5平面向量
2022届高考一轮复习第5章平面向量第2节平面向量基本定理及坐标表示课时跟踪检测理含解
第五章 平面向量第二节 平面向量基本定理及坐标表示A 级·基础过关 |固根基|1.如果e 1,e 2是平面α内两个不共线的向量,那么下列说法中不正确的是( ) ①a =λe 1+μe 2(λ,μ∈R)可以表示平面α内的所有向量;②对于平面α内任一向量a ,使a =λe 1+μe 2的实数对(λ,μ)有无穷多个; ③若向量λ1e 1+μ1e 2与λ2e 1+μ2e 2共线,则λ1λ2=μ1μ2;④若实数λ,μ使得λe 1+μe 2=0,则λ=μ=0. A .①② B .②③ C .③④D .②④解析:选B 由平面向量基本定理可知,①④是正确的.对于②,由平面向量基本定理可知,一旦一个平面的基底确定,那么任意一个向量在此基底下的实数对是唯一的;对于③,当λ1λ2=0或μ1μ2=0时不一定成立,应为λ1μ2-λ2μ1=0.故选B .2.设向量a =(1,-3),b =(-2,4),若表示向量4a ,3b -2a ,c 的有向线段首尾相接能构成三角形,则向量c 为( )A .(1,-1)B .(-1,1)C .(-4,6)D .(4,-6)解析:选D 4a =(4,-12),3b -2a =(-6,12)-(2,-6)=(-8,18),由题意得,4a +(3b -2a)+c =0,所以c =(4,-6),故选D .3.设a =(x ,-4),b =(1,-x).若a 与b 同向,则x 等于( ) A .-2 B .2 C .±2D .0解析:选B 由题意得-x 2=-4, 所以x =±2.又因为a 与b 同向,若x =-2,则a =(-2,-4),b =(1,2),a 与b 反向,故舍去,所以x =2.故选B .4.在平面直角坐标系中,已知向量a =(1,2),a -12b =(3,1),c =(x ,3),若(2a +b)∥c,则x等于( )A .-2B .-4C .-3D .-1解析:选D 因为a -12b =(3,1),a =(1,2),所以b =(-4,2).所以2a +b =2(1,2)+(-4,2)=(-2,6). 又(2a +b)∥c,所以-6=6x ,解得x =-1.故选D .5.已知点M 是△ABC 的边BC 的中点,点E 在边AC 上,且EC →=2AE →,则EM →等于( ) A .12AC →+13AB → B .12AC →+16AB →C .16AC →+12AB → D .16AC →+32AB → 解析:选C 如图,因为EC →=2AE →,点M 是BC 的中点, 所以EC →=23AC →,CM →=12CB →,所以EM →=EC →+CM →=23AC →+12CB → =23AC →+12(AB →-AC →) =12AB →+16AC →.故选C . 6.(2019届河南洛阳模拟)在正方形ABCD 中,M ,N 分别是BC ,CD 的中点,若AC →=λAM →+μBN →(λ,μ∈R),则λ+μ的值为( )A .85B .58C .1D .-1解析:选A 设正方形的边长为2,以点A 为坐标原点,AB ,AD 分别为x 轴,y 轴建立平面直角坐标系(图略),则A(0,0),B(2,0),C(2,2),M(2,1),N(1,2),所以AC →=(2,2),AM →=(2,1),BN →=(-1,2).因为AC →=λAM →+μBN →,即(2,2)=λ(2,1)+μ(-1,2),所以⎩⎪⎨⎪⎧2λ-μ=2,λ+2μ=2,解得λ=65,μ=25,所以λ+μ=85,故选A .7.已知向量AB →与向量a =(1,-2)反向共线,|AB →|=25,点A 的坐标为(3,-4),则点B 的坐标为( )A .(1,0)B .(0,1)C .(5,-8)D .(-8,5)解析:选A 依题意,设AB →=λa,其中λ<0,则有|AB →|=|λa|=-λ|a|,即25=-5λ,∴λ=-2,∴AB →=-2a =(-2,4).又点A 的坐标为(3,-4),∴点B 的坐标是(-2,4)+(3,-4)=(1,0).故选A .8.(2019届南昌二模)已知在平面直角坐标系xOy 中,P 1(3,1),P 2(-1,3),P 1,P 2,P 3三点共线且向量OP 3→与向量a =(1,-1)共线,若OP 3→=λOP 1→+(1-λ)OP 2→(λ∈R),则λ等于( )A .-3B .3C .1D .-1解析:选D 设OP 3→=(x ,y),则由OP 3→∥a ,得x +y =0,于是OP 3→=(x ,-x).若OP 3→=λOP 1→+(1-λ)OP 2→,则有(x ,-x)=λ(3,1)+(1-λ)(-1,3)=(4λ-1,3-2λ),即⎩⎪⎨⎪⎧4λ-1=x ,3-2λ=-x ,所以4λ-1+3-2λ=0, 解得λ=-1,故选D .9.已知向量OA →=(1,-3),OB →=(2,-1),OC →=(k +1,k -2),若A ,B ,C 三点能构成三角形,则实数k 应满足的条件是________.解析:若点A ,B ,C 能构成三角形,则向量AB →,AC →不共线. 因为AB →=OB →-OA →=(2,-1)-(1,-3)=(1,2), AC →=OC →-OA →=(k +1,k -2)-(1,-3)=(k ,k +1), 所以1×(k+1)-2k≠0,解得k≠1. 答案:k≠110.(2019届河北联盟二模)已知点A(1,0),B(1,3),点C 在第二象限,且∠AOC=150°,OC →=-4OA →+λOB →,则λ=________.解析:因为点A(1,0),B(1,3),OC →=-4OA →+λOB →,所以C(λ-4,3λ). 因为点C 在第二象限,∠AOC=150°, 所以tan 150°=3λλ-4=-33,解得λ=1.答案:111.已知A(-2,4),B(3,-1),C(-3,-4).设AB →=a ,BC →=b ,CA →=c ,且CM →=3c ,CN →=-2b.(1)求3a +b -3c ;(2)求满足a =mb +nc 的实数m ,n ; (3)求M ,N 的坐标及向量MN →的坐标.解:由已知得a =(5,-5),b =(-6,-3),c =(1,8).(1)3a +b -3c =3(5,-5)+(-6,-3)-3(1,8)=(15-6-3,-15-3-24)=(6,-42).(2)因为mb +nc =(-6m +n ,-3m +8n)=a =(5,-5),所以⎩⎪⎨⎪⎧-6m +n =5,-3m +8n =-5,解得⎩⎪⎨⎪⎧m =-1,n =-1.(3)设O 为坐标原点,因为CM →=OM →-OC →=3c , 所以OM →=3c +OC →=(3,24)+(-3,-4)=(0,20). 所以M(0,20). 又CN →=ON →-OC →=-2b ,所以ON →=-2b +OC →=(12,6)+(-3,-4)=(9,2), 所以N(9,2).所以MN →=(9,-18).B 级·素养提升 |练能力|12.在平面直角坐标系xOy 中,已知点A(1,0),B(0,1),C 为坐标平面内第一象限内一点且∠AOC =π4,且|OC|=2,若OC →=λOA →+μOB →,则λ+μ=( ) A .2 2 B . 2 C .2D .4 2解析:选A 因为|OC|=2,∠AOC=π4,所以C(2,2).又OC →=λOA →+μOB →,所以(2,2)=λ(1,0)+μ(0,1)=(λ,μ),所以λ=2,μ=2,所以λ+μ=2 2.13.(2019届枣庄模拟)在平面直角坐标系中,O 为坐标原点,且满足OC →=23OA →+13OB →,则|AC →||AB →|的值为( )A .12B .13C .14D .25解析:选B 由已知得,3OC →=2OA →+OB →,即OC →-OB →=2(OA →-OC →),即BC →=2CA →,如图所示,故C 为BA 的靠近A 点的三等分点, 因而|AC →||AB →|=13.故选B .14.(2019届石家庄模拟)A ,B ,C 是圆O 上不同的三点,线段CO 与线段AB 交于点D(点O 与点D 不重合),若OC →=λOA →+μOB →(λ,μ∈R),则λ+μ的取值范围是( )A .(0,1)B .(1,+∞)C .(1, 2 ]D .(-1,0)解析:选B 由题意可设OC →=mOD →,则m>1.因为OC →=λOA →+μOB →,所以mOD →=λOA →+μOB →,即OD →=λm OA→+μm OB →.又知A ,B ,D 三点共线,所以λm +μm=1,即λ+μ=m ,所以λ+μ>1,故选B . 15.(2019届长沙一模)在矩形ABCD 中,AB =3,AD =2,P 为矩形内部一点,且AP =1,若AP →=xAB →+yAD →,则3x +2y 的取值范围是________.解析:设点P 在AB 上的射影为Q ,∠PAQ=θ, 则AP →=AQ →+QP →,且|AQ →|=cos θ,|QP →|=sin θ. 又AQ →与AB →共线,QP →与AD →共线, 故AQ →=cos θ3AB →,QP →=sin θ2AD →,从而AP →=cos θ3AB →+sin θ2AD →.又AP →=xAB →+yAD →,故x =cos θ3,y =sin θ2,因此3x +2y =cos θ+sin θ=2sin ⎝⎛⎭⎪⎫θ+π4.又θ∈⎝ ⎛⎭⎪⎫0,π2,θ+π4∈⎝ ⎛⎭⎪⎫π4,3π4,故3x +2y 的取值范围是(1,2].答案:(1,2]16.在△OAB 中,OA →=3OC →,OB →=2OD →,AD 与BC 的交点为M ,过M 作动直线l 交线段AC ,BD 于E ,F 两点,若OE →=λOA →,OF →=μOB →(λ,μ>0),则λ+μ的最小值为________.解析:由A ,M ,D 三点共线,可得存在实数t ,使得OM →=tOA →+(1-t)OD →=tOA →+12(1-t)OB →.同理,由C ,M ,B 三点共线,可得存在实数m ,使得OM →=mOB →+(1-m)OC →=mOB →+13(1-m)OA →.∴⎩⎪⎨⎪⎧t =13(1-m ),12(1-t )=m ,解得⎩⎪⎨⎪⎧m =25,t =15,∴OM →=25OB →+15OA →.由E ,M ,F 三点共线,可设OM →=xOE →+(1-x)OF →.又OE →=λOA →,OF =μOB →,∴OM →=xλOA →+(1-x)μOB →,∴⎩⎪⎨⎪⎧x λ=15,(1-x )μ=25,可得1λ+2μ=5.∴λ+μ=15(λ+μ)⎝ ⎛⎭⎪⎫1λ+2μ=15⎝ ⎛⎭⎪⎫1+2+μλ+2λμ≥3+225,当且仅当μλ=2λμ时取等号,∴λ+μ的最小值为3+225.答案:3+225。
高三数学第二轮专题复习系列:(5)平面向量
高考数学第二轮专题复习系列(5)平面向量一、本章知识结构:二、高考要求1、理解向量的概念,掌握向量的几何表示,了解共线向量的概念。
2、掌握向量的加法和减法的运算法则及运算律。
3、掌握实数与向量的积的运算法则及运算律,理解两个向量共线的充要条件。
4、了解平面向量基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算。
5、掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件。
6、掌握线段的定比分点和中点坐标公式,并且能熟练运用;掌握平移公式。
7、掌握正、余弦定理,并能初步运用它们解斜三角形。
8、通过解三角形的应用的教学,继续提高运用所学知识解决实际问题的能力。
三、热点分析对本章内容的考查主要分以下三类:1.以选择、填空题型考查本章的基本概念和性质.此类题一般难度不大,用以解决有关长度、夹角、垂直、判断多边形形状等问题.2.以解答题考查圆锥曲线中的典型问题.此类题综合性比较强,难度大,以解析几何中的常规题为主.3.向量在空间中的应用(在B类教材中).在空间坐标系下,通过向量的坐标的表示,运用计算的方法研究三维空间几何图形的性质.在复习过程中,抓住源于课本,高于课本的指导方针.本章考题大多数是课本的变式题,即源于课本.因此,掌握双基、精通课本是本章关键.分析近几年来的高考试题,有关平面向量部分突出考查了向量的基本运算。
对于和解析几何相关的线段的定比分点和平移等交叉内容,作为学习解析几何的基本工具,在相关内容中会进行考查。
本章的另一部分是解斜三角形,它是考查的重点。
总而言之,平面向量这一章的学习应立足基础,强化运算,重视应用。
考查的重点是基础知识和基本技能。
四、复习建议由于本章知识分向量与解斜三角形两部分,所以应用本章知识解决的问题也分为两类:一类是根据向量的概念、定理、法则、公式对向量进行运算,并能运用向量知识解决平面几何中的一些计算和证明问题;另一类是运用正、余弦定理正确地解斜三角形,并能应用解斜三角形知识解决测量不可到达的两点间的距离问题。
高考理科数学 试题分类汇编5:平面向量
高考理科数学试题分类汇编5:平面向量一、选择题1 .(2013年高考上海卷(理))在边长为1的正六边形ABCDEF 中,记以A 为起点,其余顶点为终点的向量分别为12345,,,,a a a a a ;以D 为起点,其余顶点为终点的向量分别为12345,,,,d d d d d.若,m M 分别为()()i j k r s t a a a d d d ++⋅++的最小值、最大值,其中{,,}{1,2,3,4,5}i j k ⊆,{,,}{1,2,3,4,5}r s t ⊆,则,m M 满足( )A .0,0m M =>B .0,0m M <>C .0,0m M <=D .0,0m M <<【答案】D .2 .(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))已知点()()1,3,4,1,A B AB -则与向量同方向的单位向量为( )A .3455⎛⎫ ⎪⎝⎭,-B .4355⎛⎫ ⎪⎝⎭,-C .3455⎛⎫- ⎪⎝⎭,D .4355⎛⎫- ⎪⎝⎭,【答案】A [来源:12999数学网]3 .(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))设0,P ABC ∆是边AB 上一定点,满足AB B P 410=,且对于边AB 上任一点P ,恒有C P B P 00∙≥∙.则 ( )A .090=∠ABCB .090=∠BAC C .AC AB =D .BC AC =【答案】D4 .(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))在四边形ABCD中,(1,2)AC = ,(4,2)BD =-,则四边形的面积为( )A B .C .5D .10【答案】C5 .(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))在平面直角坐标系中,O 是坐标原点,两定点,A B满足2,OA OB OA OB ===则点集{}|,1,,P O PO A O B R λμλμλμ=++≤∈所表示的区域的面积是( )A .B .C .D .【答案】D6 .(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))在平面上,12AB AB ⊥ ,121OB OB == ,12AP AB AB =+ .若12OP < ,则OA 的取值范围是 ( )A .0,2⎛ ⎝⎦B .,22⎛ ⎝⎦C .2⎛ ⎝D .2⎛ ⎝【答案】D7 .(2013年高考湖南卷(理))已知,a b 是单位向量,0a b = .若向量c 满足1,c a b c --=则的取值范围是 ( )A .⎤⎦B .⎤⎦C .1⎡⎤⎣⎦D .1⎡⎤⎣⎦【答案】A8 .(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))已知向量()()1,1,2,2m n λλ=+=+ ,若()()m n m n +⊥-,则=λ( )A .4-B .3-C .2-D .-1[来源:]【答案】B9 .(2013年高考湖北卷(理))已知点()1,1A -.()1,2B .()2,1C --.()3,4D ,则向量AB 在CD方向上的投影为 ( )A B C .D . 【答案】A [来源:12999数学网] 二、填空题10.(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))已知正方形ABCD 的边长为2,E 为CD 的中点,则AE BD =_______.【答案】211.(2013年上海市春季高考数学试卷(含答案))已知向量(1 )a k =,,(9 6)b k =- ,.若//a b ,则实数 k = __________【答案】34-12.(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))已知向量AB与AC的夹角为120°,且3AB = ,2AC = ,若AP AB AC λ=+ ,且AP BC ⊥,则实数λ的值为__________.【答案】71213.(2013年高考新课标1(理))已知两个单位向量a ,b 的夹角为60°,c =t a +(1-t)b ,若b ·c =0,则t =_____.【答案】t =2.14.(2013年高考北京卷(理))向量a ,b ,c 在正方形网格中的位置如图所示.若c =λa +μb (λ,μ∈R),则λμ=_________.【答案】4 [来源:]15.(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))设21,e e 为单位向量,非零向量R y x e y e x ∈+=,,21,若21,e e 的夹角为6π,的最大值等于________. 【答案】216.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))设E D ,分别是ABC ∆的边BC AB ,上的点,AB AD 21=,BC BE 32=,若AC AB DE 21λλ+= (21λλ,为实数),则21λλ+的值为__________.【答案】1217.(2013年高考四川卷(理))在平行四边形ABCD 中,对角线AC 与BD 交于点O ,AB AD AO λ+=,则λ=_________.【答案】218.(2013年高考江西卷(理))设1e ,2e 为单位向量.且1e ,2e 的夹角为3π,若123a e e =+,12b e =,则向量a 在b 方向上的射影为 ___________【答案】5219.(2013年普通高等学校招生统一考试天津数学(理)试题(含答案))在平行四边形ABCD 中, AD = 1,60BAD ︒∠=, E 为CD 的中点. 若·1AD BE =, 则AB 的长为______.【答案】12。
人教版高中数学教案:第5章:平面向量,教案,课时第 (15)
第十五教时教材:平面向量的数量积平移的综合练习课目的:使学生对平面向量数量积的意义、运算有更深的理解,并能较熟练地处理有关长度、角度、垂直的问题。
过程:一、复习:1.平面向量数量积的定义、运算、运算律2.平面向量数量积的坐标表示,有关长度、角度、垂直的处理方法 3.平移的有关概念、公式 二、 例题例一、a 、b 均为非零向量,则 |a +b | = |a -b | 是 的………………(C ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件解:若|a +b | = |a -b | ⇔ |a +b |2 = |a -b |2 ⇔ |a |2 + 2a ⋅b + |b |2 = |a |2 - 2a ⋅b + |b|2 ⇔ a ⋅b = 0 ⇔ a ⊥b例二、向量a 与b 夹角为3π,|a | = 2,|b | = 1,求|a +b |⋅|a -b |的值。
解:|a +b |2 = |a |2 + 2a ⋅b + |b |2 = 4 + 2×2×1×cos 3π+ 1 = 7∴|a +b | =7, 同理:|a -b |2 = 3, |a -b | =3 ∴|a +b |⋅|a -b | =21 例三、 中,= a ,= b ,= c ,= d , 且a ⋅b = b ⋅c = c ⋅d = d ⋅a ,问ABCD 是怎样的四边形? 解:由题设:|a |⋅|b |cos B = |b |⋅|c |cos C = |c |⋅|d |cos D = |d |⋅|a |cos A ∵|a | = |c | , |b | = |d | ∴cos A = cos B = cos C = cos D = 0 ∴ 是矩形 例四、 如图△ABC 中,= c ,BC = a ,CA = b , 则下列推导不正确的是……………(D ) A .若a ⋅b < 0,则△ABC 为钝角三角形。
人教版高中数学教案:第5章:平面向量,教案,课时第 (13)
第十三教时教材:平面向量的数量积的坐标表示目的:要求学生掌握平面向量数量积的坐标表示,掌握向量垂直的坐标表示的充要条件。
过程:一、复习:1.平面向量的坐标表示及加、减、实数与向量的乘积的坐标表示 2.平面向量数量积的运算 3.两平面向量垂直的充要条件 4.两向量共线的坐标表示: 二、 课题:平面两向量数量积的坐标表示1.设a = (x 1, y 1),b = (x 2, y 2),x 轴上单位向量i ,y 轴上单位向量j , 则:i ⋅i = 1,j ⋅j = 1,i ⋅j = j ⋅i = 0 2.推导坐标公式:∵a = x 1i + y 1j , b = x 2i + y 2j∴a ⋅b = (x 1i + y 1j )(x 2i + y 2j ) = x 1x 2i 2 + x 1y 1i ⋅j + x 2y 1i ⋅j + y 1y 2j 2 = x 1x 2 + y 1y 2从而获得公式:a ⋅b = x 1x 2 + y 1y 2例一、设a = (5, -7),b = (-6, -4),求a ⋅b解:a ⋅b = 5×(-6) + (-7)×(-4) = -30 + 28 = -2 3.长度、角度、垂直的坐标表示1︒a = (x , y ) ⇒ |a|2 = x 2 + y 2 ⇒ |a | =22y x +2︒若A = (x 1, y 1),B = (x 2, y 2),则=221221)()(y y x x -+-3︒ co s θ =||||b a ba ⋅⋅222221212121y x y x y y x x +++=4︒∵a ⊥b ⇔ a ⋅b = 0 即x 1x 2 + y 1y 2 = 0(注意与向量共线的坐标表示原则)4.例二、已知A (1, 2),B (2, 3),C (-2, 5),求证:△ABC 是直角三角形。
证:∵=(2-1, 3-2) = (1, 1), = (-2-1, 5-2) = (-3, 3) ∴⋅=1×(-3) + 1×3 = 0 ∴⊥∴△ABC 是直角三角形三、补充例题:处理《教学与测试》P153 第73课例三、已知a = (3, -1),b = (1, 2),求满足x ⋅a = 9与x ⋅b = -4的向量x 。
高考数学考点与题型知识点5平面向量
平面向量平面向量 (2)第一节平面向量的概念及线性运算 (2)考点一平面向量的有关概念 (3)考点二平面向量的线性运算 (5)考点三共线向量定理的应用 (7)第二节平面向量基本定理及坐标表示 (13)考点一平面向量基本定理及其应用 (14)考点二平面向量的坐标运算 (15)考点三平面向量共线的坐标表示 (16)第三节平面向量的数量积 (22)考点一平面向量的数量积的运算 (23)考点二平面向量数量积的性质 (26)第四节平面向量的综合应用 (33)考点一平面向量与平面几何 (33)考点二平面向量与解析几何 (34)考点三平面向量与三角函数 (35)第五章 平面向量第一节 平面向量的概念及线性运算一、基础知识1.向量的有关概念(1)向量的定义及表示:既有大小又有方向的量叫做向量.以A 为起点、B 为终点的向量记作AB ―→,也可用黑体的单个小写字母a ,b ,c ,…来表示向量.(2)向量的长度(模):向量AB ―→的大小即向量AB ―→的长度(模),记为|AB ―→|. 2.几种特殊向量单位向量有无数个,它们大小相等,但方向不一定相同;与向量a 平行的单位向量有两个,即向量a|a |和-a|a |.3.向量的线性运算三角形法则 平行四边形法则三角形法则多个向量相加,利用三角形法则,应首尾顺次连接,a+b+c表示从始点指向终点的向量,只关心始点、终点.4.共线向量定理向量a(a≠0)与b共线,当且仅当有唯一一个实数λ,使得b=λa.只有a≠0才保证实数λ的存在性和唯一性.二、常用结论(1)若P为线段AB的中点,O为平面内任一点,则OP―→=12(OA―→+OB―→).(2)OA―→=λOB―→+μOC―→(λ,μ为实数),若点A,B,C三点共线,则λ+μ=1.考点一平面向量的有关概念[典例]给出下列命题:①若a=b,b=c,则a=c;②若A,B,C,D是不共线的四点,则AB―→=DC―→是四边形ABCD为平行四边形的充要条件;③a =b 的充要条件是|a |=|b |且a ∥b ; ④若a ∥b ,b ∥c ,则a ∥c . 其中正确命题的序号是________.[解析] ①正确.∵a =b ,∴a ,b 的长度相等且方向相同, 又b =c ,∴b ,c 的长度相等且方向相同, ∴a ,c 的长度相等且方向相同,故a =c .②正确.∵AB ―→=DC ―→,∴|AB ―→|=|DC ―→|且AB ―→∥DC ―→, 又A ,B ,C ,D 是不共线的四点, ∴四边形ABCD 为平行四边形; 反之,若四边形ABCD 为平行四边形, 则AB ―→∥DC ―→且|AB ―→|=|DC ―→|,因此,AB ―→=DC ―→.③不正确.当a ∥b 且方向相反时,即使|a |=|b |,也不能得到a =b ,故|a |=|b |且a ∥b 不是a =b 的充要条件,而是必要不充分条件.④不正确.考虑b =0这种特殊情况. 综上所述,正确命题的序号是①②. [答案] ①②[解题技法] 向量有关概念的关键点 (1)向量定义的关键是方向和长度.(2)非零共线向量的关键是方向相同或相反,长度没有限制. (3)相等向量的关键是方向相同且长度相等. (4)单位向量的关键是长度都是一个单位长度.(5)零向量的关键是长度是0,规定零向量与任意向量共线. [题组训练] 1.给出下列命题:①两个具有公共终点的向量,一定是共线向量; ②λa =0(λ为实数),则λ必为零;③λ,μ为实数,若λa =μb ,则a 与b 共线. 其中错误的命题的个数为( ) A .0B .1C .2D .3解析:选D ①错误,两向量共线要看其方向而不是起点或终点.②错误,当a =0时,不论λ为何值,λa =0.③错误,当λ=μ=0时,λa =μb =0,此时,a 与b 可以是任意向量.故错误的命题有3个,故选D.2.设a 0为单位向量,下列命题中:①若a 为平面内的某个向量,则a =|a |·a 0;②若a 与a 0平行,则a =|a |a 0;③若a 与a 0平行且|a |=1,则a =a 0,假命题的个数是( )A .0B .1C .2D .3解析:选D 向量是既有大小又有方向的量,a 与|a |a 0的模相同,但方向不一定相同,故①是假命题;若a 与a 0平行,则a 与a 0的方向有两种情况:一是同向,二是反向,反向时a =-|a |a 0,故②③也是假命题.综上所述,假命题的个数是3.考点二 平面向量的线性运算[典例] (1)(2018·全国卷Ⅰ)在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB ―→=( )A.34AB ―→-14AC ―→B.14AB ―→-34AC ―→C.34AB ―→+14AC ―→ D.14AB ―→+34AC ―→(2)如图,在直角梯形ABCD 中,DC ―→=14AB ―→,BE ―→=2EC ―→, 且AE ―→=r AB ―→+s AD ―→,则2r +3s =( )A .1B .2C .3D .4[解析] (1)作出示意图如图所示.EB ―→=ED ―→+DB ―→=12AD ―→+12CB ―→=12×12(AB ―→+AC ―→)+12(AB ―→-AC ―→)=34AB ―→-14AC ―→.故选A. (2)根据图形,由题意可得AE ―→=AB ―→+BE ―→=AB ―→+23BC ―→=AB ―→+23(BA ―→+AD ―→+DC ―→)=13AB ―→+23(AD ―→+DC ―→)=13AB ―→+23⎝⎛⎭⎫AD ―→+14AB ―→=12AB ―→+23AD ―→. 因为AE ―→=r AB ―→+s AD ―→,所以r =12,s =23,则2r +3s =1+2=3.[答案] (1)A (2)C[解题技法] 向量线性运算的解题策略(1)常用的法则是平行四边形法则和三角形法则,一般共起点的向量求和用平行四边形法则,求差用三角形法则,求首尾相连的向量的和用三角形法则.(2)找出图形中的相等向量、共线向量,将所求向量与已知向量转化到同一个平行四边形或三角形中求解.(3)用几个基本向量表示某个向量问题的基本技巧:①观察各向量的位置;②寻找相应的三角形或多边形;③运用法则找关系;④化简结果. (4)与向量的线性运算有关的参数问题,一般是构造三角形,利用向量运算的三角形法则进行加法或减法运算,然后通过建立方程组即可求得相关参数的值.[题组训练]1.设D 为△ABC 所在平面内一点,BC ―→=3CD ―→,则( ) A .AD ―→=-13AB ―→+43AC ―→B .AD ―→=13AB ―→-43AC ―→C .AD ―→=43AB ―→+13AC ―→D .AD ―→=43AB ―→-13AC ―→解析:选A 由题意得AD ―→=AC ―→+CD ―→=AC ―→+13BC ―→=AC ―→+13AC ―→-13AB ―→=-13AB ―→+43AC ―→. 2.(2019·太原模拟)在正方形ABCD 中,M ,N 分别是BC ,CD 的中点,若AC ―→=λAM ―→+μAN ―→,则实数λ+μ=________.解析:如图,∵AM ―→=AB ―→+BM ―→=AB ―→+12BC ―→=DC ―→+12BC ―→,①AN ―→=AD ―→+DN ―→=BC ―→+12DC ―→,②由①②得BC ―→=43AN ―→-23AM ―→,DC ―→=43AM ―→-23AN ―→,∴AC ―→=AB ―→+BC ―→=DC ―→+BC ―→=43AM ―→-23AN ―→+43AN ―→-23AM ―→=23AM ―→+23AN ―→,∵AC ―→=λAM ―→+μAN ―→,∴λ=23,μ=23,λ+μ=43.答案:43考点三 共线向量定理的应用[典例] 设两个非零向量a 与b 不共线,(1)若AB ―→=a +b ,BC ―→=2a +8b ,CD ―→=3a -3b , 求证:A ,B ,D 三点共线;(2)试确定实数k ,使k a +b 和a +k b 同向.[解] (1)证明:∵AB ―→=a +b ,BC ―→=2a +8b ,CD ―→=3a -3b , ∴BD ―→=BC ―→+CD ―→=2a +8b +3a -3b =5(a +b )=5AB ―→, ∴AB ―→,BD ―→共线. 又∵它们有公共点B , ∴A ,B ,D 三点共线. (2)∵k a +b 与a +k b 同向,∴存在实数λ(λ>0),使k a +b =λ(a +k b ), 即k a +b =λa +λk b . ∴(k -λ)a =(λk -1)b .∵a ,b 是不共线的非零向量,∴⎩⎪⎨⎪⎧ k -λ=0,λk -1=0,解得⎩⎪⎨⎪⎧ k =1,λ=1或⎩⎪⎨⎪⎧k =-1,λ=-1, 又∵λ>0,∴k =1.1.向量共线问题的注意事项(1)向量共线的充要条件中,当两向量共线时,通常只有非零向量才能表示与之共线的其他向量,注意待定系数法和方程思想的运用.(2)证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得到三点共线.[题组训练]1.在四边形ABCD 中,AB ―→=a +2b ,BC ―→=-4a -b ,CD ―→=-5a -3b ,则四边形ABCD 的形状是( )A .矩形B .平行四边形C .梯形D .以上都不对解析:选C 由已知,得AD ―→=AB ―→+BC ―→+CD ―→=-8a -2b =2(-4a -b )=2BC ―→,故AD ―→∥BC ―→.又因为AB ―→与CD ―→不平行,所以四边形ABCD 是梯形.2.已知向量e 1≠0,λ∈R ,a =e 1+λe 2,b =2e 1,若向量a 与向量b 共线,则( ) A .λ=0 B .e 2=0 C .e 1∥e 2D .e 1∥e 2或λ=0解析:选D 因为向量e 1≠0,λ∈R ,a =e 1+λe 2,b =2e 1,又因为向量a 和b 共线,存在实数k ,使得a =k b ,所以e 1+λe 2=2k e 1,所以λe 2=(2k -1)e 1,所以e 1∥e 2或λ=0.3.已知O 为△ABC 内一点,且AO ―→=12(OB ―→+OC ―→),AD ―→=t AC ―→,若B ,O ,D 三点共线,则t =( )A.14B.13C.12D.23解析:选B 设E 是BC 边的中点,则12(OB ―→+OC ―→)=OE ―→,由题意得AO ―→=OE ―→,所以AO ―→=12AE ―→=14(AB ―→+AC ―→)=14AB ―→+14t AD ―→,又因为B ,O ,D 三点共线,所以14+14t =1,解得t =13,故选B.4.已知O ,A ,B 三点不共线,P 为该平面内一点,且OP ―→=OA ―→+AB―→|AB ―→|,则( )A .点P 在线段AB 上 B .点P 在线段AB 的延长线上C .点P 在线段AB 的反向延长线上D .点P 在射线AB 上解析:选D 由OP ―→=OA ―→+AB ―→|AB ―→|,得OP ―→-OA ―→=AB ―→|AB ―→|,∴AP ―→=1|AB ―→|·AB ―→,∴点P在射线AB 上,故选D.[课时跟踪检测]1.设D ,E ,F 分别为△ABC 的三边BC ,CA ,AB 的中点,则EB ―→+FC ―→=( ) A .AD ―→B.12AD ―→C.12BC ―→ D .BC ―→解析:选A 由题意得EB ―→+FC ―→=12(AB ―→+CB ―→)+12(AC ―→+BC ―→)=12(AB ―→+AC ―→)=AD ―→.2.已知向量a ,b 不共线,且c =λa +b ,d =a +(2λ-1)b ,若c 与d 共线反向,则实数λ的值为( )A .1B .-12C .1或-12D .-1或-12解析:选B 由于c 与d 共线反向,则存在实数k 使c =kd (k <0), 于是λa +b =k []a +(2λ-1)b . 整理得λa +b =k a +(2λk -k )b .由于a ,b 不共线,所以有⎩⎪⎨⎪⎧λ=k ,2λk -k =1,整理得2λ2-λ-1=0,解得λ=1或λ=-12.又因为k <0,所以λ<0,故λ=-12.3.设向量a ,b 不共线,AB ―→=2a +p b ,BC ―→=a +b ,CD ―→=a -2b ,若A ,B ,D 三点共线,则实数p 的值为( )A .-2B .-1C .1D .2解析:选B 因为BC ―→=a +b ,CD ―→=a -2b ,所以BD ―→=BC ―→+CD ―→=2a -b .又因为A ,B ,D 三点共线,所以AB ―→,BD ―→共线.设AB ―→=λBD ―→,所以2a +p b =λ(2a -b ),所以2=2λ,p =-λ,即λ=1,p =-1.4.(2019·甘肃诊断)设D 为△ABC 所在平面内一点,BC ―→=-4CD ―→,则AD ―→=( ) A.14AB ―→-34AC ―→ B.14AB ―→+34AC ―→C.34AB ―→-14AC ―→ D.34AB ―→+14AC ―→解析:选B 法一:设AD ―→=x AB ―→+y AC ―→,由BC ―→=-4CD ―→可得,BA ―→+AC ―→=-4CA―→-4AD ―→,即-AB ―→-3AC ―→=-4x AB ―→-4y AC ―→,则⎩⎪⎨⎪⎧-4x =-1,-4y =-3,解得⎩⎨⎧x =14,y =34,即AD ―→=14AB ―→+34AC ―→,故选B.法二:在△ABC 中,BC ―→=-4CD ―→,即-14BC ―→=CD ―→,则AD ―→=AC ―→+CD ―→=AC ―→-14BC―→=AC ―→-14(BA ―→+AC ―→)=14AB ―→+34AC ―→,故选B.5.在平面直角坐标系中,O 为坐标原点,A ,B ,C 三点满足OC ―→=34OA ―→+14OB ―→,则|BC ―→||AC ―→|等于( )A .1B .2C .3D.32解析:选C 因为BC ―→=OC ―→-OB ―→=34OA ―→+14OB ―→-OB ―→=34BA ―→,AC ―→=OC ―→-OA ―→=34OA ―→+14OB ―→-OA ―→=14AB ―→,所以|BC ―→||AC ―→|=3.故选C.6.已知△ABC 的边BC 的中点为D ,点G 满足GA ―→+BG ―→+CG ―→=0,且AG ―→=λGD ―→,则λ的值是( )A.12 B .2 C .-2D .-12解析:选C 由GA ―→+BG ―→+CG ―→=0,得G 为以AB ,AC 为邻边的平行四边形的第四个顶点,因此AG ―→=-2GD ―→,则λ=-2.故选C.7.下列四个结论:①AB ―→+BC ―→+CA ―→=0;②AB ―→+MB ―→+BO ―→+OM ―→=0; ③AB ―→-AC ―→+BD ―→-CD ―→=0;④N Q ―→+Q P ―→+MN ―→-MP ―→=0, 其中一定正确的结论个数是( ) A .1 B .2 C .3D .4解析:选C ①AB ―→+BC ―→+CA ―→=AC ―→+CA ―→=0,①正确;②AB ―→+MB ―→+BO ―→+OM ―→=AB ―→+MO ―→+OM ―→=AB ―→,②错误;③AB ―→-AC ―→+BD ―→-CD ―→=CB ―→+BD ―→+DC ―→=CD ―→+DC ―→=0,③正确;④N Q ―→+Q P ―→+MN ―→-MP ―→=NP ―→+PN ―→=0,④正确.故①③④正确.8.如图,在平行四边形ABCD 中,M ,N 分别为AB ,AD 上的点,且AM ―→=34AB ―→,AN ―→=23AD ―→,AC ,MN 交于点P .若AP ―→=λAC ―→,则λ的值为( ) A.35 B.37C.316D.617解析:选D ∵AM ―→=34AB ―→,AN ―→=23AD ―→,∴AP ―→=λAC ―→=λ(AB ―→+AD ―→)=λ⎝⎛⎭⎫43AM ―→+32AN ―→=43λAM ―→+32λAN ―→.∵点M ,N ,P 三点共线,∴43λ+32λ=1,则λ=617.故选D. 9.设向量a ,b 不平行,向量λa +b 与a +2b 平行,则实数λ=________. 解析:因为向量λa +b 与a +2b 平行,所以可设λa +b =k (a +2b ),则⎩⎪⎨⎪⎧λ=k ,1=2k ,所以λ=12.答案:1210.若AP ―→=12PB ―→,AB ―→=(λ+1)BP ―→,则λ=________.解析:如图,由AP ―→=12PB ―→,可知点P 是线段AB 上靠近点A 的三等分点,则AB ―→=-32BP ―→,结合题意可得λ+1=-32,所以λ=-52.答案:-5211.已知平行四边形ABCD 的对角线AC 和BD 相交于O ,且OA ―→=a ,OB ―→=b ,则DC ―→=________,BC ―→=________.(用a ,b 表示)解析:如图,DC ―→=AB ―→=OB ―→-OA ―→=b -a ,BC ―→=OC ―→-OB ―→=-OA ―→-OB ―→=-a -b .答案:b -a -a -b12.(2019·长沙模拟)在平行四边形ABCD 中,M 为BC 的中点.若AB ―→=λAM ―→+μDB ―→,则λ-μ=________.解析:如图,在平行四边形ABCD 中,AB ―→=DC ―→,所以AB ―→=AM ―→+MB ―→=AM ―→+12CB ―→=AM ―→+12(DB ―→-DC ―→)=AM ―→+12(DB ―→-AB ―→)=AM ―→+12DB ―→-12AB ―→,所以32AB ―→=AM ―→+12DB ―→,所以AB ―→=23AM ―→+13DB ―→,所以λ=23,μ=13,所以λ-μ=13.答案:1313.设e 1,e 2是两个不共线的向量,已知AB ―→=2e 1-8e 2,CB ―→=e 1+3e 2,CD ―→=2e 1-e 2.(1)求证:A ,B ,D 三点共线;(2)若BF ―→=3e 1-k e 2,且B ,D ,F 三点共线,求k 的值.解:(1)证明:由已知得BD ―→=CD ―→-CB ―→=(2e 1-e 2)-(e 1+3e 2)=e 1-4e 2, ∵AB ―→=2e 1-8e 2, ∴AB ―→=2BD ―→.又∵AB ―→与BD ―→有公共点B , ∴A ,B ,D 三点共线. (2)由(1)可知BD ―→=e 1-4e 2,∵BF ―→=3e 1-ke 2,且B ,D ,F 三点共线, ∴存在实数λ,使BF ―→=λBD ―→, 即3e 1-ke 2=λe 1-4λe 2,得⎩⎪⎨⎪⎧λ=3,-k =-4λ.解得k =12.第二节 平面向量基本定理及坐标表示一、基础知识1.平面向量基本定理(1)定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.(2)基底:不共线的向量e 1e 2叫做表示这一平面内所有向量的一组基底. (1)基底e 1,e 2必须是同一平面内的两个不共线向量,零向量不能作为基底; (2)基底给定,同一向量的分解形式唯一;(3)如果对于一组基底e 1,e 2,有a =λ1e 1+λ2e 2=μ1e 1+μ2e 2,则可以得到⎩⎪⎨⎪⎧λ1=μ1,λ2=μ2.2.平面向量的坐标运算(1)向量的加法、减法、数乘向量及向量的模: 设a =(x 1,y 1),b =(x 2,y 2), 则a +b =(x 1+x 2,y 1+y 2), a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |=x 21+y 21.若a =b ,则x 1=x 2且y 1=y 2. (2)向量坐标的求法:①若向量的起点是坐标原点,则终点坐标即为向量的坐标. ②设A (x 1,y 1),B (x 2,y 2),则AB ―→=(x 2-x 1,y 2-y 1), |AB ―→|=(x 2-x 1)2+(y 2-y 1)2. 3.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0,则a ∥b ⇔x 1y 2-x 2y 1=0.当且仅当x 2y 2≠0时,a ∥b 与x 1x 2=y 1y 2等价.即两个不平行于坐标轴的共线向量的对应坐标成比例.考点一 平面向量基本定理及其应用[典例] 如图,以向量OA ―→=a ,OB ―→=b 为邻边作平行四边形OADB ,BM ―→=13BC ―→,CN ―→=13CD ―→,用a ,b 表示OM ―→,ON ―→,MN ―→.[解] ∵BA ―→=OA ―→-OB ―→=a -b , BM ―→=16BA ―→=16a -16b ,∴OM ―→=OB ―→+BM ―→=16a +56b .∵OD ―→=a +b , ∴ON ―→=OC ―→+13CD ―→=12OD ―→+16OD ―→ =23OD ―→=23a +23b , ∴MN ―→=ON ―→-OM ―→=23a +23b -16a -56b =12a -16b .综上,OM ―→=16a +56b ,ON ―→=23a +23b ,MN ―→=12a -16b .[解题技法]1.平面向量基本定理解决问题的一般思路(1)先选择一组基底,并运用该基底将条件和结论表示为向量的形式,再通过向量的运算来解决.(2)在基底未给出的情况下,合理地选取基底会给解题带来方便.另外,要熟练运用平面几何的一些性质定理.2.应用平面向量基本定理应注意的问题(1)只要两个向量不共线,就可以作为平面向量的一组基底,基底可以有无穷多组. (2)利用已知向量表示未知向量,实质就是利用平行四边形法则或三角形法则进行向量的加减运算或数乘运算.[题组训练]1.在△ABC 中,P ,Q 分别是AB ,BC 的三等分点,且AP =13AB ,BQ =13BC ,若AB ―→=a ,AC ―→=b ,则P Q ―→=( )A.13a +13b B .-13a +13bC.13a -13b D .-13a -13b解析:选A 由题意知P Q ―→=PB ―→+B Q ―→=23AB ―→+13BC ―→=23AB ―→+13(AC ―→-AB ―→)=13AB ―→+13AC ―→=13a +13b . 2.已知在△ABC 中,点O 满足OA ―→+OB ―→+OC ―→=0,点P 是OC 上异于端点的任意一点,且OP ―→=m OA ―→+n OB ―→,则m +n 的取值范围是________.解析:依题意,设OP ―→=λOC ―→(0<λ<1), 由OA ―→+OB ―→+OC ―→=0,知OC ―→=-(OA ―→+OB ―→), 所以OP ―→=-λOA ―→-λOB ―→,由平面向量基本定理可知, m +n =-2λ,所以m +n ∈(-2,0). 答案:(-2,0)考点二 平面向量的坐标运算[典例] 已知A (-2,4),B (3,-1),C (-3,-4).设AB ―→=a ,BC ―→=b ,CA ―→=c ,且CM ―→=3c ,CN ―→=-2b ,(1)求3a +b -3c ;(2)求M ,N 的坐标及向量MN ―→的坐标.[解] 由已知得a =(5,-5),b =(-6,-3),c =(1,8). (1)3a +b -3c =3(5,-5)+(-6,-3)-3(1,8) =(15-6-3,-15-3-24)=(6,-42). (2)设O 为坐标原点,∵CM ―→=OM ―→-OC ―→=3c , ∴OM ―→=3c +OC ―→=(3,24)+(-3,-4)=(0,20). ∴M (0,20).又∵CN ―→=ON ―→-OC ―→=-2b , ∴ON ―→=-2b +OC ―→=(12,6)+(-3,-4)=(9,2), ∴N (9,2),∴MN ―→=(9,-18).[变透练清]1.(变结论)本例条件不变,若a =m b +n c ,则m =________,n =________. 解析:∵m b +n c =(-6m +n ,-3m +8n ),a =(5,-5),∴⎩⎪⎨⎪⎧-6m +n =5,-3m +8n =-5, 解得⎩⎪⎨⎪⎧m =-1,n =-1.答案:-1 -12.已知O 为坐标原点,向量OA ―→=(2,3),OB ―→=(4,-1),且AP ―→=3PB ―→,则|OP ―→|=________.解析:设P (x ,y ),由题意可得A ,B 两点的坐标分别为(2,3),(4,-1),由AP ―→=3PB ―→,可得⎩⎪⎨⎪⎧x -2=12-3x ,y -3=-3y -3,解得⎩⎪⎨⎪⎧x =72,y =0,故|OP ―→|=72.答案:72[解题技法]1.平面向量坐标运算的技巧(1)向量的坐标运算主要是利用向量加、减、数乘运算的法则来进行求解的,若已知有向线段两端点的坐标,则应先求向量的坐标.(2)解题过程中,常利用“向量相等,则其坐标相同”这一原则,通过列方程(组)来进行求解.2.向量坐标运算的注意事项(1)向量坐标与点的坐标形式相似,实质不同. (2)向量坐标形式的线性运算类似多项式的运算.(3)向量平行与垂直的坐标表达形式易混淆,需清楚结论推导过程与结果,加以区分. 考点三 平面向量共线的坐标表示[典例] 已知a =(1,0),b =(2,1). (1)当k 为何值时,k a -b 与a +2b 共线;(2)若AB ―→=2a +3b ,BC ―→=a +m b ,且A ,B ,C 三点共线,求m 的值. [解] (1)∵a =(1,0),b =(2,1), ∴k a -b =k (1,0)-(2,1)=(k -2,-1), a +2b =(1,0)+2(2,1)=(5,2), ∵k a -b 与a +2b 共线,∴2(k -2)-(-1)×5=0,∴k =-12.(2)AB ―→=2(1,0)+3(2,1)=(8,3), BC ―→=(1,0)+m (2,1)=(2m +1,m ). ∵A ,B ,C 三点共线,∴AB ―→∥BC ―→, ∴8m -3(2m +1)=0,∴m =32.[解题技法]1.平面向量共线的充要条件的2种形式(1)若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件是x 1y 2-x 2y 1=0. (2)若a ∥b (b ≠0),则a =λb . 2.两个向量共线的充要条件的作用判断两个向量是否共线(或平行),可解决三点共线的问题;另外,利用两个向量共线的充要条件可以列出方程(组),求参数的值.[题组训练]1.已知向量a =(1,2),b =(-3,2),若(k a +b )∥(a -3b ),则实数k 的取值为( ) A .-13B.13C .-3D .3解析:选A k a +b =k (1,2)+(-3,2)=(k -3,2k +2). a -3b =(1,2)-3(-3,2)=(10,-4), 则由(k a +b )∥(a -3b )得(k -3)×(-4)-10×(2k +2)=0,所以k =-13.2.(2019·唐山模拟)已知在平面直角坐标系xOy 中,P 1(3,1),P 2(-1,3),P 1,P 2,P 3三点共线且向量OP 3―→与向量a =(1,-1)共线,若OP 3―→=λOP 1―→+(1-λ)OP 2―→,则λ=( )A .-3B .3C .1D .-1解析:选D 设OP 3―→=(x ,y ),则由OP 3―→∥a 知x +y =0,于是OP 3―→=(x ,-x ).若OP 3―→=λOP 1―→+(1-λ)OP 2―→,则有(x ,-x )=λ(3,1)+(1-λ)(-1,3)=(4λ-1,3-2λ),即⎩⎪⎨⎪⎧4λ-1=x ,3-2λ=-x ,所以4λ-1+3-2λ=0,解得λ=-1,故选D.3.在梯形ABCD 中,AB ∥CD ,且DC =2AB ,三个顶点A (1,2),B (2,1),C (4,2),则点D 的坐标为________.解析:∵在梯形ABCD 中,DC =2AB ,AB ∥CD , ∴DC ―→=2AB ―→.设点D 的坐标为(x ,y ),则DC ―→=(4-x,2-y ),AB ―→=(1,-1), ∴(4-x,2-y )=2(1,-1),即(4-x,2-y )=(2,-2),∴⎩⎪⎨⎪⎧ 4-x =2,2-y =-2,解得⎩⎪⎨⎪⎧x =2,y =4,故点D 的坐标为(2,4). 答案:(2,4)[课时跟踪检测]1.(2019·昆明调研)已知向量a =(-1,2),b =(1,3),则|2a -b |=( ) A.2 B .2 C.10D .10解析:选C 由已知,易得2a -b =2(-1,2)-(1,3)=(-3,1),所以|2a -b |=(-3)2+12=10.故选C.2.已知向量a =(5,2),b =(-4,-3),c =(x ,y ),若3a -2b +c =0,则c =( ) A .(-23,-12) B .(23,12) C .(7,0)D .(-7,0)解析:选A 由题意可得3a -2b +c =3(5,2)-2(-4,-3)+(x ,y )=(23+x,12+y )=(0,0),所以⎩⎪⎨⎪⎧ 23+x =0,12+y =0,解得⎩⎪⎨⎪⎧x =-23,y =-12,所以c =(-23,-12).3.(2018·石家庄模拟)已知向量a =(1,m ),b =(m,1),则“m =1”是“a ∥b ”成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 若a ∥b ,则m 2=1,即m =±1,故“m =1”是“a ∥b ”的充分不必要条件,选A.4.已知点M 是△ABC 的边BC 的中点,点E 在边AC 上,且EC ―→=2AE ―→,则EM ―→=( ) A.12AC ―→+13AB ―→ B.12AC ―→+16AB ―→C.16AC ―→+12AB ―→ D.16AC ―→+32AB ―→解析:选C 如图,因为EC ―→=2AE ―→,所以EC ―→=23AC ―→,所以EM ―→=EC ―→+CM ―→=23AC ―→+12CB ―→=23AC ―→+12(AB ―→-AC ―→)=12AB ―→+16AC ―→.5.已知点A (8,-1),B (1,-3),若点C (2m -1,m +2)在直线AB 上,则实数m =( ) A .-12 B .13 C .-13D .12解析:选C 因为点C 在直线AB 上,所以AC ―→与AB ―→同向.又AB ―→=(-7,-2),AC ―→=(2m -9,m +3),故2m -9-7=m +3-2,所以m =-13.故选C.6.在平面直角坐标系xOy 中,已知A (1,0),B (0,1),C 为坐标平面内第一象限的点,且∠AOC =π4,|OC |=2,若OC ―→=λOA ―→+μOB ―→,则λ+μ=( )A .22 B.2 C .2 D .42解析:选A 因为|OC |=2,∠AOC =π4,所以C (2,2),又因为OC ―→=λOA ―→+μOB ―→,所以(2,2)=λ(1,0)+μ(0,1)=(λ,μ),所以λ=μ=2,λ+μ=2 2.7.已知|OA ―→|=1,|OB ―→|=3,OA ―→⊥OB ―→, 点C 在线段AB 上,∠AOC =30°.设OC ―→=m OA ―→+n OB ―→(m ,n ∈R ),则m n等于( )A.13 B .3 C.33D.3 解析:选B 如图,由已知|OA ―→|=1,|OB ―→|=3,OA ―→⊥OB ―→,可得AB =2,∠A =60°,因为点C 在线段AB 上,∠AOC =30°,所以OC ⊥AB ,过点C 作CD ⊥OA ,垂足为点D ,则OD =34,CD =34,所以OD ―→=34OA ―→,DC ―→= 14OB ―→,即OC ―→=34OA ―→+14OB ―→,所以mn=3.8.(2019·深圳模拟)如图,在正方形ABCD 中,M 是BC 的中点,若AC ―→=λAM ―→+μBD ―→,则λ+μ=( )A.43B.53C.158D .2解析:选B 以点A 为坐标原点,分别以AB ―→,AD ―→的方向为x 轴,y 轴的正方向,建立平面直角坐标系(图略).设正方形的边长为2,则A (0,0),C (2,2),M (2,1),B (2,0),D (0,2),所以AC ―→=(2,2),AM ―→=(2,1),BD ―→=(-2,2),所以λAM ―→+μBD ―→=(2λ-2μ,λ+2μ),因为AC―→=λAM ―→+μBD ―→,所以⎩⎪⎨⎪⎧2λ-2μ=2,λ+2μ=2,解得⎩⎨⎧λ=43,μ=13,所以λ+μ=53.9.已知向量a =(2,1),b =(1,-2),若m a +n b =(9,-8)(m ,n ∈R ),则m -n 的值为________.解析:∵m a +n b =(2m +n ,m -2n )=(9,-8),∴⎩⎪⎨⎪⎧ 2m +n =9,m -2n =-8,∴⎩⎪⎨⎪⎧m =2,n =5, ∴m -n =2-5=-3. 答案:-310.已知向量a =(1,m ),b =(4,m ),若有(2|a |-|b |)(a +b )=0,则实数m =________. 解析:因为a +b =(5,2m )≠0,所以由(2|a |-|b |)(a +b )=0得2|a |-|b |=0, 所以|b |=2|a |,所以42+m 2=212+m 2,解得m =±2. 答案:±211.(2019·南昌模拟)已知向量a =(m ,n ),b =(1,-2),若|a |=25,a =λb (λ<0),则m -n =________.解析:∵a =(m ,n ),b =(1,-2), ∴由|a |=25,得m 2+n 2=20, ① 由a =λb (λ<0),得⎩⎪⎨⎪⎧m <0,n >0,-2m -n =0, ②由①②,解得m =-2,n =4. ∴m -n =-6. 答案:-612.已知向量a =(1,2),b =(x,1),u =a +2b ,v =2a -b ,且u ∥v ,则实数x 的值为________. 解析:因为a =(1,2),b =(x,1),u =a +2b ,v =2a -b , 所以u =(1,2)+2(x,1)=(2x +1,4), v =2(1,2)-(x,1)=(2-x,3).又因为u ∥v ,所以3(2x +1)-4(2-x )=0, 即10x =5,解得x =12.答案:1213.在平面直角坐标系xOy 中,已知点A (1,1),B (2,3),C (3,2),点P (x ,y )在△ABC 三边围成的区域(含边界)上.(1)若P A ―→+PB ―→+PC ―→=0,求|OP ―→|;(2)设OP ―→=m AB ―→+n AC ―→(m ,n ∈R ),用x ,y 表示m -n .解:(1)∵P A ―→+PB ―→+PC ―→=0,P A ―→+PB ―→+PC ―→=(1-x,1-y )+(2-x,3-y )+(3-x,2-y )=(6-3x,6-3y ),∴⎩⎪⎨⎪⎧6-3x =0,6-3y =0,解得x =2,y =2, 即OP ―→=(2,2),故|OP ―→|=2 2.(2)∵OP ―→=m AB ―→+n AC ―→,AB ―→=(1,2),AC ―→=(2,1). ∴(x ,y )=(m +2n,2m +n ),即⎩⎪⎨⎪⎧x =m +2n ,y =2m +n ,两式相减,得m -n =y -x .第三节 平面向量的数量积一、基础知识1.向量的夹角(1)定义:已知两个非零向量a 和b ,如图所示,作OA ―→=a ,OB ―→=b ,则∠AOB =θ(0°≤θ≤180°)叫做向量a 与b 的夹角,记作〈a ,b 〉.只有两个向量的起点重合时所对应的角才是两向量的夹角. (2)范围:夹角θ的范围是[0,π]. 当θ=0时,两向量a ,b 共线且同向;当θ=π2时,两向量a ,b 相互垂直,记作a ⊥b ;当θ=π时,两向量a ,b 共线但反向. 2.平面向量数量积的定义已知两个非零向量a 与b ,我们把数量|a ||b | cos θ叫做a 与b 的数量积(或内积),记作a ·b ,即a ·b =|a ||b |cos θ,其中θ是a 与b 的夹角.规定:零向量与任一向量的数量积为零. 3.平面向量数量积的几何意义 (1)一个向量在另一个向量方向上的投影设θ是a ,b 的夹角,则|b |cos θ叫做向量b 在向量a 的方向上的投影,|a |cos θ叫做向量a 在向量b 的方向上的投影.(2)a ·b 的几何意义数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积. 投影和两向量的数量积都是数量,不是向量. 4.向量数量积的运算律 (1)交换律:a ·b =b ·a .(2)数乘结合律:(λa )·b =λ(a ·b )=a ·(λb ). (3)分配律:(a +b )·c =a ·c +b ·c .向量数量积的运算不满足乘法结合律,即(a ·b )·c 不一定等于a ·(b ·c ),这是由于(a ·b )·c表示一个与c共线的向量,a·(b·c)表示一个与a共线的向量,而c与a不一定共线.5.平面向量数量积的性质设a,b为两个非零向量,e是与b同向的单位向量,θ是a与e的夹角,则(1)e·a=a·e=|a|cos θ.(2)a⊥b⇔a·b=0.(3)当a与b同向时,a·b=|a||b|;当a与b反向时,a·b=-|a||b|.特别地,a·a=|a|2或|a|=a·a.(4)cos θ=a·b|a||b|.(5)|a·b|≤|a||b|.6.平面向量数量积的坐标表示已知两个非零向量a=(x1,y1),b=(x2,y2),θ为a与b的夹角,则(1)|a|=x21+y21;(3)a⊥b⇔x1x2+y1y2=0;(2)a·b=x1x2+y1y2;_ (4)cos θ=x1x2+y1y2x21+y21x22+y22.二、常用结论汇总1.平面向量数量积运算的常用公式(1)(a+b)·(a-b)=a2-b2;(2)(a±b)2=a2±2a·b+b2.2.有关向量夹角的两个结论(1)两个向量a与b的夹角为锐角,则有a·b>0,反之不成立(因为夹角为0时不成立);(2)两个向量a与b的夹角为钝角,则有a·b<0,反之不成立(因为夹角为π时不成立).考点一平面向量的数量积的运算[典例](1)(2018·新乡二模)若向量m=(2k-1,k)与向量n=(4,1)共线,则m·n=()A .0B .4C .-92D .-172(2)(2018·天津高考)在如图所示的平面图形中,已知OM =1,ON =2,∠MON =120°,BM ―→=2MA ―→,CN ―→=2NA ―→,则BC ―→·OM ―→的值为( )A .-15B .-9C .-6D .0[解析] (1)∵向量m =(2k -1,k )与向量n =(4,1)共线,∴2k -1-4k =0,解得k =-12,∴m =⎝⎛⎭⎫-2,-12, ∴m ·n =-2×4+⎝⎛⎭⎫-12×1=-172. (2)法一:如图,连接MN . ∵BM ―→=2MA ―→,CN ―→=2NA ―→, ∴AM AB =AN AC =13. ∴MN ∥BC ,且MN BC =13.∴BC ―→=3MN ―→=3(ON ―→-OM ―→). ∴BC ―→·OM ―→=3(ON ―→·OM ―→-OM ―→2) =3(2×1×cos 120°-12)=-6.法二:在△ABC 中,不妨设∠A =90°,取特殊情况ON ⊥AC ,以A 为坐标原点,AB ,AC 所在直线分别为x 轴,y 轴建立如图所示的平面直角坐标系,因为∠MON =120°,ON =2,OM =1,所以O ⎝⎛⎭⎫2,32,C ⎝⎛⎭⎫0,332,M ⎝⎛⎭⎫52,0,B ⎝⎛⎭⎫152,0. 故BC ―→·OM ―→=⎝⎛⎭⎫-152,332·⎝⎛⎭⎫12,-32=-154-94=-6.[答案] (1)D (2)C[解题技法] 求非零向量a ,b 的数量积的策略(1)若两向量共起点,则两向量的夹角直接可得,根据定义即可求得数量积;若两向量的起点不同,则需要通过平移使它们的起点重合,再计算.(2)根据图形之间的关系,用长度和相互之间的夹角都已知的向量分别表示出向量a ,b ,然后根据平面向量的数量积的定义进行计算求解.(3)若图形适合建立平面直角坐标系,可建立坐标系,求出a ,b 的坐标,通过坐标运算求解.[题组训练]1.(2019·济南模拟)已知矩形ABCD 中,AB =2,BC =1,则AC ―→·CB ―→=( ) A .1 B .-1 C.6D .22解析:选B 设AB ―→=a ,AD ―→=b ,则a ·b =0, ∵|a |=2,|b |=1,∴AC ―→·CB ―→=(a +b )·(-b )=-a ·b -b 2=-1.2.(2019·南昌调研)已知向量a ,b 满足a ·(b +a )=2,且a =(1,2),则向量b 在a 方向上的投影为( )A.55B .-55C .-255D .-355解析:选D 由a =(1,2),可得|a |=5, 由a ·(b +a )=2,可得a ·b +a 2=2, ∴a ·b =-3,∴向量b 在a 方向上的投影为a ·b |a |=-355.3.(2018·石家庄质检)在△ABC 中,已知AB ―→与AC ―→的夹角为90°,|AB ―→|=2,|AC ―→|=1,M 为BC 上的一点,且AM ―→=λAB ―→+μAC ―→ (λ,μ∈R),且AM ―→·BC ―→=0,则 λμ的值为________.解析:法一:∵BC ―→=AC ―→-AB ―→,AM ―→·BC ―→=0, ∴(λAB ―→+μAC ―→)·(AC ―→-AB ―→)=0,∵AB ―→与AC ―→的夹角为90°,|AB ―→|=2,|AC ―→|=1, ∴-λ|AB ―→|2+μ|AC ―→|2=0,即-4λ+μ=0,∴λμ=14.法二:根据题意,建立如图所示的平面直角坐标系,则A (0,0),B (0,2),C (1,0),所以AB ―→=(0,2),AC ―→=(1,0),BC ―→=(1,-2).设M (x ,y ),则AM ―→=(x ,y ),所以AM ―→·BC ―→=(x ,y )·(1,-2)=x -2y =0,所以x =2y ,又AM ―→=λAB ―→+μAC ―→,即(x ,y )=λ(0,2)+μ(1,0)=(μ,2λ),所以x =μ,y =2λ,所以λμ=12y 2y =14.答案:14考点二 平面向量数量积的性质考法(一) 平面向量的模[典例] (1)(2019·昆明适应性检测)已知非零向量a ,b 满足a ·b =0,|a |=3,且a 与a +b 的夹角为π4,则|b |=( )A .6B .32C .22D .3(2)(2019·福州四校联考)已知向量a ,b 为单位向量,且a ·b =-12,向量c 与a +b 共线,则|a +c |的最小值为( )A .1 B.12C.34D.32[解析] (1)∵a ·b =0,|a |=3,∴a ·(a +b )=a 2+a ·b =|a ||a +b |cos π4,∴|a +b |=32,将|a +b |=32两边平方可得,a 2+2a ·b +b 2=18,解得|b |=3,故选D.(2)∵向量c 与a +b 共线,∴可设c =t (a +b )(t ∈R),∴a +c =(t +1)a +t b ,∴(a +c )2=(t +1)2a 2+2t (t +1)·a ·b +t 2b 2, ∵向量a ,b 为单位向量,且a ·b =-12,∴(a +c )2=(t +1)2-t (t +1)+t 2=t 2+t +1≥34,∴|a +c |≥32,∴|a +c |的最小值为32,故选D. [答案] (1)D (2)D考法(二) 平面向量的夹角[典例] (1)已知平面向量a ,b 的夹角为π3,且|a |=1,|b |=12,则a +2b 与b 的夹角是( )A.π6 B.5π6C.π4D.3π4(2)已知向量a =(1,3),b =(3,m )且b 在a 方向上的投影为-3,则向量a 与b 的夹角为________.[解析] (1)因为|a +2b |2=|a |2+4|b |2+4a ·b =1+1+4×1×12×cos π3=3,所以|a +2b |= 3.又(a +2b )·b =a ·b +2|b |2=1×12×cos π3+2×14=14+12=34,所以cos 〈a +2b ,b 〉=(a +2b )·b |a +2b ||b |=343×12=32,所以a +2b 与b 的夹角为π6.(2)因为b 在a 方向上的投影为-3,所以|b |cos 〈a ,b 〉=-3,又|a |=12+(3)2=2,所以a ·b =|a ||b |cos 〈a ,b 〉=-6,又a ·b =3+3m ,所以3+3m =-6,解得m =-33,则b =(3,-33),所以|b |=32+(-33)2=6,所以cos 〈a ,b 〉=a ·b |a ||b |=-62×6=-12,因为0≤〈a ,b 〉≤π,所以a 与b 的夹角为2π3. [答案] (1)A (2)2π3考法(三) 平面向量的垂直[典例] (1)若非零向量a ,b 满足|a |=223|b |,且(a -b )⊥(3a +2b ),则a 与b 的夹角为( )A.π4B.π2C.3π4D .π(2)已知向量AB ―→与AC ―→的夹角为120°,且|AB ―→|=3,|AC ―→|=2.若AP ―→=λAB ―→+AC ―→,且AP―→⊥BC ―→,则实数λ的值为________.[解析] (1)设a 与b 的夹角为θ,因为|a |=223|b |,(a -b )⊥(3a +2b ), 所以(a -b )·(3a +2b )=3|a |2-2|b |2-a ·b =83|b |2-2|b |2-223|b |2cos θ=0,解得cos θ=22,因为θ∈[0,π],所以θ=π4. (2)由AP ―→⊥BC ―→,知AP ―→·BC ―→=0,即AP ―→·BC ―→=(λAB ―→+AC ―→)·(AC ―→-AB ―→)=(λ-1)AB ―→·AC ―→-λAB ―→2+AC ―→2=(λ-1)×3×2×⎝⎛⎭⎫-12-λ×9+4=0,解得λ=712. [答案] (1)A (2)712[解题技法]1.利用坐标运算证明两个向量的垂直问题若证明两个向量垂直,先根据共线、夹角等条件计算出这两个向量的坐标;然后根据数量积的坐标运算公式,计算出这两个向量的数量积为0即可.2.已知两个向量的垂直关系,求解相关参数的值根据两个向量垂直的充要条件,列出相应的关系式,进而求解参数.[题组训练]1.(2018·深圳高级中学期中)已知向量m =(λ+1,1),n =(λ+2,2),若(m +n )⊥(m -n ),则λ=( )A .-4B .-3C .-2D .-1解析:选B ∵(m +n )⊥(m -n ),∴(m +n )·(m -n )=m 2-n 2=(λ+1)2+1-(λ+2)2-4=0,解得λ=-3.故选B.2.(2018·永州二模)已知非零向量a ,b 的夹角为60°,且|b |=1,|2a -b |=1,则|a |=( ) A.12 B .1 C.2D .2解析:选A ∵非零向量a ,b 的夹角为60°,且|b |=1,∴a ·b =|a |×1×12=|a |2,∵|2a-b |=1,∴|2a -b |2=4a 2-4a ·b +b 2=4|a |2-2|a |+1=1,∴4|a |2-2|a |=0,∴|a |=12,故选A.3.(2019·益阳、湘潭调研)已知向量a ,b 满足|a |=1,|b |=2,a +b =(1,3),记向量a ,b 的夹角为θ,则t a n θ=________.解析:∵|a |=1,|b |=2,a +b =(1,3),∴(a +b )2=|a |2+|b |2+2a ·b =5+2a ·b =1+3,∴a ·b =-12,∴cos θ=a ·b |a |·|b |=-14,∴sin θ=1-⎝⎛⎭⎫-142=154,∴t a n θ=sin θc os θ=-15. 答案:-15[课时跟踪检测]1.已知向量a ,b 满足|a |=1,|b |=23,a 与b 的夹角的余弦值为sin 17π3,则b ·(2a-b )等于( )A .2B .-1C .-6D .-18解析:选D ∵a 与b 的夹角的余弦值为sin 17π3=-32, ∴a ·b =-3,b ·(2a -b )=2a ·b -b 2=-18.2.已知平面向量a =(-2,3),b =(1,2),向量λa +b 与b 垂直,则实数λ的值为( ) A.413 B .-413C.54D .-54解析:选D ∵a =(-2,3),b =(1,2),∴λa +b =(-2λ+1,3λ+2).∵λa +b 与b 垂直,∴(λa +b )·b =0,∴(-2λ+1,3λ+2)·(1,2)=0,即-2λ+1+6λ+4=0,解得λ=-54.3.已知向量a ,b 满足|a |=1,b =(2,1),且a ·b =0,则|a -b |=( ) A.6 B.5 C .2D.3解析:选A 因为|a |=1,b =(2,1),且a ·b =0,所以|a -b |2=a 2+b 2-2a ·b =1+5-0=6,所以|a -b |= 6.故选A.4.已知向量a =(1,2),b =(2,-3).若向量c 满足(a +c )∥b ,c ⊥(a +b ),则c =( ) A.⎝⎛⎭⎫79,73B.⎝⎛⎭⎫-73,-79C.⎝⎛⎭⎫73,79D.⎝⎛⎭⎫-79,-73 解析:选D 设c =(m ,n ),则a +c =(1+m,2+n ),a +b =(3,-1), 因为(a +c )∥b ,则有-3(1+m )=2(2+n ), 即3m +2n =-7,又c ⊥(a +b ),则有3m -n =0,联立⎩⎪⎨⎪⎧3m +2n =-7,3m -n =0.解得⎩⎨⎧m =-79,n =-73.所以c =⎝⎛⎭⎫-79,-73. 5.(2018·襄阳调研)已知i ,j 为互相垂直的单位向量,a =i -2j ,b =i +λj ,且a 与b 的夹角为锐角,则实数λ的取值范围是( )A.⎝⎛⎭⎫-2,23∪⎝⎛⎭⎫23,+∞B.⎝⎛⎭⎫12,+∞ C .(-∞,-2)∪⎝⎛⎭⎫-2,12D.⎝⎛⎭⎫-∞,12解析:选C 不妨令i =(1,0),j =(0,1),则a =(1,-2),b =(1,λ),因为它们的夹角为锐角,所以a ·b =1-2λ>0且a ,b 不共线,所以λ<12且λ≠-2,故选C.6.(2019·石家庄质检)若两个非零向量a ,b 满足|a +b |=|a -b |=2|b |,则向量a +b 与a 的夹角为( )A.π6B.π3C.2π3D.5π6解析:选A ∵|a +b |=|a -b |,∴|a +b |2=|a -b |2,∴a ·b =0.又|a +b |=2|b |,∴|a +b |2=4|b |2,|a |2=3|b |2,∴|a |=3|b |,cos 〈a +b ,a 〉=(a +b )·a |a +b ||a |=a 2+a ·b |a +b ||a |=|a |22|b ||a |=|a |2|b |=32,故a +b 与a 的夹角为π6. 7.(2018·宝鸡质检)在直角三角形ABC 中,角C 为直角,且AC =BC =1,点P 是斜边上的一个三等分点,则CP ―→·CB ―→+CP ―→·CA ―→=( )A .0B .1 C.94D .-94解析:选B 以点C 为坐标原点,分别以CA ―→,CB ―→的方向为x 轴,y 轴的正方向建立平面直角坐标系(图略),则C (0,0),A (1,0),B (0,1),不妨设P ⎝⎛⎭⎫13,23,所以CP ―→·CB ―→+CP ―→·CA ―→=CP ―→·(CB ―→+CA ―→)=13+23=1.故选B.8.(2019·武汉调研)已知平面向量a ,b ,e 满足|e |=1,a ·e =1,b ·e =-2,|a +b |=2,则a ·b 的最大值为( )A .-1B .-2C .-52D .-54解析:选D 不妨设e =(1,0),则a =(1,m ),b =(-2,n )(m ,n ∈R),则a +b =(-1,m +n ),所以|a +b |=1+(m +n )2=2,所以(m +n )2=3,即3=m 2+n 2+2mn ≥2mn +2mn =4mn ,当且仅当m =n 时等号成立,所以mn ≤34,所以a ·b =-2+mn ≤-54,综上可得a ·b的最大值为-54.9.已知平面向量a ,b 满足a ·(a +b )=3,且|a |=2,|b |=1,则向量a 与b 的夹角的正弦值为________.解析:∵a ·(a +b )=a 2+a ·b =22+2×1×cos 〈a ,b 〉=4+2cos 〈a ,b 〉=3, ∴cos 〈a ,b 〉=-12,又〈a ,b 〉∈[0,π],∴sin 〈a ,b 〉=1-c os 2〈a ,b 〉=32. 答案:3210.(2018·湖北八校联考)已知平面向量a ,b 的夹角为2π3,且|a |=1,|b |=2,若(λa +b )⊥(a -2b ),则λ=________.解析:∵|a |=1,|b |=2,且a ,b 的夹角为2π3,∴a ·b =1×2×⎝⎛⎭⎫-12=-1,又∵(λa +b )⊥(a -2b ),∴(λa +b )·(a -2b )=0,即(λa +b )·(a -2b )=λa 2-2b 2+(1-2λ)a ·b =λ-8-(1-2λ)=0,解得λ=3.答案:311.(2018·合肥一检)已知平面向量a ,b 满足|a |=1,|b |=2,|a +b |=3,则a 在b 方向上的投影等于________.解析:∵|a |=1,|b |=2,|a +b |=3, ∴(a +b )2=|a |2+|b |2+2a ·b =5+2a ·b =3, ∴a ·b =-1,∴a 在b 方向上的投影为a ·b |b |=-12.答案:-1212.如图所示,在等腰直角三角形AOB 中,OA =OB =1,AB ―→=4AC ―→,则OC ―→·(OB ―→-OA ―→)=________.解析:由已知得|AB ―→|=2,|AC ―→|=24,则OC ―→·(OB ―→-OA ―→)=(OA ―→+AC ―→)·AB ―→=OA ―→·AB ―→+AC ―→·AB ―→=2cos 3π4+24×2=-12. 答案:-1213.(2019·南昌质检)设向量a ,b 满足|a |=|b |=1,且|2a -b |= 5. (1)求|2a -3b |的值;(2)求向量3a -b 与a -2b 的夹角θ.解:(1)∵|2a -b |2=4a 2-4a ·b +b 2=4-4a ·b +1=5,∴a ·b =0, ∴|2a -3b |=4a 2-12a ·b +9b 2=4+9=13.(2)cos θ=(3a -b )·(a -2b )|3a -b ||a -2b |=3a 2+2b 29a 2+b 2×a 2+4b 2=510×5=22,∵θ∈[0,π],∴θ=π4.。
人教版高中数学教案:第5章:平面向量,教案,课时第 (14)
第十四教时教材:平移目的:要求学生理解“平移”的概念和平移的几何意义,并掌握平移公式,能运用公式解决有关具体问题。
过程:一、平移的概念:点的位置、图形的位置改变,而形状、大小没有改变,从而导致函数的解析式也随着改变。
这个过程称做图形的平移。
(作图、讲解) 二、 平移公式的推导:1.设P (x , y )是图形F图象F ’上的对应点为P ’(x ’, y ’)——可以看出一个平移实质上是一个向量。
2.设= (h , k ),即:'+=∴(x ’, y ’) = (x , y ) + (h , k ) ∴⎩⎨⎧+=+=ky y hx x '' —— 平移公式3.注意:1︒它反映了平移后的新坐标与原坐标间的关系 2︒知二求一3︒这个公式是坐标系不动,点P (x , y )按向量a = (h , k )平移到点P ’(x ’, y ’)。
另一种平移是:点不动,把坐标系平移向量-a ,即:⎩⎨⎧-=-=k y y hx x ''。
这两种变换使点在坐标系中的相对位置是一样的, 这两个公式作用是一致的。
三、应用:例一、(P 121 例一)1.把点A (-2, 1)按a = (3, 2)平移,求对应点A ’的坐标(x ’, y ’)。
2.点M (8, -10)按a 平移后对应点M ’的坐标为(-7, 4),求a 。
解:1.由平移公式:⎩⎨⎧=+==+-=321y'132x' 即对应点A ’的坐标为(1, 3)2.由平移公式:⎩⎨⎧=-=⇒⎩⎨⎧+-=+=-141510487k h k h 即a 的坐标为(-15, 14) 例二、将函数y = 2x 的图象l 按a = (0, 3)平移到l ’,求l ’的函数解析式。
解:设P (x , y )为l 上任一点,它在l ’上的对应点为P ’(x ’, y ’)由平移公式:⎩⎨⎧⎩⎨⎧-==⇒+=+=3''3'0'y y x x y y x x代入y = 2x 得:y ’ - 3 = 2x ’ 即:y ’ = 2x ’ + 3按习惯,将x ’、y ’写成x 、y 得l ’的解析式:y = 2x + 3(实际上是图象向上平移了3个单位) 例三、已知抛物线y = x 2+ 4x + 7,1.求抛物线顶点坐标。
人教版高中数学教案:第5章:平面向量,教案,课时第 (21)
第二十二教时教材:复习一——向量、向量的加法与减法、实数与向量的积目的:通过复习对上述内容作一次梳理,使学生对知识的理解与应用提高到一个新的水平。
过程:一、知识(概念)的梳理:1.向量:定义、表示法、模、几种特殊向量 2.向量的加法与减法:法则(作图)、运算律3.实数与向量的积:定义、运算律、向量共线的充要条件、平面向量的基本定义二、 例题:1.若命题M :'=;命题N :四边形ABB ’A ’是平行四边形。
则M 是N 的 ( C ) (A )充分不必要条件 (B ) 必要不充分条件(C )充要条件 (D ) 既不充分也不必要条件 解:若=,则 ||=||,且, 方向相同∴AA ’∥BB ’ 从而ABB ’A ’是平行四边形,即:M ⇒N 若ABB ’A ’是平行四边形,则|AA ’|=|BB ’|,且AA ’∥BB ’ ∴|'|=|'| 从而'=,即:N ⇒M 2.设A 、B 、C 、D 、O 是平面上的任意五点,试化简:1︒CD BC AB ++ 2︒BD AC DB ++ 3︒CO OB OC OA -+-- 解:1︒ 原式= =+=++)(2︒ 原式= =+=++)(3︒ 原式= =+=+-=--+-)()()( 3.a =“向东走5km ”,b =“向西走12km ”,试求a +b 的长度与方向。
解:如图:13125||22=+=(km )tan ∠AOB =512 , ∴∠AOB = arctan 512∴a + b 的长为13km ,方向与成arctan 512的角。
4.如图:1︒已知a 、b 、c 、d ,求作向量a -b 、c -d 。
2︒已知a 、b 、c ,求作a + c - b5.设x 为未知向量,a 、b 为已知向量,解方程2x -(5a +3x -4b )+21a -3b =0解:原方程可化为:(2x - 3x ) + (-5a +21a ) + (4b -3b ) = 0 ∴x =29-a + b6.设非零向量a 、b 不共线,c =k a +b ,d =a +k b (k ∈R),若c ∥d ,试求k 。
人教版高中数学教案:第5章:平面向量,教案,课时第 (10)
第十教时教材:线段的定比分点目的:要求学生理解点P 分有向线段21P P 所成的比λ的含义和有向线段的定比分点公式,并能应用解题。
过程:一、复习:1.向量的加减,实数与向量积的运算法则 2.向量的坐标运算 二、提出问题:线段的定比分点1.线段的定比分点及λP 1, P 2是直线l 上的两点,P 是l 上不同于P 1, P 2的任一点,存在实数λ,使 P 1=λ2 λ叫做点P 分21P P 所成的比,有三种情况:λ>0(内分) (外分) λ<0 (λ<-1) ( 外分)λ<0 (-1<λ<0) 2.定比分点公式的获得:设P P 1=λ2PP点P 1, P, P 2坐标为(x 1,y 1) (x,y) (x 2,y 2) 由向量的坐标运算 P 1=(x-x 1,y-y 1) 2PP=( x 2-x 1, y 2-y 1) ∵P 1=λ2PP(x-x 1,y-y 1) =λ( x 2-x 1, y 2-y 1) ∴⎩⎨⎧-=--=-)()(2121y y y y x x x x λλ ⎪⎩⎪⎨⎧++=++=⇒λλλλ112121y y y x x x 定比分点坐标公式 3.中点公式:若P 是21P P 中点时,λ=1 222121y y y x x x +=+=4.注意几个问题:1︒ λ是关键,λ>0内分 λ<0外分 λ≠-1若P 与P 1重合,λ=0 P 与P 2重合 λ不存在2︒ 中点公式是定比分点公式的特例3︒ 始点终点很重要,如P 分21P P 的定比λ=21则P 分12P 的定比λ=2 4︒ 公式:如 x 1, x 2, x, λ 知三求一 三、例题:例一 (P114例一) 知三求一 例二 (P114例二) △重心公式例三 若P 分有向线段的比为43,则A 分所成比为37-(作示意图) 例四 过点P 1(2, 3), P 2(6, -1)的直线上有一点,使| P 1P|:| PP 2|=3, 求P 点坐标解:当P 内分21P P 时 λ=3当P 外分21P P 时λ=-3当λ=3得P(5,0) 当λ=-3得P(8,-3)例五 △ABC 顶点A(1, 1), B(-2, 10), C(3, 7) ∠BAC 平分线交BC 边于D, 求D 点坐标解:∵AD 平分角∠BAC|AC|=1026222=+ |AB|=1039)3(22=+- ∴D 分向量CB 所成比λ=32设D 点坐标(x, y) 则 1321)2(323=+-+=x 54132132107=+⨯+=y ∴D 点坐标为:(1,541) 四、小结:定比分点公式,中点公式 五、作业:P115-116 练习 习题5.5P 1PP222PPPDBCA。
《平面向量》第5讲 平面向量的综合应用
求证:圆的方程是(x-x1)(x-x2)+(y-y1)(y-y2)= 0
应用三、用向量方法解决代数问题
例题3. 证明:对任意的实数a,b,c,d,恒有
2
ac bd a 2 b2 c 2 d 2 成立. 证明:设 m a, b , n c , d .
例题4. 证明:两角差的余弦公式:
cos cos cos sin sin
☆课堂小结☆
一个 转化 问题
向量 问题 + 翻译 向量 运算
回答 问题
课题:
平面向量的综合应用
☆主要方法☆
一个 转化 问题
向量 问题 + 翻译 向量 运算
回答 问题
应用一、用向量方法证明共线与相交问题 例题1.如图,已知△ABC的三条高是
AD,BE,CF,用向量方法
证明:AD,BE,CF相交于一点.
思路设计:
解析:设 AD,BE 交于一点 H, → → → BC=a,CA=b,CH=h, → → 则BH=a+h,AH=h-b,
→ → 分析:通过证明BA· CA=0. 解析:证明:如图所示, → → → → → → , BA· CA=(BO+OA)· OA -OC → → → = → , ∵BO=OC且 OA OC → → →2 →2 ∴BA· CA=OA -OC =0. ∴∠BAC=90° .
( ) | | | |
训练: 已知: 一个圆的直径的端点是A (x1, y1),B (x2, y2).
应用一、用向量方法证明共线与相交问题
→ → ∵BH⊥AC, ∴(a+h)· b=0.① 同理∴(h-b)· a=0.② ①+②得 h· b+h· a=0, → → ∴CH· BA=0. ∴三条高线 AD,BE,CF 相交于一点.
数学八年级第五章——第五章 平面向量教材分析
第五章平面向量教材分析这一章主要介绍平面向量的基础知识,包括平面向量的概念、运算以及简单应用等本章教学时间约25课时,具体安排如下:5.1向量约1课时5.2向量的加法与减法约2课时5.3实数与向量的积约2课时5.4平面向量的坐标运算约2课时5.5线段的定比分点约l课时5.6平面向量的数量积及运算律约2课时5.7平面向量数量积的坐标表示约1课时5.8平移约1课时5.9正弦定理、余弦定理约4课时5.10解斜三角形应用举例约2课时5.11实习作业约2课时5.12研究性课题向量在物理中的应用约3课时小结与复习约2课时(一)本章内容向量这一概念是由物理学和工程技术抽象出来的,反过来,向量的理论和方法,又成为解决物理学和工程技术的重要工具,向量之所以有用,关键是它具有一套良好的运算性质,通过向量可把空间图形的性质转化为向量的运算,这样通过向量就能较容易地研究空间的直线和平面的各种有关问题向量不同于数量,它是一种新的量,关于数量的代数运算在向量范围内不都适用因此,本章在介绍向量概念时,重点说明了向量与数量的区别,然后又重新给出了向量代数的部分运算法则,包括加法、减法、实数与向量的积、向量的数量积的运算法则等之后,又将向量与坐标联系起来,把关于向量的代数运算与数量(向量的坐标)的代数运算联系起来,这就为研究和解决有关几何问题又提供了两种方法——向量法和坐标法本章共分两大节减法、实数与向量的积、平面向量的坐标运算;线段的定比分点、平面向量的数量积及运算律、平面向量数量积的坐标表示、平移等第二大节是“解斜三角形”这一大节可以看成是向量知识的应用,内容包括正弦定理、余弦定理,解斜三角形应用举例,实习作业和研究性课题等正弦定理、余弦定理是关于任意三角形边角之间关系的两个重要定理,教科书通过向量的数量积把三角形的边与角联系起来,推导出了这两个定理,并运用这两个定理初步解决了测量、工业、几何等方面的实际问题为培养学生的创新意识和实践能力,激发学生学习数学的好奇心,启发学生能够发现问题和提出问题,学会分析问题和创造性地解决问题,本节中安排了一个实习作业和研究性课题教学中要加以实施为扩大学生的知识面,本章中还安排了两个阅读材料,即“向量的三种类型”和“人们早期怎样测量地球的半径”本章重点是向量的概念,向量的几何表示和坐标表示,向量的线性运算,平面向量的数量积,线段的定比分点和中点坐标公式,平移公式,解斜三角形等难点是向量的概念,向量运算法则的理解和运用等(二)本章教学要求1.理解向量的概念,掌握向量的几何表示,了解共线向量的概念2.掌握向量的加法与减法3.掌握实数与向量的积,理解两个向量共线的充要条件4.了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算5.掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件6.掌握平面两点间的距离公式,掌握线段的定比分点公式和中点坐标公式,并且能熟练运用,掌握平移公式7.掌握正弦定理、余弦定理,并能初步运用它们解斜三角形,能利用计算器解决斜三角形的计算问题,通过解三角形的应用的教学,继续提高运用所学知识解决实际问题的能力通过实习作业和研究性课题,培养学生从数学角度对某些日常生活中和其他学科中出现的问题进行研究探索的能力本章一开始,从帆船航行的距离和方向两个要素出发,抽象出向量的概念,并重点说明了向量与数量的区别,然后介绍了向量的几何表示、向量的长度、零向量、单位向量、平行向量、共线向量、相等向量等基本概念向量的加法与减法、实数与向量的积,实际是向量的线性运算知识的加法、加法运算律,然后用相反向量及向量的加法定义向量的减法,这样把向量的加法与减法统一了起来教科书又通过向量的加法引入了实数与向量的积的定义,接着给出了实数与向量的积的运算律,最后介绍了向量共线的充要条件和平行向量基本定理,这样为后面介绍平面向量的坐标表示奠定了理论基础在“向量及其表示”中,主要介绍有向线段,向量的定义,向量的长度,向量的表示,相等向量,相反向量,自由向量,零向量在“向量的线性运算”中,介绍向量加法的定义,向量加法的运算律;向量减法的定义,向量方程,向量长度的三角不等式;数乘向量的定义,单位向量,数乘向量的运算律在“向量的共线与共面”中,介绍平行向量,共线向量,共面向量,两个向量共线的充要条件,直线的向量方程,三个向量共面的充要条件在“向量的内积”中,介绍两个向量的夹角,向量内积的定义,向量内积的几何意义,向量内积的运算律,向量内积的性质通过建立直角坐标系,给出了向量的另一种表示式----坐标表示式,这样就使得向量与它的坐标建立起了一一对应的关系,然后给出了向量的加法、减法及实数与向量的积的坐标运算,这就为用“数”的运算处理“形”的问题搭起了桥梁在向量坐标运算的基础上,还导出了线段的定比分点坐标公式和线段的中点公式向量的数量积体现了向量的长度和三角函数之间的一种关系,特别用向量的数量积能有效地解决线段垂直的问题把向量的数量积应用到三角形中,还能解决三角形边角之间的有关问题平面向量数量积的概念,教科书是从学生熟知的功的概念引入的,在介绍了平面向量数量积的定义及几何意义之后,又介绍了平面向量数量积的5个重要性质、运算律及其坐标表示特别通过两个向量数量积的坐标表示,很容易推导出平面内两点间的距离公式本大节的最后,介绍了平移(这里讲的平移是指图象的平移)接着推导出了平移公式,并举例说明了平移公式的应用对这一章中概念的处理,是根据概念在教科书中的地位、作用及特点,对不同的概念采用不同的处理方式一些概念是通过例举反映概念实质的具体的对象,并充分发挥几何图形的直观的特点,使学生在感性认识的基础上建立概念,并理解概念的实质,像向量的概念等;一些概念则不仅给出严格的定义,还要分析满足定义的充要条件,要求学生理解、记忆,并通过适当的练习,让学生会用,像向量数量积的概念等这一章中的一些例题,不是先给出解法,而是先进行分析,探索出解题思路,再给出解法解题后,有的还总结出解决该题时运用的数学思想和数学方法,有的还让学生进一步考虑相关的问题关于向量运算,是借助于几何直观,并通过与数的对比引入,这样便于学生接受例如,关于向量的减法,在向量代数中,常有两种定义方法,第一种是将向量的减法定义为向量加法的逆运算,也就是,如果a+x=b,则 x叫做向量b与a的差这样,作b-a时,可先在平面内取一点O,再作,则就是b-a第二种方法是在相反向量的基础上,通过向量的加法定义向量的减法,即已知a、b,定义b-a=b+(-a)在这种定义下,作b-a时,可先在平面内任取一点O,作则由向量加法的平行四边形法则知,由于b+(-a)=b-a,即就是b-a实验表明,对中学生来讲,用这一种定义方法,学生不易理解向量减法的定义,但很容易作b-a而用第二种定义方法,学生根容易接受b-a=b+(-a),但作b-a较繁为便于学生接受,在定义向量的减法时,先给出相反的向量(对比初中代数中的相反数),再把b-a定义为b+(-a),并告诉学生,作b-a时,只要按教科书图作出即可(三)注意培养学生的思维能力注意对学生思维能力的培养,对知识的处理,都尽量设计成让学生自己观察、比较、猜想、分析、归纳、类比、想象、抽象、概括的形式,从而培养学生的思维能力对于解斜三角形,教科书是这样引入的:“在初中,我们已会解直角三角形,就是说,已会根据直角三角形中的边与角求出未知的边与角那么,如何来解斜三角形呢?也就是如何根据斜三角形中已知的边与角求出未知的边与角呢?”通过设问,引起学生思考(四)注意数学思想方法的渗透在这一章中,从引言开始,就注意结合具体内容渗透数学思想方法海中航行时的位移,渗透数学建模的思想通过介绍相等向量及有关作图的训练,渗透平移变换的思想由于向量具有两个明显特点——“形”的特点和“数”的特点,这就使得向量成了数形结合的桥梁,向量的坐标实际是把点与数联系了起来,进而可把曲线与方程联系起来,这样就可用代数方程研究几何问题,同时也可以用几何的观点处理某些代数问题,因此这部分知识还渗透了数形结合的解析几何思想(五)突出知识的应用(1)加强向量在数学知识中的应用,注意突出向量的工具性,很多公式都用向量来推导,如线段的定比分点公式、平面两点间距离公式、平移公式及正弦定理、余弦定理等(2)加强向量在物理中的应用为培养学生用向量知识解决有关物理问题的能力,在这一章的最后,安排了一个研究性课题,即向量在物理中的应用知识建立物理量之间的关系,也就是抽象成数学模型,然后再用建立起的数学模型解释相关物理现象(3)注意联系实际在这一章中,把联系实际分成三个层次:第一层次,在知识的引入上联系实际例如,向量的概念从帆船航行的位移引入,平面向量的数量积从力作的功引入第二层次,引导学生用数学知识解决实际生活和生产中的问题例如,在向量的加法之后,安排了求小船实际航行的速度的例题在解斜三角形之后,专门安排了“解斜三角形应用举例”一节等第三层次,安排实习作业安排实习作业的目的是进一步巩固学生所学知识,提高学生分析问题解决问题的能力、动手操作的能力以及用数学语言表达实习过程和实习结果的能力,从而增强学生用数学的意识。
高中数学基础知识大筛查(5)-平面向量
基础知识大筛查-平面向量概念与定理1、有关概念(1)向量的概念:既有大小又有方向的量,注意向量和数量的区别。
向量常用有向线段来表示 (2)零向量:长度为0的向量叫零向量,记作:0,注意零向量的方向是任意的;(3)单位向量:长度为一个单位长度的向量叫做单位向量(与AB共线的单位向量是||AB AB ±); (4)相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性;(5)平行向量(也叫共线向量):方向相同或相反的非零向量、叫做平行向量,记作:∥,规定零向量和任何向量平行。
提醒:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线, 但两条直线平行不包含两条直线重合;③平行向量无传递性!(因为有0 );④三点A B C 、、共线⇔ AB AC、共线;(6)相反向量:长度相等方向相反的向量叫做相反向量。
的相反向量是-。
2.平面向量的基本定理:如果e 1和e 2是同一平面内的两个不共线向量,那么对该平面内的任一向量a ,有且只有一对实数1λ、2λ,使a =1λe 1+2λe 2。
3、实数与向量的积:实数λ与向量的积是一个向量,记作λ,它的长度和方向规定如下:()()1,2a a λλ= 当λ>0时,λ的方向与的方向相同,当λ<0时,λ的方向与的方向相反,当λ=0时,0a λ=,注意:λ≠0。
4、平面向量的数量积:(1)两个向量的夹角:对于非零向量a ,b ,作,OA a OB b ==,AOB θ∠=()0θπ≤≤称为向量,的夹角,当θ=0时,,同向,当θ=π时,,反向,当θ=2π时,,垂直。
(2)平面向量的数量积:如果两个非零向量,,它们的夹角为θ,我们把数量||||cos a b θ叫做与的数量积(或内积或点积),记作:a ∙b ,即a ∙b =cos a b θ。
规定:零向量与任一向量的数量积是0,注意数量积是一个实数,不再是一个向量。
人教版高中数学教案:第5章:平面向量,教案,课时第 (23)
第二十四教时教材:复习三——平面向量的坐标运算、定比分点过程:一、复习:平面向量坐标的概念,运算法则,定比分点 二、 例题:1.已知四边形的顶点坐标为A (1,2),B (2,5),C (8,14),D (3,5), 求证:四边形ABCD 是一个梯形。
证:∵=(2,3), =(6,9) 且2×9-3×6=0 ∴∥又∵AB =(1,3), =(-5,-9) 而1×(-9)-3×(-5)≠0 ∴AB∥∴ABCD 为梯形2.设a = (1,x ),b = (-1,3),且2a + b ∥a -2b ,试求x 。
解:2a + b = (1,), a -2b = (3, x -6)∵2a + b ∥a -2b ∴1×(x -6) - (2x +3)×3 = 0 ⇒ x = -3 3.已知:A (1,-2),B (2,1),C (3,2),D (-2,3),1︒求证:A ,B ,C 三点不共线2︒以、AC 为一组基底来表示AD ++CD解:1︒∵=(1,3), AC =(2,4) ∵1×4-3×2≠0 AC ∴A ,B ,C 三点不共线2︒++=(-3,5)+(-4,2)+(-5,1) = (-12,8) 设:AD +BD +CD = m AB + n AC 即:(-12,8) = (m + 2n , 3m + 4n )∴⎩⎨⎧-==⇒⎩⎨⎧+=+=-2232438212n m n m n m ∴++= 32-22 4.已知M (1,-3),N (4,6),P (x ,3),且三点共线,求点P 分有向线段MN 所成的比λ及x 的值。
解:36)3(341---=--=x x λ 解得:λ= 2, x = 35.已知△ABC 的顶点是A (x 1, y 1),B (x 2, y 2),C (x 3, y 3),求△ABC 的重心G 的坐标(x , y )。
5类平面向量解题技巧(“爪子定理”、等和线、极化恒等式、奔驰定理与三角形四心问题、(解析版)
5类平面向量解题技巧(“爪子定理”、系数和(等和线)、极化恒等式、奔驰定理与三角形四心问题、范围与最值问题)技法01“爪子定理”的应用及解题技巧技法02系数和(等和线)的应用及解题技巧技法03极化恒等式的应用及解题技巧技法04奔驰定理与三角形四心的应用及解题技巧技法05范围与最值的应用及解题技巧技法01“爪子定理”的应用及解题技巧“爪子定理”是平面向量基本定理的拓展,用“爪子定理”能更快速求解,需同学们重点学习掌握知识迁移形如AD xAB y AC =+条件的应用(“爪子定理”)“爪”字型图及性质:(1)已知,AB AC 为不共线的两个向量,则对于向量AD,必存在,x y ,使得AD xAB y AC =+。
则,,B C D 三点共线⇔1x y +=当01x y <+<,则D 与A 位于BC 同侧,且D 位于A 与BC 之间当1x y +>,则D 与A 位于BC 两侧1x y +=时,当0,0x y >>,则D 在线段BC 上;当0xy <,则D 在线段BC 延长线上(2)已知D 在线段BC 上,且::BD CD m n =,则n m AD AB AC m n m n=+++A例1-1.(全国·高考真题)设D 为ABC 所在平面内一点,且3BC CD =,则()A.1433AD AB AC=-+B.1433AD AB AC=-C.4133AD AB AC=+ D.4133AD AB AC=-解析:由图可想到“爪字形图得:1344AC AB AD =+ ,解得:1433AD AB AC=-+答案:A例1-2.(2023江苏模拟)如图,在ABC 中,13AN NC = ,P 是BN 上的一点,若211AP mAB AC =+,则实数m 的值为()A.911B.511 C.311D.211解:观察到,,B P N 三点共线,利用“爪”字型图,可得AP mAB nAN =+,且1m n +=,由13AN NC = 可得14AN AC = ,所以14AP mAB nAC =+ ,由已知211AP mAB AC =+ 可得:12841111n n =⇒=,所以311m =答案:C1.(2022·全国·统考高考真题)在ABC 中,点D 在边AB 上,2BD DA =.记CA m CD n == ,,则CB=()A .32m n- B .23m n-+C .32m n+ D .23m n+ 【答案】B【分析】根据几何条件以及平面向量的线性运算即可解出.【详解】因为点D 在边AB 上,2BD DA =,所以2BD DA =,即()2CD CB CA CD -=- ,所以CB =3232CD CA n m -=- 23m n =-+ .故选:B .【答案】A【详解】试题分析:,故选A .【答案】A【分析】利用向量的线性运算,即可得到答案;【详解】连结AC ,则AC 为ABC 的中位线,∴111222EF AC a b ==+ ,故选:A【答案】A【分析】分析:首先将图画出来,接着应用三角形中线向量的特征,求得1122BE BA BD =+,之后应用向量的加法运算法则-------三角形法则,得到BC BA AC =+,之后将其合并,得到3144BE BA AC =+ ,下一步应用相反向量,求得3144EB AB AC =-,从而求得结果.【详解】根据向量的运算法则,可得()111111222424BE BA BD BA BC BA BA AC=+=+=++1113124444BA BA AC BA AC=++=+,所以3144EB AB AC =-,故选A.【点睛】该题考查的是有关平面向量基本定理的有关问题,涉及到的知识点有三角形的中线向量、向量加法的三角形法则、共线向量的表示以及相反向量的问题,在解题的过程中,需要认真对待每一步运算.【答案】12【详解】依题意,121212()232363DE DB BE AB BC AB AC AB AB AC =+=+=+-=-+,∴121263AB AC AB AC λλ-+=+ ,∴116λ=-,223λ=,故12121632λλ+=-+=.【考点定位】平面向量的加法、减法法则.分析、计算能力.中等题.技法02系数和(等和线)的应用及解题技巧知识迁移如图,P 为AOB ∆所在平面上一点,过O 作直线//l AB ,由平面向量基本定理知:存在,x y R ∈,使得OP xOA yOB=+下面根据点P 的位置分几种情况来考虑系数和x y +的值①若P l ∈时,则射线OP 与l 无交点,由//l AB 知,存在实数λ,使得OP AB λ=而AB OB OA =- ,所以OP OB OA λλ=-,于是=-=0x y λλ+②若P l ∉时,(i )如图1,当P 在l 右侧时,过P 作//CD AB ,交射线OA OB ,于,C D 两点,则OCD OAB ∆~∆,不妨设OCD ∆与OAB ∆的相似比为k由,P C D ,三点共线可知:存在R λ∈使得:(1)(1)OP OC OD k OA k OBλλλλ=+-=+- 所以(1-)x y k k kλλ+=+=(ii )当P 在l 左侧时,射线的反向延长线与AB 有交点,如图1作P 关于O 的对称点P ',由(i )的分析知:存在存在R λ∈使得:(1)(1)OP OC OD k OA OB λλλλ'=+-=+- 所以--(1)OP k OA OBλλ'=+- 于是--(1-)-x y k k kλλ+=+=综合上面的讨论可知:图中OP 用,OA OB线性表示时,其系数和x y +只与两三角形的相似比有关。
[精]高三第一轮复习全套课件5向量:平面向量的坐标运算
解得 x
1 2
例 2 平面内给定三个向量 a 3, 2 , b 1, 2 , c 4,1 ,
回答下列问题:
(1)求满足 a m b n c 的实数 m,n;
(2)若 a kc // 2 b a ,求实数 k;
新疆 源头学子小屋 特级教师 王新敞
wxckt@ /wxc/
新疆 源头学子小屋 特级教师 王新敞
wxckt@
/wxc/
新疆 源头学子小屋 特级教师 王新敞
wxckt@
/wxc/
平面向量的坐标运算
例 1 已知向量 a (1, 2), b ( x ,1), u a 2 b , v 2 a b ,且 u // v ,
求实数 x 的值
新疆 源头学子小屋
/wxc/
特级教师 王新敞
(3)若 d 满足 d c // a b ,且 d c
5 ,求 d
解: (1)由题意得 3 , 2 m 1, 2 n 4 ,1
5 m m 4n 3 9 所以 ,得 8 2m n 2 n 9
新疆 源头学子小屋
p //: www.x t h y k g tj .cm /wc / o x
特级教师 王新敞
wct x k @16 .cm 2 o
新疆 源头学子小屋
p //: www.x t h y k g tj .cm /wc / o x
特级教师 王新敞
wct x k @16 .cm 2 o
解:设 D(x,y)
新疆 源头学子小屋
2018版数学(理)大复习讲义第五章平面向量5
1。
平面向量基本定理如果e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2.其中,不共线的向量e1,e2叫做表示这一平面内所有向量的一组基底。
2。
平面向量的坐标运算(1)向量加法、减法、数乘及向量的模设a=(x1,y1),b=(x2,y2),则a+b=(x1+x2,y1+y2),a-b=(x1-x2,y1-y2),λa=(λx1,λy1),|a|=错误!.(2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标.②设A(x1,y1),B(x2,y2),则错误!=(x2-x1,y2-y1),|错误!|=错误!。
3.平面向量共线的坐标表示设向量a=(x1,y1),b=(x2,y2)(a≠0),如果a∥b,那么x1y2-x2y1=0;反过来,如果x1y2-x2y1=0,那么a∥b。
【知识拓展】1.若a与b不共线,λa+μb=0,则λ=μ=0。
2.设a=(x1,y1),b=(x2,y2),如果x2≠0,y2≠0,则a∥b⇔错误!=错误!.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)平面内的任何两个向量都可以作为一组基底.(×)(2)若a,b不共线,且λ1a+μ1b=λ2a+μ2b,则λ1=λ2,μ1=μ2。
(√) (3)平面向量的基底不唯一,只要基底确定后,平面内的任何一个向量都可被这组基底唯一表示.(√)(4)若a=(x1,y1),b=(x2,y2),则a∥b的充要条件可表示成错误!=错误!.(×)(5)当向量的起点在坐标原点时,向量的坐标就是向量终点的坐标。
(√)1。
(教材改编)如果e1,e2是平面α内所有向量的一组基底,λ,μ是实数,则下列说法中正确的有______.(填序号)①若λ,μ满足λe1+μe2=0,则λ=μ=0;②对于平面α内任意一个向量a,使得a=λe1+μe2成立的实数λ,μ有无数对;③线性组合λe1+μe2可以表示平面α内的所有向量;④当λ,μ取不同的值时,向量λe1+μe2可能表示同一向量。
高考数学一轮复习第5章平面向量第1节平面向量的概念及线性运算课件理新人教A版
[最新考纲] 1.了解向量的实际背景. 2.理解平面向量的概念,理解两个向量相等的含义. 3.理解向量的几何表示. 4.掌握向量加法、减法的运算,并理解其几何意义. 5.掌握向量数乘的运算及其几何意义,理解两个向量共线的含义. 6.了解向量线性运算的性质及其几何意义.
[考情分析]
[核心素养]
平面向量的相关概念,平面向量的线性运算,共线向 1.数学运算
量定理及其应用仍是 2021 年高考考查的热点,题型仍将是 2.直观想象
选择题与填空题,分值为 5 分.
1
课 前 ·基 础 巩 固
‖知识梳理‖ 1.向量的有关概念 (1)向量:既有大小又有 1 __方__向_____的量叫做向量,向量的大小叫做向量的 2 _____模____. (2)零向量:长度为 3 ___0______的向量,其方向是任意的. (3)单位向量:长度等于 4 _1_个__单__位___的向量.
(2)∵ka+b 与 a+kb 共线, ∴存在实数 λ,使 ka+b=λ(a+kb),即(k-λ)a=(λk-1)b. 又 a,b 是两个不共线的非零向量, ∴kλk--λ=1=0,0. ∴k2-1=0.∴k=±1.
|变式探究| 1.若将本例(1)中“B→C=2a+8b”改为“B→C=a+mb”,则 m 为何值时,A,B,D 三点共线? 解:B→D=B→C+C→D=(a+mb)+3(a-b)=4a+(m-3)b, 若 A,B,D 三点共线,则存在实数 λ,使B→D=λA→B, 即 4a+(m-3)b=λ(a+b),∴4m=-λ3,=λ,解得 m=7. 故当 m=7 时,A,B,D 三点共线.
法则(或几何意义)
运算律
交换律:a+b= 8 __b_+__a____;
结 合 律 : (a + b) + c = 9 _a_+__(b_+__c_)_
第五章 平面向量
第一节平面向量的概念与线性运算一、知识梳理1.向量的有关概念(1).向量:既有 ,又有的量叫向量;通常记为 ;长度为的向量是零向量,记作: ; 的向量,叫单位向量.(2).平行向量(或共线向量)记作: ;规定:零向量与任何向量 .(3).相等向量:(4).相反向量:2.向量加法与减法(1).向量加法按法则或法则;向量加运算律:交换律: ;结合律:(2).向量减法作法:3.实数与向量的积(1). 实数与向量a的积是一个向量,记作,它的长度与方向规定如下:长度:方向:(2).运算律4.共线定理:5.平面向量基本定理:6.基底:二、考点分析考点一:平面向量的基本概念例1.给出下列命题:①若|a|=|b|,则a=b;②若A,B,C,D是不共线的四点,则AB DC是四边形ABCD为平行四边形的充要条件;③若a=b,b=c,则a=c;④a=b的充要条件是|a|=|b|且a//b;⑤若a//b,b//c,则a//c;其中正确的序号是。
例2:设0为单位向量,(1)若为平面内的某个向量,则=||·0;(2) 若与a0平行,则=||·0;(3)若与0平行且||=1,则=0。
上述命题中,假命题个数是()A.0 B.1 C.2 D.3考点二:平面向量的线性运算例2:如图所示,已知正六边形ABCDEF,O是它的中心,若BA=a,BC=b,试用a,b将向考点三:平面向量共线定理例3:如图所示,△ABC 中,点M 是BC 的中点,点N 在AC 边上,且AN=2NC,AM 与BN 相交于点P,求AP :PM 的值.三、课堂检测1.(2010•四川)设点M 是线段BC 的中点,点A 在直线BC 外,2BC =16,||||,AB AC AB AC +=-则|AM |=( )A.8B.4C.2D.12.已知△ABC 中,点D 在BC 边上,且2,,CD DB CD r AB sAC ==+则r+s 的值是( )24..33A B C.-3 D.0 3.平面向量a,b 共线的充要条件是( )A.a,b 方向相同B.a,b 两向量中至少有一个为0C.存在λ∈R,使b=λ aD.存在不全为零的实数λ1,λ2,使λ1a+λ2b=04.已知O 、A 、B 是平面上的三个点,直线AB 上有一点C,满足20,AC CB +=则OC 等于( )2112.2.2..3333A OA OB B OA OBC OA OBD OA OB --+--+5.设D 、E 、F 分别是△ABC 的三边BC 、CA 、AB 上的点,且2,2,2,DC BD CE EA AF FB ===则AD BE CF ++与()BCA.反向平行B.同向平行C.不平行D.无法判断6.已知a,b 是不共线的向量,AB =λa+b,AC =a+μb,(λ,μ∈R),那么A 、B 、C 三点共线的充要条件为()A.λ+μ=2B.λ-μ=1C.λμ=-1D.λμ=1 7、关于非零向量,有下列四个命题 ① “||+||=||”的充要条件是“方向相同”; ② “||+||=||”的充要条件是“方向相反”; ③ “||+||=||”的充要条件是“有相等的模”;④“||-||=||”的充要条件是“方向相同”;其中真命题的个数是(A ) 1个 (B )2个 (C )3个 (D )4个8.若点O 是△ABC 所在平面内的一点,且满足|||2|OB OC OB OC OA -=+-,则△ABC 的形状为________.9.在平行四边形ABCD 中,E 、F 分别是边CD 和BC 的中点,若AC =λAE +u ,AF 其中λ,u∈R,则λ+u=________.10.如图,平面内有三个向量OA 、OB 、,OC 其中OA 与OB 的夹角为120°,OA 与OC 的夹角为30°,且|OA |=|OB |=1,|OC |=若OC =λOA +μOB (λ,μ∈R),则λ+μ的值为_______11.如图,在△ABC 中,点O 是BC 的中点,过点O 的直线分别交直线AB,AC 于不同的两点M,N,若,,AB mAM AC nAN ==则m+n 的值为________.第二节 平面向量的基本定理及坐标表示一、知识梳理1.平面向量基本定理如果e 1,e 2是同一平面内的两个 向量,那么对于这一平面内的任意向量a , 一对实数λ1,λ2,使a =λ1e 1+λ2e 2.其中,不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组 . 2.平面向量的坐标运算(1)向量的加法、减法、数乘向量及向量的模: 设a =(x 1,y 1),b =(x 2,y 2),则a +b = ,a -b = , λa = ,|a |= (2)向量坐标的求法:①若向量的起点是坐标原点,则终点坐标即为向量的坐标. ②设A (x 1,y 1),B (x 2,y 2),则AB ―→= , |AB ―→|=(x 2-x 1)2+(y 2-y 1)2. 3.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0,则a ∥b ⇔ . 基础检测1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)平面内的任何两个向量都可以作为一组基底.( )(2)若a ,b 不共线,且λ1a +μ1b =λ2a +μ2b ,则λ1=λ2,μ1=μ2.( )(3)平面向量的基底不唯一,只要基底确定后,平面内的任何一个向量都可被这组基底唯一表示.( )(4)若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件可表示成x 1x 2=y 1y 2.( )2.已知平面向量a =(1,1),b =(1,-1),则向量12a -32b =( )A .(-2,-1)B .(-2,1)C .(-1,0)D .(-1,2) 3.设向量a =(x,1),b =(4,x ),且a ,b 方向相反,则x 的值是( ) A .2 B .-2 C .±2 D .04.已知平行四边形ABCD 中,AD ―→=(3,7),AB ―→=(-2,3),对角线AC 与BD 交于点O ,则CO ―→的坐标为( )A.⎝⎛⎭⎫-12,5B.⎝⎛⎭⎫12,5C.⎝⎛⎭⎫12,-5D.⎝⎛⎭⎫-12,-5 5.已知向量a =(1,3),b =(-2,k ),且(a +2b )∥(3a -b ),则实数k =________.6.在▱ABCD 中,AB ―→=a ,AD ―→=b ,AN ―→=3NC ―→,M 为BC 的中点,则MN ―→=________(用a ,b 表示).二、考点分析考点一 平面向量基本定理及其应用例1.1.如图,在△ABC 中,BE 是边AC 的中线,O 是边BE 的中点,若AB =a ,AC =b ,则AO =( )A.12a +12b B.12a +13b C.14a +12b D.12a +14b2.已知向量e 1,e 2不共线,实数x ,y 满足(3x -4y )e 1+(2x -3y )e 2=6e 1+3e 2,则2x -y =________.3.如图,已知▱ABCD 的边BC ,CD 的中点分别是K ,L ,且AK ―→=e 1,AL ―→=e 2,试用e 1,e 2表示BC ―→,4.如图,以向量OA ―→=a ,OB ―→=b 为邻边作▱OADB ,BM ―→=13BC ―→,CN ―→=13CD ―→,用a ,b 表示OM ―→,ON ―→,MN ―→.✧ 方法总结1.用平面向量基本定理解决问题的一般思路(1)先选择一组基底,并运用该基底将条件和结论表示为向量的形式,再通过向量的运算来解决. (2)在基底未给出的情况下,合理地选取基底会给解题带来方便.另外,要熟练运用平面几何的一些性质定理.2.应用平面向量基本定理应注意的问题(1)只要两个向量不共线,就可以作为平面向量的一组基底,基底可以有无穷多组.(2)利用已知向量表示未知向量,实质就是利用平行四边形法则或三角形法则进行向量的加减运算或数乘运算.考点二 平面向量的坐标运算例2.1.若向量a =(2,1),b =(-1,2),c =⎝⎭⎫0,52,则c 可用向量a ,b 表示为( ) A.12a +b B .-12a -b C.32a +12b D.32a -12b 2.(2018·江西九校联考)已知O 为坐标原点,向量OA ―→=(2,3),OB ―→=(4,-1),且AP ―→=3PB ―→,则|OP ―→|=________.3.已知A (-2,4),B (3,-1),C (-3,-4).设AB ―→=a ,BC ―→=b ,CA ―→=c ,且CM ―→=3c ,CN ―→=-2b ,(1)求3a +b -3c ;(2)求满足a =m b +n c 的实数m ,n ; (3)求M ,N 的坐标及向量MN ―→的坐标.✧ 方法总结平面向量坐标运算的技巧(1)向量的坐标运算主要是利用向量的加、减、数乘运算的法则来进行求解,若已知有向线段两端点的坐标,则应先求向量的坐标.要注意点的坐标和向量的坐标之间的关系,一个向量的坐标等于向量终点的坐标减去始点的坐标.(2)解题过程中,常利用向量相等则其坐标相同这一原则,通过列方程(组)来进行求解. 考点三 平面向量共线的坐标表示例3.已知a =(1,0),b =(2,1).(1)当k 为何值时,k a -b 与a +2b 共线;(2)若AB ―→=2a +3b ,BC ―→=a +m b ,且A ,B ,C 三点共线,求m 的值.1.平面向量共线的充要条件的2种形式(1)若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件是x 1y 2-x 2y 1=0. (2)若a ∥b (b ≠0),则a =λb .2.共线问题解含参,列出方程求得解向量共线的坐标表示既可以判定两向量平行,也可以由平行求参数.当两向量的坐标均非零时,也可以利用坐标对应成比例来求解.变式3.已知向量a =(1,2),b =(1,0),c =(3,4).若λ为实数,(a +λb )∥c ,则λ=( ) A.14 B.12 C .1 D .2三、课堂检测1.向量a ,b 满足a +b =(-1,5),a -b =(5,-3),则b =( )A .(-3,4)B .(3,4)C .(3,-4)D .(-3,-4)2.若向量AB ―→=(2,4),AC ―→=(1,3),则BC ―→=( )A .(1,1)B .(-1,-1)C .(3,7)D .(-3,-7)3.已知向量a =(5,2),b =(-4,-3),c =(x ,y ),若3a -2b +c =0,则c =( )A .(-23,-12)B .(23,12)C .(7,0)D .(-7,0)4.在平行四边形ABCD 中,AC 为一条对角线,若AB ―→=(2,4),AC ―→=(1,3),则BD ―→=( )A .(-2,-4)B .(-3,-5)C .(3,5)D .(2,4)5.已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,向量m =(a ,3b )与n =(c os A ,sin B )平行,则A =( )A.π6B.π3C.π2D.2π36.在△ABC 中,P ,Q 分别是AB ,BC 的三等分点,且AP =13AB ,BQ =13BC ,若AB ―→=a ,AC ―→=b ,则PQ ―→=( )A.13a +13b B .-13a +13b C.13a -13b D .-13a -13b 7.已知向量a =(2,1),b =(1,-2),若m a +n b =(9,-8)(m ,n ∈R),则m -n 的值为________. 8.设e 1,e 2是平面内一组基向量,且a =e 1+2e 2,b =-e 1+e 2,则向量e 1+e 2可以表示为另一组基向量a ,b 的线性组合,即e 1+e 2=________a +________b .9.已知向量a =(1,2),b =(x,1),u =a +2b ,v =2a -b ,且u ∥v ,则实数x 的值为________. 10.已知梯形ABCD ,其中AB ∥DC ,且DC =2AB ,三个顶点A (1,2),B (2,1),C (4,2),则点D 的坐标为________.5.已知A (-3,0),B (0,3),O 为坐标原点,C 在第二象限,且∠AOC =30°,OC ―→=λOA ―→+OB ―→,则实数λ的值为________.3.(1)a ·b =b ·a .(2)(λa )·b =λ(a ·b )=a ·(λb ). (3)(a +b )·c =a ·c +b ·c . 4.平面向量数量积的有关结论已知非零向量a =(x 1,y 1),b =(x 2,y 2),a 与b 的夹角为θ.(2)两个向量的数量积是一个实数,向量的加、减、数乘运算的运算结果是向量.( ) (3)由a ·b =0可得a =0或b =0.( ) (4)(a ·b )c =a (b ·c ).( )(5)两个向量的夹角的范围是⎣⎡⎦⎤0,π2.( ) 2.已知a ·b =-122,|a |=4,a 和b 的夹角为135°,则|b |的值为( ) A .12 B .6 C .3 3D .33.已知向量a ,b 满足|a |=1,|b |=23,a 与b 的夹角的余弦值为sin 17π3,则b ·(2a -b )等于( ) A .2 B .-1 C .-6D .-184.(2017·全国卷Ⅱ)设非零向量a ,b 满足|a +b |=|a -b |,则( ) A .a ⊥b B .|a |=|b | C .a ∥bD .|a |>|b |5.(2017·全国卷Ⅰ)已知向量a =(-1,2),b =(m,1).若向量a +b 与a 垂直,则m =________. 6.已知|a |=5,|b |=4,a 与b 的夹角θ=120°,则向量b 在向量a 方向上的投影为________.二、考点分析考点一 平面向量的数量积的运算1.设向量a =(-1,2),b =(m,1),如果向量a +2b 与2a -b 平行,那么a 与b 的数量积等于( ) A .-72 B .-12 C.32 D.522.已知向量a 与b 的夹角为60°,且a =(-2,-6),|b |=10,则a ·b =________. 3.已知两个单位向量e 1,e 2的夹角为π3,若向量b 1=e 1-2e 2,b 2=3e 1+4e 2,则b 1·b 2=________.✧ 方法总结向量数量积的2种运算方法4.(2018·云南第一次统一检测)在▱ABCD 中,|AB ―→|=8,|AD ―→|=6,N 为DC 的中点,BM ―→=2MC ―→,则AM ―→·NM ―→=( )A .48B .36C .24D .125.(2018·石家庄质检)在△ABC 中,已知AB ―→与AC ―→的夹角为90°,|AB ―→|=2,|AC ―→|=1,M 为BC 上的一点,且AM ―→=λAB ―→+μAC ―→ (λ,μ∈R),且AM ―→·BC ―→=0,则λμ的值为________.6.(2017·北京高考)已知点P 在圆x 2+y 2=1上,点A 的坐标为(-2,0),O 为原点,则AO ―→·AP ―→的最大值为________. ✧ 方法总结计算有关平面几何中数量积的方法(1)根据图形之间的关系,用长度和相互之间的夹角都已知的向量分别表示出向量a ,b ,然后再根据平面向量的数量积的定义进行计算求解.(2)若图形适合建立平面直角坐标系,可建立坐标系,求出a ,b 的坐标,通过坐标运算法则求得.考点二 平面向量数量积的性质角度(一) 平面向量的模1.(2017·全国卷Ⅰ)已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则|a +2b |=________ 2.如图,在△ABC 中,O 为BC 的中点,若AB =1,AC =3,AB ―→与AC ―→的夹角为60°,则|OA ―→|=________.✧ 方法总结 求向量模的常用方法(2)若向量a ,b 是以非坐标形式出现的,求向量a 的模可应用公式|a |2=a 2=a ·a ,或|a ±b |2=(a ±b )2=a 2±2a ·b +b 2,先求向量模的平方,再通过向量数量积的运算求解.角度(二) 平面向量的夹角3.(2018·成都二诊)已知平面向量a ,b 的夹角为π3,且|a |=1,|b |=12,则a +2b 与b 的夹角是( )A.π6B.5π6C.π4D.3π44.已知平面向量a =(1,2),b =(4,2),c =m a +b (m ∈R),且c 与a 的夹角等于c 与b 的夹角,则m =( )A .-2B .-1C .1D .2 ✧ 方法总结求向量夹角问题的方法(1)当a ,b 是非坐标形式时,求a 与b 的夹角θ,需求出a ·b 及|a |,|b |或得出它们之间的关系; (2)若已知a =(x 1,y 1)与b =(x 2,y 2),则cos 〈a ,b 〉=x 1x 2+y 1y 2x 21+y 21·x 22+y 22. [注意] 〈a ,b 〉∈[0,π].角度(三) 平面向量的垂直5.(2018·湘中名校联考)已知向量a =(x ,3),b =(x ,-3),若(2a +b )⊥b ,则|a |=( )A .1 B. 2 C. 3 D .26.已知向量AB ―→与AC ―→的夹角为120°,且|AB ―→|=3,|AC ―→|=2.若AP ―→=λAB ―→+AC ―→,且AP ―→⊥BC ―→,则实数λ的值为________.✧方法总结1.利用坐标运算证明两个向量的垂直问题坐标运算公式,计算出这两个向量的数量积为0即可.2.已知两个向量的垂直关系,求解相关参数的值根据两个向量垂直的充要条件,列出相应的关系式,进而求解参数.变式2.1.(2018·广东五校协作体诊断)已知向量a =(λ,1),b =(λ+2,1),若|a +b |=|a -b |,则实数λ的值为( )A .-1B .2C .1D .-22.(2017·山东高考)已知e 1,e 2是互相垂直的单位向量.若3e 1-e 2与e 1+λe 2的夹角为60°,则实数λ的值是________.3.已知AB ―→·BC ―→=0,|AB ―→|=1,|BC ―→|=2,AD ―→·DC ―→=0,则|BD ―→|的最大值为________.考点三 平面向量与三角函数的综合例3.(2017·江苏高考)已知向量a =(c os x ,sin x ),b =(3,-3),x ∈[0,π]. (1)若a ∥b ,求x 的值;(2)记f (x )=a ·b ,求f (x )的最大值和最小值以及对应的x 的值.✧ 方法总结平面向量与三角函数的综合问题的解题思路(1)给出的向量坐标中含有三角函数,求角的大小,解题思路是运用向量共线或垂直的坐标表示,或等式成立的条件等,得到三角函数的关系式,然后求解.(2)给出的向量坐标中含有三角函数,求向量的模或者向量的其他表达形式,解题思路是利用向量的运算,结合三角函数在定义域内的有界性或基本不等式进行求解.变式3.已知函数f (x )=a ·b ,其中a =(2cos x ,-3sin 2x ),b =(cos x,1),x ∈R. (1)求函数y =f (x )的单调递减区间;(2)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,f (A )=-1,a =7,且向量m =(3,sin B )与n =(2,sin C )共线,求边长b 和c 的值.三、课堂检测1.(2018·洛阳第一次统一考试)已知平面向量a ,b 满足|a |=2,|b |=1,a 与b 的夹角为2π3,且(a +λb )⊥(2a -b ),则实数λ的值为( )A .-7B .-3C .2D .32.已知平面向量a ,b 的夹角为π3,且a ·(a -b )=2,|a |=2,则|b |等于( )A. 2 B .2 3 C .4 D .23.已知向量a =(-1,2),b =(3,1),c =(x,4),若(a -b )⊥c ,则c ·(a +b )=( ) A .(2,12) B .(-2,12) C .14 D .104.(2018·湘中名校联考)平面向量a 与b 的夹角为45°,a =(1,1),|b |=2,则|3a +b |等于( ) A .13+6 2 B .2 5 C.30 D.345.若单位向量e 1,e 2的夹角为π3,向量a =e 1+λe 2(λ∈R),且|a |=32,则λ=( )A .-12 B.32-1 C.12 D.326.(2018·西安八校联考)已知点A (-1,1),B (1,2),C (-2,-1),D (3,4),则向量CD ―→在BA ―→方向上的投影是( )A .-3 5B .-322C .3 5 D.3227.已知平面向量a ,b 满足a ·(a +b )=3,且|a |=2,|b |=1,则向量a 与b 的夹角的正弦值为________.8.(2018·张掖一诊)已知平面向量a ,b 满足|a |=|b |=1,a ⊥(a -2b ),则|a +b |=________. 9.已知向量m =(λ+1,1),n =(λ+2,2),若(m +n )⊥(m -n ),则向量m ,n 的夹角的余弦值为________.10.如图所示,在等腰直角三角形AOB 中,OA =OB =1,AB ―→=4AC ―→,则OC ―→·(OB ―→-OA ―→)=________.11.(2018·惠州三调)若O 为△ABC 所在平面内任一点,且满足(OB ―→-OC ―→)·(OB ―→+OC ―→-2OA ―→)=0,则△ABC 的形状为( )A .等腰三角形B .直角三角形仁荣中学2019届高三文科数学一轮复习导学案------专题五 平面向量11C .正三角形D .等腰直角三角形12.(2017·全国卷Ⅱ)已知△ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则P A ―→·(PB ―→+PC ―→)的最小值是( )A .-2B .-32C .-43D .-113.(2017·浙江高考)如图,已知平面四边形ABCD ,AB ⊥BC ,AB =BC =AD =2,CD =3,AC 与BD 交于点O .记I 1=OA ―→·OB ―→,I 2=OB ―→·OC ―→,I 3=OC ―→·OD ―→,则( )A .I 1<I 2<I 3B .I 1<I 3<I 2C .I 3<I 1<I 2D .I 2<I 1<I 314.(2018·广东五校协作体第一次诊断考试)已知向量a =(1,3),b =(3,m ),且b 在a 方向上的投影为3,则向量a 与b 的夹角为________.15.已知向量a =⎝⎛⎭⎫-12,32,OA ―→=a -b ,OB ―→=a +b ,若△OAB 是以O 为直角顶点的等腰直角三角形,则△OAB 的面积为________.16.已知|a |=4,|b |=8,a 与b 的夹角是120°.(1)计算:①|a +b |,②|4a -2b |;(2)当k 为何值时,(a +2b )⊥(k a -b ).17.在平面直角坐标系xOy 中,点A (-1,-2),B (2,3),C (-2,-1). (1)求以线段AB ,AC 为邻边的平行四边形两条对角线的长. (2)设实数t 满足(AB ―→-t OC ―→)·OC ―→=0,求t 的值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2009届高考数学概念方法题型易误点技巧总结(五)1、向量有关概念:(1)向量的概念:既有大小又有方向的量,注意向量和数量的区别。
向量常用有向线段来表示,注意不能说向量就是有向线段 ,为什么?(向量可以平移)。
如已知A ( 1,2),B (4,2),贝U 把向量 7B 按向量a =(- 1,3)平移后得到的向量是 ___________________ (答:(3,0 ))(3)单位向量:长度为一个单位长度的向量叫做单位向量(与AB 共线的单位向量是AB 、;);■|AB|(4) 相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性;(5)平行向量(也叫共线向量):方向相同或相反的非零向量a 、b 叫做平行向量,记作:a // b ,规定零向量和任何向量平行 。
提醒:①相等向量一定是共线向量,但共线向量 不一定相等;②两个向量平行与与两条直线平行是不同的两个概念: 两个向量平行包含两个向量共线,但两条直线平行不包含两条直线重合;③ 平行向量无传递性!(因为有0);④三点A B 、C 共线二ABAC 共线;同,终点相同。
(3)若"AB 」DC ,则ABCD 是平行四边形。
(4)若ABCD 是平行四边形,则 AB =DC o (5)若 a 士b,=',则 a=c 。
(6)若 a/ bb c ',则 a//c 。
其中正确的是 ___________ (答: (4) ( 5))2、向量的表示方法:(1)几何表示法:用带箭头的有向线段表示,如 AB ,注意起点 在前,终点在后;(2)符号表示法:用一个小写的英文字母来表示,如a ,b ,c 等;(3)坐标表示法:在平面内建立直角坐标系,詁以与x 轴、y 轴方向相同的两个单位向量 i , j 为 基底,则平面内的任一向量 a 可表示为a = xi • yj x, y ,称x,y 为向量a 的坐标,a点D 在BC 边上,且CD = 2 DB , CD = r AB + sAC ,贝U r 十s 的值是—(答:0)4、 实数与向量的积斗:实数•与向量a 的积是一个向量,记作■ a ,它的长度和方向规(6)相反向量:长度相等方向相反的向量叫做相反向量。
a 的相反向量是一a 。
如下列命题:(1)若a 〔,则a =b 。
(2)两个向量相等的充要条件是它们的起点相 同,终点相同。
(3)若…T T=x, y 叫做向量a 的坐标表示。
如果向量的起点在原点,那么向量的坐标与向量的终点坐 标相同。
3.平面向量的基本定理内的任一向量a ,有且只有一对实数 「、■ 2,使a = \&+ '2代。
女口 1叫34(答:一a ——b ) ; (2)下列向量组中,2 2 H向量基底的是 A. © =(0,0),仓=(1, _2) B . G =(-1,2),生=(5,7) C.■4 -4 1 3D. © =(2,-3)© =(—,-―)(答:B ) ; (3)已知 AD,BE 分别是人ABC 的边 BC, AC 上的中 2 4 线,且 AD =a,BE =b ,则BC 可用向量a,b 表示为:如果&和e 2是同一平面内的两个不共线向量,那么对该平面*(1)若a=(1,1),b =(1, -1),^(-1,2),则 c 二 2^ 能作为平面内所有 * (3,5)6 =(6,10) (答: -a -b ); (4)已知 ABC 中,33定如下:(1 j=|人a ,(2 )当入>0时,九a的方向与a的方向相同,当丸<0时,九a的方向与a 的方向相反,当■ = 0时,■ a = 0,注意:,a丰0。
5、平面向量的数量积:(1)两个向量的夹角:对于非零向量a ,b ,作 OA = a,OB = b ,一 AOB = T0乞二乞二称为向量 当二=二时, 2 彳(2)平面向量的数量积:如果两个非零向量 | a ||b| COST叫做a 与b 的数量积(或内积或点积) 规定:零向量与任一向量的数量积是 0,注意数量积是 AC|=4, |"BC|=5,则 AB BC= __________ (答: 4 H 4 呻 片 TT =a kb,d a-b , C 与d 的夹角为一,则k 等于_ 4 (答:23 ); b 的夹角,当= 0时, a , b 同向,当v =二时,a , b 反向, b 垂直。
a , b ,它们的夹角为 v, ,记作:a * b ,即a ・b = 旦一个实数,不再是一个向量 我们把数量。
如(1) COST 。
△ ABC 中,|AB |=3, | 1 1已知 a =(1, —),b =(0, —),c2 彳2卄 …(3)已知 a =2,哨=5,a* =-3,贝y a b 等于 —9); (2) (答: 1 ); (4)已知a,b 是两个非 4 ■ 呻4零向量,且 a =b )= a —b ,贝U a 与a b 的夹角为 (答: 30) (3) |b|=5, (4)0。
如已知| a'|=3 , W ) 5 a *b 的几何意义:数量积a * b 等于a 的模|a|与b 在a 上的投影的积。
向量数量积的性质:设两个非零向量a , b ,其夹角为二,则:b 在a 上的投影 为|b|cosr ,它是一个实数,但不一定大于 且a b =12,则向量a 在向量b 上的投影为(答: 向时,a * b =—a 'b * 4a *b = a b ②当a ,b 同向时, 2 4 * ,特别地,a = a *a ;当a 与b 反 ;当v 为锐角时,a • b > 0,且a 、b 不同向,a b 0是为锐角 的必要非充分条件;当v 为钝角时,a * b v 0,且a 、b 不反向,a b ■ 0是二为钝角的必 要非充分条件; , ③非零向量a , b 夹角二的计算公式:COST = :④|a ・b$|a||b|。
如(1)已知 a = (■ ,2 ■ ) , b = (3 ■ ,2),如果a 与b 的夹角为锐角,贝U ■的取值范围是 、 4 , , 1 九 < ——或人>0且九式一);(2)已知人OFQ 的面积为 3 3 (答: 1 V3 S ,且 OF FQ =1,若 S :: 2 2 则OF , FQ 夹角二的取值范围是 JI JI(答:(一 ,));(3 )已知 T 4* 3 ka +b = — kb ,其中 k A 0,①用 a 与b 的夹角二的大小(答: a =( C O )S , s<i nb ) 4 4 k 表示a b ;②求k 2 1 ① a b (k 0); 4k 6、向量的运算: (1)几何运算: ①向量加法:利用“平行四边形法则”进行,但“平行四边形法则”占适用于不共线的 _ 向量,如此之外,向量加法还可利用“三角形法则”:设AB 二a,BC 二b ,那么向量AC 叫,y( C (ay 与 b 之间有关系式 a b 的最小值,并求此时1 卜②最小值为,71 - 60)2;② 7B —A D —DC'= ___ ;③(AB —CD)-(AC — BD) =______+4 —4 呻-I 4;(2)若正方形 ABCD 的边长为 1, AB 二 a, BC 二 b,AC =c , (答:2辽);(3)若O 是L ABC所在平面内一点,且满足OB +OC —2OA ,则LI ABC 的形状为 ____ (答:直角三角形);(4)若D 为 :ABC 的边BC 的中点,.'ABC 所在平面内有一点 P ,满足"PA "BP"C P =0,设导J =丸,则k 的值为___ (答:2); (5)若点O 是厶ABC 的外心,且 OA OB 1 抚,|PDI —则△ ABC 的内角C 为___ (答:120j );(2)坐标运算:设a 科%屮)山=(x 2, y 2),则:①向量的加减法运算:a _b =(为_x 2, % _ y 2)。
如(1)已知点A(2,3), B(5,4),C (7,10),若AP=AB+入AC (扎€R ),则当入= ________ 时,点P 在第一、三象限的角平分线上11 JT TT (答:一);(2)已知 A(2,3), B(1,4),且 AB=(sin x,cosy) , x, y ^(—' / ),则 x + y = _2 2JI11(答:(1-),(-7,9));3④平面向量数量积:a ・b=x ,x 2 ■ y 1y 2。
如已知向量a =( sinx , cosx ) , b =( sinx ,做 a 与 b 的和,即 a • b 二 AB• BC 二 AC ;②向量的减法:用“三角形法则”:设AB=a,AC=b,那么a_b 二 忌AC 总, 由减向量的终点指向被减向量的终点。
注意:此处减向量与被减向量的起点相同。
_1,如(1)T —I T—f TT T T T化简:①AB+BC+CD=金— 〜八(答:①AD ;②CB ;③0);4 4 4贝U |a +b +c| = ___ (OB-OC OB -Jl JT2,2(答:"或—1);( 3)已知作用在点 A(1,1)的三个力F ;=(3,4), F 2 =(2,—5)尼=(3,1),则6 2 -合力F =^F1 F 2 F 3的终点坐标是 __________ (答: (9,1))② 实数与向量的积:a - x-i , y^ - x 1^ y-i 。
③若A(x,, yj, B (X 2, y 2),则AB = x 2 -x 1 y 2予1,即一个向量的坐标等于表示这个1斗向量的有向线段的终点坐标减去起点坐标。
如设A(2,3), B(-1,5),且AC = 1 AB ,3IIIET*十$ T .__sinx ) , c =(- 1, 0 )。
(1)若 x =一,求向量 a 、C 的夹角;(2 )若 x € [38 f(x)二a b 的最大值为1,求’的值(答:(1)150;(2)1或 -X 2-1);⑤向量的模:|a|=\,x 2 • y[ 夹角为60,那么|a+3b| = ___________ -],函数 4,a =|a |2 二 _(答13);y 。
如已知a,b 均为单位向量,它们的⑥两点间的距离:若A N,% ,B X2, y2,则|AB|—, x?-捲图,在平面斜坐标系xOy中,.xOy^pO; ,J面上任一点』关于斜坐标系的斜坐标是这样定义的:若0P二xq • ye2 ,其中e,e2分别为与x轴、y轴同方向的单位向量,贝U P点斜坐标为(x, y)。