基本不等式与最值

合集下载

用基本不等式求最值六种方法

用基本不等式求最值六种方法

用基本不等式求最值六种方法基本不等式是求解数学问题中常用的工具,可以通过基本不等式来求解最值问题。

下面将介绍六种使用基本不等式求解最值问题的方法。

方法一:两边平方法若要求一个式子的最大值或最小值,在不改变问题的本质情况下,可以通过平方的方式将问题转化为一个更容易处理的形式。

例如,我们要求a+b 的最小值,可以通过平方的方式将其转化为一个更易处理的问题,即(a+b)^2=a^2+b^2+2ab,然后应用基本不等式,得到(a+b)^2≥ 2ab。

由此可见,通过两边平方后,可使用基本不等式求得 a+b 的最小值。

方法二:四平方法四平方法指的是对式子的四个项分别平方,将一些复杂的问题转化为四个简单展开的项的和,然后再应用基本不等式进行推导。

例如,我们要求 a^2 + b^2 的最小值,可以采用四平方法将其转化为 a^2/2 + a^2/2 + b^2/2 + b^2/2 的和,即 (a^2/2 + b^2/2) + (a^2/2 + b^2/2),然后应用基本不等式,得到(a^2/2 + b^2/2) + (a^2/2 + b^2/2) ≥2√[(a^2/2)(b^2/2)] = ab。

方法三:绝对值法绝对值法是将问题中的绝对值项用不等式进行替代,然后使用基本不等式进行求解。

例如,我们要求,x-2,的最小值,可以将其转化为不等式形式,即x-2≥0或x-2≤0。

然后根据这两个不等式分别求解x的取值范围,得到最小值。

方法四:极值法极值法是将要求最值的式子看作一个函数,通过求函数的极值点来确定最值。

例如,我们要求 f(x) = x^2 的最小值,可以求函数的极值点。

对于二次函数 f(x) = ax^2 + bx + c,其极值点的横坐标是 -b/2a,通过求解方程 -b/2a = 0,可以得到 x = 0。

因此,f(x) = x^2 的最小值是 f(0) = 0。

方法五:辅助不等式法辅助不等式法是引入一个辅助不等式,通过该不等式来推导求解最值问题。

基本不等式求最值的八种思维方法

基本不等式求最值的八种思维方法

ʏ尹丹青利用基本不等式求最值是高考的常考点,下面介绍基本不等式求最值的八种思维方法㊂方法一: 定和 与 拼凑定和 求积的最值例1 已知x >0,y >0,且x +y =7,则(1+x )(2+y )的最大值为㊂解:由x +y =7,可拼凑(x +1)+(y +2)=10,利用基本不等式求最值㊂易得(x +1)+(y +2)=10,所以(1+x )(2+y )ɤ(1+x )+(2+y )22=25,当且仅当1+x =2+y ,即x =4,y =3时等号成立㊂故(1+x )㊃(2+y )的最大值为25㊂解后反思:利用基本不等式求最值时,必须同时满足: 一正 二定 三相等㊂方法二: 定积 与 拼凑定积 求和的最值例2 若a >-3,则a 2+6a +13a +3的最小值为㊂解:对a 2+6a +13a +3变形拼凑积为定值,利用基本不等式求最值㊂因为a >-3,所以a +3>0,4a +3>0㊂由基本不等式得a 2+6a +13a +3=(a +3)2+4a +3=(a +3)+4a +3ȡ2(a +3)㊃4a +3=4,当且仅当a +3=4a +3即a =-1时等号成立㊂故a 2+6a +13a +3的最小值为4㊂解后反思:观察积与和哪个是定值,根据 和定积动,积定和动 来求解㊂方法三: 和积化归 构建不等式求最值例3 已知x >0,y >0,且x +y +x y =3,若不等式x +y ȡm 2-m 恒成立,则实数m 的取值范围为㊂解:由基本不等式得(x +y )m i n =2,构建m 2-m ɤ(x +y )m i n ,再解不等式即可㊂由3-(x +y )=x y ɤ(x +y )24,当且仅当x =y =1时等号成立,解得x +y ȡ2或x +y ɤ-6(舍去),则(x +y )m i n =2㊂因为不等式x +y ȡm 2-m 恒成立,所以m 2-m ɤ(x +y )m i n ,即m 2-m ɤ2,解得-1ɤm ɤ2㊂解后反思:根据和与积的关系式,结合基本不等式可以求出积或和的最值,这就是 和积化归法㊂方法四: 化1 与 拼凑化1 求最值例4 已知a ,b 均为正数,且1a +1+2b -2=12,则2a +b 的最小值为㊂解:确定b >2,由题设变换得2a +b =2[2(a +1)+(b -2)]1a +1+2b -2,展开凑积为定值,利用基本不等式求最值㊂当b ɪ(0,2)时,2b -2<-1,而1a +1<1,则1a +1+2b -2<0,不符合题意,故b >2㊂2a +b =2(a +1)+(b -2)=2[2(a +1)+(b -2)]1a +1+2b -2=8㊃a +1b -2+2㊃b -2a +1+8ȡ216㊃a +1b -2㊃b -2a +1+8=16,当且仅当8㊃a +1b -2=2㊃b -2a +1,即a =3,b =10时等号成立㊂故2a +b 的最小值为16㊂解后反思: 化1 或 拼凑化1 求最值的关键是基本不等式的灵活应用㊂方法五:不等式链21a +1bɤa b ɤa +b2ɤa 2+b 22(a ,b ɪR *)的合理应用例5 已知a >0,b >0,若a +b =4,51知识结构与拓展高一数学 2023年7 8月Copyright ©博看网. All Rights Reserved.则( )㊂A .a 2+b 2有最小值4B .a b 有最大值2C .1a +1b 有最大值1D .1a +b 有最小值24解:已知a >0,b >0,则21a +1b ɤa b ɤa +b 2ɤa 2+b22,当且仅当a =b 时取等号㊂a 2+b 2ȡ(a +b )22=8,A 错误㊂由4=a +b ȡ2a b ,可得a b ɤ4,B 错误㊂1a +1b ȡ4a +b =1,C 错误㊂1a +b ȡ12a +b 2=122=24,当且仅当a =b =2时取等号,D 正确㊂应选D ㊂解后反思:不等式链21a +1bɤa b ɤa +b 2ɤa 2+b 22(a ,b ɪR *)分别为调和平均数㊁几何平均数㊁代数平均数㊁平方平均数㊂方法六:复杂分式构造法凑定值例6 已知a >b ,不等式a x 2+2x +b ȡ0对于一切实数x 恒成立,且∃x 0ɪR ,使得a x 20+2x 0+b =0成立,则a 2+b2a -b的最小值为㊂解:由不等式恒成立和∃x 0ɪR 使得方程成立可得a b =1,将a 2+b2a -b化成a -b +2a -b 求最值㊂因为不等式a x 2+2x +b ȡ0对于一切实数x 恒成立,所以a >0,4-4a b ɤ0㊂因为∃x 0ɪR ,使得a x 20+2x 0+b =0成立,所以4-4a b ȡ0㊂据上可得,4-4a b =0,所以a >0,b >0,a b =1㊂故a 2+b 2a -b =(a -b )2+2a ba -b=a -b +2a -b ȡ22,当且仅当a -b =2a -b 时取等号㊂故所求的最小值为22㊂解后反思:复杂分式构造法凑定值,其目的是构造和式的积为定值,再利用基本不等式求最值㊂方法七:反解代入消元法凑积为定值例7 设b >0,a b +b =1,则a 2b 的最小值为㊂解:已知等式转化为b =1a +1,再通过常数分离得到a b 2=(a +1)+1a +1-2求最值㊂已知b >0,a b +b =1,所以b =1a +1,a +1>0,所以a 2b =a 2a +1=(a +1-1)2a +1=a +1+1a +1-2ȡ2(a +1)㊃1a +1-2=0,当且仅当a +1=1a +1,即a =0时等号成立㊂故a 2b 的最小值为0㊂解后反思:借助反解代入消元,重新构造积为定值,这是求解最值的通法㊂方法八:两次使用基本不等式求最值例8 已知x ,y 都为正实数,则4(x y +1)x +x 2y的最小值为㊂解:4(x y +1)x +x 2y=4y +4x +x 2y ㊂因为x ,y 都为正实数,所以4y +x 2yȡ24x 2=4x ,当且仅当4y 2=x 2,即2y =x 时等号成立㊂所以4y +4x +x 2yȡ4x +4x ȡ216=8,当且仅当4x =4x,即x =1时等号成立㊂综上所述,当x =1,y =12时,4(x y +1)x +x 2y取得最小值为8㊂解后反思:两次使用不等式求最值,既要注意多次取等号时成立的条件,也要注意两次使用不等式后能 约分凑出定值㊂作者单位:江苏省丹阳高级中学(责任编辑 郭正华)61 知识结构与拓展 高一数学 2023年7 8月Copyright ©博看网. All Rights Reserved.。

基本不等式求最值(解析)

基本不等式求最值(解析)

高一秋季第2讲: 基本不等式求最值题型概览一. 基本不等式1.1 应用最值定理求最值; 1.2 幂指式内隐和积互化; 1.3 最值定理对“定值”的要求.二. 十种变形技巧2.1 整体处理求最值;2.2 凑系数(乘、除变量系数); 2.3 凑项(加、减常数项); 2.4 连续使用基本不等式求最值;2.5 分离 (分子)常数法求最值问题; 2.6 1y aa b=+ 型函数的最值; 2.7 变用公式;2.8 常数代换(逆用条件).三.不能使用基本不等式的情况3.1 应用函数单调性求最值;一. 基本不等式1.1应用最值定理求最值【典例】设函数1()21(0)f x x x x=+-<,则()f x () A. 有最大值 B.有最小值 C.是增函数 D.是减函数【答案】A【解析】由0x <,得20x ->,10x ->,所以()2f x x =+111(2)1221x x x ⎡⎤⎛⎫-=--+---- ⎪⎢⎥⎝⎭⎣⎦,当且仅当2x =时等号成立,所以()f x 有最大值,故选A . 【评注】:在使用基本不等式求最值时,要坚持“一正二定三等”这三项原则,藴着不等式的最值定理"积定和最小,和定积最大”.计算最值时我们常说的利用基本不等式求最值,即使用最值定理. 变式题组【变式1】下列不等式一定成立的是() A.21lg lg (0)4x x x ⎛⎫+>> ⎪⎝⎭B.12x x+C.212||()x x x +∈RD.211()1x x >∈+R 1.【答案】 C【解析】选项 A 中,当 12x =时,214x x +=; 选项 B 中,0x >时 ,12x x + ,0x <时, 12x x +-; 选项C中, 222||1(||1)0()x x x x -+=-∈R ; 选项 D 中,211x ∈+(0,1]()x ∈. 故选 C .【变式2】两个正数的和为定值时,则可求其积的最大值,即“和定积最大" 已知,x y +∈R ,且满足134x y+=,则xy 的最大值为_________________. 2.【答案】3 【解析】,x y +∈R,123434x y x y∴+=⨯=即3xy , 当且仅当 34x y = 即 32x =,2y =时取等号,∴xy 的最大值为 3.【变式3】若两个正数的积为定值时,则可求其和的最小值,即“积定和最小" 已知函数()4(0,0)af x x x a x=+>>在3x =时取得最小值,则a =___________.3.【答案】 36 【解析】∵()424a a f x x x x x =+⋅=当且仅当 4x =ax, 即 24a x = 时取等号,由 3x =, 得 36a =.【变式4】已知12x y a a +=+,12xy b b =,则()21212a ab b +的取值范围是______.4. 【答案】(,0][4,)-∞+∞【解析】由题可知 12x y a a +=+,12xy b b =所以 ()22221212()22a a x y x y xy x yb b xy xy y x++++===++, 当 ,x y 同号时,24x yy x++, 当 ,x y 异号时,2220x y y x ++-+=,故所求的取值范围是 (,0][4,)-∞+∞.【变式5】已知三个数a ,b ,c 成等比数列,若1a b c ++=,则b 的取值范围为_______. 5.【答案】1[1,0)0,3⎛⎤- ⎥⎝⎦【解析】设等比数列的公比为q ,则有111b q q =⎛⎫++ ⎪⎝⎭,由 12q q +或 12q q+-, 可得 b 的取值范围为1[1,0)0,3⎛⎤- ⎥⎝⎦.【变式6】已知,a b 均为正实数,且1a b +=,求1y a a ⎛⎫=+ ⎪⎝⎭.1b b ⎛⎫+ ⎪⎝⎭的最小值.6.【答案】254【解析】22111b a a b y ab ab ab a bab ab ab ab +=+++=++=++2()222a b ab ab ab ab +-=+-令 t ab =, 则 10,4t ⎛⎤∈ ⎥⎝⎦,2()f t t t =+在 10,4⎛⎤⎥⎝⎦上单调递减, ∴ 当 14t =时,min min 25()24y f t =-=.1.2 幂指式内隐和积互化【典例】若221x y +=,则x y +的取值范围是()A.[0,2]B.[2,0]-C.[2,)-+∞D.(,2]-∞-【答案】D【解析】由22222x y x y +⋅=y12(2x y ⇒+-当且仅当1x y ==-时取等号).故选D . 【评注】:利用最值定理求最值,首先要在条件中找到定值.同底幂的和为定值,隐藏着其积即指数和存在最大值. 变式题组【变式1】若实数,a b 满足2a b +=,则633a +的最小值是_____________. 1.【答案】 6【解析】332336a b a b +⋅=, 当且仅当 1a b == 时取等号,故 33a b + 的最小值是 6.【变式2】若241x y +=,则2x y +的取值范围是______________. 2.【答案】 6【解析】由222x y +==,得22x y +- (当且仅当 222x y = 时取等号) .【变式3】若实数,,a b c 满足222a b a b ++=,222a b c ++=2a b c ++,求c 的是大值. 3.【答案】22log 3-【解析】 由 222222a b a b a b +=-⋅=得 12a ba b+++, 即2a b +, 所以 (*22222222a b c a b a b c a b a b c ++++++=--=-=-1) 22(21)424r c -=⋅-, 所以 324c ⋅, 解得 22log 3c - (当且.仅当 1a b == 时取等号). 故所求 c 的最大值为 22log 3-.1.3最值定理对“定值”的要求【典例】已知1x >,则21y x x =+-的最小值为_______________.【答案】1【解析】221122111y x x x x =+=-+++--,当且仅当211x x -=-即1x =时等号成立,∴21y x x =+-的最小值为1+. 变式题组【变式1】函数212(0)y x x x=+>的最小值是______________.1. 【答案】2【解析】222311112232222y x x x x x x =+=++⋅==, 当且仅当 2122x x=, 即 x = 时等号成立,所以函数的最小值是 2.【变式2】已知0x >,0y >,且191x y+=,则x y +的最小值是____________. 【答案】16 【解析】由191x y +=, 得 19()10x y x y x y ⎛⎫+=+⋅+=+ ⎪⎝⎭910216y x y x y x ++=, 当且仅当 9y x x y =, 即当 4x =,12y = 时取等号,故 x y + 的最小值为 16.【变式3】已知实数0a >,0b >,11111a b +=++,则2a b +的最小值是( )A. B. C.3D.2解析: 借助换元,“1”的代换 令1a m +=,1b n +=, 则1m >,1n >,且111m n+=,则()()212123a b m n m n +=-+-=+-,又()112221233n m m n m n m n m n ⎛⎫+=+⋅+=+++≥+=+⎪⎝⎭所以22333a b m n +=+-≥+-=当且仅当2n m m n =,即1m =,12n =+时,取到最小值B.【变式4】已知,a b 为正实数,且2a b +=,则22221a b a b ++-+的最小值为 . 解析1:22222112121221211111a b b a a b a b a b a b a b +-++-=++-=++-+-=+-++++ 2(1)2(1)121111(1)()1(21)1()3131313b b a a a b a b a b a b ++=+++-=+++-=+≥⋅+++当且仅当2(1)1b a a b +=+,即1)a b =+,即64a b =-=时等号成立.【变式5】若正数,a b 满足1a b +=,则11a ba b +++的最大值是_____ 解析:(分母换元+常数替换):令1,1x a y b =+=+,则3x y +=(1,1x y >>)1111211a b x y a b x y x y ⎛⎫--∴+=+=-+ ⎪++⎝⎭,而()11111142333y x x y x y x y x y ⎛⎫⎛⎫+=+⋅+=++≥ ⎪ ⎪⎝⎭⎝⎭ 1122113a b a b x y ⎛⎫∴+=-+≤ ⎪++⎝⎭,则11a b a b +++的最大值是23.二. 十种变形技巧2.1整体处理求最值【典例】若实数,a b 满足12a b+=则ab 的最小值等于()A B.2C. D.4【答案】C【解析】12a b =+≥,当且仅当2b a =时取等号,整理得22ab .故选C . 【评注】:遇到求a b +,ab 的最值,一般可以对题设条件直接使用基本不等式,获得关于,a b ab +的不等式,进而化简变形,即可顺利获解.变式题组【变式1】利用基本不等式将条件式转化为关于目标式的不等式若正实数,x y 满足++=26x y xy ,则xy 的最小值是 ,则+x y 的最小值是 【答案】18【解析】26226xy x y xy =+++, 则 2--60, 解得2xy - (舍去)或32xy , 从而18xy (当且仅当 3x = ,6y =时取等号).【变式2】已知>>++=0,0,228x y x y xy 则+2x y 的最小值是 【答案】4【解析】2228(2)82x y x y x y +⎛⎫+=-⋅- ⎪⎝⎭, 得 2(2)x y ++4(2)320x y +-, 即 24x y +( 当且仅当 2x y = 时取等号).【变式3】已知实数,x y 满足3xy x y -=+,且1x >则(8)y x +的最小值是()A.33B.26C.25D.21 解析1: 转化为单变量问题3xy x y-=+31x y x +∴=- 336(8)(8)1132511x y x x x x x +∴+=⋅+=-++≥-- 解析2:因式分解3(1)(1)4xy x y x y -=+∴--=,令41,1x t y t -=-=4(1)(9)25t t∴++≥【变式4】由+=±222()2x y x y xy 的关系结合基本不等式转化若实数,x y 满足++=221x y xy ,则+x y 的最大值是【答案】【解析】 由 2()1x y xy +=+ 得 22()12x y x y +⎛⎫++ ⎪⎝⎭, 则233x y +( 当且仅当 x y == 时取等号).2.2 凑系数(乘、除变量系数)【典例】设<<302x ,则函数=-4(32)y x x 的最大值是【答案】92【解析】2232922(32)222x x y x x +-⎛⎫=⋅-= ⎪⎝⎭, 当且仅当232x x =-, 即 34x = 时等号成立. 所以函数的最大值是92. 变式题组【变式1】已已知<<103x ,则-(13)x x 取得最大值时x 的值是【答案】16【解析】 211313(13)3(13)332x x x x x x +-⎛⎫-=⋅-⋅= ⎪⎝⎭112, 当且仅当 313x x =- 即 16x = 时取等号. 故 (13)x x - 取得最大值时 x 的值是16.【变式2】配凑系数,活用不等式+222a b ab设+=220,0,12y x y x ,则的最大值为【答案】4【解析】2221222y x ++=⋅=2212224y x ++=, 当且仅当 x =,y = 取等 号, 故的最大值为【变式3】设>0x ,则3(1)x x -的最大值为 【解析】【变式4】设>,,0x y z ,则+++222xy yzx y z 的最大值为【答案】2【解析】因为2222x y y +⋅2222z y y +⋅所以222y y x y z ⋅+⋅≤++,所 以222xy yz x y z +=++.22222212xy z x y z++⋅=++,当且仅y ==时等号成立,故222xy yz x y z +++的最大值为2.2.3 凑项(加、减常数项)【典例】已知<54x ,求函数=-+-1()4245f x x x 的最大值.解:由->540x ,得⎡⎤=--++⎢⎥-⎣⎦1()(54)354f x x x -+=231,当且仅当=1x 时等号成立,故函数()f x 的最大值为5.评注:求解本题需要关注两点:一是对已知条件的适当变形,由<54x 得到->540x ;二是对目标函数解析式的适当变形,以便活用结论“若<0x,则⎡⎤⎛⎫+=--+- ⎪⎢⎥⎝⎭⎣⎦11()x x x x -=-2”.变式题组【变式1】若函数=+>-1()(2)2f x x x x 在=x n 处取得最小值,则=n 【解析】因为 11()(2)2422f x x x x x =+=-++--, 当且仅当1202x x -=>-, 即 3x = 时等号成立, 即函数在 3x = 处取得最小 值, 故 3n =.【变式2】函数⎛⎫-+=> ⎪-⎝⎭2211212x x y x x 的最小值是12【解析】221(21)11212121x x x x y x x x x -+-+===+=---111(21)2212x x -++-, 又因为 111(21)22212x x -+=- 当且仅当x 取等号 ), 所以函数的最小值是12.2.4连续使用基本不等式求最值 【典例】若>>0a b ,求+-216()a b a b 的最小值为【解析】++=+-⎡⎤+-⎢⎥⎣⎦2222216166416()()2a a a b a b a b a b (当且仅当=-b a b 且=8a a,即==2a b 时等号成立),故+-216()a b a b 的最小值为16.评注:此处第一次运用基本不等式,实质也是化二元为一元的消元过程.连续多次使用基本不等式求最值时,要注意等号成立的条件是否一致,否则就会出错。

利用基本不等式求最值的常见方法

利用基本不等式求最值的常见方法

即(x+y) 8, max 当且仅当x y 4时,等号成立.
总结与提升:
类型一:配凑定值法;
特征:函数能化成“积”或“和”为定值的形式
类型二:常数代换法;
特征:已知ax by c,求 d + e(a,b, c, d, e为非零常数)形式 xy
类型三:函数单调性法;拆项法 y ax2 bx c
3x 4 y 1 (3x 4 y)( 3 1 )
5
xy
3x
当且仅当

y

12 y x
即x
x 3y 5xy
1,
y

1 2
时,等号成立.
类型三:函数单调性法 (拆项法求函数的最值)
x 例3.已知xx>13, 求f (x) 2 2 的最小值.
x 1
2 3+2 解:f (x) (x1)2 2(x 1) 3 (x 1) 3 2
记t xy(t 0)
则(*)式可化为:t 2 2t 8 0,
可解得:t 4或t -2(舍),
即(xy) 16, min
当且仅当x y 4时,等号成立.
类型四:和积转化法
例4(. 1)已知x 0, y 0, xy x y 8,求xy的最小值;
(2)已知x 0, y 0, xy x y 8,求x y的最大值.
类型四:和积转化法
例4(. 1)已知x 0, y 0, xy x y 8,求xy的最小值; (2)已知x 0, y 0, xy x y 8,求x y的最大值.
解:(1)因为x 0, y 0, 所以xy x y 8 2 xy (8 *)

基本不等式求最值的类型及方法,经典大全

基本不等式求最值的类型及方法,经典大全

专题:基本不等式求最值的类型及方法解析:y x 1 2(x 1) (x2(x 1)1)2(xL 2LJ 21(x 1)2 22(x 1)、几个重要的基本不等式:①a 2b 2 2ababa 2b 2(a 、 x 1 x 133立; b R),当且仅当a = b 时,“=”号成立;22(x 1)③a 3 成立• 注: 二、函数 b 32 ab ab2(a 、当且仅当b R ),当且仅当a = b 时,“=”号成立;2(x2(x 1)21)即x 2时,“ 5”号成立,故此函数最小值是 -23c 33abc abc — b 3c3 3-(a 、 b、R ),当且仅当a = b = c 时,“=”号成评析:利用均值不等式求几个正数和的最小值时,关键在于构造条件,使其积为常数。

通常 要通过添加常数、拆项(常常是拆底次的式子)等方式进行构造。

类型n :求几个正数积的最大值。

例2、求下列函数的最大值:33----- abc , b c 3v abcabc ---------------- (a 、3① 注意运用均值不等式求最值时的条件:② 熟悉一个重要的不等式链: abf(x) ax b (a 、 x 0)图象及性质 (1)函数 f (x) ax a 、 0图象如图: (2)函数 f(x) ax a 、0性质:①值域: ,2 ab] [2 ab,);R ),当且仅当a = b = c 时,“=”号定 、三 等 ;2 2a b J --------------2①yx 2解析:①Q 0•- y(3 2x)(0 xx - ,• 32 当且仅当 2. 42y sin x cos x当且仅当 故此函数最大值是(3 2x)(0②单调递增区间:( );单调递减区间::],(0,],,0).2xx 3 2x 即 x,•• sin x2sin 2x sin 2x .2sin x 2② y sin xcosx(0 x ) 23x x (3 2x) 3 )x x (3 2x) [ ]1 ,231时,“=”号成立,故此函数最大值是 1。

利用基本不等式求最值的常见方法

利用基本不等式求最值的常见方法

利用基本不等式求最值的常见方法基本不等式是数学中常用的一种推断和求解最值的方法之一、基本不等式包括均值不等式、柯西-施瓦茨不等式和几何平均与算术平均不等式等。

这些不等式的推导和使用方法可以帮助我们解决各种数学和实际问题。

下面将介绍一些利用基本不等式求最值的常见方法。

1.均值不等式法:均值不等式是最常用的基本不等式之一、它包括算术平均数与几何平均数的关系、算术平均数与谐波平均数的关系等。

通过运用均值不等式,我们可以将一个问题中的复杂表达式或不等式进行简化,从而方便进行求解或判断最值。

例如,当我们需要求解一组数据的算术平均数时,可以通过均值不等式推导出一个简化的不等式,从而确定平均数的范围。

2.柯西-施瓦茨不等式法:柯西-施瓦茨不等式是一种用于求解内积和范数的不等式。

通过柯西-施瓦茨不等式,我们可以推导出两个向量内积的最值以及两个向量范数的关系等。

在实际问题中,柯西-施瓦茨不等式可以用于求解线性规划问题、最小二乘法问题等。

例如,当我们需要求解两个向量的内积最大值时,可以通过柯西-施瓦茨不等式推导出一个简化的不等式来确定最大值。

3.几何平均与算术平均不等式法:几何平均与算术平均不等式是一种常用的不等式关系。

通过几何平均与算术平均不等式,我们可以推导出一组数的平方和与它们的几何平均的关系,或者一组数的立方和与它们的算术平均的关系等。

在实际问题中,几何平均与算术平均不等式可以用于求解数据的平均值、方差、标准差等。

例如,当我们需要求解一组数据的方差时,可以通过几何平均与算术平均不等式推导出一个简化的不等式,从而确定方差的范围。

4.归纳法:归纳法是一种常用的数学推导方法。

利用归纳法,我们可以通过已知条件和不等式的性质来推导出一组数的最值。

在实际问题中,归纳法可以用于求解复杂的不等式,例如任意n个数的幂和与它们的算术平均的关系等。

例如,当我们需要求解一组数据的幂和与它们的算术平均的关系时,可以通过归纳法证明一个定理,从而确定幂和与平均值的关系。

利用基本不等式求最值的类型及方法

利用基本不等式求最值的类型及方法

利用基本不等式求最值的类型及方法基本不等式是利用数学推理和不等式性质来求解最值问题的一种方法。

在解决最值问题时,运用基本不等式能够有效地简化计算过程,并找到最优解。

下面将介绍几种常见的类型和方法。

1.求函数最值:假设已知一个函数f(x),要求其在一些区间[a,b]上的最大值或最小值。

可以利用基本不等式结合导数来求解。

首先,对函数f(x)求导得到极值点,即f'(x)=0的解,然后利用基本不等式推论得到最值。

2. 求二次函数最值:对于一个二次函数f(x) = ax² + bx + c(a≠0),可以通过求解二次函数的顶点来确定其最值。

二次函数的最大值或最小值在顶点处取得。

通过计算出二次函数的顶点坐标,可以得到函数的最值。

3.求几何问题最值:在几何问题中,常常需要求解最长距离、最短路径等最值问题。

对于空间几何问题,可以利用三角不等式和柯西-施瓦茨不等式等基本不等式进行推导,找到满足条件的最优解。

4.求代数问题最值:在代数问题中,常常需要求解最大值或最小值。

例如,求解多项式函数的最值、线性规划等问题。

可以利用基本不等式来对多项式进行分解和化简,从而找到最大值或最小值。

5.求概率问题最值:在概率问题中,需要求解满足一定概率条件的最值问题。

例如,已知一些事件发生的概率,求解最大化或最小化概率的问题。

通过利用基本不等式可以对概率进行推导和计算,找到满足条件的最值。

在使用基本不等式求解最值问题时,需要注意以下几个基本方法:1.将问题抽象化:将具体的问题转化为符号运算和数学模型,将需要求解的最值问题用数学语言表达出来。

2.应用基本不等式:根据不同的问题类型,运用相应的基本不等式进行推导和计算。

常用的基本不等式有柯西-施瓦茨不等式、均值不等式、三角不等式等。

3.约束条件转化:将约束条件转化为等式或不等式,以便进行运算。

4.求解极值点:通过对函数求导,找到函数的极值点。

利用基本不等式结合导数求解最值问题。

基本不等式中常见的方法求最值

基本不等式中常见的方法求最值

基本不等式中常见的方法求最值基本不等式是数学中常用的不等式形式,它可以解决两个或多个变量之间的大小关系问题。

在实际问题中,求最值是一类常见的问题,可以通过基本不等式的方法来解决。

下面将介绍一些常见的方法用于求解最值的基本不等式。

一、最值问题的数学建模在解决最值问题之前,首先需要进行数学建模。

数学建模是将实际问题转化为数学问题的过程,通常包括确定问题的目标函数和约束条件。

在求解最值问题中,目标函数表示要求解的最值,约束条件是指限制该函数取值范围的条件。

例如,求解一个函数在给定范围内的最大值,可以将问题建模为求解一个目标函数在一组特定约束条件下的最大值。

二、最值问题的基本不等式方法在实际问题中,一般使用不等式约束来限制变量的取值范围。

下面将介绍几种常用的基本不等式方法来求解最值问题。

1.算术平均-几何平均不等式(AM-GM不等式)算术平均-几何平均不等式是一种常见的不等式方法,用于求解多个正实数的不等式关系。

它可以将多个正实数的乘积限制在一些范围内,并且表明乘积最大值在一组特定值时取得。

设a1, a2, ..., an为n个正实数,那么AM-GM不等式可以表示为:(a1 + a2 + ... + an)/n ≥ (a1a2...an)^(1/n)通过这个不等式,可以限制变量的取值范围,从而求解最值。

2. 柯西-施瓦茨不等式(Cauchy-Schwarz不等式)柯西-施瓦茨不等式是一种用于求解向量内积的不等式关系。

它可以将两个向量的内积限制在一些范围内,并且表明内积最大值在一组特定值时取得。

设a1, a2, ..., an和b1, b2, ..., bn为n个实数,则柯西-施瓦茨不等式可以表示为:(a1b1 + a2b2 + ... + anbn)^2 ≤ (a1^2 + a2^2 + ... +an^2)(b1^2 + b2^2 + ... + bn^2)通过这个不等式,可以限制变量的取值范围,从而求解最值。

基本不等式求最值的类型与方法经典大全

基本不等式求最值的类型与方法经典大全

专题:基本不等式求最值的类型及方法一、几个重要的基本不等式:①,、)(222222R b a b a ab ab b a ∈+≤⇔≥+当且仅当a = b 时,“=”号成立; ②,、)(222+∈⎪⎭⎫ ⎝⎛+≤⇔≥+R b a b a ab ab b a 当且仅当a = b 时,“=”号成立; ③,、、)(33333333+∈++≤⇔≥++R c b a c b a abc abc c b a 当且仅当a = b = c 时,“=”号成立;④)(3333+∈⎪⎭⎫ ⎝⎛++≤⇔≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c 时,“=”号成立.注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等”;② 熟悉一个重要的不等式链:ba 112+2a b+≤≤≤222b a +。

二、函数()(0)bf x ax a b x=+>、图象及性质 (1)函数()0)(>+=b a x b ax x f 、图象如图: (2)函数()0)(>+=b a xb ax x f 、性质:①值域:),2[]2,(+∞--∞ab ab ;②单调递增区间:(,-∞,)+∞;单调递减区间:(0,,[0). 三、用均值不等式求最值的常见类型类型Ⅰ:求几个正数和的最小值。

例1、求函数21(1)2(1)y x x x =+>-的最小值。

解析:21(1)2(1)y x x x =+>-21(1)1(1)2(1)x x x =-++>-21111(1)222(1)x x x x --=+++>-1≥312≥+52=, 当且仅当211(1)22(1)x x x -=>-即2x =时,“=”号成立,故此函数最小值是52。

评析:利用均值不等式求几个正数和的最小值时,关键在于构造条件,使其积为常数。

通常要通过添加常数、拆项(常常是拆底次的式子)等方式进行构造。

用基本不等式求最值六种方法

用基本不等式求最值六种方法

用基本不等式求最值六种方法基本不等式是指形如a≤b不等式。

在数学中,有许多方法可以使用基本不等式来求解最值的问题。

以下是六种常见的方法:方法一:直接使用基本不等式最常见的方法就是直接使用基本不等式求解最值。

这种方法适用于求解一个函数或表达式的最小值或最大值。

首先,找到要求解的函数或表达式,并用a表示自变量,用b表示函数的值或表达式。

然后,使用基本不等式将a和b进行比较,确定a和b之间的关系,从而得出最小值或最大值。

方法二:将问题转化为最值问题有时候,我们可以将原始问题转化为一个最值问题,然后再使用基本不等式求解。

例如,如果要求解一个多项式函数在一些区间上的最小值或最大值,我们可以求解多项式函数的导函数,并使用基本不等式得出导函数的最小值或最大值,从而得到原始问题的最小值或最大值。

方法三:分解求值当需要求解一个复杂的问题时,可以尝试将问题分解为若干个简单的问题,并求解这些简单问题的最值。

然后,使用基本不等式求出这些最值的函数值,再将它们组合起来求解原始问题的最值。

方法四:结合其他数学工具在一些特殊情况下,可以将基本不等式与其他数学工具结合使用,来求解最值问题。

例如,可以将基本不等式与数列极限定理、曲线图像分析等方法结合使用,来求解最值问题。

方法五:利用结论和定理有时候,基本不等式的求解可以直接应用一些已知的结论和定理。

例如,利用切线和切点的性质可以简化问题的求解过程,从而得到最值。

方法六:假设法和反证法假设法和反证法在不少情况下也是求解最值问题的有效方法。

假设法是假设一些变量的取值,然后通过推导和比较得出最值的范围。

反证法是通过假设不存在一些取值,并推导出矛盾,从而得出最值的范围。

以上是使用基本不等式求解最值问题的六种常见方法。

根据具体问题的特点和要求,可以选择合适的方法进行求解。

掌握这些方法将有助于我们更好地理解和应用基本不等式,解决实际问题。

基本不等式求最值问题

基本不等式求最值问题

[解析] 如图,因为 AB=x,所以 AD=12-x. 又 DP=PB′,AP=AB′-PB′=AB-DP=x-DP. 由勾股定理得 (12-x)2+DP2=(x-DP)2, 整理得 DP=12-7x2. 因此△ADP 的面积
S=12AD·DP =12(12-x)·12-7x2 =108-6x+43x2. ∵x>0, ∴6x+43x2≥2 6x·43x2=72 2. ∴S=108-6x+43x2≤108-72 2.
[解析] ∵x,y 为正数,且 x+2y=1. ∴1x+1y=(x+2y)(1x+1y)=3+2xy+yx≥3+2 2,当且仅当2xy =xy,即当 x= 2-1,y=1- 22时等号成立. ∴1x+1y的最小值为 3+2 2.
[点评] (1)本题若由 1=x+2y≥2 2xy,得 1xy≥2 2,
命题方向 变形技巧:“1”的代换
[例 1] 已知正数 x,y 满足 x+2y=1,求1x+1y的最小值. [分析] 灵活应用“1”的代换.在不等式解题过程中,常 常将不等式“乘以 1”,“除以 1”或将不等式中的某个常数 用等于 1 的式子代替.本例中可将分子中的 1 用 x+2y 代替, 也可以将式子1x+1y乘以 x+2y.

9·(x

4

16 x-4

8)≥9(2 x-4·x-164+8)=144.
等号在 x-4=x-164,即 x=8 时成立, 此时 y=98×-84=18,∴xy 的最大值为 144.
[例 3] (1)在面积为定值的扇形中,半径是多少时,扇形 的周长最小?
(2)在周长为定值的扇形中,半径是多少时,扇形的面积 最大?
1.基本不等式的功能在于和与积的互化,应用基本不等 式求最值时一定要注意其“一正、二定、三相等”的条件,实 际解题时主要技巧是“拆项”,“添项”,“配凑因式”.

用基本不等式求最值六种方法

用基本不等式求最值六种方法

用基本不等式求最值六种方法用基本不等式求最值的六种方法一、配项法求解函数 $y=\frac{9}{x-2}$ 的最小值。

解析:$y=\frac{9}{x-2}+2-2\geq8$,当 $x-2=2$ 时,即$x=5$ 时等号成立。

二、配系数法求解函数 $y=x^4-3x^2$ 的最大值,其中 $0<x<1$。

解析:$y=\frac{2}{3}x^4-\frac{2}{3}x^4-3x^2+2\leq2$,当 $x=\frac{1}{\sqrt{3}}$ 时等号成立。

三、重复使用不等式法求解 $a>b>0$ 时,$a^2+b^2$ 的最小值。

解析:$a^2+b^2\geq\frac{(a+b)^2}{2}$,$a^2+b^2\geq\frac{(a+b)^2}{2}\geq\frac{(2\sqrt{ab})^2}{2}=2ab $,所以 $a^2+b^2\geq2ab$,当 $a=b\sqrt{2}$ 时等号成立。

四、平方升次法求解函数 $y=x+4-x^2$ 的最大值,其中 $x>0$。

解析:$y^2=4+2x^4-x^2\leq4+(x^2+(4-x^2)^2)=8$,当$x=2$ 时,$y$ 取得最大值 $2\sqrt{2}$。

五、待定系数法求解函数 $y=2\sin x(\sin x+\cos x)$ 的最大值。

解析:$y=2\sin^2x+2\sin x\cos x=2\sin^2x+\sin2x\leq2+\frac{1}{2}=2\frac{1}{2}$,当 $\sinx=\frac{1}{\sqrt{2}},\cos x=\frac{1}{\sqrt{2}}$ 时等号成立。

六、常值代换法已知 $x>0,y>0$,且 $x+2y=3$,求 $\sqrt{x}+\sqrt{y}$ 的最小值。

解析:$\sqrt{x}+\sqrt{y}=\sqrt{x}+\sqrt{\frac{x+2y}{2}}\geq\sqrt{3x+ 2\sqrt{2xy}}$,$3x+2\sqrt{2xy}=(\sqrt{x}+\sqrt{y})^2(\sqrt{x}+2\sqrt{y})\geq(\s qrt{x}+\sqrt{y})^3$,所以$\sqrt{x}+\sqrt{y}\geq\sqrt[3]{\frac{27}{2}}$,当 $x=2,y=1$ 时等号成立。

基本不等式求最值的类型及方法,经典大全

基本不等式求最值的类型及方法,经典大全

专题:基本不等式求最值的类型及方法一、几个重要的基本不等式:①,、)(222222R b a ba ab ab b a ∈+≤⇔≥+当且仅当a = b 时,“=”号成立; ②,、)(222+∈⎪⎭⎫⎝⎛+≤⇔≥+R b a b a ab ab b a 当且仅当a = b 时,“=”号成立; ③,、、)(33333333+∈++≤⇔≥++R c b a c b a abc abc c b a 当且仅当a = b = c 时,“=”号成立;④)(3333+∈⎪⎭⎫ ⎝⎛++≤⇔≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c 时,“=”号成立.注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等”;② 熟悉一个重要的不等式链:ba 112+2a b+≤≤≤222b a +。

二、函数()(0)bf x ax a b x=+>、图象及性质 (1)函数()0)(>+=b a xb ax x f 、图象如图: (2)函数()0)(>+=b a xbax x f 、性质:①值域:),2[]2,(+∞--∞ab ab ;②单调递增区间:(,-∞,)+∞;单调递减区间:(0,,[0). 三、用均值不等式求最值的常见类型 类型Ⅰ:求几个正数和的最小值。

例1、求函数21(1)2(1)y x x x =+>-的最小值。

解析:21(1)2(1)y x x x =+>-21(1)1(1)2(1)x x x =-++>-21111(1)222(1)x x x x --=+++>-1≥312≥+52=, 当且仅当211(1)22(1)x x x -=>-即2x =时,“=”号成立,故此函数最小值是52。

评析:利用均值不等式求几个正数和的最小值时,关键在于构造条件,使其积为常数。

通常要通过添加常数、拆项(常常是拆底次的式子)等方式进行构造。

利用基本不等式求最值的方法

利用基本不等式求最值的方法

利用基本不等式求最值的方法有多种,以下列举了其中六种方法:
1.配凑法:通过观察式子中的各项,尝试将其配成基本不等式的形式,从而求出最值。

2.均值不等式:对于一组正数a1, a2, ..., an,其算术平均值大于等于几何平均值,即
(a1+a2+...+an)/n >= sqrt(a1a2...*an)。

利用此不等式,可以将式子变形,从而求出最值。

3.等号成立条件:在使用基本不等式时,需要注意等号成立的条件。

例如,在使用均值不
等式时,只有在a1=a2=...=an时,等号才会成立。

4.换元法:在求解一些复杂的不等式时,可以通过换元法将问题简化。

例如,设a=a1/b1,
b=a2/b2, ...,将原式化简后再使用基本不等式求解。

5.对勾函数性质:对勾函数是一种特殊的函数形式,其性质可以用来求解一些复杂的不等
式。

例如,当x>0时,x+1/x >= 2 (当且仅当x=1时取等号)。

6.三角不等式:对于一些涉及到三角函数的式子,可以使用三角不等式来求解。

例如,
|sin(a)-sin(b)| <= |a-b|。

基本不等式求最值六法

基本不等式求最值六法

灵 活 运 用 基 本 不 等 式(,0)2a b a b +>求最值,必须注意三要素:一正、二定、三相等。

所谓“一正”是指“正数”,“二定”是指和或积要为定值,“三相等”是指要满足等号成立的条件。

在满足条件的情况下,和是定值积有最大值(22)4S S a b =+≤=a+b 定值,ab (2),积是定值和有最小值(T ab =≥=是定值,a+b 。

有些题目从表明看不能直接使用基本不等式,但是经过一定的变形就可以使用,变形的方法一般有以下几种。

一:化负为正例1若0x <,求49y x x=+的最大值 分析:0x <,必须变负号为正,用x x =-转化 解:4449(9)12y x x x x x x=+=-+≤-=- 当且仅当49x x=,即23x =-时,49y x x =+取最大值-12 二:拆项后使用 例2已知3x >,求43y x x =+-的值域。

分析:将43x x +-变形为4(3)33x x +-+-使用基本不等式 解:因为3x >,所以30x ->。

∴ 4(3)3373y x x =+-+≥=- 当且仅当 433x x =-- ,即5x =时取等号。

所以43y x x =+-的值域是[7,+∞) 三:调整系数法 例3已知302x <<,求函数 (32)y x x =-的最大值 分析:求x 与(32x -)积的最大值,它们的和(32)x x +-不是常数,但2(32)3x x +-=是常数,所以将函数变形为12(32)2x x ⋅⋅-使用基本不等式。

解:∵302x <<,∴320x ->,∴21123292(32)()2228x x y x x +-=⋅⋅-≤= 当且仅当 232x x =- ,即34x =时 y 取最大值98 四:分离常数法例4当1x >-时,求231()1x x f x x -+=+的值域。

求基本不等式最值的方法

求基本不等式最值的方法

求基本不等式最值的方法基本不等式最值的求解方法是数学中的重要内容,它在解决实际问题和数学推导中具有广泛的应用。

下面将介绍几种常见的方法来求解基本不等式的最值。

1. 利用二次函数性质:对于一元二次函数 f(x) = ax^2 + bx + c,其中 a、b、c 分别是实数,当 a>0 时,函数开口向上,最小值为 f(-b/2a);当 a<0 时,函数开口向下,最大值为 f(-b/2a)。

2. 利用数轴和符号的方法:以不等式的变量为基准,将不等式化简为一维数轴上的问题。

首先找到不等式的解集,并根据不等式中的符号(大于号或小于号)确定最值的类型(最大值或最小值)。

然后,根据最值的要求,找到数轴上对应的点,即最值点。

3. 利用 AM-GM 不等式:AM-GM 平均值不等式是一种用于估计数值大小的方法。

对于非负实数 a1, a2, ..., an,其几何平均值 GM = (a1 * a2 * ... * an)^(1/n),算术平均值 AM = (a1 + a2 + ... + an)/n,不等式表达式为GM ≤ AM。

通过利用 AM-GM不等式,将给定的不等式进行转换和化简,可以求解不等式的最值。

4. 利用导数和极值:对于连续函数 f(x) 在某个区间内,如果 f'(x) 存在且连续,可以通过求解 f'(x) = 0 的根来找到函数 f(x) 的极值点。

然后根据极值的类型(极大值或极小值)来确定最值。

以上是一些常见的方法来求解基本不等式的最值。

根据具体的不等式形式和要求的最值类型,我们可以选择合适的方法进行求解。

在实践中,掌握这些方法并灵活运用它们,将能够有效地解决各种不等式最值的问题。

利用基本不等式求最值

利用基本不等式求最值

1 sin x (0 x ) 2 sin x
x x
不满足相 等
解:x 0时A不成立。
B. 5 0,5 0,5 5 2 5 5 2, x 0时取等 2 C (lg x) 1时取等,即x 10 ( 1 , 10 ) D与C同理
x x x
x y xy 18 2 2
2
当且仅当x y 9时面积最大为 81m2
例4、当 0 x 5 时,函数 f ( x) 3x(16 3x) 的最大值是
8
8 此时x=_______. 3
解: 3 x 与 16 3 x 和为定值,
0 x 5, 0 3x 15
x
二.两个正数的积为定值,求它们和的最小值;
12 3 x的最小值为_______; 例2.若x 0, f ( x) 12 x
此时x=_______. 2
一正
二定 12 12 f (x) 3x 2 3x 12 x x 三相等 12 当且仅当 3x即x 2时取等号, x 即当x=2时函数的最小值为12.
2
9 2 x 10 16 x
9 2 此时 x , x 0,即x 9, x 3 x
六.“1”的替换
1 1 例7. 若正数x, y满足x 4 y 1, 则 的最小值为( x y
1 1 1 1 x 4y 解: x 4 y 1, ( )(x 4 y ) 5 x y x y y x 5 x 4y 5 2 7 y x
12 解:因为x>0, 3x 0, . 0, x
现炒 现卖
挑战高考 的
2 x 0 1.(2009湖南卷)若 ,则 x x 最小值为 .

不等式专题:基本不等式求最值的6种常用方法(解析版)

不等式专题:基本不等式求最值的6种常用方法(解析版)

基本不等式求最值的6种常用方法知识梳理:一、基本不等式常用的结论1、如果a ,b ∈R ,那么a 2+b 2≥2ab (当且仅当a b =时取等号“=”)推论:ab ≤a 2+b 22(a ,b ∈R ) 2、如果a >0,b >0,则a +b ≥2ab ,(当且仅当a =b 时取等号“=”).推论:ab ≤⎝ ⎛⎭⎪⎫a +b 22(a >0,b >0);a 2+b 22≥⎝ ⎛⎭⎪⎫a +b 223、a 2+b 22≥a +b 2≥ab ≥21a +1b(a >0,b >0)二、利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方. 三、利用基本不等式求最值的方法1、直接法:条件和问题间存在基本不等式的关系2、配凑法:凑出“和为定值”或“积为定值”,直接使用基本不等式。

3、代换法:代换法适用于条件最值中,出现分式的情况类型1:分母为单项式,利用“1”的代换运算,也称乘“1”法; 类型2:分母为多项式时方法1:观察法 适合与简单型,可以让两个分母相加看是否与给的分子型成倍数关系; 方法2:待定系数法,适用于所有的形式,如分母为3a +4b 与a +3b ,分子为a +2b ,设a +2b =λ(3a +4b )+μ(a +3b )=(3λ+μ)a +(4λ+3μ)b∴ ⎩⎪⎨⎪⎧3λ+μ=1,4λ+3μ=2.解得:⎩⎨⎧λ=15,μ=25.4、消元法:当题目中的变元比较多的时候,可以考虑削减变元,转化为双变量或者单变量问题。

5、构造不等式法:寻找条件和问题之间的关系,通过重新分配,使用基本不等式得到含有问题代数式的不等式,通过解不等式得出范围,从而求得最值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基本不等式与最值
——不等式补充材料
2015.4.25
一. 基本不等式及其变形和推论
1. (,0,)2
a b a b a b +≤>=当且仅当时取"="
2. 变形:,0,)a b a b a b +≥>=当且仅当时取"="
3. 2a b +≤≤(,0,)a b a b >=当且仅当时取"=" ②22
2()22
a b a b ab ++≤≤(,,)a b R a b ∈=当且仅当时取"=" 二. 核心原理
和定积最(值),积定和最(值),
三. 经典例题
类型1:无条件求最值
例1 设01,x <<求(1)y x x =-的最大值。

(答案:
14) 变式1-1:设30,2x <<求(32)y x x =-的最大值。

(答案:98

变式1-2:当01x ≤≤,求函数y =的最大值。

(答案:
12) 例2 设0,x >求1y x x
=+的最小值。

(答案:2) 变式2-1:设0,x ≠求1y x x
=+的取值范围。

(答案:(][),22,-∞-⋃+∞) 变式2-2:求函数1(2)2
y x x x =+>-的最小值。

(答案:4) 变式2-3:求函数22914y x x =++的最小值。

(答案:114
) 变式2-4:设1,x >-求函数(2)(5)1
x x y x ++=+的最小值。

(答案:9) 例3 设,0x y >,求: ①1
1()()x y x y
++的最小值;(答案:4)
②12()()x y x y
++
的最小值;(答案:3+ 例4 正数,a b 满足3ab a b =++,求:
① ab 的最小值;(答案:9)
② a b +的最小值(答案:6).
例50a b >>,求: ①216()
a b a b +-的最小值;(答案:16) ②2
16()b a b a -⋅
的最大值(答案:4)。

类型2:有条件求最值
例1设,0x y >,41x y +=,
① 求xy 的最大值;(答案:116
) 变式:求lg lg x y +的最大值(答案:lg 4-)。

② 求
11x y
+的最小值。

(答案:9) 例2 设lg lg 2x y +=,
① 求x y +的最小值;(答案:20) ② 求11x y +的最小值;(答案:15
) ③ 求lg lg x y ⋅的最大值。

(答案:1)
例3设,0x y >,且411x y
+=, ① 求xy 的最小值;(答案:16)
变式:求lg lg x y +的最小值;(答案:lg16)
② 求x y +的最小值,(答案:9)
变式:求22x y ⋅的最小值。

(答案:512)
例4 设,0x y >,且221,2y x +=求。

相关文档
最新文档