复数的几何意义及四则运算
复变函数1-2
例6 已知正三角形的两个顶 点为 z1 1 和z2 2 i ,
求它的另一个顶点 .
y
解
如图所示,
o
z3
z2 2 i
3
x
将表示 z2 z1 的向量
z1 1 z 3 绕 z1 旋转 (或 )就得 3 3 到另一个向量, 它的终点即为所求顶点z3 (或 z ). 3
x
z 3
3 3 1 3 3 3 1 3 所以 z3 i , z i. 3 2 2 2 2
23
三、复球面
取一个与复平面切于原 z 0 的球面, 点 球面上一点S 与原点重合, 通过 S 作垂直于复平面的
N P
直线与球面相交于另一 N , 点 我们称 N 为北极, S 为南极.
3 i 10
5 i 6
.
9
例2 把复数 z 1 cos i sin , 0 π 化为 三角表示式与指数表示 , 并求 z 的辐角的主值. 式
解 z 1 cos i sin 2 sin 2i sin cos 2 2 2 2 sin sin i cos 2 2 2
第二节
复数的几何表示
一、复数的几何意义 二、复数四则运算的几何意义 三、复球面
四、复数的幂和方根
一、复数的几何意义
z x iy
( x, y )
平面上的点(或向径)
1. 复数的几何意义 在平面上建立了直角坐标系以后,复数 z x iy可以看成平面上的点或向径( x, y ). 复平面
11
故,由 z1 到 z2 的直线段的参数方程为
z z1 t ( z2 z1 )
复数的基本运算与几何意义解释
复数的基本运算与几何意义解释复数是由实部和虚部构成的数,其表示形式为a + bi,其中a和b 分别为实部和虚部的实数部分,i为虚数单位,满足i^2 = -1。
复数的运算包括加法、减法、乘法和除法,下面将基本运算进行详细解释,并探讨其在几何中的意义。
一、加法运算对于两个复数z1 = a1 + b1i和z2 = a2 + b2i而言,它们的和z = z1 + z2的实部等于两个复数实部的和,虚部等于两个复数虚部的和,即:z = z1 + z2 = (a1 + a2) + (b1 + b2)i几何意义:将复数z1和z2表示在复平面上,实部表示在实轴上,虚部表示在虚轴上。
加法运算就是将两个复数的向量相加,得到新的向量的终点,即通过终点相加的法则得到。
二、减法运算对于两个复数z1 = a1 + b1i和z2 = a2 + b2i而言,它们的差z = z1 - z2的实部等于两个复数实部的差,虚部等于两个复数虚部的差,即:z = z1 - z2 = (a1 - a2) + (b1 - b2)i几何意义:将复数z1和z2表示在复平面上,减法运算就是将z2的向量从z1的向量终点出发得到新的向量的终点,即通过终点减去起点的法则得到。
三、乘法运算对于两个复数z1 = a1 + b1i和z2 = a2 + b2i而言,它们的乘积z = z1 * z2的实部等于两个复数实部的乘积减去虚部的乘积,虚部等于两个复数实部的乘积加上虚部的乘积,即:z = z1 * z2 = (a1a2 - b1b2) + (a1b2 + b1a2)i几何意义:将复数z1和z2表示在复平面上,乘法运算就是将z1的向量的长度与z2的向量的长度相乘(模的乘积),同时将z1的向量的方向与z2的向量的方向相加(幅角的叠加),得到新的向量,即将两个向量的长度相乘,诱导出新的长度,将两个向量的角度相加,诱导出新的角度。
四、除法运算对于两个复数z1 = a1 + b1i和z2 = a2 + b2i而言,它们的商z = z1 / z2为复数,可以通过以下步骤求解:1. 乘以共轭复数:将除数z2的虚部取相反数,即z2* = a2 - b2i;2. 乘以共轭复数得到分子:z1 * z2* = (a1 + b1i)(a2 - b2i);3. 化简分子:z1 * z2* = (a1a2 + b1b2) + (a1b2 - b1a2)i;4. 除以分母的模的平方:z = (a1a2 + b1b2)/(a2^2 + b2^2) + (a1b2 -b1a2)/(a2^2 + b2^2)i。
复数.知识框架
数系的扩充与复数的引入要求层次 重难点复数的基本概念,复数相等的条件B 了解数系的扩充的基本过程与复数的概念;掌握复数的几何意义与复数的代数形式的四则运算法则复数的代数表示法及几何意义A 复数代数形式的四则运算C 复数代数形式加减法的几何意义A一、复数的概念1.虚数单位i:(1)它的平方等于1-,即2i 1=-;(2)实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律仍然成立. (3)i 与-1的关系:知识内容高考要求模块框架复数i 就是1-的一个平方根,即方程21x =-的一个根,方程21x =-的另一个根是-i. (4)i 的周期性:41i i n +=, 42i 1n +=-, 43i i n +=-, 4i 1n =.2.数系的扩充:复数(0)i i(0)i(0)i(0)a b a b b a a b b a b a =⎧⎪+=⎧⎨+≠⎨⎪+≠⎩⎩实数纯虚数虚数非纯虚数 3.复数的定义:形如i(,)a b a b +∈R 的数叫复数,a 叫复数的实部,b 叫复数的虚部.全体复数所成的集合叫 做复数集,用字母C 表示4.复数的代数形式:复数通常用字母z 表示,即(,)z a bi a b R =+∈,把复数表示成a bi +的形式,叫做复数的代数形式.5.复数与实数、虚数、纯虚数及0的关系:对于复数(,)a bi a b R +∈,当且仅当0b =时,复数(,)a bi a b R +∈是实数a ;当0b ≠时,复数z a bi =+叫做虚数;当0a =且0b ≠时,z bi =叫做纯虚数;当且仅当0a b ==时,z 就是实数06.复数集与其它数集之间的关系:N ZQ RC 苘苘7.两个复数相等的定义:如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等.这就是说,如果a ,b , c ,d ∈R ,那么i i a b c d +=+⇔a c =,b d =二、复数的几何意义1.复平面、实轴、虚轴:复数i(,)z a b a b =+∈R 与有序实数对(),a b 是一一对应关系.建立一一对应的关系.点Z 的横坐标是a ,纵坐标是b ,复数i(,)z a b a b =+∈R 可用点(),Z a b 表示,这个建立了直角坐标系来表示复数的平面叫做复平面,也叫高斯平面,x 轴叫做实轴,y 轴叫做虚轴.实轴上的点都表示实数.2.对于虚轴上的点要除原点外,因为原点对应的有序实数对为()0,0,它所确定的复数是00i 0z =+=表示是实数.除了原点外,虚轴上的点都表示纯虚数. 3..三、复数的四则运算1.复数1z 与2z 的和的定义:12z z +=()()i i a b c d +++=()()i a c b d +++2.复数1z 与2z 的差的定义:12z z -=()()i i a b c d +-+=()()i a c b d -+-3.复数的加法运算满足交换律:1221z z z z +=+4.复数的加法运算满足结合律:123123()()z z z z z z ++=++5.乘法运算规则:设1i z a b =+,2i z c d =+(a 、b 、c 、d ∈R )是任意两个复数, 那么它们的积()()()()12i i i z z a b c d ac bd bc ad =++=-++其实就是把两个复数相乘,类似两个多项式相乘,在所得的结果中把2i 换成1-,并且把实部与虚部分别合并.两个复数的积仍然是一个复数. 6.乘法运算律:(1)()()123123z z z z z z = (2)123123()()z z z z z z ⋅⋅=⋅⋅ (3)()1231213z z z z z z z +=+ 7.复数除法定义:满足()()()i i i c d x y a b ++=+的复数i x y +(x 、y ∈R )叫复数i a b +除以复数i c d +的商,记为:()(i)i a b c d +÷+或者iia b c d ++ 8.除法运算规则:设复数i a b + (a 、b ∈R ),除以i c d + (c ,d ∈R ),其商为i x y +(x 、y ∈R ), 即()(i)i i a b c d x y +÷+=+∵()()()()i i i x y c d cx dy dx cy ++=-++ ∴()()i i cx dy dx cy a b -++=+由复数相等定义可知⎩⎨⎧=+=-.,b cy dx a dy cx 解这个方程组,得⎪⎪⎩⎪⎪⎨⎧+-=++=.,2222d c ad bc y d c bd ac x于是有: ()(i)i a b c d +÷+2222i ac bd bc adc d c d +-=+++②利用()()22i i c d c d c d +-=+于是将iia b c d ++的分母有理化得: 原式22i (i)(i)[i (i)]()ii (i)(i)a b a b c d ac b d bc ad c d c d c d c d ++-+⋅-+-===++-+ 222222()()i i ac bd bc ad ac bd bc adc d c d c d ++-+-==++++.∴(()(i)i a b c d +÷+=2222i ac bd bc adc d c d +-+++ 点评:①是常规方法,②是利用初中我们学习的化简无理分式时,都是采用的分母有理化思想方法,而复数i c d +与复数i c d -,相当于我们初中学习的23+的对偶式23-,它们之积 为1是有理数,而()()22i i c d c d c d +-=+是正实数.所以可以分母实数化. 把这种方法叫做分母实数化法. 9.共轭复数:当两个复数的实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数。
复数的几何意义与运算规则
复数的几何意义与运算规则复数起源于解方程中无实数解的情况,它扩展了实数域,使得原本不可能的运算变得有解。
复数的几何意义和运算规则是理解和应用复数的基础。
本文将从几何角度解释复数,介绍复数的四则运算规则,并提供一些实例来进一步说明。
一、复数的几何意义复数可以表示为一个实数和一个虚数的和,其中实数部分代表复数在实轴上的位置,虚数部分代表复数在虚轴上的位置。
我们可以将复数表示为z=a+bi,其中a为实部,b为虚部。
从几何意义上看,复数可以在平面上表示为一个有序数对(a, b),其中a为复数的实部,b为复数的虚部,平面上的每个点都表示一个复数。
实部和虚部决定了复数在平面上的位置。
二、复数的运算规则1. 加法复数的加法满足交换律和结合律。
当两个复数相加时,实部与实部相加,虚部与虚部相加,得到新的复数。
2. 减法复数的减法可以通过加法和乘法来计算。
减去一个复数相当于加上这个复数的相反数。
3. 乘法复数的乘法满足交换律和结合律。
两个复数相乘时,实部和虚部分别相乘后相加,得到新的复数。
4. 除法复数的除法可以通过乘法和共轭复数来计算。
除以一个复数相当于乘以这个复数的倒数。
三、实例说明例子1:假设有两个复数z1=2+3i和z2=1-2i,求它们的和、差、积和商。
解:两个复数的和:z1+z2=2+3i+1-2i=3+i两个复数的差:z1-z2=2+3i-(1-2i)=1+5i两个复数的积:z1*z2=(2+3i)*(1-2i)=8-1i两个复数的商:z1/z2=(2+3i)/(1-2i)=0.8+1.6i例子2:在复平面上,给定两个复数z1=2+3i和z2=4-2i,求它们的距离和中点。
解:两个复数的距离可以计算为:|z1-z2|=|2+3i-(4-2i)|=|-2+5i|=√((-2)^2+(5^2))=√29两个复数的中点可以计算为:(z1+z2)/2=((2+3i)+(4-2i))/2=(6+1i)/2=3+0.5i以上例子说明了复数的几何意义和运算规则在实际问题中的应用。
复数的基本运算及几何意义
复数的基本运算及几何意义复数是由实部和虚部构成的数,可以用公式表示为 z = a + bi,其中a 是实部,b 是虚部,i 是虚数单位。
一、复数的四则运算1. 复数的加法:将实部和虚部分别相加即可。
例如:(2 + 3i) + (4 + 5i) = 6 + 8i2. 复数的减法:将实部和虚部分别相减即可。
例如:(2 + 3i) - (4 + 5i) = -2 - 2i3. 复数的乘法:根据分配律展开运算,注意 i 的平方为 -1。
例如:(2 + 3i) * (4 + 5i) = 8 + 22i - 15 = -7 + 22i4. 复数的除法:将分子乘以分母共轭复数,并进行合并化简。
例如:(2 + 3i) / (4 + 5i) = (2 + 3i) * (4 - 5i) / (4^2 + 5^2) = (8 + 7i) / 41二、复数在平面几何中的意义在平面直角坐标系中,复数可以看作是复平面上的点,实部对应横轴,虚部对应纵轴。
1. 复数的模:复数 z 的模表示为 |z|,是复平面上由原点到对应点的距离。
例如:z = 3 + 4i,则|z| = √(3^2 + 4^2) = 52. 复数的辐角:复数 z 的辐角表示为 arg(z),是复平面上由正实轴到对应位置向量的角度。
例如:z = 2 + 2i,则arg(z) = π/43. 欧拉公式:欧拉公式表示为e^(iθ) = cos(θ) + isin(θ),其中 e 是自然对数的底,i 是虚数单位,θ 是角度。
该公式将三角函数与指数函数联系了起来,是复数运算中的重要工具。
4. 复数的乘法及除法的几何意义:复数的乘法相当于平移、旋转和伸缩,在复平面上实现了几何变换。
复数的除法相当于平移、旋转和收缩,在复平面上实现了逆向几何变换。
综上所述,复数的基本运算包括加法、减法、乘法和除法,可以使用公式进行计算。
在平面几何中,复数可以表示为复平面上的点,模表示距离,辐角表示角度。
复数的几何意义是什么
复数的几何意义是什么高中数学会学到复数,有关复数的几何意义大家知道吗?下面是由小编小编为大家整理的“复数的几何意义是什么”,仅供参考,欢迎大家阅读。
1、复数z=a+bi 与复平面内的点(a,b)一一对应2、复数z=a+bi 与向量OZ一一对应,其中Z点坐标为(a,b)1、复数的运算:复数的加法法则:设z1=a+bi,z2=c+di是任意两个复数。
两者和的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和。
两个复数的和依然是复数。
复数的乘法法则:把两个复数相乘,类似两个多项式相乘,结果中i2=-1,把实部与虚部分别合并。
两个复数的积仍然是一个复数。
复数除法定义:满足的复数叫复数a+bi除以复数c+di的商。
运算方法:将分子和分母同时乘以分母的共轭复数,再用乘法法则运算。
2、我们把形如z=a+bi(a,b均为实数)的数称为复数,其中a称为实部,b称为虚部,i称为虚数单位。
当z的虚部等于零时,常称z为实数;当z的虚部不等于零时,实部等于零时,常称z为纯虚数。
复数域是实数域的代数闭包,即任何复系数多项式在复数域中总有根。
复数是由意大利米兰学者卡当在十六世纪首次引入,经过达朗贝尔、棣莫弗、欧拉、高斯等人的工作,此概念逐渐为数学家所接受。
1、数学上的复数(1)复数的定义数集拓展到实数范围内,仍有些运算无法进行.比如判别式小于0的一元二次方程仍无解,因此将数集再次扩充,达到复数范围.定义:形如z=a+bi的数称为复数(complex number),其中规定i为虚数单位,且i^2=i*i=-1(a,b 是任意实数)我们将复数z=a+bi中的实数a称为虚数z的实部(real part)记作Rez=a实数b称为虚数z的虚部(imaginary part)记作 Imz=b.易知:当b=0时,z=a,这时复数成为实数;当a=0且b≠0时 ,z=bi,我们就将其称为纯虚数.复数的集合用C表示,显然,R是C的真子集复数集是无序集,不能建立大小顺序.(2)复数的四则运算法则:若复数z1=a+bi,z2=c+di,其中a,b,c,d∈R,则z1±z2=(a+bi)±(c+di)=(a±c)+(b±d)i,(a+bi)•(c+di)=(ac-bd)+(bc+ad)i,(a+bi)÷(c+di)=(ac+bd)/(c^2+d^2) +((bc-ad)/(c^2+d^2))i。
第四节 复数的概念及其运算(知识梳理)
第四节复数的概念及其运算复习目标学法指导1.理解复数的基本概念,理解复数相等的充要条件.2.了解复数的代数表示法及其几何意义.3.掌握复数代数形式的四则运算.4.了解复数代数形式的加、减运算的几何意义. 理解复数的有关概念是基础,解决复数问题的基本思路是把复数问题实数化.复数代数形式的运算类似多项式的运算,加法类似合并同类项,乘法类似多项式乘以多项式,除法类似分母有理化,因此要用类比的思想学习复数的运算问题.一、复数的有关概念1.复数的定义形如a+bi(a,b∈R)的数叫做复数,其中实部是a,虚部是b(i是虚数单位).2.复数的分类复数z=a+bi(a,b∈R)()()()()=0=0baba⎧⎪⎪⎧⎨⎪≠⎨⎪≠⎪⎪⎩⎩实数纯虚数虚数非纯虚数3.复数相等a+bi=c+di⇔a=c且b=d(a,b,c,d∈R).4.共轭复数a+bi与c+di互为共轭复数⇔a=c且b=-d(a,b,c,d∈R).5.复数的模向量OZ u u u r的模叫做复数z=a+bi的模,记作|z|或|a+bi|,即|z|=|a+bi|=r=22a b+(r≥0,r,a,b∈R).二、复数的几何意义1.复平面的概念建立直角坐标系来表示复数的平面叫做复平面.2.实轴、虚轴在复平面内,x轴叫做实轴,y轴叫做虚轴,实轴上的点都表示实数;除原点以外,虚轴上的点都表示纯虚数.3.复数的几何表示复数z=a+bi复平面内的点Z(a,b)平面向量OZ u u u r.三、复数的运算1.复数的加、减、乘、除运算法则设z1=a+bi,z2=c+di(a,b,c,d∈R),则(1)加法:z1+z2=(a+bi)+(c+di)=(a+c)+(b+d)i;(2)减法:z1-z2=(a+bi)-(c+di)=(a-c)+(b-d)i;(3)乘法:z1·z2=(a+bi)(c+di)=(ac-bd)+(ad+bc)i;(4)除法:12z z =i i a b c d ++=()()()()i i i i a b c d c d c d +-+-=22ac bd c d +++ 22bc adc d-+i(c+di ≠0). 2.复数加法的运算定律复数的加法满足交换律、结合律,即对任何z 1,z 2,z 3∈C,有z 1+z 2=z 2+z 1,(z 1+z 2)+z 3=z 1+(z 2+z 3). 四、与复数运算有关的结论 1.(1±i)2=±2i.2.1i 1i +-=i,1i 1i-+=-i. 3.(a+bi)(a-bi)=a 2+b 2. 4.(a ±bi)2=a 2-b 2±2abi. 5.i i a b +=b-ai.概念理解(1)复数的代数形式z=a+bi(a,b ∈R),虚部是b 而不是bi,即实部和虚部都是实数.(2)一个复数若为纯虚数,则既要满足实数a=0,又要满足虚部b ≠0,两个条件缺一不可.(3)两个复数一般不能比较大小,只能说相等或不相等. (4)两个复数相等的充要条件是它们的实部与虚部分别相等. (5)虚轴上的点除原点外都表示纯虚数.(6)复平面内表示复数z=a+bi 的点Z 的坐标为(a,b),而不是(a,bi). 五、复数的模 1.复数的模的相关结论设z 1,z 2是任意两个复数, (1)|z 1·z 2|=|z 1|·|z 2|,|12z z |=12z z (|z 2|≠0).(2)|1n z |=|z 1|n (n ∈N *).(3)||z 1|-|z 2||≤|z 1+z 2|≤|z 1|+|z 2|,等号成立的条件是①当|z 1+z 2|=|z 1|+|z 2|时,即z 1,z 2所对应的向量同向共线;②当||z 1|-|z 2||=|z 1+z 2|时,即z 1,z 2所对应的向量反向共线.(4)||z 1|-|z 2||≤|z 1-z 2|≤|z 1|+|z 2|,等号成立的条件是①当|z 1-z 2|=|z 1|+|z 2|时,即z 1,z 2所对应的向量反向共线;②||z 1|-|z 2||=|z 1-z 2|时,即z 1,z 2所对应的向量同向共线. 2.复数的模的几何意义(1)复数z=a+bi,则|z|表示在复平面所对应的点Z(a,b)到原点的 距离.(2)若复数z=a+bi,z 0=a 0+b 0i,则|z-z 0|表示复平面内两点(a,b)与(a 0,b 0)间的距离,即两个复数差的模就是复平面内与这两个复数对应的两点间的距离.六、与复数概念有关的结论1.实数集R 与虚数集都是复数集的真子集且互为补集,即R ∪{虚数}=C,R ∩{虚数}= .2.z=a+bi=0⇔a=b=0.3.复数能比较大小的充要条件是复数为实数.4.i 2=-1.5.i 4n =1,i 4n+1=i,i 4n+2=-1,i 4n+3=-i,i 4n +i 4n+1+i 4n+2+i 4n+3=0.6.共轭复数的性质设z=a+bi,z=a-bi(a,b∈R),则(1)z+z=2a,z-z=2bi;(2)z=z;(3)|z|=|z|=22+,z·z=a2+b2=|z|2=|z|2;a b(4)z∈R⇔z=z;(5)z与z在复平面内所对应的点关于实轴对称.1.(2019·全国Ⅱ卷)设z=i(2+i),则z等于( D )(A)1+2i (B)-1+2i(C)1-2i (D)-1-2i解析:z=i(2+i)=2i+i2=-1+2i,所以z=-1-2i,故选D.2.已知i为虚数单位,复数z1=a+i,z2=2-i,且|z1|=|z2|,则实数a的值为( C )(A)2 (B)-2 (C)2或-2 (D)±2或0解析:21a+41+,则a=±2.故选C.3.(2018·杭州高级中学月考)已知方程x2+(4+i)x+4+ai=0(a∈R)有实根b,且z=a+bi,则复数z的共轭复数为( B )(A)2-2i (B)2+2i(C)-2+2i (D)-2-2i解析:方程x2+(4+i)x+4+ai=0(a∈R)可化为x2+4x+4+i(x+a)=0,由复数相等的意义得2440,0,x x x a ⎧++=⎨+=⎩解得x=-2,a=2,方程x 2+(4+i)x+4+ai=0(a ∈R)有实根b,故b=-2, 所以复数z=2-2i,所以复数z 的共轭复数为2+2i. 故选B.4.(2019·杭州市第二学期高三教学质量检测)已知复数z=1+i(i 是虚数单位),则211z z -+等于( A )(A)i (B)-i (C)1+i(D)1-i解析:211z z -+= 12i 2i -++=(12i)(2i)5-+-=5i5=i.故选A.考点一 复数的概念及分类 [例1] 复数z=(m 2+m-6)i+27123mm m -++为纯虚数,则实数m 的值为( )(A)2 (B)-3 (C)4 (D)3或4解析:由227120,30,60,m m m m m ⎧-+=⎪+≠⎨⎪+-≠⎩得m=3或m=4.故选D.处理有关复数的基本概念问题,关键找准复数的实部和虚部,把复数问题转化为实数问题来解决.1.若复数m(m-2)+(m 2-3m+2)i 是纯虚数,则实数m 的值为( C ) (A)0或2 (B)2 (C)0 (D)1或2 解析:因为m(m-2)+(m 2-3m+2)i 是纯虚数,则()220,320,m m m m ⎧-=⎪⎨-+≠⎪⎩解得m=0.故选C. 2.复数z=(3-2i)i 的共轭复数z 等于( C )(A)-2-3i (B)-2+3i (C)2-3i (D)2+3i 解析:因为z=(3-2i)i=2+3i, 所以z =2-3i.故选C. 考点二 复数的几何意义[例2] (1)(2019·全国Ⅱ卷)设z=-3+2i,则在复平面内z 对应的点位于( )(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限 (2)若复数z 满足z=()2i2i -- (i 是虚数单位),则在复平面内,z 对应的点的坐标是( )(A)(425,325) (B)(-425,325) (C)(425,-325) (D)(-425,-325)解析:(1)由z=-3+2i,得z =-3-2i,对应点(-3,-2)位于第三象限.故 选C. 解析: (2)z=()2i2i --=i 44i 1+-=i 34i +=()i 34i 25-=425+325i, 所以在复平面内,z 对应的点的坐标是(425,325).故选A.判断复数所在平面内的点的位置的方法:首先将复数化成a+bi(a,b ∈R)的形式,其次根据实部a 和虚部b 的符号来确定点所在的象限及坐标.1.在复平面中,复数1-3i,(1+i)(2-i)对应的点分别为A,B,则线段AB 的中点C 对应的复数为( D )(A)-4+2i (B)4-2i (C)-2+i (D)2-i解析:(1+i)(2-i)=3+i,所以A,B 的坐标分别为(1,-3)和(3,1),所以线段AB 的中点C 的坐标为(2,-1),所以线段AB 的中点C 对应的复数为2-i,故选D.2.(2019·宁波高三上期末考试题)设i 为虚数单位,给定复数z=2(1i)1i-+,则z 的虚部为 ,模为 .解析:z=2(1i)1i-+=2i 1i -+=2i(1i)2--=-1-i, 故z 的虚部为-1,模为2.答案:-123.若复数z 满足|z-3i|=5,求|z+2|的最大值和最小值.解:由复数模的几何意义可知,|z-3i|=5表示以(0,3)为圆心,以5为半径的圆上的点.则|z+2|表示该圆上点到点(-2,0)的距离,由图可知,|z+2|的最大值为5+13,最小值为5-13.考点三 复数代数形式的运算[例3] (1)i 是虚数单位,复数7i34i ++等于( )(A)1-i (B)-1+i(C)1725+3125i (D)-177+257i (2)若复数z 满足(3-4i)z=|4+3i|,则z 的虚部为( )(A)-4 (B)-45 (C)4 (D)45解析:(1)复数7i 34i ++=()()()()7i 34i 34i 34i +-+-=2525i 25-=1-i.故选A.解析:(2)z=43i 34i +-=534i- =()()()534i 34i 34i +-+=()534i 25++=35+45i,所以复数z 的虚部是45,故选D.(1)复数的加法、减法、乘法运算可以类比多项式运算;复数除法运算的关键是分子、分母同乘以分母的共轭复数转化为复数的乘法运算,注意要把i 的幂化成最简形式.(2)将所求复数z 分离出来,利用复数运算法则求解.1.已知z=1i 1i+-,其中i 是虚数单位,则z+z 2+z 3+…+z 2 017的值为( C ) (A)1+i (B)1-i (C)i (D)-i解析:由于z=1i 1i+-=i, 所以z+z 2+z 3+…+z 2 017=504(i+i 2+i 3+i 4)+i=i, 故选C.2.已知复数z 1满足(z 1-2)(1+i)=1-i(i 为虚数单位),复数z 2的虚部为2,z 1·z 2是实数,求z 2.解:由(z 1-2)(1+i)=1-i ⇒z 1=2-i, 设z 2=a+2i(a ∈R),则z 1·z 2=(2-i)(a+2i)=(2a+2)+(4-a)i, 因为z 1·z 2是实数,所以a=4⇒z 2=4+2i.。
关于复数的知识点总结
关于复数的知识点总结复数的知识点总结篇1复数的概念:形如a+bi(a,b∈R)的数叫复数,其中i叫做虚数单位。
全体复数所成的集合叫做复数集,用字母C表示。
复数的表示:复数通常用字母z表示,即z=a+bi(a,b∈R),这一表示形式叫做复数的代数形式,其中a叫复数的实部,b叫复数的虚部。
复数的几何意义:(1)复平面、实轴、虚轴:点Z的横坐标是a,纵坐标是b,复数z=a+bi(a、b∈R)可用点Z(a,b)表示,这个建立了直角坐标系来表示复数的平面叫做复平面,x轴叫做实轴,y轴叫做虚轴。
显然,实轴上的点都表示实数,除原点外,虚轴上的点都表示纯虚数 (2)复数的几何意义:复数集C和复平面内所有的点所成的集合是一一对应关系,即这是因为,每一个复数有复平面内惟一的一个点和它对应;反过来,复平面内的每一个点,有惟一的一个复数和它对应。
这就是复数的一种几何意义,也就是复数的另一种表示方法,即几何表示方法。
复数的模:复数z=a+bi(a、b∈R)在复平面上对应的点Z(a,b)到原点的距离叫复数的模,记为|Z|,即|Z|=虚数单位i:(1)它的平方等于-1,即i2=-1;(2)实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律仍然成立(3)i与-1的关系:i就是-1的一个平方根,即方程x2=-1的一个根,方程x2=-1的另一个根是-i。
(4)i的周期性:i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1。
复数模的性质:复数与实数、虚数、纯虚数及0的关系:对于复数a+bi(a、b∈R),当且仅当b=0时,复数a+bi(a、b∈R)是实数a;当b≠0时,复数z=a+bi叫做虚数;当a=0且b≠0时,z=bi叫做纯虚数;当且仅当a=b=0时,z就是实数0。
两个复数相等的定义:如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等,即:如果a,b,c,d∈R,那么a+bi=c+dia=c,b=d。
复数的几何意义及四则运算
y
x
2
| z | = | OZ | a b
2
小结
1.复数加减法的运算法则:
(1)运算法则:设复数z1=a+bi,z2=c+di,
(a, b, c, d Î R)
那么:z1+z2=(a+c)+(b+d)i;
z1-z2=(a-c)+(b-d)i.
即:两个复数相加(减)就是实部与 实部,虚部与虚部分 别相加(减).
把这一表示形式叫做复数的代数形式。 ②复数Z=a+bi (a∈R, b∈R )把实数a,b叫做 复数的实部和虚部。 ③全体复数所组成的集合叫复数集,记作C。
讨论
观察复数的代数形式 复数的分类?
z a bi(a R, b R)
实部 虚部 其中 称为虚数单位。 当a= 0 且b= 0 时,则z=0 当b= 0 时,则z为实数 当b ≠0 时,则z为虚数 当a= 0 且b ≠0时,则z为纯虚数
数轴上的点 (形 )
类比实数的 表示,可以 用什么来表 示复数?
想 一 想 ?
回 忆
复数的 一般形 式?
Z=a+bi(a, b∈R)
实部!
虚部!
…
一个复数 由什么唯 一确定?
复数的几何意义(一)
有序实数对(a,b) 复数z=a+bi (数) z=a+bi Z(a,b)
a
b
一一对应
直角坐标系中的点Z(a,b) (形) 建立了平面直角 坐标系来表示复数的 平面 ------复数平面 (简称复平面)
例2 已知复数z=(m2+m-6)+(m2+m-2)i在复平面内所 对应的点位于第二象限,求实数m允许的取值范围。
复数的四则运算及其几何意义分析总结
添加标题
复数三角形式:a+bi的形式,其中a和b是实数,i是虚 数单位
添加标题
几何意义:复数三角形式可以表示为平面上的一个点, 其中a是横坐标,b是纵坐标
添加标题
复数三角形式的加法:两个复数三角形式的和,可以 表示为两个点在平面上的连线的中点
添加标题
复数三角形式的乘法:两个复数三角形式的积,可以 表示为两个点在平面上的连线的斜率
复数乘法的几何意义:复数乘法的几何意义是旋转和平移。
复数乘法的应用:复数乘法在工程、物理、计算机科学等领域有广泛应用。
• 复数除法:将两个复数相除,得到另一个复数
• 除法公式:a/b=c/d,其中a、b、c、d为复数
• 除法运算的几何意义:将两个复数相除,得到另一个复数,其几何意义是将两个复数相除,得到另一个复数,其几何意义是将两个 复数相除,得到另一个复数,其几何意义是将两个复数相除,得到另一个复数,其几何意义是将两个复数相除,得到另一个复数, 其几何意义是将两个复数相除,得到另一个复数,其几何意义是将两个复数相除,得到另一个复数,其几何意义是将两个复数相除, 得到另一个复数,其几何意义是将两个复数相除,得到另一个复数,其几何意义是将两个复数相除,得到另一个复数,其几何意义 是将两个复数相除,得到另一个复数,其几何意义是将两个复数相除,得到另一个复数,其几何意义是将两个复数相除,得到另一 个复数,其几何意义是将两个复数相除,得到另一个复数,其几何意义是将两个复数相除,得到另一个复数,其几何意义是将两个 复数相除,得到另一个复数,其几何意义是将两个复数相除,得到另一个复数,其几何意义是将两个复数相除,得到另一个复数, 其几何意义是将两个复数相除,得到另一个复数,其几何意义是将两个复数相除,得到另一个复数,其几何意义是将两个复数相除, 得到另一个复数,其几何意义是将两个复数相除,得到另一个复数,其几何意义是将两个复数相除,得到另一个复数,其几何意义 是将两个复数相除,得到另一个复数,其几何意义是将两个复数相除,得到另一个复数,其几何意义是将两个复数相除,得到另一 个复数,其几何意义是将两个复数相除,得到另一个复数,其几何意义是将两个复数相除,得到另一个复数,其几何意义是将两个 复数相除,得到另一个复数,其几何意义是将两个复数相除,得到另一个复数,其几何意义是将
选修2-3 复数代数形式的四则运算
D.-i
2.设 i 是虚数单位,若复数 m+31+0 im∈R是纯虚
数,则 m 的值为( A )
A.-3
B.-1
C.1
D.3
3.若复数 z=1+2 3i,则z=( C )
1
3
A.2
B. 2
C.1
D.2
4.在复平面内与复数 z=1+5i2i所对应的点关于虚
轴对称的点为 A,则 A 对应的复数为( C )
四、复数的综合问题
例4(1) 已知 a∈R,则复数 z=(a2-2a+4)-(a2
-2a+2)i 所对应的点在第__四__象限,复数 z 对应点的
轨迹是 一条射线
.
(2)已知复数 ω 满足 ω-4=(3-2ω)i(i 为虚数单
位),z=ω5 +|ω-2|.则以 z 为根的一个一元二次实系数
方程为_x_2-6x+10=0_. _.
(a,-b)
(0,-b)
(a,0) x
结论(2z)1=:a+任bi意两个互为共轭z1=复bi数的乘积是一个z1=实a 数且 结论(1):在复平面内,共轭复数 z1 ,z2 所对应的点关于实轴对称.
6、复数的除法
例3 计算(1 2i) (3 4i).
解 (1 2i) (3 4i)
Step2:分母实数化, 分子分母同时乘以
1 2i
分母的共轭复数
3 4i
Step1:先写 成分式形式
(1 2i)(3 4i) 3 8 6i 4i
(3 4i)(3 4i)
32 42
5 10i 1 2 i.
25
55
实数化因式
Step3:结果化
简成代数形式
【基础检测】
1.复数(1-2ii)2=( B )
专题2.2复数的四则运算(七个重难点突破)高考数学
【详解】原式= − − + − − − = −.
(2)设z1 = x + 2i,z2 = 3 − yi(x,y ∈ R),且z1 + z2 = 5 − 6i,求z1 − z2.
【答案】− + .
【详解】因为 = + , = − , + = − ,
− = + + − ,
显然 − ≠ ,由 − 为纯虚数,得 + = ,解得 = −,
所以 + = −.
故选:
试卷讲评课件
3.在复平面内,复数z对应的点Z的坐标为 −2sin120∘ , −2cos120∘ ,则
z + 2 3 =(
求 z1 + z2 .
【答案】
【分析】设对应的复数为 ,对应的复数为 ,利用向量运算
和复数的向量表示可解.
试卷讲评课件
【详解】设对应的复数为 ,对应的复数为
,
则 + 对应的复数为 + , − 对应的
复数为 − ,
因为 = = ,且 − = ,
所以 + + − = − ,
=
+=
所以
,解得
,
=
− = −
所以
− = + − − = − + [ − − ] = − + .
试卷讲评课件
【分析】(1)(2)运用复数加减运算及复数相等求解即可.
③当 = 时, − = − ,
所以 = − + = − + − + − − = − + ,
复数的四则运算 高一数学(北师大版2019必修第二册)
ac bd (bc ad )i ac bd bc ad
c2 d2
c2 d2 c2 d2 i
分母实数化
例 11.计算(1 2i) (3 4 i)
解: (1 2i) (3 4i)
复数加减法的运算法则:
(1)运算法则:设复数z1=a+bi,z2=c+di,
那么:z1+z2=(a+c)+(b+d)i;
(1)
z1-z2=(a-c)+(b-d)i.
即: 两个复数相加(减)就是实部与实部,
虚部与虚部分别相加(减).
例1.计算(5 6i) (2 i) (3 4i)
解:
例2.设Z=a+bi(a,bϵR),求 Z Z 与 Z - Z
a(b c) ab ac
那么复数应怎样进行加、减、乘运算呢?你认为应
怎样定义复数的加、减、乘运算呢?运算律仍成立吗?
注意到 i2 1,虚数单位 i 可以和实数进行运 算且运算律仍成立,所以复数的加、减、乘运算我 们已经是自然而然地在进行着,只要把这些零散的 操作整理成法则即可了!
知识新授:
证明:设z1=a1+b1i,z2=a2+b2i,a1,b1,a2,b2∈R, 则z1+z2=(a1+b1i)+(a2+b2i)
=(a1+a2)+(b1+b2)i, z2+z1=(a2+b2i)+(a1+b1i)
=(a2+a1)+(b2+b1)i, ∵a1+a2=a2+a1,b1+b2=b2+b1, ∴z1+z2=z2+z1.
例9:求一元二次方程ax2+bx+c=0(a,b,cϵR
3.1.3 复数形式的四则运算及几何意义
1、1z =a+bi, 2z =c+di 是任意两个复数,那么1z +2z =(a+bi )+(c+di)= .很明显,两个复数的和仍然是一个确定的复数,1z -2z =(a+bi )-(c+di)= ,由此可见,两个复数的差是一个确定的复数。
2、对任意的1z 、2z 、3z C∈,有1z +2z =(1z +2z )+3z =1z +(2z +3z ),这是说复数加法满足 、 。
3、若复数1z 、2z 对应的向量21,OZ OZ 不共线,则复数1z +2z 是以21,OZ OZ 为两邻边的平行四边形的所对就的复数,即复数的加法可以按照 的法来进行,这就是复数加法的几何意义,类似地,复数1z -2z 是连接向量21,OZ OZ 的 ,并指向所对应的复数。
题型一 复数的加减法运算 【例1】计算: (1)(-2+3i )+(5-i);(2)(-2+2i)(1-2i);(3)(a+bi)-(2a-3bi)-3i(a,b R ∈).【练习1】计算: (1)(3+5i )+(3-4i); (2)(-3+2i)-(4-5i); (3)(5-6i)+(-2-2i)-(3+3i). 题型二 复数加减法的几何意义【例2】如图,平行四边形OABC,顶点O,A,C 分别表示0,3+2i,-2+4i,试求(1)AO 表示复数,BC 所表示的复数。
(2)对角线CA 所表示的复数;(3)对角线OB 所表示的复数及OB 的长度。
【练习2】求复数复平面内三点A,B,C,A 点对应的复数为2+i, BA 对应的复数为1+2i,向量BC 对应的复数为3-i,求点C对应的复数。
题型三 综合运用已知1z =(3x+y )+(y-4x)i, 2z =(4y-2x)-(5x+3y)i (x,y R ∈).设z=1z -2z ,且z=13-2i,求1z 、2z 。
【练习3】设z =a+bi(a,b R ∈),且4(a+bi )+2(a-bi)=33+i,又θθωsin sin i -=,求z 的值和|z-ω|的取值范围。
(完整版)复数基础知识点
1、复数的定义:设i 为方程21x =-的根,i 称为虚数单位,形如()a bi a b R +∈、的数,称为复数.所有复数构成的集合称复数集,通常用C 来表示.a 为实部,b 为虚部 2.复数集整 数有 理 数实数(0)分 数复 数(,)无理数(无限不循环小数)纯 虚 数(0)虚 数(0)非 纯 虚 数(0)b a bi a b R a b a ⎧⎧⎧⎪⎪⎨=⎨⎪⎩⎪⎪+∈⎨⎩⎪⎧≠⎪≠⎨⎪=⎩⎩3.复数的几何意义对任意复数z=a+bi (a,b ∈R ),a 称实部记作Re(z),b 称虚部记作Im(z).z=ai 称为代数形式,它由实部、虚部两部分构成;若将(a,b)作为坐标平面内点的坐标,那么z 与坐标平面唯一一个点相对应,从而可以建立复数集与坐标平面内所有的点构成的集合之间的一一映射。
因此复数可以用点来表示,表示复数的平面称为复平面,x 轴称为实轴,y 轴去掉原点称为虚轴,点称为复数的几何形式;如果将(a,b)作为向量的坐标,复数z 又对应唯一一个向量。
4. 两个复数相等的定义:a bi c di a c +=+⇔=且b d =(其中a b c d R ∈,,,,)特别地,00a bi a b +=⇔==.5.复数的四则运算 设111z a b i =+,222z a b i =+(1)加法:()()121212z z a a b b i +=+++,即实部与实部相加,虚部与虚部相加;(2)减法:()()121212z z a a b b i -=-+-,即实部与实部相减,虚部与虚部相减; (3)乘法:()()1212122112z z a a b b a b a b i ⋅=-++ , 特别22z z a b ⋅=+;(4)除法c diz a bi+=+(,a b 是均不为0的实数)的化简就是通过分母实数化的方法将分母化为实数,即分子分母同时乘以分母的共轭复数,然后再化简:()()22ac bd ad bc i c di c di a bi z a bi a bi a bi a b ++-++-==⋅=++-+;(5)四则运算的交换率、结合率;分配率都适合于复数的情况。
复数几何意义及运算知识点讲解+例题讲解(含解析)
复数几何意义及运算一、知识梳理1.复数的有关概念2.复数的几何意义复数集C和复平面内所有的点组成的集合是一一对应的,复数集C与复平面内所有以原点O为起点的向量组成的集合也是一一对应的,即(1)复数z=a+b i复平面内的点Z(a,b)(a,b∈R).(2)复数z=a+b i(a,b∈R)平面向量OZ→.3.复数的运算设z1=a+b i,z2=c+d i(a,b,c,d∈R),则(1)加法:z1+z2=(a+b i)+(c+d i)=(a+c)+(b+d)i;(2)减法:z1-z2=(a+b i)-(c+d i)=(a-c)+(b-d)i;(3)乘法:z1·z2=(a+b i)·(c+d i)=(ac-bd)+(ad+bc)i;(4)除法:z1z2=a+b ic+d i=(a+b i)(c-d i)(c+d i)(c-d i)=ac +bd +(bc -ad )i c 2+d 2(c +d i ≠0).小结:1.i 的乘方具有周期性i n=⎩⎨⎧1,n =4k ,i ,n =4k +1,-1,n =4k +2,-i ,n =4k +3(k ∈Z ).2.复数的模与共轭复数的关系 z ·z -=|z |2=|z -|2. 3.两个注意点(1)两个虚数不能比较大小;(2)利用复数相等a +b i =c +d i 列方程时,注意a ,b ,c ,d ∈R 的前提条件.二、例题精讲 + 随堂练习1.判断下列结论正误(在括号内打“√”或“×”) (1)复数z =a +b i(a ,b ∈R )中,虚部为b i.( )(2)复数中有相等复数的概念,因此复数可以比较大小.( ) (3)原点是实轴与虚轴的交点.( )(4)复数的模实质上就是复平面内复数对应的点到原点的距离,也就是复数对应的向量的模.( )解析 (1)虚部为b ;(2)虚数不可以比较大小. 答案 (1)× (2)× (3)√ (4)√2.若复数(a 2-3a +2)+(a -1)i 是纯虚数,则实数a 的值为( ) A.1B.2C.1或2D.-1解析 依题意,有⎩⎨⎧a 2-3a +2=0,a -1≠0,解得a =2,故选B.答案 B3.复数⎝ ⎛⎭⎪⎫52-i 2的共轭复数是( )A.2-iB.2+iC.3-4iD.3+4i解析 ⎝ ⎛⎭⎪⎫52-i 2=⎣⎢⎡⎦⎥⎤5(2+i )(2-i )(2+i )2=(2+i)2=3+4i ,所以其共轭复数是3-4i. 答案 C4.(2017·全国Ⅱ卷)3+i 1+i =( )A.1+2iB.1-2iC.2+iD.2-i解析3+i 1+i =(3+i )(1-i )(1+i )(1-i )=2-i. 答案 D5.(2018·北京卷)在复平面内,复数11-i的共轭复数对应的点位于( ) A.第一象限 B.第二象限 C.第三象限D.第四象限解析11-i =1+i 2=12+12i ,其共轭复数为12-12i ,∴复数11-i的共轭复数对应的点的坐标为⎝ ⎛⎭⎪⎫12,-12,位于第四象限,故选D.答案 D6.(2019·青岛一模)已知复数z =-1+i(i 是虚数单位),则z +2z 2+z=________. 解析 ∵z =-1+i ,则z 2=-2i ,∴z +2z 2+z =1+i -1-i =(1+i )(-1+i )(-1-i )(-1+i )=-22=-1. 答案 -1考点一 复数的相关概念【例1】 (1)(2019·上海崇明区质检)已知z =2-ii ,则复数z 的虚部为( ) A.-iB.2C.-2iD.-2(2)已知在复平面内,复数z 对应的点是Z (1,-2),则复数z 的共轭复数z -=( ) A.2-i B.2+i C.1-2iD.1+2i(3)(2019·大连一模)若复数z =1+i1+a i为纯虚数,则实数a 的值为( ) A.1B.0C.-12D.-1解析 (1)∵z =2-i i =(2-i )(-i )i·(-i )=-1-2i ,则复数z 的虚部为-2.故选D.(2)∵复数z 对应的点是Z (1,-2),∴z =1-2i ,∴复数z 的共轭复数z -=1+2i ,故选D. (3)设z =b i ,b ∈R 且b ≠0, 则1+i 1+a i=b i ,得到1+i =-ab +b i , ∴1=-ab ,且1=b , 解得a =-1,故选D. 答案 (1)D (2)D (3)D【训练1】 (1)已知复数z 满足:(2+i)z =1-i ,其中i 是虚数单位,则z 的共轭复数为( ) A.15-35i B.15+35i C.13-iD.13+i(2)(2019·株洲二模)设i 为虚数单位,1-i =2+a i1+i ,则实数a =( )A.2B.1C.0D.-1解析 (1)由(2+i)z =1-i ,得z =1-i 2+i =(1-i )(2-i )(2+i )(2-i )=15-35i ,∴z -=15+35i.故选B. (2)∵1-i =2+a i1+i,∴2+a i =(1-i)(1+i)=2, 解得a =0.故选C. 答案 (1)B (2)C考点二 复数的几何意义【例2】 (1)已知i 是虚数单位,设复数z 1=1+i ,z 2=1+2i ,则z 1z 2在复平面内对应的点在( ) A.第一象限 B.第二象限 C.第三象限D.第四象限(2)(2019·北京新高考调研考试)在复平面内,复数z 对应的点与21-i对应的点关于实轴对称,则z =( ) A.1+i B.-1-i C.-1+iD.1-i解析 (1)由题可得,z 1z 2=1+i 1+2i =(1+i )(1-2i )(1+2i )(1-2i )=35-15i ,对应在复平面上的点的坐标为⎝ ⎛⎭⎪⎫35,-15,在第四象限.(2)∵复数z 对应的点与21-i =2(1+i )(1-i )(1+i )=1+i 对应的点关于实轴对称,∴z =1-i.故选D. 答案 (1)D (2)D【训练2】 (1)设i 是虚数单位,则复数11+i 在复平面内对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限(2)如图,若向量OZ→对应的复数为z ,则z +4z表示的复数为( )A.1+3iB.-3-iC.3-iD.3+i解析 (1)11+i =1-i (1+i )(1-i )=12-12i ,则复数z 对应的点为⎝ ⎛⎭⎪⎫12,-12,在第四象限,故选D.(2)由题图可得Z (1,-1),即z =1-i ,所以z +4z =1-i +41-i =1-i +4(1+i )(1-i )(1+i )=1-i +4+4i2=1-i +2+2i =3+i.故选D.答案 (1)D (2)D考点三 复数的运算【例3】 (1)(2018·全国Ⅲ卷)(1+i)(2-i)=( ) A.-3-i B.-3+i C.3-iD.3+i(2)(2018·全国Ⅰ卷)设z =1-i1+i+2i ,则|z |=( ) A.0B.12C.1D.2(3)设复数z =1+2i ,则z 2+3z -1=( )A.2iB.-2iC.2D.-2(4)⎝ ⎛⎭⎪⎫1+i 1-i 6+2+3i 3-2i=________. 解析 (1)(1+i)(2-i)=2-i +2i -i 2=3+i.故选D.(2)∵z =1-i 1+i +2i =(1-i )2(1+i )(1-i )+2i =1-2i -12+2i =i ,∴|z |=|i|=1.故选C.(3)z 2+3z -1=(1+2i )2+31+2i -1=12+4i +4i 2+32i =4i 2i =2.故选C.(4)原式=⎣⎢⎡⎦⎥⎤(1+i )226+(2+3i )(3+2i )(3)2+(2)2 =i 6+6+2i +3i -65=-1+i.答案 (1)D (2)C (3)C (4)-1+i【训练3】 (1)(2018·全国Ⅱ卷)i(2+3i)=( ) A.3-2i B.3+2i C.-3-2iD.-3+2i(2)已知i 为虚数单位,则1+i3-i =( )A.2-i 5B.2+i 5C.1-2i 5D.1+2i 5(3)设z =1+i(i 是虚数单位),则z 2-2z =( ) A.1+3i B.1-3i C.-1+3iD.-1-3i解析 (1)i(2+3i)=2i +3i 2=-3+2i ,故选D. (2)1+i 3-i =(1+i )(3+i )(3-i )(3+i )=1+2i5. (3)因为z =1+i ,所以z 2=(1+i)2=1+2i +i 2=2i ,2z =21+i =2(1-i )(1+i )(1-i )=2(1-i )1-i 2=2(1-i )2=1-i ,则z 2-2z =2i -(1-i)=-1+3i.故选C.答案 (1)D (2)D (3)C三、课后练习1.(2019·烟台检测)设a ,b ∈R ,a =3+b i3-2i(i 是虚数单位),则b =( )A.-2B.-1C.1D.2解析 因为a =3+b i 3-2i =(3+b i )(3+2i )(3-2i )(3+2i )=9-2b 13+(6+3b )i13,a ∈R ,所以6+3b13=0⇒b =-2,故选A. 答案 A2.设x ∈R ,i 是虚数单位,则“x =2”是“复数z =(x 2-4)+(x +2)i 为纯虚数”的( )A.充分不必要条件B.充要条件C.必要不充分条件D.既不充分也不必要条件解析 由复数z =(x 2-4)+(x +2)i 为纯虚数, 得⎩⎨⎧x 2-4=0,x +2≠0,解得x =2, 所以“x =2”是“复数z =(x 2-4)+(x +2)i 为纯虚数”的充要条件,故选B. 答案 B3.计算⎝⎛⎭⎪⎫1+i 1-i 2 019+⎝⎛⎭⎪⎫1-i 1+i 2 019=( )A.-2iB.0C.2iD.2解析 ∵1+i 1-i =(1+i )2(1+i )(1-i )=2i2=i ,1-i 1+i =-i ,∴⎝⎛⎭⎪⎫1+i 1-i 2 019+⎝⎛⎭⎪⎫1-i 1+i 2 019=(i 4)504·i 3+[(-i)4]504·(-i)3=-i +i =0.答案 B4.(2019·湖南三湘名校联考)已知i 为虚数单位,复数z =3+2i2-i,则以下为真命题的是( )A.z 的共轭复数为75-4i5B.z 的虚部为85 C.|z |=3D.z 在复平面内对应的点在第一象限 解析 ∵z =3+2i 2-i =(3+2i )(2+i )(2-i )(2+i )=45+7i5, ∴z 的共轭复数为45-7i 5,z 的虚部为75, |z |=⎝ ⎛⎭⎪⎫452+⎝ ⎛⎭⎪⎫752=655,z 在复平面内对应的点为⎝ ⎛⎭⎪⎫45,75,在第一象限,故选D. 答案 D。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
表示复数的点所 转化 复数的实部与虚部所满
在象限的问题
足的不等式组的问题
(几何问题)
(代数问题)
一种重要的数学思想:数形结合思想
复数的几何意义(二)
一一对应
复数z=a+bi
直角坐标系中的点Z(a,b)
一一对应
uuur
平面向量 OZ
一一对应
y
z=a+bi
Z(a,b)
b
a
ox
小结
对复应数平的面绝向对量值Ouu(Zur复的数模的| Ou模uZur)
引入新数,完善数系
现在我们就引入这样一个数 i ,把 i 叫做虚数单位, 并且规定:
(1)i21;
(2)实数可以与 i 进行四则运算,在进行四则运算 时,原有的加法与乘法的运算率(包括交换律、结合律 和分配律)仍然成立。
复数有关概念
1、定义:形如a+bi(a∈R,b∈R)的数叫复数,
其中i叫虚数单位。 注意:①复数通常用字母z表示,即复数a+bi (a∈R,b∈R)可记作:z =a+bi (a∈R,b∈R),
(a+bi)(c+di)=ac+bci+adi+bdi2
=(ac-bd)+(bc+ad)i.
(2)复数乘法的运算定理
复数的乘法满足交换律、结合律以 及乘法对加法的分配律. 即对任何z1,z2,z3有
z1z2=z2z1; (z1z2)z3=z1(z2z3); z1(z2+z3)=z1z2+z1z3.
把这一表示形式叫做复数的代数形式。
②复数Z=a+bi (a∈R, b∈R )把实数a,b叫做
复数的实部和虚部。
③全体复数所组成的集合叫复数集,记作C。
讨论
观察复数的代数形式 复数的分类?
z a bi(a R,b R)
i 实部 虚部 其中 称为虚数单位。
当a= 0 且b= 0 时,则z=0 当b= 0 时,则z为实数
当b ≠0 时,则z为虚数 当a= 0 且b ≠0时,则z为纯虚数
复数的分类
实数(b 0)
2、复数a+bi虚数(b
0)
纯虚数(a 0,b 0) 非纯虚数(a 0,b
0)
思 考?
3.复数集,虚数集,实数 集,纯虚数集之间的关
系?R C
虚数集 复数集
纯虚数集
实数集
复数相等的定义
如果两个复数的实部和虚部分别相等,我们就 说这两个复数相等.
根据两个复数相等的定义,设a, b, c, d∈R,两个复数
a+bi和 c+di 相等规定为a+bi
=
c+diba
c d
两个复数不能比较大小,只能由定义判断它们相
等或不相等。
实数的几何意义
在几何上, 我们用什么 来表示实数?
实数 (数)
实数可以用数轴 上的点来表示。
一一对应
数轴上的点 (形)
想 一 想
类比实数的 表示,可以 用什么来表
示复数?
?
回 忆
复数的 一般形
式?
…
Z=a+bi(a, b∈R)
实部!
虚部!
一个复数 由什么唯 一确定?
复数的几何意义(一)
有序实数对(a,b)
一一对应
复数z=a+bi
直角坐标系中的点Z(a,b)
(数)
(形)
z=a+bi Z(a,b)
a
y
建立了平面直角
坐标系来表示复数的 b 平面 ------复数平面
(简称复平面)
ox
x轴------实轴
y轴------虚轴
例1.辨析:
1.下列命题中的假命题是(D) (A)在复平面内,对应于实数的点都在实
轴上; (B)在复平面内,对应于纯虚数的点都在
虚轴上; (C)在复平面内,实轴上的点所对应的复
(3)复数的除法法则
先把除式写成分式的形式,再把分子
与分母都乘以分母的共轭复数,化简后
写成代数形式(分母实数化).即
(a bi) (c di) a bi c di
(a bi)(c di) (c di)(c di)
(ac
bd ) c2 (bFra bibliotek d2即:两个复数相加(减)就是实部与 实部,虚部与虚部分 别相加(减).
(2)复数的加法满足交换律、结合律,
即对任何z1,z2,z3∈C,有
z1+z2=z2+z1, (z1+z2)+z3=z1+(z2+z3).
2.复数的乘法与除法
(1)复数乘法的法则 复数的乘法与多项式的乘法是类似
的,但必须在所得的结果中把i2换成-1, 并且把实部合并.即:
ad )i
分母实数化
数都是实数; (D)在复平面内,虚轴上的点所对应的复
数都是纯虚数。
例2 已知复数z=(m2+m-6)+(m2+m-2)i在复平面内所 对应的点位于第二象限,求实数m允许的取值范围。
解:由mm22
m m
6 2
0 0
得m
3 2
m2 或m
1
m(3,2) (1,2)
的几何意义: |,即复数
z=a+bi在复平面上对应的点Z(a,b)到原点的
距离。
y z=a+bi
Z (a,b)
O
x
uuur | z | = |OZ | a2 b2
小结
1.复数加减法的运算法则:
(1)运算法则:设复数z1=a+bi,z2=c+di,
(a,b,c, d Î R)
那么:z1+z2=(a+c)+(b+d)i; z1-z2=(a-c)+(b-d)i.