高中数学函数练习题
高一数学必修一函数练习题
高一数学必修一函数练习题函数是高中数学中非常重要的概念,它描述了两个集合之间的一种对应关系。
下面为高一学生准备了一系列函数练习题,以帮助学生更好地理解和掌握函数的基本概念和性质。
练习题一:函数的定义域与值域1. 给定函数 \( f(x) = \frac{1}{x - 2} \),求其定义域。
2. 对于函数 \( g(x) = x^2 - 4x + 3 \),找出其值域。
练习题二:函数的单调性1. 判断函数 \( h(x) = x^3 - 3x \) 在 \( x \in (-\infty,\infty) \) 上的单调性。
2. 若函数 \( k(x) = 2x - 1 \) 在 \( x \in [0, 2] \) 上单调递增,求 \( k(x) \) 在 \( x \in [2, 4] \) 上的单调性。
练习题三:函数的奇偶性1. 判断函数 \( f(x) = |x| \) 是否为奇函数或偶函数。
2. 若函数 \( g(x) = x^2 + 1 \) 是偶函数,求证。
练习题四:复合函数1. 已知 \( f(x) = x^2 \) 和 \( g(x) = x + 3 \),求复合函数\( (f \circ g)(x) \)。
2. 若 \( h(x) = \sqrt{x} \) 和 \( k(x) = x - 1 \),求 \( (h \circ k)(x) \)。
练习题五:反函数1. 若 \( f(x) = 2x + 1 \),求其反函数 \( f^{-1}(x) \)。
2. 对于函数 \( g(x) = x^2 \),讨论其反函数的存在性。
练习题六:函数的图像与性质1. 画出函数 \( y = |x - 1| \) 的图像,并标出其顶点坐标。
2. 对于函数 \( y = x^3 \),描述其在 \( x = 0 \) 附近的图像变化趋势。
练习题七:函数的实际应用1. 某工厂生产的产品数量与时间的关系为 \( P(t) = 100t - 5t^2 \),求出生产量达到最大时的时间。
高中数学练习题基础
高中数学练习题基础一、集合与函数(1) A = {x | x是小于5的自然数}(2) B = {x | x² 3x + 2 = 0}(1) 若A∩B = ∅,则A∪B = A(2) 对于任意实数集R,有R⊆R(1) f(x) = √(x² 5x + 6)(2) g(x) = 1 / (x² 4)(1) f(x) = x³ 3x(2) g(x) = |x| 2二、三角函数(1) sin 45°(2) cos 60°(3) tan 30°2. 已知sin α = 1/2,α为第二象限角,求cos α的值。
(1) y = sin(2x + π/3)(2) y = cos(3x π/4)三、数列(1) an = n² + 1(2) bn = 2^n 1(1) 2, 4, 8, 16, 32, …(2) 1, 3, 6, 10, 15, …(1) 1, 4, 9, 16, 25, …四、平面向量1. 已知向量a = (2, 3),求向量a的模。
2. 计算向量a = (4, 5)与向量b = (3, 2)的数量积。
(1) a = (2, 1),b = (4, 2)(2) a = (1, 3),b = (2, 1)五、平面解析几何(1) 经过点(2, 3)且斜率为2的直线(2) 经过点(1, 3)且垂直于x轴的直线(1) 圆心在原点,半径为3的圆(2) 圆心在点(2, 1),半径为√5的圆(1) 点(1, 2)到直线y = 3x 1的距离(2) 点(2, 3)到直线2x + 4y + 6 = 0的距离六、立体几何(1) 正方体边长为2(2) 长方体长、宽、高分别为3、4、52. 已知正四面体棱长为a,求其体积。
(1) 正方体A边长为2,正方体B边长为4(2) 长方体A长、宽、高分别为3、4、5,长方体B长、宽、高分别为6、8、10七、概率与统计1. 抛掷一枚硬币10次,求恰好出现5次正面的概率。
高中必修1函数数学试卷
是R上的单调递增函数,则实数a的取值范围为( ) A.(1,+∞) B.[4,8) C.(4,8) D.(1,8) 9.下列函数中,既是奇函数又是增函数的为( )A. y=x+1 B.y=﹣x3 C.y=x-1 D.y=x|x|
10.函数 ,则该函数为( ) A.单调递增函数,奇函数 B.单调递增函数,偶函数 C.单调 递减函数,奇函数 D.单调递减函数,偶函数 11.下列函数中,在(0,+∞)上为增函数的是( )A.y=(x ﹣1)2 B.y=x2 C.y=(0.5)x D.y=3/x 12.x为实数,[x]表示不超过x的最大整数,则函数f(x)=x﹣ [x]在R上为( ) A.周期函数 B.奇函数 C.偶函数 D.增函数 二.填空题(共4小题)13.已知全集U=R,集合P={x||x﹣2| ≥1},则P= . 14.已知集合A={0,1,2},则A的子集的个数 为 . 15.已知集合A={1},B={﹣1,2m﹣1},若AB,则实数m的 值为 . 16.设A={x|1≤x≤3},B={x|m+1≤x≤2m+4,m∈R},AB,则m 的取值范围是 . 三.解答题(共6小题) 17.设A={x|x2+4x=0},B={x|x2+2(a+1)x+a2﹣1=0},其中 x∈R,如果A∩B=B,求实数a的取值范围.
D.y=x+ex 4.已知集合A={(x,y)|x2+y2≤1,x,y∈Z},B={(x,y)||x|≤2,|y|
≤2,x,y∈Z},定义集合A⊕B={(x1+x2,y1+y2)|(x1,y1) ∈A,(x2,y2)∈B},则A⊕B中元素的个数为( ) A.77 B.49 C.45 D.30 5.设集合A={x|﹣1<x<2},集合B={x|1<x<3},则 A∪B=( ) A.{x|﹣1<x<3} B.{x|﹣1<x<1} C.{x|1<x<2} D. {x|2<x<3} 6.已知函数f(x)的定义域为(﹣1,0),则函数f(2x+1) 的定义域为( ) A.(﹣1,1)B. C.(﹣1,0)D. 7.函数y= 的定义域是( )A.{x|x> } B.{x|x≠0,x∈R} C.{x|x< } D.{x|x≠ ,x∈R} 8.f(x)=
高中数学之函数练习题
高中数学之函数练习题一、单项选择题(在每小题列出的四个备选答案中,只有一个是符合题目要求的。
错选、多选或未选均无分。
) 1.已知sin 3cos 3cos sin αααα+-=5,则tan α的值为( )A.25B.-25C.-2D.22.11sin 22y x =+的最大值为( ) A.32B.1C.12D.无最大值3.sin300︒=( ) A.12B.12-C.2D.2-4.sin (x -y )cosy +cos (x -y )siny 可化简为( ) A.sinxB.cosxC.sinxcos2yD.cosxcos2y5.sin120°+tan135°+cos210°的值为( ) A.1B.0C.-1D.-126.已知α是第二象限角,且sinα=513,则tanα等于 ( ) A.-512B.512C.125D.-1257.已知sin2αsinα=85,则cosα等于 ( )A.45B.-45C.35D.-358.与-330°角终边相同的角是 ( ) A.30°B.400°C.-50°D.920°9.在△ABC 中,若sinA =35,∠C =120°,BC =23,则AB 等于 ( ) A.3B.4C.5D.610.若sin α<0,tan α>0,则角α是 ( )A.第一象限角B.第二象限角C.第三象限角D.第四象限角 11.在0°~360°范围内,与1050°终边相同的角是 ( ) A.330° B.60°C.210°D.300°12.已知sin α=35,且α∈π,π2⎛⎫ ⎪⎝⎭,则tan π4α⎛⎫+ ⎪⎝⎭等于 ( ) A.-7 B.7 C.-17 D.17 13.求值:2tan22.5°1-tan222.5°等于 ( )A.3B.-3C.1D.-114.命题甲“sinα=1”是命题乙“cosα=0”的 ( ) A.充分不必要条件 B.必要不充分条件 C.充分且必要条件D.既不充分也不必要条件15.若1+tanα1-tanα=2+3,α∈(0,π2),则α等于( )A.π6B.π4C.π3D.π516.若角α是第一象限角,则角π-α是( )A.第一象限角B.第二象限角C.第三象限角D.第四象限角17.函数y =3sin sin300︒的最小正周期是 ( )A.3πB.2πC.2π3D.π318.在△ABC 中,下列表示不一定成立的是 ( ) A.∠A +△B +△C =π B.sinAsinBsinC >0 C.a +b >c D.cosAcosBcosC >019.已知sin α·cos α>0,且cos α·tan α<0,则角α所在的象限是( ) A.第一象限 B.第二象限 C.第三象限D.第四象限 20.22ππsin cos 1212-=( )A.B.12C.D.-12二、填空题21.sin (α+k·360°)= ,cos (α+k·360°)= ,tan (α+k·360°)= .22.比较大小:sin 47π sin 57π;cos 25π cos 27π.23.函数y =2sinx 的最小正周期为 .24.若角α的顶点在直角坐标系的原点,始边重合于x 轴的正方向,在终边上取点P cos3π⎛⎫⎪⎝⎭,可得α的正弦函数值为 .25.已知sin (45°+α)=513,则sin (225°+α)= . 26.若要使2sinx =1-3a 有意义,则a 的取值范围用区间表示为 .27.已知tan (2π-α)=-3,则tan α= ,cos2α= .三、解答题(解答题应写出文字说明及演算步骤)28.在△ABC 中,已知a>b>c,且a =10,b =8,△ABC 的面积为24,求边长c 的值.29.在△ABC 中,已知a =7,b =43,c =13,求最小角及三角形的面积. 30.已知sin (6π+α)=35,并且α是第二象限角,求cos α,tan α的值. 31.已知2sinx +1=3a -2,x ∈R ,求a 的取值范围. 32.已知角α是第二象限角,则α2是第几象限角? 33.求下列各三角函数值.(1)sin960°; (2)tan1035°; (3)cos 15π2⎛⎫- ⎪⎝⎭; (4)tan 11π4⎛⎫- ⎪⎝⎭.34.已知α,β均为钝角,cosα=-513,sin (β-α)=35,求sinβ的值.答案一、单项选择题 1.D 【提示】sin 3cos 3cos sin αααα+-=5⇒6sin α=12cos α⇒tan α=2.2.B 【提示】sin y x =的最大值为1,则11sin 22y x =+的最大值为max 111122y =⨯+=.故选B.3.D【提示】sin 300sin(36060)sin 60︒=︒-︒=-︒=故选D.4.A5.C6.A7.A8.A9.C 【提示】△BC sinA =ABsinC ,∴AB =5. 10.C11.A 【解析】1050°=360°×2+330°. 12.D【解析】α∈π,π2⎛⎫⎪⎝⎭,∴cos α=-45,tan α=-34,∴tan π4α⎛⎫+ ⎪⎝⎭=πtan tan 4π1tan tan 4αα+-=-34+11+34×1=17. 13.C 【解析】原式=2tan22.5°1-tan222.5°=tan45°=1.14.A15.A 【提示】 1+tanα=(2+3)(1-tanα)=2-2tanα+3-3tanα,∴(3+3)tanα=1+3,则tanα=33,又△α△02π⎛⎫⎪⎝⎭,,∴α=π6,故选A . 16.B【提示】取α=30°检验即可. 17.C 【提示】T =2π3. 18.D19.C 【分析】sin αcos α>0,角α在第一、三象限,cos αtan α<0,角α在第三、四象限,故选C. 20.A【提示】22πππsin cos cos 12126⎛⎫-=-= ⎪⎝⎭,故选A.二、填空题21.sin α cos α tan α 22.> < 23.2π 24.1313 25.-51326.[-13,1]【提示】由-2≤2sinx ≤2,得-2≤1-3a ≤2,-3≤-3a≤1,-13≤a ≤1.27.3,-45【分析】由tan (2π-α)=3得tan α=3,则cos2α=22222222cos sin 1tan 134cos sin tan 1315αααααα---===-+++. 三、解答题28.解由题意得12absinC=24,得sinC=35.由a>b>c得角C是锐角,∴cosC=45, ∴边长c102+82-2×10×8×45=6.29.最小角为△C=30°,S△ABC=7330.cosα=-45,tanα=-3431.解:由2sinx+1=3a-2得sinx=3a-32,∵-1≤sinx≤1,∴-1≤3a-32≤1,解得13≤a≤53,∴a的取值范围是[13,53].32.解:∵α是第二象限角,∴90°+360°k<α<180°+360°k(k∈Z),∴45°+180°k<2α<90°+180°k(k∈Z).当k是偶数时,2α是第一象限角;当k是奇数时,2α是第三象限角.∴2α是第一或第三象限角.33.解:利用诱导公式化简求值,可按照“负化正,大化小,小化锐,锐求值”的步骤进行.(1)sin960°=sin240°=-sin60°=-32.(2)tan1035°=tan (1080°-45°)=-tan45°=-1.(3)cos 15π2⎛⎫- ⎪⎝⎭=cos 152π=cos 32π=0.(4)tan 11π4⎛⎫- ⎪⎝⎭=tan π3π4⎛⎫-+ ⎪⎝⎭=tan π4=1. 34.解:△sin2α+cos2α=1,∴sin2α=1-cos2α=1-2513⎛⎫- ⎪⎝⎭=144169,∴sinα=±1213.又△α为钝角,∴sinα=1213,∵sin2(β-α)+cos2(β-α)=1,∴cos2(β-α)=1-sin2(β-α)=1-235⎛⎫⎪⎝⎭=1625,∴cos (β-α)=±45.又△α,β均为钝角,则-90°<β-α<90°, ∴cos (β-α)=45, ∴sinβ=sin[(β-α)+α]=sin (β-α)cosα+cos (β-α)sinα =35×513⎛⎫- ⎪⎝⎭+45×1213=3365.。
高中数学_经典函数试题及答案
高中数学_经典函数试题及答案【第一份试题】1. 已知函数 y = f(x) 满足 f(2) = 1,f'(x) = 2x - 3。
求函数 f(x) 的解析式。
解答:根据题意,已知了 f'(x) = 2x - 3,因此函数 f(x) 的原函数为 F(x) = x^2 - 3x + C,其中 C 为常数。
根据 f(2) = 1,可得到 F(2) = 1,代入原函数求得 C = 0。
所以函数 f(x) 的解析式为 f(x) = x^2 - 3x。
2. 若函数 f(x) = 2x^3 + 4x + c 是奇函数,求常数 c 的值。
解答:根据题意,函数 f(x) 是奇函数,即满足 f(-x) = -f(x)。
代入函数 f(x) = 2x^3 + 4x + c,得到 -2x^3 - 4x - c = 2x^3 + 4x + c,整理得到 4x^3 + 8x + 2c = 0。
对比系数可得 -c = 2c,解得 c = 0。
所以常数 c 的值为 0。
3. 已知函数 f(x) = (x - 1) / (x + 1),求函数 f(x) 的反函数。
解答:要求函数 f(x) 的反函数,可以将 y(即 f(x))与 x 对调位置,并解出 x 关于 y 的表达式。
首先,将函数 f(x) 表示为 y = (x - 1) / (x + 1)。
交换 x 和 y,得到 x = (y - 1) / (y + 1)。
解以上方程,可以得到 y = (x + 1) / (x - 1)。
所以函数f(x) 的反函数为 f^(-1)(x) = (x + 1) / (x - 1)。
【第二份试题】1. 已知函数y = f(x) = 3sin(2x + π/4),求 f(x) 的周期和最大值、最小值。
解答:对于函数 y = 3s in(2x + π/4),参数 2 决定了正弦函数的周期。
周期T = 2π / 2 = π。
最大值和最小值可以通过观察正弦函数的图像得出。
超全高中数学函数专项练习题目
一、图形判断1、如图放置的边长为1的正方形PABC 沿x 轴滚动。
设顶点p (x ,y )的纵坐标与横坐标的函数关系是()y f x =,则()f x 的最小正周期为 ;()y f x =在其两个相邻零点间的图像与x 轴所围区域的面积为 。
2、函数y=ax 2+ bx 与y= ||log b ax (ab ≠0,| a |≠| b |)在同一直角坐标系中的图像可能是( )3、如图,质点p 在半径为2的圆周上逆时针运动,其初始位置为0p (2,2-),角速度为1,那么点p 到x 轴距离d 关于时间t 的函数图像大致为( )4、函数22xy x =-的图像大致是( )5、如图,一个正五角星薄片(其对称轴与水面垂直)匀速地升出水面,记t 时刻五角星露出水面部分的图形面积为()((0)0)S t S =,则导函数'()y S t =的图像大致为( A )函数专题训练6、设)()(,2b x a x y b a --=<函数的图像可能是( )7、函数xx xx ee e e y ---+=的图象大致为 ( )8、设0>abc ,二次函数c bx ax x f ++=2)(的图象可能是( )9、函数)01(112≤≤--+=x x y 的反函数图像是( )10、函数ln cos ()22y x x ππ=-<<的图象是( )11、函数x y 2log =的图象大致是 ( )二、定义域及X 的特定取值范围1、设函数()f x 满足4)(2-=x x f ,则(){}20x f x -=>( ) (A ){}2x x x <-或>4 (B ){}0x x x <或>4(C ){}0x x x <或>6(D ){}2x x x <-或>22、若0x 是方程31)21(x x=的解,则0x 属于区间( )(A )(1,32). (B )(32,21). (C )(21,31) (D )(31,0) 3、下列函数)(x f 中,满足“对任意1x ,2x ∈),0(+∞,当21x x <时,都有)()(21x f x f >”的是( )A .xx f 1)(=B .2)1()(-=x x fC .xe xf =)(D .)1(1)(+=x n x f4、已知偶函数x f x f x f 的则满足上单调增加在区间)31()12(,),0()(<-+∞取值范围是( )A .)32,31(B .]32,31[C .)32,21(D .]32,21[5、已知定义在R 上的奇函数)(x f ,满足)()4(x f x f -=-,且在区间]2,0[上是增函数,若方程)0()(>=m m x f 在区间]8,8[-上有四个不同的根4321,,,x x x x ,则4321x x x x +++=( )A 、—8B 、8C 、4D 、—4三、值域及最值1、)13(log )(2+=xx f 的值域为( )(A )(0,)+∞ (B )[)0,+∞(C )(1,)+∞(D )[)1,+∞2、已知0t >,则函数241t t y t-+=的最小值为____________ .四、函数值1、已知函数)(x f 满足:41)1(=f ,()()()()()4,f x f y f x y f x y x y R =++-∈, 则()2010f =_____________.2、已知函数f (x )={3x log x, x 0,2, x 0,≤则f 19f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭=( )A .4B .14C .-4D .-143、若)(x f 是R 上周期为5的奇函数,且满足,2)2(,1)1(==f f 则)4()3(f f -=( )(A )-1(B )1(C )-2(D )24、552log 10log 0.25+=( )(A )0(B )1(C ) 2 (D )45、已知定义在R 上的函数)(x f 是奇函数且满足 3)2(),()23(=-=-f x f x f ,数列}{n a 满足1=n a ,且n a S n n +=2(n S 为n a 的前n 项和)。
高中数学函数测试题及答案
高一数学一、选择题(每小题5分,共60分,请将所选答案填在括号内)1.已知A={第一象限角},B={锐角},C={小于90°的角},那么A 、B 、C 关系是( )A .B=A ∩CB .B ∪C=CC .A ⊂CD .A=B=C 2.下列各组角中,终边相同的角是( )A .π2k 与)(2Z k k ∈+ππB .)(3k 3Z k k ∈±πππ与C .ππ)14()12(±+k k 与 )(Z k ∈D .)(66Z k k k ∈±+ππππ与3.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是 ( )A .2B .1sin 2C .1sin 2D .2sin 4.设α角的终边上一点P 的坐标是)5sin,5(cos ππ,则α等于 ( )A .5πB .5cotπC .)(1032Z k k ∈+ππD .)(592Z k k ∈-ππ5.将分针拨慢10分钟,则分钟转过的弧度数是( )A .3πB .-3πC .6πD .-6π6.设角α和β的终边关于y 轴对称,则有( )A .)(2Z k ∈-=βπαB .)()212(Z k k ∈-+=βπαC .)(2Z k ∈-=βπαD .)()12(Z k k ∈-+=βπα7.集合A={},322|{},2|Z n n Z n n ∈±=⋃∈=ππααπαα, B={},21|{},32|Z n n Z n n ∈+=⋃∈=ππββπββ,则A 、B 之间关系为( )A .AB ⊂B .B A ⊂C .B ⊂AD .A ⊂B8.某扇形的面积为12cm ,它的周长为4cm ,那么该扇形圆心角的度数为 ( )A .2°B .2C .4°D .4 9.下列说法正确的是( )A .1弧度角的大小与圆的半径无关B .大圆中1弧度角比小圆中1弧度角大≠ ≠≠C .圆心角为1弧度的扇形的弧长都相等D .用弧度表示的角都是正角 10.中心角为60°的扇形,它的弧长为2π,则它的内切圆半径为 ( )A .2B .3C .1D .2311.一个半径为R 的扇形,它的周长为4R ,则这个扇形所含弓形的面积为 ( )A .2)1cos 1sin 2(21R ⋅- B .1cos 1sin 212⋅RC .221RD .221cos 1sin R R ⋅⋅- 12.若α角的终边落在第三或第四象限,则2α的终边落在 ( )A .第一或第三象限B .第二或第四象限C .第一或第四象限D .第三或第四象限二、填空题(每小题4分,共16分,请将答案填在横线上) 13.αααsin 12sin2cos-=-,且α是第二象限角,则2α是第 象限角.14.已知βαπβαππβαπ-2,3,34则-<-<-<+<的取值范围是 .15.已知α是第二象限角,且,4|2|≤+α则α的范围是 .16.已知扇形的半径为R ,所对圆心角为α,该扇形的周长为定值c ,则该扇形最大面积为.三、解答题(本大题共74分,17—21题每题12分,22题14分)17.写出角的终边在下图中阴影区域内角的集合(这括边界)(1) (2) (3)18.一个视力正常的人,欲看清一定距离的文字,其视角不得小于5′. 试问:(1)离人10米处能阅读的方形文字的大小如何?(2)欲看清长、宽约0.4米的方形文字,人离开字牌的最大距离为多少?19.一扇形周长为20cm ,当扇形的圆心角α等于多少弧度时,这个扇形的面积最大?并求此扇形的最大面积?20.绳子绕在半径为50cm 的轮圈上,绳子的下端B 处悬挂着物体W ,如果轮子按逆时针方向每分钟匀速旋转4圈,那么需要多少秒钟才能把物体W 的位置向上提升100cm? 21.已知集合A={}810,150|{},135|≤≤-︒⋅==∈︒⋅=k k B Z k k ββαα求与A ∩B 中角终边相同角的集合S.22.单位圆上两个动点M 、N ,同时从P (1,0)点出发,沿圆周运动,M 点按逆时针方向旋转6π弧度/秒,N 点按顺时针转3π弧度/秒,试求它们出发后第三次相遇时的位置和各自走过的弧度.高一数学参考答案(一)一、1.B 2.C 3.B 4.D 5.A 6.D 7.C 8.B 9.A 10.A 11.D 12.B 二、13.三 14. )6,(ππ-15.]2,2(),23(πππ⋃--16.162C三、17.(1)}1359013545|{Z k k k ∈︒⋅+︒≤≤︒⋅+︒αα;(2)}904590|{Z k k k ∈︒⋅+︒≤≤︒⋅αα;; (3)}360150360120|{Z k k k ∈︒⋅+︒≤≤︒⋅+︒-αα.18.(1)设文字长、宽为l 米,则)(01454.0001454.01010m l =⨯==α; (2)设人离开字牌x 米,则)(275001454.04.02m l x ===.19.221021,220rr rS r-=⋅⋅=-=αα,当2,5==αr 时,)(252maxcm S =.20.设需x 秒上升100cm .则ππ15,100502460=∴=⨯⨯⨯x x (秒).21.}360k 1350360|{Z k k S ∈︒⋅=︒-︒-==ααα或.22.设从P (1,0)出发,t 秒后M 、N 第三次相遇,则πππ636=+t t ,故t =12(秒).故M 走了ππ2126=⨯(弧度),N 走了ππ4123=⨯(弧度).同步测试(2)任意角的三角函数及同角三角函数的基本关系式一、选择题(每小题5分,共60分,请将所选答案填在括号内)1.已知)20(παα<<的正弦线与余弦线相等,且符号相同,那么α的值为 ( )A .ππ434或 B .ππ4745或C .ππ454或D .ππ474或2.若θ为第二象限角,那么)2cos(sin )2sin(cos θθ⋅的值为( )A .正值B .负值C .零D .为能确定 3.已知αααααtan ,5cos 5sin 3cos 2sin 那么-=+-的值为( )A .-2B .2C .1623 D .-16234.函数1sectan sin cos 1sin1cos )(222---+-=x x xxxx x f 的值域是( )A .{-1,1,3}B .{-1,1,-3}C .{-1,3}D .{-3,1} 5.已知锐角α终边上一点的坐标为(),3cos 2,3sin 2-则α= ( )A .3-πB .3C .3-2πD .2π-36.已知角α的终边在函数||x y -=的图象上,则αcos 的值为( )A .22 B .-22 C .22或-22 D .217.若,cos 3sin 2θθ-=那么2θ的终边所在象限为( )A .第一象限B .第二象限C .第三象限D .第四象限 8.1sin 、1cos 、1tan 的大小关系为( )A .1tan 1cos 1sin >>B .1cos 1tan 1sin >>C .1cos 1sin 1tan >>D .1sin 1cos 1tan >>9.已知α是三角形的一个内角,且32cos sin =+αα,那么这个三角形的形状为 ( )A .锐角三角形B .钝角三角形C .不等腰的直角三角形D .等腰直角三角形 10.若α是第一象限角,则ααααα2cos ,2tan,2cos,2sin ,2sin 中能确定为正值的有( )A .0个B .1个C .2个D .2个以上11.化简1csc 2csc csc 1tan 1sec 22+++++ααααα(α是第三象限角)的值等于( )A .0B .-1C .2D .-2 12.已知43cos sin =+αα,那么αα33cos sin -的值为( )A .2312825B .-2312825C .2312825或-2312825D .以上全错二、填空题(每小题4分,共16分,请将答案填在横线上) 13.已知,24,81cos sin παπαα<<=⋅且则=-ααsin cos .14.函数x xy cos lg 362+-=的定义域是_________.15.已知21tan -=x ,则1cos sin 3sin2-+x x x =______.16.化简=⋅++αααα2266cos sin 3cos sin . 三、解答题(本大题共74分,17—21题每题12分,22题14分) 17.已知.1cos sin ,1sin cos =-=+θθθθby a x by a x 求证:22222=+by ax .18.若xxx xx tan 2cos 1cos 1cos 1cos 1-=+---+, 求角x 的取值范围.19.角α的终边上的点P 和点A (b a ,)关于x 轴对称(0≠ab )角β的终边上的点Q 与A 关于直线x y =对称. 求βαβαβαcsc sec cot tan sec sin ⋅+⋅+⋅的值. 20.已知c b a ++=-+θθθθ2424sin sin 7cos 5cos 2是恒等式. 求a 、b 、c 的值. 21已知αsin 、βsin 是方程012682=++-k kx x 的两根,且α、β终边互相垂直.求k 的值.22.已知α为第三象限角,问是否存在这样的实数m ,使得αsin 、αcos 是关于x 的方程012682=+++m mx x 的两个根,若存在,求出实数m ,若不存在,请说明理由.高一数学参考答案(二)一、1.C 2.B 3.D 4.D 5.C 6.C 7.C 8.C 9.B 10.C 11.A 12.C 二、13.23-14. ⎥⎦⎤⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫⎢⎣⎡--6,232,223,6ππππ 15.52 16.1 三、17.由已知⎪⎪⎩⎪⎪⎨⎧-=+=,cos sin ,cos sin θθθθbx ax故 2)()(22=+bxax.18.左|sin |cos 2|sin ||cos 1||sin ||cos 1|x x x x x x =--+==右,).(222,0sin ,sin cos 2|sin |cos 2Z k k x k x xx x x ∈+<<+<-=∴ππππ19.由已知P (),(),,a b Q b a -,ab ab bb a ba b =-=+=+-=βαβαcot ,tan ,sec ,sin 2222,ab aab a2222csc ,sec +=+=βα , 故原式=-1-022222=++ab a ab.20.θθθθθθθ2424224sin 9sin 27sin 55sin 2sin 427cos 5cos 2-=--++-=-+,故0,9,2=-==c b a . 21.设,,22Z k k ∈++=ππαβ则αβcos sin =,由⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=++=⋅=⋅=+=+≥+⨯--=∆,1cos sin ,812cos sin ,43cos sin ,0)12(84)6(22222121212ααααααx x k x x k x x k k 解知910-=k ,22.假设存在这样的实数m ,.则⎪⎪⎪⎩⎪⎪⎪⎨⎧>+=⋅-=+≥+-=∆,0812cos sin ,43cos sin ,0)12(32362m m m m αααα 又18122)43(2=+⨯--m m ,解之m=2或m=.910-而2和910-不满足上式. 故这样的m 不存在.高一数学同步测试(3)—正、余弦的诱导公式一、选择题(每小题5分,共60分,请将所选答案填在括号内) 1.若,3cos )(cos x x f =那么)30(sin ︒f 的值为 ( )A .0B .1C .-1D .232.已知,)1514tan(a =-π那么=︒1992sin( ) A .21||aa + B .21aa + C .21aa +- D .211a+-3.已知函数1tan sin )(++=x b x a x f ,满足.7)5(=f 则)5(-f 的值为 ( )A .5B .-5C .6D .-6 4.设角则,635πα-=)(cos )sin(sin 1)cos()cos()sin(222απαπααπαπαπ+--+++--+的值等于( )A .33 B .-33 C .3 D .-35.在△ABC 中,若)sin()sin(C B A C B A +-=-+,则△ABC 必是 ( )A .等腰三角形B .直角三角形C .等腰或直角三角形D .等腰直角三角形6.当Z k ∈时,])1cos[(])1sin[()cos()sin(απαπαπαπ+++++⋅-k k k k 的值为( )A .-1B .1C .±1D .与α取值有关7.设βαβπαπ,,,(4)cos()sin()(b a x b x a x f ++++=为常数),且,5)2000(=f 那么=)2004(f ( )A .1B .3C .5D .7 8.如果).cos(|cos |π+-=x x 则x 的取值范围是( ) A .)(]22,22[Z k k k ∈++-ππππB .)()223,22(Z k k k ∈++ππππC .)(]223,22[Z k k k ∈++ππππD .)()2,2(Z k k k ∈++-ππππ9.在△ABC 中,下列各表达式中为常数的是 ( )A .CB A sin )sin(++ B . AC B cos )cos(-+C .2tan2tanC B A ⋅+D .2sec2cos A C B ⋅+ 10.下列不等式上正确的是( )A .ππ74sin75sin> B .)7tan(815tanππ->C .)6sin()75sin(ππ->- D .)49cos()53cos(ππ->-11.设,1234tan a =︒那么)206cos()206sin(︒-+︒-的值为( )A .211aa ++ B .-211aa ++ C .211aa +- D .211aa +-12.若)cos()2sin(απαπ-=+,则α的取值集合为 ( )A .}42|{Z k k ∈+=ππαα B .}42|{Z k k ∈-=ππααC .}|{Z k k ∈=πααD .}2|{Z k k ∈+=ππαα二、填空题(每小题4分,共16分,请将答案填在横线上) 13.已知,2cos 3sin =+αα则=+-ααααcos sin cos sin .14.已知,1)sin(=+βα则=+++)32sin()2sin(βαβα . 15.若,223tan 1tan 1+=+-θθ则=⋅--+θθθθθcos sin cot 1)cos (sin .16.设)cos()sin()(21απαπ+++=x n x m x f ,其中m 、n 、1α、2α都是非零实数,若 ,1)2001(=f 则=)2002(f .三、解答题(本大题共74分,17—21题每题12分,22题14分)17.设sin ,(0)()(1)1,(0)x x f x f x x π<⎧=⎨-+≥⎩和1cos ,()2()1(1)1,()2x x g x g x x π⎧<⎪⎪=⎨⎪-+≥⎪⎩求)43()65()31()41(f g f g +++的值.18.已知,1)sin(=+y x 求证:.0tan )2tan(=++y y x19.已知αtan 、αcot 是关于x 的方程0322=-+-k kx x 的两实根,且,273παπ<<求)sin()3cos(απαπ+-+的值.20.已知,3cos 3cot )(tan x x x f -=(1)求)(cot x f 的表达式;(2)求)33(-f 的值.21.设)(x f 满足)2|(|cos sin 4)(sin 3)sin (π≤⋅=+-x xx x f x f ,(1) 求)(x f 的表达式;(2)求)(x f 的最大值.22.已知:∑=+⋅=ni n i i S 1)32cos(ππ ,求.2002S 。
高中数学必修1函数单调性和奇偶性专项练习(含答案)
高中数学必修1函数单调性和奇偶性专项练习(含答案)高中数学必修1 第二章函数单调性和奇偶性专项练一、函数单调性相关练题1、(1)函数f(x)=x-2,x∈{1,2,4}的最大值为3.在区间[1,5]上的最大值为9,最小值为-1.2、利用单调性的定义证明函数f(x)=(2/x)在(-∞,0)上是减函数。
证明:对于x1<x2.由于x1和x2都小于0,所以有x1<x2<0,因此有f(x2)-f(x1)=2/x1-2/x2=2(x2-x1)/x1x2<0.因此,f(x)在(-∞,0)上是减函数.3、函数f(x)=|x|+1的图像是一条V型曲线,单调区间为(-∞,0]和[0,∞).4、函数y=-x+2的图像是一条斜率为-1的直线,单调区间为(-∞,+∞).5、已知二次函数y=f(x)(x∈R)的图像是一条开口向下且对称轴为x=3的抛物线,比较大小:(1)f(6)与f(4);(2)f(2)与f(15).1) 因为f(x)是开口向下的抛物线,所以对于x>3,f(x)是减函数,对于x<3,f(x)是增函数。
因此,f(6)<f(4).2) 因为f(x)是开口向下的抛物线,所以对于x3,f(x)是增函数。
因此,f(2)>f(15).6、已知y=f(x)在定义域(-1,1)上是减函数,且f(1-a)<f(3a-2),求实数a的取值范围.因为f(x)在(-1,1)上是减函数,所以对于0f(3a-2)。
因此,实数a的取值范围为0<a<1.7、求下列函数的增区间与减区间:1) y=|x^2+2x-3|的图像是一条开口向上的抛物线,单调区间为(-∞,-3]和[1,+∞).2) y=1-|x-1|的图像是一条V型曲线,单调区间为(-∞,1]和[1,+∞).3) y=-x^2-2x+3的图像是一条开口向下的抛物线,单调区间为(-∞,-1]和[1,+∞).4) y=1/(x^2-x-20)的图像是一条双曲线,单调区间为(-∞,-4]和[-1,1]和[5,+∞).8、函数f(x)=ax^2-(3a-1)x+a^2在[1,+∞)上是增函数,求实数a的取值范围.因为f(x)在[1,+∞)上是增函数,所以对于x>1,有f(x)>f(1)。
高中数学必修一函数练习题及答案
高中数学必修一函数试题一、选择题: 1、若()f x =(3)f = ( )A 、2B 、4 C、 D 、10 2、对于函数()y f x =,以下说法正确的有 ( )①y 是x 的函数;②对于不同的,x y 的值也不同;③()f a 表示当x a =时函数()f x 的值,是一个常量;④()f x 一定可以用一个具体的式子表示出来。
A 、1个B 、2个C 、3个D 、4个 3、下列各组函数是同一函数的是( )①()f x =与()g x =;②()f x x =与2()g x =;③0()f x x =与01()g x x =;④2()21f x x x =--与2()21g t t t =--。
A 、①②B 、①③C 、③④D 、①④4、二次函数245y x mx =-+的对称轴为2x =-,则当1x =时,y 的值为 ( ) A 、7- B 、1 C 、17 D 、25 5、函数y =( )A 、[]0,2B 、[]0,4C 、(],4-∞D 、[)0,+∞ 6、下列四个图像中,是函数图像的是 ( )A 、(1)B 、(1)、(3)、(4)C 、(1)、(2)、(3)D 、(3)、(4) 7、)(x f 是定义在R 上的奇函数,下列结论中,不正确...的是( ) A 、()()0f x f x -+= B 、()()2()f x f x f x --=- C 、()()0f x f x -≤ D 、()1()f x f x =-- 8、如果函数2()2(1)2f x x a x =+-+在区间(],4-∞上是减少的,那么实数a 的取值范围是( ) A 、3a -≤ B 、3a -≥ C 、a ≤5 D 、a ≥5 9、设函数()(21)f x a x b =-+是R 上的减函数,则有 ( )(1)(2)(3)(4)A 、12a >B 、12a <C 、12a ≥D 、12a ≤ 10、下列所给4个图象中,与所给3件事吻合最好的顺序为 ( )(1)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学; (2)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间; (3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速。
高中数学必修一练习题函数含详细答案
✍✍✍高中数学必修一练习题(三)函数班号姓名✍✍奇偶性1.下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的是() A.f(x)=x B.f(x)=|x| C.f(x)=-x2D.f(x)=1 x2.函数f(x)=x2+x的奇偶性为()A.奇函数B.偶函数C.既是奇函数又是偶函数D.非奇非偶函数3.已知f(x)是偶函数,且f(4)=5,那么f(4)+f(-4)的值为() A.5 B.10 C.8 D.不确定4.(2011·潍坊高一检测)已知函数f(x)在[-5,5]上是偶函数,f(x)在[0,5]上是单调函数,且f(-3)<f(-1),则下列不等式一定成立的是() A.f(-1)<f(3) B.f(2)<f(3) C.f(-3)<f(5)D.f(0)>f(1)5.函数y=ax2+bx+c为偶函数的条件是________.6.函数f(x)=x3+ax,若f(1)=3,则f(-1)的值为________.7.已知函数f(x)=ax+b1+x2是定义在(-1,1)上的奇函数,且f(12)=25,求函数f(x)的解析式.8.设函数f(x)在R上是偶函数,在区间(-∞,0)上递增,且f(2a2+a+1)<f(2a2-2a+3),求a的取值范围.✍✍函数的最大(小)值1.函数y=1x2在区间[12,2]上的最大值是()A. 14B.-1 C.4 D.-42.函数f (x )=9-ax 2(a >0)在[0,3]上的最大值为( ) A .9B .9(1-a )C .9-aD .9-a 23.函数f (x )=⎩⎨⎧2x +6,x ∈[1,2],x +7,x ∈[-1,1),则f (x )的最大值、最小值分别为( )A .10,6B .10,8C .8,6D .以上都不对4.某公司在甲乙两地同时销售一种品牌车,利润(单位:万元)分别为L 1=-x 2+21x 和L 2=2x ,其中销售量单位:辆.若该公司在两地共销售15辆,则能获得的最大利润为( ) A .90万元 B .60万元 C .120万元D .120.25万元5.若一次函数y =f (x )在区间[-1,2]上的最小值为1,最大值为3,则y =f (x )的解析式为_____.6.(2011·合肥高一检测)函数y =-x 2-4x +1在区间[a ,b ](b >a >-2)上的最大值为4,最小值为-4,则a =__________,b =________.7.画出函数f (x )=⎩⎨⎧-2x ,x ∈(-∞,0)x 2+2x -1,x ∈[0,+∞)的图象,并写出函数的单调区间,函数最小值.8.已知函数f (x )=x 2+2ax +2,x ∈[-5,5].(1)当a =-1时,求函数f (x )的最大值和最小值;(2)求实数a 的取值范围,使y =f (x )在区间[-5,5]上是单调函数.✍✍指数与指数幂的运算1.下列等式一定成立的是( ) A .a 13·a 32=a B .a12-·a 12=0 C .(a 3)2=a 9D .a 12÷a 13=a 162.4a -2+(a -4)0有意义,则a 的取值范围是( )A .a ≥2B .2≤a <4或a >4C .a ≠2D .a ≠43.(112)0-(1-0.5-2)÷(278)23 的值为( )A .-13B. 13C. 43D. 734.设a 12-a12-=m ,则a 2+1a=( )A .m 2-2B .2-m 2C .m 2+2D .m 25.计算:(π)0+2-2×⎝ ⎛⎭⎪⎫21412=________.6.若102x =25,则10-x 等于________.7.根据条件进行计算:已知x =12,y =13,求x +y x -y -x -y x +y 的值.8.计算或化简下列各式: (1)[(0.02723)-1.5]13+[810.25-(-32)0.6-0.02×(110)-2]12;(2)(a 23·b -1)12-·a12-·b136a ·b 5.幂函数1.幂函数y =x n 的图象一定经过(0,0),(1,1),(-1,1),(-1,-1)中的( ) A .一点B .两点C .三点D .四点2.下列幂函数中过点(0,0),(1,1)的偶函数是( ) A .y =x 12B .y =x4C .y =x -2D .y =x 133.如图,函数y =x 23的图象是( ) 4.幂函数f (x )=x α满足x >1时f (x )>1,则α满足的条件是( )A .α>1B .0<α<1C .α>0D .α>0且α≠15.函数y=(2m-1)x2m是一个幂函数,则m的值是________.6.下列六个函数①y=x 53,②y=x34,③y=x-13,④y=x23,⑤y=x-2,⑥y=x2中,定义域为R的函数有________(填序号).7.比较下列各组数的大小:(1)352-和3.152-;(2)-878-和-(19)78;(3)(-23)23-和(-π6)23-.8.已知幂函数y=x3m-9(m∈N*)的图象关于y轴对称,且在(0,+∞)上函数值随x的增大而减小,求该函数的解析式.参考答案函数的奇偶性1.选C f(x)=|x|及f(x)=-x2为偶函数,而f(x)=|x|在(0,+∞)上单调递增,故选C.2.选D函数的定义域为[0,+∞),不关于原点对称,∴f(x)为非奇非偶函数.3.选B f(4)+f(-4)=2f(4)=10.4.选D函数f(x)在[-5,5]上是偶函数,因此f(x)=f(-x),于是f(-3)=f(3),f(-1)=f(1),则f(3)<f(1).又f(x)在[0,5]上是单调函数,从而函数f(x)在[0,5]上是减函数,观察四个选项,并注意到f(x)=f(-x),易得只有D正确.5.解析:根据偶函数的性质,得ax2+bx+c=a·(-x)2+b(-x)+c,∴b =0.答案:b=06.解析:∵f(-x)=-f(x),∴f(x)为奇函数,∴f(-1)=-f(1)=-3. 答案:-37.解:∵f(x)是定义在(-1,1)上的奇函数,∴f(0)=0,即b1+02=0,∴b =0, 又f (12)=12a 1+14=25,∴a =1,∴f (x )=x 1+x 2. 8.解:由f(x)在R 上是偶函数,在区间(-∞,0)上递增,可知f(x)在(0,+∞)上递减.∵2a 2+a +1=2(a +14)2+78>0,2a 2-2a +3=2(a -12)2+52>0,且f (2a 2+a +1)<f (2a 2-2a +3),∴2a 2+a +1>2a 2-2a +3,即3a -2>0,解得a >23.函数的最大(小)值1.C2.选A f(x)=-ax2+9开口向下,在[0,3]上单调递减,所以在[0,3]上最大值为9.3.选A f(x)在[-1,2]上单调递增,∴最大值为f(2)=10,最小值为f(-1)=6.4.选C 设公司在甲地销售x 辆,则在乙地销售15-x 辆,公司获利为L =-x 2+21x +2(15-x )=-x 2+19x +30=-(x -192)2+30+1924,∴当x =9或10时,L 最大为120万元.5.解析:设f(x)=ax +b ,易知a≠0. 当a>0时,f(x)单调递增,则有⎩⎨⎧f (2)=3f (-1)=1,∴⎩⎨⎧2a +b =3-a +b =1,即⎩⎪⎨⎪⎧a =23b =53,∴f (x )=23x +53;当a <0时,f (x )单调递减,则有⎩⎨⎧f (2)=1,f (-1)=3,∴⎩⎨⎧2a +b =1-a +b =3,即⎩⎪⎨⎪⎧a =-23b =73, ∴f (x )=-23x +73. 综上,y =f (x )的解析式为f (x )=23x +53或f (x )=-23x+73. 答案:f (x )=23x +53或f (x )=-23x +736.解析:∵y =-(x +2)2+5,∴函数图象对称轴是x =-2. 故在[-2,+∞)上是减函数.又∵b >a >-2,∴y =-x 2-4x +1在[a ,b ]上单调递减.∴f (a )=4,f (b )=-4.由f (a )=4,得-a 2-4a +1=4,∴a 2+4a +3=0,即(a +1)(a +3)=0.∴a =-1或a =-3(舍去),∴a =-1. 由f (b )=-4,得-b 2-4b +1=-4,b =1或b =-5(舍去),∴b =1. 答案:-1 1 7.解:f(x)的图象如图所示,f (x )的单调递增区间是(-∞,0)和[0,+∞),函数的最小值为f (0)=-1.8.解:(1)当a =-1时,f(x)=x2-2x +2=(x -1)2+1,x ∈[-5,5],当x =1时,有f (x )min =1,当x =-5时,有f (x )max =37.(2)∵函数f (x )=(x +a )2+2-a 2图象的对称轴为x =-a ,f (x )在区间[-5,5]上是单调函数,∴-a ≤-5或-a ≥5,即a ≥5或a ≤-5.✍✍指数与指数幂的运算1.选D a 13·a 32=a 1332+=a 116;a 12-·a 12=a0=1;(a3)2=a6;a 12÷a 13=a1123-=a 16,故D 正确.2.选B 要使原式有意义,应满足⎩⎨⎧a -2≥0a -4≠0,得a≥2且a≠4.3.选D 原式=1-(1-4)÷3(278)2=1+3×49=73. 4.选C 将a 12-a 12-=m 平方得(a 12-a 12-)2=m2,即a -2+a -1=m 2,所以a +a -1=m 2+2,即a +1a =m 2+2?a 2+1a=m 2+2.5.解析:(π)0+2-2×⎝ ⎛⎭⎪⎫21412=1+122×⎝ ⎛⎭⎪⎫9412=1+14×32=118. 答案:1186.解析:由102x =25得:(10x)2=25,∴10x 是25的平方根.由于10x>0,∴10x=5,∴10-x=110x =15. 答案:157.解:∵x +y x -y -x -y x +y=(x +y )2x -y -(x -y )2x -y =4xyx -y ,把x =12,y =13代入得,原式=412×1312-13=4 6.8.解:(1)原式=(310)3×23×(-32)×13+(8114+3235-2100×100)12=103+912=193. (2)原式=a 13-·b 12·a12-·b13a 16·b56=a111326---·b115236+-=1a. 幂函数1.选A 当n≥0时,一定过(1,1)点,当n<0时,也一定过(1,1)点. 2.选B y =x 12不是偶函数;y =x -2不过(0,0);y =x 13是奇函数. 3.选D 幂函数y =x 23是偶函数,图象关于y 轴对称.4.选C 因为x>1时x α>1=1α,所以y =x α单调递增,故α>0. 5.解析:令2m -1=1得m =1,该函数为y =x. 答案:16.解析:函数①④⑥的定义域为R ,函数②定义域为[0,+∞),③⑤的定义域为{x|x≠0}. 答案:①④⑥ 7.解:(1)函数y =x52-在(0,+∞)上为减函数,因为3<3.1,所以352->3.152-.(2)-878-=-(18)78,函数y =x 78在(0,+∞)上为增函数,因为18>19,则(18)78>(19)78, 从而-8-78<-(19)78.(3)(-23)23-=(23)23-,(-π6)23-=(π6)23-,函数y =x 23-在(0,+∞)上为减函数,因为23>π6,所以(23)23-<(π6)23-,即(-23)23-<(-π6)23-.8.解:∵函数在(0,+∞)上递减,∴3m -9<0,解得m<3.又m ∈N *,∴m =1,2. 又函数图象关于y 轴对称,∴3m -9为偶数,故m =1. 即幂函数y =x 3m -9的解析式为y =x -6.。
高中数学函数练习题(完整版)
高中数学函数练习题(完整版).doc1、在A、B、C、D四个函数中,只有函数y=1/(x+1)的值域是(0,+∞),因此答案为A。
2、由题意可得:f(-2)=f(2)=3,即2a+12a+a=3,解得a=-1/2.在闭区间[-2,2]上,f(x)的最小值是f(0)=-a=1/2,因此答案为A。
3、对于函数y=x-2x^2+3,在[0,m]上有最大值3,最小值2,因此其开口向下,且顶点在[0,m]上。
由于开口向下,顶点为最大值,因此m=1,即答案为A。
4、设函数f(x)=log_a(x),则f(a)=1,f(2a)=log_a(2a)=1+log_a2,由题意可得:f(2a)=3f(a),即1+log_a2=3,解得a=1/4,因此答案为B。
5、在区间[0,1]上,f(x)的最大值为a+log_a2,最小值为a+log_a1=a,因此有:a+log_a2+a=2a,解得a=2,因此答案为D。
6、由题意可得:y-2xy/(x-1)^3的最小值为-1/3,1/(x-1)的最大值为正无穷,因此答案为正无穷和-1/3.7、由于XXX(ax+2x+1)的值域为R,因此ax+2x+1>0,解得a>-1/2.又因为XXX(ax+2x+1)=lg(a)+lg(x+2x+1/a)>0,解得a>0.因此a的取值范围为(0,1/2)。
8、将x=y=1代入f(x+y)=f(x)+f(y)+2xy,得f(2)=f(1)+f(1)+2=4.又因为f(1)=2,因此f(0)=f(1)+f(-1)+2(1)(-1)=0.9、将x=0代入f(x+1)=(1/3)(1/(x^2-1)),得f(1)=(1/3)(1/2)=1/6.因此f(x)=f(x+1-1)=f(x+1)-2(x+1-1)=f(x+1)-2x-2,代入f(x+1)=(1/3)(1/(x^2-1)),得f(x)=(1/3)(1/[(x-1)(x+1)])-2x-2,因此函数f(x)的值域为R。
高中数学有关函数练习题
高中数学【1】《函数》测试题一、选择题(共50分):1.已知函数y f x =+()1的图象过点(3,2),则函数f x ()的图象关于x 轴的对称图形一定过点 A. (2,-2)B. (2,2) C. (-4,2) D. (4,-2) 2.如果奇函数()f x 在区间[](),0a b b a >>上是增函数,且最小值为m ,那么()f x 在区间[],b a --上是A.增函数且最小值为mB.增函数且最大值为m -C.减函数且最小值为mD.减函数且最大值为m -3. 与函数()lg 210.1x y -=的图象相同的函数解析式是A .121()2y x x =-> B .121y x =- C .11()212y x x =>- D .121y x =- 4.对一切实数x ,不等式1||2++x a x ≥0恒成立,则实数a 的取值范围是A .-∞(,-2]B .[-2,2]C .[-2,)+∞D .[0,)+∞5.已知函数)12(+=x f y 是定义在R 上的奇函数,函数)(x g y =的图象与函数)(x f y =的图象关于直线x y =对称,则)()(x g x g -+的值为A .2B .0C .1D .不能确定6.把函数)(x f y =的图像沿x 轴向右平移2个单位,所得的图像为C ,C 关于x 轴对称的图像为x y 2=的图像,则)(x f y =的函数表达式为A. 22+=x y B. 22+-=x yC. 22--=x y D. )2(log 2+-=x y7.当01a b <<<时,下列不等式中正确的是A.b ba a )1()1(1->- B.(1)(1)a ba b +>+ C.2)1()1(bba a ->- D.(1)(1)a ba b ->-8.当[]2,0∈x 时,函数3)1(4)(2--+=x a ax x f 在2=x 时取得最大值,则a 的取值范围是 A.1[,)2-+∞ B.[)+∞,0 C.[)+∞,1 D.2[,)3+∞9.已知(31)4,1()log ,1a a x a x f x x x -+<⎧=⎨>⎩是(,)-∞+∞上的减函数,那么a 的取值范围是A.(0,1)B.1(0,)3 C.1[,1)7D.11[,)7310.某种电热水器的水箱盛满水是200升,加热到一定温度,即可用来洗浴。
高一精选数学习题带答案
高一精选数学习题带答案作为高中阶段学习的重要科目之一,数学不仅仅是一门知识,更是一种思考方式和解决问题的能力。
因此,做好数学学习和练习十分重要。
以下是一些高一精选数学习题,希望能帮助大家更好地掌握和应用数学知识。
一、函数与方程1.设y=a|x-2|+b,当x=1时,y=3,当x=5时,y=-1,求a和b的值。
解:将x=1和x=5代入方程中,得到两个方程:a|1-2|+b=3,a|5-2|+b=-1。
化简可得:a+b=5,3a+b=-1。
解出a=-2,b=7。
2. 已知函数f(x)=x^3+px^2+qx+r,当x=1时,f(x)=1;当x=2时,f(x)=-3,当x=3时,f(x)=4。
求函数f(x)的表达式。
解:将x=1,2,3代入方程中得到三个方程,解得p=-6,q=11,r=-3。
因此,函数f(x)=x^3-6x^2+11x-3。
二、三角函数1. 已知正弦函数f(x)=2sin(x+π/6),求f(x)图像的对称中心、对称轴和极值点。
解:f(x)的对称中心为x=-π/6,对称轴为x=-π/6,极大值为f(-π/3)=2,极小值为f(5π/6)=-2。
2. 已知余切函数f(x)=(1+tanx)/(1-tanx),求f(x)的最大值和最小值。
解:将f(x)化简为f(x)=1+cotx,因为cotx的定义域为(0,π),因此f(x)的最大值为f(0)=1,最小值为f(π/2)=0。
三、解析几何1. 已知平面上三角形三个顶点的坐标分别为A(2,1),B(-1,3),C(4,5),求三角形ABC的周长和面积。
解:使用勾股定理可以求出AB、AC和BC的长度,即AB=√10,AC=√26,BC=√13。
因此,三角形ABC的周长为√10+√26+√13,使用海伦公式可以求出三角形ABC的面积,即S=√14。
2. 求过直线y=2x+1且与两坐标轴的交点分别为A和B的直线方程。
解:直线过点A(-1/2,0)和B(0,1),因此可列出两个方程进行求解,即y=2x+1和y=(1-x)/2。
高中数学函数的单调性练习题和答案
函数的单调性一、选择题:1.在区间(0,+∞)上不是增函数的函数是( )A .y =2x +1B .y =3x 2+1C .y =x2 D .y =2x 2+x +12.函数f (x )=4x 2-mx +5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函数,则f (1)等于 ( ) A .-7 B .1 C .17 D .253.函数f (x )在区间(-2,3)上是增函数,则y =f (x +5)的递增区间是 ( ) A .(3,8) B .(-7,-2) C .(-2,3) D .(0,5) 4.函数f (x )=21++x ax 在区间(-2,+∞)上单调递增,则实数a 的取值范围是 ( )A .(0,21)B .( 21,+∞)C .(-2,+∞)D .(-∞,-1)∪(1,+∞)5.已知函数f (x )在区间[a ,b ]上单调,且f (a )f (b )<0,则方程f (x )=0在区间[a ,b ]内( ) A .至少有一实根 B .至多有一实根 C .没有实根 D .必有唯一的实根6.已知函数f (x )=8+2x -x 2,如果g (x )=f ( 2-x 2),那么函数g (x )( )A .在区间(-1,0)上是减函数B .在区间(0,1)上是减函数C .在区间(-2,0)上是增函数D .在区间(0,2)上是增函数7.已知函数f (x )是R 上的增函数,A(0,-1)、B(3,1)是其图象上的两点,那么不等式|f (x +1)|<1的解集的补集是 ( ) A .(-1,2) B .(1,4) C .(-∞,-1)∪[4,+∞) D .(-∞,-1)∪[2,+∞)8.已知定义域为R 的函数f (x )在区间(-∞,5)上单调递减,对任意实数t ,都有f (5+t )=f (5-t ),那么下列式子一定成立的是 ( ) A .f (-1)<f (9)<f (13) B .f (13)<f (9)<f (-1) C .f (9)<f (-1)<f (13) D .f (13)<f (-1)<f (9)9.函数)2()(||)(x x x g x x f -==和的递增区间依次是( )A .]1,(],0,(-∞-∞B .),1[],0,(+∞-∞C .]1,(),,0[-∞+∞D ),1[),,0[+∞+∞10.已知函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数,则实数a 的取值范围是( ) A .a ≤3 B .a ≥-3 C .a ≤5 D .a ≥3 11.已知f (x )在区间(-∞,+∞)上是增函数,a 、b ∈R 且a +b ≤0,则下列不等式中正确的是( ) A .f (a )+f (b )≤-f (a )+f (b )] B .f (a )+f (b )≤f (-a )+f (-b ) C .f (a )+f (b )≥-f (a )+f (b )] D .f (a )+f (b )≥f (-a )+f (-b )12.定义在R 上的函数y =f (x )在(-∞,2)上是增函数,且y =f (x +2)图象的对称轴是x =0,则( )A .f (-1)<f (3)B .f (0)>f (3)C .f (-1)=f (-3)D .f (2)<f (3) 二、填空题:13.函数y =(x -1)-2的减区间是___ _. 14.函数y =x -2x -1+2的值域为__ ___. 15、设()y f x =是R 上的减函数,则()3y fx =-的单调递减区间为 .16、函数f (x ) = ax 2+4(a +1)x -3在[2,+∞]上递减,则a 的取值范围是__ . 三、解答题:17.f (x )是定义在( 0,+∞)上的增函数,且f (yx) = f (x )-f (y ) (1)求f (1)的值.(2)若f (6)= 1,解不等式 f ( x +3 )-f (x1) <2 .18.函数f (x )=-x 3+1在R 上是否具有单调性如果具有单调性,它在R 上是增函数还是减函数试证明你的结论.19.试讨论函数f (x )=21x -在区间[-1,1]上的单调性.20.设函数f (x )=12+x -ax ,(a >0),试确定:当a 取什么值时,函数f (x )在0,+∞)上为单调函数.21.已知f (x )是定义在(-2,2)上的减函数,并且f (m -1)-f (1-2m )>0,求实数m 的取值范围.22.已知函数f (x )=xax x ++22,x ∈[1,+∞](1)当a =21时,求函数f (x )的最小值;(2)若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围.参考答案一、选择题: CDBBD ADCCA BA二、填空题:13. (1,+∞), 14. (-∞,3),15.[)3,+∞, ⎥⎦⎤ ⎝⎛-∞-21,三、解答题:17.解析:①在等式中0≠=y x 令,则f (1)=0.②在等式中令x=36,y=6则.2)6(2)36(),6()36()636(==∴-=f f f f f 故原不等式为:),36()1()3(f xf x f <-+即f [x (x +3)]<f (36), 又f (x )在(0,+∞)上为增函数,故不等式等价于:.23153036)3(00103-<<⇒⎪⎪⎩⎪⎪⎨⎧<+<>>+x x x xx18.解析: f (x )在R 上具有单调性,且是单调减函数,证明如下:设x 1、x 2∈(-∞,+∞), x 1<x 2 ,则f (x 1)=-x 13+1, f (x 2)=-x 23+1.f (x 1)-f (x 2)=x 23-x 13=(x 2-x 1)(x 12+x 1x 2+x 22)=(x 2-x 1)[(x 1+22x )2+43x 22].∵x 1<x 2,∴x 2-x 1>0而(x 1+22x )2+43x 22>0,∴f (x 1)>f (x 2).∴函数f (x )=-x 3+1在(-∞,+∞)上是减函数.19.解析: 设x 1、x 2∈-1,1]且x 1<x 2,即-1≤x 1<x 2≤1.f (x 1)-f (x 2)=211x --221x -=2221222111)1()1(x x x x -+----=2221121211))((x x x x x x -+-+-∵x 2-x 1>0,222111x x -+->0,∴当x 1>0,x 2>0时,x 1+x 2>0,那么f (x 1)>f (x 2). 当x 1<0,x 2<0时,x 1+x 2<0,那么f (x 1)<f (x 2).故f (x )=21x -在区间[-1,0]上是增函数,f (x )=21x -在区间[0,1]上是减函数.20.解析:任取x 1、x 2∈0,+)∞且x 1<x 2,则f (x 1)-f (x 2)=121+x -122+x -a (x 1-x 2)=1122212221+++-x x x x -a (x 1-x 2)=(x 1-x 2)(11222121++++x x x x -a )(1)当a ≥1时,∵11222121++++x x x x <1,又∵x 1-x 2<0,∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2) ∴a ≥1时,函数f (x )在区间[0,+∞)上为减函数. (2)当0<a <1时,在区间[0,+∞]上存在x 1=0,x 2=212aa-,满足f (x 1)=f (x 2)=1 ∴0<a <1时,f (x )在[0,+)∞上不是单调函数 注: ①判断单调性常规思路为定义法; ②变形过程中11222121++++x x x x <1利用了121+x >|x 1|≥x 1;122+x >x 2;③从a 的范围看还须讨论0<a <1时f (x )的单调性,这也是数学严谨性的体现.21.解析: ∵f (x )在(-2,2)上是减函数∴由f (m -1)-f (1-2m )>0,得f (m -1)>f (1-2m )∴⎪⎪⎪⎩⎪⎪⎪⎨⎧<<<-<<-⎪⎩⎪⎨⎧-<-<-<-<-<-32232131211,2212212m m m m m m m 即 解得3221<<-m ,∴m 的取值范围是(-32,21)22.解析: (1)当a =21时,f (x )=x +x21+2,x ∈1,+∞)设x 2>x 1≥1,则f (x 2)-f (x 1)=x 2+1122121x x x --=(x 2-x 1)+21212x x x x -=(x 2-x 1)(1-2121x x ) ∵x 2>x 1≥1,∴x 2-x 1>0,1-2121x x >0,则f (x 2)>f (x 1) 可知f (x )在[1,+∞)上是增函数.∴f (x )在区间[1,+∞)上的最小值为f (1)=27. (2)在区间[1,+∞)上,f (x )=xa x x ++22>0恒成立⇔x 2+2x +a >0恒成立设y =x 2+2x +a ,x ∈1,+∞),由y =(x +1)2+a -1可知其在[1,+∞)上是增函数, 当x =1时,y min =3+a ,于是当且仅当y min =3+a >0时函数f (x )>0恒成立.故a >-3.。
高中数学函数试题及答案
高中数学函数试题及答案一、选择题(每题3分,共30分)1. 函数f(x) = 2x^2 - 3x + 1在x=1处的导数是()A. 1B. 2C. 4D. 52. 已知函数y = x^3 - 2x^2 + x - 2,求其在x=0时的值是()A. -2B. 0C. 1D. 23. 函数y = sin(x)在x=π/2处的值是()A. 0B. 1C. -1D. π/24. 已知函数f(x) = 3x + 5,求f(-2)的值是()A. -1B. 1C. -7D. 75. 如果函数f(x) = x^2 + 2x + 3在区间[-3, 1]上是增函数,那么下列哪个选项是错误的()A. f(-3) = 12B. f(1) = 6C. f(-2) = 4D. f(0) = 36. 函数y = 1 / (x + 1)的渐近线是()A. x = -1B. y = 0C. x = 1D. y = 17. 函数f(x) = x^3 - 6x^2 + 11x - 6的极值点是()A. x = 1B. x = 2C. x = 3D. x = 48. 函数y = x^2在x=2处的切线斜率是()A. 0B. 2C. 4D. 89. 函数y = 2^x的值域是()A. (0, +∞)B. (-∞, +∞)C. [0, +∞)D. [1, +∞)10. 函数f(x) = |x - 2|的零点是()A. x = 0B. x = 1C. x = 2D. x = 3二、填空题(每题4分,共20分)11. 若函数f(x) = √x在区间[0, 4]上是增函数,则f(4) - f(0) = _______。
12. 函数g(x) = x^2 + bx + c,若g(1) = 2,g(2) = 6,则b + c = _______。
13. 若函数h(x) = 3x - 2的反函数为h^(-1)(x),则h^(-1)(5) =_______。
高中数学_经典函数试题及答案
高中数学_经典函数试题及答案一、考点:一次函数试题:已知函数 $y=2x-1$,求该函数在 $x=3$ 时的函数值。
解答:将 $x=3$ 代入 $y=2x-1$ 中,得到 $y=2(3)-1=5$,因此该函数在 $x=3$ 时的函数值为 $5$。
二、考点:二次函数试题:已知函数 $y=x^2-4x+5$,求该函数的 $x$ 轴截距和顶点坐标。
解答:要求 $x$ 轴截距,可以令 $y=0$,则 $x^2-4x+5=0$。
通过求解,可以得到该二次函数的两个根 $x=1$ 和$x=3$,因此 $x$ 轴截距为 $(1,0)$ 和 $(3,0)$。
要求顶点坐标,可以通过求解完成平方后的式子 $y=(x-2)^2+1$ 得到,因此该函数的顶点坐标为 $(2,1)$。
三、考点:指数函数试题:已知函数 $y=2^x$,求该函数在 $x=3$ 时的函数值和在 $x=0$ 时的函数值。
解答:将 $x=3$ 代入 $y=2^x$ 中,得到 $y=2^3=8$,因此该函数在 $x=3$ 时的函数值为 $8$。
将 $x=0$ 代入$y=2^x$ 中,得到 $y=2^0=1$,因此该函数在 $x=0$ 时的函数值为 $1$。
四、考点:对数函数试题:已知函数 $y=\log_3x$,求该函数在 $x=27$ 时的函数值和在 $x=1$ 时的函数值。
解答:将 $x=27$ 代入 $y=\log_3x$ 中,得到$y=\log_3(27)=3$,因此该函数在 $x=27$ 时的函数值为 $3$。
将 $x=1$ 代入 $y=\log_3x$ 中,得到 $y=\log_31=0$,因此该函数在 $x=1$ 时的函数值为 $0$。
五、考点:三角函数试题:已知函数 $y=\sin x$,求该函数在 $x=\frac{\pi}{2}$ 时的函数值和在 $x= \pi$ 时的函数值。
解答:将 $x= \frac{\pi}{2}$ 代入 $y=\sin x$ 中,得到 $y=\sin (\frac{\pi}{2})=1$,因此该函数在 $x=\frac{\pi}{2}$ 时的函数值为 $1$。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、设函数f(x)=-,
(1)证明函数f(x)是奇函数;
(2)证明函数f(x)在(-∞,+∞)内是增函数;
(3)求函数f(x)在[1,2]上的值域.
2、已知函数f(x)=2x,g(x)=.
(1)求函数g(x)的值域;
(2)求满足方程f(x)-g(x)=0的x的值.
3、设f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+2)=-f(x).当x∈[0,2]时,f(x)=2x-x2.
(1)求证:f(x)是周期函数;
(2)当x∈[2,4]时,求f(x)的解析式;
(3)计算f(0)+f(1)+f(2)+…+f(2 012).
4、设f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+2)=-f(x).当x∈[0,2]时,f(x)=2x-x2.
(1)求证:f(x)是周期函数;
(2)当x∈[2,4]时,求f(x)的解析式;
(3)计算f(0)+f(1)+f(2)+…+f(2 012).
5、定义在R上的函数f(x)满足对任意x、y∈R恒有f(xy)=f(x)+f(y),且f(x)不恒为0.
(1)求f(1)和f(-1)的值;
(2)试判断f(x)的奇偶性,并加以证明;
(3)若x≥0时f(x)为增函数,求满足不等式f(x+1)-f(2-x)≤0的x的取值集合.
6、定义在R上的函数f(x),满足当x>0时,f(x)>1,且对任意的x,y∈R,有f(x+y)=f(x)·f(y),f(1)=2.
(1)求f(0)的值;
(2)求证:对任意x∈R,都有f(x)>0;
(3)解不等式f(3-x2)>4.
7、已知函数y=f(x)是定义在(0,+∞)上的增函数,对于任意的x>0,y>0,都有f(xy)=f(x)+f(y),且满足f(2)=1.
(1)求f(1)、f(4)的值;
(2)求满足f(x)-f(x-3)>1的x的取值范围.
8、设函数是定义在R上的增函数,且f(x)≠0,对任意x1,x2∈R,都有f(x1+x2)=f(x1)·f(x2).
(1)求证:f(x)>0;
(2)求证:f(x1-x2)=;
(3)若f(1)=2,解不等式f(3x)>4f(x).
9、若函数y=f(x)的定义域是(1,3),则f(3-x)的定义域是_______.
10、已知是定义在R上的偶函数,,是定义在R上的奇函数,且
,则 .
11、定义在实数集上的偶函数在上是单调增函数,则不等式的解集是_____________.
12、已知f(x)是定义在R上的偶函数,并满足f(x+2)=,当1≤x≤2时,f(x)=x-2,则f(6.5)=________.
13、已知定义在R上的函数是偶函数,对时,的值为
A.2 B.-2 C.4 D.-4
14、已知二次函数f(x)=x2-ax+4,若f(x+1)是偶函数,则实数a的值为( )
A.-1 B.1
C.-2 D.2
15、已知定义在R上的奇函数f(x)满足f(x-4)=-f(x),且在区间[0,2]上是增函数,则( )
A.f(-25)<f(11)<f(80) B.f(80)<f(11)<f(-25)
C.f(11)<f(80)<f(-25) D.f(-25)<f(80)<f(11)
16、函数y=2x2-(a-1)x+3在(-∞,1]内递减,在(1,+∞)内递增,则a的值是( )
A.1 B.3。