AEF和△AE′F中,∴△AEF≌△AE′F(SAS),∴EF=E′F,∴EF=DE′+DF=BE+DF;归纳:在四边形ABCD中,点E、F分别在BC、CD上,当AB=AD,∠B+∠D=180°,∠EAF=∠BAD时,EF=BE+DF.考点:四边形综合题.15.(本题14分)小明在学习平行线相关知识时总结了如下结论:端点分别在两条平行线上的所有线段中,垂直于平行线的线段最短.小明应用这个结论进行了下列探索活动和问题解决.问题1:如图1,在Rt△ABC中,∠C=90°,AC=4,BC=3,P为AC边上的一动点,以PB,PA为边构造□APBQ,求对角线PQ的最小值及PQ最小时的值.(1)在解决这个问题时,小明构造出了如图2的辅助线,则PQ的最小值为,当PQ最小时= _____ __;(2)小明对问题1做了简单的变式思考.如图3,P为AB边上的一动点,延长PA到点E,使AE=nPA(n为大于0的常数).以PE,PC为边作□PCQE,试求对角线PQ长的最小值,并求PQ最小时的值;问题2:在四边形ABCD中,AD∥BC,AB⊥BC,AD=1,AB=2,BC=3.(1)如图4,若为上任意一点,以,为边作□.试求对角线长的最小值和PQ最小时的值.(2)若为上任意一点,延长到,使,再以,为边作□.请直接写出对角线长的最小值和PQ最小时的值.【答案】问题1:(1)3,;(2)PQ=,=.问题2:(1)=4,.(2)PQ的最小值为..【解析】试题分析:问题1:(1)首先根据条件可证四边形PCBQ是矩形,然后根据条件“四边形APBQ是平行四边形可得AP=QB=PC,从而可求的值.(2)由题可知:当QP⊥AC 时,PQ最小.过点C作CD⊥AB于点D.此时四边形CDPQ为矩形,PQ=CD,在Rt△ABC中,∠C=90°,AC=4,BC=3,利用面积可求出CD=,然后可求出AD=,由AE=nPA可得PE=,而PE=CQ=PD=AD-AP=,所以AP=.所以=.问题2:(1)设对角线与相交于点.Rt≌Rt.所以AD=HC,QH=AP.由题可知:当QP⊥AB时,PQ最小,此时=CH=4,根据条件可证四边形BPQH为矩形,从而QH=BP=AP.所以.(2)根据题意画出图形,当AB时,的长最小,PQ的最小值为..试题解析:问题1:(1)3,;(2)过点C作CD⊥AB于点D.由题意可知当PQ⊥AB时,PQ最短.所以此时四边形CDPQ为矩形.PQ=CD,DP=CQ=PE.因为∠BCA=90°,AC=4,BC=3,所以AB=5.所以CD=.所以PQ=.在Rt△ACD中AC=4,CD=,所以AD=.因为AE=nPA,所以PE==CQ=PD=AD-AP=.所以AP=.所以=.问题2:(1)如图2,设对角线与相交于点.所以G是DC的中点,作QH BC,交BC的延长线于H,因为AD//BC,所以.所以.又,所以Rt≌Rt.所以AD=HC,QH=AP.由图知,当AB时,的长最小,即=CH=4.易得四边形BPQH为矩形,所以QH=BP=AP.所以.(若学生有能力从梯形中位线角度考虑,若正确即可评分.但讲评时不作要求)(2)PQ的最小值为..考点:1.直角三角形的性质;2.全等三角形的判定与性质;3.平行四边形的性质;4矩形的判定与性质.。
人教中考数学综合题专题复习【平行四边形】专题解析附详细答案
一、平行四边形真题与模拟题分类汇编(难题易错题)1.在四边形ABCD 中,180B D ∠+∠=︒,对角线AC 平分BAD ∠.(1)如图1,若120DAB ∠=︒,且90B ∠=︒,试探究边AD 、AB 与对角线AC 的数量关系并说明理由.(2)如图2,若将(1)中的条件“90B ∠=︒”去掉,(1)中的结论是否成立?请说明理由.(3)如图3,若90DAB ∠=︒,探究边AD 、AB 与对角线AC 的数量关系并说明理由.【答案】(1)AC AD AB =+.证明见解析;(2)成立;(3)2AD AB AC +=.理由见解析.【解析】试题分析:(1)结论:AC=AD+AB ,只要证明AD=12AC ,AB=12AC 即可解决问题; (2)(1)中的结论成立.以C 为顶点,AC 为一边作∠ACE=60°,∠ACE 的另一边交AB 延长线于点E ,只要证明△DAC ≌△BEC 即可解决问题;(3)结论:AD +AB =2AC .过点C 作CE ⊥AC 交AB 的延长线于点E ,只要证明△ACE 是等腰直角三角形,△DAC ≌△BEC 即可解决问题;试题解析:解:(1)AC=AD+AB .理由如下:如图1中,在四边形ABCD 中,∠D+∠B=180°,∠B=90°,∴∠D=90°,∵∠DAB=120°,AC 平分∠DAB ,∴∠DAC=∠BAC=60°,∵∠B=90°,∴AB=12AC,同理AD=12AC.∴AC=AD+AB.(2)(1)中的结论成立,理由如下:以C为顶点,AC为一边作∠ACE=60°,∠ACE的另一边交AB延长线于点E,∵∠BAC=60°,∴△AEC为等边三角形,∴AC=AE=CE,∵∠D+∠ABC=180°,∠DAB=120°,∴∠DCB=60°,∴∠DCA=∠BCE,∵∠D+∠ABC=180°,∠ABC+∠EBC=180°,∴∠D=∠CBE,∵CA=CE,∴△DAC≌△BEC,∴AD=BE,∴AC=AD+AB.(3)结论:AD+AB=2AC.理由如下:过点C作CE⊥AC交AB的延长线于点E,∵∠D+∠B=180°,∠DAB=90°,∴DCB=90°,∵∠ACE=90°,∴∠DCA=∠BCE,又∵AC平分∠DAB,∴∠CAB=45°,∴∠E=45°.∴AC=CE.又∵∠D+∠ABC=180°,∠D=∠CBE,∴△CDA≌△CBE,∴AD=BE,∴AD+AB=AE.在Rt△ACE中,∠CAB=45°,∴AE=245ACACcos︒=∴2AD AB AC+=.2.如图,四边形ABCD中,AD∥BC,∠A=90°,BD=BC,点E为CD的中点,射线BE交AD 的延长线于点F,连接CF.(1)求证:四边形BCFD是菱形;(2)若AD=1,BC=2,求BF的长.【答案】(1)证明见解析(2)3【解析】(1)∵AF∥BC,∴∠DCB=∠CDF,∠FBC=∠BFD,∵点E为CD的中点,∴DE=EC,在△BCE与△FDE中,FBC BFDDCB CDFDE EC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BCE≌△FDE,∴DF=BC,又∵DF∥BC,∴四边形BCDF为平行四边形,∵BD=BC,∴四边形BCFD是菱形;(2)∵四边形BCFD是菱形,∴BD=DF=BC=2,在Rt△BAD中,AB223BD AD-,∵AF=AD+DF=1+2=3,在Rt△BAF中,BF22AB AF+3.3.图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,每个小正方形的顶点叫做格点.(1)在图1中画出等腰直角三角形MON,使点N在格点上,且∠MON=90°;(2)在图2中以格点为顶点画一个正方形ABCD,使正方形ABCD面积等于(1)中等腰直角三角形MON面积的4倍,并将正方形ABCD分割成以格点为顶点的四个全等的直角三角形和一个正方形,且正方形ABCD面积没有剩余(画出一种即可).【答案】(1)作图参见解析;(2)作图参见解析.【解析】试题分析:(1)过点O向线段OM作垂线,此直线与格点的交点为N,连接MN即可;(2)根据勾股定理画出图形即可.试题解析:(1)过点O向线段OM作垂线,此直线与格点的交点为N,连接MN,如图1所示;(2)等腰直角三角形MON面积是5,因此正方形面积是20,如图2所示;于是根据勾股定理画出图3:考点:1.作图﹣应用与设计作图;2.勾股定理.4.(问题情境)在△ABC中,AB=AC,点P为BC所在直线上的任一点,过点P作PD⊥AB,PE⊥AC,垂足分别为D、E,过点C作CF⊥AB,垂足为F.当P在BC边上时(如图1),求证:PD+PE=CF.证明思路是:如图2,连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得:PD+PE=CF.(不要证明)(变式探究)(1)当点P在CB延长线上时,其余条件不变(如图3),试探索PD、PE、CF之间的数量关系并说明理由;请运用上述解答中所积累的经验和方法完成下列两题:(结论运用)(2)如图4,将长方形ABCD沿EF折叠,使点D落在点B上,点C落在点C′处,点P为折痕EF上的任一点,过点P作PG⊥BE、PH⊥BC,垂足分别为G、H,若AD =16,CF=6,求PG+PH的值.(迁移拓展)(3)在直角坐标系中,直线l1:y=-43x+8与直线l2:y=﹣2x+8相交于点A,直线l1、l2与x轴分别交于点B、点C.点P是直线l2上一个动点,若点P到直线l1的距离为2.求点P的坐标.【答案】【变式探究】证明见解析【结论运用】8【迁移拓展】(﹣1,6),(1,10)【解析】【变式探究】连接AP,同理利用△ABP与△ACP面积之差等于△ABC的面积可以证得;【结论运用】过点E作EQ⊥BC,垂足为Q,根据勾股定理和矩形的性质解答即可;【迁移拓展】分两种情况,利用结论,求得点P到x轴的距离,再利用待定系数法可求出P的坐标.【详解】变式探究:连接AP,如图3:∵PD⊥AB,PE⊥AC,CF⊥AB,且S△ABC=S△ACP﹣S△ABP,∴12AB•CF=12AC•PE﹣12AB•PD.∵AB=AC,∴CF=PD﹣PE;结论运用:过点E作EQ⊥BC,垂足为Q,如图④,∵四边形ABCD是长方形,∴AD=BC,∠C=∠ADC=90°.∵AD=16,CF=6,∴BF=BC﹣CF=AD﹣CF=5,由折叠可得:DF=BF,∠BEF=∠DEF.∴DF=5.∵∠C=90°,∴DC2222106DF CF-=-8.∵EQ⊥BC,∠C=∠ADC=90°,∴∠EQC=90°=∠C=∠ADC.∴四边形EQCD是长方形.∴EQ=DC=4.∵AD∥BC,∴∠DEF=∠EFB.∵∠BEF=∠DEF,∴∠BEF=∠EFB.∴BE=BF,由问题情境中的结论可得:PG+PH=EQ.∴PG+PH=8.∴PG+PH的值为8;迁移拓展:如图,由题意得:A(0,8),B(6,0),C(﹣4,0)∴AB2268+10,BC=10.∴AB=BC,(1)由结论得:P1D1+P1E1=OA=8∵P1D1=1=2,∴P1E1=6 即点P1的纵坐标为6又点P1在直线l2上,∴y=2x+8=6,∴x=﹣1,即点P1的坐标为(﹣1,6);(2)由结论得:P2E2﹣P2D2=OA=8∵P2D2=2,∴P2E2=10 即点P1的纵坐标为10又点P1在直线l2上,∴y=2x+8=10,∴x=1,即点P1的坐标为(1,10)【点睛】本题考查了矩形的性质与判定、等腰三角形的性质与判定及勾股定理等知识点,利用面积法列出等式是解决问题的关键.5.(1)如图1,将矩形ABCD折叠,使BC落在对角线BD上,折痕为BE,点C落在∠的度数为______.点C'处,若42ADB=∠,则DBE(2)小明手中有一张矩形纸片ABCD ,4AB =,9AD =.(画一画)如图2,点E 在这张矩形纸片的边AD 上,将纸片折叠,使AB 落在CE 所在直线上,折痕设为MN (点M ,N 分别在边AD ,BC 上),利用直尺和圆规画出折痕MN (不写作法,保留作图痕迹,并用黑色水笔把线段描清楚);(算一算)如图3,点F 在这张矩形纸片的边BC 上,将纸片折叠,使FB 落在射线FD 上,折痕为GF ,点,A B 分别落在点A ',B '处,若73AG =,求B D '的长.【答案】(1)21;(2)画一画;见解析;算一算:3B D '=【解析】【分析】(1)利用平行线的性质以及翻折不变性即可解决问题;(2)【画一画】,如图2中,延长BA 交CE 的延长线由G ,作∠BGC 的角平分线交AD 于M ,交BC 于N ,直线MN 即为所求;【算一算】首先求出GD=9-72033=,由矩形的性质得出AD ∥BC ,BC=AD=9,由平行线的性质得出∠DGF=∠BFG ,由翻折不变性可知,∠BFG=∠DFG ,证出∠DFG=∠DGF ,由等腰三角形的判定定理证出DF=DG=203,再由勾股定理求出CF ,可得BF ,再利用翻折不变性,可知FB′=FB ,由此即可解决问题.【详解】 (1)如图1所示:∵四边形ABCD 是矩形,∴AD∥BC,∴∠ADB=∠DBC=42°,由翻折的性质可知,∠DBE=∠EBC=12∠DBC=21°,故答案为21.(2)【画一画】如图所示:【算一算】如3所示:∵AG=73,AD=9,∴GD=9-72033=,∵四边形ABCD是矩形,∴AD∥BC,BC=AD=9,∴∠DGF=∠BFG,由翻折不变性可知,∠BFG=∠DFG,∴∠DFG=∠DGF,∴DF=DG=203,∵CD=AB=4,∠C=90°,∴在Rt△CDF中,由勾股定理得:22222016433 DF CD⎛⎫-=-=⎪⎝⎭,∴BF=BC-CF=9161133-=,由翻折不变性可知,FB=FB′=11 3,∴B′D=DF-FB′=2011333-=.【点睛】四边形综合题,考查了矩形的性质、翻折变换的性质、勾股定理、等腰三角形的判定、平行线的性质等知识,解题的关键是灵活运用所学知识解决问题,学会利用翻折不变性解决问题.6.如图,已知矩形ABCD中,E是AD上一点,F是AB上的一点,EF⊥EC,且EF=EC.(1)求证:△AEF≌△DCE.(2)若DE=4cm,矩形ABCD的周长为32cm,求AE的长.【答案】(1)证明见解析;(2)6cm.【解析】分析:(1)根据EF⊥CE,求证∠AEF=∠ECD.再利用AAS即可求证△AEF≌△DCE.(2)利用全等三角形的性质,对应边相等,再根据矩形ABCD的周长为32cm,即可求得AE的长.详解:(1)证明:∵EF⊥CE,∴∠FEC=90°,∴∠AEF+∠DEC=90°,而∠ECD+∠DEC=90°,∴∠AEF=∠ECD.在Rt△AEF和Rt△DEC中,∠FAE=∠EDC=90°,∠AEF=∠ECD,EF=EC.∴△AEF≌△DCE.(2)解:∵△AEF≌△DCE.AE=CD.AD=AE+4.∵矩形ABCD的周长为32cm,∴2(AE+AE+4)=32.解得,AE=6(cm).答:AE的长为6cm.点睛:此题主要考查学生对全等三角形的判定与性质和矩形的性质等知识点的理解和掌握,难易程度适中,是一道很典型的题目.7.如图,在正方形ABCD中,点E在CD上,AF⊥AE交CB的延长线于F.求证:AE=AF.【答案】见解析【解析】【分析】根据同角的余角相等证得∠BAF=∠DAE,再利用正方形的性质可得AB=AD,∠ABF=∠ADE=90°,根据ASA判定△ABF≌△ADE,根据全等三角形的性质即可证得AF=AE.【详解】∵AF⊥AE,∴∠BAF+∠BAE=90°,又∵∠DAE+∠BAE=90°,∴∠BAF=∠DAE,∵四边形ABCD是正方形,∴AB=AD,∠ABF=∠ADE=90°,在△ABF和△ADE中,,∴△ABF≌△ADE(ASA),∴AF=AE.【点睛】本题主要考查了正方形的性质、全等三角形的判定和性质等知识点,证明△ABF≌△ADE是解决本题的关键.8.已知点O是△ABC内任意一点,连接OA并延长到E,使得AE=OA,以OB,OC为邻边作▱OBFC,连接OF与BC交于点H,再连接EF.(1)如图1,若△ABC为等边三角形,求证:①EF⊥BC;②EF=BC;(2)如图2,若△ABC为等腰直角三角形(BC为斜边),猜想(1)中的两个结论是否成立?若成立,直接写出结论即可;若不成立,请你直接写出你的猜想结果;(3)如图3,若△ABC是等腰三角形,且AB=AC=kBC,请你直接写出EF与BC之间的数量关系.【答案】(1)见解析;(2)EF⊥BC仍然成立;(3)EF=BC【解析】试题分析:(1)由平行四边形的性质得到BH=HC=BC,OH=HF,再由等边三角形的性质得到AB=BC,AH⊥BC,根据勾股定理得到AH=BC,即可;(2)由平行四边形的性质得到BH=HC=BC,OH=HF,再由等腰直角三角形的性质得到AB=BC,AH⊥BC,根据勾股定理得到AH=BC,即可;(3)由平行四边形的性质得到BH=HC=BC,OH=HF,再由等腰三角形的性质和AB=AC=kBC得到AB=BC,AH⊥BC,根据勾股定理得到AH=BC,即可.试题解析:(1)连接AH,如图1,∵四边形OBFC是平行四边形,∴BH=HC=BC,OH=HF,∵△ABC是等边三角形,∴AB=BC,AH⊥BC,在Rt△ABH中,AH2=AB2﹣BH2,∴AH==BC,∵OA=AE,OH=HF,∴AH是△OEF的中位线,∴AH=EF,AH∥EF,∴EF⊥BC,BC=EF,∴EF⊥BC,EF=BC;(2)EF⊥BC仍然成立,EF=BC,如图2,∵四边形OBFC是平行四边形,∴BH=HC=BC,OH=HF,∵△ABC是等腰三角形,∴AB=BC,AH⊥BC,在Rt△ABH中,AH2=AB2﹣BH2=(BH)2﹣BH2=BH2,∴AH=BH=BC,∵OA=AE,OH=HF,∴AH是△OEF的中位线,∴AH=EF,AH∥EF,∴EF⊥BC,BC=EF,∴EF⊥BC,EF=BC;(3)如图3,∵四边形OBFC是平行四边形,∴BH=HC=BC,OH=HF,∵△ABC 是等腰三角形, ∴AB=kBC ,AH ⊥BC ,在Rt △ABH 中,AH 2=AB 2﹣BH 2=(kBC )2﹣(BC )2=(k 2-)BC 2,∴AH=BH=BC ,∵OA=AE ,OH=HF , ∴AH 是△OEF 的中位线, ∴AH=EF ,AH ∥EF , ∴EF ⊥BC ,BC=EF ,∴EF=BC .考点:四边形综合题.9.已知ABC ,以AC 为边在ABC 外作等腰ACD ,其中AC AD =. (1)如图①,若AB AE =,60DAC EAB ∠=∠=︒,求BFC ∠的度数. (2)如图②,ABC α∠=,ACD β∠=,4BC =,6BD =.①若30α=︒,60β=︒,AB 的长为______.②若改变,αβ的大小,但90αβ+=︒,ABC 的面积是否变化?若不变,求出其值;若变化,说明变化的规律.【答案】(1)120°;(2)55【解析】试题分析:(1)根据SAS ,可首先证明△AEC ≌△ABD ,再利用全等三角形的性质,可得对应角相等,根据三角形的外角的定理,可求出∠BFC 的度数;(2)①如图2,在△ABC 外作等边△BAE ,连接CE ,利用旋转法证明△EAC ≌△BAD ,可证∠EBC=90°,EC=BD=6,因为BC=4,在Rt △BCE 中,由勾股定理求BE 即可;②过点B 作BE ∥AH ,并在BE 上取BE=2AH ,连接EA ,EC .并取BE 的中点K ,连接AK ,仿照(2)利用旋转法证明△EAC ≌△BAD ,求得EC=DB ,利用勾股定理即可得出结论. 试题解析:解:(1)∵AE=AB,AD=AC,∵∠EAB=∠DAC=60°,∴∠EAC=∠EAB+∠BAC,∠DAB=∠DAC+∠BAC,∴∠EAC=∠DAB,在△AEC和△ABD中{AE ABEAC BAD AC AD=∠=∠=∴△AEC≌△ABD(SAS),∴∠AEC=∠ABD,∵∠BFC=∠BEF+∠EBF=∠AEB+∠ABE,∴∠BFC=∠AEB+∠ABE=120°,故答案为120°;(2)①如图2,以AB为边在△ABC外作正三角形ABE,连接CE.由(1)可知△EAC≌△BAD.∴EC=BD.∴EC=BD=6,∵∠BAE=60°,∠ABC=30°,∴∠EBC=90°.在RT△EBC中,EC=6,BC=4,∴22EC BC-2264-∴5②若改变α,β的大小,但α+β=90°,△ABC的面积不变化,以下证明:如图2,作AH⊥BC交BC于H,过点B作BE∥AH,并在BE上取BE=2AH,连接EA,EC.并取BE的中点K,连接AK.∵AH⊥BC于H,∴∠AHC=90°.∵BE∥AH,∴∠EBC=90°.∵∠EBC=90°,BE=2AH,∴EC2=EB2+BC2=4AH2+BC2.∵K为BE的中点,BE=2AH,∴BK=AH.∵BK∥AH,∴四边形AKBH为平行四边形.又∵∠EBC=90°,∴四边形AKBH为矩形.∠ABE=∠ACD,∴∠AKB=90°.∴AK是BE的垂直平分线.∴AB=AE.∵AB=AE,AC=AD,∠ABE=∠ACD,∴∠EAB=∠DAC,∴∠EAB+∠EAD=∠DAC+∠EAD,即∠EAC=∠BAD,在△EAC与△BAD中{AB AEEAC BAD AC AD=∠=∠=∴△EAC≌△BAD.∴EC=BD=6.在RT△BCE中,BE=22EC BC-=25,∴AH=12BE=5,∴S△ABC=12BC•AH=25考点:全等三角形的判定与性质;等腰三角形的性质10.(本题14分)小明在学习平行线相关知识时总结了如下结论:端点分别在两条平行线上的所有线段中,垂直于平行线的线段最短.小明应用这个结论进行了下列探索活动和问题解决.问题1:如图1,在Rt△ABC中,∠C=90°,AC=4,BC=3,P为AC边上的一动点,以PB,PA为边构造□APBQ,求对角线PQ的最小值及PQ最小时的值.(1)在解决这个问题时,小明构造出了如图2的辅助线,则PQ的最小值为,当PQ最小时= _____ __;(2)小明对问题1做了简单的变式思考.如图3,P为AB边上的一动点,延长PA到点E,使AE=nPA(n为大于0的常数).以PE,PC为边作□PCQE,试求对角线PQ长的最小值,并求PQ最小时的值;问题2:在四边形ABCD中,AD∥BC,AB⊥BC,AD=1,AB=2,BC=3.(1)如图4,若为上任意一点,以,为边作□.试求对角线长的最小值和PQ最小时的值.(2)若为上任意一点,延长到,使,再以,为边作□.请直接写出对角线长的最小值和PQ最小时的值.【答案】问题1:(1)3,;(2)PQ=,=.问题2:(1)=4,.(2)PQ的最小值为..【解析】试题分析:问题1:(1)首先根据条件可证四边形PCBQ是矩形,然后根据条件“四边形APBQ是平行四边形可得AP=QB=PC,从而可求的值.(2)由题可知:当QP⊥AC 时,PQ最小.过点C作CD⊥AB于点D.此时四边形CDPQ为矩形,PQ=CD,在Rt△ABC中,∠C=90°,AC=4,BC=3,利用面积可求出CD=,然后可求出AD=,由AE=nPA可得PE=,而PE=CQ=PD=AD-AP=,所以AP=.所以=.问题2:(1)设对角线与相交于点.Rt≌Rt.所以AD=HC,QH=AP.由题可知:当QP⊥AB时,PQ最小,此时=CH=4,根据条件可证四边形BPQH为矩形,从而QH=BP=AP.所以.(2)根据题意画出图形,当AB 时,的长最小,PQ的最小值为..试题解析:问题1:(1)3,;(2)过点C作CD⊥AB于点D.由题意可知当PQ⊥AB时,PQ最短.所以此时四边形CDPQ为矩形.PQ=CD,DP=CQ=PE.因为∠BCA=90°,AC=4,BC=3,所以AB=5.所以CD=.所以PQ=.在Rt△ACD中AC=4,CD=,所以AD=.因为AE=nPA,所以PE==CQ=PD=AD-AP=.所以AP=.所以=.问题2:(1)如图2,设对角线与相交于点.所以G是DC的中点,作QH BC,交BC的延长线于H,因为AD//BC,所以.所以.又,所以Rt≌Rt.所以AD=HC,QH=AP.由图知,当AB时,的长最小,即=CH=4.易得四边形BPQH为矩形,所以QH=BP=AP.所以.(若学生有能力从梯形中位线角度考虑,若正确即可评分.但讲评时不作要求)(2)PQ的最小值为..考点:1.直角三角形的性质;2.全等三角形的判定与性质;3.平行四边形的性质;4矩形的判定与性质.。
2020-2021中考数学平行四边形-经典压轴题附详细答案
2020-2021中考数学平行四边形-经典压轴题附详细答案一、平行四边形1.操作:如图,边长为2的正方形ABCD,点P在射线BC上,将△ABP沿AP向右翻折,得到△AEP,DE所在直线与AP所在直线交于点F.探究:(1)如图1,当点P在线段BC上时,①若∠BAP=30°,求∠AFE的度数;②若点E 恰为线段DF的中点时,请通过运算说明点P会在线段BC的什么位置?并求出此时∠AFD 的度数.归纳:(2)若点P是线段BC上任意一点时(不与B,C重合),∠AFD的度数是否会发生变化?试证明你的结论;猜想:(3)如图2,若点P在BC边的延长线上时,∠AFD的度数是否会发生变化?试在图中画出图形,并直接写出结论.【答案】(1)①45°;②BC的中点,45°;(2)不会发生变化,证明参见解析;(3)不会发生变化,作图参见解析.【解析】试题分析:(1)当点P在线段BC上时,①由折叠得到一对角相等,再利用正方形性质求出∠DAE度数,在三角形AFD中,利用内角和定理求出所求角度数即可;②由E为DF中点,得到P为BC中点,如图1,连接BE交AF于点O,作EG∥AD,得EG∥BC,得到AF 垂直平分BE,进而得到三角形BOP与三角形EOG全等,利用全等三角形对应边相等得到BP=EG=1,得到P为BC中点,进而求出所求角度数即可;(2)若点P是线段BC上任意一点时(不与B,C重合),∠AFD的度数不会发生变化,作AG⊥DF于点G,如图1(a)所示,利用折叠的性质及三线合一性质,根据等式的性质求出∠1+∠2的度数,即为∠FAG度数,即可求出∠F度数;(3)作出相应图形,如图2所示,若点P在BC边的延长线上时,∠AFD的度数不会发生变化,理由为:作AG⊥DE于G,得∠DAG=∠EAG,设∠DAG=∠EAG=α,根据∠FAE为∠BAE一半求出所求角度数即可.试题解析:(1)①当点P在线段BC上时,∵∠EAP=∠BAP=30°,∴∠DAE=90°﹣30°×2=30°,在△ADE中,AD=AE,∠DAE=30°,∴∠ADE=∠AED=(180°﹣30°)÷2=75°,在△AFD中,∠FAD=30°+30°=60°,∠ADF=75°,∴∠AFE=180°﹣60°﹣75°=45°;②点E为DF 的中点时,P也为BC的中点,理由如下:如图1,连接BE交AF于点O,作EG∥AD,得EG∥BC,∵EG∥AD,DE=EF,∴EG=AD=1,∵AB=AE,∴点A在线段BE的垂直平分线上,同理可得点P在线段BE的垂直平分线上,∴AF垂直平分线段BE,∴OB=OE,∵GE∥BP,∴∠OBP=∠OEG,∠OPB=∠OGE,∴△BOP≌△EOG,∴BP=EG=1,即P为BC的中点,∴∠DAF=90°﹣∠BAF,∠ADF=45°+∠BAF,∴∠AFD=180°﹣∠DAF﹣∠ADF=45°;(2)∠AFD的度数不会发生变化,作AG⊥DF于点G,如图1(a)所示,在△ADE中,AD=AE,AG⊥DE,∵AG平分∠DAE,即∠2=∠DAG,且∠1=∠BAP,∴∠1+∠2=×90°=45°,即∠FAG=45°,则∠AFD=90°﹣45°=45°;(3)如图2所示,∠AFE的大小不会发生变化,∠AFE=45°,作AG⊥DE于G,得∠DAG=∠EAG,设∠DAG=∠EAG=α,∴∠BAE=90°+2α,∴∠FAE=∠BAE=45°+α,∴∠FAG=∠FAE﹣∠EAG=45°,在Rt△AFG中,∠AFE=90°﹣45°=45°.考点:1.正方形的性质;2.折叠性质;3.全等三角形的判定与性质.2.操作与证明:如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF.取AF中点M,EF的中点N,连接MD、MN.(1)连接AE,求证:△AEF是等腰三角形;猜想与发现:(2)在(1)的条件下,请判断MD、MN的数量关系和位置关系,得出结论.结论1:DM、MN的数量关系是;结论2:DM、MN的位置关系是;拓展与探究:(3)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.【答案】(1)证明参见解析;(2)相等,垂直;(3)成立,理由参见解析.【解析】试题分析:(1)根据正方形的性质以及等腰直角三角形的知识证明出CE=CF,继而证明出△ABE≌△ADF,得到AE=AF,从而证明出△AEF是等腰三角形;(2)DM、MN的数量关系是相等,利用直角三角形斜边中线等于斜边一半和三角形中位线定理即可得出结论.位置关系是垂直,利用三角形外角性质和等腰三角形两个底角相等性质,及全等三角形对应角相等即可得出结论;(3)成立,连接AE,交MD于点G,标记出各个角,首先证明出MN∥AE,MN=AE,利用三角形全等证出AE=AF,而DM=AF,从而得到DM,MN数量相等的结论,再利用三角形外角性质和三角形全等,等腰三角形性质以及角角之间的数量关系得到∠DMN=∠DGE=90°.从而得到DM、MN的位置关系是垂直.试题解析:(1)∵四边形ABCD是正方形,∴AB=AD=BC=CD,∠B=∠ADF=90°,∵△CEF是等腰直角三角形,∠C=90°,∴CE=CF,∴BC﹣CE=CD﹣CF,即BE=DF,∴△ABE≌△ADF,∴AE=AF,∴△AEF是等腰三角形;(2)DM、MN的数量关系是相等,DM、MN的位置关系是垂直;∵在Rt△ADF中DM是斜边AF的中线,∴AF=2DM,∵MN 是△AEF的中位线,∴AE=2MN,∵AE=AF,∴DM=MN;∵∠DMF=∠DAF+∠ADM,AM=MD,∵∠FMN=∠FAE,∠DAF=∠BAE,∴∠ADM=∠DAF=∠BAE,∴∠DMN=∠FMN+∠DMF=∠DAF+∠BAE+∠FAE=∠BAD=90°,∴DM⊥MN;(3)(2)中的两个结论还成立,连接AE,交MD于点G,∵点M为AF的中点,点N为EF的中点,∴MN∥AE,MN=AE,由已知得,AB=AD=BC=CD,∠B=∠ADF,CE=CF,又∵BC+CE=CD+CF,即BE=DF,∴△ABE≌△ADF,∴AE=AF,在Rt△ADF中,∵点M为AF的中点,∴DM=AF,∴DM=MN,∵△ABE≌△ADF,∴∠1=∠2,∵AB∥DF,∴∠1=∠3,同理可证:∠2=∠4,∴∠3=∠4,∵DM=AM,∴∠MAD=∠5,∴∠DGE=∠5+∠4=∠MAD+∠3=90°,∵MN∥AE,∴∠DMN=∠DGE=90°,∴DM⊥MN.所以(2)中的两个结论还成立.考点:1.正方形的性质;2.全等三角形的判定与性质;3.三角形中位线定理;4.旋转的性质.3.如图,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,E、F在菱形的边BC,CD上.(1)证明:BE=CF.(2)当点E,F分别在边BC,CD上移动时(△AEF保持为正三角形),请探究四边形AECF的面积是否发生变化?若不变,求出这个定值;如果变化,求出其最大值.(3)在(2)的情况下,请探究△CEF的面积是否发生变化?若不变,求出这个定值;如果变化,求出其最大值.【答案】(1)见解析;(2)33)见解析【解析】试题分析:(1)先求证AB=AC,进而求证△ABC、△ACD为等边三角形,得∠4=60°,AC=AB进而求证△ABE≌△ACF,即可求得BE=CF;(2)根据△ABE≌△ACF可得S△ABE=S△ACF,故根据S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC即可解题;(3)当正三角形AEF的边AE与BC垂直时,边AE最短.△AEF的面积会随着AE的变化而变化,且当AE最短时,正三角形AEF的面积会最小,又根据S△CEF=S四边形AECF-S△AEF,则△CEF的面积就会最大.试题解析:(1)证明:连接AC,∵∠1+∠2=60°,∠3+∠2=60°,∴∠1=∠3,∵∠BAD=120°,∴∠ABC=∠ADC=60°∵四边形ABCD是菱形,∴AB=BC=CD=AD,∴△ABC、△ACD为等边三角形∴∠4=60°,AC=AB,∴在△ABE和△ACF中,,∴△ABE≌△ACF.(ASA)∴BE=CF.(2)解:由(1)得△ABE≌△ACF,则S△ABE=S△ACF.故S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC,是定值.作AH⊥BC于H点,则BH=2,S四边形AECF=S△ABC===;(3)解:由“垂线段最短”可知,当正三角形AEF的边AE与BC垂直时,边AE最短.故△AEF的面积会随着AE的变化而变化,且当AE最短时,正三角形AEF的面积会最小,又S△CEF=S四边形AECF﹣S△AEF,则△CEF的面积就会最大.由(2)得,S△CEF=S四边形AECF﹣S△AEF=﹣=.点睛:本题考查了菱形每一条对角线平分一组对角的性质,考查了全等三角形的证明和全等三角形对应边相等的性质,考查了三角形面积的计算,本题中求证△ABE≌△ACF是解题的关键.4.如图,在平行四边形ABCD中,AD⊥DB,垂足为点D,将平行四边形ABCD折叠,使点B落在点D的位置,点C落在点G的位置,折痕为EF,EF交对角线BD于点P.(1)连结CG,请判断四边形DBCG的形状,并说明理由;(2)若AE=BD,求∠EDF的度数.【答案】(1)四边形BCGD是矩形,理由详见解析;(2)∠EDF=120°.【解析】【分析】(1)根据平行四边形的性质和折叠性质以及矩形的判定解答即可;(2)根据折叠的性质以及直角三角形的性质和等边三角形的判定与性质解答即可.【详解】解:(1)四边形BCGD是矩形,理由如下,∵四边形ABCD是平行四边形,∴BC∥AD,即BC∥DG,由折叠可知,BC=DG,∴四边形BCGD是平行四边形,∵AD⊥BD,∴∠CBD=90°,∴四边形BCGD是矩形;(2)由折叠可知:EF垂直平分BD,∴BD⊥EF,DP=BP,∵AD⊥BD,∴EF∥AD∥BC,∴AE PD1==BE BP∴AE=BE,∴DE是Rt△ADB斜边上的中线,∴DE=AE=BE,∵AE=BD,∴DE=BD=BE,∴△DBE是等边三角形,∴∠EDB=∠DBE=60°,∵AB∥DC,∴∠DBC=∠DBE=60°,∴∠EDF=120°.【点睛】本题考查了平行四边形的性质,折叠性质,等边三角形的性质和判定,主要考查学生运用定理进行推理和计算的能力,题目综合性比较强,有一定的难度5.如图,点O是正方形ABCD两条对角线的交点,分别延长CO到点G,OC到点E,使OG=2OD、OE=2OC,然后以OG、OE为邻边作正方形OEFG.(1)如图1,若正方形OEFG的对角线交点为M,求证:四边形CDME是平行四边形.(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转,得到正方形OE′F′G′,如图2,连接AG′,DE′,求证:AG′=DE′,AG′⊥DE′;(3)在(2)的条件下,正方形OE′F′G′的边OG′与正方形ABCD的边相交于点N,如图3,设旋转角为α(0°<α<180°),若△AON是等腰三角形,请直接写出α的值.【答案】(1)证明见解析;(2)证明见解析;(3)α的值是22.5°或45°或112.5°或135°或157.5°.【解析】【分析】(1)由四边形OEFG是正方形,得到ME=12GE,根据三角形的中位线的性质得到CD∥GE,CD=12GE,求得CD=GE,即可得到结论;(2)如图2,延长E′D交AG′于H,由四边形ABCD是正方形,得到AO=OD,∠AOD=∠COD=90°,由四边形OEFG是正方形,得到OG′=OE′,∠E′OG′=90°,由旋转的性质得到∠G′OD=∠E′OC,求得∠AOG′=∠COE′,根据全等三角形的性质得到AG′=DE′,∠AG′O=∠DE′O,即可得到结论;(3)分类讨论,根据三角形的外角的性质和等腰三角形的性质即可得到结论.【详解】(1)证明:∵四边形OEFG 是正方形,∴ME=12GE , ∵OG=2OD 、OE=2OC , ∴CD ∥GE ,CD=12GE , ∴CD=GE ,∴四边形CDME 是平行四边形;(2)证明:如图2,延长E′D 交AG′于H ,∵四边形ABCD 是正方形,∴AO=OD ,∠AOD=∠COD=90°,∵四边形OEFG 是正方形,∴OG′=OE′,∠E′OG′=90°,∵将正方形OEFG 绕点O 逆时针旋转,得到正方形OE′F′G′,∴∠G′OD=∠E′OC ,∴∠AOG′=∠COE′,在△AG′O 与△ODE′中,OA OD AOG DOE OG OE ⎧⎪∠'∠'⎨⎪''⎩===,∴△AG′O ≌△ODE′∴AG′=DE′,∠AG′O=∠DE′O ,∵∠1=∠2,∴∠G′HD=∠G′OE′=90°,∴AG′⊥DE′;(3)①正方形OE′F′G′的边OG′与正方形ABCD 的边AD 相交于点N ,如图3,Ⅰ、当AN=AO 时,∵∠OAN=45°,∴∠ANO=∠AON=67.5°,∵∠ADO=45°,∴α=∠ANO-∠ADO=22.5°;Ⅱ、当AN=ON 时,∴∠NAO=∠AON=45°,∴∠ANO=90°,∴α=90°-45°=45°;②正方形OE′F′G′的边OG′与正方形ABCD 的边AB 相交于点N ,如图4,Ⅰ、当AN=AO 时,∵∠OAN=45°,∴∠ANO=∠AON=67.5°,∵∠ADO=45°,∴α=∠ANO+90°=112.5°;Ⅱ、当AN=ON 时,∴∠NAO=∠AON=45°,∴∠ANO=90°,∴α=90°+45°=135°,Ⅲ、当AN=AO 时,旋转角a=∠ANO+90°=67.5+90=157.5°,综上所述:若△AON 是等腰三角形时,α的值是22.5°或45°或112.5°或135°或157.5°.【点睛】本题主要考查了正方形的性质、全等三角形的判定与性质、锐角三角函数、旋转变换的性质的综合运用,有一定的综合性,分类讨论当△AON 是等腰三角形时,求α的度数是本题的难点.6.△ABC 为等边三角形,AF AB =.BCD BDC AEC ∠=∠=∠.(1)求证:四边形ABDF 是菱形.(2)若BD 是ABC ∠的角平分线,连接AD ,找出图中所有的等腰三角形.【答案】(1)证明见解析;(2)图中等腰三角形有△ABC,△BDC,△ABD,△ADF,△ADC,△ADE.【解析】【分析】(1)先求证BD∥AF,证明四边形ABDF是平行四边形,再利用有一组邻边相等的平行四边形是菱形即可证明;(2)先利用BD平分∠ABC,得到BD垂直平分线段AC,进而证明△DAC是等腰三角形,根据BD⊥AC,AF⊥AC,找到角度之间的关系,证明△DAE是等腰三角形,进而得到BC=BD=BA=AF=DF,即可解题,见详解.【详解】(1)如图1中,∵∠BCD=∠BDC,∴BC=BD,∵△ABC是等边三角形,∴AB=BC,∵AB=AF,∴BD=AF,∵∠BDC=∠AEC,∴BD∥AF,∴四边形ABDF是平行四边形,∵AB=AF,∴四边形ABDF是菱形.(2)解:如图2中,∵BA=BC,BD平分∠ABC,∴BD垂直平分线段AC,∴DA=DC,∴△DAC是等腰三角形,∵AF∥BD,BD⊥AC∴AF⊥AC,∴∠EAC=90°,∵∠DAC=∠DCA,∠DAC+∠DAE=90°,∠DCA+∠AEC=90°,∴∠DAE=∠DEA,∴DA=DE,∴△DAE是等腰三角形,∵BC=BD=BA=AF=DF,∴△BCD,△ABD,△ADF都是等腰三角形,综上所述,图中等腰三角形有△ABC,△BDC,△ABD,△ADF,△ADC,△ADE.【点睛】本题考查菱形的判定,等边三角形的性质,等腰三角形的判定等知识,属于中考常考题型,熟练掌握等腰三角形的性质是解题的关键.7.如图,现将平行四边形ABCD沿其对角线AC折叠,使点B落在点B′处.AB′与CD交于点E.(1)求证:△AED≌△CEB′;(2)过点E作EF⊥AC交AB于点F,连接CF,判断四边形AECF的形状并给予证明.【答案】(1)见解析(2)见解析【解析】【分析】(1)由题意可得AD=BC=B'C,∠B=∠D=∠B',且∠AED=∠CEB',利用AAS证明全等,则结论可得;(2)由△AED≌△CEB′可得AE=CE,且EF⊥AC,根据等腰三角形的性质可得EF垂直平分AC,∠AEF=∠CEF.即AF=CF,∠CEF=∠AFE=∠AEF,可得AE=AF,则可证四边形AECF是菱形.【详解】证明:(1)∵四边形ABCD是平行四边形∴AD=BC,CD∥AB,∠B=∠D∵平行四边形ABCD沿其对角线AC折叠∴BC=B'C,∠B=∠B'∴∠D=∠B',AD=B'C且∠DEA=∠B'EC∴△ADE≌△B'EC(2)四边形AECF是菱形∵△ADE≌△B'EC∴AE=CE∵AE=CE,EF⊥AC∴EF垂直平分AC,∠AEF=∠CEF∴AF=CF∵CD∥AB∴∠CEF=∠EFA且∠AEF=∠CEF∴∠AEF=∠EFA∴AF=AE∴AF=AE=CE=CF∴四边形AECF是菱形【点睛】本题考查了折叠问题,全等三角形的判定和性质,平行四边形的性质,菱形的判定,熟练掌握这些性质和判定是解决问题的关键.8.如图1,在正方形ABCD中,点E,F分别是边BC,AB上的点,且CE=BF.连接DE,过点E作EG⊥DE,使EG=DE,连接FG,FC.(1)请判断:FG与CE的关系是___;(2)如图2,若点E,F分别是边CB,BA延长线上的点,其它条件不变,(1)中结论是否仍然成立?请作出判断并给予证明;(3)如图3,若点E,F分别是边BC,AB延长线上的点,其它条件不变,(1)中结论是否仍然成立?请直接写出你的判断.【答案】(1)FG=CE,FG∥CE;(2)成立;(3)成立.【解析】试题分析:(1)只要证明四边形CDGF是平行四边形即可得出FG=CE,FG∥CE;(2)构造辅助线后证明△HGE≌△CED,利用对应边相等求证四边形GHBF是矩形后,利用等量代换即可求出FG=C,FG∥CE;(3)证明△CBF≌△DCE后,即可证明四边形CEGF是平行四边形.试题解析:解:(1)FG=CE,FG∥CE;(2)过点G作GH⊥CB的延长线于点H.∵EG⊥DE,∴∠GEH+∠DEC=90°.∵∠GEH+∠HGE=90°,∴∠DEC=∠HE.在△HGE与△CED中,∵∠GHE=∠DCE,∠HGE=∠DEC,EG=DE,∴△HGE≌△CED(AAS),∴GH=CE,HE=CD.∵CE=BF,∴GH=BF.∵GH∥BF,∴四边形GHBF是矩形,∴GF=BH,FG∥CH,∴FG∥CE.∵四边形ABCD是正方形,∴CD=BC,∴HE=BC,∴HE+EB=BC+EB,∴BH=EC,∴FG=EC;(3)∵四边形ABCD是正方形,∴BC=CD,∠FBC=∠ECD=90°.在△CBF与△DCE中,∵BF=CE,∠FBC=∠ECD,BC=DC,∴△CBF≌△DCE(SAS),∴∠BCF=∠CDE,CF=DE.∵EG=DE,∴CF=EG.∵DE⊥EG,∴∠DEC+∠CEG=90°.∵∠CDE+∠DEC=90°,∴∠CDE=∠CEG,∴∠BCF=∠CEG,∴CF∥EG,∴四边形CEGF平行四边形,∴FG∥CE,FG=CE.9.猜想与证明:如图1,摆放矩形纸片ABCD与矩形纸片ECGF,使B、C、G三点在一条直线上,CE在边CD上,连接AF,若M为AF的中点,连接DM、ME,试猜想DM与ME的关系,并证明你的结论.拓展与延伸:(1)若将”猜想与证明“中的纸片换成正方形纸片ABCD与正方形纸片ECGF,其他条件不变,则DM和ME的关系为.(2)如图2摆放正方形纸片ABCD与正方形纸片ECGF,使点F在边CD上,点M仍为AF 的中点,试证明(1)中的结论仍然成立.【答案】猜想:DM=ME,证明见解析;(2)成立,证明见解析.【解析】试题分析:延长EM交AD于点H,根据ABCD和CEFG为矩形得到AD∥EF,得到△FME和△AMH全等,得到HM=EM,根据Rt△HDE得到HM=DE,则可以得到答案;(1)、延长EM交AD于点H,根据ABCD和CEFG为矩形得到AD∥EF,得到△FME和△AMH全等,得到HM=EM,根据Rt△HDE得到HM=DE,则可以得到答案;(2)、连接AE,根据正方形的性质得出∠FCE=45°,∠FCA=45°,根据RT△ADF中AM=MF得出DM=AM=MF,根据RT△AEF中AM=MF得出AM=MF=ME,从而说明DM=ME.试题解析:如图1,延长EM交AD于点H,∵四边形ABCD和CEFG是矩形,∴AD∥EF,∴∠EFM=∠HAM,又∵∠FME=∠AMH,FM=AM,在△FME和△AMH中,∴△FME≌△AMH(ASA)∴HM=EM,在RT△HDE中,HM=DE,∴DM=HM=ME,∴DM=ME.(1)、如图1,延长EM交AD于点H,∵四边形ABCD和CEFG是矩形,∴AD∥EF,∴∠EFM=∠HAM,又∵∠FME=∠AMH,FM=AM,在△FME和△AMH中,∴△FME≌△AMH(ASA)∴HM=EM,在RT△HDE中,HM=EM∴DM=HM=ME,∴DM=ME,(2)、如图2,连接AE,∵四边形ABCD和ECGF是正方形,∴∠FCE=45°,∠FCA=45°,∴AE和EC在同一条直线上,在RT△ADF中,AM=MF,∴DM=AM=MF,在RT△AEF中,AM=MF,∴AM=MF=ME,∴DM=ME.考点:(1)、三角形全等的性质;(2)、矩形的性质.10.(1)问题发现如图1,点E. F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF、则EF=BE+DF,试说明理由;(2)类比引申如图2,在四边形ABCD中,AB=AD,∠BAD=90°,点E. F分别在边BC、CD上,∠EAF=45°,若∠B,∠D都不是直角,则当∠B与∠D满足等量关系时,仍有EF=BE+DF;(3)联想拓展如图3,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°,猜想BD、DE、EC 满足的等量关系,并写出推理过程。
中考数学平行四边形综合经典题含答案解析
一、平行四边形真题与模拟题分类汇编(难题易错题)1.已知,在矩形ABCD中,AB=a,BC=b,动点M从点A出发沿边AD向点D运动.(1)如图1,当b=2a,点M运动到边AD的中点时,请证明∠BMC=90°;(2)如图2,当b>2a时,点M在运动的过程中,是否存在∠BMC=90°,若存在,请给与证明;若不存在,请说明理由;(3)如图3,当b<2a时,(2)中的结论是否仍然成立?请说明理由.【答案】(1)见解析;(2)存在,理由见解析;(3)不成立.理由如下见解析.【解析】试题分析:(1)由b=2a,点M是AD的中点,可得AB=AM=MD=DC=a,又由四边形ABCD 是矩形,即可求得∠AMB=∠DMC=45°,则可求得∠BMC=90°;(2)由∠BMC=90°,易证得△ABM∽△DMC,设AM=x,根据相似三角形的对应边成比例,即可得方程:x2﹣bx+a2=0,由b>2a,a>0,b>0,即可判定△>0,即可确定方程有两个不相等的实数根,且两根均大于零,符合题意;(3)由(2),当b<2a,a>0,b>0,判定方程x2﹣bx+a2=0的根的情况,即可求得答案.试题解析:(1)∵b=2a,点M是AD的中点,∴AB=AM=MD=DC=a,又∵在矩形ABCD中,∠A=∠D=90°,∴∠AMB=∠DMC=45°,∴∠BMC=90°.(2)存在,理由:若∠BMC=90°,则∠AMB+∠DMC=90°,又∵∠AMB+∠ABM=90°,∴∠ABM=∠DMC,又∵∠A=∠D=90°,∴△ABM∽△DMC,∴AM ABCD DM=,设AM=x,则x aa b x =-,整理得:x2﹣bx+a2=0,∵b>2a,a>0,b>0,∴△=b2﹣4a2>0,∴方程有两个不相等的实数根,且两根均大于零,符合题意,∴当b>2a时,存在∠BMC=90°,(3)不成立.理由:若∠BMC=90°,由(2)可知x2﹣bx+a2=0,∵b<2a,a>0,b>0,∴△=b2﹣4a2<0,∴方程没有实数根,∴当b<2a时,不存在∠BMC=90°,即(2)中的结论不成立.考点:1、相似三角形的判定与性质;2、根的判别式;3、矩形的性质2.如果两个三角形的两条边对应相等,夹角互补,那么这两个三角形叫做互补三角形,如图2,分别以△ABC的边AB、AC为边向外作正方形ABDE和ACGF,则图中的两个三角形就是互补三角形.(1)用尺规将图1中的△ABC分割成两个互补三角形;(2)证明图2中的△ABC分割成两个互补三角形;(3)如图3,在图2的基础上再以BC为边向外作正方形BCHI.①已知三个正方形面积分别是17、13、10,在如图4的网格中(网格中每个小正方形的边长为1)画出边长为、、的三角形,并计算图3中六边形DEFGHI的面积.②若△ABC的面积为2,求以EF、DI、HG的长为边的三角形面积.【答案】(1)作图见解析(2)证明见解析(3)①62;②6【解析】试题分析:(1)作BC边上的中线AD即可.(2)根据互补三角形的定义证明即可.(3)①画出图形后,利用割补法求面积即可.②平移△CHG到AMF,连接EM,IM,则AM=CH=BI,只要证明S△EFM=3S△ABC即可.试题解析:(1)如图1中,作BC边上的中线AD,△ABD和△ADC是互补三角形.(2)如图2中,延长FA到点H,使得AH=AF,连接EH.∵四边形ABDE,四边形ACGF是正方形,∴AB=AE,AF=AC,∠BAE=∠CAF=90°,∴∠EAF+∠BAC=180°,∴△AEF和△ABC是两个互补三角形.∵∠EAH+∠HAB=∠BAC+∠HAB=90°,∴∠EAH=∠BAC,∵AF=AC,∴AH=AB,在△AEH和△ABC中,∴△AEH≌△ABC,∴S△AEF=S△AEH=S△ABC.(3)①边长为、、的三角形如图4所示.∵S△ABC=3×4﹣2﹣1.5﹣3=5.5,∴S六边形=17+13+10+4×5.5=62.②如图3中,平移△CHG到AMF,连接EM,IM,则AM=CH=BI,设∠ABC=x,∵AM∥CH,CH⊥BC,∴AM⊥BC,∴∠EAM=90°+90°﹣x=180°﹣x,∵∠DBI=360°﹣90°﹣90°﹣x=180°﹣x,∴∠EAM=∠DBI,∵AE=BD,∴△AEM≌△DBI,∵在△DBI和△ABC中,DB=AB,BI=BC,∠DBI+∠ABC=180°,∴△DBI和△ABC是互补三角形,∴S△AEM=S△AEF=S△AFM=2,∴S△EFM=3S△ABC=6.考点:1、作图﹣应用与设计,2、三角形面积3.如图,△ABC是等边三角形,AB=6cm,D为边AB中点.动点P、Q在边AB上同时从点D出发,点P沿D→A以1cm/s的速度向终点A运动.点Q沿D→B→D以2cm/s的速度运动,回到点D停止.以PQ为边在AB上方作等边三角形PQN.将△PQN绕QN的中点旋转180°得到△MNQ.设四边形PQMN与△ABC重叠部分图形的面积为S(cm2),点P运动的时间为t(s)(0<t<3).(1)当点N落在边BC上时,求t的值.(2)当点N到点A、B的距离相等时,求t的值.(3)当点Q沿D→B运动时,求S与t之间的函数表达式.(4)设四边形PQMN的边MN、MQ与边BC的交点分别是E、F,直接写出四边形PEMF 与四边形PQMN的面积比为2:3时t的值.【答案】(1)(2)2(3)S=S菱形PQMN=2S△PNQ=t2;(4)t=1或【解析】试题分析:(1)由题意知:当点N落在边BC上时,点Q与点B重合,此时DQ=3;(2)当点N到点A、B的距离相等时,点N在边AB的中线上,此时PD=DQ;(3)当0≤t≤时,四边形PQMN与△ABC重叠部分图形为四边形PQMN;当≤t≤时,四边形PQMN与△ABC重叠部分图形为五边形PQFEN.(4)MN、MQ与边BC的有交点时,此时<t<,列出四边形PEMF与四边形PQMN的面积表达式后,即可求出t的值.试题解析:(1)∵△PQN与△ABC都是等边三角形,∴当点N落在边BC上时,点Q与点B重合.∴DQ=3∴2t=3.∴t=;(2)∵当点N到点A、B的距离相等时,点N在边AB的中线上,∴PD=DQ,当0<t<时,此时,PD=t,DQ=2t∴t=2t∴t=0(不合题意,舍去),当≤t<3时,此时,PD=t,DQ=6﹣2t∴t=6﹣2t,解得t=2;综上所述,当点N到点A、B的距离相等时,t=2;(3)由题意知:此时,PD=t,DQ=2t当点M在BC边上时,∴MN=BQ∵PQ=MN=3t,BQ=3﹣2t∴3t=3﹣2t∴解得t=如图①,当0≤t≤时,S△PNQ=PQ2=t2;∴S=S菱形PQMN=2S△PNQ=t2,如图②,当≤t≤时,设MN、MQ与边BC的交点分别是E、F,∵MN=PQ=3t,NE=BQ=3﹣2t,∴ME=MN﹣NE=PQ﹣BQ=5t﹣3,∵△EMF是等边三角形,∴S△EMF=ME2=(5t﹣3)2.;(4)MN、MQ与边BC的交点分别是E、F,此时<t<,t=1或.考点:几何变换综合题4.如图,四边形ABCD中,对角线AC、BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.(1)求证:四边形ABCD是矩形.(2)若∠ADF:∠FDC=3:2,DF⊥AC,求∠BDF的度数.【答案】(1)见解析;(2)18°.【解析】【分析】(1)根据平行四边形的判定得出四边形ABCD是平行四边形,求出∠ABC=90°,根据矩形的判定得出即可;(2)求出∠FDC的度数,根据三角形内角和定理求出∠DCO,根据矩形的性质得出OD=OC,求出∠CDO,即可求出答案.【详解】(1)证明:∵AO=CO,BO=DO∴四边形ABCD是平行四边形,∴∠ABC=∠ADC,∵∠ABC+∠ADC=180°,∴∠ABC=∠ADC=90°,∴四边形ABCD是矩形;(2)解:∵∠ADC=90°,∠ADF:∠FDC=3:2,∴∠FDC=36°,∵DF⊥AC,∴∠DCO=90°﹣36°=54°,∵四边形ABCD是矩形,∴OC=OD,∴∠ODC=54°∴∠BDF=∠ODC﹣∠FDC=18°.【点睛】本题考查了平行四边形的性质和判定,矩形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键,注意:矩形的对角线相等,有一个角是直角的平行四边形是矩形.5.已知矩形纸片OBCD的边OB在x轴上,OD在y轴上,点C在第一象限,且,.现将纸片折叠,折痕为EF(点E,F是折痕与矩形的边的交点),点P ==OB OD86为点D的对应点,再将纸片还原。
第十八章全国通用版中考数学:《平行四边形》与坐标系结合压轴题(二)—解析版
第十八章专题:《平行四边形》与坐标系结合压轴题(二)1.如图,在平面直角坐标系中,AB //OC, A (0, 12), B (a, c) , C (b, 0),并且a, b满足b= 府市 /口' + 16. 一动点P从点A出发,在线段AB上以每秒2个单位长度的速度向点 B 运动;动点Q 从点。
出发在线段OC上以每秒1个单位长度的速度向点C运动,点P、Q分别从点A、O同时出发,当点P 运动到点B时,点Q随之停止运动.设运动时间为t (秒)(1)求B、C两点的坐标;(2)当t为何值时,四边形PQCB是平行四边形?并求出此时P、Q两点的坐标;(3)当t为何值时,APQC是以PQ为腰的等腰三角形?并求出P、Q两点的坐标.(1) •, b= ^a-21 J^T^+16,••.a=21, b=16,故B (21, 12) C (16, 0); (2)由题意得:AP=2t, QO=t,贝U: PB=21-2t , QC=16-t,•••当PB=QC时,四边形PQCB是平行四边形,.•.21-2t=16-t,解得:t=5,,P (10, 12) Q (5, 0);(3)当PQ=CQ 时,过Q 作QN^AB,由题意得:122+t2=(16-t) 2, 解得:t=3.5,故P (7, 12), Q (3.5, 0),当PQ=PC时,过P作PM ±x轴,由题意得:QM=t , CM=16-2t ,则t=16-2t,解得:t=16, 2t=32, 3 3故P( 32,12), Q(16,3 30).2.如图1,在平面直角坐标系中, AB ,y 轴于点A, BC ,x 轴于点B,点D 为线段BC 的中点,若AB=a , CD=b ,且J 2 a 8 v 5 +/4我 a +2屈=b .连接AD ,在线段OC 上取一点E,使/ EAD= / DAB .(1)贝U a=, b=(2)求证:AE=OE+CD ;【解答】(1) a =4 v15 , b =2 后,(2)由(1)可知 AB=4 75, CD=BD=2 V 5 , • . AB=CB ,,.AB ±y 轴于点 A, BC±x 轴于点 B,,乙 BAO= / B= / AOC=90° ,••・四边形ABCO 是矩形,••・AB=CB , ••・四边形ABCO 是正方形,延长 CO 至u M ,使得 OM=BD ,贝u ^ABD AOM , ,/4=/M, Z1 = Z2=Z3,. OA//BC, . ・/4=/2+/5=/5+/3=/EAM , . . / M= / EAM , • . AE=EM=OE+OM=OE+BD ••• BD=CD , .1. AE=OE+CD .(3)如图 2 中,设 AE=EM=x .在 RtAAOE 中,AO 2+OE 2=AE 2, - x 2= (4<5 ) 2+ (x-2 J 5 ) 2, . . x=5石, OE=3 而,•.D (4V 5, 2 45), E (3V5 , 0), •. F (0, -6V5 )风0)3.如图,在平面直角坐标系中,有一矩形ABCD,其中A(0, 0), B (m, 0) , D (0, n), m是最接近质的整数,n是16的算术平方根,若将4ABC沿矩形又•角线AC所在直线翻折,点B落在点E处,AE与边CD相交于点M .(1)求AC的长;(2)求4AMC的面积;(3)求点E的坐标.【解答】(1)•' m是最接近#5的整数,• ' m=8,.「n 是16 的算术平方根,,n=4,,B (8, 0), D (0, 4),.••点C 矩形ABCD 的一个顶点,..C (8, 4),,AB=8, BC=4 ,AC=4 J5 ,(2)由折叠有,CE=AD=BC=4 , AE=AB=8 ,设DM=x 则CM=8-x ,・. /ADM= / CEM , /AMD=/CME, /.A ADM ^ACEM , • .AM=CM=8-x , ME=MD , 在RtAADM 中,AD=4 , DM=x , AM=8-x ,根据勾股定理有:AD2+DM 2=AM 2,即:16+x2= (8-x) 2, •1- x=3 , DM=3 , CM=5 , S AAMC = —Ch/|X AD=)>^M=10,2 2(3)过点E作EFXCD,如图,由(2)有,CM=5 , CE=4, ME=DM=3在Rt^CEM 中,由射影定理得,CE2=CFXCM , 16=CFX5,,CF=3.2,••・Ma CE=CMK EF (直角三角形的面积的两种计算) ,,EF=2.4,• . DF=CD -CF=4.8 , BC+EF=6.4 , . . E (4.8, 6.4)4 .已知正方形OABC 在平面直角坐标系中,点 A, C 分别在x 轴,y 轴的正半轴上,等腰直角三角形OEF 的直角顶点O 在原点,E, F 分别在OA, OC 上,且OA=4 , OE=2 .将AOEF 绕点O 逆 时针旋转,得△OE I F I ,点E, F 旋转后的对应点为Ei, Fi.(I )①如图①,求EiFi 的长;②如图②,连接CFi, AEi,求证△OAEi^^OCFi;「(II)将AOEF 绕点O 逆时针旋转一周,当 OEi//CFi 时,求点Ei 的坐标(直接写出结果即可)姝 姝CB C 石【解答】(I )①解:二.等腰直角三角形 OEF 的直角顶点O 在原点,OE=2, / EOF=90 , OF=OE=2 ,「. EF=2 血,・ ••将AOEF 绕点 O 逆时针旋转,得△OE i F i, ••.E i F i =EF=2 J 2 ; ②证明:四边形OABC 为正方形,OC=OA .・ •・将AOEF 绕点 O 逆时针旋转,得 △OE i F i,AOE i =/COF i, • △OEF 是等腰直角三角形,・•.△OEiFi 是等腰直角三角形, ••OE i =OF i.在 AOAE i 和 ^OCF i 中,OA=OC, /AOEi=/COF i, OEi=OFi% E・•.△OAE 卢^OCF i (SAS);(n)解:••• OEXOF,卜过点F与OE平行的直线有且只有一条,并与OF垂直,当三角板OEF绕。
中考平行四边形压轴题+答案
平行四边形1-20一.解答题(共19小题)1.(1)如图1,已知矩形ABCD中,点E是BC上的一动点,过点E作EF⊥BD于点F,EG⊥AC于点G,CH⊥BD于点H,试证明CH=EF+EG;(2)若点E在BC的延长线上,如图2,过点E作EF⊥BD于点F,EG⊥AC的延长线于点G,CH⊥BD于点H,则EF、EG、CH三者之间具有怎样的数量关系,直接写出你的猜想;(3)如图3,BD是正方形ABCD的对角线,L在BD上,且BL=BC,连接CL,点E是CL上任一点,EF⊥BD于点F,EG⊥BC于点G,猜想EF、EG、BD之间具有怎样的数量关系,直接写出你的猜想;(4)观察图1、图2、图3的特性,请你根据这一特性构造一个图形,使它仍然具有EF、EG、CH这样的线段的关系,并满足(1)或(2)的结论,写出相关题设的条件和结论.2.(1)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.求证:CE=CF;(2)如图2,在正方形ABCD中,E是AB上一点,G是AD上一点,如果∠GCE=45°,请你利用(1)的结论证明:GE=BE+GD.(3)运用(1)(2)解答中所积累的经验和知识,完成下题:如图3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E 是AB上一点,且∠DCE=45°,BE=4,DE=10,求直角梯形ABCD的面积.第1页(共33页)3.如图,在正方形ABCD中,点E、点F分别在边BC、DC上,BE=DF,∠EAF=60°.(1)若AE=2,求EC的长;(2)若点G在DC上,且∠AGC=120°,求证:AG=EG+FG.4.如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD (不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM.(1)求证:△AMB≌△ENB;(2)①当M点在何处时,AM+CM的值最小;②当M点在何处时,AM+BM+CM的值最小,并说明理由;(3)当AM+BM+CM的最小值为时,求正方形的边长.第2页(共33页)5.(1)人教版八年级数学下册92页第14题是这样叙述的:如图1,▱ABCD 中,过对角线BD上一点P作EF∥BC,HG∥AB,图中哪两个平行四边形的面积相等?为什么?根据习题背景,写出面积相等的一对平行四边形的名称为和;(2)如图2,点P为▱ABCD内一点,过点P分别作AD、AB的平行线分别交▱ABCD的四边于点E、F、G、H.已知S▱BHPE=3,S▱PFDG=5,则S△PAC=;(3)如图3,若①②③④⑤五个平行四边形拼成一个含30°内角的菱形EFGH(不重复、无缝隙).已知①②③④四个平行四边形面积的和为14,四边形ABCD的面积为11,则菱形EFGH的周长为.6.如图,E是正方形ABCD的边AD上的动点,F是边BC延长线上的一点,且BF=EF,AB=12,设AE=x,BF=y.(1)当△BEF是等边三角形时,求BF的长;(2)求y与x的函数解析式,并写出它的定义域;(3)把△ABE沿着直线BE翻折,点A落在点A′处,试探索:△A′BF能否为等腰三角形?如果能,请求出AE的长;如果不能,请说明理由.7.已知矩形ABCD和点P,当点P在BC上任一位置(如图(1)所示)第3页(共33页)时,易证得结论:PA2+PC2=PB2+PD2,请你探究:当点P分别在图(2)、图(3)中的位置时,PA2、PB2、PC2和PD2又有怎样的数量关系请你写出对上述两种情况的探究结论,并利用图(2)证明你的结论.答:对图(2)的探究结论为;对图(3)的探究结论为;证明:如图(2)8.已知:如图所示,O为等腰直角△BCD斜边BD的中点,BE平分∠DBC,交DC于点E,延长BC到点F,使CF=CE,连接DF,交BE的延长线于点G,连接OG.(1)求证:△BCE≌△DCF;(2)OG与BF有什么数量关系?证明你的结论;(3)若GE•GB=4﹣2,求△DBG的面积.9.数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点第4页(共33页)E是边BC的中点.∠AEF=90°,且EF交正方形外角∠DCG的平分线CF 于点F,求证:AE=EF.经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM=EC,易证△AME≌△ECF,所以AE=EF.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC 上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.10.如图1,P是线段AB上的一点,在AB的同侧作△APC和△BPD,使PC=PA,PD=PB,∠APC=∠BPD,连接CD,点E、F、G、H分别是AC、AB、BD、CD的中点,顺次连接E、F、G、H.(1)猜想四边形EFGH的形状,直接回答,不必说明理由;(2)当点P在线段AB的上方时,如图2,在△APB的外部作△APC和△BPD,其他条件不变,(1)中的结论还成立吗?说明理由;(3)如果(2)中,∠APC=∠BPD=90°,其他条件不变,先补全图3,再判断四边形EFGH的形状,并说明理由.第5页(共33页)11.如图,操作:把正方形CGEF的对角线CE放在正方形ABCD的边BC的延长线上(CG>BC),取线段AE的中点M.探究:线段MD、MF的关系,并加以证明.说明:(1)如果你经历反复探索,没有找到解决问题的方法,请你把探索过程中的某种思路写出来(要求至少写3步);(2)在你经历说明(1)的过程后,可以从下列①、②、③中选取一个补充或更换已知条件,完成你的证明.注意:选取①完成证明得10分;选取②完成证明得7分;选取③完成证明得5分.①DM的延长线交CE于点N,且AD=NE;②将正方形CGEF6绕点C逆时针旋转45°(如图),其他条件不变;③在②的条件下,且CF=2AD.附加题:将正方形CGEF绕点C旋转任意角度后(如图),其他条件不变.探究:线段MD、MF的关系,并加以证明.第6页(共33页)12.正方形ABCD中,点O是对角线AC的中点,P是对角线AC上一动点,过点P作PF⊥CD于点F.如图1,当点P与点O重合时,显然有DF=CF.(1)如图2,若点P在线段AO上(不与点A、O重合),PE⊥PB且PE 交CD于点E.①求证:DF=EF;②写出线段PC、PA、CE之间的一个等量关系,并证明你的结论;(2)若点P在线段OC上(不与点O、C重合),PE⊥PB且PE交直线CD 于点E.请完成图3并判断(1)中的结论①、②是否分别成立?若不成立,写出相应的结论.(所写结论均不必证明)13.如图,正方形ABCD,BE⊥ED,连接BD,CE.(1)求证:∠EBD=∠ECD;(2)设EB,EC交AD于F,G两点,若AF=2FG,探究线段CG与DG之间的数量关系并证明.第7页(共33页)14.如图1,在正方形ABCD中,对角线AC与BD相交于点E,AF平分∠BAC,交BD于点F.(1)求证:EF+AC=AB;(2)点C1从点C出发,沿着线段CB向点B运动(不与点B重合),同时点A1从点A出发,沿着BA的延长线运动,点C1与A1的运动速度相同,当动点C1停止运动时,另一动点A1也随之停止运动.如图2,A1F1平分∠BA1C1,交BD于点F1,过点F1作F1E1⊥A1C1,垂足为E1,请猜想E1F1,A1C1与AB三者之间的数量关系,并证明你的猜想;(3)在(2)的条件下,当A1E1=3,C1E1=2时,求BD的长.15.如图,正方形ABCD中,E为AB边上一点,过点D作DF⊥DE,与BC延长线交于点F.连接EF,与CD边交于点G,与对角线BD交于点H.(1)若BF=BD=,求BE的长;(2)若∠ADE=2∠BFE,求证:FH=HE+HD.第8页(共33页)16.如图,小明将一张直角梯形纸片沿虚线剪开,得到矩形ABCD和三角形EGF两张纸片,测得AB=5,AD=4,EF=.在进行如下操作时遇到了下面的几个问题,请你帮助解决.(1)请你求出FG的长度.(2)在(1)的条件下,小明先将三角形的边EG和矩形边AB重合,然后将△EFG沿直线BC向右平移,至F点与B重合时停止.在平移过程中,设G点平移的距离为x,两纸片重叠部分面积为.y,求在平移的整个过程中,y与x的函数关系式,并求当重叠部分面积为10时,平移距离x 的值.(3)在(2)的操作中,小明发现在平移过程中,虽然有时平移的距离不等,但两纸片重叠的面积却是相等的;而有时候平移的距离不等,两纸片重叠部分的面积也不可能相等.请探索这两种情况下重叠部分面积y的范围(直接写出结果).17.如图,将一三角板放在边长为1的正方形ABCD上,并使它的直角顶点P在对角线AC上滑动,直角的一边始终经过点B,另一边与射线DC相交于Q.探究:设A、P两点间的距离为x.(1)当点Q在边CD上时,线段PQ与PB之间有怎样的数量关系?试证明你的猜想;(2)当点Q在边CD上时,设四边形PBCQ的面积为y,求y与x之间的函数关系,并写出函数自变量x的取值范围;(3)当点P在线段AC上滑动时,△PCQ是否可能成为等腰三角形?如果可能,指出所有能使△PCQ成为等腰三角形的点Q的位置.并求出相应的x值,如果不可能,试说明理由.第9页(共33页)18.如图,△ABC中,点P是边AC上的一个动点,过P作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.(1)求证:PE=PF;(2)当点P在边AC上运动时,四边形AECF可能是矩形吗?说明理由;(3)若在AC边上存在点P,使四边形AECF是正方形,且.求此时∠BAC的大小.19.如图(1),已知正方形ABCD在直线MN的上方,BC在直线MN上,E是BC上一点,以AE为边在直线MN的上方作正方形AEFG.(1)连接GD,求证:△ADG≌△ABE;(2)连接FC,观察并猜测∠FCN的度数,并说明理由;(3)如图(2),将图(1)中正方形ABCD改为矩形ABCD,AB=a,BC=b (a、b为常数),E是线段BC上一动点(不含端点B、C),以AE为边在直线MN的上方作矩形AEFG,使顶点G恰好落在射线CD上.判断当点E由B向C运动时,∠FCN的大小是否总保持不变?若∠FCN的大小不变,请用含a、b的代数式表示tan∠FCN的值;若∠FCN的大小发生改变,请举例说明.第10页(共33页)平行四边形1-20参考答案与试题解析一.解答题(共19小题)1.(1)如图1,已知矩形ABCD中,点E是BC上的一动点,过点E作EF⊥BD于点F,EG⊥AC于点G,CH⊥BD于点H,试证明CH=EF+EG;(2)若点E在BC的延长线上,如图2,过点E作EF⊥BD于点F,EG⊥AC的延长线于点G,CH⊥BD于点H,则EF、EG、CH三者之间具有怎样的数量关系,直接写出你的猜想;(3)如图3,BD是正方形ABCD的对角线,L在BD上,且BL=BC,连接CL,点E是CL上任一点,EF⊥BD于点F,EG⊥BC于点G,猜想EF、EG、BD之间具有怎样的数量关系,直接写出你的猜想;(4)观察图1、图2、图3的特性,请你根据这一特性构造一个图形,使它仍然具有EF、EG、CH这样的线段的关系,并满足(1)或(2)的结论,写出相关题设的条件和结论.【解答】(1)证明:过E点作EN⊥CH于N.∵EF⊥BD,CH⊥BD,∴四边形EFHN是矩形.∴EF=NH,FH∥EN.∴∠DBC=∠NEC.∵四边形ABCD是矩形,∴AC=BD,且互相平分∴∠DBC=∠ACB∴∠NEC=∠ACB∵EG⊥AC,EN⊥CH,∴∠EGC=∠CNE=90°,又∵EC=CE,∴△EGC≌△CNE.∴EG=CN∴CH=CN+NH=EG+EF;(2)解:猜想CH=EF﹣EG;(3)解:EF+EG=BD;(4)解:点P是等腰三角形底边所在直线上的任意一点,点P到两腰的距离的和(或差)等于这个等腰三角形腰上的高.如图①,有CG=PF﹣PN.第11页(共33页)2.(1)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.求证:CE=CF;(2)如图2,在正方形ABCD中,E是AB上一点,G是AD上一点,如果∠GCE=45°,请你利用(1)的结论证明:GE=BE+GD.(3)运用(1)(2)解答中所积累的经验和知识,完成下题:如图3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E 是AB上一点,且∠DCE=45°,BE=4,DE=10,求直角梯形ABCD的面积.【解答】(1)证明:∵四边形ABCD是正方形,∴BC=CD,∠B=∠CDF=90°,∵∠ADC=90°,∴∠FDC=90°.∴∠B=∠FDC,∵BE=DF,∴△CBE≌△CDF(SAS).∴CE=CF.(2)证明:如图2,延长AD至F,使DF=BE,连接CF.由(1)知△CBE≌△CDF,∴∠BCE=∠DCF.∴∠BCE+∠ECD=∠DCF+∠ECD,即∠ECF=∠BCD=90°,又∠GCE=45°,∴∠GCF=∠GCE=45°.∵CE=CF,GC=GC,∴△ECG≌△FCG.∴GE=GF,∴GE=GF=DF+GD=BE+GD.(3)解:如图3,过C作CG⊥AD,交AD延长线于G.在直角梯形ABCD中,∵AD∥BC,∴∠A=∠B=90°,又∵∠CGA=90°,AB=BC,∴四边形ABCG为正方形.∴AG=BC.…(7分)∵∠DCE=45°,根据(1)(2)可知,ED=BE+DG.…(8分)∴10=4+DG,即DG=6.设AB=x,则AE=x﹣4,AD=x﹣6,在Rt△AED中,∵DE2=AD2+AE2,即102=(x﹣6)2+(x﹣4)2.解这个方程,得:x=12或x=﹣2(舍去).…(9分)第12页(共33页)∴AB=12.∴S梯形ABCD=(AD+BC)•AB=×(6+12)×12=108.即梯形ABCD的面积为108.…(10分)3.如图,在正方形ABCD中,点E、点F分别在边BC、DC上,BE=DF,∠EAF=60°.(1)若AE=2,求EC的长;(2)若点G在DC上,且∠AGC=120°,求证:AG=EG+FG.【解答】(1)解:如图,连接EF,在正方形ABCD中,AB=AD,∠B=∠D,在△ABE和△ADF中,,∴△ABE≌△ADF(SAS),∴AE=AF,∵∠EAF=60°,∴△AEF是等边三角形,∴EF=AE=2,∵BE=DF,BC=CD,∴BC﹣BE=CD﹣DF,即CE=CF,∴△CEF是等腰直角三角形,∴EC=EF=×2=;(2)方法一:证明:∵∠AGC=120°,∴∠AGF=180°﹣∠AGC=180°﹣120°=60°,又∵△AEF是等边三角形,(已证)∴∠AEF=60°,∴点A、E、G、F四点共圆,∴∠AGE=∠AFE=60°,∴∠CGE=∠AGC﹣∠AGE=120°﹣60°=60°,如图(2)①延长GE交AB的延长线于H,∵AB∥CD,∴∠H=∠CGE=60°,∴∠H=∠AGF,又∵∠GAF+∠EAG=∠EAF=60°,∠HAE+∠EAG=∠GAB=60°,∴∠GAF=∠HAE,第13页(共33页)在△AFG和△AEH中,,∴△AFG≌△AEH(AAS),∴AG=AH,FG=EH,∵∠AGE=60°,∴△AGH是等边三角形,∵AH=GH=EG+EH=EG+FG,即AG=EG+FG.方法二:如图(2)②在AG上截取GH=FG,∵∠AGC=120°,∴∠AGF=60°,∴△FGH是等边三角形,∴FH=FG,∠FHG=60°,∵△AEF是等边三角形,∴∠AFE=60°,∴∠AFE=∠GFH=60°,∴∠AFE﹣∠EFH=∠GFH﹣∠EFH,即∠AFH=∠EFG,在△AFH和△BFG中,,∴△AFH≌△EFG(SAS),∴AH=GE,∴AG=AH+GH=EG+FG,即AG=EG+FG.4.如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM.(1)求证:△AMB≌△ENB;(2)①当M点在何处时,AM+CM的值最小;②当M点在何处时,AM+BM+CM的值最小,并说明理由;(3)当AM+BM+CM的最小值为时,求正方形的边长.第14页(共33页)【解答】(1)证明:∵△ABE是等边三角形,∴BA=BE,∠ABE=60°.∵∠MBN=60°,∴∠MBN﹣∠ABN=∠ABE﹣∠ABN.即∠MBA=∠NBE.又∵MB=NB,∴△AMB≌△ENB(SAS).(2)解:①当M点落在BD的中点时,A、M、C三点共线,AM+CM的值最小.②如图,连接CE,当M点位于BD与CE的交点处时,AM+BM+CM的值最小.理由如下:连接MN,由(1)知,△AMB≌△ENB,∴AM=EN,∵∠MBN=60°,MB=NB,∴△BMN是等边三角形.∴BM=MN.∴AM+BM+CM=EN+MN+CM.根据“两点之间线段最短”可知,若E、N、M、C在同一条直线上时,EN+MN+CM取得最小值,最小值为EC.在△ABM和△CBM中,,∴△ABM≌△CBM,∴∠BAM=∠BCM,∴∠BCM=∠BEN,∵EB=CB,∴若连接EC,则∠BEC=∠BCE,∵∠BCM=∠BCE,∠BEN=∠BEC,∴M、N可以同时在直线EC上.∴当M点位于BD与CE的交点处时,AM+BM+CM的值最小,即等于EC 的长.(3)解:过E点作EF⊥BC交CB的延长线于F,∴∠EBF=∠ABF﹣∠ABE=90°﹣60°=30°.设正方形的边长为x,则BF=x,EF=.在Rt△EFC中,∵EF2+FC2=EC2,∴()2+(x+x)2=.解得x1=,x2=﹣(舍去负值).∴正方形的边长为.第15页(共33页)第16页(共33页)5.(1)人教版八年级数学下册92页第14题是这样叙述的:如图1,▱ABCD 中,过对角线BD 上一点P 作EF ∥BC ,HG ∥AB ,图中哪两个平行四边形的面积相等?为什么?根据习题背景,写出面积相等的一对平行四边形的名称为 ▱AEPH 和 ▱PGCF ;(2)如图2,点P 为▱ABCD 内一点,过点P 分别作AD 、AB 的平行线分别交▱ABCD 的四边于点E 、F 、G 、H .已知S ▱BHPE =3,S ▱PFDG =5,则S △PAC = 1 ;(3)如图3,若①②③④⑤五个平行四边形拼成一个含30°内角的菱形EFGH (不重复、无缝隙).已知①②③④四个平行四边形面积的和为14,四边形ABCD 的面积为11,则菱形EFGH 的周长为 24 .【解答】解:(1)∵▱ABCD 中,EF ∥BC ,HG ∥AB , ∴S △ABD =S △BCD ,S △PBE =S △PBG ,S △PDH =S △PDF , ∴S ▱AEPH =S ▱PGCF ,S ▱ABGH =S ▱EBCF ,S ▱AEFD =S ▱HGCD ,故答案为:▱AEPH 和▱PGCF 或▱ABGH 和▱EBCF 或▱AEFD 和▱HGCD ;(2)根据(1)可得:S △ABC =S △ADC ,S △PAE =S △PAG ,S △PCH =S △PCF , ∵S ▱BHPE =3,S ▱PFDG =5,∴S △PAC =S △PAG +S △PCF +S ▱PFDG ﹣S △ACD =S △PAG +S △PCF +S ▱PFDG ﹣S ▱ABCD =S △PAG +S △PCF +S ▱PFDG ﹣(2S △PAG +2S △PCF +S ▱BHPE +S ▱PFDG )=S ▱PFDG ﹣(S ▱BHPE +S ▱PFDG )=1;故答案为:1;(3)∵①②③④四个平行四边形面积的和为14, ∴S 1+S 2+S 3+S 4=14,∵四边形ABCD 的面积为11, ∴S 5=11﹣14×=4,∴S 菱形EFGH =S 1+S 2+S 3+S 4+S 5=18, ∵菱形EFGH 的一个内角为30°, ∴设边长为x , 则x•xsin30°=18, 解得:x=6,∴菱形EFGH 的周长为24. 故答案为:24.6.如图,E 是正方形ABCD 的边AD 上的动点,F 是边BC 延长线上的一点,且BF=EF ,AB=12,设AE=x ,BF=y .(1)当△BEF 是等边三角形时,求BF 的长; (2)求y 与x 的函数解析式,并写出它的定义域;(3)把△ABE 沿着直线BE 翻折,点A 落在点A′处,试探索:△A′BF 能否为等腰三角形?如果能,请求出AE 的长;如果不能,请说明理由.【解答】解:(1)当△BEF是等边三角形时,∠ABE=30°.∵AB=12,∴AE=,∴BF=BE=.(2)作EG⊥BF,垂足为点G,根据题意,得EG=AB=12,FG=y﹣x,EF=y,∴y2=(y﹣x)2+122,∴所求的函数解析式为(0<x<12).(3)∵∠AEB=∠FBE=∠FEB,∴点A'落在EF上,∴A'E=AE,∠BA'F=∠BA'E=∠A=90,∴要使△A'BF成为等腰三角形,必须使A'B=A'F.而A'B=AB=12,A'F=EF﹣A'E=BF﹣A'E,∴y﹣x=12.∴﹣x=12.整理得x2+24x﹣144=0,解得,经检验:都原方程的根,但不符合题意,舍去,当AE=时,△A'BF为等腰三角形.7.已知矩形ABCD和点P,当点P在BC上任一位置(如图(1)所示)时,易证得结论:PA2+PC2=PB2+PD2,请你探究:当点P分别在图(2)、图(3)中的位置时,PA2、PB2、PC2和PD2又有怎样的数量关系请你写出对上述两种情况的探究结论,并利用图(2)证明你的结论.答:对图(2)的探究结论为PA2+PC2=PB2+PD2;对图(3)的探究结论为PA2+PC2=PB2+PD2;第17页(共33页)证明:如图(2)【解答】解:结论均是PA2+PC2=PB2+PD2.(1)如图2,过点P作MN∥AB,交AD于点M,交BC于点N,∴四边形ABNM和四边形NCDM均为矩形,根据(1)中的结论可得,在矩形ABNM中有PA2+PN2=PB2+PM2,在矩形NCDM中有PC2+PM2=PD2+PN2,两式相加得PA2+PN2+PC2+PM2=PB2+PM2+PD2+PN2,∴PA2+PC2=PB2+PD2.(2)如图3,过点P作MN∥AB,交AB的延长线于点M,交CD的延长线于点N,∴四边形BCNM和四边形ADNM均为矩形,同样根据(1)中的结论可得,在矩形BCNM中有PC2+PM2=PB2+PN2,在矩形ADNM中有PA2+PN2=PD2+PM2,两式相加得PA2+PN2+PC2+PM2=PD2+PM2+PB2+PN2,∴PA2+PC2=PB2+PD2.8.已知:如图所示,O为等腰直角△BCD斜边BD的中点,BE平分∠DBC,交DC于点E,延长BC到点F,使CF=CE,连接DF,交BE的延长线于点G,连接OG.(1)求证:△BCE≌△DCF;(2)OG与BF有什么数量关系?证明你的结论;(3)若GE•GB=4﹣2,求△DBG的面积.【解答】(1)证明:在△BCE与△DCF中,,∴△BCE≌△DCF.(2)解:OG=BF.理由如下:∵△BCE≌△DCF,∴∠CEB=∠F,∵∠CEB=∠DEG,∴∠F=∠DEG,∵∠F+∠GDE=90°,第18页(共33页)第19页(共33页)∴∠DEG +∠GDE=90°, ∴BG ⊥DF ,∴∠BGD=∠BGF ,又∵BG=BG ,∠DBG=∠FBG , ∴△BGD ≌△BGF , ∴DG=GF ,∵O 为正方形ABCD 的中心, ∴DO=OB ,∴OG 是△DBF 的中位线, ∴OG=BF .(3)解:设BC=x ,则DC=x ,BD=,由(2)知,△BGF ≌△BGD , ∴BF=BD ,∴CF=(﹣1)x ,∵∠DGB=∠EGD ,∠DBG=∠EDG , ∴△GDB ∽△GED , ∴=,∴GD 2=GE•GB=4﹣2, ∵DC 2+CF 2=(2GD )2,∴x 2+(﹣1)2x 2=4(4﹣2), (4﹣2)x 2=4(4﹣2),x 2=4,正方形ABCD 的面积是4个平方单位. ∴S △DBG =S △BDF =××x 2=个平方单位.9.数学课上,张老师出示了问题:如图1,四边形ABCD 是正方形,点E 是边BC 的中点.∠AEF=90°,且EF 交正方形外角∠DCG 的平分线CF 于点F ,求证:AE=EF .经过思考,小明展示了一种正确的解题思路:取AB 的中点M ,连接ME ,则AM=EC ,易证△AME ≌△ECF ,所以AE=EF . 在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E 是边BC 的中点”改为“点E 是边BC 上(除B ,C 外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(2)小华提出:如图3,点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由. 【解答】解:(1)正确.证明:在AB 上取一点M ,使AM=EC ,连接ME . ∴BM=BE ,∴∠BME=45°,∴∠AME=135°,∵CF是外角平分线,∴∠DCF=45°,∴∠ECF=135°,∴∠AME=∠ECF,∵∠AEB+∠BAE=90°,∠AEB+∠CEF=90°,∴∠BAE=∠CEF,∴△AME≌△ECF(ASA),∴AE=EF.(2)正确.证明:在BA的延长线上取一点N.使AN=CE,连接NE.∴BN=BE,∴∠N=∠NEC=45°,∵CF平分∠DCG,∴∠FCE=45°,∴∠N=∠ECF,∵四边形ABCD是正方形,∴AD∥BE,∴∠DAE=∠BEA,即∠DAE+90°=∠BEA+90°,∴∠NAE=∠CEF,∴△ANE≌△ECF(ASA),∴AE=EF.10.如图1,P是线段AB上的一点,在AB的同侧作△APC和△BPD,使PC=PA,PD=PB,∠APC=∠BPD,连接CD,点E、F、G、H分别是AC、AB、BD、CD的中点,顺次连接E、F、G、H.(1)猜想四边形EFGH的形状,直接回答,不必说明理由;(2)当点P在线段AB的上方时,如图2,在△APB的外部作△APC和△BPD,其他条件不变,(1)中的结论还成立吗?说明理由;(3)如果(2)中,∠APC=∠BPD=90°,其他条件不变,先补全图3,再判断四边形EFGH的形状,并说明理由.【解答】解:(1)四边形EFGH是菱形.(2分)(2)成立.(3分)第20页(共33页)理由:连接AD,BC.(4分)∵∠APC=∠BPD,∴∠APC+∠CPD=∠BPD+∠CPD.即∠APD=∠CPB.又∵PA=PC,PD=PB,∴△APD≌△CPB(SAS)∴AD=CB.(6分)∵E、F、G、H分别是AC、AB、BD、CD的中点,∴EF、FG、GH、EH分别是△ABC、△ABD、△BCD、△ACD的中位线.∴EF=BC,FG=AD,GH=BC,EH=AD.∴EF=FG=GH=EH.∴四边形EFGH是菱形.(7分)(3)补全图形,如答图.(8分)判断四边形EFGH是正方形.(9分)理由:连接AD,BC.∵(2)中已证△APD≌△CPB.∴∠PAD=∠PCB.∵∠APC=90°,∴∠PAD+∠1=90°.又∵∠1=∠2.∴∠PCB+∠2=90°.∴∠3=90°.(11分)∵(2)中已证GH,EH分别是△BCD,△ACD的中位线,∴GH∥BC,EH∥AD.∴∠EHG=90°.又∵(2)中已证四边形EFGH是菱形,∴菱形EFGH是正方形.(12分)11.如图,操作:把正方形CGEF的对角线CE放在正方形ABCD的边BC的延长线上(CG>BC),取线段AE的中点M.探究:线段MD、MF的关系,并加以证明.说明:(1)如果你经历反复探索,没有找到解决问题的方法,请你把探索过程中的某种思路写出来(要求至少写3步);(2)在你经历说明(1)的过程后,可以从下列①、②、③中选取一个补充或更换已知条件,完成你的证明.注意:选取①完成证明得10分;选取②完成证明得7分;选取③完成证明得5分.①DM的延长线交CE于点N,且AD=NE;②将正方形CGEF6绕点C逆时针旋转45°(如图),其他条件不变;③在②的条件下,且CF=2AD.附加题:将正方形CGEF绕点C旋转任意角度后(如图),其他条件不变.探究:线段MD、MF的关系,并加以证明.第21页(共33页)【解答】证明:关系是:MD=MF,MD⊥MF如图,延长DM交CE于点N,连接FD、FN∵正方形ABCD,∴AD∥BE,AD=DC,∴∠1=∠2又∵AM=EM,∠3=∠4∴△ADM≌△ENM∴AD=EN,MD=MN∵AD=DC,∴DC=NE又∵正方形CGEF,∴∠FCE=∠NEF=45°,FC=FE,∠CFE=90°又∵正方形ABCD,∴∠BCD=90°.∴∠DCF=∠NEF=45°∴△FDC≌△FNE∴FD=FN,∠5=∠6∵∠CFE=90°,∴∠DFN=90°又∵DM=MN=DN,∴M为DN的中点,∴FM=DN,∴MD=MF,DM⊥MF思路一:∵四边形ABCD、CGEF是正方形,∴AB=BC=CD=AD,∠B=∠BCD=∠CDA=∠BAD=90°CF=EF=EG=CG,∠G=∠GEF=∠EFC=∠FCG=90°,∠FCE=∠FEC=45°∴∠DCF=∠FEC思路二:延长DM交CE于N,∵四边形ABCD、CGEF是正方形∴AD∥CE,∴∠DAM=∠NEM又∵∠DMA=∠NME,AM=EM,∴△ADM≌△ENM思路三:∵正方形CGEF,∴∠FCE=∠FEC=45°又∵正方形ABCD,∴∠DCB=90°.∴∠DCF=180°﹣∠DCB﹣∠FCE=45°,∠DCF=∠FEC=45°选取条件①证明:如图∵正方形ABCD,∴AD∥BE,AD=DC,∴∠1=∠2∵AD=NE,∠3=∠4,∴△ADM≌△ENM∴MD=MN又∵AD=DC,∴DC=NE又∵正方形CGEF,∴FC=FE,∠FCE=∠FEN=45°.第22页(共33页)∴∠FCD=∠FEN=45°∴△FDC≌△FNE∴FD=FN,∠5=∠6,∴∠DFN=∠CFE=90°∴MD=MF,MD⊥MF选取条件②证明:如图,延长DM交FE于N∵正方形ABCD、CGEF∴CF=EF,AD=DC,∠CFE=90°,AD∥FE.∴∠1=∠2又∵MA=ME,∠3=∠4,∴△AMD≌△EMN∴MD=MN,AD=EN.∵AD=DC,∴DC=NE又∵FC=FE,∴FD=FN又∵∠DFN=90°,∴FM⊥MD,MF=MD.选取条件③证明:如图,延长DM交FE于N.∵正方形ABCD、CGEF∴CF=EF,AD=DC,∠CFE=90°,AD∥FE∴∠1=∠2又∵MA=ME,∠3=∠4,∴△AMD≌△EMN∴AD=EN,MD=MN.∵CF=2AD,EF=2EN∴FD=FN.又∵∠DFN=90°,∴MD=MF,MD⊥MF附加题:证明:如图过点E作AD的平行线分别交DM、DC的延长线于N、H,连接DF、FN 则∠ADC=∠H,∠3=∠4.∵AM=ME,∠1=∠2,∴△ADM≌△ENM∴DM=NM,AD=EN.∵正方形ABCD、CGEF∴AD=DC,FC=FE,∠ADC=∠FCG=∠CFE=90°,CG∥FE∴∠H=90°,∠5=∠NEF,DC=NE∴∠DCF+∠7=∠5+∠7=90°∴∠DCF=∠5=∠NEF∵FC=FE,∴△DCF≌△NEF∴FD=FN,∠DFC=∠NFE.∵∠CFE=90°∴∠DFN=90°.∴DM=FM,DM⊥FM.第23页(共33页)12.正方形ABCD中,点O是对角线AC的中点,P是对角线AC上一动点,过点P作PF⊥CD于点F.如图1,当点P与点O重合时,显然有DF=CF.(1)如图2,若点P在线段AO上(不与点A、O重合),PE⊥PB且PE 交CD于点E.①求证:DF=EF;②写出线段PC、PA、CE之间的一个等量关系,并证明你的结论;(2)若点P在线段OC上(不与点O、C重合),PE⊥PB且PE交直线CD 于点E.请完成图3并判断(1)中的结论①、②是否分别成立?若不成立,写出相应的结论.(所写结论均不必证明)【解答】解:(1)如图2,延长FP交AB于点Q,①∵AC是正方形ABCD对角线,∴∠QAP=∠APQ=45°,∴AQ=PQ,∵AB=QF,∴BQ=PF,∵PE⊥PB,∴∠QPB+∠FPE=90°,∵∠QBP+∠QPB=90°,∴∠QBP=∠FPE,∵∠BQP=∠PFE=90°,∴△BQP≌△PFE,∴QP=EF,∵AQ=DF,∴DF=EF;②如图2,过点P作PG⊥AD.∵PF⊥CD,∠PCF=∠PAG=45°,∴△PCF和△PAG均为等腰直角三角形,∵四边形DFPG为矩形,∴PA=PG,PC=CF,∵PG=DF,DF=EF,∴PA=EF,∴PC=CF=(CE+EF)=CE+EF=CE+PA,即PC、PA、CE满足关系为:PC=CE+PA;(2)结论①仍成立;结论②不成立,此时②中三条线段的数量关系是PA﹣PC=CE.如图3:①∵PB⊥PE,BC⊥CE,∴B、P、C、E四点共圆,∴∠PEC=∠PBC,在△PBC和△PDC中有:BC=DC(已知),∠PCB=∠PCD=45°(已证),PC 边公共边,∴△PBC≌△PDC(SAS),第24页(共33页)∴∠PBC=∠PDC,∴∠PEC=∠PDC,∵PF⊥DE,∴DF=EF;②同理:PA=PG=DF=EF,PC=CF,∴PA=EF=(CE+CF)=CE+CF=CE+PC即PC、PA、CE满足关系为:PA﹣PC=CE.13.如图,正方形ABCD,BE⊥ED,连接BD,CE.(1)求证:∠EBD=∠ECD;(2)设EB,EC交AD于F,G两点,若AF=2FG,探究线段CG与DG之间的数量关系并证明.【解答】(1)证明:如图,过点C作CM⊥BE于M,作CN⊥DE交ED的延长线于N,∵BE⊥ED,∴四边形CNEM是矩形,∴∠DCN+∠DCM=∠MCN=90°,又∵∠BCM+∠DCM=∠BCD=90°,∴∠BCM=∠DCN,正方形ABCD中,BC=CD,在△BCM和△DCN中,,∴△BCM≌△DCN(AAS),∴CM=CN,∴矩形CNEM是正方形,∴∠CEM=45°,又∵四边形ABCD是正方形,∴∠BDC=45°,设BD、CE交于点O,在△BEO中,∠EBO+∠EOB+∠BEO=180°,在△CDO中,∠COD+∠ODC+∠OCD=180°,∵∠BOE=∠COD,∴∠EBO=∠OCD,即:∠EBD=∠ECD;第25页(共33页)(2)解:CG=DG.理由如下:如图,过点B作BP⊥CE于P,BP的延长线交CD于点Q,连接FQ,∵∠BEP=45°,∴∠EBP=90°﹣45°=45°,延长DC到点Q,使CR=AF,在正方形ABCD中,AB=BC,在△ABF和△CBR中,,∴△ABF≌△CBR(SAS),∴BF=BR,∠ABF=∠CBR,∴∠QBR=∠QBC+∠CBR=∠QBC+∠ABF=90°﹣∠EBP=45°,∴∠QBR=∠QBF=45°,在△FBQ和△RBQ中,,∴△FBQ≌△RBQ(SAS),∴FQ=QR,∵BP⊥CE,∴∠CBQ+∠BCP=90°,又∵∠BCP+∠DCG=∠BCD=90°,∴∠CBQ=∠DCG,在△BCQ和△CDG中,,∴△BCQ≌△CDG(ASA),∴DG=CQ,设FG=x,DG=CQ=a,则AF=CR=2FG=2x,AD=AF+FG+DG=2x+x+a=3x+a,FQ=QR=CQ+CR=DG+AF=a+2x,FD=FG+DG=x+a,DQ=CD﹣CQ=AD﹣DG=3x+a﹣a=3x,在Rt△DQF中,FQ2=FD2+DQ2,即(a+2x)2=(x+a)2+(3x)2,解得a=3x,∴CD=AD=3x+a=2a,在Rt△CDG中,CG===a,∴CG=DG.第26页(共33页)14.如图1,在正方形ABCD中,对角线AC与BD相交于点E,AF平分∠BAC,交BD于点F.(1)求证:EF+AC=AB;(2)点C1从点C出发,沿着线段CB向点B运动(不与点B重合),同时点A1从点A出发,沿着BA的延长线运动,点C1与A1的运动速度相同,当动点C1停止运动时,另一动点A1也随之停止运动.如图2,A1F1平分∠BA1C1,交BD于点F1,过点F1作F1E1⊥A1C1,垂足为E1,请猜想E1F1,A1C1与AB三者之间的数量关系,并证明你的猜想;(3)在(2)的条件下,当A1E1=3,C1E1=2时,求BD的长.【解答】(1)证明:如图1,过点F作FM⊥AB于点M,在正方形ABCD 中,AC⊥BD于点E.∴AE=AC,∠ABD=∠CBD=45°,∵AF平分∠BAC,∴EF=MF,又∵AF=AF,∴Rt△AMF≌Rt△AEF,∴AE=AM,∵∠MFB=∠ABF=45°,∴MF=MB,MB=EF,∴EF+AC=MB+AE=MB+AM=AB.(2)E1F1,A1C1与AB三者之间的数量关系:E1F1+A1C1=AB证明:如图2,连接F1C1,过点F1作F1P⊥A1B于点P,F1Q⊥BC于点Q,∵A1F1平分∠BA1C1,∴E1F1=PF1;同理QF1=PF1,∴E1F1=PF1=QF1,又∵A1F1=A1F1,∴Rt△A1E1F1≌Rt△A1PF1,∴A1E1=A1P,同理Rt△QF1C1≌Rt△E1F1C1,∴C1Q=C1E1,由题意:A1A=C1C,∴A1B+BC1=AB+A1A+BC﹣C1C=AB+BC=2AB,∵PB=PF1=QF1=QB,∴A1B+BC1=A1P+PB+QB+C1Q=A1P+C1Q+2E1F1,即2AB=A1E1+C1E1+2E1F1=A1C1+2E1F1,∴E1F1+A1C1=AB.(3)解:设PB=x,则QB=x,∵A1E1=3,QC1=C1E1=2,Rt△A1BC1中,A1B2+BC12=A1C12,即(3+x)2+(2+x)2=52,∴x1=1,x2=﹣6(舍去),∴PB=1,∴E1F1=1,又∵A1C1=5,由(2)的结论:E1F1+A1C1=AB,第27页(共33页)∴AB=,∴BD=.15.如图,正方形ABCD中,E为AB边上一点,过点D作DF⊥DE,与BC延长线交于点F.连接EF,与CD边交于点G,与对角线BD交于点H.(1)若BF=BD=,求BE的长;(2)若∠ADE=2∠BFE,求证:FH=HE+HD.【解答】(1)解:∵四边形ABCD正方形,∴∠BCD=90°,BC=CD,∴Rt△BCD中,BC2+CD2=BD2,即BC2=()2﹣(BC)2,∴BC=AB=1,∵DF⊥DE,∴∠ADE+∠EDC=90°=∠EDC+∠CDF,∴∠ADE=∠CDF,在△ADE和△CDF中,∵,∴△ADE≌△CDF(ASA),∴AE=CF=BF﹣BC=﹣1,∴BE=AB﹣AE=1﹣(﹣1)=2﹣;(2)证明:在FE上截取一段FI,使得FI=EH,∵△ADE≌△CDF,∴DE=DF,∴△DEF为等腰直角三角形,∴∠DEF=∠DFE=45°=∠DBC,∵∠DHE=∠BHF,∴∠EDH=∠BFH(三角形的内角和定理),在△DEH和△DFI中,∵,∴△DEH≌△DFI(SAS),∴DH=DI,又∵∠HDE=∠BFE,∠ADE=2∠BFE,∴∠HDE=∠BFE=∠ADE,∵∠HDE+∠ADE=45°,∴∠HDE=15°,∴∠DHI=∠DEH+∠HDE=60°,即△DHI为等边三角形,∴DH=HI,第28页(共33页)∴FH=FI+HI=HE+HD.16.如图,小明将一张直角梯形纸片沿虚线剪开,得到矩形ABCD和三角形EGF两张纸片,测得AB=5,AD=4,EF=.在进行如下操作时遇到了下面的几个问题,请你帮助解决.(1)请你求出FG的长度.(2)在(1)的条件下,小明先将三角形的边EG和矩形边AB重合,然后将△EFG沿直线BC向右平移,至F点与B重合时停止.在平移过程中,设G点平移的距离为x,两纸片重叠部分面积为.y,求在平移的整个过程中,y与x的函数关系式,并求当重叠部分面积为10时,平移距离x 的值.(3)在(2)的操作中,小明发现在平移过程中,虽然有时平移的距离不等,但两纸片重叠的面积却是相等的;而有时候平移的距离不等,两纸片重叠部分的面积也不可能相等.请探索这两种情况下重叠部分面积y的范围(直接写出结果).【解答】(1)解:∵EG=AB=5,EF=5,∠EGF=90°,在△EFG中,由勾股定理得:FG===10,答:FG的长度是10.(2)解:有两种情况:①如图1:∵矩形ABCD,∠EGF=90°,EG=AB,∴AB∥CD∥EG,∴=,即=,∴BM=5﹣x,∴y=(BM+EG)×BG=•(5﹣x+5)•x,∴y=﹣x2+5x(0≤x≤4);第29页(共33页)②如图2:与求BM的方法类似,得出=,∴CN=7﹣x,∴y=×(BM+CN)×BC=•(5﹣x+7﹣x)•4,y=﹣2x+24(4<x≤10);综合上述:y与x的关系式是y=,把y=10代入y=﹣x2+5x得:﹣x2+5x=10,解得:x1=10+2>4(舍去),x2=10﹣2;把y=10代入y=﹣2x+24得:﹣2x+24=10,解得:x=7.(3)解:当4≤y<16时,平移的距离不等,两纸片重叠的面积可能相等,0≤y<4或y=16时,平移的距离不等,两纸片重叠部分的面积也不可能相等.17.如图,将一三角板放在边长为1的正方形ABCD上,并使它的直角顶点P在对角线AC上滑动,直角的一边始终经过点B,另一边与射线DC相交于Q.探究:设A、P两点间的距离为x.(1)当点Q在边CD上时,线段PQ与PB之间有怎样的数量关系?试证明你的猜想;(2)当点Q在边CD上时,设四边形PBCQ的面积为y,求y与x之间的函数关系,并写出函数自变量x的取值范围;(3)当点P在线段AC上滑动时,△PCQ是否可能成为等腰三角形?如果可能,指出所有能使△PCQ成为等腰三角形的点Q的位置.并求出相应的x值,如果不可能,试说明理由.【解答】解:(1)PQ=PB,(1分)过P点作MN∥BC分别交AB、DC于点M、N,在正方形ABCD中,AC为对角线,∴AM=PM,又∵AB=MN,∴MB=PN,∵∠BPQ=90°,∴∠BPM+∠NPQ=90°;又∵∠MBP+∠BPM=90°,∴∠MBP=∠NPQ,在Rt△MBP≌Rt△NPQ中,第30页(共33页)。
中考数学与平行四边形有关的压轴题附答案解析
一、平行四边形真题与模拟题分类汇编(难题易错题)1.如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连接BG,DE.(1)①猜想图1中线段BG、线段DE的长度关系及所在直线的位置关系,不必证明;②将图1中的正方形CEFG绕着点C按顺时针方向旋转任意角度α,得到如图2情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并证明你的判断.(2)将原题中正方形改为矩形(如图3、4),且AB=a,BC=b,CE=ka,CG=kb (a≠b,k>0),第(1)题①中得到的结论哪些成立,哪些不成立?若成立,以图4为例简要说明理由.(3)在第(2)题图4中,连接DG、BE,且a=3,b=2,k=12,求BE2+DG2的值.【答案】(1)①BG⊥DE,BG=DE;②BG⊥DE,证明见解析;(2)BG⊥DE,证明见解析;(3)16.25.【解析】分析:(1)①根据正方形的性质,显然三角形BCG顺时针旋转90°即可得到三角形DCE,从而判断两条直线之间的关系;②结合正方形的性质,根据SAS仍然能够判定△BCG≌△DCE,从而证明结论;(2)根据两条对应边的比相等,且夹角相等可以判定上述两个三角形相似,从而可以得到(1)中的位置关系仍然成立;(3)连接BE、DG.根据勾股定理即可把BE2+DG2转换为两个矩形的长、宽平方和.详解:(1)①BG⊥DE,BG=DE;②∵四边形ABCD和四边形CEFG是正方形,∴BC=DC,CG=CE,∠BCD=∠ECG=90°,∴∠BCG=∠DCE,∴△BCG≌△DCE,∴BG=DE,∠CBG=∠CDE,又∵∠CBG+∠BHC=90°,∴∠CDE+∠DHG=90°,∴BG⊥DE.(2)∵AB=a,BC=b,CE=ka,CG=kb,∴BC CG b==,DC CE a又∵∠BCG=∠DCE,∴△BCG∽△DCE,∴∠CBG=∠CDE,又∵∠CBG+∠BHC=90°,∴∠CDE+∠DHG=90°,∴BG⊥DE.(3)连接BE、DG.根据题意,得AB=3,BC=2,CE=1.5,CG=1,∵BG⊥DE,∠BCD=∠ECG=90°∴BE2+DG2=BO2+OE2+DO2+OG2=BC2+CD2+CE2+CG2=9+4+2.25+1=16.25.点睛:此题综合运用了全等三角形的判定和性质、相似三角形的判定和性质以及勾股定理.2.如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F.(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,求EF的长.413【答案】(1)证明见解析;(2【解析】分析:(1)根据平行四边形ABCD 的性质,判定△BOE ≌△DOF (ASA ),得出四边形BEDF 的对角线互相平分,进而得出结论;(2)在Rt △ADE 中,由勾股定理得出方程,解方程求出BE ,由勾股定理求出BD ,得出OB ,再由勾股定理求出EO ,即可得出EF 的长.详解:(1)证明:∵四边形ABCD 是矩形,O 是BD 的中点,∴∠A=90°,AD=BC=4,AB ∥DC ,OB=OD ,∴∠OBE=∠ODF ,在△BOE 和△DOF 中,OBE ODF OB ODBOE DOF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BOE ≌△DOF (ASA ),∴EO=FO ,∴四边形BEDF 是平行四边形;(2)当四边形BEDF 是菱形时,BD ⊥EF ,设BE=x ,则 DE=x ,AE=6-x ,在Rt △ADE 中,DE 2=AD 2+AE 2,∴x 2=42+(6-x )2,解得:x=133, ∵∴OB=12∵BD ⊥EF ,∴∴EF=2EO=3. 点睛:本题主要考查了矩形的性质,菱形的性质、勾股定理、全等三角形的判定与性质,熟练掌握矩形的性质和勾股定理,证明三角形全等是解决问的关键3.在正方形ABCD 中,点E ,F 分别在边BC ,CD 上,且∠EAF=∠CEF=45°.(1)将△ADF 绕着点A 顺时针旋转90°,得到△ABG(如图①),求证:△AEG ≌△AEF ;(2)若直线EF 与AB ,AD 的延长线分别交于点M ,N(如图②),求证:EF 2=ME 2+NF 2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图③),请你直接写出线段EF ,BE ,DF 之间的数量关系.【答案】(1)证明见解析;(2)证明见解析;(3)EF2=2BE2+2DF2.【解析】试题分析:(1)根据旋转的性质可知AF=AG,∠EAF=∠GAE=45°,故可证△AEG≌△AEF;(2)将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM.由(1)知△AEG≌△AEF,则EG=EF.再由△BME、△DNF、△CEF均为等腰直角三角形,得出CE=CF,BE=BM,NF=DF,然后证明∠GME=90°,MG=NF,利用勾股定理得出EG2=ME2+MG2,等量代换即可证明EF2=ME2+NF2;(3)将△ADF绕着点A顺时针旋转90°,得到△ABG,根据旋转的性质可以得到△ADF≌△ABG,则DF=BG,再证明△AEG≌△AEF,得出EG=EF,由EG=BG+BE,等量代换得到EF=BE+DF.试题解析:(1)∵△ADF绕着点A顺时针旋转90°,得到△ABG,∴AF=AG,∠FAG=90°,∵∠EAF=45°,∴∠GAE=45°,在△AGE与△AFE中,,∴△AGE≌△AFE(SAS);(2)设正方形ABCD的边长为a.将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM.则△ADF≌△ABG,DF=BG.由(1)知△AEG≌△AEF,∴EG=EF.∵∠CEF=45°,∴△BME、△DNF、△CEF均为等腰直角三角形,∴CE=CF,BE=BM,NF=DF,∴a﹣BE=a﹣DF,∴BE=DF,∴BE=BM=DF=BG,∴∠BMG=45°,∴∠GME=45°+45°=90°,∴EG2=ME2+MG2,∵EG=EF ,MG=BM=DF=NF,∴EF2=ME2+NF2;(3)EF2=2BE2+2DF2.如图所示,延长EF交AB延长线于M点,交AD延长线于N点,将△ADF绕着点A顺时针旋转90°,得到△AGH,连结HM,HE.由(1)知△AEH≌△AEF,则由勾股定理有(GH+BE)2+BG2=EH2,即(GH+BE)2+(BM﹣GM)2=EH2又∴EF=HE,DF=GH=GM,BE=BM,所以有(GH+BE)2+(BE﹣GH)2=EF2,即2(DF2+BE2)=EF2考点:四边形综合题4.如图,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,E、F在菱形的边BC,CD上.(1)证明:BE=CF.(2)当点E,F分别在边BC,CD上移动时(△AEF保持为正三角形),请探究四边形AECF的面积是否发生变化?若不变,求出这个定值;如果变化,求出其最大值.(3)在(2)的情况下,请探究△CEF的面积是否发生变化?若不变,求出这个定值;如果变化,求出其最大值.【答案】(1)见解析;(2)43;(3)见解析【解析】试题分析:(1)先求证AB=AC,进而求证△ABC、△ACD为等边三角形,得∠4=60°,AC=AB进而求证△ABE≌△ACF,即可求得BE=CF;(2)根据△ABE≌△ACF可得S△ABE=S△ACF,故根据S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC即可解题;(3)当正三角形AEF的边AE与BC垂直时,边AE最短.△AEF的面积会随着AE的变化而变化,且当AE最短时,正三角形AEF的面积会最小,又根据S△CEF=S四边形AECF-S△AEF,则△CEF的面积就会最大.试题解析:(1)证明:连接AC,∵∠1+∠2=60°,∠3+∠2=60°,∴∠1=∠3,∵∠BAD=120°,∴∠ABC=∠ADC=60°∵四边形ABCD是菱形,∴AB=BC=CD=AD,∴△ABC、△ACD为等边三角形∴∠4=60°,AC=AB,∴在△ABE和△ACF中,,∴△ABE≌△ACF.(ASA)∴BE=CF.(2)解:由(1)得△ABE≌△ACF,则S△ABE=S△ACF.故S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC,是定值.作AH⊥BC于H点,则BH=2,S四边形AECF=S△ABC===; (3)解:由“垂线段最短”可知,当正三角形AEF 的边AE 与BC 垂直时,边AE 最短.故△AEF 的面积会随着AE 的变化而变化,且当AE 最短时,正三角形AEF 的面积会最小,又S △CEF =S 四边形AECF ﹣S △AEF ,则△CEF 的面积就会最大.由(2)得,S △CEF =S 四边形AECF ﹣S △AEF =﹣=.点睛:本题考查了菱形每一条对角线平分一组对角的性质,考查了全等三角形的证明和全等三角形对应边相等的性质,考查了三角形面积的计算,本题中求证△ABE ≌△ACF 是解题的关键.5.问题情境在四边形ABCD 中,BA =BC ,DC ⊥AC ,过点D 作DE ∥AB 交BC 的延长线于点E ,M 是边AD 的中点,连接MB ,ME.特例探究(1)如图1,当∠ABC =90°时,写出线段MB 与ME 的数量关系,位置关系;(2)如图2,当∠ABC =120°时,试探究线段MB 与ME 的数量关系,并证明你的结论; 拓展延伸(3)如图3,当∠ABC =α时,请直接用含α的式子表示线段MB 与ME 之间的数量关系.【答案】(1)MB =ME ,MB ⊥ME ;(2)ME 3.证明见解析;(3)ME =MB·tan 2 .【解析】【分析】(1)如图1中,连接CM .只要证明△MBE 是等腰直角三角形即可;(2)结论:EM=3MB .只要证明△EBM 是直角三角形,且∠MEB=30°即可; (3)结论:EM=BM•tan2 .证明方法类似;【详解】(1) 如图1中,连接CM .∵∠ACD=90°,AM=MD ,∴MC=MA=MD ,∵BA=BC ,∴BM 垂直平分AC ,∵∠ABC=90°,BA=BC ,∴∠MBE=12∠ABC=45°,∠ACB=∠DCE=45°, ∵AB ∥DE ,∴∠ABE+∠DEC=180°,∴∠DEC=90°,∴∠DCE=∠CDE=45°,∴EC=ED ,∵MC=MD ,∴EM 垂直平分线段CD ,EM 平分∠DEC ,∴∠MEC=45°,∴△BME 是等腰直角三角形,∴BM=ME ,BM ⊥EM .故答案为BM=ME ,BM ⊥EM . (2)ME =3MB .证明如下:连接CM ,如解图所示.∵DC ⊥AC ,M 是边AD 的中点,∴MC =MA =MD .∵BA =BC ,∴BM 垂直平分AC .∵∠ABC =120°,BA =BC ,∴∠MBE =12∠ABC =60°,∠BAC =∠BCA =30°,∠DCE =60°. ∵AB ∥DE ,∴∠ABE +∠DEC =180°,∴∠DEC =60°,∴∠DCE =∠DEC =60°,∴△CDE 是等边三角形,∴EC =ED .∵MC =MD ,∴EM 垂直平分CD ,EM 平分∠DEC , ∴∠MEC =12∠DEC =30°, ∴∠MBE +∠MEB =90°,即∠BME =90°.在Rt △BME 中,∵∠MEB =30°,∴ME =3MB .(3) 如图3中,结论:EM=BM•tan 2α.理由:同法可证:BM ⊥EM ,BM 平分∠ABC ,所以EM=BM•tan2α. 【点睛】本题考查四边形综合题、等腰直角三角形的判定和性质、等边三角形的判定和性质、等腰三角形的性质、锐角三角函数等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题.6.如图,抛物线y=mx 2+2mx+n 经过A (﹣3,0),C (0,﹣32)两点,与x 轴交于另一点B .(1)求经过A ,B ,C 三点的抛物线的解析式;(2)过点C 作CE ∥x 轴交抛物线于点E ,写出点E 的坐标,并求AC 、BE 的交点F 的坐标 (3)若抛物线的顶点为D ,连结DC 、DE ,四边形CDEF 是否为菱形?若是,请证明;若不是,请说明理由.【答案】(1)y=12x2+x﹣32;(2)F点坐标为(﹣1,﹣1);(3)四边形CDEF是菱形.证明见解析【解析】【分析】将A、C点的坐标代入抛物线的解析式中,通过联立方程组求得该抛物线的解析式;根据(1)题所得的抛物线的解析式,可确定抛物线的对称轴方程以及B、C点的坐标,由CE∥x轴,可知C、E关于对称轴对称。
人教中考数学复习平行四边形专项易错题含答案
一、平行四边形真题与模拟题分类汇编(难题易错题)1.如图,矩形ABCD 中,AB =6,BC =4,过对角线BD 中点O 的直线分别交AB ,CD 边于点E ,F .(1)求证:四边形BEDF 是平行四边形;(2)当四边形BEDF 是菱形时,求EF 的长.【答案】(1)证明见解析;(2)133. 【解析】 分析:(1)根据平行四边形ABCD 的性质,判定△BOE ≌△DOF (ASA ),得出四边形BEDF 的对角线互相平分,进而得出结论;(2)在Rt △ADE 中,由勾股定理得出方程,解方程求出BE ,由勾股定理求出BD ,得出OB ,再由勾股定理求出EO ,即可得出EF 的长.详解:(1)证明:∵四边形ABCD 是矩形,O 是BD 的中点,∴∠A=90°,AD=BC=4,AB ∥DC ,OB=OD ,∴∠OBE=∠ODF ,在△BOE 和△DOF 中,OBE ODF OB ODBOE DOF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BOE ≌△DOF (ASA ),∴EO=FO ,∴四边形BEDF 是平行四边形;(2)当四边形BEDF 是菱形时,BD ⊥EF ,设BE=x ,则 DE=x ,AE=6-x ,在Rt △ADE 中,DE 2=AD 2+AE 2,∴x 2=42+(6-x )2,解得:x=133, ∵22AD AB +13 ∴OB=1213 ∵BD ⊥EF ,∴EO=22BE OB=2133,∴EF=2EO=4133.点睛:本题主要考查了矩形的性质,菱形的性质、勾股定理、全等三角形的判定与性质,熟练掌握矩形的性质和勾股定理,证明三角形全等是解决问的关键2.如图,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,E、F在菱形的边BC,CD上.(1)证明:BE=CF.(2)当点E,F分别在边BC,CD上移动时(△AEF保持为正三角形),请探究四边形AECF的面积是否发生变化?若不变,求出这个定值;如果变化,求出其最大值.(3)在(2)的情况下,请探究△CEF的面积是否发生变化?若不变,求出这个定值;如果变化,求出其最大值.【答案】(1)见解析;(2)33)见解析【解析】试题分析:(1)先求证AB=AC,进而求证△ABC、△ACD为等边三角形,得∠4=60°,AC=AB进而求证△ABE≌△ACF,即可求得BE=CF;(2)根据△ABE≌△ACF可得S△ABE=S△ACF,故根据S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC即可解题;(3)当正三角形AEF的边AE与BC垂直时,边AE最短.△AEF的面积会随着AE的变化而变化,且当AE最短时,正三角形AEF的面积会最小,又根据S△CEF=S四边形AECF-S△AEF,则△CEF的面积就会最大.试题解析:(1)证明:连接AC,∵∠1+∠2=60°,∠3+∠2=60°,∴∠1=∠3,∵∠BAD=120°,∴∠ABC=∠ADC=60°∵四边形ABCD是菱形,∴AB=BC=CD=AD,∴△ABC、△ACD为等边三角形∴∠4=60°,AC=AB,∴在△ABE和△ACF中,,∴△ABE≌△ACF.(ASA)∴BE=CF.(2)解:由(1)得△ABE≌△ACF,则S△ABE=S△ACF.故S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC,是定值.作AH⊥BC于H点,则BH=2,S四边形AECF=S△ABC===;(3)解:由“垂线段最短”可知,当正三角形AEF的边AE与BC垂直时,边AE最短.故△AEF的面积会随着AE的变化而变化,且当AE最短时,正三角形AEF的面积会最小,又S△CEF=S四边形AECF﹣S△AEF,则△CEF的面积就会最大.由(2)得,S△CEF=S四边形AECF﹣S△AEF=﹣=.点睛:本题考查了菱形每一条对角线平分一组对角的性质,考查了全等三角形的证明和全等三角形对应边相等的性质,考查了三角形面积的计算,本题中求证△ABE≌△ACF是解题的关键.3.如图,在平行四边形ABCD中,AD⊥DB,垂足为点D,将平行四边形ABCD折叠,使点B落在点D的位置,点C落在点G的位置,折痕为EF,EF交对角线BD于点P.(1)连结CG,请判断四边形DBCG的形状,并说明理由;(2)若AE=BD,求∠EDF的度数.【答案】(1)四边形BCGD是矩形,理由详见解析;(2)∠EDF=120°.【解析】【分析】(1)根据平行四边形的性质和折叠性质以及矩形的判定解答即可;(2)根据折叠的性质以及直角三角形的性质和等边三角形的判定与性质解答即可.【详解】解:(1)四边形BCGD是矩形,理由如下,∵四边形ABCD是平行四边形,∴BC∥AD,即BC∥DG,由折叠可知,BC=DG,∴四边形BCGD是平行四边形,∵AD⊥BD,∴∠CBD=90°,∴四边形BCGD是矩形;(2)由折叠可知:EF垂直平分BD,∴BD⊥EF,DP=BP,∵AD⊥BD,∴EF∥AD∥BC,∴AE PD1==BE BP∴AE=BE,∴DE是Rt△ADB斜边上的中线,∴DE=AE=BE,∵AE=BD,∴DE=BD=BE,∴△DBE是等边三角形,∴∠EDB=∠DBE=60°,∵AB∥DC,∴∠DBC=∠DBE=60°,∴∠EDF=120°.【点睛】本题考查了平行四边形的性质,折叠性质,等边三角形的性质和判定,主要考查学生运用定理进行推理和计算的能力,题目综合性比较强,有一定的难度4.如图1,已知正方形ABCD的边CD在正方形DEFG的边DE上,连接AE,GC.(1)试猜想AE与GC有怎样的关系(直接写出结论即可);(2)将正方形DEFG绕点D按顺时针方向旋转,使点E落在BC边上,如图2,连接AE和CG.你认为(1)中的结论是否还成立?若成立,给出证明;若不成立,请说明理由.(3)在(2)中,若E是BC的中点,且BC=2,则C,F两点间的距离为.【答案】(1) AE=CG,AE⊥GC;(2)成立,证明见解析;2.【解析】【分析】(1)观察图形,AE、CG的位置关系可能是垂直,下面着手证明.由于四边形ABCD、DEFG都是正方形,易证得△ADE≌△CDG,则∠1=∠2,由于∠2、∠3互余,所以∠1、∠3互余,由此可得AE⊥GC.(2)题(1)的结论仍然成立,参照(1)题的解题方法,可证△ADE≌△CDG,得∠5=∠4,由于∠4、∠7互余,而∠5、∠6互余,那么∠6=∠7;由图知∠AEB=∠CEH=90°﹣∠6,即∠7+∠CEH=90°,由此得证.(3)如图3中,作CM⊥DG于G,GN⊥CD于N,CH⊥FG于H,则四边形CMGH是矩形,可得CM=GH,CH=GM.想办法求出CH,HF,再利用勾股定理即可解决问题.【详解】(1)AE=CG,AE⊥GC;证明:延长GC交AE于点H,在正方形ABCD与正方形DEFG中,AD=DC,∠ADE=∠CDG=90°,DE=DG,∴△ADE≌△CDG(SAS),∴AE,CG,∠1=∠2∵∠2+∠3=90°,∴∠1+∠3=90°,∴∠AHG=180°﹣(∠1+∠3)=180°﹣90°=90°,∴AE⊥GC.(2)答:成立;证明:延长AE和GC相交于点H,在正方形ABCD和正方形DEFG中,AD=DC,DE=DG,∠ADC=∠DCB=∠B=∠BAD=∠EDG=90°,∴∠1=∠2=90°﹣∠3;∴△ADE≌△CDG(SAS),∴AE=CG,∠5=∠4;又∵∠5+∠6=90°,∠4+∠7=180°﹣∠DCE=180°﹣90°=90°,∴∠6=∠7,又∵∠6+∠AEB=90°,∠AEB=∠CEH,∴∠CEH+∠7=90°,∴∠EHC=90°,∴AE⊥GC.(3)如图3中,作CM⊥DG于G,GN⊥CD于N,CH⊥FG于H,则四边形CMGH是矩形,可得CM=GH,CH=GM.∵BE =CE =1,AB =CD =2,∴AE =DE =CG ═DG =FG 5∵DE =DG ,∠DCE =∠GND ,∠EDC =∠DGN ,∴△DCE ≌△GND(AAS),∴GCD =2,∵S △DCG =12•CD•NG =12•DG•CM , ∴2×25, ∴CM =GH 45, ∴MG =CH 22CG CM -355, ∴FH =FG ﹣FG 5, ∴CF 22FH CH +22535()()55+2. 2.【点睛】 本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是正确寻找全等三角形解决问题,属于中考压轴题.5.(1)(问题发现)如图1,在Rt △ABC 中,AB =AC =2,∠BAC =90°,点D 为BC 的中点,以CD 为一边作正方形CDEF ,点E 恰好与点A 重合,则线段BE 与AF 的数量关系为(2)(拓展研究)在(1)的条件下,如果正方形CDEF 绕点C 旋转,连接BE ,CE ,AF ,线段BE 与AF 的数量关系有无变化?请仅就图2的情形给出证明;(3)(问题发现)当正方形CDEF 旋转到B ,E ,F 三点共线时候,直接写出线段AF 的长.【答案】(1)2AF ;(2)无变化;(3)AF 313.【解析】试题分析:(1)先利用等腰直角三角形的性质得出2 ,再得出BE=AB=2,即可得出结论;(2)先利用三角函数得出22CA CB =,同理得出22CF CE =,夹角相等即可得出△ACF ∽△BCE ,进而得出结论;(3)分两种情况计算,当点E 在线段BF 上时,如图2,先利用勾股定理求出2,6,即可得出62,借助(2)得出的结论,当点E 在线段BF 的延长线上,同前一种情况一样即可得出结论.试题解析:(1)在Rt △ABC 中,AB=AC=2,根据勾股定理得,22,点D 为BC 的中点,∴AD=122, ∵四边形CDEF 是正方形,∴2,∵BE=AB=2,∴2AF ,故答案为2AF ;(2)无变化;如图2,在Rt △ABC 中,AB=AC=2,∴∠ABC=∠ACB=45°,∴sin ∠ABC=2CA CB = 在正方形CDEF 中,∠FEC=12∠FED=45°, 在Rt △CEF 中,sin ∠FEC=2CF CE = ∴CF CA CE CB=, ∵∠FCE=∠ACB=45°,∴∠FCE ﹣∠ACE=∠ACB ﹣∠ACE ,∴∠FCA=∠ECB ,∴△ACF ∽△BCE ,∴BE CB AF CA=2∴2AF , ∴线段BE 与AF 的数量关系无变化;(3)当点E 在线段AF 上时,如图2,由(1)知,CF=EF=CD=2,在Rt△BCF中,CF=2,BC=22,根据勾股定理得,BF=6,∴BE=BF﹣EF=6﹣2,由(2)知,BE=2AF,∴AF=3﹣1,当点E在线段BF的延长线上时,如图3,在Rt△ABC中,AB=AC=2,∴∠ABC=∠ACB=45°,∴sin∠ABC=2 CACB=,在正方形CDEF中,∠FEC=12∠FED=45°,在Rt△CEF中,sin∠FEC=2CFCE=,∴CF CACE CB=,∵∠FCE=∠ACB=45°,∴∠FCB+∠ACB=∠FCB+∠FCE,∴∠FCA=∠ECB,∴△ACF∽△BCE,∴BE CBAF CA= =2,∴BE=2AF,由(1)知,CF=EF=CD=2,在Rt△BCF中,CF=2,BC=22,根据勾股定理得,BF=6,∴BE=BF+EF=6+2,由(2)知,BE=2AF,∴AF=3+1.即:当正方形CDEF旋转到B,E,F三点共线时候,线段AF的长为3﹣1或3+1.6.如图,已知矩形ABCD中,E是AD上一点,F是AB上的一点,EF⊥EC,且EF=EC.(1)求证:△AEF≌△DCE.(2)若DE=4cm,矩形ABCD的周长为32cm,求AE的长.【答案】(1)证明见解析;(2)6cm.【解析】分析:(1)根据EF⊥CE,求证∠AEF=∠ECD.再利用AAS即可求证△AEF≌△DCE.(2)利用全等三角形的性质,对应边相等,再根据矩形ABCD的周长为32cm,即可求得AE的长.详解:(1)证明:∵EF⊥CE,∴∠FEC=90°,∴∠AEF+∠DEC=90°,而∠ECD+∠DEC=90°,∴∠AEF=∠ECD.在Rt△AEF和Rt△DEC中,∠FAE=∠EDC=90°,∠AEF=∠ECD,EF=EC.∴△AEF≌△DCE.(2)解:∵△AEF≌△DCE.AE=CD.AD=AE+4.∵矩形ABCD的周长为32cm,∴2(AE+AE+4)=32.解得,AE=6(cm).答:AE的长为6cm.点睛:此题主要考查学生对全等三角形的判定与性质和矩形的性质等知识点的理解和掌握,难易程度适中,是一道很典型的题目.7.猜想与证明:如图1,摆放矩形纸片ABCD与矩形纸片ECGF,使B、C、G三点在一条直线上,CE在边CD上,连接AF,若M为AF的中点,连接DM、ME,试猜想DM与ME的关系,并证明你的结论.拓展与延伸:(1)若将”猜想与证明“中的纸片换成正方形纸片ABCD与正方形纸片ECGF,其他条件不变,则DM和ME的关系为.(2)如图2摆放正方形纸片ABCD与正方形纸片ECGF,使点F在边CD上,点M仍为AF 的中点,试证明(1)中的结论仍然成立.【答案】猜想:DM=ME,证明见解析;(2)成立,证明见解析.【解析】试题分析:延长EM交AD于点H,根据ABCD和CEFG为矩形得到AD∥EF,得到△FME和△AMH全等,得到HM=EM,根据Rt△HDE得到HM=DE,则可以得到答案;(1)、延长EM交AD于点H,根据ABCD和CEFG为矩形得到AD∥EF,得到△FME和△AMH全等,得到HM=EM,根据Rt△HDE得到HM=DE,则可以得到答案;(2)、连接AE,根据正方形的性质得出∠FCE=45°,∠FCA=45°,根据RT△ADF中AM=MF得出DM=AM=MF,根据RT△AEF中AM=MF得出AM=MF=ME,从而说明DM=ME.试题解析:如图1,延长EM交AD于点H,∵四边形ABCD和CEFG是矩形,∴AD∥EF,∴∠EFM=∠HAM,又∵∠FME=∠AMH,FM=AM,在△FME和△AMH中,∴△FME≌△AMH(ASA)∴HM=EM,在RT△HDE中,HM=DE,∴DM=HM=ME,∴DM=ME.(1)、如图1,延长EM交AD于点H,∵四边形ABCD和CEFG是矩形,∴AD∥EF,∴∠EFM=∠HAM,又∵∠FME=∠AMH,FM=AM,在△FME和△AMH中,∴△FME≌△AMH(ASA)∴HM=EM,在RT△HDE中,HM=EM∴DM=HM=ME,∴DM=ME,(2)、如图2,连接AE,∵四边形ABCD和ECGF是正方形,∴∠FCE=45°,∠FCA=45°,∴AE和EC在同一条直线上,在RT△ADF中,AM=MF,∴DM=AM=MF,在RT△AEF中,AM=MF,∴AM=MF=ME,∴DM=ME.考点:(1)、三角形全等的性质;(2)、矩形的性质.8.问题探究(1)如图①,已知正方形ABCD的边长为4.点M和N分别是边BC、CD上两点,且BM =CN,连接AM和BN,交于点P.猜想AM与BN的位置关系,并证明你的结论.(2)如图②,已知正方形ABCD的边长为4.点M和N分别从点B、C同时出发,以相同的速度沿BC、CD方向向终点C和D运动.连接AM和BN,交于点P,求△APB周长的最大值;问题解决(3)如图③,AC为边长为23的菱形ABCD的对角线,∠ABC=60°.点M和N分别从点B、C同时出发,以相同的速度沿BC、CA向终点C和A运动.连接AM和BN,交于点P.求△APB周长的最大值.【答案】(1)AM⊥BN,证明见解析;(2)△APB周长的最大值4+42;(3)△PAB的周长最大值=23+4.【解析】试题分析:根据全等三角形的判定SAS证明△ABM≌△BCN,即可证得AM⊥BN;(2)如图②,以AB为斜边向外作等腰直角△AEB,∠AEB=90°,作EF⊥PA于E,作EG⊥PB于G,连接EP,证明PA+PB=2EF,求出EF的最大值即可;(3)如图③,延长DA到K,使得AK=AB,则△ABK是等边三角形,连接PK,取PH=PB,证明PA+PB=PK,求出PK的最大值即可.试题解析:(1)结论:AM⊥BN.理由:如图①中,∵四边形ABCD是正方形,∴AB=BC,∠ABM=∠BCN=90°,∵BM=CN,∴△ABM≌△BCN,∴∠BAM=∠CBN,∵∠CBN+∠ABN=90°,∴∠ABN+∠BAM=90°,∴∠APB=90°,∴AM⊥BN.(2)如图②中,以AB为斜边向外作等腰直角三角形△AEB,∠AEB=90°,作EF⊥PA于E,作EG⊥PB于G,连接EP.∵∠EFP=∠FPG=∠G=90°,∴四边形EFPG是矩形,∴∠FEG=∠AEB=90°,∴∠AEF=∠BEG,∵EA=EB,∠EFA=∠G=90°,∴△AEF≌△BEG,∴EF=EG,AF=BG,∴四边形EFPG是正方形,∴PA+PB=PF+AF+PG﹣BG=2PF=2EF,∵EF≤AE,∴EF的最大值=AE=2,∴△APB周长的最大值=4+4.(3)如图③中,延长DA到K,使得AK=AB,则△ABK是等边三角形,连接PK,取PH=PB.∵AB=BC,∠ABM=∠BCN,BM=CN,∴△ABM≌△BCN,∴∠BAM=∠CBN,∴∠A PN=∠BAM+∠ABP=∠CBN+∠ABN=60°,∴∠APB=120°,∵∠AKB=60°,∴∠AKB+∠APB=180°,∴A、K、B、P四点共圆,∴∠BPH=∠KAB=60°,∵PH=PB,∴△PBH是等边三角形,∴∠KBA=∠HBP,BH=BP,∴∠KBH=∠ABP,∵BK=BA,∴△KBH≌△ABP,∴HK=AP,∴PA+PB=KH+PH=PK,∴PK的值最大时,△APB的周长最大,∴当PK是△ABK外接圆的直径时,PK的值最大,最大值为4,∴△PAB的周长最大值=2+4.9.如图,在正方形ABCD中,点E在CD上,AF⊥AE交CB的延长线于F.求证:AE=AF.【答案】见解析【解析】【分析】根据同角的余角相等证得∠BAF=∠DAE,再利用正方形的性质可得AB=AD,∠ABF=∠ADE=90°,根据ASA判定△ABF≌△ADE,根据全等三角形的性质即可证得AF=AE.【详解】∵AF⊥AE,∴∠BAF+∠BAE=90°,又∵∠DAE+∠BAE=90°,∴∠BAF=∠DAE,∵四边形ABCD是正方形,∴AB=AD,∠ABF=∠ADE=90°,在△ABF和△ADE中,,∴△ABF≌△ADE(ASA),∴AF=AE.【点睛】本题主要考查了正方形的性质、全等三角形的判定和性质等知识点,证明△ABF≌△ADE是解决本题的关键.10.如图,正方形ABCO的边OA、OC在坐标轴上,点B坐标为(3,3).将正方形ABCO 绕点A顺时针旋转角度α(0°<α<90°),得到正方形ADEF,ED交线段OC于点G,ED的延长线交线段BC于点P,连AP、AG.(1)求证:△AOG≌△ADG;(2)求∠PAG的度数;并判断线段OG、PG、BP之间的数量关系,说明理由;(3)当∠1=∠2时,求直线PE的解析式;(4)在(3)的条件下,直线PE上是否存在点M,使以M、A、G为顶点的三角形是等腰三角形?若存在,请直接写出M点坐标;若不存在,请说明理由.【答案】(1)见解析(2)∠PAG =45°,PG=OG+BP.理由见解析(3)y=x﹣3.(4)、.【解析】试题分析:(1)由AO=AD,AG=AG,根据斜边和一条直角边对应相等的两个直角三角形全等,判断出△AOG≌△ADG即可.(2)首先根据三角形全等的判定方法,判断出△ADP≌△ABP,再结合△AOG≌△ADG,可得∠DAP=∠BAP,∠1=∠DAG;然后根据∠1+∠DAG+∠DAP+∠BAP=90°,求出∠PAG的度数;最后判断出线段OG、PG、BP之间的数量关系即可.(3)首先根据△AOG≌△ADG,判断出∠AGO=∠AGD;然后根据∠1+∠AGO=90°,∠2+∠PGC=90°,判断出当∠1=∠2时,∠AGO=∠AGD=∠PGC,而∠AGO+∠AGD+∠PGC=180°,求出∠1=∠2=30°;最后确定出P、G两点坐标,即可判断出直线PE的解析式.(4)根据题意,分两种情况:①当点M在x轴的负半轴上时;②当点M在EP的延长线上时;根据以M、A、G为顶点的三角形是等腰三角形,求出M点坐标是多少即可.试题解析:(1)在Rt△AOG和Rt△ADG中,(HL)∴△AOG≌△ADG.(2)在Rt△ADP和Rt△ABP中,∴△ADP≌△ABP,则∠DAP=∠BAP;∵△AOG≌△ADG,∴∠1=∠DAG;又∵∠1+∠DAG+∠DAP+∠BAP=90°,∴2∠DAG+2∠DAP=90°,∴∠DAG+∠DAP=45°,∵∠PAG=∠DAG+∠DAP,∴∠PAG=45°;∵△AOG≌△ADG,∴DG=OG,∵△ADP≌△ABP,∴DP=BP,∴PG=DG+DP=OG+BP.(3)解:∵△AOG≌△ADG,∴∠AGO=∠AGD,又∵∠1+∠AGO=90°,∠2+∠PGC=90°,∠1=∠2,∴∠AGO=∠PGC,又∵∠AGO=∠AGD,∴∠AGO=∠AGD=∠PGC,又∵∠AGO+∠AGD+∠PGC=180°,∴∠AGO=∠AGD=∠PGC=180°÷3=60°,∴∠1=∠2=90°﹣60°=30°;在Rt△AOG中,∵AO=3,∴OG=AOtan30°=3×=,∴G点坐标为(,0),CG=3﹣,在Rt△PCG中,PC===3(﹣1),∴P点坐标为:(3,3﹣3 ),设直线PE的解析式为:y=kx+b,则,解得:,∴直线PE的解析式为y=x﹣3.(4)①如图1,当点M在x轴的负半轴上时,,∵AG=MG,点A坐标为(0,3),∴点M坐标为(0,﹣3).②如图2,当点M在EP的延长线上时,,由(3),可得∠AGO=∠PGC=60°,∴EP与AB的交点M,满足AG=MG,∵A点的横坐标是0,G点横坐标为,∴M的横坐标是2,纵坐标是3,∴点M坐标为(2,3).综上,可得点M坐标为(0,﹣3)或(2,3).考点:几何变换综合题.。
中考数学与平行四边形有关的压轴题附详细答案
一、平行四边形真题与模拟题分类汇编(难题易错题)1.(1)、动手操作:如图①:将矩形纸片ABCD折叠,使点D与点B重合,点C落在点处,折痕为EF,若∠ABE=20°,那么的度数为 .(2)、观察发现:小明将三角形纸片ABC(AB>AC)沿过点A的直线折叠,使得AC落在AB边上,折痕为AD,展开纸片(如图②);再次折叠该三角形纸片,使点A和点D重合,折痕为EF,展平纸片后得到△AEF(如图③).小明认为△AEF是等腰三角形,你同意吗?请说明理由.(3)、实践与运用:将矩形纸片ABCD按如下步骤操作:将纸片对折得折痕EF,折痕与AD边交于点E,与BC 边交于点F;将矩形ABFE与矩形EFCD分别沿折痕MN和PQ折叠,使点A、点D都与点F 重合,展开纸片,此时恰好有MP=MN=PQ(如图④),求∠MNF的大小.【答案】(1)125°;(2)同意;(3)60°【解析】试题分析:(1)根据直角三角形的两个锐角互余求得∠AEB=70°,根据折叠重合的角相等,得∠BEF=∠DEF=55°,根据平行线的性质得到∠EFC=125°,再根据折叠的性质得到∠EFC′=∠EFC=125°;(2)根据第一次折叠,得∠BAD=∠CAD;根据第二次折叠,得EF垂直平分AD,根据等角的余角相等,得∠AEG=∠AFG,则△AEF是等腰三角形;(3)由题意得出:∠NMF=∠AMN=∠MNF,MF=NF,由对称性可知,MF=PF,进而得出△MNF≌△MPF,得出3∠MNF=180°求出即可.试题解析:(1)、∵在直角三角形ABE中,∠ABE=20°,∴∠AEB=70°,∴∠BED=110°,根据折叠重合的角相等,得∠BEF=∠DEF=55°.∵AD∥BC,∴∠EFC=125°,再根据折叠的性质得到∠EFC′=∠EFC=125°.;(2)、同意,如图,设AD与EF交于点G由折叠知,AD平分∠BAC,所以∠BAD=∠CAD.由折叠知,∠AGE=∠DGE=90°,所以∠AGE=∠AGF=90°,所以∠AEF=∠AFE.所以AE=AF,即△AEF为等腰三角形.(3)、由题意得出:∠NMF=∠AMN=∠MNF,∴MF=NF,由折叠可知,MF=PF,∴NF=PF,而由题意得出:MP=MN,又∵MF=MF,∴△MNF≌△MPF,∴∠PMF=∠NMF,而∠PMF+∠NMF+∠MNF=180°,即3∠MNF=180°,∴∠MNF=60°.考点:1.折叠的性质;2.等边三角形的性质;3.全等三角形的判定和性质;4.等腰三角形的判定2.在△ABC中,AB=BC,点O是AC的中点,点P是AC上的一个动点(点P不与点A,O,C重合).过点A,点C作直线BP的垂线,垂足分别为点E和点F,连接OE,OF.(1)如图1,请直接写出线段OE与OF的数量关系;(2)如图2,当∠ABC=90°时,请判断线段OE与OF之间的数量关系和位置关系,并说明理由(3)若|CF﹣AE|=2,3△POF为等腰三角形时,请直接写出线段OP的长.【答案】(1)OF =OE;(2)OF⊥EK,OF=OE,理由见解析;(3)OP的长为62或233.【解析】【分析】(1)如图1中,延长EO交CF于K,证明△AOE≌△COK,从而可得OE=OK,再根据直角三角形斜边中线等于斜边一半即可得OF=OE;(2)如图2中,延长EO交CF于K,由已知证明△ABE≌△BCF,△AOE≌△COK,继而可证得△EFK是等腰直角三角形,由等腰直角三角形的性质即可得OF⊥EK,OF=OE;(3)分点P在AO上与CO上两种情况分别画图进行解答即可得.【详解】(1)如图1中,延长EO交CF于K,∵AE⊥BE,CF⊥BE,∴AE∥CK,∴∠EAO=∠KCO,∵OA=OC,∠AOE=∠COK,∴△AOE≌△COK,∴OE=OK,∵△EFK是直角三角形,∴OF=12EK=OE;(2)如图2中,延长EO交CF于K,∵∠ABC=∠AEB=∠CFB=90°,∴∠ABE+∠BAE=90°,∠ABE+∠CBF=90°,∴∠BAE=∠CBF,∵AB=BC,∴△ABE≌△BCF,∴BE=CF,AE=BF,∵△AOE≌△COK,∴AE=CK,OE=OK,∴FK=EF,∴△EFK是等腰直角三角形,∴OF⊥EK,OF=OE;(3)如图3中,点P在线段AO上,延长EO交CF于K,作PH⊥OF于H,∵|CF﹣AE|=2,EF=23,AE=CK,∴FK=2,在Rt△EFK中,tan∠FEK=3,∴∠FEK=30°,∠EKF=60°,∴EK=2FK=4,OF=12EK=2,∵△OPF是等腰三角形,观察图形可知,只有OF=FP=2,在Rt△PHF中,PH=12PF=1,HF=3,OH=2﹣3,∴OP=()2212362+-=-.如图4中,点P在线段OC上,当PO=PF时,∠POF=∠PFO=30°,∴∠BOP=90°,∴323综上所述:OP6223.【点睛】本题考查了全等三角形的判定与性质、直角三角形斜边中线等于斜边一半、等腰直角三角形的判定与性质、解直角三角形等,综合性较强,正确添加辅助线是解题的关键.3.如图,在正方形ABCD 中,E 是边AB 上的一动点,点F 在边BC 的延长线上,且CF AE =,连接DE ,DF ,EF . FH 平分EFB ∠交BD 于点H .(1)求证:DE DF ⊥;(2)求证:DH DF =:(3)过点H 作HM EF ⊥于点M ,用等式表示线段AB ,HM 与EF 之间的数量关系,并证明.【答案】(1)详见解析;(2)详见解析;(3)22EF AB HM =-,证明详见解析.【解析】【分析】(1)根据正方形性质, CF AE =得到DE DF ⊥.(2)由AED CFD △△≌,得DE DF =.由90ABC ∠=︒,BD 平分ABC ∠, 得45DBF ∠=︒.因为FH 平分EFB ∠,所以EFH BFH ∠=∠.由于45DHF DBF BFH BFH ∠=∠+∠=︒+∠,45DFH DFE EFH EFH ∠=∠+∠=︒+∠, 所以DH DF =.(3)过点H 作HN BC ⊥于点N ,由正方形ABCD 性质,得222BD AB AD AB =+=.由FH 平分,EFB HM EF HN BC ∠⊥⊥,,得HM HN =.因为4590HBN HNB ∠=︒∠=︒,,所以22sin 45HN BH HN HM ===︒. 由22cos 45DF EF DF DH ===︒,得22EF AB HM =-. 【详解】(1)证明:∵四边形ABCD 是正方形,∴AD CD =,90EAD BCD ADC ∠=∠=∠=︒.∴90EAD FCD ∠=∠=︒.∵CF AE =。
中考数学四边形压轴题+解析
九年级上册四边形压轴题2一.解答题〔共30小题〕1.〔2009•临沂〕数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BC的中点.∠AEF=90°,且EF交正方形外角∠DCG的平分线CF于点F,求证:AE=EF.经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM=EC,易证△AME≌△ECF,所以AE=EF.在此基础上,同学们作了进一步的研究:〔1〕小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上〔除B,C外〕的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;〔2〕小华提出:如图3,点E是BC的延长线上〔除C点外〕的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.2.〔2009•宁德〕如图〔1〕,已知正方形ABCD在直线MN的上方,BC在直线MN上,E 是BC上一点,以AE为边在直线MN的上方作正方形AEFG.〔1〕连接GD,求证:△ADG≌△ABE;〔2〕连接FC,观察并猜测∠FCN的度数,并说明理由;〔3〕如图〔2〕,将图〔1〕中正方形ABCD改为矩形ABCD,AB=a,BC=b〔a、b为常数〕,E是线段BC上一动点〔不含端点B、C〕,以AE为边在直线MN的上方作矩形AEFG,使顶点G恰好落在射线CD上.判断当点E由B向C运动时,∠FCN的大小是否总保持不变?假设∠FCN的大小不变,请用含a、b的代数式表示tan∠FCN的值;假设∠FCN的大小发生改变,请举例说明.3.〔2009•黄石〕如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.〔1〕探究:线段OE与OF的数量关系并加以证明;〔2〕当点O在边AC上运动时,四边形BCFE会是菱形吗?假设是,请证明;假设不是,则说明理由;〔3〕当点O运动到何处,且△ABC满足什么条件时,四边形AECF是正方形?4.〔2009•无锡校级二模〕如图,在平面直角坐标系中,点A、点C同时从点O出发,分别以每秒2个单位、1个单位的速度向x轴、y轴的正半轴方向运动,以OA、OC为边作矩形OABC.以M〔4,0〕,N〔9,0〕为斜边端点作直角△PMN,点P在第一象限,且,当点A出发时,△PMN同时以每秒0.5个单位的速度沿x轴向右平移.设点A运动的时间为t秒,矩形OABC与△PMN重叠部分的面积为S.〔1〕求运动前点P的坐标;〔2〕求S与t的函数关系式,并写出自变量t的取值范围;〔3〕假设在运动过程中,要使对角线AC上始终存在点Q,满足∠OQM=90°,请直接写出符合条件的t的值或t的取值范围.5.〔2008•北京〕请阅读以下材料:问题:如图1,在菱形ABCD和菱形BEFG中,点A,B,E在同一条直线上,P是线段DF 的中点,连接PG,PC.假设∠ABC=∠BEF=60°,探究PG与PC的位置关系及的值.小聪同学的思路是:延长GP交DC于点H,构造全等三角形,经过推理使问题得到解决.请你参考小聪同学的思路,探究并解决以下问题:〔1〕写出上面问题中线段PG与PC的位置关系及的值;〔2〕将图1中的菱形BEFG绕点B顺时针旋转,使菱形BEFG的对角线BF恰好与菱形ABCD 的边AB在同一条直线上,原问题中的其他条件不变〔如图2〕.你在〔1〕中得到的两个结论是否发生变化?写出你的猜想并加以证明;〔3〕假设图1中∠ABC=∠BEF=2α〔0°<α<90°〕,将菱形BEFG绕点B顺时针旋转任意角度,原问题中的其他条件不变,请你直接写出的值〔用含α的式子表示〕.6.〔2008•厦门〕已知:如下图的一张矩形纸片ABCD〔AD>AB〕,将纸片折叠一次,使点A与C重合,再展开,折痕EF交AD边于E,交BC边于F,分别连接AF和CE.〔1〕求证:四边形AFCE是菱形;〔2〕假设AE=10cm,△ABF的面积为24cm2,求△ABF的周长;〔3〕在线段AC上是否存在一点P,使得2AE2=AC•AP?假设存在,请说明点P的位置,并予以证明;假设不存在,请说明理由.7.〔2008•嘉兴〕小丽参加数学兴趣小组活动,提供了下面3个有联系的问题,请你帮助解决:〔1〕如图1,正方形ABCD中,作AE交BC于E,DF⊥AE交AB于F,求证:AE=DF;〔2〕如图2,正方形ABCD中,点E,F分别在AD,BC上,点G,H分别在AB,CD上,且EF⊥GH,求的值;〔3〕如图3,矩形ABCD中,AB=a,BC=b,点E,F分别在AD,BC上,且EF⊥GH,求的值.8.〔2008•宁夏〕如图,在边长为4的正方形ABCD中,点P在AB上从A向B运动,连接DP交AC于点Q.〔1〕试证明:无论点P运动到AB上何处时,都有△ADQ≌△ABQ;〔2〕当点P在AB上运动到什么位置时,△ADQ的面积是正方形ABCD面积的;〔3〕假设点P从点A运动到点B,再继续在BC上运动到点C,在整个运动过程中,当点P运动到什么位置时,△ADQ恰为等腰三角形.9.〔2008•昌平区二模〕如图,已知△ABC的顶点B、C为定点,A为动点〔不在直线BC 上〕,B′是点B关于直线AC的对称点,C′是点C关于直线AB的对称点,连接BC′、CB′、BB′、CC′.〔1〕猜想线段BC′与CB′的数量关系,并证明你的结论;〔2〕当点A运动到怎样的位置时,四边形BCB′C′为菱形?这样的位置有几个?请用语言对这样的位置进行描述〔不用证明〕;〔3〕当点A在线段BC的垂直平分线〔BC的中点及到BC的距离为的点除外上运动时,判断以点B、C、B′、C′为顶点的四边形的形状,画出相应的示意图.〔不用证明〕10.〔2007•常德〕如图1,已知四边形ABCD是菱形,G是线段CD上的任意一点时,连接BG交AC于F,过F作FH∥CD交BC于H,可以证明结论成立.〔考生不必证明〕〔1〕探究:如图2,上述条件中,假设G在CD的延长线上,其它条件不变时,其结论是否成立?假设成立,请给出证明;假设不成立,请说明理由;〔2〕计算:假设菱形ABCD中AB=6,∠ADC=60°,G在直线CD上,且CG=16,连接BG 交AC所在的直线于F,过F作FH∥CD交BC所在的直线于H,求BG与FG的长.〔3〕发现:通过上述过程,你发现G在直线CD上时,结论还成立吗?11.〔2007•宜昌〕如图1,在△ABC中,AB=BC=5,AC=6.△ECD是△ABC沿BC方向平移得到的,连接AE.AC和BE相交于点O.〔1〕判断四边形ABCE是怎样的四边形,说明理由;〔2〕如图2,P是线段BC上一动点〔图2〕,〔不与点B、C重合〕,连接PO并延长交线段AE于点Q,QR⊥BD,垂足为点R.①四边形PQED的面积是否随点P的运动而发生变化?假设变化,请说明理由;假设不变,求出四边形PQED的面积;②当线段BP的长为何值时,△PQR与△BOC相似.12.〔2007•潍坊〕已知等腰△ABC中,AB=AC,AD平分∠BAC交BC于D点,在线段AD上任取一点P〔A点除外〕,过P点作EF∥AB,分别交AC,BC于E,F点,作PM∥AC,交AB于M点,连接ME.〔1〕求证:四边形AEPM为菱形;〔2〕当P点在何处时,菱形AEPM的面积为四边形EFBM面积的一半?13.〔2007•永州〕在梯形ABCD中,AB∥CD,∠ABC=90°,AB=5,BC=10,tan∠ADC=2.〔1〕求DC的长;〔2〕E为梯形内一点,F为梯形外一点,假设BF=DE,∠FBC=∠CDE,试判断△ECF的形状,并说明理由.〔3〕在〔2〕的条件下,假设BE⊥EC,BE:EC=4:3,求DE的长.14.〔2007•常州〕已知,如图,正方形ABCD的边长为6,菱形EFGH的三个顶点E,G,H分别在正方形ABCD边AB,CD,DA上,AH=2,连接CF.〔1〕当DG=2时,求△FCG的面积;〔2〕设DG=x,用含x的代数式表示△FCG的面积;〔3〕判断△FCG的面积能否等于1,并说明理由.15.〔2007•海南〕如图,在正方形ABCD中,点F在CD边上,射线AF交BD于点E,交BC的延长线于点G.〔1〕求证:△ADE≌△CDE;〔2〕过点C作CH⊥CE,交FG于点H,求证:FH=GH;〔3〕设AD=1,DF=x,试问是否存在x的值,使△ECG为等腰三角形?假设存在,请求出x的值;假设不存在,请说明理由.16.〔2007•哈尔滨〕如图1,在正方形ABCD中,对角线AC与BD相交于点E,AF平分∠BAC,交BD于点F.〔1〕求证:EF+AC=AB;〔2〕点C1从点C出发,沿着线段CB向点B运动〔不与点B重合〕,同时点A1从点A出发,沿着BA的延长线运动,点C1与A1的运动速度相同,当动点C1停止运动时,另一动点A1也随之停止运动.如图2,A1F1平分∠BA1C1,交BD于点F1,过点F1作F1E1⊥A1C1,垂足为E1,请猜想E1F1,A1C1与AB三者之间的数量关系,并证明你的猜想;〔3〕在〔2〕的条件下,当A1E1=3,C1E1=2时,求BD的长.17.〔2006•河南〕如图△ABC中,∠ACB=90度,AC=2,BC=3.D是BC边上一点,直线DE⊥BC于D,交AB于点E,CF∥AB交直线DE于F.设CD=x.〔1〕当x取何值时,四边形EACF是菱形?请说明理由;〔2〕当x取何值时,四边形EACD的面积等于2?18.〔2006•温州〕如图,在▱ABCD中,对角线AC⊥BC,AC=BC=2,动点P从点A出发沿AC向终点C移动,过点P分别作PM∥AB交BC于M,PN∥AD交DC于N.连接AM.设AP=x〔1〕四边形PMCN的形状有可能是菱形吗?请说明理由;〔2〕当x为何值时,四边形PMCN的面积与△ABM的面积相等?19.〔2006•沈阳〕如图1,在正方形ABCD中,点E、F分别为边BC、CD的中点,AF、DE相交于点G,则可得结论:①AF=DE,②AF⊥DE〔不须证明〕.〔1〕如图②,假设点E、F不是正方形ABCD的边BC、CD的中点,但满足CE=DF,则上面的结论①、②是否仍然成立;〔请直接答复“成立”或“不成立”〕〔2〕如图③,假设点E、F分别在正方形ABCD的边CB的延长线和DC的延长线上,且CE=DF,此时上面的结论①、②是否仍然成立?假设成立,请写出证明过程;假设不成立,请说明理由.〔3〕如图④,在〔2〕的基础上,连接AE和EF,假设点M、N、P、Q分别为AE、EF、FD、AD的中点,请先判断四边形MNPQ是“矩形、菱形、正方形、等腰梯形”中的哪一种,并写出证明过程.20.〔2006•成都〕已知:如图,在正方形ABCD中,AD=12,点E是边CD上的动点〔点E 不与端点C,D重合〕,AE的垂直平分线FP分别交AD,AE,BC于点F,H,G,交AB 的延长线于点P.〔1〕设DE=m〔0<m<12〕,试用含m的代数式表示的值;〔2〕在〔1〕的条件下,当时,求BP的长.21.〔2006•汾阳市〕如图,点E在正方形ABCD的边CD上运动,AC与BE交于点F.〔1〕如图1,当点E运动到DC的中点时,求△ABF与四边形ADEF的面积之比;〔2〕如图2,当点E运动到CE:ED=2:1时,求△ABF与四边形ADEF的面积之比;〔3〕当点E运动到CE:ED=3:1时,写出△ABF与四边形ADEF的面积之比;当点E运动到CE:ED=n:1〔n是正整数〕时,猜想△ABF与四边形ADEF的面积之比〔只写结果,不要求写出计算过程〕;〔4〕请你利用上述图形,提出一个类似的问题22.〔2005•资阳〕阅读以下短文,然后解决以下问题:如果一个三角形和一个矩形满足条件:三角形的一边与矩形的一边重合,且三角形的这边所对的顶点在矩形这边的对边上,则称这样的矩形为三角形的“友好矩形”,如图①所示,矩形ABEF即为△ABC的“友好矩形”,显然,当△ABC是钝角三角形时,其“友好矩形”只有一个.〔1〕仿照以上表达,说明什么是一个三角形的“友好平行四边形”;〔2〕如图②,假设△ABC为直角三角形,且∠C=90°,在图②中画出△ABC的所有“友好矩形”,并比较这些矩形面积的大小;〔3〕假设△ABC是锐角三角形,且BC>AC>AB,在图③中画出△ABC的所有“友好矩形”,指出其中周长最小的矩形并加以证明.23.〔2005•重庆〕已知四边形ABCD中,P是对角线BD上的一点,过P作MN∥AD,EF∥CD,分别交AB、CD、AD、BC于点M、N、E、F,设a=PM•PE,b=PN•PF,解答以下问题:〔1〕当四边形ABCD是矩形时,见图1,请判断a与b的大小关系,并说明理由;〔2〕当四边形ABCD是平行四边形,且∠A为锐角时,见图2,〔1〕中的结论是否成立?并说明理由;〔3〕在〔2〕的条件下,设,是否存在这样的实数k,使得?假设存在,请求出满足条件的所有k的值;假设不存在,请说明理由.24.〔2005•大连〕如图,操作:把正方形CGEF的对角线CE放在正方形ABCD的边BC的延长线上〔CG>BC〕,取线段AE的中点M.探究:线段MD、MF的关系,并加以证明.说明:〔1〕如果你经历反复探索,没有找到解决问题的方法,请你把探索过程中的某种思路写出来〔要求至少写3步〕;〔2〕在你经历说明〔1〕的过程后,可以从以下①、②、③中选取一个补充或更换已知条件,完成你的证明.注意:选取①完成证明得10分;选取②完成证明得7分;选取③完成证明得5分.①DM的延长线交CE于点N,且AD=NE;②将正方形CGEF6绕点C逆时针旋转45°〔如图〕,其他条件不变;③在②的条件下,且CF=2AD.附加题:将正方形CGEF绕点C旋转任意角度后〔如图〕,其他条件不变.探究:线段MD、MF的关系,并加以证明.25.〔2005•湖州〕如图,四边形ABCD和BEFG均为正方形,则=.〔结果不取近似值〕26.〔2005•郴州〕附加题:E是四边形ABCD中AB上一点〔E不与A、B重合〕.〔1〕如图,当四边形ABCD是正方形时,△ADE、△BCE和△CDE的面积之间有着怎样的关系?证明你的结论.〔2〕假设四边形ABCD是矩形时,〔1〕中的结论是否仍然成立?为什么?ABCD是平行四边形呢?〔3〕当四边形ABCD是梯形时,〔1〕中的结论还成立吗?请说明理由.27.〔2005•深圳校级自主招生〕如图,将一三角板放在边长为1的正方形ABCD上,并使它的直角顶点P在对角线AC上滑动,直角的一边始终经过点B,另一边与射线DC相交于Q.探究:设A、P两点间的距离为x.〔1〕当点Q在边CD上时,线段PQ与PB之间有怎样的数量关系?试证明你的猜想;〔2〕当点Q在边CD上时,设四边形PBCQ的面积为y,求y与x之间的函数关系,并写出函数自变量x的取值范围;〔3〕当点P在线段AC上滑动时,△PCQ是否可能成为等腰三角形?如果可能,指出所有能使△PCQ成为等腰三角形的点Q的位置.并求出相应的x值,如果不可能,试说明理由.28.〔2004•贵阳〕如图,四边形ABCD中,AC=6,BD=8且AC⊥BD.顺次连接四边形ABCD 各边中点,得到四边形A1B1C1D1;再顺次连接四边形A1B1C1D1各边中点,得到四边形A2B2C2D2…如此进行下去得到四边形A n B n C n D n.〔1〕证明:四边形A1B1C1D1是矩形;〔2〕写出四边形A1B1C1D1和四边形A2B2C2D2的面积;〔3〕写出四边形A n B n C n D n的面积;〔4〕求四边形A5B5C5D5的周长.29.〔2004•无为县〕〔1〕如图〔1〕,在正方形ABCD中,对角线AC、BD相交于点O,易知AC⊥BD,=;〔2〕如图〔2〕,假设点E是正方形ABCD的边CD的中点,即,过D作DG⊥AE,分别交AC、BC于点F、G.求证:;〔3〕如图〔3〕,假设点P是正方形ABCD的边CD上的点,且〔n为正整数〕,过点D作DN⊥AP,分别交AC、BC于点M、N,请你先猜想CM与AC的比值是多少,然后再证明你猜想的结论.30.〔2004•佛山〕如果正方形的一边落在三角形的一边上,其余两个顶点分别在三角形的另外两条边上,则这样的正方形叫做三角形的内接正方形.〔1〕如图①,在△ABC中,BC=a,BC边上的高AD=h a,EFGH是△ABC的内接正方形.设正方形EFGH的边长是x,求证:;〔2〕在Rt△ABC中,AB=4,AC=3,∠BAC=90度.请在图②,图③中分别画出可能的内接正方形,并根据计算答复哪个内接正方形的面积最大;〔3〕在锐角△ABC中,BC=a,AC=b,AB=c,且a<b<c.请问这个三角形的内接正方形中哪个面积最大?并说明理由.九年级上册四边形压轴题2参考答案与试题解析一.解答题〔共30小题〕1.〔2009•临沂〕数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BC的中点.∠AEF=90°,且EF交正方形外角∠DCG的平分线CF于点F,求证:AE=EF.经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM=EC,易证△AME≌△ECF,所以AE=EF.在此基础上,同学们作了进一步的研究:〔1〕小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上〔除B,C外〕的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;〔2〕小华提出:如图3,点E是BC的延长线上〔除C点外〕的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.考点:正方形的性质;全等三角形的判定与性质;角平分线的性质.专题:几何综合题;压轴题.分析:〔1〕在AB上取一点M,使AM=EC,连接ME,根据已知条件利用ASA判定△AME≌△ECF,因为全等三角形的对应边相等,所以AE=EF.〔2〕在BA的延长线上取一点N,使AN=CE,连接NE,根据已知利用ASA判定△ANE≌△ECF,因为全等三角形的对应边相等,所以AE=EF.解答:解:〔1〕正确.证明:在AB上取一点M,使AM=EC,连接ME.∴BM=BE,∴∠BME=45°,∴∠AME=135°,∵CF是外角平分线,∴∠DCF=45°,∴∠ECF=135°,∴∠AME=∠ECF,∵∠AEB+∠BAE=90°,∠AEB+∠CEF=90°,∴∠BAE=∠CEF,∴△AME≌△ECF〔ASA〕,∴AE=EF.〔2〕正确.证明:在BA的延长线上取一点N.使AN=CE,连接NE.∴BN=BE,∴∠N=∠NEC=45°,∵CF平分∠DCG,∴∠FCE=45°,∴∠N=∠ECF,∵四边形ABCD是正方形,∴AD∥BE,∴∠DAE=∠BEA,即∠DAE+90°=∠BEA+90°,∴∠NAE=∠CEF,∴△ANE≌△ECF〔ASA〕,∴AE=EF.点评:此题主要考查学生对正方形的性质,角平分线的性质及全等三角形的判定方法的掌握情况.2.〔2009•宁德〕如图〔1〕,已知正方形ABCD在直线MN的上方,BC在直线MN上,E 是BC上一点,以AE为边在直线MN的上方作正方形AEFG.〔1〕连接GD,求证:△ADG≌△ABE;〔2〕连接FC,观察并猜测∠FCN的度数,并说明理由;〔3〕如图〔2〕,将图〔1〕中正方形ABCD改为矩形ABCD,AB=a,BC=b〔a、b为常数〕,E是线段BC上一动点〔不含端点B、C〕,以AE为边在直线MN的上方作矩形AEFG,使顶点G恰好落在射线CD上.判断当点E由B向C运动时,∠FCN的大小是否总保持不变?假设∠FCN的大小不变,请用含a、b的代数式表示tan∠FCN的值;假设∠FCN的大小发生改变,请举例说明.考点:正方形的性质;全等三角形的判定与性质;矩形的性质.专题:压轴题;动点型.分析:〔1〕根据三角形判定方法进行证明即可.〔2〕作FH⊥MN于H.先证△ABE≌△EHF,得到对应边相等,从而推出△CHF是等腰直角三角形,∠FCH的度数就可以求得了.〔3〕此题也是通过构建直角三角形来求度数,作FH⊥MN于H,∠FCH的正切值就是FH:CH.解答:〔1〕证明:∵四边形ABCD和四边形AEFG是正方形,∴AB=AD,AE=AG,∠BAD=∠EAG=90°,∴∠BAE+∠EAD=∠DAG+∠EAD,∴∠BAE=∠DAG,∴△BAE≌△DAG.〔2〕解:∠FCN=45°,理由是:作FH⊥MN于H,∵∠AEF=∠ABE=90°,∴∠BAE+∠AEB=90°,∠FEH+∠AEB=90°,∴∠FEH=∠BAE,又∵AE=EF,∠EHF=∠EBA=90°,∴△EFH≌△ABE,∴FH=BE,EH=AB=BC,∴CH=BE=FH,∵∠FHC=90°,∴∠FCN=45°.〔3〕解:当点E由B向C运动时,∠FCN的大小总保持不变,理由是:作FH⊥MN于H,由已知可得∠EAG=∠BAD=∠AEF=90°,结合〔1〕〔2〕得∠FEH=∠BAE=∠DAG,又∵G在射线CD上,∠GDA=∠EHF=∠EBA=90°,∴△EFH≌△GAD,△EFH∽△ABE,∴EH=AD=BC=b,∴==;在Rt△FEH中,tan∠FCN===,∴当点E由B向C运动时,∠FCN的大小总保持不变,tan∠FCN=.点评:此题考查了正方形,矩形的判定及全等三角形的判定方法等知识点的综合运用,其重点是通过证三角形全等或相似来得出线段的相等或成比例.3.〔2009•黄石〕如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.〔1〕探究:线段OE与OF的数量关系并加以证明;〔2〕当点O在边AC上运动时,四边形BCFE会是菱形吗?假设是,请证明;假设不是,则说明理由;〔3〕当点O运动到何处,且△ABC满足什么条件时,四边形AECF是正方形?考点:正方形的判定;平行线的性质;角平分线的性质;等腰三角形的性质;菱形的判定.专题:几何综合题;压轴题.分析:〔1〕利用平行线的性质由角相等得出边相等;〔2〕假设四边形BCFE,再证明与在同一平面内过同一点有且只有一条直线与已知直线垂直相矛盾;〔3〕利用平行四边形及等腰直角三角形的性质证明四边形AECF是正方形.解答:解:〔1〕OE=OF.证明如下:∵CE是∠ACB的平分线,∴∠1=∠2.∵MN∥BC,∴∠2=∠3.∴OE=OC.同理可证OC=OF.∴OE=OF.〔3分〕〔2〕四边形BCFE不可能是菱形,假设四边形BCFE为菱形,则BF⊥EC,而由〔1〕可知FC⊥EC,在平面内过同一点F不可能有两条直线同垂直于一条直线.〔3分〕〔3〕当点O运动到AC中点时,且△ABC是直角三角形〔∠ACB=90°〕时,四边形AECF是正方形.理由如下:∵O为AC中点,∴OA=OC,∵由〔1〕知OE=OF,∴四边形AECF为平行四边形;∵∠1=∠2,∠4=∠5,∠1+∠2+∠4+∠5=180°,∴∠2+∠5=90°,即∠ECF=90°,∴▱AECF为矩形,又∵AC⊥EF.∴▱AECF是正方形.∴当点O为AC中点且△ABC是以∠ACB为直角三角形时,四边形AECF是正方形.〔3分〕点评:此题考查的是平行线、角平分线、正方形、平行四边形的性质与判定,涉及面较广,在解答此类题目时要注意角的运用,一般通过角判定一些三角形,多边形的形状,需同学们熟练掌握.4.〔2009•无锡校级二模〕如图,在平面直角坐标系中,点A、点C同时从点O出发,分别以每秒2个单位、1个单位的速度向x轴、y轴的正半轴方向运动,以OA、OC为边作矩形OABC.以M〔4,0〕,N〔9,0〕为斜边端点作直角△PMN,点P在第一象限,且,当点A出发时,△PMN同时以每秒0.5个单位的速度沿x轴向右平移.设点A运动的时间为t秒,矩形OABC与△PMN重叠部分的面积为S.〔1〕求运动前点P的坐标;〔2〕求S与t的函数关系式,并写出自变量t的取值范围;〔3〕假设在运动过程中,要使对角线AC上始终存在点Q,满足∠OQM=90°,请直接写出符合条件的t的值或t的取值范围.考点:矩形的性质;圆周角定理;切线的性质.专题:压轴题;动点型.分析:〔1〕过点P作PH⊥x轴于H,可求出MH的长即点P的横坐标,再根据tan∠PMN=,及勾股定理便可求出点P的坐标.〔2〕因为点A;点C同时从点O出发,点M〔4,0〕,△PMN同时以每秒0.5个单位的速度沿x轴向右平移,运动t秒后,OA=2t,OM=4+0.5t,①当0<OA≤OM,即0<2t≤时,两图形无交点;②当OM<OA≤OH,即4+0.5t<2t≤8+0.5t时,即<t≤时,矩形OABC与△PMN重叠部分的面积为S等于重叠的三角形的面积.③当OH<OA≤ON,即8+0.5t<2t≤9+0.5t,即<t≤6时,矩形OABC与△PMN重叠矩部分的面积为S等于△MNP的面积减去不重叠的三角形的面积.④当OA>ON,即2t>9+0.5t,t>6时,矩形OABC与△PMN重叠矩部分的面积为S等于△MNP的面积.〔3〕根据圆周角定理可知,当以OM为直径的圆与AC有公共点时,公共点即是符合条件的点Q,即可求出t的取值范围.解答:解:〔1〕如图,过点P作PH⊥x轴于H.∵MN=9﹣4=5,tan∠PMN=,∴PM=,PN=,∴PH=2,MH=4,NH=1.∴P〔8,2〕.〔2〕运动t秒后,OA=2t,OC=t,OM=4﹣0.5t.当0<t≤时,S=0;当<t≤时,S=t2﹣3t+4;当<t≤6时,S=﹣t2+27t﹣76;当t>6时,S=5.〔3〕当以OM为直径的圆与AC有公共点时,公共点即是符合条件的点Q.当以OM为直径的圆与AC相切时,t=,∴t的取值范围是:0<t≤.点评:此题是典型的动点问题,比较复杂,考查了同学们对圆及三角形,矩形,等相关知识的掌握情况,有一定的难度.5.〔2008•北京〕请阅读以下材料:问题:如图1,在菱形ABCD和菱形BEFG中,点A,B,E在同一条直线上,P是线段DF 的中点,连接PG,PC.假设∠ABC=∠BEF=60°,探究PG与PC的位置关系及的值.小聪同学的思路是:延长GP交DC于点H,构造全等三角形,经过推理使问题得到解决.请你参考小聪同学的思路,探究并解决以下问题:〔1〕写出上面问题中线段PG与PC的位置关系及的值;〔2〕将图1中的菱形BEFG绕点B顺时针旋转,使菱形BEFG的对角线BF恰好与菱形ABCD 的边AB在同一条直线上,原问题中的其他条件不变〔如图2〕.你在〔1〕中得到的两个结论是否发生变化?写出你的猜想并加以证明;〔3〕假设图1中∠ABC=∠BEF=2α〔0°<α<90°〕,将菱形BEFG绕点B顺时针旋转任意角度,原问题中的其他条件不变,请你直接写出的值〔用含α的式子表示〕.考点:菱形的性质;全等三角形的判定与性质;锐角三角函数的定义.专题:压轴题.分析:〔1〕根据题意可知小聪的思路为,通过判定三角形DHP和PGF为全等三角形来得出证明三角形HCG为等腰三角形且P为底边中点的条件;〔2〕思路同上,延长GP交AD于点H,连接CH,CG,此题中除了如〔1〕中证明△GFP≌△HDP〔得到P是HG中点〕外还需证明△HDC≌△GBC〔得出三角形CHG是等腰三角形〕.〔3〕∠ABC=∠BEF=2α〔0°<α<90°〕,那么∠PCG=90°﹣α,由〔1〕可知:PG:PC=tan 〔90°﹣α〕.解答:解:〔1〕∵CD∥GF,∠PDH=∠PFG,∠DHP=∠PGF,DP=PF,∴△DPH≌△FGP,∴PH=PG,DH=GF,∵CD=BC,GF=GB=DH,∴CH=CG,∴CP⊥HG,∠ABC=60°,∴∠DCG=120°,∴∠PCG=60°,∴PG:PC=tan60°=,∴线段PG与PC的位置关系是PG⊥PC,=;〔2〕猜想:〔1〕中的结论没有发生变化.证明:如图2,延长GP交AD于点H,连接CH,∵P是线段DF的中点,∴FP=DP,∵AD∥GF,∴∠HDP=∠GFP,∵∠GPF=∠HPD,∴△GFP≌△HDP〔ASA〕,∴GP=HP,GF=HD,∵四边形ABCD是菱形,∴CD=CB,∠HDC=∠ABC=60°,∵∠ABC=∠BEF=60°,菱形BEFG的对角线BF恰好与菱形ABCD的边AB在同一条直线上,∴∠GBF=60°,∴∠HDC=∠GBF,∵四边形BEFG是菱形,∴GF=GB,∴HD=GB,∴△HDC≌△GBC,∴CH=CG,∠HCD=∠GCB∴PG⊥PC〔到线段两端点距离相等的点在线段的垂直平分线上〕∵∠ABC=60°∴∠DCB=∠HCD+∠HCB=120°∵∠HCG=∠HCB+∠GCB∴∠HCG=120°∴∠GCP=60°∴=tan∠GCP=tan60°=;〔3〕∵∠ABC=∠BEF=2α〔0°<α<90°〕,∴∠PCG=90°﹣α,由〔1〕可知:PG:PC=tan〔90°﹣α〕,∴=tan〔90°﹣α〕.点评:此题是一道探究性的几何综合题,主要考查菱形的性质,全等三角形的判定及三角函数的综合运用.6.〔2008•厦门〕已知:如下图的一张矩形纸片ABCD〔AD>AB〕,将纸片折叠一次,使点A与C重合,再展开,折痕EF交AD边于E,交BC边于F,分别连接AF和CE.〔1〕求证:四边形AFCE是菱形;〔2〕假设AE=10cm,△ABF的面积为24cm2,求△ABF的周长;〔3〕在线段AC上是否存在一点P,使得2AE2=AC•AP?假设存在,请说明点P的位置,并予以证明;假设不存在,请说明理由.考点:菱形的判定;勾股定理;矩形的性质;相似三角形的判定与性质.专题:压轴题;开放型;存在型.分析:〔1〕因为是对折所以AO=CO,利用三角形全等证明EO=FO,四边形便是菱形;〔2〕因为面积是24,也就是AB、BF的积可以求出,所以求周长只要求出AB、BF 的和就可以,而结合勾股定理它们和的平方减去乘积二倍就是AF的平方;〔3〕因为AC=AO所以可以从与△AOE相似的角度考虑,即过E作EP⊥AD.解答:〔1〕证明:连接EF交AC于O,当顶点A与C重合时,折痕EF垂直平分AC,∴OA=OC,∠AOE=∠COF=90°〔1分〕∵在矩形ABCD中,AD∥BC,∴∠EAO=∠FCO,∴△AOE≌△COF〔ASA〕.∴OE=OF〔2分〕∴四边形AFCE是菱形.〔3分〕〔2〕解:四边形AFCE是菱形,∴AF=AE=10.设AB=x,BF=y,∵∠B=90,∴〔x+y〕2﹣2xy=100①又∵S△ABF=24,∴xy=24,则xy=48.②〔5分〕由①、②得:〔x+y〕2=196〔6分〕∴x+y=14,x+y=﹣14〔不合题意舍去〕∴△ABF的周长为x+y+AF=14+10=24.〔7分〕〔3〕解:过E作EP⊥AD交AC于P,则P就是所求的点.〔9分〕证明:由作法,∠AEP=90°,由〔1〕得:∠AOE=90°,又∠EAO=∠EAP,∴△AOE∽△AEP,∴=,则AE2=AO•AP〔10分〕∵四边形AFCE是菱形,∴AO=AC,AE2=AC•AP〔11分〕∴2AE2=AC•AP〔12分〕即P的位置是:过E作EP⊥AD交AC于P.点评:此题主要考查〔1〕菱形的判定方法“对角线互相垂直且平分的四边形”,〔2〕相似三角形的判定和性质.7.〔2008•嘉兴〕小丽参加数学兴趣小组活动,提供了下面3个有联系的问题,请你帮助解决:〔1〕如图1,正方形ABCD中,作AE交BC于E,DF⊥AE交AB于F,求证:AE=DF;〔2〕如图2,正方形ABCD中,点E,F分别在AD,BC上,点G,H分别在AB,CD上,且EF⊥GH,求的值;〔3〕如图3,矩形ABCD中,AB=a,BC=b,点E,F分别在AD,BC上,且EF⊥GH,求的值.考点:矩形的性质;全等三角形的判定与性质;正方形的性质;相似三角形的判定与性质.专题:几何综合题;压轴题.分析:〔1〕证明AE=DF,只要证明三角形ABE和DAF全等即可.它们同有一个直角,且AB=AD,又因为∠AEB=90°﹣∠BAE=∠AFD,这样就构成了全等三角形判定中的AAS,两三角形就全等了;〔2〕可通过构建与已知条件相关的三角形来求解.作AM∥EF交BC于M,作DN∥GH 交AB于N,那么AM=EF,DN=GH,〔1〕中我们已证得△ABM、△DAN全等,那么AM=DN,即EF=GH,它们的比例也就求出来了;〔3〕做法同〔2〕也是通过构建三角形来求解.作AM∥EF交BC于M,作DN∥GH 交AB于N,只不过证明三角形全等改为了证明其相似.解题思路和步骤是一样的.解答:〔1〕证明:∵DF⊥AE∴∠AEB=90°﹣∠BAE=∠AFD又∵AB=AD,∠ABE=∠DAF=90°∴△ABE≌△DAF,∴AE=DF;〔2〕解:作AM∥EF交BC于M作DN∥GH交AB于N则AM=EF,DN=GH由〔1〕知,AM=DN∴EF=GH,即〔3〕解:作AM∥EF交BC于M作DN∥GH交AB于N则AM=EF,DN=GH∵EF⊥GH∴AM⊥DN∴∠AMB=90°﹣∠BAM=∠AND又∵∠ABM=∠DAN=90°∴△ABM∽△DAN∴∴.点评:此题中〔1〕〔2〕和〔3〕虽然所求不一样,但是解题思路和步骤是一样的,都是通过构建与已知和所求的条件相关的三角形,然后证明其全等或相似来得出线段间的相等或比例关系.。
中考数学四边形压轴题+解析
九年级上册四边形压轴题2一.解答题(共30小题)1.(2009•临沂)数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BC的中点.∠AEF=90°,且EF交正方形外角∠DCG的平分线CF于点F,求证:AE=EF.经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM=EC,易证△AME≌△ECF,所以AE=EF.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.2.(2009•宁德)如图(1),已知正方形ABCD在直线MN的上方,BC在直线MN上,E是BC上一点,以AE为边在直线MN的上方作正方形AEFG.(1)连接GD,求证:△ADG≌△ABE;(2)连接FC,观察并猜测∠FCN的度数,并说明理由;(3)如图(2),将图(1)中正方形ABCD改为矩形ABCD,AB=a,BC=b(a、b为常数),E是线段BC上一动点(不含端点B、C),以AE为边在直线MN的上方作矩形AEFG,使顶点G恰好落在射线CD上.判断当点E由B向C运动时,∠FCN的大小是否总保持不变?若∠FCN的大小不变,请用含a、b的代数式表示tan∠FCN的值;若∠FCN的大小发生改变,请举例说明.3.(2009•黄石)如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠BCA 的平分线于点E,交∠BCA的外角平分线于点F.(1)探究:线段OE与OF的数量关系并加以证明;(2)当点O在边AC上运动时,四边形BCFE会是菱形吗?若是,请证明;若不是,则说明理由;(3)当点O运动到何处,且△ABC满足什么条件时,四边形AECF是正方形?4.(2009•无锡校级二模)如图,在平面直角坐标系中,点A、点C同时从点O出发,分别以每秒2个单位、1个单位的速度向x轴、y轴的正半轴方向运动,以OA、OC为边作矩形OABC.以M(4,0),N(9,0)为斜边端点作直角△PMN,点P在第一象限,且,当点A出发时,△PMN同时以每秒0.5个单位的速度沿x轴向右平移.设点A运动的时间为t秒,矩形OABC与△PMN重叠部分的面积为S.(1)求运动前点P的坐标;(2)求S与t的函数关系式,并写出自变量t的取值范围;(3)若在运动过程中,要使对角线AC上始终存在点Q,满足∠OQM=90°,请直接写出符合条件的t的值或t的取值范围.5.(2008•北京)请阅读下列材料:问题:如图1,在菱形ABCD和菱形BEFG中,点A,B,E在同一条直线上,P是线段DF的中点,连接PG,PC.若∠ABC=∠BEF=60°,探究PG与PC的位置关系及的值.小聪同学的思路是:延长GP交DC于点H,构造全等三角形,经过推理使问题得到解决.请你参考小聪同学的思路,探究并解决下列问题:(1)写出上面问题中线段PG与PC的位置关系及的值;(2)将图1中的菱形BEFG绕点B顺时针旋转,使菱形BEFG的对角线BF恰好与菱形ABCD的边AB 在同一条直线上,原问题中的其他条件不变(如图2).你在(1)中得到的两个结论是否发生变化?写出你的猜想并加以证明;(3)若图1中∠ABC=∠BEF=2α(0°<α<90°),将菱形BEFG绕点B顺时针旋转任意角度,原问题中的其他条件不变,请你直接写出的值(用含α的式子表示).6.(2008•厦门)已知:如图所示的一张矩形纸片ABCD(AD>AB),将纸片折叠一次,使点A与C重合,再展开,折痕EF交AD边于E,交BC边于F,分别连接AF和CE.(1)求证:四边形AFCE是菱形;(2)若AE=10cm,△ABF的面积为24cm2,求△ABF的周长;(3)在线段AC上是否存在一点P,使得2AE2=AC•AP?若存在,请说明点P的位置,并予以证明;若不存在,请说明理由.7.(2008•嘉兴)小丽参加数学兴趣小组活动,提供了下面3个有联系的问题,请你帮助解决:(1)如图1,正方形ABCD中,作AE交BC于E,DF⊥AE交AB于F,求证:AE=DF;(2)如图2,正方形ABCD中,点E,F分别在AD,BC上,点G,H分别在AB,CD上,且EF⊥GH,求的值;(3)如图3,矩形ABCD中,AB=a,BC=b,点E,F分别在AD,BC上,且EF⊥GH,求的值.8.(2008•宁夏)如图,在边长为4的正方形ABCD中,点P在AB上从A向B运动,连接DP交AC于点Q.(1)试证明:无论点P运动到AB上何处时,都有△ADQ≌△ABQ;(2)当点P在AB上运动到什么位置时,△ADQ的面积是正方形ABCD面积的;(3)若点P从点A运动到点B,再继续在BC上运动到点C,在整个运动过程中,当点P运动到什么位置时,△ADQ恰为等腰三角形.9.(2008•昌平区二模)如图,已知△ABC的顶点B、C为定点,A为动点(不在直线BC上),B′是点B 关于直线AC的对称点,C′是点C关于直线AB的对称点,连接BC′、CB′、BB′、CC′.(1)猜想线段BC′与CB′的数量关系,并证明你的结论;(2)当点A运动到怎样的位置时,四边形BCB′C′为菱形?这样的位置有几个?请用语言对这样的位置进行描述(不用证明);(3)当点A在线段BC的垂直平分线(BC的中点及到BC的距离为的点除外上运动时,判断以点B、C、B′、C′为顶点的四边形的形状,画出相应的示意图.(不用证明)10.(2007•常德)如图1,已知四边形ABCD是菱形,G是线段CD上的任意一点时,连接BG交AC于F,过F作FH∥CD交BC于H,可以证明结论成立.(考生不必证明)(1)探究:如图2,上述条件中,若G在CD的延长线上,其它条件不变时,其结论是否成立?若成立,请给出证明;若不成立,请说明理由;(2)计算:若菱形ABCD中AB=6,∠ADC=60°,G在直线CD上,且CG=16,连接BG交AC所在的直线于F,过F作FH∥CD交BC所在的直线于H,求BG与FG的长.(3)发现:通过上述过程,你发现G在直线CD上时,结论还成立吗?11.(2007•宜昌)如图1,在△ABC中,AB=BC=5,AC=6.△ECD是△ABC沿BC方向平移得到的,连接AE.AC和BE相交于点O.(1)判断四边形ABCE是怎样的四边形,说明理由;(2)如图2,P是线段BC上一动点(图2),(不与点B、C重合),连接PO并延长交线段AE于点Q,QR⊥BD,垂足为点R.①四边形PQED的面积是否随点P的运动而发生变化?若变化,请说明理由;若不变,求出四边形PQED 的面积;②当线段BP的长为何值时,△PQR与△BOC相似.12.(2007•潍坊)已知等腰△ABC中,AB=AC,AD平分∠BAC交BC于D点,在线段AD上任取一点P(A点除外),过P点作EF∥AB,分别交AC,BC于E,F点,作PM∥AC,交AB于M点,连接ME.(1)求证:四边形AEPM为菱形;(2)当P点在何处时,菱形AEPM的面积为四边形EFBM面积的一半?13.(2007•永州)在梯形ABCD中,AB∥CD,∠ABC=90°,AB=5,BC=10,tan∠ADC=2.(1)求DC的长;(2)E为梯形内一点,F为梯形外一点,若BF=DE,∠FBC=∠CDE,试判断△ECF的形状,并说明理由.(3)在(2)的条件下,若BE⊥EC,BE:EC=4:3,求DE的长.14.(2007•常州)已知,如图,正方形ABCD的边长为6,菱形EFGH的三个顶点E,G,H分别在正方形ABCD边AB,CD,DA上,AH=2,连接CF.(1)当DG=2时,求△FCG的面积;(2)设DG=x,用含x的代数式表示△FCG的面积;(3)判断△FCG的面积能否等于1,并说明理由.15.(2007•海南)如图,在正方形ABCD中,点F在CD边上,射线AF交BD于点E,交BC的延长线于点G.(1)求证:△ADE≌△CDE;(2)过点C作CH⊥CE,交FG于点H,求证:FH=GH;(3)设AD=1,DF=x,试问是否存在x的值,使△ECG为等腰三角形?若存在,请求出x的值;若不存在,请说明理由.16.(2007•哈尔滨)如图1,在正方形ABCD中,对角线AC与BD相交于点E,AF平分∠BAC,交BD 于点F.(1)求证:EF+AC=AB;(2)点C1从点C出发,沿着线段CB向点B运动(不与点B重合),同时点A1从点A出发,沿着BA 的延长线运动,点C1与A1的运动速度相同,当动点C1停止运动时,另一动点A1也随之停止运动.如图2,A1F1平分∠BA1C1,交BD于点F1,过点F1作F1E1⊥A1C1,垂足为E1,请猜想E1F1,A1C1与AB三者之间的数量关系,并证明你的猜想;(3)在(2)的条件下,当A1E1=3,C1E1=2时,求BD的长.17.(2006•河南)如图△ABC中,∠ACB=90度,AC=2,BC=3.D是BC边上一点,直线DE⊥BC于D,交AB于点E,CF∥AB交直线DE于F.设CD=x.(1)当x取何值时,四边形EACF是菱形?请说明理由;(2)当x取何值时,四边形EACD的面积等于2?18.(2006•温州)如图,在▱ABCD中,对角线AC⊥BC,AC=BC=2,动点P从点A出发沿AC向终点C移动,过点P分别作PM∥AB交BC于M,PN∥AD交DC于N.连接AM.设AP=x(1)四边形PMCN的形状有可能是菱形吗?请说明理由;(2)当x为何值时,四边形PMCN的面积与△ABM的面积相等?19.(2006•沈阳)如图1,在正方形ABCD中,点E、F分别为边BC、CD的中点,AF、DE相交于点G,则可得结论:①AF=DE,②AF⊥DE(不须证明).(1)如图②,若点E、F不是正方形ABCD的边BC、CD的中点,但满足CE=DF,则上面的结论①、②是否仍然成立;(请直接回答“成立”或“不成立”)(2)如图③,若点E、F分别在正方形ABCD的边CB的延长线和DC的延长线上,且CE=DF,此时上面的结论①、②是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由.(3)如图④,在(2)的基础上,连接AE和EF,若点M、N、P、Q分别为AE、EF、FD、AD的中点,请先判断四边形MNPQ是“矩形、菱形、正方形、等腰梯形”中的哪一种,并写出证明过程.20.(2006•成都)已知:如图,在正方形ABCD中,AD=12,点E是边CD上的动点(点E不与端点C,D重合),AE的垂直平分线FP分别交AD,AE,BC于点F,H,G,交AB的延长线于点P.(1)设DE=m(0<m<12),试用含m的代数式表示的值;(2)在(1)的条件下,当时,求BP的长.21.(2006•汾阳市)如图,点E在正方形ABCD的边CD上运动,AC与BE交于点F.(1)如图1,当点E运动到DC的中点时,求△ABF与四边形ADEF的面积之比;(2)如图2,当点E运动到CE:ED=2:1时,求△ABF与四边形ADEF的面积之比;(3)当点E运动到CE:ED=3:1时,写出△ABF与四边形ADEF的面积之比;当点E运动到CE:ED=n:1(n是正整数)时,猜想△ABF与四边形ADEF的面积之比(只写结果,不要求写出计算过程);(4)请你利用上述图形,提出一个类似的问题22.(2005•资阳)阅读以下短文,然后解决下列问题:如果一个三角形和一个矩形满足条件:三角形的一边与矩形的一边重合,且三角形的这边所对的顶点在矩形这边的对边上,则称这样的矩形为三角形的“友好矩形”,如图①所示,矩形ABEF即为△ABC的“友好矩形”,显然,当△ABC是钝角三角形时,其“友好矩形”只有一个.(1)仿照以上叙述,说明什么是一个三角形的“友好平行四边形”;(2)如图②,若△ABC为直角三角形,且∠C=90°,在图②中画出△ABC的所有“友好矩形”,并比较这些矩形面积的大小;(3)若△ABC是锐角三角形,且BC>AC>AB,在图③中画出△ABC的所有“友好矩形”,指出其中周长最小的矩形并加以证明.23.(2005•重庆)已知四边形ABCD中,P是对角线BD上的一点,过P作MN∥AD,EF∥CD,分别交AB、CD、AD、BC于点M、N、E、F,设a=PM•PE,b=PN•PF,解答下列问题:(1)当四边形ABCD是矩形时,见图1,请判断a与b的大小关系,并说明理由;(2)当四边形ABCD是平行四边形,且∠A为锐角时,见图2,(1)中的结论是否成立?并说明理由;(3)在(2)的条件下,设,是否存在这样的实数k,使得?若存在,请求出满足条件的所有k的值;若不存在,请说明理由.24.(2005•大连)如图,操作:把正方形CGEF的对角线CE放在正方形ABCD的边BC的延长线上(CG >BC),取线段AE的中点M.探究:线段MD、MF的关系,并加以证明.说明:(1)如果你经历反复探索,没有找到解决问题的方法,请你把探索过程中的某种思路写出来(要求至少写3步);(2)在你经历说明(1)的过程后,可以从下列①、②、③中选取一个补充或更换已知条件,完成你的证明.注意:选取①完成证明得10分;选取②完成证明得7分;选取③完成证明得5分.①DM的延长线交CE于点N,且AD=NE;②将正方形CGEF6绕点C逆时针旋转45°(如图),其他条件不变;③在②的条件下,且CF=2AD.附加题:将正方形CGEF绕点C旋转任意角度后(如图),其他条件不变.探究:线段MD、MF的关系,并加以证明.25.(2005•湖州)如图,四边形ABCD和BEFG均为正方形,则=.(结果不取近似值)26.(2005•郴州)附加题:E是四边形ABCD中AB上一点(E不与A、B重合).(1)如图,当四边形ABCD是正方形时,△ADE、△BCE和△CDE的面积之间有着怎样的关系?证明你的结论.(2)若四边形ABCD是矩形时,(1)中的结论是否仍然成立?为什么?ABCD是平行四边形呢?(3)当四边形ABCD是梯形时,(1)中的结论还成立吗?请说明理由.27.(2005•深圳校级自主招生)如图,将一三角板放在边长为1的正方形ABCD上,并使它的直角顶点P在对角线AC上滑动,直角的一边始终经过点B,另一边与射线DC相交于Q.探究:设A、P两点间的距离为x.(1)当点Q在边CD上时,线段PQ与PB之间有怎样的数量关系?试证明你的猜想;(2)当点Q在边CD上时,设四边形PBCQ的面积为y,求y与x之间的函数关系,并写出函数自变量x的取值范围;(3)当点P在线段AC上滑动时,△PCQ是否可能成为等腰三角形?如果可能,指出所有能使△PCQ 成为等腰三角形的点Q的位置.并求出相应的x值,如果不可能,试说明理由.28.(2004•贵阳)如图,四边形ABCD中,AC=6,BD=8且AC⊥BD.顺次连接四边形ABCD各边中点,得到四边形A1B1C1D1;再顺次连接四边形A1B1C1D1各边中点,得到四边形A2B2C2D2…如此进行下去得到四边形A n B n C n D n.(1)证明:四边形A1B1C1D1是矩形;(2)写出四边形A1B1C1D1和四边形A2B2C2D2的面积;(3)写出四边形A n B n C n D n的面积;(4)求四边形A5B5C5D5的周长.29.(2004•无为县)(1)如图(1),在正方形ABCD中,对角线AC、BD相交于点O,易知AC⊥BD,=;(2)如图(2),若点E是正方形ABCD的边CD的中点,即,过D作DG⊥AE,分别交AC、BC 于点F、G.求证:;(3)如图(3),若点P是正方形ABCD的边CD上的点,且(n为正整数),过点D作DN⊥AP,分别交AC、BC于点M、N,请你先猜想CM与AC的比值是多少,然后再证明你猜想的结论.30.(2004•佛山)如果正方形的一边落在三角形的一边上,其余两个顶点分别在三角形的另外两条边上,则这样的正方形叫做三角形的内接正方形.(1)如图①,在△ABC中,BC=a,BC边上的高AD=h a,EFGH是△ABC的内接正方形.设正方形EFGH 的边长是x,求证:;(2)在Rt△ABC中,AB=4,AC=3,∠BAC=90度.请在图②,图③中分别画出可能的内接正方形,并根据计算回答哪个内接正方形的面积最大;(3)在锐角△ABC中,BC=a,AC=b,AB=c,且a<b<c.请问这个三角形的内接正方形中哪个面积最大?并说明理由.九年级上册四边形压轴题2参考答案与试题解析一.解答题(共30小题)1.(2009•临沂)数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BC的中点.∠AEF=90°,且EF交正方形外角∠DCG的平分线CF于点F,求证:AE=EF.经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM=EC,易证△AME≌△ECF,所以AE=EF.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.考点:正方形的性质;全等三角形的判定与性质;角平分线的性质.专题:几何综合题;压轴题.分析:(1)在AB上取一点M,使AM=EC,连接ME,根据已知条件利用ASA判定△AME≌△ECF,因为全等三角形的对应边相等,所以AE=EF.(2)在BA的延长线上取一点N,使AN=CE,连接NE,根据已知利用ASA判定△ANE≌△ECF,因为全等三角形的对应边相等,所以AE=EF.解答:解:(1)正确.证明:在AB上取一点M,使AM=EC,连接ME.∴BM=BE,∴∠BME=45°,∴∠AME=135°,∵CF是外角平分线,∴∠DCF=45°,∴∠ECF=135°,∴∠AME=∠ECF,∵∠AEB+∠BAE=90°,∠AEB+∠CEF=90°,∴∠BAE=∠CEF,∴△AME≌△ECF(ASA),∴AE=EF.(2)正确.证明:在BA的延长线上取一点N.使AN=CE,连接NE.∴BN=BE,∴∠N=∠NEC=45°,∵CF平分∠DCG,∴∠FCE=45°,∴∠N=∠ECF,∵四边形ABCD是正方形,∴AD∥BE,∴∠DAE=∠BEA,即∠DAE+90°=∠BEA+90°,∴∠NAE=∠CEF,∴△ANE≌△ECF(ASA),∴AE=EF.点评:此题主要考查学生对正方形的性质,角平分线的性质及全等三角形的判定方法的掌握情况.2.(2009•宁德)如图(1),已知正方形ABCD在直线MN的上方,BC在直线MN上,E是BC上一点,以AE为边在直线MN的上方作正方形AEFG.(1)连接GD,求证:△ADG≌△ABE;(2)连接FC,观察并猜测∠FCN的度数,并说明理由;(3)如图(2),将图(1)中正方形ABCD改为矩形ABCD,AB=a,BC=b(a、b为常数),E是线段BC上一动点(不含端点B、C),以AE为边在直线MN的上方作矩形AEFG,使顶点G恰好落在射线CD上.判断当点E由B向C运动时,∠FCN的大小是否总保持不变?若∠FCN的大小不变,请用含a、b的代数式表示tan∠FCN的值;若∠FCN的大小发生改变,请举例说明.考点:正方形的性质;全等三角形的判定与性质;矩形的性质.专题:压轴题;动点型.分析:(1)根据三角形判定方法进行证明即可.(2)作FH⊥MN于H.先证△ABE≌△EHF,得到对应边相等,从而推出△CHF是等腰直角三角形,∠FCH的度数就可以求得了.(3)本题也是通过构建直角三角形来求度数,作FH⊥MN于H,∠FCH的正切值就是FH:CH.解答:(1)证明:∵四边形ABCD和四边形AEFG是正方形,∴AB=AD,AE=AG,∠BAD=∠EAG=90°,∴∠BAE+∠EAD=∠DAG+∠EAD,∴∠BAE=∠DAG,∴△BAE≌△DAG.(2)解:∠FCN=45°,理由是:作FH⊥MN于H,∵∠AEF=∠ABE=90°,∴∠BAE+∠AEB=90°,∠FEH+∠AEB=90°,∴∠FEH=∠BAE,又∵AE=EF,∠EHF=∠EBA=90°,∴△EFH≌△ABE,∴FH=BE,EH=AB=BC,∴CH=BE=FH,∵∠FHC=90°,∴∠FCN=45°.(3)解:当点E由B向C运动时,∠FCN的大小总保持不变,理由是:作FH⊥MN于H,由已知可得∠EAG=∠BAD=∠AEF=90°,结合(1)(2)得∠FEH=∠BAE=∠DAG,又∵G在射线CD上,∠GDA=∠EHF=∠EBA=90°,∴△EFH≌△GAD,△EFH∽△ABE,∴EH=AD=BC=b,∴CH=BE,∴==;在Rt△FEH中,tan∠FCN===,∴当点E由B向C运动时,∠FCN的大小总保持不变,tan∠FCN=.点评:本题考查了正方形,矩形的判定及全等三角形的判定方法等知识点的综合运用,其重点是通过证三角形全等或相似来得出线段的相等或成比例.3.(2009•黄石)如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠BCA 的平分线于点E,交∠BCA的外角平分线于点F.(1)探究:线段OE与OF的数量关系并加以证明;(2)当点O在边AC上运动时,四边形BCFE会是菱形吗?若是,请证明;若不是,则说明理由;(3)当点O运动到何处,且△ABC满足什么条件时,四边形AECF是正方形?考点:正方形的判定;平行线的性质;角平分线的性质;等腰三角形的性质;菱形的判定.专题:几何综合题;压轴题.分析:(1)利用平行线的性质由角相等得出边相等;(2)假设四边形BCFE,再证明与在同一平面内过同一点有且只有一条直线与已知直线垂直相矛盾;(3)利用平行四边形及等腰直角三角形的性质证明四边形AECF是正方形.解答:解:(1)OE=OF.证明如下:∵CE是∠ACB的平分线,∴∠1=∠2.∵MN∥BC,∴∠1=∠3.∴∠2=∠3.∴OE=OC.同理可证OC=OF.∴OE=OF.(3分)(2)四边形BCFE不可能是菱形,若四边形BCFE为菱形,则BF⊥EC,而由(1)可知FC⊥EC,在平面内过同一点F不可能有两条直线同垂直于一条直线.(3分)(3)当点O运动到AC中点时,且△ABC是直角三角形(∠ACB=90°)时,四边形AECF是正方形.理由如下:∵O为AC中点,∴OA=OC,∵由(1)知OE=OF,∴四边形AECF为平行四边形;∵∠1=∠2,∠4=∠5,∠1+∠2+∠4+∠5=180°,∴∠2+∠5=90°,即∠ECF=90°,∴▱AECF为矩形,又∵AC⊥EF.∴▱AECF是正方形.∴当点O为AC中点且△ABC是以∠ACB为直角三角形时,四边形AECF是正方形.(3分)点评:本题考查的是平行线、角平分线、正方形、平行四边形的性质与判定,涉及面较广,在解答此类题目时要注意角的运用,一般通过角判定一些三角形,多边形的形状,需同学们熟练掌握.4.(2009•无锡校级二模)如图,在平面直角坐标系中,点A、点C同时从点O出发,分别以每秒2个单位、1个单位的速度向x轴、y轴的正半轴方向运动,以OA、OC为边作矩形OABC.以M(4,0),N(9,0)为斜边端点作直角△PMN,点P在第一象限,且,当点A出发时,△PMN同时以每秒0.5个单位的速度沿x轴向右平移.设点A运动的时间为t秒,矩形OABC与△PMN重叠部分的面积为S.(1)求运动前点P的坐标;(2)求S与t的函数关系式,并写出自变量t的取值范围;(3)若在运动过程中,要使对角线AC上始终存在点Q,满足∠OQM=90°,请直接写出符合条件的t的值或t的取值范围.考点:矩形的性质;圆周角定理;切线的性质.专题:压轴题;动点型.分析:(1)过点P作PH⊥x轴于H,可求出MH的长即点P的横坐标,再根据tan∠PMN=,及勾股定理便可求出点P的坐标.(2)因为点A;点C同时从点O出发,点M(4,0),△PMN同时以每秒0.5个单位的速度沿x 轴向右平移,运动t秒后,OA=2t,OM=4+0.5t,①当0<OA≤OM,即0<2t≤时,两图形无交点;②当OM<OA≤OH,即4+0.5t<2t≤8+0.5t时,即<t≤时,矩形OABC与△PMN重叠部分的面积为S等于重叠的三角形的面积.③当OH<OA≤ON,即8+0.5t<2t≤9+0.5t,即<t≤6时,矩形OABC与△PMN重叠矩部分的面积为S等于△MNP的面积减去不重叠的三角形的面积.④当OA>ON,即2t>9+0.5t,t>6时,矩形OABC与△PMN重叠矩部分的面积为S等于△MNP的面积.(3)根据圆周角定理可知,当以OM为直径的圆与AC有公共点时,公共点即是符合条件的点Q,即可求出t的取值范围.解答:解:(1)如图,过点P作PH⊥x轴于H.∵MN=9﹣4=5,tan∠PMN=,∴PM=,PN=,∴PH=2,MH=4,NH=1.∴P(8,2).(2)运动t秒后,OA=2t,OC=t,OM=4﹣0.5t.当0<t≤时,S=0;当<t≤时,S=t2﹣3t+4;当<t≤6时,S=﹣t2+27t﹣76;当t>6时,S=5.(3)当以OM为直径的圆与AC有公共点时,公共点即是符合条件的点Q.当以OM为直径的圆与AC相切时,t=,∴t的取值范围是:0<t≤.点评:此题是典型的动点问题,比较复杂,考查了同学们对圆及三角形,矩形,等相关知识的掌握情况,有一定的难度.5.(2008•北京)请阅读下列材料:问题:如图1,在菱形ABCD和菱形BEFG中,点A,B,E在同一条直线上,P是线段DF的中点,连接PG,PC.若∠ABC=∠BEF=60°,探究PG与PC的位置关系及的值.小聪同学的思路是:延长GP交DC于点H,构造全等三角形,经过推理使问题得到解决.请你参考小聪同学的思路,探究并解决下列问题:(1)写出上面问题中线段PG与PC的位置关系及的值;(2)将图1中的菱形BEFG绕点B顺时针旋转,使菱形BEFG的对角线BF恰好与菱形ABCD的边AB 在同一条直线上,原问题中的其他条件不变(如图2).你在(1)中得到的两个结论是否发生变化?写出你的猜想并加以证明;(3)若图1中∠ABC=∠BEF=2α(0°<α<90°),将菱形BEFG绕点B顺时针旋转任意角度,原问题中的其他条件不变,请你直接写出的值(用含α的式子表示).考点:菱形的性质;全等三角形的判定与性质;锐角三角函数的定义.专题:压轴题.分析:(1)根据题意可知小聪的思路为,通过判定三角形DHP和PGF为全等三角形来得出证明三角形HCG为等腰三角形且P为底边中点的条件;(2)思路同上,延长GP交AD于点H,连接CH,CG,本题中除了如(1)中证明△GFP≌△HDP (得到P是HG中点)外还需证明△HDC≌△GBC(得出三角形CHG是等腰三角形).(3)∠ABC=∠BEF=2α(0°<α<90°),那么∠PCG=90°﹣α,由(1)可知:PG:PC=tan(90°﹣α).解答:解:(1)∵CD∥GF,∠PDH=∠PFG,∠DHP=∠PGF,DP=PF,∴△DPH≌△FGP,∴PH=PG,DH=GF,∵CD=BC,GF=GB=DH,∴CH=CG,∴CP⊥HG,∠ABC=60°,∴∠DCG=120°,∴∠PCG=60°,∴PG:PC=tan60°=,∴线段PG与PC的位置关系是PG⊥PC,=;(2)猜想:(1)中的结论没有发生变化.证明:如图2,延长GP交AD于点H,连接CH,∵P是线段DF的中点,∴FP=DP,∵AD∥GF,∴∠HDP=∠GFP,∵∠GPF=∠HPD,∴△GFP≌△HDP(ASA),∴GP=HP,GF=HD,∵四边形ABCD是菱形,∴CD=CB,∠HDC=∠ABC=60°,∵∠ABC=∠BEF=60°,菱形BEFG的对角线BF恰好与菱形ABCD的边AB在同一条直线上,∴∠GBF=60°,∴∠HDC=∠GBF,∵四边形BEFG是菱形,∴GF=GB,∴HD=GB,∴△HDC≌△GBC,∴CH=CG,∠HCD=∠GCB∴PG⊥PC(到线段两端点距离相等的点在线段的垂直平分线上)∵∠ABC=60°∴∠DCB=∠HCD+∠HCB=120°∵∠HCG=∠HCB+∠GCB∴∠HCG=120°∴∠GCP=60°∴=tan∠GCP=tan60°=;(3)∵∠ABC=∠BEF=2α(0°<α<90°),∴∠PCG=90°﹣α,由(1)可知:PG:PC=tan(90°﹣α),∴=tan(90°﹣α).点评:本题是一道探究性的几何综合题,主要考查菱形的性质,全等三角形的判定及三角函数的综合运用.6.(2008•厦门)已知:如图所示的一张矩形纸片ABCD(AD>AB),将纸片折叠一次,使点A与C重合,再展开,折痕EF交AD边于E,交BC边于F,分别连接AF和CE.(1)求证:四边形AFCE是菱形;(2)若AE=10cm,△ABF的面积为24cm2,求△ABF的周长;(3)在线段AC上是否存在一点P,使得2AE2=AC•AP?若存在,请说明点P的位置,并予以证明;若不存在,请说明理由.考点:菱形的判定;勾股定理;矩形的性质;相似三角形的判定与性质.专题:压轴题;开放型;存在型.分析:(1)因为是对折所以AO=CO,利用三角形全等证明EO=FO,四边形便是菱形;(2)因为面积是24,也就是AB、BF的积可以求出,所以求周长只要求出AB、BF的和就可以,而结合勾股定理它们和的平方减去乘积二倍就是AF的平方;(3)因为AC=AO所以可以从与△AOE相似的角度考虑,即过E作EP⊥AD.解答:(1)证明:连接EF交AC于O,当顶点A与C重合时,折痕EF垂直平分AC,∴OA=OC,∠AOE=∠COF=90°(1分)∵在矩形ABCD中,AD∥BC,∴∠EAO=∠FCO,∴△AOE≌△COF(ASA).∴OE=OF(2分)∴四边形AFCE是菱形.(3分)(2)解:四边形AFCE是菱形,∴AF=AE=10.设AB=x,BF=y,∵∠B=90,∴(x+y)2﹣2xy=100①又∵S△ABF=24,∴xy=24,则xy=48.②(5分)由①、②得:(x+y)2=196(6分)∴x+y=14,x+y=﹣14(不合题意舍去)∴△ABF的周长为x+y+AF=14+10=24.(7分)(3)解:过E作EP⊥AD交AC于P,则P就是所求的点.(9分)证明:由作法,∠AEP=90°,由(1)得:∠AOE=90°,又∠EAO=∠EAP,∴△AOE∽△AEP,∴=,则AE2=AO•AP(10分)∵四边形AFCE是菱形,∴AO=AC,AE2=AC•AP(11分)∴2AE2=AC•AP(12分)即P的位置是:过E作EP⊥AD交AC于P.点评:本题主要考查(1)菱形的判定方法“对角线互相垂直且平分的四边形”,(2)相似三角形的判定和性质.7.(2008•嘉兴)小丽参加数学兴趣小组活动,提供了下面3个有联系的问题,请你帮助解决:(1)如图1,正方形ABCD中,作AE交BC于E,DF⊥AE交AB于F,求证:AE=DF;(2)如图2,正方形ABCD中,点E,F分别在AD,BC上,点G,H分别在AB,CD上,且EF⊥GH,求的值;(3)如图3,矩形ABCD中,AB=a,BC=b,点E,F分别在AD,BC上,且EF⊥GH,求的值.考点:矩形的性质;全等三角形的判定与性质;正方形的性质;相似三角形的判定与性质.专题:几何综合题;压轴题.分析:(1)证明AE=DF,只要证明三角形ABE和DAF全等即可.它们同有一个直角,且AB=AD,又因为∠AEB=90°﹣∠BAE=∠AFD,这样就构成了全等三角形判定中的AAS,两三角形就全等了;(2)可通过构建与已知条件相关的三角形来求解.作AM∥EF交BC于M,作DN∥GH交AB 于N,那么AM=EF,DN=GH,(1)中我们已证得△ABM、△DAN全等,那么AM=DN,即EF=GH,它们的比例也就求出来了;(3)做法同(2)也是通过构建三角形来求解.作AM∥EF交BC于M,作DN∥GH交AB于N,只不过证明三角形全等改为了证明其相似.解题思路和步骤是一样的.解答:(1)证明:∵DF⊥AE∴∠AEB=90°﹣∠BAE=∠AFD又∵AB=AD,∠ABE=∠DAF=90°∴△ABE≌△DAF,∴AE=DF;(2)解:作AM∥EF交BC于M作DN∥GH交AB于N则AM=EF,DN=GH由(1)知,AM=DN∴EF=GH,即(3)解:作AM∥EF交BC于M作DN∥GH交AB于N则AM=EF,DN=GH∵EF⊥GH∴AM⊥DN∴∠AMB=90°﹣∠BAM=∠AND又∵∠ABM=∠DAN=90°∴△ABM∽△DAN∴∴.点评:本题中(1)(2)和(3)虽然所求不一样,但是解题思路和步骤是一样的,都是通过构建与已知和所求的条件相关的三角形,然后证明其全等或相似来得出线段间的相等或比例关系.8.(2008•宁夏)如图,在边长为4的正方形ABCD中,点P在AB上从A向B运动,连接DP交AC 于点Q.(1)试证明:无论点P运动到AB上何处时,都有△ADQ≌△ABQ;。
人教备战中考数学压轴题之平行四边形(备战中考题型整理,突破提升)附详细答案
一、平行四边形真题与模拟题分类汇编(难题易错题)1.如图,在正方形ABCD中,E是边BC上的一动点(不与点B、C重合),连接DE、点C 关于直线DE的对称点为C′,连接AC′并延长交直线DE于点P,F是AC′的中点,连接DF.(1)求∠FDP的度数;(2)连接BP,请用等式表示AP、BP、DP三条线段之间的数量关系,并证明;(3)连接AC,若正方形的边长为2,请直接写出△ACC′的面积最大值.【答案】(1)45°;(2)BP+DP2AP,证明详见解析;(32﹣1.【解析】【分析】(1)证明∠CDE=∠C'DE和∠ADF=∠C'DF,可得∠FDP'=12∠ADC=45°;(2)作辅助线,构建全等三角形,证明△BAP≌△DAP'(SAS),得BP=DP',从而得△PAP'是等腰直角三角形,可得结论;(3)先作高线C'G,确定△ACC′的面积中底边AC为定值2,根据高的大小确定面积的大小,当C'在BD上时,C'G最大,其△ACC′的面积最大,并求此时的面积.【详解】(1)由对称得:CD=C'D,∠CDE=∠C'DE,在正方形ABCD中,AD=CD,∠ADC=90°,∴AD=C'D,∵F是AC'的中点,∴DF⊥AC',∠ADF=∠C'DF,∴∠FDP=∠FDC'+∠EDC'=12∠ADC=45°;(2)结论:BP+DP2AP,理由是:如图,作AP'⊥AP交PD的延长线于P',∴∠PAP'=90°,在正方形ABCD中,DA=BA,∠BAD=90°,∴∠DAP'=∠BAP,由(1)可知:∠FDP=45°∵∠DFP=90°∴∠APD=45°,∴∠P'=45°,∴AP=AP',在△BAP和△DAP'中,∵BA DABAP DAP AP AP'=⎧⎪∠=∠⎨='⎪⎩,∴△BAP≌△DAP'(SAS),∴BP=DP',∴DP+BP=PP'=2AP;(3)如图,过C'作C'G⊥AC于G,则S△AC'C=12AC•C'G,Rt△ABC中,AB=BC2,∴AC22(2)(2)2+=,即AC为定值,当C'G最大值,△AC'C的面积最大,连接BD,交AC于O,当C'在BD上时,C'G最大,此时G与O重合,∵CD =C 'D =2,OD =12AC =1, ∴C 'G =2﹣1,∴S △AC 'C =112(21)2122AC C G '•=⨯-=-. 【点睛】 本题考查四边形综合题、正方形的性质、等腰直角三角形的判定和性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.2.如图,四边形ABCD 中,∠BCD =∠D =90°,E 是边AB 的中点.已知AD =1,AB =2. (1)设BC =x ,CD =y ,求y 关于x 的函数关系式,并写出定义域;(2)当∠B =70°时,求∠AEC 的度数;(3)当△ACE 为直角三角形时,求边BC 的长.【答案】(1)()22303y x x x =-++<<;(2)∠AEC =105°;(3)边BC 的长为2117+. 【解析】试题分析:(1)过A 作AH ⊥BC 于H ,得到四边形ADCH 为矩形.在△BAH 中,由勾股定理即可得出结论.(2)取CD 中点T ,连接TE ,则TE 是梯形中位线,得ET ∥AD ,ET ⊥CD ,∠AET =∠B =70°.又AD =AE =1,得到∠AED =∠ADE =∠DET =35°.由ET 垂直平分CD ,得∠CET =∠DET =35°,即可得到结论.(3)分两种情况讨论:①当∠AEC =90°时,易知△CBE ≌△CAE ≌△CAD ,得∠BCE =30°, 解△ABH 即可得到结论.②当∠CAE =90°时,易知△CDA ∽△BCA ,由相似三角形对应边成比例即可得到结论. 试题解析:解:(1)过A 作AH ⊥BC 于H .由∠D =∠BCD =90°,得四边形ADCH 为矩形. 在△BAH 中,AB =2,∠BHA =90°,AH =y ,HB =1x -,∴22221y x =+-,则()22303y x x x =-++<<(2)取CD 中点T ,联结TE ,则TE 是梯形中位线,得ET ∥AD ,ET ⊥CD ,∴∠AET =∠B =70°.又AD=AE=1,∴∠AED=∠ADE=∠DET=35°.由ET垂直平分CD,得∠CET=∠DET=35°,∴∠AEC=70°+35°=105°.(3)分两种情况讨论:①当∠AEC=90°时,易知△CBE≌△CAE≌△CAD,得∠BCE=30°,则在△ABH中,∠B=60°,∠AHB=90°,AB=2,得BH=1,于是BC=2.②当∠CAE=90°时,易知△CDA∽△BCA,又2224AC BC AB x=-=-,则2241174AD CA xxAC CB x-±=⇒=⇒=-(舍负)易知∠ACE<90°,所以边BC的长为117+.综上所述:边BC的长为2或1172+.点睛:本题是四边形综合题.考查了梯形中位线,相似三角形的判定与性质.解题的关键是掌握梯形中常见的辅助线作法.3.如图,在△ABC中,∠ACB=90°,∠CAB=30°,以线段AB为边向外作等边△ABD,点E 是线段AB的中点,连接CE并延长交线段AD于点F.(1)求证:四边形BCFD为平行四边形;(2)若AB=6,求平行四边形ADBC的面积.【答案】(1)见解析;(2)S平行四边形ADBC273【解析】【分析】(1)在Rt△ABC中,E为AB的中点,则CE=12AB,BE=12AB,得到∠BCE=∠EBC=60°.由△AEF≌△BEC,得∠AFE=∠BCE=60°.又∠D=60°,得∠AFE=∠D=60度.所以FC∥BD,又因为∠BAD=∠ABC=60°,所以AD∥BC,即FD//BC,则四边形BCFD是平行四边形.(2)在Rt△ABC中,求出BC,AC即可解决问题;【详解】解:(1)证明:在△ABC中,∠ACB=90°,∠CAB=30°,∴∠ABC=60°,在等边△ABD中,∠BAD=60°,∴∠BAD=∠ABC=60°,∵E为AB的中点,∴AE=BE,又∵∠AEF=∠BEC,∴△AEF≌△BEC,在△ABC中,∠ACB=90°,E为AB的中点,∴CE=12AB,BE=12AB,∴CE=AE,∴∠EAC=∠ECA=30°,∴∠BCE=∠EBC=60°,又∵△AEF≌△BEC,∴∠AFE=∠BCE=60°,又∵∠D=60°,∴∠AFE=∠D=60°,∴FC∥BD,又∵∠BAD=∠ABC=60°,∴AD∥BC,即FD∥BC,∴四边形BCFD是平行四边形;(2)解:在Rt△ABC中,∵∠BAC=30°,AB=6,∴BC=AF=3,AC=33,∴S平行四边形BCFD=3×33=93,S△ACF=12×3×33=93,S平行四边形ADBC=2732.【点睛】本题考查平行四边形的判定和性质、直角三角形斜边中线定理、等边三角形的性质、解直角三角形、勾股定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.4.如图,在平行四边形ABCD中,AD⊥DB,垂足为点D,将平行四边形ABCD折叠,使点B落在点D的位置,点C落在点G的位置,折痕为EF,EF交对角线BD于点P.(1)连结CG,请判断四边形DBCG的形状,并说明理由;(2)若AE=BD,求∠EDF的度数.【答案】(1)四边形BCGD是矩形,理由详见解析;(2)∠EDF=120°.【解析】【分析】(1)根据平行四边形的性质和折叠性质以及矩形的判定解答即可;(2)根据折叠的性质以及直角三角形的性质和等边三角形的判定与性质解答即可.【详解】解:(1)四边形BCGD是矩形,理由如下,∵四边形ABCD是平行四边形,∴BC∥AD,即BC∥DG,由折叠可知,BC=DG,∴四边形BCGD是平行四边形,∵AD⊥BD,∴∠CBD=90°,∴四边形BCGD是矩形;(2)由折叠可知:EF垂直平分BD,∴BD⊥EF,DP=BP,∵AD⊥BD,∴EF∥AD∥BC,∴AE PD1==BE BP∴AE=BE,∴DE是Rt△ADB斜边上的中线,∴DE=AE=BE,∵AE=BD,∴DE=BD=BE,∴△DBE是等边三角形,∴∠EDB=∠DBE=60°,∵AB∥DC,∴∠DBC=∠DBE=60°,∴∠EDF=120°.【点睛】本题考查了平行四边形的性质,折叠性质,等边三角形的性质和判定,主要考查学生运用定理进行推理和计算的能力,题目综合性比较强,有一定的难度5.菱形ABCD中、∠BAD=120°,点O为射线CA上的动点,作射线OM与直线BC相交于点E,将射线OM绕点O逆时针旋转60°,得到射线ON,射线ON与直线CD相交于点F.(1)如图①,点O与点A重合时,点E,F分别在线段BC,CD上,请直接写出CE,CF,CA三条段段之间的数量关系;(2)如图②,点O在CA的延长线上,且OA=13AC,E,F分别在线段BC的延长线和线段CD的延长线上,请写出CE,CF,CA三条线段之间的数量关系,并说明理由;(3)点O在线段AC上,若AB=6,BO=27,当CF=1时,请直接写出BE的长.【答案】(1)CA=CE+CF.(2)CF-CE=43AC.(3)BE的值为3或5或1.【解析】【分析】(1)如图①中,结论:CA=CE+CF.只要证明△ADF≌△ACE(SAS)即可解决问题;(2)结论:CF-CE=43AC.如图②中,如图作OG∥AD交CF于G,则△OGC是等边三角形.只要证明△FOG≌△EOC(ASA)即可解决问题;(3)分四种情形画出图形分别求解即可解决问题.【详解】(1)如图①中,结论:CA=CE+CF.理由:∵四边形ABCD是菱形,∠BAD=120°∴AB=AD=DC=BC,∠BAC=∠DAC=60°∴△ABC,△ACD都是等边三角形,∵∠DAC=∠EAF=60°,∴∠DAF=∠CAE,∵CA=AD,∠D=∠ACE=60°,∴△ADF≌△ACE(SAS),∴DF=CE,∴CE+CF=CF+DF=CD=AC,(2)结论:CF-CE=43 AC.理由:如图②中,如图作OG∥AD交CF于G,则△OGC是等边三角形.∵∠GOC=∠FOE=60°,∴∠FOG=∠EOC,∵OG=OC,∠OGF=∠ACE=120°,∴△FOG≌△EOC(ASA),∴CE=FG,∵OC=OG,CA=CD,∴OA=DG,∴CF-EC=CF-FG=CG=CD+DG=AC+13AC=43AC,(3)作BH⊥AC于H.∵AB=6,AH=CH=3,∴BH=33,如图③-1中,当点O在线段AH上,点F在线段CD上,点E在线段BC上时.∵7,∴22OB BH=1,∴OC=3+1=4,由(1)可知:CO=CE+CF,∴CE=3,∴BE=6-3=3.如图③-2中,当点O在线段AH上,点F在线段DC的延长线上,点E在线段BC上时.由(2)可知:CE-CF=OC,∴CE=4+1=5,∴BE=1.如图③-3中,当点O在线段CH上,点F在线段CD上,点E在线段BC上时.同法可证:OC=CE+CF,∵OC=CH-OH=3-1=2,CF=1,∴CE=1,∴BE=6-1=5.如图③-4中,当点O在线段CH上,点F在线段DC的延长线上,点E在线段BC上时.同法可知:CE-CF=OC,∴CE=2+1=3,∴BE=3,综上所述,满足条件的BE的值为3或5或1.【点睛】本题属于四边形综合题,考查了全等三角形的判定和性质,等边三角形的性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.6.如图1,在正方形ABCD中,AD=6,点P是对角线BD上任意一点,连接PA,PC过点P 作PE⊥PC交直线AB于E.(1)求证:PC=PE;(2)延长AP交直线CD于点F.①如图2,若点F是CD的中点,求△APE的面积;②若ΔAPE的面积是21625,则DF的长为(3)如图3,点E在边AB上,连接EC交BD于点M,作点E关于BD的对称点Q,连接PQ,MQ,过点P作PN∥CD交EC于点N,连接QN,若PQ=5,MN=723,则△MNQ的面积是【答案】(1)略;(2)①8,②4或9;(3)5 6【解析】【分析】(1)利用正方形每个角都是90°,对角线平分对角的性质,三角形外角等于和它不相邻的两个内角的和,等角对等边等性质容易得证;(2)作出△ADP和△DFP的高,由面积法容易求出这个高的值.从而得到△PAE的底和高,并求出面积.第2小问思路一样,通过面积法列出方程求解即可;(3)根据已经条件证出△MNQ是直角三角形,计算直角边乘积的一半可得其面积.【详解】(1) 证明:∵点P在对角线BD上,∴△ADP ≌△CDP ,∴AP=CP , ∠DAP =∠DCP ,∵PE ⊥PC ,∴∠EPC=∠EPB+∠BPC=90°,∵∠PEA=∠EBP+∠EPB=45°+90°-∠BPC=135°-∠BPC,∵∠PAE=90°-∠DAP =90°-∠DCP ,∠DCP=∠BPC-∠PDC=∠BPC-45°,∴∠PAE=90°-(∠BPC-45°)= 135°-∠BPC,∴∠PEA=∠PAE,∴PC=PE;(2)①如图2,过点P 分别作PH ⊥AD,PG ⊥CD,垂足分别为H 、G.延长GP 交AB 于点M.∵四边形ABCD 是正方形,P 在对角线上,∴四边形HPGD 是正方形,∴PH=PG,PM ⊥AB,设PH=PG=a,∵F 是CD 中点,AD =6,则FD=3,ADF S=9, ∵ADF S=ADP DFP S S +=1122AD PH DF PG ⨯+⨯, ∴1163922a a ⨯+⨯=,解得a=2, ∴AM=HP=2,MP=MG-PG=6-2=4,又∵PA=PE,∴AM=EM,AE=4,∵APE S =1144822EA MP ⨯=⨯⨯=, ②设HP =b,由①可得AE=2b,MP=6-b,∴APE S =()121626225b b ⨯⨯-=, 解得b=2.4 3.6或,∵ADF S =ADP DFP S S +=1122AD PH DF PG ⨯+⨯, ∴11166222b DF b DF ⨯⨯+⨯=⨯,∴当b=2.4时,DF=4;当b =3.6时,DF =9,即DF 的长为4或9;(3)如图,∵E 、Q 关于BP 对称,PN ∥CD,∴∠1=∠2,∠2+∠3=∠BDC=45°,∴∠1+∠4=45°,∴∠3=∠4,易证△PEM ≌△PQM, △PNQ ≌△PNC,∴∠5=∠6, ∠7=∠8 ,EM=QM,NQ=NC,∴∠6+∠7=90°,∴△MNQ 是直角三角形,设EM=a,NC=b 列方程组222252372 a b a b ⎧+=⎪⎪⎨⎛⎪+= ⎪⎝⎭⎩, 可得12ab=56, ∴MNQ 56S =, 【点睛】本题是四边形综合题目,考查了正方形的性质、等腰直角三角形的判定与性质、全等三角形的判定与性质等知识;本题综合性强,有一定难度,熟练掌握正方形的性质,证明三角形全等是解决问题的关键.要注意运用数形结合思想.7.如图,在正方形ABCD 中,点G 在对角线BD 上(不与点B ,D 重合),GE ⊥DC 于点E ,GF ⊥BC 于点F ,连结AG .(1)写出线段AG ,GE ,GF 长度之间的数量关系,并说明理由;(2)若正方形ABCD的边长为1,∠AGF=105°,求线段BG的长.【答案】(1)AG2=GE2+GF2(2)【解析】试题分析:(1)结论:AG2=GE2+GF2.只要证明GA=GC,四边形EGFC是矩形,推出GE=CF,在Rt△GFC中,利用勾股定理即可证明;(2)作BN⊥AG于N,在BN上截取一点M,使得AM=BM.设AN=x.易证AM=BM=2x,MN=x,在Rt△ABN中,根据AB2=AN2+BN2,可得1=x2+(2x+x)2,解得x=,推出BN=,再根据BG=BN÷cos30°即可解决问题.试题解析:(1)结论:AG2=GE2+GF2.理由:连接CG.∵四边形ABCD是正方形,∴A、C关于对角线BD对称,∵点G在BD上,∴GA=GC,∵GE⊥DC于点E,GF⊥BC于点F,∴∠GEC=∠ECF=∠CFG=90°,∴四边形EGFC是矩形,∴CF=GE,在Rt△GFC中,∵CG2=GF2+CF2,∴AG2=GF2+GE2.(2)作BN⊥AG于N,在BN上截取一点M,使得AM=BM.设AN=x.∵∠AGF=105°,∠FBG=∠FGB=∠ABG=45°,∴∠AGB=60°,∠GBN=30°,∠ABM=∠MAB=15°,∴∠AMN=30°,∴AM=BM=2x,MN=x,在Rt△ABN中,∵AB2=AN2+BN2,∴1=x2+(2x+x)2,解得x=,∴BN=,∴BG=BN÷cos30°=.考点:1、正方形的性质,2、矩形的判定和性质,3、勾股定理,4、直角三角形30度的性质8.(问题发现)(1)如图(1)四边形ABCD中,若AB=AD,CB=CD,则线段BD,AC的位置关系为;(拓展探究)(2)如图(2)在Rt△ABC中,点F为斜边BC的中点,分别以AB,AC为底边,在Rt△ABC外部作等腰三角形ABD和等腰三角形ACE,连接FD,FE,分别交AB,AC于点M,N.试猜想四边形FMAN的形状,并说明理由;(解决问题)(3)如图(3)在正方形ABCD中,AB=2,以点A为旋转中心将正方形ABCD旋转60°,得到正方形AB'C'D',请直接写出BD'平方的值.【答案】(1)AC垂直平分BD;(2)四边形FMAN是矩形,理由见解析;(3)16+8或16﹣8【解析】【分析】(1)依据点A在线段BD的垂直平分线上,点C在线段BD的垂直平分线上,即可得出AC 垂直平分BD;(2)根据Rt△ABC中,点F为斜边BC的中点,可得AF=CF=BF,再根据等腰三角形ABD 和等腰三角形ACE,即可得到AD=DB,AE=CE,进而得出∠AMF=∠MAN=∠ANF=90°,即可判定四边形AMFN是矩形;(3)分两种情况:①以点A为旋转中心将正方形ABCD逆时针旋转60°,②以点A为旋转中心将正方形ABCD顺时针旋转60°,分别依据旋转的性质以及勾股定理,即可得到结论.【详解】(1)∵AB=AD,CB=CD,∴点A在线段BD的垂直平分线上,点C在线段BD的垂直平分线上,∴AC垂直平分BD,故答案为:AC垂直平分BD;(2)四边形FMAN是矩形.理由:如图2,连接AF,∵Rt△ABC中,点F为斜边BC的中点,∴AF=CF=BF,又∵等腰三角形ABD和等腰三角形ACE,∴AD=DB,AE=CE,∴由(1)可得,DF⊥AB,EF⊥AC,又∵∠BAC=90°,∴∠AMF=∠MAN=∠ANF=90°,∴四边形AMFN是矩形;(3)BD′的平方为16+8或16﹣8.分两种情况:①以点A为旋转中心将正方形ABCD逆时针旋转60°,如图所示:过D'作D'E⊥AB,交BA的延长线于E,由旋转可得,∠DAD'=60°,∴∠EAD'=30°,∵AB=2=AD',∴D'E=AD'=,AE=,∴BE=2+,∴Rt△BD'E中,BD'2=D'E2+BE2=()2+(2+)2=16+8②以点A为旋转中心将正方形ABCD顺时针旋转60°,如图所示:过B作BF⊥AD'于F,旋转可得,∠DAD'=60°,∴∠BAD'=30°,∵AB=2=AD',∴BF=AB=,AF=,∴D'F=2﹣,∴Rt△BD'F中,BD'2=BF2+D'F2=()2+(2-)2=16﹣8综上所述,BD′平方的长度为16+8或16﹣8.【点睛】本题属于四边形综合题,主要考查了正方形的性质,矩形的判定,旋转的性质,线段垂直平分线的性质以及勾股定理的综合运用,解决问题的关键是作辅助线构造直角三角形,依据勾股定理进行计算求解.解题时注意:有三个角是直角的四边形是矩形.9.如图1,若分别以△ABC的AC、BC两边为边向外侧作的四边形ACDE和BCFG为正方形,则称这两个正方形为外展双叶正方形.(1)发现:如图2,当∠C=90°时,求证:△ABC与△DCF的面积相等.(2)引申:如果∠C 90°时,(1)中结论还成立吗?若成立,请结合图1给出证明;若不成立,请说明理由;(3)运用:如图3,分别以△ABC的三边为边向外侧作的四边形ACDE、BCFG和ABMN为正方形,则称这三个正方形为外展三叶正方形.已知△ABC中,AC=3,BC=4.当∠C=_____°时,图中阴影部分的面积和有最大值是________.【答案】(1)证明见解析;(2)成立,证明见解析;(3)18.【解析】试题分析:(1)因为AC=DC ,∠ACB=∠DCF=90°,BC=FC ,所以△ABC ≌△DFC ,从而△ABC 与△DFC 的面积相等;(2)延长BC 到点P ,过点A 作AP ⊥BP 于点P ;过点D 作DQ ⊥FC 于点Q .得到四边形ACDE ,BCFG 均为正方形,AC=CD ,BC=CF ,∠ACP=∠DCQ .所以△APC ≌△DQC . 于是AP=DQ .又因为S △ABC =12BC•AP ,S △DFC =12FC•DQ ,所以S △ABC =S △DFC ; (3)根据(2)得图中阴影部分的面积和是△ABC 的面积三倍,若图中阴影部分的面积和有最大值,则三角形ABC 的面积最大,当△ABC 是直角三角形,即∠C 是90度时,阴影部分的面积和最大.所以S 阴影部分面积和=3S △ABC =3×12×3×4=18. (1)证明:在△ABC 与△DFC 中, ∵{AC DCACB DCF BC FC∠∠===,∴△ABC ≌△DFC .∴△ABC 与△DFC 的面积相等;(2)解:成立.理由如下:如图,延长BC 到点P ,过点A 作AP ⊥BP 于点P ;过点D 作DQ ⊥FC 于点Q . ∴∠APC=∠DQC=90°.∵四边形ACDE ,BCFG 均为正方形,∴AC=CD ,BC=CF ,∠ACP+∠PCD=90°,∠DCQ+∠PCD=90°,∴∠ACP=∠DCQ .∴{APC DQCACP DCQ AC CD∠∠∠∠===,△APC ≌△DQC (AAS ),∴AP=DQ .又∵S△ABC=12BC•AP,S△DFC=12FC•DQ,∴S△ABC=S△DFC;(3)解:根据(2)得图中阴影部分的面积和是△ABC的面积三倍,若图中阴影部分的面积和有最大值,则三角形ABC的面积最大,∴当△ABC是直角三角形,即∠C是90度时,阴影部分的面积和最大.∴S阴影部分面积和=3S△ABC=3×12×3×4=18.考点:四边形综合题10.如图1,在菱形ABCD中,ABC=60°,若点E在AB的延长线上,EF∥AD,EF=BE,点P是DE的中点,连接FP并延长交AD于点G.(1)过D作DH AB,垂足为H,若DH=,BE=AB,求DG的长;(2)连接CP,求证:CP FP;(3)如图2,在菱形ABCD中,ABC=60°,若点E在CB的延长线上运动,点F在AB的延长线上运动,且BE=BF,连接DE,点P为DE的中点,连接FP、CP,那么第(2)问的结论成立吗?若成立,求出的值;若不成立,请说明理由.【答案】(1)1;(2)见解析;(3).【解析】试题分析:(1)根据菱形得出DA∥BC,CD=CB,∠CDG=∠CBA=60°,则∠DAH=∠ABC=60°,根据DH⊥AB得出∠DHA=90°,根据Rt△ADH的正弦值得出AD的长度,然后得出BE的长度,然后证明△PDG≌△PEF,得出DG=EF,根据EF∥AD,AD∥BC 得出EF∥BC,则说明△BEF为正三角形,从而得出DG的长度;(2)连接CG、CF,根据△PDG≌△PEF得出PG=PF,然后证明△CDG≌△CBF,从而得到CG=CF,根据PG=PF得出垂直;(3)过D作EF的平行线,交FP延长于点G,连接CG、CF证△PEF≌△PDG,然后证明△CDG≌△CBF,从而得出∠GCE=120°,根据Rt△CPF求出比值.试题解析:(1)解:∵四边形ABCD为菱形∴DA∥BC CD="CB" ∠CDG=∠CBA=60°∴∠DAH=∠ABC=60°∵DH⊥AB ∴∠DHA=90°在Rt△ADH中 sin∠DAH=∴AD=∴BE=AB=×4=1 ∵EF∥AD ∴∠PDG=∠PEB ∵P为DE的中点∴PD=PE∵∠DPG=∠EPF ∴△PDG≌△PEF ∴DG=EF ∵EF∥AD AD∥BC ∴EF∥BC∴∠FEB=∠CBA=60°∵BE=EF ∴△BEF为正三角形∴EF=BE=1 ∴DG=EF=1、证明:连接CG、CF由(1)知△PDG≌△PEF ∴PG=PF在△CDG与△CBF中易证:∠CDG=∠CBF=60° CD=CB BF=EF=DG ∴△CDG≌△CBF∴CG=CF ∵PG=PF ∴CP⊥GF(3)如图:CP⊥GF仍成立理由如下:过D作EF的平行线,交FP延长于点G连接CG、CF证△PEF≌△PDG ∴DG=EF=BF ∵DG∥EF ∴∠GDP=∠EFP ∵DA∥BC∴∠ADP=∠PEC∴∠GDP-∠ADP=∠EFP-∠PEC ∴∠GDA=∠BEF=60°∴∠CDG=∠ADC+∠GDA=120°∵∠CBF=180°-∠EBF=120°∴∠CBF=∠CDG ∵CD=BC DG=BF ∴△CDG≌△CBF∴CG=CF ∠DCG=∠FCE ∵PG=PF ∴CP⊥PF ∠GCP=∠FCP∵∠DCP=180-∠ABC=120°∴∠DCG+∠GCE=120°∴∠FCE+∠GCE=120°即∠GCE=120°∴∠FCP=∠GCE=60°在Rt△CPF中 tan∠FCP=tan60°==考点:三角形全等的证明与性质.。
人教中考数学培优专题复习平行四边形练习题附答案
一、平行四边形真题与模拟题分类汇编(难题易错题)1.在四边形ABCD 中,180B D ∠+∠=︒,对角线AC 平分BAD ∠.(1)如图1,若120DAB ∠=︒,且90B ∠=︒,试探究边AD 、AB 与对角线AC 的数量关系并说明理由.(2)如图2,若将(1)中的条件“90B ∠=︒”去掉,(1)中的结论是否成立?请说明理由.(3)如图3,若90DAB ∠=︒,探究边AD 、AB 与对角线AC 的数量关系并说明理由.【答案】(1)AC AD AB =+.证明见解析;(2)成立;(3)2AD AB AC +=.理由见解析.【解析】试题分析:(1)结论:AC=AD+AB ,只要证明AD=12AC ,AB=12AC 即可解决问题; (2)(1)中的结论成立.以C 为顶点,AC 为一边作∠ACE=60°,∠ACE 的另一边交AB 延长线于点E ,只要证明△DAC ≌△BEC 即可解决问题;(3)结论:AD +AB =2AC .过点C 作CE ⊥AC 交AB 的延长线于点E ,只要证明△ACE 是等腰直角三角形,△DAC ≌△BEC 即可解决问题;试题解析:解:(1)AC=AD+AB .理由如下:如图1中,在四边形ABCD 中,∠D+∠B=180°,∠B=90°,∴∠D=90°,∵∠DAB=120°,AC 平分∠DAB ,∴∠DAC=∠BAC=60°,∵∠B=90°,∴AB=12AC,同理AD=12AC.∴AC=AD+AB.(2)(1)中的结论成立,理由如下:以C为顶点,AC为一边作∠ACE=60°,∠ACE的另一边交AB延长线于点E,∵∠BAC=60°,∴△AEC为等边三角形,∴AC=AE=CE,∵∠D+∠ABC=180°,∠DAB=120°,∴∠DCB=60°,∴∠DCA=∠BCE,∵∠D+∠ABC=180°,∠ABC+∠EBC=180°,∴∠D=∠CBE,∵CA=CE,∴△DAC≌△BEC,∴AD=BE,∴AC=AD+AB.(3)结论:AD+AB=2AC.理由如下:过点C作CE⊥AC交AB的延长线于点E,∵∠D+∠B=180°,∠DAB=90°,∴DCB=90°,∵∠ACE=90°,∴∠DCA=∠BCE,又∵AC平分∠DAB,∴∠CAB=45°,∴∠E=45°.∴AC=CE.又∵∠D+∠ABC=180°,∠D=∠CBE,∴△CDA ≌△CBE ,∴AD=BE ,∴AD+AB=AE .在Rt △ACE 中,∠CAB=45°,∴AE =245AC AC cos ︒= ∴2AD AB AC +=.2.如图,在△ABC 中,∠ACB=90°,∠CAB=30°,以线段AB 为边向外作等边△ABD ,点E 是线段AB 的中点,连接CE 并延长交线段AD 于点F .(1)求证:四边形BCFD 为平行四边形;(2)若AB=6,求平行四边形ADBC 的面积.【答案】(1)见解析;(2)S 平行四边形ADBC =32. 【解析】【分析】 (1)在Rt △ABC 中,E 为AB 的中点,则CE=12AB ,BE=12AB ,得到∠BCE=∠EBC=60°.由△AEF ≌△BEC ,得∠AFE=∠BCE=60°.又∠D=60°,得∠AFE =∠D=60度.所以FC ∥BD ,又因为∠BAD=∠ABC=60°,所以AD ∥BC ,即FD//BC ,则四边形BCFD 是平行四边形.(2)在Rt △ABC 中,求出BC ,AC 即可解决问题;【详解】解:(1)证明:在△ABC 中,∠ACB=90°,∠CAB=30°,∴∠ABC=60°,在等边△ABD 中,∠BAD=60°,∴∠BAD=∠ABC=60°,∵E 为AB 的中点,∴AE=BE ,又∵∠AEF=∠BEC ,∴△AEF ≌△BEC ,在△ABC 中,∠ACB=90°,E 为AB 的中点,∴CE=12AB ,BE=12AB ,∴CE=AE ,∴∠EAC=∠ECA=30°,∴∠BCE=∠EBC=60°,又∵△AEF ≌△BEC ,∴∠AFE=∠BCE=60°,又∵∠D=60°,∴∠AFE=∠D=60°,∴FC ∥BD ,又∵∠BAD=∠ABC=60°,∴AD ∥BC ,即FD ∥BC ,∴四边形BCFD 是平行四边形;(2)解:在Rt △ABC 中,∵∠BAC=30°,AB=6,∴BC=AF=3,AC=33∴S 平行四边形BCFD =3×33=93,S △ACF =12×3×33=932,S 平行四边形ADBC =2732. 【点睛】本题考查平行四边形的判定和性质、直角三角形斜边中线定理、等边三角形的性质、解直角三角形、勾股定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.3.如图,在正方形ABCD 中,E 是边AB 上的一动点,点F 在边BC 的延长线上,且CF AE =,连接DE ,DF ,EF . FH 平分EFB ∠交BD 于点H .(1)求证:DE DF ⊥;(2)求证:DH DF =:(3)过点H 作HM EF ⊥于点M ,用等式表示线段AB ,HM 与EF 之间的数量关系,并证明.【答案】(1)详见解析;(2)详见解析;(3)22EF AB HM =-,证明详见解析.【解析】【分析】(1)根据正方形性质, CF AE =得到DE DF ⊥.(2)由AED CFD △△≌,得DE DF =.由90ABC ∠=︒,BD 平分ABC ∠,得45DBF ∠=︒.因为FH 平分EFB ∠,所以EFH BFH ∠=∠.由于45DHF DBF BFH BFH ∠=∠+∠=︒+∠,45DFH DFE EFH EFH ∠=∠+∠=︒+∠, 所以DH DF =.(3)过点H 作HN BC ⊥于点N ,由正方形ABCD 性质,得222BD AB AD AB =+=.由FH 平分,EFB HM EF HN BC ∠⊥⊥,,得HM HN =.因为4590HBN HNB ∠=︒∠=︒,,所以22sin 45HN BH HN HM ===︒. 由22cos 45DF EF DF DH ===︒,得22EF AB HM =-. 【详解】(1)证明:∵四边形ABCD 是正方形,∴AD CD =,90EAD BCD ADC ∠=∠=∠=︒.∴90EAD FCD ∠=∠=︒.∵CF AE =。
中考数学平行四边形-经典压轴题附详细答案
(3)当正三角形AEF的边AE与BC垂直时,边AE最短.△AEF的面积会随着AE的变化而变化,且当AE最短时,正三角形AEF的面积会最小,又根据S△CEF=S四边形AECF-S△AEF,则△CEF的面积就会最大.
【答案】见解析
【解析】
试题分析:探究:由四边形ABCD、四边形CEFG均为菱形,利用SAS易证得△BCE≌△DCG,则可得BE=DG;
应用:由AD∥BC,BE=DG,可得S△ABE+S△CDE=S△BEC=S△CDG=8,又由AE=3ED,可求得△CDE的面积,继而求得答案.
试题解析:
探究:∵四边形ABCD、四边形CEFG均为菱形,
(3)在(2)的情况下,请探究△CEF的面积是否发生变化?若不变,求出这个定值;如果变化,求出其最大值.
【答案】(1)见解析;(2) ;(3)见解析
【解析】
试题分析:(1)先求证AB=AC,进而求证△ABC、△ACD为等边三角形,得∠4=60°,AC=AB进而求证△ABE≌△ACF,即可求得BE=CF;
∵∠CBN+∠ABN=90°,
∴∠ABN+∠BAM=90°,
∴∠APB=90°,
∴AM⊥BN.
(2)如图②中,以AB为斜边向外作等腰直角三角形△AEB,∠AEB=90°,作EF⊥PA于E,作EG⊥PB于G,连接EP.
∵∠EFP=∠FPG=∠G=90°,
∴四边形EFPG是矩形,
∴∠FEG=∠AEB=90°,
(2)如图②,已知正方形ABCD的边长为4.点M和N分别从点B、C同时出发,以相同的速度沿BC、CD方向向终点C和D运动.连接AM和BN,交于点P,求△APB周长的最大值;
中考数学压轴题之平行四边形(中考题型整理,突破提升)含答案解析
考点:1.正方形的性质;2.全等三角形的判定与性质;3.三角形中位线定理;4.旋转的性 质.
3.如图,△ ABC 中,AD 是边 BC 上的中线,过点 A 作 AE∥ BC,过点 D 作 DE∥ AB,DE 与 AC、AE 分别交于点 O、点 E,连接 EC. (1)求证:AD=EC;
(2)当∠ BAC=Rt∠ 时,求证:四边形 ADCE 是菱形.
【答案】(1)见解析; (2)见解析. 【解析】 【分析】 (1)先证四边形 ABDE 是平行四边形,再证四边形 ADCE 是平行四边形即可; (2)由∠ BAC=90°,AD 是边 BC 上的中线,得 AD=BD=CD,即可证明. 【详解】 (1)证明:∵ AE∥ BC,DE∥ AB , ∴ 四边形 ABDE 是平行四边形, ∴ AE=BD, ∵ AD 是边 BC 上的中线, ∴ BD=DC, ∴ AE=DC, 又∵ AE∥ BC, ∴ 四边形 ADCE 是平行四边形. (2) 证明:∵ ∠ BAC=90°,AD 是边 BC 上的中线. ∴ AD=CD ∵ 四边形 ADCE 是平行四边形, ∴ 四边形 ADCE 是菱形. 【点睛】 本题考查了平行四边形的判定、菱形的判定、直角三角形斜边中线定理.根据图形与已知条 件灵活应用平行四边形的判定方法是证明的关键.
中考数学复习---特殊平行四边形综合压轴题练习(含作案解析)
中考数学复习---特殊平行四边形综合压轴题练习(含作案解析)一.平行四边形的性质1.(2022•日照)如图,在平面直角坐标系中,平行四边形OABC的顶点O在坐标原点,点E是对角线AC上一动点(不包含端点),过点E作EF∥BC,交AB于F,点P在线段EF上.若OA=4,OC=2,∠AOC=45°,EP=3PF,P点的横坐标为m,则m的取值范围是()A.4<m<3+B.3﹣<m<4C.2﹣<m<3D.4<m<4+【答案】A【解答】解:可得C(,),A(4,0),B(4+,),∴直线AB的解析式为:y=x﹣4,∴x=y+4,直线AC的解析式为:y=﹣,∴x=4+y﹣2y,∴点F的横坐标为:y+4,点E的横坐标为:4+y﹣2y,∴EF=(y+4)﹣(4+y﹣2y)=2,∵EP=3PF,∴PF=EF=y,∴点P的横坐标为:y+4﹣y,∵0<y<,∴4<y+4﹣y<3+,故答案为:A.2.(2022•无锡)如图,在▱ABCD中,AD=BD,∠ADC=105°,点E在AD 上,∠EBA=60°,则的值是()A.B.C.D.【答案】D【解答】解:如图,过点B作BH⊥AD于H,设∠ADB=x,∵四边形ABCD是平行四边形,∴BC∥AD,∠ADC=∠ABC=105°,∴∠CBD=∠ADB=x,∵AD=BD,∴∠DBA=∠DAB=,∴x+=105°,∴x=30°,∴∠ADB=30°,∠DAB=75°,∵BH⊥AD,∴BD=2BH,DH=BH,∵∠EBA=60°,∠DAB=75°,∴∠AEB=45°,∴∠AEB=∠EBH=45°,∴EH=BH,∴DE=BH﹣BH=(﹣1)BH,∵AB===(﹣)BH=CD,∴=,故选:D.二.矩形的性质3.(2022•泰安)如图,四边形ABCD为矩形,AB=3,BC=4,点P是线段BC上一动点,点M为线段AP上一点,∠ADM=∠BAP,则BM的最小值为()A.B.C.﹣D.﹣2【答案】D【解答】解:如图,取AD的中点O,连接OB,OM.∵四边形ABCD是矩形,∴∠BAD=90°,AD=BC=4,∴∠BAP+∠DAM=90°,∵∠ADM=∠BAP,∴∠ADM+∠DAM=90°,∴∠AMD=90°,∵AO=OD=2,∴OM=AD=2,∴点M在以O为圆心,2为半径的⊙O上,∵OB===,∴BM≥OB﹣OM=﹣2,∴BM的最小值为﹣2.故选:D.4.(2022•丽水)如图,标号为①,②,③,④的矩形不重叠地围成矩形PQMN.已知①和②能够重合,③和④能够重合,这四个矩形的面积都是5.AE=a,DE=b,且a>b.(1)若a,b是整数,则PQ的长是;(2)若代数式a2﹣2ab﹣b2的值为零,则的值是.【答案】a﹣b;3+2.【解答】解:(1)由图可知:PQ=a﹣b,故答案为:a﹣b;(2)∵a2﹣2ab﹣b2=0,∴a2﹣b2=2ab,(a﹣b)2=2b2,∴a=b+b(负值舍),∵四个矩形的面积都是5.AE=a,DE=b,∴EP=,EN=,则======3+2.故答案为:3+2.5.(2022•宿迁)如图,在矩形ABCD中,AB=6,BC=8,点M、N分别是边AD、BC的中点,某一时刻,动点E从点M出发,沿MA方向以每秒2个单位长度的速度向点A匀速运动;同时,动点F从点N出发,沿NC方向以每秒1个单位长度的速度向点C匀速运动,其中一点运动到矩形顶点时,两点同时停止运动,连接EF,过点B作EF的垂线,垂足为H.在这一运动过程中,点H所经过的路径长是.【答案】π【解答】解:如图1中,连接MN交EF于点P,连接BP.∵四边形ABCD是矩形,AM=MD,BN=CN,∴四边形ABNM是矩形,∴MN=AB=6,∵EM∥NF,∴△EPM∽△FPN,∴===2,∴PN=2,PM=4,∵BN=4,∴BP===2,∵BH⊥EF,∴∠BHP=90°,∴点H在BP为直径的⊙O上运动,当点E与A重合时,如图2中,连接OH,ON.点H的运动轨迹是.此时AM=4,NF=2,∴BF=AB=6,∵∠ABF=90°,BH⊥AF,∴BH平分∠ABF,∴∠HBN=45°,∴∠HON=2∠HBN=90°,∴点H的运动轨迹的长==π.故答案为:π.6.(2022•西宁)矩形ABCD中,AB=8,AD=7,点E在AB边上,AE=5.若点P是矩形ABCD边上一点,且与点A,E构成以AE为腰的等腰三角形,则等腰三角形AEP的底边长是.【答案】5或4【解答】解:如图所示,①当AP=AE=5时,∵∠BAD=90°,∴△AEP是等腰直角三角形,∴底边PE=AE=5;②当P1E=AE=5时,∵BE=AB﹣AE=8﹣5=3,∠B=90°,∴P1B=,∴底边AP1=;综上所述:等腰三角形AEP1的底边长为5或4;故答案为:5或4.三.正方形的性质和判定7.(2022•泸州)如图,在边长为3的正方形ABCD中,点E是边AB上的点,且BE=2AE,过点E作DE的垂线交正方形外角∠CBG的平分线于点F,交边BC于点M,连接DF交边BC于点N,则MN的长为()A.B.C.D.1【答案】B【解答】解:作FH⊥BG交于点H,作FK⊥BC于点K,∵BF平分∠CBG,∠KBH=90°,∴四边形BHFK是正方形,∵DE⊥EF,∠EHF=90°,∴∠DEA+∠FEH=90°,∠EFH+∠FEH=90°,∴∠DEA=∠EFH,∵∠A=∠EHF=90°,∴△DAE∽△EHF,∴,∵正方形ABCD的边长为3,BE=2AE,∴AE=1,BE=2,设FH=a,则BH=a,∴,解得a=1;∵FK⊥CB,DC⊥CB,∴△DCN∽△FKN,∴,∵BC=3,BK=1,∴CK=2,设CN=b,则NK=2﹣b,∴,解得b=,即CN=,∵∠A=∠EBM,∠AED=∠BME,∴△ADE∽△BEM,∴,∴,解得BM=,∴MN=BC﹣CN﹣BM=3﹣﹣=,故选:B.8.(2022•泰州)如图,正方形ABCD的边长为2,E为与点D不重合的动点,以DE为一边作正方形DEFG.设DE=d1,点F、G与点C的距离分别为d2、d3,则d1+d2+d3的最小值为()A.B.2C.2D.4【答案】C【解答】解:如图,连接AE,∵四边形DEFG是正方形,∴∠EDG=90°,EF=DE=DG,∵四边形ABCD是正方形,∴AD=CD,∠ADC=90°,∴∠ADE=∠CDG,∴△ADE≌△CDG(SAS),∴AE=CG,∴d1+d2+d3=EF+CF+AE,∴点A,E,F,C在同一条线上时,EF+CF+AE最小,即d1+d2+d3最小,连接AC,∴d1+d2+d3最小值为AC,在Rt△ABC中,AC=AB=2,∴d1+d2+d3最小=AC=2,故选:C.9.(2022•广西)如图,在正方形ABCD中,AB=4,对角线AC,BD相交于点O.点E是对角线AC上一点,连接BE,过点E作EF⊥BE,分别交CD,BD于点F,G,连接BF,交AC于点H,将△EFH沿EF翻折,点H的对应点H′恰好落在BD上,得到△EFH′.若点F为CD的中点,则△EGH′的周长是.【答案】5+【解答】解:如图,过点E作EM⊥BC于M,作EN⊥CD于N,过点F作FP⊥AC于P,连接GH,∵将△EFH沿EF翻折得到△EFH′,∴△EGH'≌△EGH,∵四边形ABCD是正方形,∴AB=CD=BC=4,∠BCD=90°,∠ACD=∠ACB=45°,∴BD=BC=8,△CPF是等腰直角三角形,∵F是CD的中点,∴CF=CD=2,∴CP=PF=2,OB=BD=4,∵∠ACD=∠ACB,EM⊥BC,EN⊥CD,∴EM=EN,∠EMC=∠ENC=∠BCD=90°,∴∠MEN=90°,∵EF⊥BE,∴∠BEF=90°,∴∠BEM=∠FEN,∵∠BME=∠FNE,∴△BME≌△FNE(ASA),∴EB=EF,∵∠BEO+∠PEF=∠PEF+∠EFP=90°,∴∠BEO=∠EFP,∵∠BOE=∠EPF=90°,∴△BEO≌△EFP(AAS),∴OE=PF=2,OB=EP=4,∵tan∠OEG==,即=,∴OG=1,∴EG==,∵OB∥FP,∴∠OBH=∠PFH,∴tan∠OBH=tan∠PFH,∴=,∴==2,∴OH=2PH,∵OP=OC﹣PC=4﹣2=2,∴OH=×2=,在Rt△OGH中,由勾股定理得:GH==,∴△EGH′的周长=△EGH的周长=EH+EG+GH=2+++=5+.故答案为:5+.10.(2022•安徽)如图,四边形ABCD是正方形,点E在边AD上,△BEF是以E为直角顶点的等腰直角三角形,EF,BF分别交CD于点M,N,过点F 作AD的垂线交AD的延长线于点G.连接DF,请完成下列问题:(1)∠FDG=°;(2)若DE=1,DF=2,则MN=.【答案】45°【解答】解:由题知,△BEF是以E为直角顶点的等腰直角三角形,∴∠AEB+∠GEF=90°,∵∠AEB+∠ABE=90°,∴∠GEF=∠ABE,在△ABE和△GEF中,,∴△ABE≌△GEF(AAS),∴EG=AB=AD,GF=AE,即DG+DE=AE+DE,∴DG=AE,∴DG=GF,即△DGF是等腰直角三角形,∴∠FDG=45°,故答案为:45°;(2)∵DE=1,DF=2,由(1)知,△DGF是等腰直角三角形,∴DG=GF=2,AB=AD=CD=ED+DG=2+1=3,延长GF交BC延长线于点H,∴CD∥GH,∴△EDM∽△EGF,∴,即,∴MD=,同理△BNC∽△BFH,∴,即,∴,∴NC=,∴MN=CD﹣MD﹣NC=3﹣﹣=,故答案为:.11.(2022•达州)如图,在边长为2的正方形ABCD中,点E,F分别为AD,CD边上的动点(不与端点重合),连接BE,BF,分别交对角线AC于点P,Q.点E,F在运动过程中,始终保持∠EBF=45°,连接EF,PF,PD.下列结论:①PB=PD;②∠EFD=2∠FBC;③PQ=PA+CQ;④△BPF为等腰直角三角形;⑤若过点B作BH⊥EF,垂足为H,连接DH,则DH的最小值为2﹣2,其中所有正确结论的序号是.【答案】①②④⑤【解答】解:如图,∵四边形ABCD是正方形,∴CB=CD,∠BCP=∠DCP=45°,在△BCP和△DCP中,,∴△BCP≌△DCP(SAS),∴PB=PD,故①正确,∵∠PBQ=∠QCF=45°,∠PQB=∠FQC,∴△PQB∽△FQC,∴=,∠BPQ=∠CFQ,∴=,∵∠PQF=∠BQC,∴△PQF∽△BQC,∴∠QPF=∠QBC,∵∠QBC+∠CFQ=90°,∴∠BPF=∠BPQ+∠QPF=90°,∴∠PBF=∠PFB=45°,∴PB=PF,∴△BPF是等腰直角三角形,故④正确,∵∠EPF=∠EDF=90°,∴E,D,F,P四点共圆,∴∠PEF=∠PDF,∵PB=PD=PF,∴∠PDF=∠PFD,∵∠AEB+∠DEP=180°,∠DEP+∠DFP=180°,∴∠AEB=∠DFP,∴∠AEB=∠BEH,∵BH⊥EF,∴∠BAE=∠BHE=90°,∵BE=BE,∴△BEA≌△BEH(AAS),∴AB=BH=BC,∵∠BHF=∠BCF=90°,BF=BF,∴Rt△BFH≌Rt△BFC(HL),∴∠BFC=∠BFH,∵∠CBF+∠BFC=90°,∴2∠CBF+2∠CFB=180°,∵∠EFD+∠CFH=∠EFD+2∠CFB=180°,∴∠EFD=2∠CBF,故②正确,将△ABP绕点B顺时针旋转90°得到△BCT,连接QT,∴∠ABP=∠CBT,∴∠PBT=∠ABC=90°,∴∠PBQ=∠TBQ=45°,∵BQ=BQ,BP=BT,∴△BQP≌△BQT(SAS),∴PQ=QT,∵QT<CQ+CT=CQ+AP,∴PQ<AP+CQ,故③错误,连接BD,DH,∵BD=2,BH=AB=2,∴DH≥BD﹣BH=2﹣2,∴DH的最小值为2﹣2,故⑤正确,故答案为:①②④⑤.12.(2022•南通)如图,点O是正方形ABCD的中心,AB=3.Rt△BEF中,∠BEF=90°,EF过点D,BE,BF分别交AD,CD于点G,M,连接OE,OM,EM.若BG=DF,tan∠ABG=,则△OEM的周长为.【答案】3+3【解答】解:如图,连接BD,过点F作FH⊥CD于点H.∵四边形ABCD是正方形,∴AB=AD=3,∠A=∠ADC=90°,∵tan∠ABG==,∴AG=,DG=2,∴BG===2,∵∠BAG=∠DEG=90°,∠AGB=∠DGE,∴△BAG∽△DEG,∴==,∠ABG=∠EDG,∴==,∴DE=,EG=,∴BE=BG+EG=2+=,∵∠ADH=∠FHD=90°,∴AD∥FH,∴∠EDG=∠DFH,∴∠ABG=∠DFH,∵BG=DF=2,∠A=∠FHD=90°,∴△BAG≌△FHD(AAS),∴AB=FH,∵AB=BC,∴FH=BC,∵∠C=∠FHM=90°,∴FH∥CB,∴==1,∴FM=BM,∵EF=DE+DF=+2=,∴BF==4,∵∠BEF=90°,BM=MF,∴EM=BF=2,∵BO=OD,BM=MF,∴OM=DF=,∵OE=BD=×6=3,∴△OEM的周长=3++2=3+3,解法二:辅助线相同.证明△BAG≌△FHD,推出AB=HF=3,再证明△FHM≌△BCM,推出CM=HM=,求出BD,DF,BF,利用直角三角形斜边中线的性质,三角形中位线定理,可得结论.故答案为:3+3.13.(2022•攀枝花)如图,以△ABC的三边为边在BC上方分别作等边△ACD、△ABE、△BCF.且点A在△BCF内部.给出以下结论:①四边形ADFE是平行四边形;②当∠BAC=150°时,四边形ADFE是矩形;③当AB=AC时,四边形ADFE是菱形;④当AB=AC,且∠BAC=150°时,四边形ADFE是正方形.其中正确结论有(填上所有正确结论的序号).【答案】①②③④【解答】解:①∵△ABE、△CBF是等边三角形,∴BE=AB,BF=CB,∠EBA=∠FBC=60°;∴∠EBF=∠ABC=60°﹣∠ABF;∴△EFB≌△ACB(SAS);∴EF=AC=AD;同理由△CDF≌△CAB,得DF=AB=AE;由AE=DF,AD=EF即可得出四边形ADFE是平行四边形,故结论①正确;②当∠BAC=150°时,∠EAD=360°﹣∠BAE﹣∠BAC﹣∠CAD=360°﹣60°﹣150°﹣60°=90°,由①知四边形AEFD是平行四边形,∴平行四边形ADFE是矩形,故结论②正确;③由①知AB=AE,AC=AD,四边形AEFD是平行四边形,∴当AB=AC时,AE=AD,∴平行四边形AEFD是菱形,故结论③正确;④综合②③的结论知:当AB=AC,且∠BAC=150°时,四边形AEFD既是菱形,又是矩形,∴四边形AEFD是正方形,故结论④正确.故答案为:①②③④.四.菱形的性质14.(2022•丽水)如图,已知菱形ABCD的边长为4,E是BC的中点,AF平分∠EAD交CD于点F,FG∥AD交AE于点G.若cos B=,则FG的长是()A.3B.C.D.【答案】B【解答】解:方法一,如图,过点A作AH⊥BE于点H,过点F作FQ⊥AD 于点Q,∵菱形ABCD的边长为4,∴AB=AD=BC=4,∵cos B==,∴BH=1,∴AH===,∵E是BC的中点,∴BE=CE=2,∴EH=BE﹣BH=1,∴AH是BE的垂直平分线,∴AE=AB=4,∵AF平分∠EAD,∴∠DAF=∠FAG,∵FG∥AD,∴∠DAF=∠AFG,∴∠FAG=∠AFG,∴GA=GF,设GA=GF=x,∵AE=CD=4,FG∥AD,∴DF=AG=x,cos D=cos B==,∴DQ=x,∴FQ===x,∵S梯形CEAD=S梯形CEGF+S梯形GFDA,∴×(2+4)×=(2+x)×(﹣x)+(x+4)×x,解得x=,则FG的长是.或者:∵AE=CD=4,FG∥AD,∴四边形AGFD的等腰梯形,∴GA=FD=GF,则x+x+x=4,解得x=,则FG的长是.方法二:如图,作AH垂直BC于H,延长AE和DC交于点M,∵菱形ABCD的边长为4,∴AB=AD=BC=4,∵cos B==,∴BH=1,∵E是BC的中点,∴BE=CE=2,∴EH=BE﹣BH=1,∴AH是BE的垂直平分线,∴AE=AB=4,所以AE=AB=EM=CM=4,设GF=x,则AG=x,GE=4﹣x,由GF∥BC,∴△MGF∽△MEC,∴=,解得x=.故选:B.15.(2022•甘肃)如图1,在菱形ABCD中,∠A=60°,动点P从点A出发,沿折线AD→DC→CB方向匀速运动,运动到点B停止.设点P的运动路程为x,△APB的面积为y,y与x的函数图象如图2所示,则AB的长为()A.B.2C.3D.4【答案】B【解答】解:在菱形ABCD中,∠A=60°,∴△ABD为等边三角形,设AB=a,由图2可知,△ABD的面积为3,∴△ABD的面积=a2=3,解得:a1=2,a2=﹣2(舍去),故选:B.27。
中考数学平行四边形-经典压轴题
1.已知,在矩形 ABCD 中,AB=a,BC=b,动点 M 从点 A 出发沿边 AD 向点 D 运动.
(1)如图 1,当 b=2a,点 M 运动到边 AD 的中点时,请证明∠ BMC=90°; (2)如图 2,当 b>2a 时,点 M 在运动的过程中,是否存在∠ BMC=90°,若存在,请给与 证明;若不存在,请说明理由; (3)如图 3,当 b<2a 时,(2)中的结论是否仍然成立?请说明理由. 【答案】(1)见解析; (2)存在,理由见解析; (3)不成立.理由如下见解析. 【解析】 试题分析:(1)由 b=2a,点 M 是 AD 的中点,可得 AB=AM=MD=DC=a,又由四边形 ABCD 是矩形,即可求得∠ AMB=∠ DMC=45°,则可求得∠ BMC=90°; (2)由∠ BMC=90°,易证得△ ABM∽ △ DMC,设 AM=x,根据相似三角形的对应边成比 例,即可得方程:x2﹣bx+a2=0,由 b>2a,a>0,b>0,即可判定△ >0,即可确定方程有 两个不相等的实数根,且两根均大于零,符合题意; (3)由(2),当 b<2a,a>0,b>0,判定方程 x2﹣bx+a2=0 的根的情况,即可求得答 案. 试题解析:(1)∵ b=2a,点 M 是 AD 的中点, ∴ AB=AM=MD=DC=a, 又∵ 在矩形 ABCD 中,∠ A=∠ D=90°, ∴ ∠ AMB=∠ DMC=45°, ∴ ∠ BMC=90°. (2)存在, 理由:若∠ BMC=90°, 则∠ AMB+∠ DMC=90°, 又∵ ∠ AMB+∠ ABM=90°, ∴ ∠ ABM=∠ DMC, 又∵ ∠ A=∠ D=90°, ∴ △ ABM∽ △ DMC, ∴ AM AB ,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
② 若 AB 2 5 , CE 2,在图 ② 的基础上将 CED 绕点 C 继续逆时针旋转一周的过
程中,当平行四边形 ABFD 为菱形时,直接写出线段 AE 的长度.
【答案】(1)证明见解析;(2)① AF 2AE ② 4 2 或 2 2 .
【解析】 【分析】
【答案】(1)P 点坐标为(x,3﹣ x). (2)S 的最大值为 ,此时 x=2. (3)x= ,或 x= ,或 x= . 【解析】
试题分析:(1)求 P 点的坐标,也就是求 OM 和 PM 的长,已知了 OM 的长为 x,关键是 求出 PM 的长,方法不唯一,①可通过 PM∥ OC 得出的对应成比例线段来求; ②也可延长 MP 交 BC 于 Q,先在直角三角形 CPQ 中根据 CQ 的长和∠ ACB 的正切值求出 PQ 的长,然后根据 PM=AB﹣PQ 来求出 PM 的长.得出 OM 和 PM 的长,即可求出 P 点的 坐标. (2)可按(1)②中的方法经求出 PQ 的长,而 CN 的长可根据 CN=BC﹣BN 来求得,因此 根据三角形的面积计算公式即可得出 S,x 的函数关系式. (3)本题要分类讨论: ①当 CP=CN 时,可在直角三角形 CPQ 中,用 CQ 的长即 x 和∠ ABC 的余弦值求出 CP 的表 达式,然后联立 CN 的表达式即可求出 x 的值; ②当 CP=PN 时,那么 CQ=QN,先在直角三角形 CPQ 中求出 CQ 的长,然后根据 QN=CN﹣ CQ 求出 QN 的表达式,根据题设的等量条件即可得出 x 的值. ③当 CN=PN 时,先求出 QP 和 QN 的长,然后在直角三角形 PNQ 中,用勾股定理求出 PN 的长,联立 CN 的表达式即可求出 x 的值. 试题解析:(1)过点 P 作 PQ⊥BC 于点 Q, 有题意可得:PQ∥ AB, ∴ △ CQP∽ △ CBA,
一、平行四边形真题与模拟题分类汇编(难题易错题)
1.已知,在矩形 ABCD 中,AB=a,BC=b,动点 M 从点 A 出发沿边 AD 向点 D 运动.
(1)如图 1,当 b=2a,点 M 运动到边 AD 的中点时,请证明∠ BMC=90°; (2)如图 2,当 b>2a 时,点 M 在运动的过程中,是否存在∠ BMC=90°,若存在,请给与 证明;若不存在,请说明理由; (3)如图 3,当 b<2a 时,(2)中的结论是否仍然成立?请说明理由. 【答案】(1)见解析; (2)存在,理由见解析; (3)不成立.理由如下见解析. 【解析】 试题分析:(1)由 b=2a,点 M 是 AD 的中点,可得 AB=AM=MD=DC=a,又由四边形 ABCD 是矩形,即可求得∠ AMB=∠ DMC=45°,则可求得∠ BMC=90°; (2)由∠ BMC=90°,易证得△ ABM∽ △ DMC,设 AM=x,根据相似三角形的对应边成比 例,即可得方程:x2﹣bx+a2=0,由 b>2a,a>0,b>0,即可判定△ >0,即可确定方程有 两个不相等的实数根,且两根均大于零,符合题意; (3)由(2),当 b<2a,a>0,b>0,判定方程 x2﹣bx+a2=0 的根的情况,即可求得答 案. 试题解析:(1)∵ b=2a,点 M 是 AD 的中点, ∴ AB=AM=MD=DC=a, 又∵ 在矩形 ABCD 中,∠ A=∠ D=90°, ∴ ∠ AMB=∠ DMC=45°, ∴ ∠ BMC=90°. (2)存在, 理由:若∠ BMC=90°, 则∠ AMB+∠ DMC=90°, 又∵ ∠ AMB+∠ ABM=90°, ∴ ∠ ABM=∠ DMC, 又∵ ∠ A=∠ D=90°, ∴ △ ABM∽ △ DMC, ∴ AM AB ,
CD DM
设 AM=x,则 x a , a bx
整理得:x2﹣bx+a2=0, ∵ b>2a,a>0,b>0, ∴ △ =b2﹣4a2>0, ∴ 方程有两个不相等的实数根,且两根均大于零,符合题意, ∴ 当 b>2a 时,存在∠ BMC=90°, (3)不成立. 理由:若∠ BMC=90°, 由(2)可知 x2﹣bx+a2=0, ∵ b<2a,a>0,b>0, ∴ △ =b2﹣4a2<0, ∴ 方程没有实数根, ∴ 当 b<2a 时,不存在∠ BMC=90°,即(2)中的结论不成立. 考点:1、相似三角形的判定与性质;2、根的判别式;3、矩形的性质
∴
∴
解得:QP= x,
∴ PM=3﹣ x,
由题意可知,C(0,3),M(x,0),N(4﹣x,3),
P 点坐标为(x,3﹣ x).
(2)设△ NPC 的面积为 S,在△ NPC 中,NC=4﹣x,
NC 边上的高为 ,其中,0≤x≤4.
∴ S= (4﹣x)× x= (﹣x2+4x)
=﹣ (x﹣2)2+ .
交
BC
于
M
11 2
,
6
,
MN
62
11 2
5
2
2
3
5.
( 3 )存在,直线 y x 平分五边形 OABCD 面积、周长.
∵ P(10 5 2,10 5 2) 在直线 y x 上,
∴ 连 OP 交 OA 、 BC 于点 E 、 F , 设 BC : y kx b , B(8, 2)C(2,8) ,
∴ S 的最大值为 ,此时 x=2.
(3)延长 MP 交 CB 于 Q,则有 PQ⊥BC. ①若 NP=CP,
∵ PQ⊥BC, ∴ NQ=CQ=x. ∴ 3x=4, ∴ x= . ②若 CP=CN,则 CN=4﹣x,PQ=x,CP= x,4﹣x= x, ∴ x= ; ③若 CN=NP,则 CN=4﹣x. ∵ PQ= x,NQ=4﹣2x, ∵ 在 Rt△ PNQ 中,PN2=NQ2+PQ2, ∴ (4﹣x)2=(4﹣2x)2+( x)2, ∴ x= . 综上所述,x= ,或 x= ,或 x= .
理由:连接 EF,DF 交 BC 于 K. 四边形 ABFD 是平行四边形,
AB / /DF , DKE ABC 45 , EKF 180 DKE 135 , EK ED,
ADE 180 EDC 180 45 135 , EKF ADE ,
DKC C , DK DC ,
考点:二次函数综合题.
5.如图 ① ,在等腰 Rt ABC 中, BAC 90 ,点 E 在 AC 上 ( 且不与点 A、C 重合 ) , 在△ABC 的外部作等腰 Rt△CED ,使 CED 90 ,连接 AD,分别以 AB,AD 为邻边
作平行四边形 ABFD,连接 AF.
1 请直接写出线段 AF,AE 的数量关系; 2①将 CED 绕点 C 逆时针旋转,当点 E 在线段 BC 上时,如图 ② ,连接 AE,请判断
问题解决:
( 3 )如图③,在平面直角坐标系 xOy 中,矩形 OABCD 的边 OA 、 OD 分别在 x 轴、 y 轴正半轴上, DC∥x 轴, AB∥y 轴,且 OA OD 8 , AB CD 2 ,点 P(10 5 2,10 5 2) 为五边形内一点.请问:是否存在过点 P 的直线 l ,分别与边 OA 与 BC 交于点 E 、 F ,且同时平分五边形 OABCD 的面积和周长?若存在,请求出点 E 和 点 F 的坐标:若不存在,请说明理由.
,
,
,
,
在
中,
,
过点 作
于,
,
,
,
,
,
,
、 、 共线,
,
四边形
是矩形,
,
. 【点睛】 此题考查了折叠的性质、矩形的性质、角平分线的性质、等腰三角形的判定与性质以及勾 股定理等知识.此题难度较大,注意掌握折叠前后图形的对应关系,注意掌握辅助线的作 法,注意数形结合思想的应用.
4.如图,平面直角坐标系中,四边形 OABC 为矩形,点 A,B 的坐标分别为(4,0), (4,3),动点 M,N 分别从 O,B 同时出发.以每秒 1 个单位的速度运动.其中,点 M 沿 OA 向终点 A 运动,点 N 沿 BC 向终点 C 运动.过点 M 作 MP⊥OA,交 AC 于 P,连接 NP,已知动点运动了 x 秒. (1)P 点的坐标为多少(用含 x 的代数式表示); (2)试求△ NPC 面积 S 的表达式,并求出面积 S 的最大值及相应的 x 值; (3)当 x 为何值时,△ NPC 是一个等腰三角形?简要说明理由.
DF AB AC, KF AD , 在 EKF 和 EDA 中, EK ED EKF ADE , KF AD EKF ≌ EDA , EF EA, KEF AED, FEA BED 90 , AEF 是等腰直角三角形, AF 2AE . ② 如图 ③ 中,当 AD AC 时,四边形 ABFD 是菱形,设 AE 交 CD 于 H,易知 EH DH CH 2 , AH (2 5)2 ( 2)2 3 2 , AE AH EH 4 2 ,
2.问题发现:
(1)如图①,点 P 为平行四边形 ABCD 内一点,请过点 P 画一条直线 l ,使其同时平分 平行四边形 ABCD 的面积和周长.
问题探究:
( 2 )如图②,在平面直角坐标系 xOy 中,矩形 OABC 的边 OA 、 OC 分别在 x 轴、 y
轴正半轴上,点 B 坐标为 (8, 6) .已知点 P(6, 7) 为矩形外一点,请过点 P 画一条同时平分 矩形 OABC 面积和周长的直线 l ,说明理由并求出直线 l ,说明理由并求出直线 l 被矩形 ABCD 截得线段的长度.
8k b 2 k 1
{
,{
,
2k 8 b 10
∴ 直线 BC : y x 10 ,
联立{
y y
x
x
10
,得
x
y
5 5
,
∴ E(0, 0) , F (5,5) .