北师大数学选修新素养应用案巩固提升:第四章 导数应用 章末综合检测四 含解析
(常考题)北师大版高中数学选修1-1第四章《导数应用》测试(含答案解析)(4)
一、选择题1.已知函数244()ln -⎫⎛=++ ⎪⎝⎭x f x k x k x ,[1,)∈+∞k ,曲线()y f x =上总存在两点()11,M x y ,()22,N x y 使曲线()y f x =在M 、N 两点处的切线互相平行,则12+x x 的取值范围为( ) A .[4,)+∞B .(4,)+∞C .16,5⎡⎫+∞⎪⎢⎣⎭D .16,5⎛⎫+∞⎪⎝⎭2.已知函数()()ln 1xxf x x e e -=-++,则使不等式()()12f x f x +<成立的x 的取值范围是( ) A .()(),11,-∞-+∞B .()2,1--C .()1,1,3⎛⎫-∞-+∞ ⎪⎝⎭D .()(),21,-∞-⋃+∞3.已知α,β∈R ,则“0αβ+<”是“sin sin αβαβ+<+”的( ) A .充分不必要条件 B .必要不充分条件 C .既不充分也不必要条件D .充分必要条件4.已知关于x 的不等式32ln x ax x -≥恒成立,则实数a 的取值范围为( ). A .(,1]-∞B .(0,1]C .10,e⎛⎤ ⎥⎝⎦D .(,0]-∞5.已知函数()()2ex x f x x =∈R ,若关于方程()()210f x tf x t -+-=恰好有4个不相等的实根,则实数t 的取值范围为( )A .()24,22,e e ⎛⎫⋃⎪⎝⎭ B .24,1e ⎛⎫⎪⎝⎭C .24,e e ⎛⎫⎪⎝⎭D .241,1e ⎛⎫+ ⎪⎝⎭6.若函数11()ln x x f x x x e e m --+=-+++有零点,则实数m 的取值范围是( ) A .(,3]-∞-B .(,1]-∞-C .[1,)-+∞D .[3,)+∞7.已知函数()2()x xf x x e e x-=⋅-+,若()()()f x f y f x y <<+,则( )A .0xy >B .0xy <C .0x y +>D .0x y +<8.若函数()3221f x x x mx =+++在()-∞+∞,内单调递增,则m 的取值范围是( ) A .43m ≥B .43m >C .43m ≤D .43<m 9.已知函数ln ,0()(2),0x xx f x x x e x ⎧>⎪=⎨⎪+≤⎩,若函数()()g x f x a =-仅有一个零点,则实数a的取值范围为( ).A .(2,)+∞B .31(2,),e ⎛⎫+∞⋃-∞-⎪⎝⎭C .311,2,e e⎛⎤⎛⎫⋃-∞- ⎪⎥⎝⎦⎝⎭D .31,e ⎛⎫-∞-⎪⎝⎭10.已知函数()()22,02ln ,0x x f x a x x x x -⎧<⎪=⎨++>⎪⎩,若恰有3个互不相同的实数1x ,2x ,3x ,使得()()()1232221232f x f x f x x x x ===,则实数a 的取值范围为( ) A .1a e>-B .10a e-<< C .0a ≥ D .0a ≥或1a e=-11.对于R 上可导的任意函数()f x ,若当2x ≠时满足()02f x x '≤-,则必有( ) A .()()()1322f f f +< B .()()()1322f f f +≤ C .()()()1322f f f +≥D .()()()1322f f f +>12.已知函数()f x (x ∈R )满足()34f =,且()f x 的导函数()1f x '<,则不等式()221f x x -<的解集为( )A .()2,2-B .()(),22,-∞-+∞C .()3,3-D .()(),33,-∞-+∞二、填空题13.函数()y f x =的导函数的图像如图所示,给出下列判断:①函数()y f x =在区间(3)5,内单调递增; ②函数()y f x =在区间1(3)2-,内单调递减; ③函数()y f x =在区间(22)-,内单调递增; ④当12x =-时,函数()y f x =有极大值;⑤当2x =时,函数()y f x =有极大值;则上述判断中正确的是________.14.已知1a >,若对于任意的1[,)3x ∈+∞,不等式()4ln 3e ln xx x a a -≤-恒成立,则a的最小值为______.15.对于任意12,[1,)x x ∈+∞,当21x x >时,恒有2121(ln ln )2()a x x x x -<-成立,则实数a 的取值范围是___________.16.设函数()f x 是定义在R 上的偶函数,'()f x 为其导函数,当0x >时,()()0xf x f x +>',且(2)0f =,则不等式()0f x >的解集为__________.17.函数21f xx x 的极大值为_________.18.若∃01,22x ⎡⎤∈⎢⎥⎣⎦,使得2002+10x x λ<-成立是假命题,则实数λ的取值范围是________.19.如图,两条距离为4的直线都与y 轴平行,它们与抛物线()22014y px p =-<<和圆()2249x y -+=分别交于A ,B 和C ,D ,且抛物线的准线与圆相切,则22AB CD ⋅的最大值为______.20.已知函数()(0)x f x ae a =>与2()2(0)g x x m m =->的图象在第一象限有公共点,且在该点处的切线相同,当实数m 变化时,实数a 的取值范围为______________.三、解答题21.已知函数()22xk f x e x x =--,k ∈R . (1)当0k =时,求函数() f x 的最小值;(2)若() f x 在[)1,+∞上单调递增,求实数k 的取值范围. 22.已知函数()21x f x ae x =-+. (1)讨论()f x 的单调性;(2)函数()()ln g x f x x x =+,当0a >时,讨论()g x 零点的个数. 23.已知R a ∈,函数()1ln f x ax x =--在1x =处取得极值. (1)求函数()f x 的单调区间;(2)若对()0,x ∀∈+∞,()2f x bx ≥-恒成立,求实数b 的取值范围24.已知函数()()2xf x e ax a R =-∈.(1)若12a =,求函数()f x 的单调区间 (2)当[]2,3x ∈时,()0f x ≥恒成立,求实数a 的取值范围. 25.已知函数()()22ln f x x t x t x =++-.(1)若3x =是()f x 的极值点,求()f x 的极大值;(2)若()ln 1xg x e t x =+-,求实数t 的范围,使得()()f x g x ≤恒成立.26.已知函数()()213ln 22f x x x ax a R =+-+∈. (1)若()f x 在1x =处的切线过点()2,2,求a 的值;(2)若()f x 恰有两个极值点1x ,()212x x x <,求a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】求得()f x 的导数()f x ',由题意可得121()()(f x f x x '=',20x >,且12)x x ≠,化为121244()()x x k x x k +=+,因此12164x x k k+>+对[1k ∈,)+∞都成立,令4()g k k k=+,[1k ∈,)+∞,根据对勾函数的性质求出最值即可得出.【详解】解:函数244()()x f x k lnx k x-=++,导数2414()()1f x k k x x '=+--.由题意可得121()()(f x f x x '=',20x >,且12)x x ≠. 即有221122444411k k k k x x x x ++--=--, 化为121244()()x x k x x k+=+,而21212()2x x x x +<, 2121244()()()2x xx x k k +∴+<+,化为12164x x k k+>+对[1k ∈,)+∞都成立, 令4()g k k k=+,[1,)∈+∞k ,则()g k 在[)1,2上单调减,在[2,)+∞上单调递增, 所以()()min 22442g k g ==+= ∴6164414k k=+, 124x x ∴+>,即12x x +的取值范围是()4,+∞.故选:B . 【点睛】方法点晴:本题利用导数几何意义,函数的单调性与最值问题的等价转化方法、基本不等式的性质.2.D解析:D 【分析】先判断函数的奇偶性和单调性,从而可得关于x 的不等式,求出其解后可得正确的选项. 【详解】()f x 的定义域为()(),11,-∞-+∞,且()()()ln 1x x f x x e e f x --=--++=,又当1x >时,()()ln 1xxf x x e e -=-++,()11001x x f x e e e x e-'=+->+->-,故()f x 在()1,+∞为增函数, 故()()12f x f x +<即为11211112121x xx x x x ⎧<+<⎪+-+⎨⎪-⎩或或,解得2x <-或1x >,故选:D. 【点睛】方法点睛:解函数不等式,往往需要考虑函数的奇偶性和单调性,前者依据定义,后者可利用导数,注意定义域的要求.3.D解析:D 【分析】首先构造函数()sin x x x f -=,利用导数判断函数的单调性,再判断选项. 【详解】构造函数()sin x x x f -=,()1cos 0f x x '=-≥恒成立,()f x ∴是单调递增函数,0αβ+<,即αβ<-,()()f f αβ∴<-,即()()sin sin ααββ-<---,即sin sin αβαβ+<+,反过来,若sin sin αβαβ+<+,即()()sin sin ααββ-<---,αβ∴<-,即0αβ+<.故选:D 【点睛】关键点点睛:本题的关键是通过条件观察后构造函数()sin x x x f -=,通过判断函数的单调性,比较大小.4.A解析:A 【分析】将不等式32ln x ax x -≥恒成立,转化为不等式2ln x xa x≤-在()0,∞+上恒成立,令()2ln xx xg x =-,用导数法求得其最小值即可. 【详解】因为不等式32ln x ax x -≥恒成立, 所以不等式2ln x xa x≤- 在()0,∞+上恒成立, 令()2ln x x xg x =-, 则()3312ln x xg x x-+'=, 令()312ln h x x x =-+,则()2230h x x x'=+>, 所以()h x 在()0,∞+上是递增,又()10h =, 所以当01x <<时,()0h x <,即()0g x '<, 当1x >时,()0h x >,即()0g x '>, 所以当1x =时,()g x 取得最小值()11g =, 所以 1a ≤, 故选:A 【点睛】方法点睛:恒成立问题的解法:若()f x 在区间D 上有最值,则()()min ,00x D f x f x ∀∈>⇔>;()()max ,00x D f x f x ∀∈<⇔<;若能分离常数,即将问题转化为:()a f x >(或()a f x <),则()()max a f x a f x >⇔>;()()min a f x a f x <⇔<. 5.D解析:D 【分析】求得()f x 的导数,可得单调区间和极值,作出()f x 的图象,将方程()()210f x tf x t -+-=因式分解为()()()110f x f x t ⎡⎤⎡⎤---=⎣⎦⎣⎦,则()1f x =或()1f x t =-,从而()1f x t =-有3个实数根,即函数()y f x =与1y t =-有3个交点,数形结合即可得到1t -的取值范围,从而得解; 【详解】解:函数2()x x f x e=的导数为22()xx x f x e -'=, 当02x <<时,()0f x '>,()f x 递增;当2x >或0x <时,()0f x '<,()f x 递减, 可得()f x 在0x =处取得极小值0, 在2x =处取得极大值241e<, 作出()y f x =的图象如下所示,因为()()210fx tf x t -+-=恰好有4个不相等的实根,所以()()()110f x f x t ⎡⎤⎡⎤---=⎣⎦⎣⎦,解得()1f x =或()1f x t =-,当()1f x =时,有1个实数解,所以()1f x t =-应有3个实数根,即函数()y f x =与1y t =-有3个交点, 所以2401t e <-<,即2411t e<<+ 故选:D 【点睛】本题考查方程的根的个数问题解法,考查数形结合思想方法,以及导数的运用:求单调区间和极值,考查运算能力.6.A解析:A 【分析】设11()ln e e x x g x x x --+=-++,则函数11()ln x x f x x x e e m --+=-+++有零点转化为函数()g x 的图象与直线y m =-有交点,利用导数判断函数()g x 的单调性,即可求出.【详解】设11()ln e e x x g x x x --+=-++,定义域为()0,∞+,则111()1e e x x g x x--+'=-+-,易知()'g x 为单调递增函数,且(1)0,g '= 所以当(0,1)x ∈时,()0g x '<,()g x 递减; 当(1,)x ∈+∞时, ()0g x '>, ()g x 递增,所以 ()(1)3,g x g ≥= 所以3m -≥,即3m ≤-.故选:A . 【点睛】本题主要考查根据函数有零点求参数的取值范围,意在考查学生的转化能力,属于基础题.7.A解析:A 【分析】先判断函数的奇偶性和单调性,再分析得解. 【详解】由题得函数的定义域为R.()22())()(x x x x f x x e e x e e x x f x --=-+=-=-⋅-+,所以函数是偶函数.当0x >时,1()()2xx x x f x e xe xe x e-'=-+++, 因为0x >,所以()0f x '>,所以函数()f x 在(0,)+∞上单调递增,因为函数是偶函数,所以函数()f x 在(,0)-∞上单调递减,在(0,)+∞上单调递增. 如果0,0x y >>,则0x y +>,因为()()()f x f y f x y <<+,所以x y x y <<+,与已知相符; 如果0,0x y <<,则0x y +<,所以x y x y >>+,与已知相符;如果0,0x y ><,因为()()f x f y <,所以0y x y <+<, 所以()()f y f x y >+,与已知矛盾;如果0,0x y <>,因为()()f x f y <,所以0y x y >+>, 所以()()f y f x y >+,与已知矛盾;当,x y 之中有一个为零时,不妨设0y =,()()f x y f x += ,()()()f x f y f x <<,显然不成立.故选:A 【点睛】方法点睛:对于函数的问题,要灵活利用函数的奇偶性和单调性分析函数的问题,利用函数的图象和性质分析函数的问题.8.A解析:A 【分析】由于()f x 在R 上递增得()0f x '≥恒成立,利用参数分离求得参数范围. 【详解】因为()f x 在R 上递增得()0f x '≥恒成立,则()2340f x x x m '=++≥所以234m x x ≥--在R 上恒成立,令()234g x x x =--,则()max m g x ≥因为()g x 为二次函数且图像的对称轴为23x =-,所以()max 2433g x g ⎛⎫=-= ⎪⎝⎭ 故43m ≥故选:A 【点睛】方法点晴:本题利用导数与单调性的关系转化为恒成立问题,结合参数分离法求得参数范围.9.C解析:C 【分析】转化为()y f x =的图象与直线y a =仅有一个交点,利用导数得到函数的性质,根据函数的性质作出函数的图象,根据图象可得解. 【详解】当0x >时,ln ()x f x x=,21ln ()x x x f x x ⋅-'=21ln xx -=, 当0x e <<时,()'f x 0>,当x e >时,()0f x '<,所以()f x 在(0,)e 上递增,在(,)e +∞上递减,所以()f x 在x e =处取得极大值为1()f e e=,当0x ≤时,()(2)x f x x e =+,()(2)(3)x x xf x e x e x e '=++=+,当3x <-时,()0f x '<,当3x >-时,()0f x '>, 所以()f x 在(,3)-∞-上递减,在(3,0]-上递增,所以()f x 在3x =-处取得极小值为331(3)f e e--=-=-,又(0)2f =, 因为函数()()g x f x a =-仅有一个零点,所以()y f x =的图象与直线y a =仅有一个交点,作出函数()f x 的图象,如图:由图可知:12a e <≤或31a e<-. 故实数a 的取值范围为311,2,e e ⎛⎤⎛⎫⋃-∞- ⎪⎥⎝⎦⎝⎭.故选:C 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.10.D解析:D 【分析】根据题意,令()()221,02ln 2,0x x f x x g x x x a x x ⎧<⎪⎪⋅==⎨⎪++>⎪⎩,得到函数()()2f xg x x =与直线2y =共有三个不同的交点;根据导数的方法,分别判断0x <和0x >时,函数的单调性,以及最值,结合题中条件,即可得出结果. 【详解】因为()()22,02ln ,0xx f x a x x x x -⎧<⎪=⎨++>⎪⎩,令()()221,02ln 2,0x x f x x g x x x a x x ⎧<⎪⎪⋅==⎨⎪++>⎪⎩, 由题意,函数()()2f x g x x=与直线2y =共有三个不同的交点; 当0x <时,()212x g x x =⋅,则()()()()222232222ln 222ln 22222x x x x x x x x xx g x x x x '-⋅⋅+⋅+'==-=-⋅⋅⋅,由()3ln 2202x x g x x +'=-=⋅解得222log ln 2x e =-=-; 所以()2,2log x e ∈-∞-时,()0g x '<,即函数()212x g x x=⋅单调递减; ()22log ,0x e ∈-时,()0g x '>,即函数()212x g x x=⋅单调递增; 所以()()()()222222min 2log 2212log 2422log 4log ee e g x g e e e -=-==<<⋅-,又2121122122g -⎛⎫-==> ⎪⎝⎭⎛⎫⋅- ⎪⎝⎭,()()271128724927g --==>⋅-, 所以()212x g x x=⋅与直线2y =有且仅有两个不同的交点; 当0x >时,()ln 2xg x a x =++,则()21ln x g x x -'=, 由()21ln 0xg x x -'==得x e =, 所以当()0,x e ∈时,()0g x '>,则函数()ln 2xg x a x=++单调递增; 当(),x e ∈+∞时,()0g x '<,则函数()ln 2xg x a x=++单调递减; 所以()()max 12g x g e a e==++, 又当1≥x 时,()ln 22xg x a a x=++≥+;当01x <<时,()2g x a <+; 当x e ≥时,()ln 22xg x a a x=++>+,所以为使()ln 2xg x a x=++与直线2y =只有一个交点, 只需122a e ++=或22a +≥,即1a e=-或0a ≥. 故选:D. 【点睛】本题主要考查由方程根的个数求参数,转化为函数交点个数问题求解即可,属于常考题型.11.B解析:B 【分析】根据()02f x x '≤-,得到2x >时,()f x 单调非递增函数,2x <时,()f x 单调非递减函数求解. 【详解】因为()02f x x '≤-, 所以当20x ->,即2x >时,()0f x '≤,则()f x 单调非递增函数,所以()()32f f ≤;当20x -<,即2x <时,()0f x '≥,()f x 单调非递减函数, 所以()()12f f ≤;由不等式的性质得:()()()1322f f f +≤. 故选:B 【点睛】本题主要考查导数与函数的单调性以及不等式的基本性质,属于中档题.12.B解析:B 【分析】构造函数()()g x f x x =-,求导后可证得()g x 在R 上单调递减,将原不等式可转化为()()()221133f x x f ---<-,即()()213g x g -<,再利用函数单调性的定义求解.【详解】令()()g x f x x =-,则()()10g x f x ''=-<, 所以()g x 在R 上单调递减.因为不等式()221f x x -<可等价于()()()221133f x x f ---<-,即()()213g x g -<,所以213x ->, 解得2x >或2x <-, 故选:B. 【点睛】本题主要考查函数的单调性与导数以及利用函数的单调性解不等式,还考查了运算求解的能力,属于中档题.二、填空题13.③⑤【分析】根据导函数图像得出导数正负根据导数正负判定单调区间根据左正右负和左负有正判定极值【详解】解:对于①当时单调递减当时单调递增所以①错;对于②当时单调递增当时单调递减所以②错;对于③当时单调解析:③⑤ 【分析】根据导函数图像得出导数正负,根据导数正负判定单调区间,根据左正右负和左负有正判定极值. 【详解】解:对于①,当(34)x ∈,时()0f x '<,()f x 单调递减, 当(4,5)x ∈时()0f x '>,()f x 单调递增,所以①错;对于②,当1(2)2x ∈-,时()0f x '>,()f x 单调递增, 当(23)x ∈,时()0f x '<,()f x 单调递减,所以②错; 对于③,当(22)x ∈-,时()0f x '>,()f x 单调递增,所以③对; 对于④,当(22)x ∈-,时()0f x '>,()f x 单调递增,故当12x =-时()f x 不是极大值,所以④错;对于⑤,当1(2)2x ∈-,时()0f x '>,()f x 单调递增, 当(23)x ∈,时()0f x '<,()f x 单调递减,故2x =时函数()y f x =取得极大值,所以⑤对.故答案为:③⑤. 【点睛】求函数的极值或极值点的步骤:(1)求导数()'f x ,不要忘记函数()f x 的定义域;(2)求方程()0f x '=的根;(3)检查在方程的根的左右两侧()'f x 的符号,确定极值点或函数的极值.14.【分析】不等式等价变形利用同构函数的单调性得解【详解】令∴在上单调递增∵∴∴恒成立令只需∴单调递增∴单调递减时的最大值为∴∴的最小值为故答案为:【点睛】不等式等价变形同构函数是解题关键解析:3e【分析】不等式等价变形()()()4ln 3ln 3ln 3ln xxxe x x a a x x a a e e-≤-⇔-≤-,利用同构函数()ln f x x x =-的单调性得解【详解】()()4ln 3ln 3ln 3ln x x e x x a a x x ae a x -≤-⇔-≤--()()3ln 3ln x x x x ae ae ⇔-≤-令()ln f x x x =-,()111x f x x x-'=-=, ∴()f x 在[)1,+∞上单调递增.∵1a >,1[,)3x ∈+∞,∴[)3,1,x e x a ∈+∞,∴33xx eae x x a ⇔≤⇔≤恒成立,令()3x x g x e =,只需max ()a g x ≥,()33x xg x e -'=,∴1[,1),()0,()3x g x g x ∈'>单调递增,∴(1,),()0,()x g x g x ∈+∞'<单调递减,1x ∴=时,()g x 的最大值为3e,∴3a e ≥,∴a 的最小值为3e.故答案为:3e【点睛】不等式等价变形,同构函数()ln f x x x =-是解题关键.15.【分析】构造函数求得的取值范围化简不等式求得的取值范围【详解】构造函数依题意任意当时表示函数在区间上任意两点连线的斜率故当时对于任意当时不等式成立当时对于任意当时不等式恒成立可转化为恒成立故综上所述 解析:(,2]-∞【分析】构造函数()()ln 1f x x x =≥,求得()'fx 的取值范围,化简不等式2121(ln ln )2()a x x x x -<-求得a 的取值范围.构造函数()()ln 1f x x x =≥,()(]'10,1f x x=∈, 依题意任意12,[1,)x x ∈+∞,当21x x >时,2121ln ln 0,0x x x x ->->,2121ln ln x x x x --表示函数()f x 在区间[1,)+∞上任意两点连线的斜率,故()2121ln ln 0,1x x x x -∈-. 当0a ≤时,对于任意12,[1,)x x ∈+∞,当21x x >时,不等式2121(ln ln )2()a x x x x -<-成立.当0a >时,对于任意12,[1,)x x ∈+∞,当21x x >时,不等式2121(ln ln )2()a x x x x -<-恒成立可转化为2121ln ln 2x x x x a -<-恒成立,故(]21,0,2a a≥∈.综上所述,实数a 的取值范围是(,2]-∞. 故答案为:(,2]-∞ 【点睛】求解不等式恒成立问题,可考虑采用分离常数法,结合导数来求解..16.【详解】设则恒成立所以函数在上是增函数又因为是定义在上的偶函数所以上上的奇函数所以函数在上是增函数因为所以即所以化为当时不等式等价于即解得;当时不等式等价于即解得;综上不等式的解集为点睛:本题考查了 解析:(,2)(2,)-∞-+∞【详解】设()()g x xf x =,则()()()0g x f x xf x ''=+>恒成立, 所以函数()g x 在(0,)+∞上是增函数,又因为()f x 是定义在R 上的偶函数,所以()()g x xf x =上R 上的奇函数, 所以函数()g x 在(,0)-∞上是增函数,因为()20f =,所以()20f -=,即()()20,20g g =-=, 所以()0xf x >化为()0g x >,当0x >时,不等式()0f x >等价于()0g x >,即()()2g x g >,解得2x >; 当0x <时,不等式()0f x >等价于()0g x <,即()()2g x g <-,解得2x <-; 综上,不等式()0f x >的解集为(,2)(2,)-∞-+∞.点睛:本题考查了与函数有关的不等式的求解问题,其中解答中涉及到利用条件构造新函数和利用导数研究函数的单调性,以及根据单调性和奇偶性的关系对不等式进行转化,解答中一定要注意函数值为零时自变量的取值,这是题目的一个易错点,试题综合性强,属17.【分析】利用导数研究函数的单调性由此可求得该函数的极大值【详解】定义域为令可得或当或时此时函数单调递增;当时此时函数单调递减所以函数在处取得极大值且极大值为故答案为:【点睛】本题考查利用导数求解函数 解析:427【分析】利用导数研究函数21f x x x 的单调性,由此可求得该函数的极大值.【详解】()()21f x x x =-,定义域为R ,()()()()()2121311f x x x x x x '=-+-=--.令()0f x '=,可得13x =或1x =. 当13x <或1x >时,()0f x '>,此时,函数21f x x x 单调递增;当113x <<时,()0f x '<,此时,函数21f x x x 单调递减.所以,函数21f xx x 在13x =处取得极大值,且极大值为21114133327f ⎛⎫⎛⎫=⨯-=⎪ ⎪⎝⎭⎝⎭. 故答案为:427. 【点睛】本题考查利用导数求解函数的极值,考查计算能力,属于中等题.18.【分析】将命题转化为使得恒成立是真命题令函数对其求导讨论导函数取正负的区间得出所构造的函数的单调性从而求出最值利用不等式恒成立的思想得出实数λ的取值范围【详解】因为∃使得成立是假命题所以使得恒成立是解析:(-∞【分析】将命题转化为1,22x ⎡⎤∀∈⎢⎥⎣⎦,使得12+x x λ≤恒成立是真命题,令函数()12+f x x x=,对其求导,讨论导函数取正负的区间,得出所构造的函数的单调性,从而求出最值,利用不等式恒成立的思想,得出实数λ的取值范围. 【详解】因为∃01,22x ⎡⎤∈⎢⎥⎣⎦,使得2002+10x x λ<-成立是假命题,所以1,22x ⎡⎤∀∈⎢⎥⎣⎦,使得22+10x x λ≥-恒成立是真命题,即1,22x ⎡⎤∀∈⎢⎥⎣⎦,使得12+x x λ≤恒成立是真命题,令()12+f x x x=,则()'212f x x =- ,当12x ⎛∈⎝⎭时,()'0f x <,函数()f x 在12⎛ ⎝⎭上单调递减,当2x ⎫∈⎪⎪⎝⎭时,()'>0f x ,函数()f x 在,22⎛⎫⎪ ⎪⎝⎭上单调递增,所以()2f x f ⎛⎫≥= ⎪⎪⎝⎭λ≤故答案为:(-∞.【点睛】本题考查全称命题和特称命题的关系,运用参变分离的方法求参数的范围,属于中档题.19.【分析】先设直线的方程为再利用直线与圆锥曲线的位置关系将用表示再利用导数求函数的最值即可得解【详解】解:由抛物线的准线与圆相切得或7又∴设直线的方程为则直线的方程为则设令得;令得即函数在为增函数在为解析:【分析】先设直线AB 的方程为()03x t t =-<<,再利用直线与圆锥曲线的位置关系将AB CD ⋅用t 表示,再利用导数求函数的最值即可得解. 【详解】解:由抛物线的准线与圆相切得12p=或7,又014p <<,∴2p =. 设直线AB 的方程为()03x t t =-<<,则直线CD 的方程为4x t =-,则)03AB CD t ⋅==<<.设()()()2903f t t tt =-<<,()2'93f t t=-,令()'0f t >,得0t <<()'0f t <3t <<.即函数()f t 在(为增函数,在)为减函数,故()maxf t f ==22AB CD ⋅的最大值为28⨯=故答案为: 【点睛】本题考查了利用导数求函数的最值,重点考查了运算能力,属中档题.20.【分析】设切点为根据已知得求出得构造函数求出的范围即可【详解】设切点为则整理得由解得由上可知令则因为所以在上单调递减所以即故答案为:【点睛】本题考查导数的几何意义利用导数求参数的范围考查计算求解能力解析:280,a e ⎛⎫∈ ⎪⎝⎭【分析】设切点为()00,A x y ,根据已知得0000()(),()()f x g x f x g x ='=',求出02x >,得04x x a e=,构造函数4(),2x xh x x e =>,求出()h x 的范围即可. 【详解】 设切点为()00,A x y ,(),()4xf x aeg x x '='=则0020024x x ae x m ae x ⎧=-⎪⎨=⎪⎩,整理得20004200x x m x m ⎧=-⎪>⎨⎪>⎩,由200240m x x =->,解得02x >.由上可知004x x a e =,令4()xx h x e =,则4(1)()x x h x e -'=. 因为2x >,所以4(1)4()0,()x xx xh x h x e e -'=<=在(2,)+∞上单调递减, 所以280()h x e <<,即280,a e ⎛⎫∈ ⎪⎝⎭. 故答案为:280,e ⎛⎫ ⎪⎝⎭. 【点睛】本题考查导数的几何意义、利用导数求参数的范围,考查计算求解能力,属于中档题.三、解答题21.(1)1;(2)1k e ≤-. 【分析】(1)求出()'fx ,在定义域内,分别令()'0f x >求得x 的范围,可得函数()f x 增区间,()'0f x <求得x 的范围,可得函数()f x 的减区间;(2)() f x 在[1,)+∞上单调递增,等价于()'0f x ≥ 在[1,)+∞上恒成立,即1x e k x-≤在[1,)+∞恒成立,利用导数求出1x e x -的最小值即可得答案.(1)当0k =时, ()()',1 xx e x e f fx x =-∴=-,令'0fx,则100x e x -=⇒=,当0x >时,10x e ->,()f x 在()0,∞+上递增, 当0x <时,10x e -<,()f x 在(),0-∞上递减,()()min 01f x f ∴==;(2)因为() f x 在[1,)+∞上单调递增,所以()'0fx ≥ 在[1,)+∞上恒成立, 因为()'1xf x e kx =--,所以10x e kx --≥在[1,)+∞恒成立,即1x e k x-≤在[1,)+∞恒成立,令()1x e g x x-=,则()min k g x ≤在[1,)+∞上恒成立,()()'211x e x g x x -+=,当[1,)x ∈+∞时,()'0g x >恒成立, ()g x ∴在[1,)+∞上单调递增,()()1min1111e g x g e -∴===-,1k e ∴≤-.【点睛】方法点睛:不等式恒成立问题常见方法:① 分离参数()a f x ≥恒成立(()max a f x ≥即可)或()a f x ≤恒成立(()min a f x ≤即可);② 数形结合(()y f x = 图象在()y g x = 上方即可);③ 讨论最值()min 0f x ≥或()max 0f x ≤恒成立;④ 讨论参数,排除不合题意的参数范围,筛选出符合题意的参数范围. 22.(1)答案见解析;(2)答案见解析. 【分析】(1)讨论0a ≤,0a >两种情况,确定()'f x 的正负,利用导数求()f x 的单调性;(2)设()()g x h x x=,利用导数得出()h x 的单调性,进而得出最小值,讨论最小值大于、小于、等于0的情况结合零点存在性定理确定()h x 的零点个数,即()g x 零点的个数.解:(1)函数()f x 的定义域为R ,()2xf x ae '=-.①当0a ≤时,()0f x '<,所以()f x 在R 上单调递减; ②当0a >时,令()0f x '=得2ln x a=. 若2,ln x a ⎛⎫∈-∞ ⎪⎝⎭,()0f x '<; 若2ln,x a ⎛⎫∈+∞ ⎪⎝⎭,()0f x '>; 所以()f x 在2,lna ⎛⎫-∞ ⎪⎝⎭单调递减,在2ln ,a ⎛⎫+∞ ⎪⎝⎭单调递增. 综上所述,当0a ≤时,()f x 在R 上单调递减; 当0a >时,()f x 在2,lna ⎛⎫-∞ ⎪⎝⎭单调递减;()f x 在2ln ,a ⎛⎫+∞ ⎪⎝⎭单调递增. (2)()ln 21xg x ae x x x =+-+设函数()1()ln 2x g x ae h x x x x x==++-()2221(1)(1)11()xx ae x ae x h x x x x x +--'=+-=因为0a >,所以()0h x '=得1x =.当(0,1)x ∈时,()0h x '<,()h x 在(0,1)上单调递减. 当(1,)x ∈+∞时,()0h x '>,()h x 在(1,)+∞上单调递增. 所以当1x =时,()h x 取最小值,最小值为(1)1h ae =-. 若1a e=时,(1)0h =,所以函数()h x 只有1个零点; 若1a e>时,()(1)0h x h ≥>,所以函数()h x 无零点; 若10a e <<时,(1)0h <,()222222240ee h e a e e e---=-+->->,()22221220e e h e a e e=++->,故()2(1)0h h e -<,()2(1)0h h e <;所以函数()h x 在()21,e -和()21,e各有一个零点,所以函数()h x 有两个零点.综上所述,当1a e =时,函数()g x 只有1个零点;当1a e>时,函数()g x 无零点; 当10a e<<时,函数()g x 有两个零点【点睛】方法点睛:研究含参函数()g x 的零点问题,即方程()0g x =的实根问题,通常选择参变分离,得到()a g x 的形式,后借助数形结合(几何法)思想求解;若无法参变分离,则整体含参讨论函数()g x 的单调性、极值符号,由数形结合可知函数()g x 的图象与x 轴的交点情况即函数()g x 的零点情况.23.(1)在(0,1)上单调递减,在()1,+∞上单调递增;(2)211b e -≤. 【分析】(1)对函数求导得()11ax f x a x x-'=-=,由题意,()110f a '=-=,得1a =,再代入计算()0f x '>与()0f x '<,即可得单调性;(2)参变分离得1ln ()1=+-≥x g x b x x ,利用恒成立方法,对函数1ln ()1x g x x x=+-求导,判断单调性,求最小值即可.【详解】 (1)函数的定义域为(0,)+∞,()11ax f x a x x -'=-=,由题意,()110f a '=-=,所以1a =,即1()x f x x'-=,由()0f x '>得1x >,由()0f x '<得01x <<,故函数()f x 在(0,1)上单调递减,在()1,+∞上单调递增.(2)1ln ()21x f x bx b x x≥-⇒+-≥,令1ln ()1x g x x x =+-,则min ()≥g x b 成立,2ln 2()x g x x-'=,由()0g x '>,得2x e >,由()0g x '<,得20x e <<, 故()g x 在2(0,)e 上递减,在2(,)e +∞上递增,2min 21()()1==∴-x g e e g ,即211b e-≤. 【点睛】 导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.24.(1)函数()xf x e x =-的单调递增区间为()0,∞+;单调递减区间为(),0-∞;(2)2,4e ⎛⎤-∞ ⎥⎝⎦. 【分析】(1)当12a =时,()x f x e x =-,利用导数可求得函数()f x 的单调递增区间和递减区间; (2)由参变量分离法得出min2x e a x ⎛⎫≤ ⎪⎝⎭,利用导数求出函数()xe g x x =在区间[]2,3上的最小值,由此可得出实数a 的取值范围.【详解】(1)当12a =时,()x f x e x =-,()1x f x e '=-, 令()0f x '=,得0x =.令()0f x '>,得0x >:令()0f x '<,得0x <.所以函数()xf x e x =-的单调递增区间为()0,∞+,单调递减区间为(),0-∞; (2)()202xxe f x e ax a x =-≥⇔≤对任意的[]2,3x ∈恒成立,即min 2x e a x ⎛⎫≤ ⎪⎝⎭, 设()xe g x x =﹐则()()21x e x g x x-'=,显然当[]2,3x ∈时()0g x '>恒成立. ()g x ∴在[]2,3单调递增,()n 2mi ()22g x g e ∴==, 22224e e a a ∴≤⇒≤,所以2,4 e a ⎛⎤∈-∞ ⎥⎝⎦. 【点睛】 结论点睛:利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解: (1)x D ∀∈,()()min m f x m f x ≤⇔≤;(2)x D ∀∈,()()max m f x m f x ≥⇔≥;(3)x D ∃∈,()()max m f x m f x ≤⇔≤;(4)x D ∃∈,()()min m f x m f x ≥⇔≥.25.(1)7-;(2)t e ≥-.【分析】(1)先对函数求导,结合极值存在的条件可求t ,然后结合导数可研究函数的单调性,进而可求极大值;(2)由已知代入可得,221x e x x t x-+--≤在0x >时恒成立,构造函数()221x e x x h x x-+-=,结合导数及函数的性质可求. 【详解】解:(1)()22t f x x t x '=--+,0x >,由题意可得,()23403f t '=-=,解可得6t =,∴()()()213628x x f x x x x--'=-+=, 所以,当3x >,01x <<时 ,()0f x '>,函数单调递增,当13x <<时,()0f x '<,函数单调递减,故当1x =时,函数取得极大值()17f =-;(2)由()()f x g x ≤得()22ln ln 1xx t x t x e t x -++≤+-在0x >时恒成立可得,221x e x x t x -+--≤在0x >时恒成立,2min21x e x x t x ⎛⎫-+--≤ ⎪⎝⎭ 令()221x e x x h x x-+-=, 则()()()()()()2222222211111x x x x e x x e x x x e x e x x h x x x x -+--+------+'===, 令()1x F x e x =--,所以()'1x F x e =-,令()'0F x =,提0x =, 所以当0x >,()'0F x >,函数单调递增,当0x <时,()'0F x <,函数单调递减, 故当0x =时,函数取得最小值()00F =,又0x >,所以10x e x -->,所以()h x 在()0,1上单调递减,在()1,+∞上单调递增,所以()()min 1h x h e ==,可得()min t h x e -≤=,所以t e ≥-.【点睛】方法点睛:不等式恒成立问题常见方法:① 分离参数()a f x ≥恒成立(()max a f x ≥即可)或()a f x ≤恒成立(()min a f x ≤即可);② 数形结合(()y f x = 图象在()y g x = 上方即可);③ 讨论最值()min 0f x ≥或()max 0f x ≤恒成立.26.(1)1;(2)()2,+∞.【分析】(1)利用在某点处切线方程的求法可表示出()f x 在1x =处的切线方程,代入()2,2即可求得结果;(2)求导后,令()21g x x ax =-+,分别在0∆≤和0∆>两种情况下,根据()0g x =根的情况,确定()g x 的正负,进而得到()f x 单调性,从而确定符合题意的范围.【详解】(1)()f x 定义域为()0,∞+,()1f x x a x'=+-, 则()12f a '=-,()12f a =-, ()f x ∴在1x =处的切线方程为()()()221y a a x --=--,又切线过()2,2,2a a ∴=-,解得:1a =.(2)由(1)知:()()2110x ax f x x a x x x-+'=+-=>, 令()21g x x ax =-+,则24a ∆=-, ①当0∆≤,即22a -≤≤时,()0g x ≥恒成立,()0f x '∴≥在()0,∞+上恒成立, 此时()f x 在()0,∞+上单调递增,无极值,不合题意;②当0∆>,即2a <-或2a >时,令()0g x =,解得:1x =,2x = ⑴若2a <-,则10x <,20x <,()0g x ∴>在()0,∞+上恒成立,()0f x '∴≥在()0,∞+上恒成立,此时()f x 在()0,∞+上单调递增,无极值,不合题意;⑵若2a >,则120x x <<,∴当()10,x x ∈和()2,x +∞时,()0f x '>;当()12,x x x ∈时,()0f x '<;()f x ∴在()10,x 和()2,x +∞上单调递增,在()12,x x 上单调递减,()f x ∴恰有两个极值点12,x x ,符合题意;综上所述:a 的取值范围为()2,+∞.【点睛】思路点睛:本题考查根据极值点个数求解参数范围的问题,求解此类问题的关键是将问题转化为导函数零点个数的讨论问题,需注意的是在导函数有零点的情况下,需结合定义域确定零点是否满足定义域要求.。
北师大数学选修作业:第4章 导数应用4 含解析
第四章 4.1.2A级基础巩固一、选择题1.已知函数y=x3-3x+c的图像与x轴恰有两个公共点,则c=(A)A.-2或2B.-9或3C.-1或1D.-3或1[解析]∵y′=3x2-3,∴当y′=0时,x=±1,则x,y′,y的变化情况如下表:x (-∞,-1)-1(-1,1)1(1,+∞)y′+-+y c+2c-2或c=2.2.已知a为函数f(x)=x3-12x的极小值点,则a=(D)A.-4 B.-2C.4 D.2[解析]f′(x)=3x2-12,令f′(x)>0得x<-2或x>2,令f′(x)<0得-2<x<2,∴f(x)在(-∞,-2),(2,+∞)上单调递增,在(-2,2)上单调递减,∴当x=2时,f(x)取极小值,即2是函数f(x)的极小值点,故a=2.3.下图是函数y=f(x)的导函数y=f′(x)的图像,给出下列命题:①x=-3是函数y=f(x)的极值点;②x=-1是函数y=f(x)的最小值点;③曲线y=f(x)在x=0处的切线斜率小于零;④函数y=f(x)在区间(-3,1)上单调递增.其中,正确命题的序号是( B ) A .①② B .①④ C .②③D .③④[解析] f ′(-3)=0,且在x =-3的两侧,导函数由负到正,所以x =-3为f (x )的极小值点.当x ∈(-3,-1)时,f ′(x )>0,f (x )单调递增,所以①④正确.4.设函数f (x )=2x +ln x ,则( D )A .x =12为f (x )的极大值点B .x =12为f (x )的极小值点C .x =2为f (x )的极大值点D .x =2为f (x )的极小值点[解析] 本节考查了利用导数工具来探索其极值点问题. f ′(x )=-2x 2+1x =1x (1-2x ),由f ′(x )=0可得x =2.当0<x <2时,f ′(x )<0,f (x )递减,当x >2时, f ′(x )>0,∴f (x )单调递增.所以x =2为极小值点. 对于含有对数形式的函数在求导时,不要忽视定义域.5.若a >0,b >0,且函数f (x )=4x 3-ax 2-2bx +2在x =1处有极值,则ab 的最大值等于( D )A .2B .3C .6D .9[解析] f ′(x )=12x 2-2ax -2b ,由条件知f ′(1)=0,∴a +b =6,∴ab ≤(a +b2)2=9,等号在a =b =3时成立,故选D .6.已知函数f (x )=x 3+mx 2+(m +6)x +1既存在极大值又存在极小值,则实数m 的取值范围是( D )A .[-3,6]B .(-3,6)C .(-∞,-3]∪[6,+∞)D .(-∞,-3)∪(6,+∞)[解析] 函数的导数为f ′(x )=3x 2+2mx +(m +6),要使函数f (x )既存在极大值又存在极小值,则f ′(x )=0有两个不同的根,所以判别式Δ>0,即Δ=4m 2-12(m +6)>0,所以m 2-3m -18>0,解得m >6或m <-3.二、填空题7.函数f (x )=-13x 3+12x 2+2x 取得极小值时,x 的值是__-1__.[解析] f ′(x )=-x 2+x +2=-(x -2)(x +1),令f ′(x )>0得-1<x <2,令f ′(x )<0,得x <-1或x >2,∴函数f (x )在(-∞,-1),(2,+∞)上递减,在(-1,2)上递增,∴当x =-1时,函数f (x )取得极小值.8.函数y =x e x 在其极值点处的切线方程为 y =-1e.[解析] ∵y =x e x ,∴y ′=e x +x e x =e x (x +1),当x =-1时y 有极小值,此时y |x =-1=-1e ,而y ′|x =-1=0,∴切线方程为y =-1e.三、解答题9.设函数y =x 3+ax 2+bx +c 的图像如图所示,且与y =0在原点相切,若函数的极小值为-4.(1)求a 、b 、c 的值; (2)求函数的递减区间.[解析] (1)因为函数的图像经过点(0,0), 易得c =0.又图像与x 轴相切于点(0,0),且y ′=3x 2+2ax +b , 故0=3×02+2a ×0+b ,解得b =0. 所以y =x 3+ax 2,则y ′=3x 2+2ax . 令y ′=0,解得x =0或x =-23a ,即x =0和x =-23a 是极值点.由图像知函数在x =0处取极大值,故在x=-23a时取极小值.当x=-23a时,函数有极小值-4,所以(-23+a(-2a3)2=-4,3a)整理得a3=-27,解得a=-3.故a=-3、b=0、c=0.(2)由(1)得y=x3-3x2,则y′=3x2-6x,令y′<0,即y′=3x2-6x<0,解得0<x<2,所以,函数的递减区间是(0,2).B级素养提升一、选择题1.函数y=x3-3x2-9x(-2<x<2)有(C)A.极大值5,极小值-27B.极大值5,极小值-11C.极大值5,无极小值D.极小值-27,无极大值[解析]y′=3x2-6x-9=3(x-3)(x+1),∵-2<x<2,∴令y′>0得-2<x<-1,令y′<0得-1<x<2,∴函数在(-2,-1)上递增,在(-1,2)上递减,∴当x=-1时,f(x)取极大值f(-1)=-1-3+9=5,f(x)无极小值.2.已知函数y=2x3+ax2+36x-24在x=2处有极值,则该函数的一个递增区间是(B) A.(2,3) B.(3,+∞)C.(2,+∞) D.(-∞,3)[解析]y′=6x2+2ax+36,由已知得24+4a+36=0,∴a=-15.∴y′=6x2-30x+36=6(x2-5x+6)=6(x-2)(x-3),令y ′>0,得x <2或x >3,故选B .3.已知函数f (x )=x 3-px 2-qx 的图像与x 轴切于(1,0)点,则f (x )的极大值、极小值分别为( A )A .427,0B .0,427C .-427,0D .0,-427[解析] f ′(x )=3x 2-2px -q , 由f ′(1)=0,f (1)=0得,⎩⎪⎨⎪⎧ 3-2p -q =01-p -q =0,解得⎩⎪⎨⎪⎧p =2q =-1,∴f (x )=x 3-2x 2+x . 由f ′(x )=3x 2-4x +1=0得x =13或x =1,易得当x =13时f (x )取极大值427.当x =1时f (x )取极小值0.4.若函数f (x )=13x 3+x 2-23在区间(a ,a +5)上存在最小值,则实数a 的取值范围是( C )A .[-5,0)B .(-5,0)C .[-3,0)D .(-3,0)[解析] 由题意,f ′(x )=x 2+2x =x (x +2),故f (x )在(-∞,-2),(0,+∞)上是增函数,在(-2,0)上是减函数,作出其图像如图所示,令13x 3+x 2-23=-23得,x =0或x =-3,则结合图像可知,⎩⎪⎨⎪⎧-3≤a <0,a +5>0,解得a ∈[-3,0),故选C .二、填空题5.设x =1与x =2是函数f (x )=a ln x +bx 2+x 的两个极值点,则常数a = -23 .[解析] f ′(x )=ax+2bx +1,由题意得⎩⎪⎨⎪⎧a +2b +1=0a 2+4b +1=0,∴a =-23.6.直线y =a 与函数f (x )=x 3-3x 的图像有相异的三个公共点,则a 的取值范围是__(-2,2)__.[解析] f ′(x )=3x 2-3,由3x 2-3=0得x =1或-1, 当x <-1,或x >1时,f ′(x )>0,f (x )单调增; 当-1<x <1时,f ′(x )<0,f (x )单调减.∴x =-1时,f (x )取到极大值f (-1)=2,x =1时,f (x )取到极小值f (1)=-2,∴欲使直线y =a 与函数f (x )的图像有相异的三个公共点,应有-2<a <2.三、解答题7.设x =-2,x =4是函数f (x )=x 3+ax 2+bx 的两个极值点. (1)求常数a 、b 的值;(2)判断x =-2,x =4是函数f (x )的极大值点还是极小值点,并说明理由. [解析] (1)f ′(x )=3x 2+2ax +b ,由题意得⎩⎪⎨⎪⎧12-4a +b =048+8a +b =0,解得⎩⎪⎨⎪⎧a =-3b =-24.(2)由(1)知f ′(x )=3x 2-6x -24 =3(x 2-2x -8) =3(x -4)(x +2),令f ′(x )>0,得x <-2或x >4, 令f ′(x )<0,得-2<x <4.∴f (x )在(-∞,-2),(4,+∞)上单调递增,在(-2,4)上单调递减,∴当x =-2时, f (x )取极大值,当x =4时, f (x )取极小值,故x =-2是极大值点,x =4是极小值点.8.(2018·北京文,19)设函数f (x )=[ax 2-(3a +1)x +3a +2]e x .(1)若曲线y =f (x )在点(2,f (2))处的切线斜率为0,求a ; (2)若f (x )在x =1处取得极小值,求a 的取值范围. [解析] (1)因为f (x )=[ax 2-(3a +1)x +3a +2]e x , 所以f ′(x )=[ax 2-(a +1)x +1]e x , f ′(2)=(2a -1)e 2.由题设知f ′(2)=0,即(2a -1)e 2=0,解得a =12.(2)由(1)得f ′(x )=[ax 2-(a +1)x +1]e x =(ax -1)(x -1)e x .若a >1,则当x ∈⎝⎛⎭⎫1a ,1时,f ′(x )<0; 当x ∈(1,+∞)时,f ′(x )>0. 所以f (x )在x =1处取得极小值.若a ≤1,则当x ∈(0,1)时,ax -1≤x -1<0, 所以f ′(x )>0.所以1不是f (x )的极小值点.综上可知,a 的取值范围是(1,+∞).。
(常考题)北师大版高中数学选修1-1第四章《导数应用》检测(有答案解析)(4)
一、选择题1.已知函数()2ln (0,)f x ax bx x a b R =+->∈,若对任意0x >,有()()1f x f ≥,则( ) A .ln 2a b <-B .ln 2a b >-C .ln 2a b =-D .ln 2a b ≥- 2.函数()ln f x x x =-与()ln x g x xe x x =--的最小值分别为,a b ,则 ( ) A .a b = B .a b >C .a b <D .,a b 的大小不能确定3.已知关于x 的不等式32ln x ax x -≥恒成立,则实数a 的取值范围为( ). A .(,1]-∞ B .(0,1]C .10,e⎛⎤ ⎥⎝⎦D .(,0]-∞4.已知函数()22sin x mf x ex +=-在30,4π⎡⎤⎢⎥⎣⎦上有两个不同的零点,则实数m 的取值范围是( ) A .3,44ππ⎫⎡--⎪⎢⎣⎭ B .3,44ππ⎛⎤⎥⎝⎦C .,42ππ⎛⎫⎪⎝⎭D .,24ππ⎛⎫-- ⎪⎝⎭5.将一个边长为a 的正方形铁片的四角截去四个边长相等的小正方形,做成一个无盖方盒.若该方盒的体积为2,则a 的最小值为( ) A .1B .2C .3D .3326.已知函数()1ln 1f x x x =--,则()y f x =的图象大致为( )A .B .C .D .7.函数3()1218f x x x =-+在区间[]3,3-上的最大值为( ) A .34B .16C .24D .178.已知定义在R 上的函数()f x 满足()()f x f x '<-,则下列式子成立的是( ) A .(2020)(2021)f ef > B .(2020)(2021)f ef < C .(2020)(2021)ef f >D .(2020)(2021)ef f <9.若函数32()x x x f x e e e a =---存在零点,则实数a 的取值范围为( ) A .[2,)-+∞B .[,)e C .2[,)e -+∞ D .[1,)-+∞10.函数3()3f x x x =-在[0,]m 上最大值为2,最小值为0,则实数m 取值范围为( ) A .[13]B .[1,)+∞C .(13]D .(1,)+∞11.设函数()'f x 是奇函数()()f x x R ∈的导函数,(2)0f -=,当0x >时,()()03xf x f x '+>,则使得()0f x >成立的x 的取值范围是( ) A .(,2)(0,2)-∞-⋃ B .(,2)(2,2)-∞--C .(2,0)(2,)-+∞ D .(0,2)(2,)⋃+∞12.若函数()(1)x f x x e a =--在(1,)-+∞上只有一个零点,则a 的取值范围为( ) A .21,e ⎛⎫--⎪⎝⎭B .2{1},e ⎡⎫-⋃-+∞⎪⎢⎣⎭ C .2,e ⎡⎫-+∞⎪⎢⎣⎭D .2{1},0e ⎡⎫-⋃-⎪⎢⎣⎭二、填空题13.函数()()ln 2x f x x=,关于x 的不等式()0f x k ->只有两个整数解,则实数k 的取值范围是_________14.若函数32()f x x x =-在区间(,3)a a +内存在最大值,则实数a 的取值范围是____________.15.若对任意a ,b 满足0<a <b <m ,都有ln ln a a b b >,则实数m 的最大值为_____________________.16.若∃01,22x ⎡⎤∈⎢⎥⎣⎦,使得2002+10x x λ<-成立是假命题,则实数λ的取值范围是________.17.已知函数18ln ,y a x x e e⎛⎫⎡⎤=+∈ ⎪⎢⎥⎣⎦⎝⎭的图象上存在点P ,函数22y x =--的图象上存在点Q ,且P ,Q 关于x 轴对称,则a 的取值范围为________.18.已知函数()(ln )f x x x ax =-有且仅有一个极值点,则实数a 的取值范围是_____. 19.函数()ln f x x ax =-在()1,+∞上单调递减,则实数a 的取值范围是______. 20.已知随机变量X 的分布列为:随机变量X 的数学期望为E X ,则满足E X k <的最大正整数k 的值是_____. (参考数据:ln 20.6931≈,ln3 1.0986≈,ln5 1.6094≈)三、解答题21.已知函数()(2)(0)x f x ae x a =-≠. (1)求()f x 的单调区间;(2)若函数2()()2g x f x x x =+-有两个极值点,求实数a 的取值范围.22.已知函数()323f x x ax x m =-++在3x =处取得极值.(1)求实数a 的值;(2)函数()y f x =有三个零点,求m 的取值范围. 23.已知函数()21x f x ae x =-+. (1)讨论()f x 的单调性;(2)函数()()ln g x f x x x =+,当0a >时,讨论()g x 零点的个数.24.设23()252x f x x x =--+(1)求函数()f x 的单调递增、递减区间;(2)当[1,2]x ∈-时,()f x m <恒成立,求实数m 的取值范围. 25.设函数2()cos ,()sin a f x x x g x x=+=. (1)当[0,]x π∈时,判断()f x 的单调性;(2)若当,62x ππ⎡⎤∈⎢⎥⎣⎦时,不等式()()0f x g x -恒成立,求a 的取值范围. 26.已知函数1()(0,1)xx f x a a a a=->≠. (I )若1a >,不等式()2(4)0f x bx f x ++->在x ∈R 上恒成立,求实数b 的取值范围; (II )若3(1)2f =且221()2()xx h x a mf x a=+-在[1,)+∞上的最小值为2-,求m 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据()()1f x f ≥,可得x =1是()f x 的极小值点,即()01f '=,可得a ,b 的关系,对ln a 与2b -的作差,可得ln (2)ln 24a b a a --=+-,构造()ln 42,(0)g x x x x =-+>,即可求得()g x 的极大值1()1ln 404g =-<,化简整理,即可得答案. 【详解】由题意得1()2f x ax b x'=+-, 因为()()1f x f ≥,所以()f x 在x =1处取得最小值,即为x =1是()f x 的极小值点, 所以(1)210f a b '=+-=,即12b a =-, 所以ln (2)ln 2ln 24a b a b a a --=+=+-, 令()ln 42,(0)g x x x x =-+>,则114()4x g x x x-'=-=, 令()0g x '=,解得14x =, 当1(0,)4x ∈时,()0g x '>,所以()g x 为增函数,当1(,)4x ∈+∞时,()0g x '<,所以()g x 为减函数,所以11()()ln121ln 4044g x g ≤=-+=-<,所以()ln 42ln (2)0g a a a a b =-+=--<,即ln 2a b <-. 故选:A 【点睛】解题的关键是熟练掌握利用导函数求解函数极值,判断单调性的方法,并灵活应用,比较两式大小,常用作差法或作商法,难点在于构造()g x 并求极大值,属中档题.2.A解析:A 【分析】根据函数的单调性分别求出函数()f x ,()g x 的最小值,比较a ,b 即可. 【详解】()f x 的定义域是()0,∞+,11()1x f x x x'-=-=, 令()0f x '<,解得:01x <<,令()0f x '>,解得:1x >,()f x 在(0,1)递减,在(1,)+∞递增, ()f x 的最小值是()1f 1=,故1a =,()x g x xe lnx x =--,定义域(0,)+∞,()()()11111x xx g x x e xe x x+=+--=-',令()1xh x xe =-,则()()10xh x x e '=+>,(0,)x ∈+∞则可得()h x 在(0,)+∞上单调递增,且()010h =-<,()110h e =->, 故存在0(0,1)x ∈使得()0h x =即001x x e=,即000x lnx +=,当0(0,)x x ∈时,()0h x <,()0g x '<,函数()g x 单调递减,当()0x x ∈+∞,时,()0g x '>,函数()g x 单调递增, 故当0x x =时,函数取得最小值0000000()11xg x x e lnx x lnx x =--=--=,即1b =,所以a b = 故选:A . 【点睛】关键点睛:题考查了函数的单调性,最值问题,考查导数的应用以及转化思想,解答本题的关键是由()()()11111xx x g x x e xe x x+=+--=-',得出当0(0,)x x ∈时,函数()g x 单调递减,当()0x x ∈+∞,时,函数()g x 单调递增,根据000x lnx +=,求出最小值,属于中档题.3.A【分析】将不等式32ln x ax x -≥恒成立,转化为不等式2ln x xa x ≤-在()0,∞+上恒成立,令()2ln x x xg x =-,用导数法求得其最小值即可. 【详解】因为不等式32ln x ax x -≥恒成立, 所以不等式2ln x xa x≤- 在()0,∞+上恒成立, 令()2ln xx xg x =-, 则()3312ln x xg x x -+'=,令()312ln h x x x =-+,则()2230h x x x'=+>, 所以()h x 在()0,∞+上是递增,又()10h =, 所以当01x <<时,()0h x <,即()0g x '<, 当1x >时,()0h x >,即()0g x '>, 所以当1x =时,()g x 取得最小值()11g =, 所以 1a ≤, 故选:A 【点睛】方法点睛:恒成立问题的解法:若()f x 在区间D 上有最值,则()()min ,00x D f x f x ∀∈>⇔>;()()max ,00x D f x f x ∀∈<⇔<;若能分离常数,即将问题转化为:()a f x >(或()a f x <),则()()max a f x a f x >⇔>;()()min a f x a f x <⇔<. 4.A解析:A 【分析】()0f x =有两解变形为m x xe e =有两解, 设()xxg x e =,利用导数确定函数的单调性、极值,结合()g x 的大致图象可得结论.由()22sin x m f x e x +=-得2sin mxe =,设2sin ()xg x =,则2(cos sin )()xx x g x e-'=, 易知当04x π<<时,()0g x '>,()g x 递增,当344x ππ<<时,()0g x '<,()g x 递减,(0)0g =,414g e ππ⎛⎫= ⎪⎝⎭,34314g e ππ⎛⎫= ⎪⎝⎭,如图是()g x 的大致图象, 由2sin mx x e e =有两解得34411m e e eππ≤<,所以344m ππ-≤<-.故选:A .【点睛】关键点点睛:本题考查函数的零点问题,解题关键是转化.函数的零点转化为方程的解,再用分离参数变形为2m xxe e =,问题转化为2()xx g x e=的图象与直线my e =有两个交点,利用导数研究函数()g x 的单调性、极值后可得.5.C解析:C 【分析】设出小正方形的边长,表示出方盒的体积,然后求导,判断出单调性,然后求解最大值即可. 【详解】设截去的小正方形边长为x ,则方盒高为x ,底边长为2a x -,所以()22,0,2a V a x x x ⎛⎫=-⋅∈ ⎪⎝⎭,则()224(2)(2)(6)V a x x a x x a x a '=-+-=--,令0V '=,得2a x =(舍) 或6a x =,当06ax <<时,0V '>,单调递增;当62a a x <<时,0V '<,单调递减;由题意,则23max 2263627a a a a V V a ⎛⎫⎛⎫==-⋅=≥ ⎪ ⎪⎝⎭⎝⎭,则3a ≥,故a 的最小值为3. 故选:C. 【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系;(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数;(3)利用导数求函数的最值(极值),解决生活中的优化问题;(4)考查数形结合思想的应用.6.A解析:A 【分析】利用导数分析函数ln 1y x x =--的单调性以及函数值符号,由此可得出函数()y f x =的图象. 【详解】对于函数ln 1y x x =--,该函数的定义域为()0,∞+,求导得111x y x x-'=-=. 当01x <<时,0y '<,此时函数ln 1y x x =--单调递减; 当1x >时,0y '>,此时函数ln 1y x x =--单调递增.所以,函数ln 1y x x =--的最小值为min 1ln110y =--=,即对任意的0x >,ln 10x x --≥.所以,函数()y f x =的定义域为()()0,11,+∞,且()0f x >,函数()y f x =的单调递增区间为()0,1,递减区间为()1,+∞. 所以,函数()y f x =的图象如A 选项中函数的图象. 故选:A. 【点睛】思路点睛:函数图象的辨识可从以下方面入手: (1)从函数的定义域,判断图象的左右位置; (2)从函数的值域,判断图象的上下位置. (3)从函数的单调性,判断图象的变化趋势; (4)从函数的奇偶性,判断图象的对称性; (5)函数的特征点,排除不合要求的图象.7.A解析:A 【分析】对函数求导,求出函数()y f x =的极值点,分析函数的单调性,再将极值与端点函数值比较大小,找出其中最大的作为函数()y f x =的最大值. 【详解】()31218f x x x =-+,则()2312f x x '=-,令'0f x,解得2x =±,列表如下:所以,函数y f x =的极大值为234f -=,极小值为22f =,又()327f -=,()39f =,因此,函数()y f x =在区间[]3,3-上的最大值为34, 故选:A . 【点睛】方法点睛:本题考查利用导数求函数在定区间上的最值,解题时严格按照导数求最值的基本步骤进行,考查计算能力,属于中等题.8.A解析:A 【分析】构造函数()()xg x e f x =,求导判定函数单调性,根据单调性得(2020)(2021)g g >化简即可. 【详解】解:依题意()()0f x f x '+<,令()()xg x e f x =,则()(()())0xg x f x f x e ''=+<在R 上恒成立, 所以函数()()xg x e f x =在R 上单调递减, 所以(2020)(2021)g g >即20202021(2020)(2021)(2020)(2021)e e e f f f f >⇒>故选:A. 【点睛】四种常用导数构造法:(1)对于不等式()()0f x g x ''+> (或0<) ,构造函数()()()F x f x g x =+. (2)对于不等式()()0f x g x ''->(或0<) ,构造函数()()()F x f x g x =-.(3)对于不等式()()0f x f x '+>(或0<) ,构造函数()()xF x e f x =.(4)对于不等式()()0f x f x '->(或0<) ,构造函数()()x f x F x e=. 9.D解析:D【分析】由题意得32x x x a e e e =--,令32()x xx g x e e e =--,求()g x 的取值范围可得答案.【详解】 由32()0xx x f x ee e a =---=,则32x x x a e e e =--,令32()xxx g x e ee =--,则()()()3223()3211213xxx x x x x x x g x e ee e e e e e e '=--=+-=--,当()0g x '>得0x >,()g x 单调递增,当()0g x '<得0x <,()g x 单调递减, 所以min()(0)1g x g ≥=-,()2215()124x x x x xg x e e e e e ⎡⎤⎛⎫=--=--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,当x 趋向于正无穷大时,()g x 也趋向于正无穷大, 所以函数()f x 存在零点,则1a ≥-. 故选:D. 【点睛】方法点睛:本题考查函数零点问题.解题方法是把零点个数转化为方程解的个数,再转化为函数图象交点个数,由图象观察所需条件求得结论.考查了分析问题、解决问题的能力.10.A解析:A 【分析】求导得()3(1)(1)f x x x =+-',从而知函数()f x 的单调性,再结合(0)0f =,f (1)2=,即可得解【详解】.3()3f x x x =-,2()333(1)(1)f x x x x ∴=-=+-',令()0f x '=,则1x =或1-(舍负),当01x <时,()0f x '>,()f x 单调递增;当1x >时,()0f x '<,()f x 单调递减. 函数()f x 在[0,]m 上最大值为2,最小值为0,且(0)(3)0f f ==,f (1)2=,13m ∴≤≤故选:A. 【点睛】本题考查利用导数研究函数的最值问题,理解原函数的单调性与导函数的正负性之间的联系是解题的关键,考查学生的逻辑推理能力和运算能力,属于基础题.11.C解析:C 【分析】通过令3()()g x x f x =可知问题转化为解不等式()0>g x ,利用当0x >时32()3()0x f x x f x '+>及奇函数与偶函数的积函数仍为奇函数可知()g x 在(,0)-∞递减、在(0,)+∞上单调递增,进而可得结论.【详解】解:令3()()g x x f x =,则问题转化为解不等式()0>g x , 当0x >时,()3()0xf x f x '+>,∴当0x >时,233()()0x f x x f x +'>,∴当0x >时()0g x '>,即函数()g x 在(0,)+∞上单调递增,又(2)0f -=,()()f x x R ∈是奇函数,()()()()()()()333g x x f x x f x x f x g x ∴-=--=--== 故()g x 为偶函数,f ∴(2)0=,g (2)0=,且()g x 在(,0)-∞上单调递减, ∴当0x >时,()0>g x 的解集为(2,)+∞,当0x <时,()0(2)g x g >=-的解集为(2,0)-,∴使得f ()0x >成立的x 的取值范围是(2-,0)(2⋃,)+∞,故选C . 【点睛】本题考查利用导数研究函数的单调性,考查运算求解能力,构造新函数是解决本题的关键,注意解题方法的积累,属于中档题.12.B解析:B 【分析】先对函数求导,可得当10x -<<时,()0f x '<;当0x >时,()0f x '>,从而得min ()(0)1f x f a ==--,而x →+∞时,()f x →+∞,所以要函数()(1)x f x x e a =--在(1,)-+∞上只有一个零点,只要满足10a --=或20a e--,从而可求出a 的取值范围 【详解】()x f x xe '=,当10x -<<时,()0f x '<;当0x >时,()0f x '>.从而min ()(0)1f x f a ==--,又2(1)f a e-=--,且x →+∞时,()f x →+∞, ∴10a --=或20a e--, 即1a =-或2a e-. 故选:B 【点睛】此题考查由导数解决函数零点问题,考查转化思想和计算能力,属于中档题二、填空题13.【分析】利用导数分析函数的单调性与极值数形结合可得出实数的取值范围【详解】函数的定义域为令可得列表如下: 极大值 所以函数的极大值为且如下图所示:要使得关于的不等式只有两个解析:ln 6,ln 23⎡⎫⎪⎢⎣⎭【分析】利用导数分析函数()f x 的单调性与极值,数形结合可得出实数k 的取值范围. 【详解】 函数()()ln 2x f x x =的定义域为()0,∞+,()()21ln 2x f x x-'=, 令()0f x '=,可得2ex =,列表如下:所以,函数()f x 的极大值为22f e e ⎛⎫==⎪⎝⎭,()1,22e ∈,且()()12ln 2f f ==,()ln 633f =,如下图所示:要使得关于x 的不等式()0f x k ->只有两个整数解,则ln 6ln 23k ≤<. 因此,实数k 的取值范围是ln 6,ln 23⎡⎫⎪⎢⎣⎭. 故答案为:ln 6,ln 23⎡⎫⎪⎢⎣⎭. 【点睛】关键点点睛:本题考查利用不等式的整数解的个数求参数的取值范围,解题的关键在于利用导数分析函数的单调性与极值,然后在同一直角坐标系中画出函数的图象,利用数形结合的方法求解.14.【分析】首先利用导数判断函数的单调性再根据函数在开区间内存在最大值可判断极大值点就是最大值点列式求解【详解】由题可知:所以函数在单调递减在单调递增故函数的极大值为所以在开区间内的最大值一定是又所以得 解析:(3,2]--【分析】首先利用导数判断函数的单调性,再根据函数在开区间(),3a a +内存在最大值,可判断极大值点就是最大值点,列式求解. 【详解】由题可知: 2()32(32)f x x x x x '=-=-所以函数()f x 在20,3⎛⎫ ⎪⎝⎭单调递减,在2(,0),,3⎛⎫-∞+∞⎪⎝⎭单调递增,故函数的极大值为 (0)0f =.所以在开区间(,3)a a +内的最大值一定是(0)0,f =又(1)(0)0f f ==, 所以03,31a a a <<+⎧⎨+≤⎩得实数a 的取值范围是(3,2].-- 故答案为:(]3,2-- 【点睛】关键点点睛:由函数在开区间内若存在最大值,即极大值点在区间内,同时还得满足极大值点是最大值,还需列不等式31a +≤,不要忽略这个不等式.15.【分析】根据0<a<b<m 都有令则在上是减函数由求解【详解】因为0<a<b<m 都有令所以在上是减函数所以解得所以的最大值为故答案为:【点睛】本题主要考查导数与函数的单调性及其应用还考查了分析求解问题解析:1e【分析】根据0<a <b <m ,都有ln ln a a b b >,令()ln f x x x =,则()f x 在()0,m 上是减函数,由()0f x '<求解.【详解】因为0<a <b <m ,都有ln ln a a b b >, 令()ln f x x x =,所以()f x 在()0,m 上是减函数, 所以()1ln 0f x x '=+<, 解得10x e<<, 所以m 的最大值为1e, 故答案为:1e【点睛】本题主要考查导数与函数的单调性及其应用,还考查了分析求解问题的能力,属于中档题.16.【分析】将命题转化为使得恒成立是真命题令函数对其求导讨论导函数取正负的区间得出所构造的函数的单调性从而求出最值利用不等式恒成立的思想得出实数λ的取值范围【详解】因为∃使得成立是假命题所以使得恒成立是解析:(-∞【分析】将命题转化为1,22x ⎡⎤∀∈⎢⎥⎣⎦,使得12+x x λ≤恒成立是真命题,令函数()12+f x x x=,对其求导,讨论导函数取正负的区间,得出所构造的函数的单调性,从而求出最值,利用不等式恒成立的思想,得出实数λ的取值范围. 【详解】因为∃01,22x ⎡⎤∈⎢⎥⎣⎦,使得2002+10x x λ<-成立是假命题,所以1,22x ⎡⎤∀∈⎢⎥⎣⎦,使得22+10x x λ≥-恒成立是真命题,即1,22x ⎡⎤∀∈⎢⎥⎣⎦,使得12+x x λ≤恒成立是真命题,令()12+f x x x=,则()'212f x x =- ,当1,22x ⎛⎫∈ ⎪ ⎪⎝⎭时,()'0f x <,函数()f x在1,22⎛⎫⎪ ⎪⎝⎭上单调递减,当2x ⎫∈⎪⎪⎝⎭时,()'>0f x ,函数()f x在2⎫⎪⎪⎝⎭上单调递增, 所以()f x f ≥=⎝⎭λ≤故答案为:(-∞.【点睛】本题考查全称命题和特称命题的关系,运用参变分离的方法求参数的范围,属于中档题.17.【分析】设代入解析式得到两个方程联立可得让取值域即可【详解】设则所以联立可得即对于有解令由可得:;由可得:所以在单调递减在上单调递增所以所以值域为即可得的取值范围为故答案为:【点睛】本题主要考查了利解析:2168ln 2,10e ⎡⎤-+⎢⎥⎣⎦【分析】设()00,Q x y 、()00,P x y -代入解析式,得到两个方程联立可得2008ln 2a x x =-+,2000()8ln 2h x x x =-+,1,x e e ⎡⎤∈⎢⎥⎣⎦,让a 取0()h x 值域即可.【详解】设()00,Q x y 、则()00,P x y -所以2002y x =--,008ln y a x -=+,联立可得2008ln 2a x x =-+ 即2008ln 2a x x =-+对于1,x e e⎡⎤∈⎢⎥⎣⎦有解,令2000()8ln 2h x x x =-+,200000288()2x h x x x x -'=-=,由0()0h x '>可得:2x e <<;由0()0h x '<可得:12x e<<, 所以0()h x 在1,2e ⎡⎤⎢⎥⎣⎦单调递减,在[]2,e 上单调递增,20min ()(2)28ln 2268ln 2h x h ==-+=-,2211118ln 210h e e e e ⎛⎫⎛⎫=-+=+ ⎪ ⎪⎝⎭⎝⎭,()()228ln 26h e e e e =-+=-,所以0max 21()10h x e=+, 所以0()h x 值域为2168ln 2,10e ⎡⎤-+⎢⎥⎣⎦, 即可得a 的取值范围为2168ln 2,10e ⎡⎤-+⎢⎥⎣⎦, 故答案为:2168ln 2,10e ⎡⎤-+⎢⎥⎣⎦. 【点睛】本题主要考查了利用导数解决存在性问题,涉及求函数的值域,属于中档题.18.【分析】根据题意可得只有一个解只有一个解与只有一个交点求导数分析单调性及当时;当时画出函数的草图及可得的取值范围再检验是否符合题意即可得出答案【详解】解:因为函数有且仅有一个极值点所以只有一个解即只 解析:(,0]-∞【分析】根据题意可得()210f x lnx ax '=-+=只有一个解12lnx a x+⇒=只有一个解2y a ⇒=与1()lnx y g x x+==只有一个交点,求导数()g x ',分析单调性,及当0x →时,()g x →-∞;当x →+∞时,()0g x →,画出函数()g x 的草图,及可得a 的取值范围,再检验是否符合题意,即可得出答案. 【详解】解:因为函数()(ln )f x x x ax =-有且仅有一个极值点, 所以1()ln ln 210f x x ax x a x ax x ⎛⎫'=-+-=-+= ⎪⎝⎭只有一个解, 即ln 12x a x+=,只有一个解, 即2y a =与ln 1()x y g x x+==只有一个交点, 因为2ln ()xg x x-'=, 当(0,1)x ∈时,()0g x '>,函数()g x 单调递增,当(1,)x ∈+∞时,()0g x '<,函数()g x 单调递减,所以max ()(1)1g x g ==,当0x →时,()g x →-∞;当x →+∞时,()0g x →, 画出函数()g x 的草图如下:结合图象可得21a =或20a ≤, 解得12a =或0a ≤, 当12a =时,21()ln 2f x x x x =-, 所以()1ln f x x x '=+-,令()1ln h x x x =+-,所以1()1h x x'=-, 所以()h x 在(0,1)上单调递增,在(1,)+∞上单调递减,所以()(1)0h x h ≤=,所以()1ln 0f x x x '=+-≤恒成立, 所以()f x 在(0,)+∞上单调递减, 所以函数()f x 没有极值点. 所以实数a 的取值范围是(,0]-∞. 故答案为:(,0]-∞ 【点睛】本题考查利用导数分析极值,解题关键是转化思想的应用,属于中档题.19.【分析】求导得到恒成立化简得到计算得到答案【详解】在恒成立即恒成立故故答案为【点睛】本题考查了利用导数计算函数的单调性意在考查学生的计算能力解析:[1,)+∞【分析】 求导得到1'()0f x a x =-≤恒成立,化简得到1a x≤,计算得到答案. 【详解】1()ln '()0f x x ax f x a x=-∴=-≤在()1,+∞恒成立 即1a x≤恒成立,故1a ≥ 故答案为[1,)+∞【点睛】本题考查了利用导数计算函数的单调性,意在考查学生的计算能力.20.【分析】根据期望的定义先得到将不等式化为构造函数利用导数的方法判断其单调性计算即可得出结果【详解】由题意所以可化为即其中显然成立;两边同时取以为底的对数得令则当时即函数单调递增;当时即函数单调递减; 解析:4【分析】根据期望的定义,先得到()31kE X ke k -=-++,将不等式()E X k <化为ln 3kk >,构造函数()ln ,03kf k k k =->,利用导数的方法判断其单调性,计算()4f ,()5f ,即可得出结果. 【详解】 由题意,()()333111k k k E X ek e ke k ---⎛⎫=++-=-++ ⎪⎝⎭,所以()E X k <可化为310kke --+<,即3kk e >,其中0k >显然成立; 两边同时取以e 为底的对数,得ln 3k k >, 令()ln ,03k f k k k =->,则()11333k f k k k-'=-=, 当()0,3k ∈时,()303k f k k -'=>,即函数()ln 3kf k k =-单调递增; 当()3,k ∈+∞时,()303k f k k -'=<,即函数()ln 3kf k k =-单调递减; 因此()()max 33ln 3ln 3103f k f ==-=->, 又()444ln 42ln 2 1.3862 1.3333033f =-≈-=->,()55ln 5 1.6094 1.666603f =-≈-<,因此满足ln 3kk >的最大正整数k 的值是4, 即满足()E X k <的最大正整数k 的值是4. 故答案为:4. 【点睛】本题主要考查导数的方法研究不等式能成立的问题,涉及离散型随机变量的期望,属于常考题型.三、解答题21.(1)答案见解析;(2)22,,0e e ⎛⎫⎛⎫-∞-⋃- ⎪ ⎪⎝⎭⎝⎭. 【分析】(1)先对函数求导,然后分0a >和0a <两种情况,解不等式()0f x '<,()0f x '>,可求出函数的单调区间;(2)函数2()()2g x f x x x =+-有两个极值点,等价于()()(1)22(1)2x x g x ae x x x ae '=-+-=-+有两个不同的零点,等价于()2x h x ae =+有一个不为1的零点,然后分0a >和0a <两种情况讨论即可得答案 【详解】(1)()(1)xf x ae x '=-,若0a >,由()0f x '<,得1x <;由()0f x '>,得1,()x f x >∴的递减区间为(,1)-∞,递增区间为(1,)+∞.若0a <,由()0f x '<,得1x >;由()0f x '>,得1,()x f x <∴的递减区间为(1,)+∞,递增区间为(,1)-∞.(2)22()()2(2)2x g x f x x x ae x x x =+-=-+-,()()(1)22(1)2x x g x ae x x x ae '=-+-=-+. 2()(2)2x g x ae x x x ∴=-+-有两个极值点,等价于()()(1)22(1)2x x g x ae x x x ae '=-+-=-+有两个不同的零点,等价于()2x h x ae =+有一个不为1的零点,当1x =时,1(1)20h ae =+≠,即2a e≠-. ∴①当0a >时,()20x h x ae =+>,此时无零点; ②当0a <且2a e≠-时,2()0,()h x ae h x '=<∴为减函数.又2ln 2ln 20a h ae a ⎛⎫- ⎪⎝⎭⎛⎫⎛⎫-=+= ⎪ ⎪⎝⎭⎝⎭,∴总存在唯一实数2ln a ⎛⎫- ⎪⎝⎭,使()0h x =.综上,()g x 有两个极值点实数a 的取值范围22,,0e e ⎛⎫⎛⎫-∞-⋃- ⎪ ⎪⎝⎭⎝⎭. 【点睛】关键点点睛:此题考查导数的应用,考查利用导数求函数的单调区间,考查导数与极值,第2问解题的关键是将函数2()()2g x f x x x =+-有两个极值点,等价于()()(1)22(1)2x x g x ae x x x ae '=-+-=-+有两个不同的零点,等价于()2x h x ae =+有一个不为1的零点,从而分情况讨论即可,考查数学转化思想,属于中档题 22.(1)5a =;(2)13,927⎛⎫- ⎪⎝⎭. 【分析】(1)由条件可知'(3)0f =,求a 后再验证是否满足条件;(2)利用导函数的符号,推出函数的单调性,得到函数的极值,列不等式求解即可. 【详解】(1)()2323f x x ax =-+',由已知得()30f '=,得27630a -+=,5a = (2)()3253f x x x x m =-++,令()231030f x x x '=-+=,得3x =或13x =, 由()0f x '>得3x >或13x <,此时()f x 为增函数, 由()0f x '<得133x <<,此时()f x 为减函数, 即当13x =时,函数()f x 取得极大值,当3x =时,()f x 取得极小值, 即()()39f x f m ==-极小值,()113327f x f m ⎛⎫==+ ⎪⎝⎭极大值, 所以函数()f x 有三个不同零点,因此,只需()10330ff ⎧⎛⎫>⎪ ⎪⎝⎭⎨⎪<⎩,即1302790m m ⎧+>⎪⎨⎪-<⎩,解得13927m -<<, m 的范围是13,927⎛⎫- ⎪⎝⎭.【点睛】方法点睛:该题考查的是有关导数的问题,解题方法如下:(1)根据函数在极值点处导数等于零,求得参数的值,之后需要验证;(2)对函数求导,得到其极值,结合三次函数有三个零点的条件为极大值大于零,极小值小于零,列出不等式组,求得结果.23.(1)答案见解析;(2)答案见解析.【分析】(1)讨论0a ≤,0a >两种情况,确定()'f x 的正负,利用导数求()f x 的单调性;(2)设()()g x h x x=,利用导数得出()h x 的单调性,进而得出最小值,讨论最小值大于、小于、等于0的情况结合零点存在性定理确定()h x 的零点个数,即()g x 零点的个数. 【详解】解:(1)函数()f x 的定义域为R ,()2x f x ae '=-.①当0a ≤时,()0f x '<,所以()f x 在R 上单调递减;②当0a >时,令()0f x '=得2ln x a=. 若2,ln x a ⎛⎫∈-∞ ⎪⎝⎭,()0f x '<; 若2ln ,x a ⎛⎫∈+∞ ⎪⎝⎭,()0f x '>; 所以()f x 在2,ln a ⎛⎫-∞ ⎪⎝⎭单调递减,在2ln ,a ⎛⎫+∞ ⎪⎝⎭单调递增. 综上所述,当0a ≤时,()f x 在R 上单调递减; 当0a >时,()f x 在2,lna ⎛⎫-∞ ⎪⎝⎭单调递减;()f x 在2ln ,a ⎛⎫+∞ ⎪⎝⎭单调递增. (2)()ln 21x g x ae x x x =+-+ 设函数()1()ln 2x g x ae h x x x x x==++- ()2221(1)(1)11()x x ae x ae x h x x x x x +--'=+-= 因为0a >,所以()0h x '=得1x =.当(0,1)x ∈时,()0h x '<,()h x 在(0,1)上单调递减.当(1,)x ∈+∞时,()0h x '>,()h x 在(1,)+∞上单调递增.所以当1x =时,()h x 取最小值,最小值为(1)1h ae =-. 若1a e=时,(1)0h =,所以函数()h x 只有1个零点;若1a e>时,()(1)0h x h ≥>,所以函数()h x 无零点; 若10a e <<时,(1)0h <,()222222240e e h e a e e e---=-+->->, ()22221220e e h e a e e=++->,故()2(1)0h h e -<,()2(1)0h h e <; 所以函数()h x 在()21,e -和()21,e 各有一个零点,所以函数()h x 有两个零点. 综上所述,当1a e =时,函数()g x 只有1个零点;当1a e >时,函数()g x 无零点; 当10a e<<时,函数()g x 有两个零点 【点睛】 方法点睛:研究含参函数()g x 的零点问题,即方程()0g x =的实根问题,通常选择参变分离,得到()a g x 的形式,后借助数形结合(几何法)思想求解;若无法参变分离,则整体含参讨论函数()g x 的单调性、极值符号,由数形结合可知函数()g x 的图象与x 轴的交点情况即函数()g x 的零点情况.24.(1)单调递增区间为2,3⎛⎤-∞- ⎥⎝⎦和[1,)+∞,递减区间2,13⎡⎤-⎢⎥⎣⎦;(2)7m >. 【分析】(1)求导2()32f x x x '=--,分别由()0f x '>和()0f x '<求解.(2)根据[1,2]x ∈-时,()f x m <恒成立,则由max ()f x m <求解即可.【详解】(1)2()32f x x x '=--,令()0f x '=,解得1x =或23x =-, 当23x <-或1x >时,()0f x '>,()f x 为增函数, 当213x -<<时, ()0f x '<,()f x 为减函数 综上:函数()f x 的单调递增区间为2,3⎛⎤-∞- ⎥⎝⎦和[1,)+∞,递减区间为2,13⎡⎤-⎢⎥⎣⎦. (2)当[1,2]x ∈-时,()f x m <恒成立,只需使()f x 在[1,2]-上最大值小于m 即可由(1)知()f x 最大值为2225327f ⎛⎫-=+ ⎪⎝⎭、端点值1(1)5,(2)72f f -==中的较大者. ∴()f x 在[1,2]-上的最大值为(2)7f =,∴7m >,所以实数m 的取值范围是7m >【点睛】方法点睛:恒成立问题的解法:若()f x 在区间D 上有最值,则()()min ,00x D f x f x ∀∈>⇔>;()()max ,00x D f x f x ∀∈<⇔<;若能分离常数,即将问题转化为:()a f x >(或()a f x <),则()()max a f x a f x >⇔>;()()min a f x a f x <⇔<.25.(1)()f x 单调递增;(2)24aπ. 【分析】(1)求导()'2sin f x x x =-,得出导函数的符号,从而可得函数()f x 单调性.(2)由已知将问题转化为不等式sin ()a x f x ⋅恒成立,令()sin ()k x x f x =⋅,求导''()cos ()sin ()k x x f x x f x =⋅+⋅,分析导函数的符号,得出()k x 单调递增,求得()k x 的最大值,由恒等式的思想可得出a 的取值范围.【详解】解:(1)()'2sin f x x x =-,令()2sin h x x x =-,当[0,]x π∈时,'()2cos 0h x x =->,所以当[0,]x π∈时,()2sin h x x x =-单调递增;所以()(0)0h x h =,即()0f x ',所以()f x 单调递增. (2)因为当,62x ππ⎡⎤∈⎢⎥⎣⎦时,不等式()()0f x g x -恒成立, 所以当,62x ππ⎡⎤∈⎢⎥⎣⎦时,不等式sin ()a x f x ⋅恒成立, 令()sin ()k x x f x =⋅,所以''()cos ()sin ()k x x f x x f x =⋅+⋅, 因为当,62x ππ⎡⎤∈⎢⎥⎣⎦时,'cos 0,()0,sin 0,()0x f x x f x >>>>,所以'()0k x >,所以()k x 单调递增,所以2()24k x k ππ⎛⎫≤= ⎪⎝⎭,所以24a π≥. 【点睛】方法点睛:对于不等式恒成立问题,常常采用:()f x a >对一切x I ∈恒成立,等价于min ()f x a >;()f x α<对一切x I ∈恒成立,等价于max ()f x α<.26.(I )()3,5-;(II )2m =【分析】(Ⅰ)判断出()1x x f x a a=-是R 上的单调递增和()f x 为定义域为R 的奇函数,进而转化为()()()()22404f x bx f x f x bx f x ++->⇒+>-,进而可求解 (Ⅱ)利用()312f =,所以132a a -=,解得2a =或12a =-(舍去), 所以()222111122222222222x x x x x x x x h x m m ⎛⎫⎛⎫⎛⎫=+--=---+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 令()122x x u f x ==-,则()222g u u mu =-+,进而利用导数求最值即可求出m 的值 【详解】 解:(Ⅰ) ()1(0,1)x x f x a a a a =->≠,因为()10f >,所以10a a->,又0a >且1a ≠,所以1a >,所以,()1x x f x a a =-是R 上的单调递增, 又()f x 是定义域为R 的函数,满足()()f x f x -=-,所以,()f x 为定义域为R 的奇函数,所以,()()()()2224044f x bx f x f x bx f x x bx x ++->⇒+>-⇔+>- 即240x bx x +-+>在x ∈R 上恒成立,所以()21160b ∆=--<,即35b -<<,所以实数b 的取值范围为()3,5-.(Ⅱ)因为()312f =,所以132a a -=,解得2a =或12a =-(舍去), 所以()222111122222222222x x x x x x x x h x m m ⎛⎫⎛⎫⎛⎫=+--=---+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 令()122x xu f x ==-,则()222g u u mu =-+, 因为()122x x f x =-在R 上为增函数,且1≥x ,所以()312u f ≥=, 因为()()221222x x h x mf x =+-在[)1,+∞上的最小值为2-, 所以()222g u u mu =-+在3,2⎡⎫+∞⎪⎢⎣⎭上的最小值为2-,因为()()222222g u u mu u m m =-+=-+-的对称轴为u m = 所以当32m ≥时, ()()2min 22g u g m m ==-=-,解得2m =或2m =-(舍去),当32m <时, ()min 3173224g u g m ⎛⎫==-=- ⎪⎝⎭,解得253122m =>, 综上可知:2m =【点睛】关键点睛:解题关键:(Ⅰ)利用函数的奇偶性和单调性得到 ()()()()22404f x bx f x f x bx f x ++->⇒+>-,进而转化求解即可; (Ⅱ)求出a ,构造函数()222111122222222222x x x x x x x x h x m m ⎛⎫⎛⎫⎛⎫=+--=---+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 然后令()122x x u f x ==-,构造出()222g u u mu =-+,进而求解。
(常考题)北师大版高中数学选修1-1第四章《导数应用》检测题(有答案解析)(4)
一、选择题1.已知函数()()22ln x x t f x x+-=,若对任意的[]2,3x ∈,()()0f x f x x '+>恒成立,则实数t 的取值范围是( )A .(),2-∞B .5,2⎛⎫-∞ ⎪⎝⎭C .103⎛⎫-∞ ⎪⎝⎭,D .()2,+∞2.函数()ln f x x x =-与()ln x g x xe x x =--的最小值分别为,a b ,则 ( ) A .a b = B .a b >C .a b <D .,a b 的大小不能确定3.已知函数()()2ex x f x x =∈R ,若关于方程()()210f x tf x t -+-=恰好有4个不相等的实根,则实数t 的取值范围为( )A .()24,22,e e ⎛⎫⋃⎪⎝⎭ B .24,1e ⎛⎫⎪⎝⎭C .24,e e ⎛⎫⎪⎝⎭D .241,1e ⎛⎫+ ⎪⎝⎭4.若关于x 的方程2lnx ax x -=在0,上有两个不等的实数根,则实数a 的取值范围为( ) A .(],1-∞-B .(),1-∞-C .[)1,-+∞D .()1,-+∞5.已知函数()2()x xf x x e e x-=⋅-+,若()()()f x f y f x y <<+,则( )A .0xy >B .0xy <C .0x y +>D .0x y +<6.已知函数()()221x g x x e ax a =--+在()0,∞+上单调递增,则实数a 的取值范围是( )A .(,-∞B .(0,C .(,-∞D .(0,7.现有橡皮泥制作的底面半径为4,高为3的圆锥一个.若将它重新制作成一个底面半径为r ,高为h 的圆柱(橡皮泥没有浪费),则该圆柱表面积的最小值为( )A .20πB .24πC .28πD .32π8.已知函数4213(),42f x x x mx n =-++其中m ,n 为正整数,若函数()f x 有极大值,则m 的值为( ) A .1B .2C .3D .49.已知函数()ln f x x =,若对任意的12,(0,)x x ∈+∞,都有()()()()2221212122f x f x x x k x x x -->+⎡⎤⎣⎦恒成立,则实数k 的最大值是( )A .1-B .0C .1D .210.定义在R 上的函数()f x 满足()()2f x f x '+<,则下列不等式一定成立的是( ) A .(3)2(2)2ef f e +<+ B .(3)2(2)2ef f e +>+ C .(3)2(2)2f e ef +<+D .(3)2(2)2f e ef +>+11.若函数(1),()21,x x e x af x x x a⎧-+=⎨-->⎩有最大值,则实数a 的取值范围是( )A .211[,)22e--+∞ B .21[,)2e-+∞ C .[2-,)+∞ D .211(2,]22e--- 12.已知函数()()()2122x x f x m e m R =+++∈有两个极值点,则实数m 的取值范围为( )A .10e ⎡⎤-⎢⎥⎣⎦,B .111e⎛⎫--- ⎪⎝⎭,C .1e ⎛⎫-∞- ⎪⎝⎭,D .()0+∞,二、填空题13.若直线l 与曲线C 满足下列两个条件:(1)直线l 在点()00,P x y 处与曲线C 相切;(2)曲线C 在P 附近位于直线l 的两侧,则称直线l 在点P 处“切过”曲线C .下列命题正确的是_________(写出所有正确命题的编号)①直线l :0y =在点()0,0P 处“切过”曲线C :3y x =. ②直线l :1x =-在点()1,0P -处“切过”曲线C :()21y x =+.③直线l :y x =在点()0,0P 处“切过”曲线C :sin y x =. ④直线l :1y x =+在点()0,1P 处“切过”曲线C :x y e =. ⑤直线l :1y x =-在点()1,0P 处“切过”曲线C :ln y x =.14.若函数()231xf x e x mx =+-+在(],3-∞上单调递减,则实数m 的取值范围为______.15.若函数()()32f x x ax a R =--∈在(),0-∞内有且只有一个零点,则()f x 在[]1,2-上的最小值为______.16.已知函数3223,01()21,1x x m x f x mx x ⎧-+≤≤=⎨-+>⎩,若函数()f x 的图象与x 轴有且只有两个不同的交点,则实数m 的取值范围为________.17.已知正项等比数列{}n a 的前n 项和为n S ,若361,,S S 成等差数列,则9326S S S -的最大值为________18.已知函数21()ln 2f x x x =+,函数()f x 在[1,]e 上的最大值为__________. 19.已知三次函数()y f x =的图象如图所示,则函数()f x 的解析式是_______.20.若存在两个正实数x ,y 使等式()()ln ln 0x m y x y x +--=成立,(其中2.71828e =)则实数m 的取值范围是________.三、解答题21.已知函数()ln ()=+∈f x x x ax a R . (Ⅰ)当0a =,求()f x 的最小值;(Ⅱ)若函数()()ln g x f x x =+在区间[1,)+∞上为增函数,求实数a 的取值范围; 22.已知函数32()392f x x x x =-++-.(1)求函数()y f x =的图象在点()()1,1f 处的切线方程; (2)求()f x 的单调区间. 23.已知函数()xf x e ax a =--.(1)当1a =时,求过点()0,1-且与曲线()y f x =相切的直线方程; (2)若()0f x ≥,求实数a 的取值范围. 24.已知函数()()331f x x ax a R =--∈.(1)当1a =时,求函数()f x 的极大值; (2)讨论函数()f x 的单调性. 25.已知函数1()2ln 2f x x x x x=--+. (Ⅰ)求曲线()y f x =在点()()1,1f 处的切线方程; (Ⅱ)设函数()'()g x f x =('()f x 为()f x 的导函数),若方程()g x a =在1,e⎡⎫+∞⎪⎢⎣⎭上有且仅有两个实根,求实数a 的取值范围. 26.已知函数())ln f x a x x a =∈R . (1)当1a =-时,求()f x 的单调区间; (2)求()f x 在[1,4]上的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】求导函数()f x ',化简()()0f x f x x'+>得10x t x+->在[]2,3x ∈恒成立,参变分离即可求参数范围. 【详解】∵()2222ln 2x x t f x x -+-'=,∴对任意的[]2,3x ∈,()()0f x f x x'+>恒成立⇔对任意的[]2,3x ∈,()()0xf x f x '+>恒成立, ⇔对任意的[]2,3x ∈,10x t x+->恒成立, ⇔1x t x+>恒成立, 又()1g x x x =+在[]2,3上单调递增,∴()()225min g x g ==, ∴52t <.则实数t 的取值范围是5,2⎛⎫-∞ ⎪⎝⎭.故选:B 【点睛】对于恒成立问题,常用到以下两个结论: (1)()a f x ≥ 恒成立()max a f x ⇔≥; (2) ()a f x ≤ 恒成立()min a f x ⇔≤.2.A解析:A 【分析】根据函数的单调性分别求出函数()f x ,()g x 的最小值,比较a ,b 即可. 【详解】()f x 的定义域是()0,∞+,11()1x f x x x'-=-=,令()0f x '<,解得:01x <<,令()0f x '>,解得:1x >,()f x 在(0,1)递减,在(1,)+∞递增, ()f x 的最小值是()1f 1=,故1a =,()x g x xe lnx x =--,定义域(0,)+∞,()()()11111x xx g x x e xe x x+=+--=-',令()1x h x xe =-,则()()10xh x x e '=+>,(0,)x ∈+∞则可得()h x 在(0,)+∞上单调递增,且()010h =-<,()110h e =->, 故存在0(0,1)x ∈使得()0h x =即001x x e=,即000x lnx +=,当0(0,)x x ∈时,()0h x <,()0g x '<,函数()g x 单调递减,当()0x x ∈+∞,时,()0g x '>,函数()g x 单调递增, 故当0x x =时,函数取得最小值0000000()11xg x x e lnx x lnx x =--=--=,即1b =,所以a b = 故选:A . 【点睛】关键点睛:题考查了函数的单调性,最值问题,考查导数的应用以及转化思想,解答本题的关键是由()()()11111xx x g x x e xe x x+=+--=-',得出当0(0,)x x ∈时,函数()g x 单调递减,当()0x x ∈+∞,时,函数()g x 单调递增,根据000x lnx +=,求出最小值,属于中档题.3.D解析:D 【分析】求得()f x 的导数,可得单调区间和极值,作出()f x 的图象,将方程()()210f x tf x t -+-=因式分解为()()()110f x f x t ⎡⎤⎡⎤---=⎣⎦⎣⎦,则()1f x =或()1f x t =-,从而()1f x t =-有3个实数根,即函数()y f x =与1y t =-有3个交点,数形结合即可得到1t -的取值范围,从而得解; 【详解】解:函数2()x x f x e=的导数为22()x x x f x e -'=,当02x <<时,()0f x '>,()f x 递增;当2x >或0x <时,()0f x '<,()f x 递减, 可得()f x 在0x =处取得极小值0,在2x =处取得极大值241e <, 作出()y f x =的图象如下所示,因为()()210fx tf x t -+-=恰好有4个不相等的实根,所以()()()110f x f x t ⎡⎤⎡⎤---=⎣⎦⎣⎦,解得()1f x =或()1f x t =-,当()1f x =时,有1个实数解,所以()1f x t =-应有3个实数根,即函数()y f x =与1y t =-有3个交点, 所以2401t e <-<,即2411t e <<+ 故选:D 【点睛】本题考查方程的根的个数问题解法,考查数形结合思想方法,以及导数的运用:求单调区间和极值,考查运算能力.4.B解析:B 【分析】通过分离参数变成ln x a x x=-,构造函数()ln x f x xx =-,利用导数求其单调区间和值域,数形结合写出a 的取值范围. 【详解】2lnx ax x -=故ln xa x x=- 则()ln x f x xx=-()2'221ln 1ln 1x x x f x x x---=-= 设()21ln g x x x =--,0x >故()'120g x x x=--< ()21ln g x x x =--在0,上为减函数,10g .故()0,1∈x 时()'0f x >;()1,∈+∞x 时()'0f x <.故()ln x f x xx=-在0,1上为增函数,在1,上为减函数.()()max 11f x f ==-,且0,x →时()f x →-∞;,x →+∞时()f x →-∞y a =与()ln x f x x x=-的图象要有两个交点则a 的取值范围为(),1-∞-. 故选:B 【点睛】方程在某区间上有解的问题,可通过分离参数,构造函数,利用导数求该区间上单调区间和值域,得出参数的取值范围.5.A解析:A 【分析】先判断函数的奇偶性和单调性,再分析得解. 【详解】由题得函数的定义域为R.()22())()(x x x x f x x e e x e e x x f x --=-+=-=-⋅-+,所以函数是偶函数.当0x >时,1()()2xx x x f x e xe xe x e-'=-+++, 因为0x >,所以()0f x '>,所以函数()f x 在(0,)+∞上单调递增,因为函数是偶函数,所以函数()f x 在(,0)-∞上单调递减,在(0,)+∞上单调递增. 如果0,0x y >>,则0x y +>,因为()()()f x f y f x y <<+,所以x y x y <<+,与已知相符; 如果0,0x y <<,则0x y +<,所以x y x y >>+,与已知相符; 如果0,0x y ><,因为()()f x f y <,所以0y x y <+<, 所以()()f y f x y >+,与已知矛盾;如果0,0x y <>,因为()()f x f y <,所以0y x y >+>, 所以()()f y f x y >+,与已知矛盾;当,x y 之中有一个为零时,不妨设0y =,()()f x y f x += ,()()()f x f y f x <<,显然不成立.故选:A 【点睛】方法点睛:对于函数的问题,要灵活利用函数的奇偶性和单调性分析函数的问题,利用函数的图象和性质分析函数的问题.6.A解析:A 【分析】先求导数,利用单调性转化为()()2120xg x x e ax '=+-≥,构造新函数()()21x xf x x e +=求解()f x 的最小值即可. 【详解】()()212x g x x e ax '=+-,由题意可知()()2120x g x x e ax '=+-≥在()0,∞+恒成立,即()212x x e a x+≥恒成立,设()()21x xf x x e +=,()()()()22221211x x x x e x x e x x f x +--+='=10,2x ⎛⎫∈ ⎪⎝⎭时,()0f x '<,()f x 为减函数; 1,2x ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '>,()f x 为增函数; ()f x的最小值为12f ⎛⎫= ⎪⎝⎭,所以a ≤故选:A. 【点睛】利用函数单调性求解参数时,通常转化为恒成立问题求解:(1)()f x 在区间D 上单调递增等价于()0f x '≥在区间D 上恒成立; (2)()f x 在区间D 上单调递减等价于()0f x '≤在区间D 上恒成立.7.B解析:B 【分析】利用体积相等可得出216r h ,再将圆柱表面积表示出来将216h r =代入求导即可得最值.【详解】由题意可得圆柱和圆锥的体积相等,底面半径为4,高为3的圆锥为2143163ππ⨯⨯⨯=, 底面半径为r ,高为h 的圆柱2r h π, 所以216r h ππ=,可得216r h ,即216h r =圆柱的表面积为:2222163222222S r rh r rr r rππππππ=+=+=+, 322324324r S r r rππππ-'=-=, 令324320r S r ππ-'=>可得2r >,令324320r S rππ-'=<可得02r <<, 所以2r 时,表面积最小为23222242S πππ=⨯+=, 故选:B 【点睛】关键点点睛:本题解题的关键是利用体积相等得出h 和r 的关系,再将圆柱表面积用r 表示利用导数求最值.8.A解析:A 【分析】对()f x 进行求导得3()3f x x x m '=-+,构造新函数3()3,h x x x m x R =-+∈,利用导数研究函数()h x 的单调性,结合题意,可知函数()f x 有极大值,则()()1010h h ⎧->⎪⎨<⎪⎩,求解不等式且结合m ,n 为正整数,即可得出结果.【详解】 由题可知,4213()42f x x x mx n =-++()x R ∈, 则3()3f x x x m '=-+,设3()3,h x x x m x R =-+∈,则2()33h x x '=-,令2()330h x x '=-=,解得:121,1x x =-=,则当1x <-或1x >时,()0h x '>;当11x -<<时,()0h x '<,所以()h x 在区间()(),1,1,-∞-+∞上单调递增;在区间()1,1-上单调递减, 又因为函数()f x 有极大值,则()()1010h h ⎧->⎪⎨<⎪⎩,即()()120120h m h m ⎧-=+>⎪⎨=-<⎪⎩,解得:22m -<<,而m ,n 为正整数,所以m 的值为1. 故选:A. 【点睛】关键点点睛:本题考查利用导数研究函数的单调性和极值,从而求参数值,构造新函数且利用导数求出单调区间是解题的关键,考查转化思想和运用能力.9.B解析:B 【分析】首先代入函数,变形为1221ln1x kx x x >-,再通过换元设12x t x =(1t >),则ln 1k t t >-,利用参变分离转化为(1)ln k t t <-,设()()1ln g t t t =-(1t >),转化为求函数()g t 的最小值. 【详解】 设12x x >,因为()()()()2221212122f x f x x x k x x x -->+⎡⎤⎣⎦,变形为()()()()121212212ln ln x x x x x x kx x x -+->+,即12212lnx kx x x x >-, 等价于1221ln1x k x x x >-,因为120x x >>,令12x t x =(1t >),则ln 1k t t >-,即(1)ln k t t <-. 设()()1ln g t t t =-(1t >),则min ()k g t <.当1t >时1()ln 10g t t t'=+->恒成立,故()g t 在()1,+∞上单调递增,()(1)0g t g >=. 所以0k ≤,k 的最大值为0. 故选:B . 【点睛】关键点点睛:本题的关键是将条件变形为12212lnx kx x x x >-,并进一步变形为1221ln1x k x x x >-,再通过换元,参变分离后转化为求函数的最值.10.A解析:A【分析】设()()2xxF x e f x e =-,求导并利用()()2f x f x '+<可得()F x 在R 上单调递减,根据(2)(3)F F >可得结果.【详解】设()()2x xF x e f x e =-,则[]()()()2()()2x x x xF x e f x e f x e ef x f x '''=+-=+-,因为()()2f x f x '+<,所以()()()20F x e f x f x ''⎡⎤=+-<⎣⎦,所以()F x 在R 上单调递减,则(2)(3)F F >,即2233(2)2(3)2e f e e f e ->-,故(3)2(2)2ef f e +<+. 故选:A. 【点睛】本题考查了构造函数解决导数问题,考查了利用导数研究函数的单调性,利用单调性比较大小,属于中档题.11.A解析:A 【分析】由x a >时,()21f x x =--递减,且无最大值,可得x a 时,()f x 取得最大值M ,且21M a --,求出x a 时,()f x 的导数和单调区间、极大值,讨论2a <-,判断单调性,可得最大值,解不等式判断无解,则2a -,求出最大值,解不等式即可得到所求a 的范围. 【详解】解:由x a >时,()21f x x =--递减,可得()21f x a <--,无最大值,函数(1),()21,x x e x a f x x x a⎧-+=⎨-->⎩有最大值,可得x a 时,()f x 取得最大值M ,且21M a --,由()(1)xf x x e =-+的导数为()(2)xf x x e '=-+,可得2x >-时,()0f x '<,()f x 递减;2x <-时,()0f x '>,()f x 递增. 即有()f x 在2x =-处取得极大值,且为最大值2e -.若2a <-,则()f x 在(-∞,]a 递增,可得()()f x f a (1)aa e =-+,由题意可得(1)21a a e a -+≥--,即得(1)210aa e a +--≤, 令(1))1(2aa e g a a +--=,则()(2)20ag a a e '=+-<,(2)a <-, 则()g a 在(),2-∞-递减,可得2(2)0()3g a g e->-=-+>,则不等式(1)210aa e a +--≤无实数解.故2a -,此时在2x =-处()f x 取得最大值,为2e --,故221e a ----,解得21122a e --, 综上可得,a 的范围是211[22e--,)+∞. 故选:A. 【点睛】本题考查了分段函数的最值问题,考查转化思想,以及分类讨论思想方法,注意运用导数,求出单调区间和极值、最值,考查化简整理的运算能力,属于中档题.12.B解析:B 【分析】求导()()1xf x x m e '=++,将问题转化为()()1xf x x m e '=++有两个不同的零点,也即是关于x 的方程1x xm e --=有两个不同的解,构造函数()xx g x e=,求导()1x xg x e-'=,分析导函数取得正负的区间,从而得函数()g x 的单调性和最值,从而可得选项.【详解】函数()f x 的定义域为R ,()()'1x fx x m e =++,因为函数()f x 有两个极值点,所以()()1xf x x m e '=++有两个不同的零点, 故关于x 的方程1xxm e --=有两个不同的解, 令()x x g x e =,则()1xxg x e-'=,当(,1)x ∈-∞时, ()0g x '>,当(1,+)x ∈∞时,()0g x '<,所以函数()g x 在区间(,1)-∞上单调递增,在区间(1,+∞)上单调递减, 又当x →-∞时,()g x →-∞;当x →+∞时,()0g x →, 且0,()0x g x >>()11g e=,故101m e <--<,即111m e --<<-. 故选:B. 【点睛】本题考查运用导函数研究函数的单调性、最值、极值,关键在于构造合适的函数,参变分离的方法的运用,属于中档题.二、填空题13.①③【分析】根据直线在点处切过曲线的定义对5个函数逐个判断可得答案【详解】对于①由得所以则直线:是曲线:在点处的的切线又当时当时满足曲线在附近位于直线的两侧故直线:在点处切过曲线:故①正确;对于②由解析:①③ 【分析】根据直线l 在点P 处“切过”曲线C 的定义,对5个函数逐个判断可得答案. 【详解】对于①,由3y x =,得23y x '=,所以0|0x y ='=,则直线l :0y =是曲线C :3y x =在点()0,0P 处的的切线,又当0x >时,0y >,当0x <时,0y <,满足曲线C 在P 附近位于直线l 的两侧,故直线l :0y =在点()0,0P 处“切过”曲线C :3y x =,故①正确;对于②,由()21y x =+,得2(1)y x '=+,所以1|0x y =-'=,而直线l :1x =-的斜率不存在,在点()1,0P -处与曲线C :()21y x =+不相切,故②不正确;对于③,由sin y x =,得cos y x '=,所以0|1x y ='=,则直线l :y x =是曲线C :sin y x =在点()0,0P 处的切线,令sin y x x =-,则1cos y x '=-,当02x π-<<时,0y '>,函数sin y x x =-递增,所以当02x π-<<时,0sin 0y x <-=,当02x π<<时,0y '>,函数sin y x x =-递增,所以当02x π<<时,0sin 00y >-=,所以当02x π-<<时,sin x x <,当02x π<<时,sin x x >,所以曲线C 在P 附近位于直线l 的两侧,故直线l :y x =在点()0,0P 处“切过”曲线C :sin y x =,故③正确;对于④,由x y e =,得e xy '=,所以0|1x y ='=,则曲线C :x y e =在点()0,1P 处的切线方程为10y x -=-,即1y x =+,令()1xg x e x =--,则()1xg x e '=-,当0x >时,()0g x '>,函数()g x 递增,当0x <时,()0g x '<,函数()g x 递减,则当0x =时,函数()g x 取得极小值,同时也是最小值(0)0g =,则()0g x ≥,即1x e x ≥+,则曲线C :xy e =不在切线l :1y x =+的两侧,故④不正确;对于⑤,由ln y x =,得1y x'=,所以|11y x '==,所以曲线C :ln y x =在点()1,0P 处的切线方程为01y x -=-,即1y x =-,令()1ln g x x x =--,则1()1g x x'=-,当01x <<时,()0g x '<,当1x >时,()0g x '>,所以函数()g x 在(0,1)上递减,在(1,)+∞上递增,所以当1x =时,函数()g x 取得极小值,也是最小值,所以()(1)0g x g ≥=,所以曲线C :ln y x =不在切线l :1y x =-的两侧,故⑤不正确.故答案为:①③ 【点睛】关键点点睛:对直线l 在点P 处“切过”曲线C 的定义正确理解是解题关键.14.【分析】根据函数在上单调递减由恒成立求解【详解】因为函数在上单调递减所以恒成立;令在上单调递增所以实数的取值范围为故答案为:【点睛】方法点睛:恒成立问题的解法:(1)若在区间D 上有最值则;;(2)若解析:)336,e ⎡++∞⎣【分析】根据函数()231xf x e x mx =+-+在(],3-∞上单调递减,由()0f x '≤,(],3x ∈-∞恒成立求解. 【详解】()320x f x e x m '=+-≤,因为函数()231xf x e x mx =+-+在(],3-∞上单调递减,所以32x e x m +≤,(],3x ∈-∞恒成立;令32xy e x =+在(],3-∞上单调递增,3max 36y e =+,所以实数m 的取值范围为)336,e ⎡++∞⎣. 故答案为:)336,e ⎡++∞⎣ 【点睛】方法点睛:恒成立问题的解法:(1)若()f x 在区间D 上有最值,则()()min ,00x D f x f x ∀∈>⇔>;()()max ,00x D f x f x ∀∈<⇔<;(2)若能分离常数,即将问题转化为:()a f x >(或()a f x <),则()()max a f x a f x >⇔>;()()min a f x a f x <⇔<.15.【分析】利用导数分析函数在区间上的单调性根据该函数在区间上有且只有一个零点求得参数的值进而利用导数可求得函数在区间上的最小值【详解】则①当时对任意的恒成立此时函数在区间上单调递增且不合乎题意;②当时 解析:4-【分析】利用导数分析函数()y f x =在区间(),0-∞上的单调性,根据该函数在区间(),0-∞上有且只有一个零点求得参数a 的值,进而利用导数可求得函数()y f x =在区间[]1,2-上的最小值. 【详解】()32f x x ax =--,则()23f x x a '=-.①当0a ≤时,对任意的(),0x ∈-∞,()0f x '>恒成立,此时,函数()y f x =在区间(),0-∞上单调递增,且()()020f x f <=-<,不合乎题意;②当0a >时,令()230f x x a '=-=,可得x =x =当x <()0f x '>,此时函数()y f x =单调递增;当0x <<时,()0f x '<,此时函数()y f x =单调递减.所以,()max20f x f ⎛=== ⎝,解得3a =,()332f x x x ∴=--. ()()()233311f x x x x '=-=-+,当11x -<<时,()0f x '<,此时函数()y f x =单调递减; 当12x <<时,()0f x '>,此时函数()y f x =单调递增.因此,函数()y f x =在1x =处取得极小值,亦即最小值,故()()min 14f x f ==-. 故答案为:4-. 【点睛】本题考查利用导数求解函数在区间上的最值,同时也考查了利用导数研究函数的零点,考查计算能力,属于中等题.16.【分析】利用导数求得在区间上的单调性和最值对分成三种情况进行分类讨论由此求得的取值范围【详解】当时所以在区间上递减最大值为最小值为当时在区间上没有零点在区间上递增而所以在区间上没有零点所以不符合题意解析:1(0,)2【分析】利用导数求得()f x 在区间[]0,1上的单调性和最值,对m 分成0,0,0m m m <=>三种情况进行分类讨论,由此求得m 的取值范围. 【详解】当01x ≤≤时,()()'26661fx x x x x =-=-,所以()f x 在区间[]0,1上递减,最大值为()0f m =,最小值为()11f m =-.当0m <时,()f x 在区间[]0,1上没有零点,在区间()1,+∞上递增, 而2110m -⨯+>,所以()f x 在区间()1,+∞上没有零点.所以0m <不符合题意.当0m =时,3223,01()1,1x x x f x x ⎧-≤≤=⎨>⎩,所以()f x 在区间[)0,+∞上有唯一零点()00f =,所以0m =不符合题意.当0m >时,()f x 在区间[]0,1和区间()1,+∞上递减,要使()f x 的图象与x 轴有且只有两个不同的交点,则需0102110m m m >⎧⎪-≤⎨⎪-⨯+>⎩,解得102m <<.综上所述,m 的取值范围是10,2⎛⎫ ⎪⎝⎭. 故答案为:1(0,)2【点睛】本小题主要考查利用导数研究函数的零点,考查分类讨论的数学思想方法,属于中档题.17.【分析】设正项等比数列的公比为由等比数列前n 项和公式结合等差数列的性质可得由等比数列的性质可得进而可得令结合导数即可得的最大值即可得解【详解】设正项等比数列的公比为因为成等差数列当时不合题意;当时即解析:3-【分析】设正项等比数列{}n a 的公比为q ,由等比数列前n 项和公式结合等差数列的性质可得()12311qa q -=-,由等比数列的性质可得932663S S S S q -=,进而可得()393233611q q S S S q --=+,令30t q =>,()()11t tt t f -=+,结合导数即可得()f t 的最大值,即可得解.【详解】设正项等比数列{}n a 的公比为q ,0q >, 因为361,,S S 成等差数列,当1q =时,362S S =,不合题意; 当1q ≠时,3621S S =+即()()3611112111a q a q qq=----+⋅,化简得()12311qaq -=-,又()33465139698qS S a a a q a a a S =++⋅⋅⋅+=++⋅⋅⋅+=-,所以()()()()()3932236666612333333611111111q q S S S q q S S S q q q q q a qq q q---=====-+-⋅---, 设30t q =>,()()11t tt t f -=+,则()()()()()()22221212111t t t t t t f t t t -+----+'==++, 令()0f t '=可得110t =<,210t =>, 所以()f t在()1上单调递增,在)1,+∞上单调递减,所以())max1213f t f ⎡⎤===-⎣⎦所以9326S S S -的最大值为3-.故答案为:3-. 【点睛】本题考查了等比数列、等差数列的综合应用,考查了换元法及利用导数求函数最值的应用,属于中档题.18.【分析】根据求导函数根据在上单调性求解【详解】因为函数所以所以在上单调递增所以函数在上的最大值为故答案为:【点睛】本题主要考查导数法求函数的最值还考查了运算求解的能力属于中档题解析:212e +【分析】 根据21()ln 2f x x x =+,求导函数,根据()f x 在[1,]e 上单调性求解. 【详解】 因为函数21()ln 2f x x x =+, 所以1()0f x x x'=+>, 所以()f x 在[1,]e 上单调递增,所以函数()f x 在[1,]e 上的最大值为2()()12e f x f e ==+.故答案为:212e +【点睛】本题主要考查导数法求函数的最值,还考查了运算求解的能力,属于中档题.19.【分析】待定系数法:设利用图象上点坐标代入与联立求解可得【详解】设由题知:由图象知解得故答案为:【点睛】求函数解析式的四种方法:配凑法换元法待定系数法解方程组法解题时根据具体条件对应方法求解析式 解析:32()232f x x x【分析】待定系数法:设32()f x ax bx cx d =+++,利用图象上点坐标代入,与(0)(1)=0f f ''=联立求解可得. 【详解】设32()f x ax bx cx d =+++,2()32f x ax bx c '=++由题知:(0)2(1)1f f ,== ,由图象知(0)(1)=0f f ''=2++103+20d a b c d c a b c =⎧⎪+=⎪∴⎨=⎪⎪+=⎩ 解得2302a b c d =⎧⎪=-⎪⎨=⎪⎪=⎩32()232f x x x故答案为:32()232f x x x【点睛】求函数解析式的四种方法:配凑法、换元法、待定系数法、解方程组法,解题时根据具体条件对应方法求解析式.20.【分析】由条件转化为换元令由导数确定函数的值域即可求解【详解】设且设那么恒成立所以是单调递减函数当时当时函数单调递增当函数单调递减所以在时取得最大值即解得:故答案为:【点睛】本题主要考查了利用导数研 解析:(),0-∞【分析】由条件转化为11ln y y m x x ⎛⎫=-⋅ ⎪⎝⎭,换元0yt x=>,令()()1ln g t t t =-,由导数确定函数的值域即可求解. 【详解】()()ln ln x m x y y x =--,()()ln ln 11ln x y y x y y m x x x--⎛⎫==-⋅ ⎪⎝⎭ 设0yt x=>且1t ≠, 设()()1ln g t t t =-,那么()()11ln 1ln 1g t t t t t t'=-+-⋅=-+-,()221110t g t t t t+''=--=-<恒成立,所以()g t '是单调递减函数,当1t =时,()10g '=,当()0,1t ∈时,()0g t '>,函数单调递增, 当()1,t ∈+∞,()0g t '<,函数单调递减, 所以()g t 在1t =时,取得最大值,()10g =,即10m<, 解得:0m <, 故答案为:(),0-∞ 【点睛】本题主要考查了利用导数研究函数的单调性、最值,考查了变形运算能力,属于中档题.三、解答题21.(1)11()f e e=-;(2)2a ≥- 【分析】(1)对函数求导,令'()ln 1=0=+f x x ,讨论函数的单调性即可求出结果.(2)由()g x 在区间[1,)+∞单调递增,可得'()0≥g x 在[1,)+∞恒成立,分离参数可得:1ln (1)+≥-+x a x ,构造函数即可求出结果. 【详解】(1)()ln 1,'()ln 1=+=+f x x x f x x 令'()ln 1=0=+f x x ,解得1=x e当x 变化时,(),()f x f x '的变化情况如下:所以min ()()f x f ee ==-(2)1'()ln 1=+++g x x a x, ()g x 在区间[1,)+∞单调递增,所以'()0≥g x 在[1,)+∞恒成立,即1ln (1)+≥-+x a x在[1,)+∞恒成立 设221111()ln ,'()0-=+∴=-=>x h x x h x x x x x1()ln ∴=+h x x x[1,)+∞单调递增,min ()=(1)=1h x h 只需1(1)≥-+a 即可,解得2a ≥-【点睛】方法点睛:()g x 在区间[1,)+∞单调递增'()0⇔≥g x 在[1,)+∞恒成立,分离参数,构造函数是常用方法.本题考查了运算求解能力和逻辑推理能力,属于中档题目..22.(1)1230x y --=;(2)单调递减区间为(,1)-∞-和(3,)+∞,单调递增区间为()1,3-.【分析】(1)求出导函数()'f x ,然后计算导数得斜率,从而得切线方程;(2)由()0f x '>得增区间,()0f x '<得减区间. 【详解】解:(1)∵32()392f x x x x =-++-,∴2()369f x x x '=-++, ∴()112f '=. 又∵()19f =,∴函数()y f x =的图象在点()()1,1f 处的切线方程为912(1)y x -=-, 即1230x y --=.(2)由(1),得2()3693(1)(3)f x x x x x '=-++=-+-,令()0f x '=,解得1x =-或3x =; 当()0f x '<时,1x <-或3x >; 当()0f x '>时,13x.∴()f x 的单调递减区间为(,1)-∞-和(3,)+∞,单调递增区间为()1,3-. 【点睛】关键点点睛:本题考查导数的几何意义,考查求函数的单调区间.解题方法是求出导函数()'f x ,计算0()f x '得切线斜率,由点斜式写出切线方程并整理成一般式.而求单调区间只要解不等式()0f x '>即得增区间,解不等式()0f x '<即得减区间. 23.(1)()110e x y ---=;(2)01a ≤≤. 【分析】(1)设切点坐标,求出导数及切线方程,把()0,1-代入切线方程可得0x ,然后再求出切线方程;(2)求出导函数,对a 进行讨论并判断函数的单调性,利用函数的最小值可得答案.【详解】(1)当1a =时,点()0,1-不在函数图象上,()1xf x e '=-, 设切点为()000, x x e ax a --,则切线方程为()()()0000xy e ax a f x x x '---=-, 因为过点()0,1-,所以0000()111x x e x e x --++=--, 解得01x =,因此所求的直线方程为()110e x y ---=.(2)()xf x e a '=-, 当0a ≤时,()'0f x >,所以在R 上单调递增,其中0a =,()0xf x e =>,符合题意, 当0a <时,取110a x a-=<,()1110x f x e =-<,不符合题意; 当0a >时,()()n 0,,l x a f x '∈-∞<,所以()f x 在(),ln a -∞上单调递减,()()ln ,,0x a f x '∈+∞>,所以()f x 在()ln ,a +∞上单调递增,所以()()ln f x f a ≥,要使()0f x ≥,只需()ln 0f a ≥,()ln ln ln 0a f a e a a a =--≥,解得01a <≤;综上所述,01a ≤≤.【点睛】本题考查求函数过一点的切线方程和求参数问题,对于求切线的问题时需要讨论此点是否是切点;对于求参数问题,有时可采用对原函数进行求导讨论其单调性和最值方法求解,也可以采用对参数实行分离的方法,构造新函数并求新函数的值域可得解.24.(1)极大值为1;(2)答案见解析.【分析】(1)利用导数分析函数()f x 的单调性,由此可求得函数()f x 的极大值;(2)求得()233f x x a '=-,分0a ≤、0a >两种情况讨论,分析导数的符号变化,由此可得出函数()f x 的单调区间.【详解】(1)当1a =时,()331f x x x =--,该函数的定义域为R ,且233f x x , 令()0f x '>,得1x <-或1x >;令()0f x '<,得11x -<<,()f x ∴在(),1-∞-,()1,+∞上递增,在()1,1-上递减,故()f x 的极大值为()11f -=;(2)()()22333f x x a x a '=-=-. ①当0a ≤时,()0f x '≥在R 上恒成立,()f x ∴在R 上单调递增;②当0a >时,令()0f x '>,得x <x >令()0f x '<,得x <所以,函数()f x 在(,-∞,)+∞上单调递增,在(上单调递减. 【点睛】 方法点睛:利用导数求解函数单调区间的基本步骤:(1)求函数()f x 的定义域;(2)求导数()f x ';(3)解不等式()0f x '>,并与定义域取交集得到的区间为函数()f x 的单调增区间;解不等式()0f x '<,并与定义域取交集得到的区间为函数()f x 的单调减区间.25.(1)220x y --=;(2)2(2,1]e -.【分析】(1)求出()'f x ,计算(1)f '得切线斜率,从而得切线议程;(2)对()g x 求导,确定()g x 的单调性,极值,得()g x 的变化趋势,从而可得结论.【详解】(1)由已知2211()2ln 212ln 1f x x x x x'=+-+=++, 所以(1)2f '=,又(1)0f =,所以切线议程为2(1)y x =-,即220x y --=;(2)由(1)21()2ln 1g x x x=++,定义域为(0,)+∞,33222(1)(1)()x x g x x x x -+'=-=, 所以在(0,1)x ∈时,()0g x '<,()g x 递减,(1,)x ∈+∞时,()0g x '>,()g x 递增, 所以1x =时,()g x 取得极小值也是最小值(1)2g =,211g e e ⎛⎫=- ⎪⎝⎭,x →+∞时,()g x →+∞, 所以方程()g x a =在1,e ⎡⎫+∞⎪⎢⎣⎭上有且仅有两个实根,则实数a 的取值范围是2(2,1]e -.【点睛】方法点睛:本题考查导数的几何意义,考查用导数研究方程根的分布.根据方程根的个数求参数范围问题,一般方法是数形结合思想,把问题转化为函数图象与直线的交点问题,可利用导数研究出函数的性质,如单调性,极值,确定函数的变化趋势,然后利用函数的图象得出参数范围.26.(1)单调递增区间为(4,)+∞;单调递减区间为(0,4);(2)min 2ln 22,11()2ln(2)2,1211,2a a f x a a a a a ⎧⎪+≤-⎪⎪=---<<-⎨⎪⎪≥-⎪⎩. 【分析】 (1)当1a =-时,()f x '=,进而得4x >时,()0f x '>, 04x <<时,()0f x '<,进而得函数的单调区间;(2)()f x '=,故分1a ≤-,112a -<<-,12a ≥-三种情况讨论即可得答案. 【详解】解:(1)()f x 的定义域为(0,)+∞,当1a =-时,12()2f x x x-'=-= 当4x >时,()0f x '>,则()f x 的单调递增区间为(4,)+∞;当04x <<时,()0f x '<,则()f x 的单调递减区间为(0,4).(2)()a f x x '== 当1a ≤-时,()0,()f x f x '≤在[1,4]上单调递减,此时,()min (4)2ln 22f x f a ==+ 当12a ≥-时,()0,()f x f x '≥在[1,4]上单调递增, 此时,()min (1)1f x f == 当112a -<<-时,若214x a <<,则()0,()f x f x '<单调递减; 若244a x <<,则()0,()f x f x '>单调递增此时,()()22min ()4ln 42ln(2)2f x f a a a a a a ==+=--.综上所述:min 2ln 22,11()2ln(2)2,1211,2a a f x a a a a a ⎧⎪+≤-⎪⎪=---<<-⎨⎪⎪≥-⎪⎩【点睛】本题考查利用导数求解函数的最小值问题,考查分类讨论思想和运算求解能力,其中第二问解题的关键在于求导得2()2a f x x '=,进而分1a ≤-,112a -<<-,12a ≥-三种情况讨论求解,是中档题.。
(常考题)北师大版高中数学选修1-1第四章《导数应用》检测(含答案解析)(4)
一、选择题1.定义在R 上的偶函数()f x 的导函数为(),f x '若对任意的0x >的实数,都有:()()22f x xf x '+<恒成立,则使()()2211x f x f x -<-成立的实数x 的取值范围为( )A .{}1xx ≠±∣ B .(-1,1) C .()(),11,-∞-+∞ D .(-1,0)()0,1⋃2.已知函数32()22sin 524x f x x x π⎛⎫=++++⎪⎝⎭,且()22(34)12f t t f t -+-+<,则实数t 的取值范围是( )A .(1,4)B .(,1)(4,)-∞⋃+∞C .(4,1)-D .(,4)(1,)-∞-+∞3.定义在[0,)+∞的函数()f x ,对任意0x ≥,恒有()()f x f x '>,(1)f a e=,2(2)f b e=,则a 与b 的大小关系为( ) A .a b >B .a b <C .a b =D .无法确定 4.已知函数21()ln 2f x x x a =--,若0x ∃>,()0f x ≥,则a 的取值范围是( ) A .1,2⎛⎤-∞- ⎥⎝⎦ B .1,2⎛⎤-∞ ⎥⎝⎦ C .(],1-∞ D .(],e -∞ 5.已知α,β∈R ,则“0αβ+<”是“sin sin αβαβ+<+”的( )A .充分不必要条件B .必要不充分条件C .既不充分也不必要条件D .充分必要条件6.已知()f x 是可导函数,且()()ln f x x x f x '<⋅对于0x ∀>恒成立,则( ) A .()()()283462f f f <<B .()()()623428f f f <<C .()()()346229f f f <<D .()()()286234f f f << 7.已知函数()23ln f x x ax x =-+在其定义域内为增函数,则a 的最大值为( )A .4B .C .D .68.函数3()1218f x x x =-+在区间[]3,3-上的最大值为( )A .34B .16C .24D .17 9.已知曲线1C :()x f x xe =在0x =处的切线与曲线2C :()()ln a x g x a x=∈R 在1x =处的切线平行,令()()()h x f x g x =,则()h x 在()0,∞+上( )A .有唯一零点B .有两个零点C .没有零点D .不确定 10.已知函数()f x 的导函数是'()f x ,'()f x 的图象如图所示,下列说法正确的是( )A .函数()f x 在(2,1)--上单调递减B .函数()f x 在3x =处取得极大值C .函数()f x 在(1,1)-上单调递减D .函数()f x 共有4个极值点11.设函数()x f x e x =-,直线y ax b =+是曲线()y f x =的切线,则+a b 的最大值是( )A .11e -B .1C .1e -D .22e - 12.设函数()f x 的定义域为R ,其导函数是()f x ',若()()()20,01'+<=f x f x f ,则不等式()2x f x e->的解集是( ) A .()0,1 B .()1,+∞ C .()0,∞+ D .(),0-∞二、填空题13.已知函数()32133f x x x =++在区间(),3+m m 上存在极大值与极小值,则实数m 的取值范围是_________. 14.已知函数()()1ln 1x f x x x+=>,若对任意两个不同的1x ,2x ,都有()()1212ln ln f x f x k x x -≤-成立,则实数k 的取值范围是________________ 15.已知1a >,若对于任意的1[,)3x ∈+∞,不等式()4ln 3e ln x x x a a -≤-恒成立,则a 的最小值为______.16.已知函数()3x f x e-=,()1ln 22x g x =+,若()()f m g n =成立,则n m -的最小值为______.17.若函数()()32f x x ax a R =--∈在(),0-∞内有且只有一个零点,则()f x 在[]1,2-上的最小值为______.18.已知函数()f x 是定义在区间()0,∞+)上的可导函数,若对()0,x ∀∈+∞()()20xf x f x '+>恒成立,则不等式()()()202020202019201920192020x f x f x ++<+的解集为______. 19.已知函数()(ln )f x x x ax =-有且仅有一个极值点,则实数a 的取值范围是_____. 20.已知函数()x f x e x =-,()22g x x mx =-,若对任意1x ∈R ,存在[]21,2x ∈,满足()()12f x g x ≥,则实数m 的取值范围为______.三、解答题21.已知()21ln f x ax x =-- (1)当2a =时,求()f x 的单调增区间;(2)若()0f x ≥,求实数a 的取值范围.22.已知函数21()ln 2x f x x x -=-. (1)求()f x 的单调区间;(2)设()*ln 1,1,2,k k a n k n n ⎫⎛=+∈=⋅⋅⋅ ⎪⎝⎭N ,在(1)的条件下,求证:123214n n a a a a ++++⋅⋅⋅+<()*n ∈N . 23.已知()()2log 1f x x =+.(1)若()()0121f x f x <--<,求x 的取值范围;(2)若关于x 的方程()40xf x m -+=有解,求实数m 的取值范围. 24.某偏远贫困村积极响应国家“扶贫攻坚”政策,在对口帮扶单位的支持下建了一个工厂,已知每件产品的成本为a 元,预计当每件产品的售价为x 元()38x ≤≤时,年销量为()29x -万件.若每件产品的售价定为6元时,预计年利润为27万元(1)试求每件产品的成本a 的值;(2)当每件产品的售价定为多少元时?年利润y (万元)最大,并求最大值.25.设函数1()ln ,f x a x a x=+∈R . (Ⅰ)设l 是()y f x =图象的一条切线,求证:当0a =时,l 与坐标轴围成的三角形的面积与切点无关;(Ⅱ)若函数()()g x f x x =-在定义域上单调递减,求a 的取值范围.26.已知函数()()ln 2xf x e x =-+. (1)求()f x 在()()0,0f 处的切线方程;(2)求证:()0f x >.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据已知构造合适的函数,对函数求导,根据函数的单调性,求出函数的取值范围,并根据偶函数的性质的对称性,求出0x <的取值范围.【详解】当0x >时,由2()()20f x xf x +'-<可知:两边同乘以x 得:22()()20xf x x f x x +'-<设:22()()g x x f x x =-则2()2()()20g x xf x x f x x '=+'-<,恒成立:()g x ∴在(0,)+∞单调递减,由()()21x f x f -21x <-()()2211x f x x f ∴-<-即()()1g x g <即1x >;当0x <时,函数是偶函数,同理得:1x <-综上可知:实数x 的取值范围为(-∞,1)(1-⋃,)+∞,故选:C【点睛】关键点点睛:主要根据已知构造合适的函数,函数求导,并应用导数法判断函数的单调性,偶函数的性质,属于中档题.2.A解析:A【分析】先利用二倍角公式和诱导公式化简函数,构造()()6g x f x =-为R 上单调递增的奇函数,再转化不等式为()22(34)g t t g t -<-,利用单调性解不等式即得结果.【详解】 解:33()26cos 2sin 62f x x x x x x x π⎛⎫=++-+=+++⎪⎝⎭ 令3()()62sin g x f x x x x =-=++,则2()32cos 0g x x x '=++>,()()g x g x -=-,故()g x 在R 上单调递增,且()g x 为奇函数.不等式()22(34)12f t t f t -+-+<,即()226(34)60f t t f t --+-+-<,即()22(34)0g t t g t -+-+<,则()22(34)g t t g t -<-故2234t t t -<-,即2540t t -+<,所以14t <<.故选:A.【点睛】方法点睛:利用函数奇偶性和单调性解不等式问题:(1)()f x 是奇函数,图像关于原点中心对称,利用奇函数性质将不等式()()12f g x f g x ⎡⎤⎡⎤<⎣⎦⎣⎦形式,再利用单调性得到()1g x 和()2g x 的大小关系,再解不等式即可;(2)()f x 是偶函数,图像关于y 轴对称,利用偶函数性质将不等式()()12f g x f g x ⎡⎤⎡⎤<⎣⎦⎣⎦形式,再利用单调性得到()1g x 和()2g x 的大小关系,再解不等式即可.3.A解析:A【分析】 构造函数()()x f x g x e =,对其求导得''()()()x f x f x g x e-=,由()()f x f x '>,可得'()0g x <,从而可得()g x 在[0,)+∞上单调递减,进而可比较出a 与b 的大小【详解】 解:令()()x f x g x e =,则''()()()xf x f xg x e -=, 因为()()f x f x '>,所以'()0g x <,所以()g x 在[0,)+∞上单调递减,因为12<,所以(1)(2)g g >,即2(1)(2)f f e e>,所以a b >, 故选:A【点睛】 关键点点睛:此题考查导数的应用,考查数学转化思想,解题的关键是构造函数()()x f x g x e=,然后求导后可判断出()g x 在[0,)+∞上单调递减,从而可比较出a 与b 的大小,属于中档题 4.A解析:A【分析】由()f x 得21ln 2a x x ≤-,设21()ln 2g x x x =-,利用导数求()g x 的最大值可得答案.【详解】 由21()ln 2f x x x a =--,得21ln 2a x x ≤-.设21()ln 2g x x x =-,则211()x g x x x x-'=-=.令()0g x '>,得01x <<;令()0g x '<,得1x >, 则()g x 在(0,1)上单调递增,在(1,)+∞上单调递减,从而1()(1)2g x g ≤=-, 故12a ≤-. 故选:A.【点睛】 本题考查了能成立求参数的问题,关键点是构造函数利用导数求最值,考查了分析问题、解决问题的能力.5.D解析:D【分析】首先构造函数()sin x x x f -=,利用导数判断函数的单调性,再判断选项.【详解】构造函数()sin x x x f -=,()1cos 0f x x '=-≥恒成立,()f x ∴是单调递增函数,0αβ+<,即αβ<-,()()f f αβ∴<-,即()()sin sin ααββ-<---,即sin sin αβαβ+<+,反过来,若sin sin αβαβ+<+,即()()sin sin ααββ-<---,αβ∴<-,即0αβ+<.故选:D【点睛】关键点点睛:本题的关键是通过条件观察后构造函数()sin x x x f -=,通过判断函数的单调性,比较大小.6.B解析:B【分析】构造函数()()ln f x g x x=,利用导数判断出函数()y g x =在区间()1,+∞上为增函数,可得出()()()248g g g <<,进而可得出结论.【详解】令()()ln f x g x x=,则()()()()2ln ln xf x x f x g x x x '-'=. 当1x >时,由()()ln f x x x f x '<⋅得()0g x '>,所以函数()()ln f x g x x=在()1,+∞上是增函数, 于是()()()248g g g <<,即()()()248ln 2ln 4ln 8f f f <<,即()()()248ln 22ln 23ln 2f f f <<. 化简得,()()()623428f f f <<,故选:B.7.B解析:B【分析】求导,则由题意导函数在0,上恒大于等于0,分参求a 范围. 【详解】由题意可得()160f x x a x '=-+≥对()0,x ∈+∞恒成立,即16a x x ≤+,对()0,x ∈+∞恒成立因为16x x +≥16x x =即x =时取最小值所以a ≤故选:B【点睛】(1)利用导数研究函数的单调性的关键在于准确判定导数的符号.关键是分离参数k ,把所求问题转化为求函数的最小值问题.(2)若可导函数f (x )在指定的区间D 上单调递增(减),求参数范围问题,可转化为f ′(x )≥0(或f ′(x )≤0)恒成立问题,从而构建不等式,要注意“=”是否可以取到.8.A解析:A【分析】对函数求导,求出函数()y f x =的极值点,分析函数的单调性,再将极值与端点函数值比较大小,找出其中最大的作为函数()y f x =的最大值.【详解】()31218f x x x =-+,则()2312f x x '=-,令'0f x,解得2x =±,列表如下:所以,函数y f x =的极大值为234f -=,极小值为22f =,又()327f -=,()39f =,因此,函数()y f x =在区间[]3,3-上的最大值为34, 故选:A .【点睛】方法点睛:本题考查利用导数求函数在定区间上的最值,解题时严格按照导数求最值的基本步骤进行,考查计算能力,属于中等题.9.A解析:A【分析】先对函数()x f x xe =和()ln a x g x x=求导,根据两曲线在1x =处的切线平行,由导数的几何意义求出a ,得到函数()()()ln x h x f x g x e x ==,对其求导,利用导数的方法判定单调性,确定其在()0,∞+上的最值,即可确定函数零点个数.【详解】∵()x f x xe =,∴()()1xf x x e '=+, 又()ln a xg x x =,∴()2ln a a x g x x-'=, 由题设知,()()01f g '=',即()02ln1101a a e -+=,∴1a =, 则()()()ln ln xx x h x f x g x xe e x x ==⋅=, ∴()()ln 1ln x x x x x e e h x e x x x+=='+,0x >, 令()ln 1m x x x =+,0x >,则()ln 1m x x '=+,当10,e x ⎛⎫∈ ⎪⎝⎭时,()0m x '<,即函数()ln 1m x x x =+单调递减; 当1,x e ⎛⎫∈+∞ ⎪⎝⎭时,()0m x '>,即函数()ln 1m x x x =+单调递增; ∴在()0,∞+上()m x 的最小值为1110m e e⎛⎫=-> ⎪⎝⎭, ∴()0m x >,则()0h x '>,∴()h x 在()0,∞+上单调递增,且()10h =.()h x 在()0,∞+上有唯一零点,故选:A .【点睛】思路点睛:利用导数的方法判定函数零点个数时,一般需要先对函数求导,利用导数的方法判定函数单调性,确定函数极值和最值,即可确定函数零点个数.(有时也需要利用数形结合的方法进行判断)10.C解析:C【分析】对于选项A ,函数()f x 在(2,1)--上单调递增,故A 错误;对于选项B ,函数()f x 在(1,3)上单调递增,在(3,)+∞上单调递增,所以3x =不是()f x 的极值点,故B 错误;对于选项C ,函数()f x 在(1,1)-上单调递减,故C 正确;对于选项D ,由导函数的图象得函数()f x 共有3个极值点,故D 错误.【详解】对于选项A ,由导函数的图象得函数()f x 在(2,1)--上单调递增,故A 错误; 对于选项B ,由导函数的图象得函数()f x 在(1,3)上单调递增,在(3,)+∞上单调递增,所以3x =不是()f x 的极值点,故B 错误;对于选项C ,由导函数的图象得函数()f x 在(1,1)-上单调递减,故C 正确;对于选项D ,由导函数的图象得函数()f x 共有3个极值点,3,1x x =-=是极小值点,1x =-是极大值点,故D 错误.故选:C.【点睛】结论点睛:(1)函数()f x 的()0f x '>在(,)a b 上恒成立,则函数()f x 在(,)a b 上单调递增;函数()f x 的()0f x '<在(,)a b 上恒成立,则函数()f x 在(,)a b 上单调递减.(2)如果函数()f x 的极值点是0x ,则0x 附近左右两边的导数符号相反.11.C解析:C【分析】先设切点写出曲线的切线方程,得出a 、b 的值,再利用构造函数利用导数求+a b 的最大值即可.【详解】解:由题得()1x f x e '=-,设切点(t ,())f t ,则()t t f t e =-,()1t f t e '=-;则切线方程为:()(1)()t ty e t e x t --=--,即(1)(1)t t y e x e t =-+-,又因为y ax b =+,所以1t a e =-,(1)t b e t =-,则12t t a b e te +=-+-,令()12t t g t e te =-+-,则()(1)t g t t e '=-,则有1t >,()0g t '<;1t <,()0g t '>,即()g t 在(),1-∞上递增,在()1,+∞上递减, 所以1t =时,()g t 取最大值(1)121g e e e =-+-=-,即+a b 的最大值为1e -.故选:C.【点睛】本题考查了利用导数求曲线的切线方程和研究函数的最值,属于中档题.12.D解析:D【分析】构造新函数2()()x g x e f x =,求导后可推出()g x 在R 上单调递减,而2()x f x e ->可等价于20()1(0)x e f x e f >=,即()(0)g x g >,故而得解.【详解】令2()()x g x e f x =,则2()[2()()]x g x e f x f x ''=+,2()()0f x f x +'<,()0g x '∴<,即()g x 在R 上单调递减,(0)1f =,2()x f x e -∴>可等价于20()1(0)x e f x e f >=,即()(0)g x g >,0x ∴<,∴不等式的解集为(,0)-∞.故选:D .【点睛】本题考查利用导数研究函数的单调性、解不等式,构造新函数是解题的关键,考查学生的转化思想、逻辑推理能力和运算能力,属于中档题.二、填空题13.【分析】利用导数求出函数的极大值点和极小值点由题意可得出关于实数的不等式组由此可解得实数的取值范围【详解】则令可得列表如下: 极大值 极小值 所以函数的极大值点为解析:()3,2--【分析】利用导数求出函数()f x 的极大值点和极小值点,由题意可得出关于实数m 的不等式组,由此可解得实数m 的取值范围.【详解】()32133f x x x =++,则()()222f x x x x x '=+=+,令()0f x '=,可得12x =-,20x =,列表如下:所以,函数f x 的极大值点为2x =-,极小值点为0x =, 由于函数()32133f x x x =++在区间(),3+m m 上存在极大值与极小值, 所以,230m m <-⎧⎨+>⎩,解得32m -<<-.因此,实数m 的取值范围是()3,2--. 故答案为:()3,2--. 【点睛】易错点点睛:已知极值点求参数的值,先计算()0f x '=,求得x 的值,再验证极值点.由于导数为0的点不一定是极值点,因此解题时要防止遗漏验证导致错误.14.【分析】先对求导判断其单调性不妨设可对原不等式去绝对值得等价于构造函数可得在单调递增分离得由即可求解【详解】当时所以所以在单调递减不妨设则所以等价于即设则所以在单调递增对于恒成立所以可得对于恒成立设解析:1,e ⎡⎫+∞⎪⎢⎣⎭【分析】先对()f x 求导判断其单调性,不妨设121x x <<,可对原不等式去绝对值得()()1122ln ln f x k x f x k x +≤+,等价于()()1122ln ln f x k x f x k x +≤+,构造函数()()ln g x f x k x =+,可得()()ln g x f x k x =+在()1,+∞单调递增,()0g x '≥,分离得ln xk x ≥,由maxln x k x ⎛⎫≥ ⎪⎝⎭即可求解. 【详解】()()2211ln ln x x x x f x x x ⋅-+-'==, 当1x >时,ln 0x >,所以()0f x '<,所以()1ln xf x x+=在()1,+∞单调递减, 不妨设121x x <<,则()()120f x f x ->,12ln ln 0x x -<,所以()()1212ln ln f x f x k x x -≤-等价于()()()1221ln ln f x f x k x x -≤-, 即()()1122ln ln f x k x f x k x +≤+, 设()()ln g x f x k x =+,则()()12g x g x <, 所以()()1ln ln ln xg x f x k x k x x+=+=+在()1,+∞单调递增, ()22ln ln 0x k kx xg x x x x --'=+=≥对于()1,x ∈+∞恒成立, 所以ln 0kx x -≥,可得ln xk x≥对于()1,x ∈+∞恒成立, 设()ln xh x x=,只需()max k x h ≥, ()221ln 1ln x xx x h x x x ⋅--'==, 当1x e <<时()0h x '>,()ln xh x x=单调递增, 当x e >时,()0h x '<,()ln xh x x=单调递减, 所以()()max ln 1e h x h e e e===,所以1k e ≥,故答案为:1,e ⎡⎫+∞⎪⎢⎣⎭【点睛】方法点睛:若不等式(),0f x λ≥()x D ∈(λ是实参数)恒成立,将(),0f x λ≥转化为()g x λ≥或()()g x x D λ≤∈恒成立,转化为()max g x λ≥或()()min g x x D λ≤∈,求()g x 的最值即可.15.【分析】不等式等价变形利用同构函数的单调性得解【详解】令∴在上单调递增∵∴∴恒成立令只需∴单调递增∴单调递减时的最大值为∴∴的最小值为故答案为:【点睛】不等式等价变形同构函数是解题关键解析:3e【分析】不等式等价变形()()()4ln 3ln 3ln 3ln xxxe x x a a x x a a e e-≤-⇔-≤-,利用同构函数()ln f x x x =-的单调性得解【详解】()()4ln 3ln 3ln 3ln x x e x x a a x x ae a x -≤-⇔-≤--()()3ln 3ln x x x x ae ae ⇔-≤-令()ln f x x x =-,()111x f x x x-'=-=, ∴()f x 在[)1,+∞上单调递增.∵1a >,1[,)3x ∈+∞,∴[)3,1,x e x a ∈+∞,∴33xx eae x x a ⇔≤⇔≤恒成立,令()3x x g x e =,只需max ()a g x ≥,()33xxg x e -'=, ∴1[,1),()0,()3x g x g x ∈'>单调递增,∴(1,),()0,()x g x g x ∈+∞'<单调递减,1x ∴=时,()g x 的最大值为3e,∴3a e ≥,∴a 的最小值为3e.故答案为:3e【点睛】不等式等价变形,同构函数()ln f x x x =-是解题关键.16.【分析】根据得到mn 的关系利用消元法转化为关于t 的函数构造函数求函数的导数利用导数研究函数的最值即可得到结论【详解】解:不妨设∴()∴即故()令()所以在上是增函数且当时当时即当时取得极小值同时也是 解析:ln21-【分析】根据()()f m g n t ==得到m ,n 的关系,利用消元法转化为关于t 的函数,构造函数,求函数的导数,利用导数研究函数的最值即可得到结论. 【详解】解:不妨设()()f m g n t ==, ∴31ln 22m net -=+=,(0t >) ∴3ln m t -=,即3ln m t =+,122t n e -=⋅,故1223ln t n m e t --=⋅--(0t >), 令()1223ln t h t et -=⋅--(0t >),()1212t h t et-'=⋅-,()1221''20t h t e t -=⋅+>所以()h t '在()0,∞+上是增函数,且102h ⎛⎫'= ⎪⎝⎭, 当12t >时,()0h t '>, 当102t <<时,()0h t '<, 即当12t =时,()h t 取得极小值同时也是最小值, 此时1123ln ln 2122h ⎛⎫⎛⎫=-+=-⎪ ⎪⎝⎭⎝⎭,即n m -的最小值为ln21-, 故答案为:ln21-. 【点睛】本题考查利用导数求函数的最小值,考查化归转化思想与运算能力,是中档题.17.【分析】利用导数分析函数在区间上的单调性根据该函数在区间上有且只有一个零点求得参数的值进而利用导数可求得函数在区间上的最小值【详解】则①当时对任意的恒成立此时函数在区间上单调递增且不合乎题意;②当时 解析:4-【分析】利用导数分析函数()y f x =在区间(),0-∞上的单调性,根据该函数在区间(),0-∞上有且只有一个零点求得参数a 的值,进而利用导数可求得函数()y f x =在区间[]1,2-上的最小值. 【详解】()32f x x ax =--,则()23f x x a '=-.①当0a ≤时,对任意的(),0x ∈-∞,()0f x '>恒成立,此时,函数()y f x =在区间(),0-∞上单调递增,且()()020f x f <=-<,不合乎题意;②当0a >时,令()230f x x a '=-=,可得x =x =当x <()0f x '>,此时函数()y f x =单调递增;当0x <<时,()0f x '<,此时函数()y f x =单调递减.所以,()max20f x f ⎛=== ⎝,解得3a =,()332f x x x ∴=--. ()()()233311f x x x x '=-=-+,当11x -<<时,()0f x '<,此时函数()y f x =单调递减; 当12x <<时,()0f x '>,此时函数()y f x =单调递增.因此,函数()y f x =在1x =处取得极小值,亦即最小值,故()()min 14f x f ==-. 故答案为:4-. 【点睛】本题考查利用导数求解函数在区间上的最值,同时也考查了利用导数研究函数的零点,考查计算能力,属于中等题.18.【分析】令求的导数根据条件可知从而判断单调递增将不等式化为即可求解【详解】令因为的定义域为所以函数的定义域也为则所以函数在上单调递增又可以化为即所以所以故不等式的解集为故答案为:【点睛】本题考查利用 解析:()2020,1--【分析】令()2()g x x f x =,求()g x 的导数'()g x ,根据条件可知'()0g x >,从而判断()g x 单调递增,将不等式化为()()20202019g x g +<即可求解. 【详解】令()2()g x x f x =,因为()f x 的定义域为()0,∞+,所以函数()g x 的定义域也为()0,∞+,则()()()()()2220g x xf x x f x x f x xf x '''=+=+>⎡⎤⎣⎦,所以函数()g x 在()0,∞+上单调递增, 又()()()202020202019201920192020x f x f x ++<+可以化为()()()222020202020192019x f x f ++<,即()()20202019g x g +<,所以020202019x <+<, 所以20201x -<<-, 故不等式的解集为()2020,1--. 故答案为:()2020,1--. 【点睛】本题考查利用函数的单调性解不等式,构造函数求导是解题的关键,属于中档题.19.【分析】根据题意可得只有一个解只有一个解与只有一个交点求导数分析单调性及当时;当时画出函数的草图及可得的取值范围再检验是否符合题意即可得出答案【详解】解:因为函数有且仅有一个极值点所以只有一个解即只 解析:(,0]-∞【分析】根据题意可得()210f x lnx ax '=-+=只有一个解12lnx a x+⇒=只有一个解2y a ⇒=与1()lnx y g x x+==只有一个交点,求导数()g x ',分析单调性,及当0x →时,()g x →-∞;当x →+∞时,()0g x →,画出函数()g x 的草图,及可得a 的取值范围,再检验是否符合题意,即可得出答案. 【详解】解:因为函数()(ln )f x x x ax =-有且仅有一个极值点, 所以1()ln ln 210f x x ax x a x ax x ⎛⎫'=-+-=-+= ⎪⎝⎭只有一个解, 即ln 12x a x+=,只有一个解, 即2y a =与ln 1()x y g x x+==只有一个交点, 因为2ln ()xg x x-'=, 当(0,1)x ∈时,()0g x '>,函数()g x 单调递增,当(1,)x ∈+∞时,()0g x '<,函数()g x 单调递减, 所以max ()(1)1g x g ==,当0x →时,()g x →-∞;当x →+∞时,()0g x →, 画出函数()g x 的草图如下:结合图象可得21a =或20a ≤, 解得12a =或0a ≤, 当12a =时,21()ln 2f x x x x =-, 所以()1ln f x x x '=+-,令()1ln h x x x =+-,所以1()1h x x'=-, 所以()h x 在(0,1)上单调递增,在(1,)+∞上单调递减,所以()(1)0h x h ≤=,所以()1ln 0f x x x '=+-≤恒成立, 所以()f x 在(0,)+∞上单调递减, 所以函数()f x 没有极值点. 所以实数a 的取值范围是(,0]-∞. 故答案为:(,0]-∞ 【点睛】本题考查利用导数分析极值,解题关键是转化思想的应用,属于中档题.20.【分析】首先对进行求导利用导数研究函数的最值问题根据题意对任意存在使只要的最小值大于等于在指定区间上有解【详解】由得当时当时∴在上单调递减在上单调递增∴在上有解在上有解函数在上单调增故答案为:【点睛 解析:[)0,+∞【分析】首先对()f x 进行求导,利用导数研究函数()f x 的最值问题,根据题意对任意1x R ∈,存在[]21,2x ∈,使12()()f x g x ,只要()f x 的最小值大于等于()g x 在指定区间上有解 . 【详解】由()xf x e x =-,得()1xf x e '=-,当()1,0x ∈-时,()0f x '<,当()0,1x ∈时,()0f x '>, ∴()f x 在()1,0-上单调递减,在()0,1上单调递增, ∴()()min 01f x f ==()1g x ≤在[]1,2上有解,21212x mx m x x -≤⇔≥-在[]1,2上有解,函数1y x x =-在[]1,2上单调增,1101min y ∴=-=,20,0m m ≥≥.故答案为: [)0,+∞ 【点睛】不等恒成立与能成立的等价转换:任意1x A ∈,存在2x B ∈,使()()12min min ()()f x g x f x g x ⇔≥ 任意1x A ∈,任意2x B ∈,使()()12min max ()()f x g x f x g x ⇔= 存在1x A ∈,存在2x B ∈,使()()12max min ()()f x g x f x g x ⇔⇔三、解答题21.(1)1,2⎛⎫+∞ ⎪⎝⎭;(2)12a e ≥.【分析】(1)求出导函数()'f x ,在定义域内由()0f x '>得增区间;(2)分离参数得21ln x a x +≥.设()21ln x g x x+=,由导数求得()g x 最大值即可得结论. 【详解】(1)当2a =时,()()221ln ,0,f x x x x =--∈+∞.由()()()221211414x x x f x x x x x+--'=-==, 令()0f x '>,得12x >, 所以()f x 的单调增区间为1,2⎛⎫+∞⎪⎝⎭. (2)由()21ln 0f x ax x =--≥,则21ln xa x +≥.设()21ln x g x x +=,则()312ln xg x x --'=. 令()0g x '=,得12x e -=,且当120,x e -⎛⎫∈ ⎪⎝⎭时,()0g x '>;当12,x e -⎛⎫∈+∞ ⎪⎝⎭时,()0g x '<, 所以()g x 在120,e -⎛⎫ ⎪⎝⎭上单调递增,在12e ,-⎛⎫+∞ ⎪⎝⎭上单调递减, 所以当12x e -=到时,()g x 取得最大值为12e , 所以12a e ≥. 【点睛】方法点睛:本题考查用导数求函数的单调区间,研究不等式恒成立问题.不等式恒成立问题的解题方法通常是利用分离参数法分离参数,然后引入新函数,利用导数求得新函数的最值,则可得参数范围.22.(1)()f x 单调递增区间为(0,)+∞,无递减区;(2)证明见解析. 【分析】(1)求导数()'f x ,由()0f x '>确定增区间,由()0f x '<得减区间;(2)由(1)得1x >时,()0f x >,即11ln ()2x x x<-,令1,1,2,,k x k n n =+=,代入后得n 个不等式,相加后可得证明题设结论. 【详解】(1)解:函数()f x 的定义域为(0,)+∞由21()ln 2x f x x x -=-,得()ln 1f x x x '=--令1()ln 1()1g x x x g x x'=--⇒=-()0(1,)()0(0,1)g x x g x x ''>⇒∈+∞<⇒∈即()g x 在(0,1)上单调递减,在(1,)+∞上单调递增,故()(1)0f x f '''≥=,于是()f x 单调递增区间为(0,)+∞,无递减区(2)证明:由(1)可知()f x 在(0,)+∞上单调递增函数,又(1)0f =,∴当1x >时,()0f x >,11ln 2x x x ⎫⎛∴<- ⎪⎝⎭1ln 112k k k n k k a n nn k +-⎫⎫⎛⎛∴=+<+- ⎪ ⎪+⎝⎝⎭⎭1(1,2,)2kk k n n n k ⎫⎛=+=⋅⋅⋅ ⎪+⎝⎭123112122111n n n a a a a n n n n n n ⎫⎛∴+++⋅⋅⋅+<++⋅⋅⋅++++⋅⋅⋅+ ⎪+++⎝⎭1121221n n n n ++⋅⋅⋅+++⋅⋅⋅+⎫⎛=+ ⎪+⎝⎭(1)(1)12122214n n n n n n n ++⎫⎛⎪ +=+=⎪+⎪⎝⎭于是()*123214n n a a a a n ++++⋅⋅⋅+<∈N 得证. 【点睛】关键点点睛:本题考查用导数求单调区间,用导数证明数列不等式.这类问题的解决,通常后一小题需要用到前一小题(或前面所有)的结论,通过变形,赋值等手段进行证明求解.如本题第(1)小题函数单调性得出不等式11ln ()2x x x<-,只要在此不等式中对x 赋值1,1,2,,kx k n n=+=,n 个不等式相加即可.23.(1)10,3⎛⎫ ⎪⎝⎭;(2)(],1-∞-. 【分析】(1)利用对数的运算法则化简,求解对数不等式. 注意化简前保证真数大于零.(2)分离参数,利用方程()2log 41xx m +-=-有解,构造函数()()2log 41x g x x =+-,求导,分析函数单调性,求出最值,得到m 的取值范围.【详解】(1)()()212log 22f x x -=-()()()()222lo 2212log 22g 1log 11f x x x x x xf ----+-=<+= 1220110222x x x x ⎧⎪->⎪+>⎨⎪-<+⎩<⎪ 则103x <<故x 的取值范围为10,3⎛⎫ ⎪⎝⎭.(2)()40xf x m -+=则()()2log 4104xxf x m m x =+-++=-()2log 41x x m +-=-设()()2log 41x g x x =+- ()()'ln 444111441ln 2x x x x g x ⋅-=-=++⋅ 当(),0x ∈-∞时,'0g x 当()0,x ∈+∞时,()'0g x >且x →-∞时,()g x →+∞()2min log 21g x ==故1m -≥则1m ≤-故m 的取值范围为:(],1-∞-【点睛】利用导数求函数值域时,一种是利用导数判断函数的单调性,进而根据单调性求函数的值域;一种是利用导数与极值、最值的关系求函数的值域.24.(1)3a =;(2)每件产品的售价定为5元时,年利润y 最大,最大值为32万元.【分析】(1)求得利润为()()29y x a x =--,代入点()6,27可求得实数a 的值; (2)由(1)可得出()()239y x x =--,()38x ≤≤,利用导数求出y 的最大值及其对应的x 的值,即可得出结论.【详解】(1)由题意可知,该产品的年利润为()()29y x a x =--,()38x ≤≤, 当6x =时,()9627y a =⨯-=,解得:3a =;(2)由()()239y x x =--,()38x ≤≤, 得:()()()()()292399315y x x x x x '=-+--=--,由0y '=,得5x =或9x =(舍).当[)3,5x ∈时,0y '>,当(]5,8x ∈时,0y '<.所以当5x =时,max 32y =(万元)即每件产品的售价定为5元时,年利润y 最大,最大值为32万元.【点睛】思路点睛:解函数应用题的一般程序:第一步:审题——弄清题意,分清条件和结论,理顺数量关系;第二步:建模——将文字语言转化成数学语言,用数学知识建立相应的数学模型;第三步:求模——求解数学模型,得到数学结论;第四步:还原——将用数学方法得到的结论还原为实际问题的意义;第五步:反思回顾——对于数学模型得到的数学结果,必须验证这个数学解对实际问题的合理性.25.(Ⅰ)证明见解析;(Ⅱ)(,2]-∞.【分析】(Ⅰ)设切点为001(,)P x x ,求出切线方程并计算l 与坐标轴围成的三角形的面积为2,故可得相应的结论.(Ⅱ)由题设可得()0g x '≤,利用参变分离可得a 的取值范围.【详解】 (Ⅰ)当0a =时,1(),0f x x x =>,21()f x x'=-, 设()f x 图象上任意一点001(,)P x x ,切线l 斜率为0201()k f x x =-'=. 过点001(,)P x x 的切线方程为020011()y x x x x -=--. 令0x =,解得02y x =;令0y =,解得02x x =. 切线与坐标轴围成的三角形面积为0012|||2|22S x x =⋅=. 所以l 与坐标轴围成的三角形的面积与切点无关.(Ⅱ)由题意,函数()g x 的定义域为(0,)+∞.因为()g x 在(0,)+∞上单调递减, 所以21()10a g x x x '=--≤在(0,)+∞上恒成立, 即当(0,)x ∈+∞,1a x x ≤+恒成立, 所以min 1()a x x ≤+因为当(0,)x ∈+∞,12x x+≥,当且仅当1x =时取等号. 所以当1x =时,min 1()2x x +=所以2a ≤.所以a 的取值范围为(,2]-∞.【点睛】结论点睛:一般地,若()f x 在区间(),a b 上可导,且()()()00f x f x ''><,则()f x 在(),a b 上为单调增(减)函数;反之,若()f x 在区间(),a b 上可导且为单调增(减)函数,则()()()00f x f x ''≥≤.26.(1)11ln 22y x =+-;(2)证明见解析. 【分析】(1)求出()f x 的导函数,由()0k f '=,可得答案.(2)求出()f x 的导函数,讨论出函数()f x 的单调性,得出其最小值,可证明.【详解】(1)解:1()2x f x e x '=-+, 当0x =时,()102k f '==, 又()01ln 2f =-, 所以切线方程为()11ln 22y x --=,即11ln 22y x =+-. (2)解:1()2x f x e x '=-+在区间()2,-+∞上单调递增, 又()10f '-<,()00f '>,故()0f x '=在区间()2,-+∞上有唯一实根0x ,且()01,0x ∈-, 当()02,x x ∈-时,()0f x '<;当()0,x x ∈+∞时,()0f x '>, 从而当0x x =时,()f x 取得最小值.由()00f x '=,得0012x e x =+,()00ln 2x x +=-, 故()()20000011()022x f x f x x x x +≥=+=>++. 【点睛】本题考查求函数在某点出的切线方程和利用导数证明不等式.解答本题的关键是由1()2x f x e x '=-+在区间()2,-+∞上单调递增,得出()0f x '=在区间()2,-+∞上有唯一实根0x ,从而得出()f x 的单调区,即()()20000011()22x f x f x x x x +≥=+=++,属于中档题.。
新北师大版高中数学选修1-1第四章《导数应用》检测题(答案解析)
一、选择题1.定义在R 上的偶函数()f x 的导函数为(),f x '若对任意的0x >的实数,都有:()()22f x xf x '+<恒成立,则使()()2211x f x f x -<-成立的实数x 的取值范围为( )A .{}1xx ≠±∣ B .(-1,1) C .()(),11,-∞-+∞D .(-1,0)()0,1⋃2.函数()ln f x x x =-与()ln x g x xe x x =--的最小值分别为,a b ,则 ( ) A .a b = B .a b >C .a b <D .,a b 的大小不能确定3.已知α,β∈R ,则“0αβ+<”是“sin sin αβαβ+<+”的( ) A .充分不必要条件 B .必要不充分条件 C .既不充分也不必要条件D .充分必要条件 4.设函数()f x '是奇函数()()f x x R ∈的导函数,()10f -=,当0x >时,()()0xf x f x '-<,则使得()0f x >成立的x 的取值范围是( )A .()()0,11,+∞ B .()(),11,-∞-+∞ C .()(),10,1-∞-⋃ D .()()1,01,-⋃+∞5.已知函数()()221x g x x e ax a =--+在()0,∞+上单调递增,则实数a 的取值范围是( )A .(,-∞B .(0,C .(,-∞D .(0,6.已知函数4213(),42f x x x mx n =-++其中m ,n 为正整数,若函数()f x 有极大值,则m 的值为( ) A .1B .2C .3D .47.已知函数()()()22210,0x ax x x f x e ax e x ⎧-+<⎪=⎨-+-≥⎪⎩有两个零点,则实数a 的取值范围是( ) A .(),e +∞B .()2e ,+∞C .()20,eD .()0,e8.设函数()f x 在R 上可导,其导函数为()f x ',且函数()()1y x f x '=-的图象如图所示,则下列结论中一定成立的是( )A .()f x 有极大值()2f -B .()f x 有极小值()2f -C .()f x 有极大值()1fD .()f x 有极小值()1f9.函数()21x f x -=的值域是( ) A .30,3⎡⎢⎣⎦B .33⎛⎫∞ ⎪⎪⎝⎭C .(3D .)3,⎡+∞⎣10.对任意0,2x π⎛⎫∈ ⎪⎝⎭,不等式()()sin cos x f x x f x ⋅⋅'<恒成立,则下列不等式错误的是( ) A .234f ππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭> B .()2cos113f f π⎛⎫⋅⎪⎝⎭> C .()214f f π⎛⎫⋅⎪⎝⎭< D .646f f ππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭< 11.设()f x 是定义在R 上的偶函数,()f x '为其导函数,()20f =,当0x >时,有()()'>xf x f x 恒成立,则不等式()0xf x <的解集为( )A .()2,2-B .()(),20,2-∞-C .()()2,00,2-D .()()2,02,-+∞12.函数()2xf x ae x =+在R 上有两个零点1x ,2x ,且212x x ≥,则实数a 的最小值为( ) A .ln 22-B .ln 2-C .2e-D .ln 2二、填空题13.若直线l 与曲线C 满足下列两个条件:(1)直线l 在点()00,P x y 处与曲线C 相切;(2)曲线C 在P 附近位于直线l 的两侧,则称直线l 在点P 处“切过”曲线C .下列命题正确的是_________(写出所有正确命题的编号)①直线l :0y =在点()0,0P 处“切过”曲线C :3y x =. ②直线l :1x =-在点()1,0P -处“切过”曲线C :()21y x =+.③直线l :y x =在点()0,0P 处“切过”曲线C :sin y x =. ④直线l :1y x =+在点()0,1P 处“切过”曲线C :x y e =. ⑤直线l :1y x =-在点()1,0P 处“切过”曲线C :ln y x =.14.对于函数22,0()12,02x x e x f x x x x ⎧⋅≤⎪=⎨-+>⎪⎩有下列命题: ①在该函数图象上一点(﹣2,f (﹣2))处的切线的斜率为22e -; ②函数f (x )的最小值为2e-; ③该函数图象与x 轴有4个交点;④函数f (x )在(﹣∞,﹣1]上为减函数,在(0,1]上也为减函数. 其中正确命题的序号是_____.15.若函数()22ln 2f x x x a =++-在()1,e 上有零点,则实数a 的取值范围为______.16.若函数()ln 1f x x x =+的图象总在直线y ax =的上方,则实数a 的取值范围是______.17.若函数()231xf x e x mx =+-+在(],3-∞上单调递减,则实数m 的取值范围为______.18.已知函数()f x 对定义域内R 内的任意x 都有()()4f x f x =-,且当2x ≠,其导数()f x '满足()()2xf x f x ''<,若()30f =,则不等式()0xf x >的解集为__________. 19.已知函数18ln ,y a x x e e⎛⎫⎡⎤=+∈ ⎪⎢⎥⎣⎦⎝⎭的图象上存在点P ,函数22y x =--的图象上存在点Q ,且P ,Q 关于x 轴对称,则a 的取值范围为________.20.已知函数()y f x =在R 上的图象是连续不断的一条曲线,并且关于原点对称,其导函数为()f x ',当0x >时,有不等式()()22x f x xf x '>-成立,若对x R ∀∈,不等式()()2220x x e f e a x f ax ->恒成立,则正整数a 的最大值为_______.三、解答题21.已知函数()()222ln f x x mx x m m R =+++∈.(1)求曲线()y f x =在点()()1,1f 处的切线方程; (2)函数()f x 有两个不同的极值点()1212,x x x x <,求()211f x x x +的取值范围. 22.“既要金山银山,又要绿水青山”.滨江风景区在一个直径AB 为100米的半圆形花园中设计一条观光线路(如图所示).在点A 与圆弧上的一点C (不同于A ,B 两点)之间设计为直线段小路,在直线段小路的两侧(注意是两侧)种植绿化带;再从点C 到点B 设计为沿弧的弧形小路,在弧形小路的内侧(注意是一侧)种植绿化带(注:小路及绿化带的宽度忽略不计).(1)设BAC θ∠= (弧度),将绿化带总长度表示为θ的函数()S θ;(2)试确定θ的值,使得绿化带总长度最大.(弧度公式:l r α=⋅,其中α为弧所对的圆心角)23.已知函数()()()242,f x x x a a R =--∈,()f x '为()f x 的导函数,且()10f '-=.(1)讨论函数()f x 的单调性;(2)求函数()f x 在[]22-,上的最大值和最小值. 24.已知函数()()3f x alnx ax a R =--∈. (1)函数()f x 的单调区间;(2)当1a =-时,证明:当()1x ∈+∞,时,()20f x +>. 25.已知函数()1ln f x ax x =--.(1)当1a =时,证明:()f x 存在唯一的零点; (2)若()0f x ≥,求实数a 的取值范围. 26.已知函数32()24,1f x x ax x =-+=是函数()f x 的一个极值点.(1)求函数()f x 的单调递增区间; (2)当[1,2]x ∈-,求函数()f x 的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据已知构造合适的函数,对函数求导,根据函数的单调性,求出函数的取值范围,并根据偶函数的性质的对称性,求出0x <的取值范围. 【详解】当0x >时,由2()()20f x xf x +'-<可知:两边同乘以x 得:22()()20xf x x f x x +'-< 设:22()()g x x f x x =-则2()2()()20g x xf x x f x x '=+'-<,恒成立:()g x ∴在(0,)+∞单调递减,由()()21x f x f -21x <-()()2211x f x x f ∴-<- 即()()1g x g < 即1x >;当0x <时,函数是偶函数,同理得:1x <-综上可知:实数x 的取值范围为(-∞,1)(1-⋃,)+∞, 故选:C 【点睛】关键点点睛:主要根据已知构造合适的函数,函数求导,并应用导数法判断函数的单调性,偶函数的性质,属于中档题.2.A解析:A 【分析】根据函数的单调性分别求出函数()f x ,()g x 的最小值,比较a ,b 即可. 【详解】()f x 的定义域是()0,∞+,11()1x f x x x'-=-=, 令()0f x '<,解得:01x <<,令()0f x '>,解得:1x >,()f x 在(0,1)递减,在(1,)+∞递增, ()f x 的最小值是()1f 1=,故1a =, ()x g x xe lnx x =--,定义域(0,)+∞,()()()11111x x x g x x e xe x x+=+--=-', 令()1x h x xe =-,则()()10xh x x e '=+>,(0,)x ∈+∞则可得()h x 在(0,)+∞上单调递增,且()010h =-<,()110h e =->,故存在0(0,1)x ∈使得()0h x =即001xx e =,即000x lnx +=,当0(0,)x x ∈时,()0h x <,()0g x '<,函数()g x 单调递减,当()0x x ∈+∞,时,()0g x '>,函数()g x 单调递增, 故当0x x =时,函数取得最小值0000000()11xg x x e lnx x lnx x =--=--=,即1b =, 所以a b = 故选:A . 【点睛】关键点睛:题考查了函数的单调性,最值问题,考查导数的应用以及转化思想,解答本题的关键是由()()()11111xx x g x x e xe x x+=+--=-',得出当0(0,)x x ∈时,函数()g x 单调递减,当()0x x ∈+∞,时,函数()g x 单调递增,根据000x lnx +=,求出最小值,属于中档题.3.D解析:D 【分析】首先构造函数()sin x x x f -=,利用导数判断函数的单调性,再判断选项. 【详解】构造函数()sin x x x f -=,()1cos 0f x x '=-≥恒成立,()f x ∴是单调递增函数, 0αβ+<,即αβ<-,()()f f αβ∴<-,即()()sin sin ααββ-<---,即sin sin αβαβ+<+,反过来,若sin sin αβαβ+<+,即()()sin sin ααββ-<---,αβ∴<-,即0αβ+<.故选:D 【点睛】关键点点睛:本题的关键是通过条件观察后构造函数()sin x x x f -=,通过判断函数的单调性,比较大小.4.C解析:C 【分析】 构造函数()()f xg x x=,分析出函数()g x 为偶函数,且在()0,∞+上为减函数,由()0f x >可得出()00g x x ⎧>⎨>⎩或()00g x x ⎧<⎨<⎩,解这两个不等式组即可得解.【详解】 构造函数()()f xg x x=,该函数的定义域为{}0x x ≠, 由于函数()f x 为奇函数,则()()()()()f x f x f x g x g x x x x---====--, 所以,函数()()f xg x x=为偶函数. 当0x >时,()()()20xf x f x g x x'-'=<,所以,函数()g x 在()0,∞+上为减函数, 由于函数()()f xg x x=为偶函数,则函数()g x 在(),0-∞上为增函数. ()10f -=,则()10f =且()00f =,所以,()()110g g -==.不等式()0f x >等价于()()010g x g x ⎧>=⎨>⎩或()()010g x g x ⎧<=-⎨<⎩,解得1x <-或01x <<.因此,不等式()0f x >的解集为()(),10,1-∞-⋃. 故选:C. 【点睛】方法点睛:利用函数的奇偶性与单调性求解抽象函数不等式,要设法将隐性划归为显性的不等式来求解,方法是:(1)把不等式转化为()()f g x f h x >⎡⎤⎡⎤⎣⎦⎣⎦;(2)判断函数()f x 的单调性,再根据函数的单调性把不等式的函数符号“f ”脱掉,得到具体的不等式(组),但要注意函数奇偶性的区别.5.A解析:A 【分析】先求导数,利用单调性转化为()()2120xg x x e ax '=+-≥,构造新函数()()21x xf x x e +=求解()f x 的最小值即可.【详解】()()212x g x x e ax '=+-,由题意可知()()2120x g x x e ax '=+-≥在()0,∞+恒成立,即()212x x e a x+≥恒成立,设()()21x xf x x e +=,()()()()22221211x x x x e x x e x x f x +--+='=10,2x ⎛⎫∈ ⎪⎝⎭时,()0f x '<,()f x 为减函数; 1,2x ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '>,()f x 为增函数; ()f x 的最小值为12f ⎛⎫= ⎪⎝⎭a ≤故选:A. 【点睛】利用函数单调性求解参数时,通常转化为恒成立问题求解:(1)()f x 在区间D 上单调递增等价于()0f x '≥在区间D 上恒成立; (2)()f x 在区间D 上单调递减等价于()0f x '≤在区间D 上恒成立.6.A解析:A 【分析】对()f x 进行求导得3()3f x x x m '=-+,构造新函数3()3,h x x x m x R =-+∈,利用导数研究函数()h x 的单调性,结合题意,可知函数()f x 有极大值,则()()1010h h ⎧->⎪⎨<⎪⎩,求解不等式且结合m ,n 为正整数,即可得出结果. 【详解】 由题可知,4213()42f x x x mx n =-++()x R ∈, 则3()3f x x x m '=-+,设3()3,h x x x m x R =-+∈,则2()33h x x '=-, 令2()330h x x '=-=,解得:121,1x x =-=,则当1x <-或1x >时,()0h x '>;当11x -<<时,()0h x '<,所以()h x 在区间()(),1,1,-∞-+∞上单调递增;在区间()1,1-上单调递减, 又因为函数()f x 有极大值, 则()()1010h h ⎧->⎪⎨<⎪⎩,即()()120120h m h m ⎧-=+>⎪⎨=-<⎪⎩,解得:22m -<<,而m ,n 为正整数,所以m 的值为1. 故选:A. 【点睛】关键点点睛:本题考查利用导数研究函数的单调性和极值,从而求参数值,构造新函数且利用导数求出单调区间是解题的关键,考查转化思想和运用能力.7.B解析:B 【分析】分离变量,利用导函数应用得到函数在0x <无零点,则0x >有两个零点,利用函数最值得到参数范围 【详解】当0x =时,()201e f =--,∴0x =不是函数()f x 的零点.当0x <时,由()0f x =,得221x a x -=,设()221x h x x -=,()()3210x h x x-'=<,则()h x 在(),0-∞上单调递减,且()0h x <.所以0x <时无零点当0x >时,()0f x =等价于2x e e a x +=,令()2x e e g x x +=,()22x x xe e e g x x--'=, 得()g x 在()0,2上单调递减,在()2,+∞上单调递增,()2min (2)g x g e ==,()2g x e ≥.因为()f x 有2个零点,所以2a e >. 故选:B. 【点睛】分离变量法,利用导数求函数的单调性,极值是解题关键.8.A解析:A 【分析】由函数()()1y x f x '=-的图象,可得1x >时,()0f x '<;21x -<<时,()0f x '<;2x <-时,()0f x '>.由此可得函数()f x 的单调性,则答案可求.【详解】解:函数()()1y x f x '=-的图象如图所示,∴1x >时,()0f x '<;21x -<<时,()0f x '<;2x <-时,()0f x '>. ∴函数()f x 在(),2-∞-上单调递增,在()2,1-上单调递减,在()1,+∞上单调递减. ∴()f x 有极大值()2f -.故选:A . 【点睛】本题考查根据导函数的相关图象求函数的单调区间,考查数形结合思想,是中档题.9.A解析:A 【分析】求出函数的定义域,然后求出导函数,确定单调性,得值域.【详解】由21020x x ⎧-≥⎨+≠⎩得11x -≤≤,()f x '==, 当112x -≤<-时,()0f x '>,()f x 递增,112x -<≤时,()0f x '<,()f x 递减, 所以12x =-时,max()322f x ==-+,又(1)(1)0f f -==, 所以()f x的值域是⎡⎢⎣⎦. 故选:A . 【点睛】本题考查用导数求函数的值域,解题方法是由导数确定函数的单调性,得出最大值和最小值,得值域.10.D解析:D 【分析】构造函数()()cos g x f x x =,对其求导后利用已知条件得到()g x 的单调性,将选项中的角代入函数()g x 中,利用单调性化简,并判断正误,由此得出选项. 【详解】解:构造函数()()cos g x f x x =,则()()()cos sin g x x f x x f x ='⋅⋅'-,∵()()sin cos x f x x f x ⋅⋅'<,∴()()()cos sin 0g x x f x x f x =⋅-⋅''>, 即()g x 在0,2x π⎛⎫∈ ⎪⎝⎭上为增函数, 由43g g <ππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,即cos cos 4433f fππππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭<1423f f ππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭<,故A 正确;()13g g 由<π⎛⎫ ⎪⎝⎭,即()1cos1cos 33f f ππ⎛⎫ ⎪⎝⎭<,即()2cos113f f π⎛⎫⋅ ⎪⎝⎭>,故B 正确;()14g g π⎛⎫⎪⎝⎭由<,即()cos 1cos144f f <ππ⎛⎫ ⎪⎝⎭,即()1cos124f f π⎛⎫⎪⎝⎭<,故C 正确;由64g g ππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭<,即cos cos 6644f f ππππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭<64f f ππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,即64f f ππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭<, 故错误的是D .故选D .【点睛】本小题考查构造函数法,考查利用导数研究函数的单调性,考查化归与转化的数学思想方法.构造函数法主要应用于题目所给已知条件中含有()f x ,也含有其导数()f x '的不等式,根据不等式的结构,构造出相应的函数.如已知是()()0xf x f x -<',可构造()()f x g x x=,可得()()()20xf x f x g x x'-='<.11.B解析:B 【分析】 构造函数()()f xg x x=,易知()g x 在()0,∞+上单调递增,由()f x 是定义在R 上的偶函数可推出()g x 是定义在()(),00,-∞⋃+∞上的奇函数,故()g x 在(),0-∞上也单调递增,且()()220g g =-=.而不等式()0xf x <的解可等价于即()0g x <的解,从而得解. 【详解】解:设()()f x g x x =,0x ≠,则()()()'2xf x f x g x x-'=, ∵当0x >时,有()()'xf x f x >恒成立,∴当0x >时,()0g x '>,()g x 在()0,∞+上单调递增,∵()f x 是定义在R 上的偶函数, ∴()()()()f x f x g x g x x x--===---,即()g x 是定义在()(),00,-∞⋃+∞上的奇函数, ∴()g x 在(),0-∞上也单调递增. 又()20f =,∴()()2202f g ==,∴()20g -=. 不等式()0xf x <的解可等价于即()0g x <的解, ∴02x <<或2x <-, ∴不等式的解集为()(),20,2-∞-.故选:B . 【点睛】本题主要考查函数奇偶性的应用,考查函数的单调性,利用了构造思想,导函数的运用,属于中档题.12.B解析:B 【分析】函数()2xf x ae x =+,变形为2x x a e =-,令()2xxg x e=-,利用导数求函数的最值,可得20a e-<<,结合212x x ≥,可得212x x =时,a 取得最小值,再把1x ,2x 代入20x ae x +=,求解1x ,再代入112xae x =-,即可求得a 的最小值【详解】函数()2xf x ae x =+,变形为2x x a e =-,令()2x x g x e =-,得()()21xx g x e -'=, 当(),1x ∈-∞时,0g x ,当()1,∈+∞x 时,0g x ,可得1x =时,函数()g x 取得最小值2e-. 又当x →-∞时,()g x →+∞,当x →+∞时,()0g x <, 且函数()2xf x ae x =+在R 上有两个零点1x ,2x ,得20a e-<<. 由212x x ≥,可得212x x =时,a 取得最小值. 由112xae x =-,222x aex =-,得1214x ae x =-,∴12x e =,解得1ln 2x =.代入112xae x =-,解得ln 2a =-.∴a 的最小值为ln 2-. 故选:B. 【点睛】此题考查利用导数研究函数的单调性与最值,考查化归与转化的数学思想,考查计算能力,属于中档题二、填空题13.①③【分析】根据直线在点处切过曲线的定义对5个函数逐个判断可得答案【详解】对于①由得所以则直线:是曲线:在点处的的切线又当时当时满足曲线在附近位于直线的两侧故直线:在点处切过曲线:故①正确;对于②由解析:①③ 【分析】根据直线l 在点P 处“切过”曲线C 的定义,对5个函数逐个判断可得答案. 【详解】对于①,由3y x =,得23y x '=,所以0|0x y ='=,则直线l :0y =是曲线C :3y x =在点()0,0P 处的的切线,又当0x >时,0y >,当0x <时,0y <,满足曲线C 在P 附近位于直线l 的两侧,故直线l :0y =在点()0,0P 处“切过”曲线C :3y x =,故①正确;对于②,由()21y x =+,得2(1)y x '=+,所以1|0x y =-'=,而直线l :1x =-的斜率不存在,在点()1,0P -处与曲线C :()21y x =+不相切,故②不正确;对于③,由sin y x =,得cos y x '=,所以0|1x y ='=,则直线l :y x =是曲线C :sin y x =在点()0,0P 处的切线, 令sin y x x =-,则1cos y x '=-,当02x π-<<时,0y '>,函数sin y x x =-递增,所以当02x π-<<时,0sin 0y x <-=,当02x π<<时,0y '>,函数sin y x x =-递增,所以当02x π<<时,0sin 00y >-=,所以当02x π-<<时,sin x x <,当02x π<<时,sin x x >,所以曲线C 在P 附近位于直线l 的两侧,故直线l :y x =在点()0,0P 处“切过”曲线C :sin y x =,故③正确;对于④,由x y e =,得e x y '=,所以0|1x y ='=,则曲线C :x y e =在点()0,1P 处的切线方程为10y x -=-,即1y x =+,令()1x g x e x =--,则()1x g x e '=-,当0x >时,()0g x '>,函数()g x 递增,当0x <时,()0g x '<,函数()g x 递减,则当0x =时,函数()g x 取得极小值,同时也是最小值(0)0g =,则()0g x ≥,即1x e x ≥+,则曲线C :x y e =不在切线l :1y x =+的两侧,故④不正确; 对于⑤,由ln y x =,得1y x'=,所以|11y x '==,所以曲线C :ln y x =在点()1,0P 处的切线方程为01y x -=-,即1y x =-, 令()1ln g x x x =--,则1()1g x x'=-,当01x <<时,()0g x '<,当1x >时,()0g x '>,所以函数()g x 在(0,1)上递减,在(1,)+∞上递增,所以当1x =时,函数()g x 取得极小值,也是最小值,所以()(1)0g x g ≥=,所以曲线C :ln y x =不在切线l :1y x =-的两侧,故⑤不正确.故答案为:①③ 【点睛】关键点点睛:对直线l 在点P 处“切过”曲线C 的定义正确理解是解题关键.14.①②④【分析】求出导数代入-2可得判断①;利用函数的单调性求出极值可判断②④;分别求函数等于零的根可判断③【详解】x≤0时f(x)=2xexf′(x)=2(1+x )ex 故f′(﹣2)=①正确;且f(解析:①②④ 【分析】求出导数代入-2可得判断①;利用函数的单调性求出极值可判断②④;分别求函数等于零的根可判断③. 【详解】x ≤0时,f (x )=2xe x ,f ′(x )=2(1+x )e x ,故f ′(﹣2)=22e -,①正确; 且f (x )在(﹣∞,﹣1)上单调递减,在(﹣1,0)上单调递增,故x ≤0时,f (x )有最小值f (﹣1)=2e-, x >0时,f (x )=2122x x -+在(0,1)上单调递减,在(1,+∞)上单调递增,故x >0时,f (x )有最小值f (1)=122e->- 故f (x )有最小值2e-,②④正确;令20x x e ⋅=得0x =,令21202x x -+=得x =,故该函数图象与x 轴有3个交点,③错误; 故答案为:①②④ 【点睛】本题考查导数的几何意义,考查利用导数判断函数的单调性、求函数的最值一定注意定义域.15.【分析】令得构造函数并求值域可得答案【详解】由则令因为在上都递减所以在上是单调递减函数且可得故答案为:【点睛】方法点睛:本题考查由函数零点求参数问题解答时要先将函数的零点问题转化为方程有根的问题进而 解析:21e a -<<【分析】 令0f x 得222ln a x x =--,构造函数2()22ln (0)g x x x x =-->并求值域可得答案. 【详解】由()22ln 20f x x x a =++-=,则222ln a x x =--,令2()22ln (0)g x x x x =-->,因为222ln ,y x y x =-=-在()1,e 上都递减,所以()g x 在()1,e 上是单调递减函数,且()()(1)g e g x g <<,可得21e a -<<. 故答案为:21e a -<<. 【点睛】方法点睛:本题考查由函数零点求参数问题,解答时要先将函数的零点问题转化为方程有根的问题,进而分离参数,再运用函数思想将问题转化为研究函数图象的性质和最大最小值的问题,考查了分析问题解决问题的能力.16.【分析】根据图象关系利用分离变量法将问题转化为恒成立问题令利用导数可求得则【详解】图象总在上方恒成立定义域为恒成立令当时;当时在上单调递减在上单调递增即实数的取值范围为故答案为:【点睛】结论点睛:分 解析:(),1-∞【分析】根据图象关系,利用分离变量法将问题转化为1ln a x x<+恒成立问题,令()()1ln 0g x x x x=+>,利用导数可求得()()min 1g x g =,则()1a g <. 【详解】()f x 图象总在y ax =上方,ln 1x x ax ∴+>恒成立,()f x 定义域为()0,∞+,1ln a x x∴<+恒成立,令()()1ln 0g x x x x =+>,()22111x g x x x x-'∴=-=,当()0,1x ∈时,()0g x '<;当()1,x ∈+∞时,()0g x '>,()g x ∴在()0,1上单调递减,在()1,+∞上单调递增,()()min 11g x g ∴==,1a ∴<,即实数a 的取值范围为(),1-∞.故答案为:(),1-∞. 【点睛】结论点睛:分离变量法是处理恒成立问题的基本方法,若()a f x ≤恒成立,则()min a f x ≤;若()a f x ≥恒成立,则()max a f x ≥.17.【分析】根据函数在上单调递减由恒成立求解【详解】因为函数在上单调递减所以恒成立;令在上单调递增所以实数的取值范围为故答案为:【点睛】方法点睛:恒成立问题的解法:(1)若在区间D 上有最值则;;(2)若解析:)336,e ⎡++∞⎣【分析】根据函数()231x f x e x mx =+-+在(],3-∞上单调递减,由()0f x '≤,(],3x ∈-∞恒成立求解. 【详解】()320x f x e x m '=+-≤,因为函数()231xf x e x mx =+-+在(],3-∞上单调递减,所以32x e x m +≤,(],3x ∈-∞恒成立;令32x y e x =+在(],3-∞上单调递增,3max 36y e =+,所以实数m 的取值范围为)336,e ⎡++∞⎣. 故答案为:)336,e ⎡++∞⎣【点睛】方法点睛:恒成立问题的解法:(1)若()f x 在区间D 上有最值,则()()min ,00x D f x f x ∀∈>⇔>;()()max ,00x D f x f x ∀∈<⇔<;(2)若能分离常数,即将问题转化为:()a f x >(或()a f x <),则()()max a f x a f x >⇔>;()()min a f x a f x <⇔<.18.【分析】由可得对称轴是由可得从而得出判断的单调区间再结合即可得不等式的解集【详解】因为函数对定义域内内的任意都有所以对称轴是因为满足即所以当时单调递增当时单调递减又因为所以时时时当与同号时所以的解集 解析:()(),01,3-∞⋃【分析】由()()4f x f x =-,可得()f x 对称轴是2x =,由()()2xf x f x ''<可得()()20x f x '-<,从而得出判断()f x 的单调区间,再结合()30f =,即可得不等式()0xf x >的解集.【详解】因为函数()f x 对定义域内R 内的任意x 都有()()4f x f x =-, 所以()f x 对称轴是2x =,因为()f x '满足()()2xf x f x ''<,即()()20x f x '-<, 所以当2x <时()0f x '>,()f x 单调递增, 当2x >时()0f x '<,()f x 单调递减, 又因为()()130f f ==,所以1x <时,()0f x <,13,x <<时,()0f x >,3x >时,()0f x <,当x 与()f x 同号时,()0xf x >, 所以()0xf x >的解集为:()(),01,3-∞⋃, 故答案为:()(),01,3-∞⋃ 【点睛】本题主要考查了函数的对称性和单调性,导数的符号决定原函数的单调性,根据单调性解不等式,属于中档题.19.【分析】设代入解析式得到两个方程联立可得让取值域即可【详解】设则所以联立可得即对于有解令由可得:;由可得:所以在单调递减在上单调递增所以所以值域为即可得的取值范围为故答案为:【点睛】本题主要考查了利解析:2168ln 2,10e ⎡⎤-+⎢⎥⎣⎦【分析】设()00,Q x y 、()00,P x y -代入解析式,得到两个方程联立可得2008ln 2a x x =-+,2000()8ln 2h x x x =-+,1,x e e ⎡⎤∈⎢⎥⎣⎦,让a 取0()h x 值域即可. 【详解】设()00,Q x y 、则()00,P x y -所以2002y x =--,008ln y a x -=+,联立可得2008ln 2a x x =-+即2008ln 2a x x =-+对于1,x e e⎡⎤∈⎢⎥⎣⎦有解,令2000()8ln 2h x x x =-+,200000288()2x h x x x x -'=-=,由0()0h x '>可得:2x e <<;由0()0h x '<可得:12x e<<, 所以0()h x 在1,2e⎡⎤⎢⎥⎣⎦单调递减,在[]2,e 上单调递增,20min ()(2)28ln 2268ln 2h x h ==-+=-,2211118ln 210h e e e e ⎛⎫⎛⎫=-+=+ ⎪ ⎪⎝⎭⎝⎭,()()228ln 26h e e e e =-+=-,所以0max 21()10h x e =+,所以0()h x 值域为2168ln 2,10e ⎡⎤-+⎢⎥⎣⎦, 即可得a 的取值范围为2168ln 2,10e ⎡⎤-+⎢⎥⎣⎦, 故答案为:2168ln 2,10e ⎡⎤-+⎢⎥⎣⎦. 【点睛】本题主要考查了利用导数解决存在性问题,涉及求函数的值域,属于中档题.20.【分析】令先判断函数g(x)的奇偶性和单调性得到在R 上恒成立再利用导数分析解答即得解【详解】因为当时有不等式成立所以令所以函数g(x)在(0+∞)上单调递增由题得所以函数g(x)是奇函数所以函数在R 解析:2【分析】令2()(),g x x f x =先判断函数g(x)的奇偶性和单调性,得到e x ax >在R 上恒成立,再利用导数分析解答即得解. 【详解】因为当0x >时,有不等式()()22x f x xf x '>-成立,所以()()22+20,[()]0x f x xf x x f x ''>∴>,令2()(),g x x f x =所以函数g(x)在(0,+∞)上单调递增, 由题得22()()()g(x),g x x f x x f x -=-=-=- 所以函数g(x)是奇函数,所以函数在R 上单调递增. 因为对x R ∀∈,不等式()()2220xx ef e a x f ax ->恒成立,所以()()222,()()e x x xx e f e a x f ax g e g ax ax >∴>∴>,, 因为a >0,所以当x≤0时,显然成立.当x >0时,()(0)xe a h x x x<=>,所以2(1)()xx e h x x -'=,所以函数h (x)在(0,1)单调递减,在(1,+∞)单调递增.所以min ()(1)h x h e ==, 所以a <e,所以正整数a 的最大值为2. 故答案为2 【点睛】本题主要考查函数的奇偶性及其应用,考查函数单调性的判断及其应用,考查利用导数研究不等式的恒成立问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.属于中档题.三、解答题21.(1)()4230m x y m +-+-=;(2)(),4-∞-. 【分析】(1)对()y f x =求导,切线斜率为()1f ',再求切点坐标,利用点斜式即可写出切线方程;(2)由题意可得1x ,2x 是方程()0f x '=的两个不等式的实根,等价于1x ,2x 是方程210x mx ++=的两个根,由根与系数的关系可得12x x m +=-,121=x x ,将()211f x x x +转化为关于2x ()21x >的函数,再利用单调性求最值即可求解. 【详解】(1)由题意知()0,x ∈+∞,因为()222f x x m x'=++, 所以()142f m '=+,()113f m =+,所以所求切线方程为()()()13421y m m x -+=+-,即()4230m x y m +-+-=;(2)由(1)知()()221222x mx f x x m x x++'=++=, 因为()1212,x x x x <是()f x 的两个不同的极值点,所以1x ,2x 是方程210x mx ++=的两个根,可得12x x m +=-,121=x x ,221m x x ⎛⎫=-+ ⎪⎝⎭,易得21>x ,所以()22122211222ln 1f x x x mx x m x x x +++++=22222222222222211122ln 2ln 211x x x x x x x x x x x x x ⎛⎫⎛⎫-++-++ ⎪ ⎪--+-⎝⎭⎝⎭==()3222222222ln 1x x x x x x =---+>,()()32222222222ln 1g x x x x x x x =---+>,()()2222232ln g x x x x '=-+-,()2221621g x x x ⎛⎫''=-+- ⎪⎝⎭,因为21>x 可得2110x -<,260x -<所以()20g x ''<,()()2222232ln g x x x x '=-+-在()1,+∞单调递减,()()()2132ln1150g x g ''<=-+-=-<,所以()2g x 在()1,x ∈+∞上单调递减,()()214g x g <=-, 从而()211f x x x +的取值范围为(),4-∞-. 【点睛】方法点睛:求曲线切线方程的一般步骤是(1)求出()y f x =在0x x =处的导数,即()y f x =在点P 00(,())x f x 出的切线斜率(当曲线()y f x =在P 处的切线与y 轴平行时,在P 处导数不存在,切线方程为0x x =); (2)由点斜式求得切线方程'00()()y y f x x x -=⋅-. 22.(1)()200cos 100,0,2S πθθθθ⎛⎫⎛⎫=+∈ ⎪ ⎪⎝⎭⎝⎭;(2)6πθ=.【分析】(1)在直角三角形ABC 中,求出AC ,在扇形COB 中利用弧长公式求出弧BC 的长度,则可得函数()S θ; (2)利用导数可求得结果. 【详解】(1)如图,连接,BC OC ,在直角三角形ABC 中,100,,AB BAC θ=∠= 所以100cos ,AC θ=由于22,BOC BAC θ∠=∠= 则弧BC 的长为250100,l r αθθ=⋅=⋅=()22100cos 100200cos 100,0,2S AC l πθθθθθθ⎛⎫⎛⎫∴=+=⨯+=+∈ ⎪ ⎪⎝⎭⎝⎭(2)由(1)可知()200sin 100S θθ'=-+, 令()0,S θ'= 得1sin 2θ=,因为(0,)2πθ∈所以6πθ=,当0,,()0,()6S S πθθθ'⎛⎫∈> ⎪⎝⎭单调递增, 当,,()0,()62S S ππθθθ'⎛⎫∈< ⎪⎝⎭单调递减,所以当6πθ=时,使得绿化带总长度()S θ最大.【点睛】关键点点睛:仔细审题,注意题目中的关键词“两侧”和“一侧”是解题关键. 23.(1)单调递增区间为][4,1,,3⎛⎫-∞-+∞ ⎪⎝⎭,单调递减区间为41,3⎡⎤-⎢⎥⎣⎦; (2)最大值为9,最小值为10027-. 【分析】(1)先求出()'f x ,由()'10f -=求出a 的值,再由()'0f x >得增区间,()'0f x <得减区间;(2)根据(1)的结论求出函数的极值,与端点处函数值进行比较即可结果. 【详解】(1) 函数()()()242(f x x x a a =--∈ R ),()()()22'2242628f x x x a x x ax ∴=-+-⨯=--.()'10,6280f a -=∴+-=,解得1a =.则()()()232421284,f x x x xx x x =--=--+∈ R .()()()2'6282341f x x x x x =--=-+,令()'0f x =,解得1241,3x x =-=. 由()'0f x >得43x >或1x <-,此时函数单调递增, 由()'0f x <得413x -<<,此时函数单调递减, 即函数的单调递增区间为][4,1,,3⎛⎫-∞-+∞ ⎪⎝⎭,单调递减区间为41,3⎡⎤-⎢⎥⎣⎦. (2)当22x -≤≤时,函数()f x 与()'f x 的变化如下表:由表格可知:当1x =-时,函数f x 取得极大值,19f -=, 当43x =时,函数()f x 取得极小值,4100327f ⎛⎫=- ⎪⎝⎭,又()()20,20f f -==,可知函数()f x 的最大值为9,最小值为10027-. 【方法点睛】本题主要考查利用导数判断函数的单调性以及函数在闭区间上的最值,属于难题. 求函数()f x 最值的步骤:(1) 确定函数的定义域;(2) 求导数()f x ';(3) 解方程()0,f x '=求出函数定义域内的所有根;(4) 列表检查()f x '在()0f x '=的根0x 左右两侧值的符号,如果左正右负(左增右减),那么()f x 在0x 处取极大值,如果左负右正(左减右增),那么()f x 在0x 处取极小值. (5)如果只有一个极值点,则在该处即是极值也是最值;(6)如果求闭区间上的最值还需要比较端点值得函数值与极值的大小 24.(1)答案见解析;(2)证明见解析. 【分析】 (1)求导()()1'(0)a x f x x x-=>,0a >,0a <,0a =讨论,令()'0f x >求解.(2)结合(1)将问题转化为()min 2f x >-求解. 【详解】(1)根据题意知,()()1'(0)a x f x x x-=>,当0a >时,当()01x ∈,时,()'0f x >,当()1x ∈+∞,时,()'0f x <, 所以()f x 的单调递增区间为()01,,单调递减区间为()1+∞,; 同理,当0a <时,()f x 的单调递增区间为()1+∞,,单调递减区间为()01,;当0a =时,()3f x =-,不是单调函数,无单调区间. (2)证明:当1a =-时,()ln 3f x x x =-+-, 所以12f ,由(1)知()ln 3f x x x =-+-在()1+∞,上单调递增, 所以当()1x ∈+∞,时,()()1f x f >.即()2f x >-,所以()20f x +>. 【点睛】方法点睛:利用导数方法证明不等式f (x )>g (x )在区间D 上恒成立的基本方法是构造函数h (x )=f (x )-g (x ),然后根据函数的单调性,或者函数的最值证明函数h (x )>0,其中一个重要技巧就是找到函数h (x )在什么地方可以等于零,这往往就是解决问题的一个突破口. 25.(1)证明见解析;(2)1a ≥. 【分析】(1)当1a =时,求导得到()111x f x x x-'=-=,判断出函数的单调性,求出最值,可证得命题成立;(2)当0a ≤且1x >时,()0f x <不满足题意,故0a >,又定义域为()0,∞+,讲不等式化简,参变分离后构造新函数,求导判断单调性并求出最值,可得实数a 的取值范围. 【详解】(1)函数()f x 的定义域为()0,∞+,当1a =时,由()111x f x x x-'=-=, 当()0,1x ∈时,()0f x '<,()f x 单调递减; 当()1,x ∈+∞时,()0f x '>,()f x 单调递增;. 且()10f =,故()f x 存在唯一的零点;(2)当0a ≤时,不满足()0f x ≥恒成立,故0a > 由定义域为()0,∞+,()1ln 0f x ax x =--≥可得1ln x a x+≥, 令1()lnx h x x +=,则2()lnxh x x'=-, 则当01x <<时,()0h x '>,函数()h x 单调递增,当1x >时,()0h x '<,函数()h x 单调递减,故当1x =时,函数()h x 取得最大值h (1)1=, 故实数a 的取值范围是1a ≥. 【点睛】方法点睛:本题考查函数零点的问题,考查导数的应用,考查不等式的恒成立问题,关于恒成立问题的几种常见解法总结如下:1.参变分离法,将不等式恒成立问题转化为函数求最值问题;2.主元变换法,把已知取值范围的变量作为主元,把求取值范围的变量看作参数;3.分类讨论,利用函数的性质讨论参数,分别判断单调性求出最值;4.数形结合法,将不等式两端的式子分别看成两个函数,作出函数图象,列出参数的不等式求解.26.(1)(,0)-∞和(1,)+∞;(2)1-. 【分析】(1)由极值点求出参数3a =,再代入,解不等式()0f x '>求递增区间 (2)求()f x 在[1,2]-上的极值,与端点值比较得出最小值. 【详解】(1)由题意2()62f x x ax '=-()01f '=,则3a =32()234,()6(1)f x x x f x x x '=-+=-,当(,0)x ∈-∞时,()0f x '>;当(0,1)x ∈时,()0f x '<;当(1,)x ∈+∞时,()0f x '>. 所以,函数()f x 的单调递增区间为(,0)-∞和(1,)+∞ (2)当[1,2]x ∈-时,(),()f x f x '的变化情况如下表当1,(1)2343x f ==-+=.所以当[1,2]x ∈-时,函数()f x 的最小值为1-.【点睛】用导数法求最值方法:先求导,然后求出在给定区间上的极值,最后结合端点值,求出最值;。
新北师大版高中数学选修1-1第四章《导数应用》测试(含答案解析)
一、选择题1.已知函数23()2ln (0)xf x x x a a=-+>,若函数()f x 在[]1,2上单调递减,则a 的取值范围是( ) A .2,5⎡⎫+∞⎪⎢⎣⎭B .20,5⎛⎤ ⎥⎝⎦C .(0,1]D .[1,)+∞2.已知函数21()ln 2f x x x a =--,若0x ∃>,()0f x ≥,则a 的取值范围是( ) A .1,2⎛⎤-∞- ⎥⎝⎦B .1,2⎛⎤-∞ ⎥⎝⎦C .(],1-∞D .(],e -∞3.已知函数()()ln 1x xf x x e e -=-++,则使不等式()()12f x f x +<成立的x 的取值范围是( ) A .()(),11,-∞-+∞B .()2,1--C .()1,1,3⎛⎫-∞-+∞ ⎪⎝⎭D .()(),21,-∞-⋃+∞4.已知函数()2sin x m f x x +=-在30,4π⎡⎤⎢⎥⎣⎦上有两个不同的零点,则实数m 的取值范围是( ) A .3,44ππ⎫⎡--⎪⎢⎣⎭ B .3,44ππ⎛⎤⎥⎝⎦ C .,42ππ⎛⎫⎪⎝⎭ D .,24ππ⎛⎫-- ⎪⎝⎭ 5.已知函数()23ln f x x ax x =-+在其定义域内为增函数,则a 的最大值为( )A .4B .C .D .66.若定义在R 上的函数()f x 满足()()1f x f x '+>,(0)4f =,则不等式()3x x e f x e ⋅>+ (其中e 为自然对数的底数)的解集为( )A .(0)(0)-∞+∞,, B .(0)(3)-∞⋃+∞,, C .(0)+∞,D .(3)+∞,7.对于正数k ,定义函数:()()()(),,f x f x kg x k f x k ⎧≤⎪=⎨>⎪⎩.若对函数()ln22f x x x =-+,有()()g x f x =恒成立,则( )A .k 的最大值为1ln 2+B .k 的最小值为1ln 2+C .k 的最大值为ln 2D .k 的最小值为ln 28.甲乙两人进行乒乓球友谊赛,每局甲胜出概率是()01p p <<,三局两胜制,甲获胜概率是q ,则当q p -取得最大值时,p 的取值为( )A .12B .132- C .132+ D .239.已知函数321()13f x x ax x =+++在(,0)-∞,(3,)+∞上为增函数,在()1,2上为减函数,则实数a 的取值范围为( ) A .(,1]-∞-B .55,34⎡⎤--⎢⎥⎣⎦C .5,13⎛⎤-- ⎥⎝⎦D .55,34⎛⎫--⎪⎝⎭10.函数3()3f x x x =-在[0,]m 上最大值为2,最小值为0,则实数m 取值范围为( ) A .[1,3]B .[1,)+∞C .(1,3]D .(1,)+∞11.已知函数()()()22ln 0f x a e x xa =->,1,1D e ⎡⎤=⎢⎥⎣⎦若所有点()(),s f t (s ,t D ∈)所构成的平面区域面积为2e 1-,则a =( ) A .eB .1e 2- C .1 D .2ee - 12.已知定义在R 上的偶函数()f x 的导函数为()'f x ,当0x >时,有2()()0f x xf x '+>,且(1)0f -=,则使得()0f x >成立的x 的取值范围是( )A .(1,0)(0,1)-B .(,1)(1,)-∞-+∞C .(1,0)(1,)D .(,1)(0,1)-∞-二、填空题13.已知()y f x =是定义在R 上的奇函数,()20f -=,且当0x >时()()20f x xf x x '-<,则不等式()()2110x f x -->的解集是______. 14.已知()f x 满足()()431f f =-=,()f x '为其导函数,且导函数()y f x '=的图象如图所示,则()1f x <的解集是_________.15.若函数()()32f x x ax a R =--∈在(),0-∞内有且只有一个零点,则()f x 在[]1,2-上的最小值为______.16.已知函数()()()x f x e x b b R =-∈.若存在1,22x ⎡∈⎤⎢⎥⎣⎦,使得()()0f x xf x '+>,则实数b 的取值范围是____.17.若∃01,22x ⎡⎤∈⎢⎥⎣⎦,使得2002+10x x λ<-成立是假命题,则实数λ的取值范围是________. 18.已知函数()31=4f x x 图像上有动点()11,A x y ,函数()2g x x =-图像上有动点()22,B x y .若A B 、两点同时从纵坐标=0y 的初始位置出发,沿着各自函数图像向右上方运动至AB 、两点的纵坐标值再次相等,且始终满足212x x -=,则在此运动过程中A B 、两点的距离AB 的取值范围是______.19.已知函数()321f x x x =++,若对于x R ∀∈不等式()21xf ax e a -+≤恒成立,则实数a 的取值范围为:____________.20.已知函数f (x )=2,(,0],(0,)x x x e x +∈-∞⎧⎨∈+∞⎩,若存在x 1,x 2(x 2>x 1)满足f (x 1)=f(x 2),则x 2﹣2x 1的取值范围为_____. 三、解答题21.已知函数()ln ()=+∈f x x x ax a R . (Ⅰ)当0a =,求()f x 的最小值;(Ⅱ)若函数()()ln g x f x x =+在区间[1,)+∞上为增函数,求实数a 的取值范围; 22.已知函数()3f x x x =-.(1)求曲线()y f x =在点()()1,1f 处的切线方程; (2)求函数()f x 的单调区间. 23.设函数()(1)ln(1)f x x x x =-++(1)若方程()f x t =在1,12⎡⎤-⎢⎥⎣⎦上有两个实数解,求t 的取值范围; (2)证明:当0m n >>时,(1)(1)n m m n +<+. 24.已知函数()ex af x x =+,其中a R ∈,e 是自然对数的底数. (1)当1a =-时,求函数()f x 在区间[)0,+∞上的零点个数; (2)若()2f x >对任意的实数x 恒成立,求a 的取值范围. 25.已知函数()1ln f x x x =--. (1)求证:()0f x ≥;(2)求证:对于任意正整数n ,2111111222n e ⎛⎫⎛⎫⎛⎫+++< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭.26.已知函数()()ln 2xf x e x =-+.(1)求()f x 在()()0,0f 处的切线方程; (2)求证:()0f x >.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】求出()'f x 由()0f x '≤得314x a x ≤-,令1()4g x x x=-,判断出()g x 的单调性并利用单调性可得()g x 的最小值可得答案. 【详解】31()4(0)f x x x a x'=-+>,因为函数()f x 在[]1,2上单调递减, 所以3140x a x -+≤,即314x a x≤-, 令1()4g x x x =-,由于114,y x y x ==-在[]1,2都是增函数, 所以1()4g x x x=-在[]1,2单调递增,所以()(1)3g x g ≤=, 所以33a≤,又0a >,解得1a ≥. 故选:D. 【点睛】本题考查了利用函数的单调性求参数的范围问题,关键点是令1()4g x x x=-并求出最小值,考查了学生分析问题、解决问题的能力.2.A解析:A 【分析】 由()f x 得21ln 2a x x ≤-,设21()ln 2g x x x =-,利用导数求()g x 的最大值可得答案. 【详解】由21()ln 2f x x x a =--,得21ln 2a x x ≤-.设21()ln 2g x x x =-,则211()x g x x x x-'=-=.令()0g x '>,得01x <<;令()0g x '<,得1x >, 则()g x 在(0,1)上单调递增,在(1,)+∞上单调递减,从而1()(1)2g x g ≤=-, 故12a ≤-. 故选:A. 【点睛】本题考查了能成立求参数的问题,关键点是构造函数利用导数求最值,考查了分析问题、解决问题的能力.3.D解析:D 【分析】先判断函数的奇偶性和单调性,从而可得关于x 的不等式,求出其解后可得正确的选项. 【详解】()f x 的定义域为()(),11,-∞-+∞,且()()()ln 1x x f x x e e f x --=--++=,又当1x >时,()()ln 1xxf x x e e -=-++,()11001x x f x e e e x e-'=+->+->-,故()f x 在()1,+∞为增函数, 故()()12f x f x +<即为11211112121x xx x x x ⎧<+<⎪+-+⎨⎪-⎩或或,解得2x <-或1x >,故选:D. 【点睛】方法点睛:解函数不等式,往往需要考虑函数的奇偶性和单调性,前者依据定义,后者可利用导数,注意定义域的要求.4.A解析:A 【分析】()0f x =有两解变形为m e =设()g x =单调性、极值,结合()g x 的大致图象可得结论. 【详解】由()2sin x m f x x +=-得m e =()g x =2(cos sin )()xx x g x e-'=,易知当04x π<<时,()0g x '>,()g x 递增,当344x ππ<<时,()0g x '<,()g x 递减,(0)0g =,414g e ππ⎛⎫= ⎪⎝⎭,34314g e ππ⎛⎫=⎪⎝⎭,如图是()g x 的大致图象, 由2sin mxx e e =有两解得34411m e e eππ≤<,所以344m ππ-≤<-. 故选:A .【点睛】关键点点睛:本题考查函数的零点问题,解题关键是转化.函数的零点转化为方程的解,再用分离参数变形为2m x x e e =,问题转化为2()xx g x e=的图象与直线my e =有两个交点,利用导数研究函数()g x 的单调性、极值后可得.5.B解析:B 【分析】求导,则由题意导函数在0,上恒大于等于0,分参求a 范围.【详解】由题意可得()160f x x a x'=-+≥对()0,x ∈+∞恒成立,即16a x x ≤+,对()0,x ∈+∞恒成立 因为166x x +≥16x x =即66x =时取最小值 所以26a ≤ 故选:B 【点睛】(1)利用导数研究函数的单调性的关键在于准确判定导数的符号.关键是分离参数k ,把所求问题转化为求函数的最小值问题.(2)若可导函数f (x )在指定的区间D 上单调递增(减),求参数范围问题,可转化为f ′(x )≥0(或f ′(x )≤0)恒成立问题,从而构建不等式,要注意“=”是否可以取到.6.C解析:C 【分析】构造函数()()3x x g x e f x e =⋅--,解不等式()0g x >即可,对()g x 求导得()[()()1]0x g x e f x f x ''=+->,可得()g x 在R 上单调递增,且(0)0g =,根据单调性可得0x >,即得正确答案. 【详解】令()()3x x g x e f x e =⋅--,则()()()[()()1]0x x x x g x e f x e f x e e f x f x '''=⋅+⋅-=+->, 所以()g x 在R 上单调递增, 又因为00(0)(0)30g e f e =⋅--=, 所以()0>g x ⇒0x >,即不等式的解集是(0)+∞,, 故选:C 【点睛】关键点点睛:本题的关键点是构造函数()()3x x g x e f x e =⋅--,所要解的不等式等价于()0g x >,且(0)0g =,所以()()0g x g >,因此需要对()g x 求导判断单调性即可. 7.B解析:B 【分析】利用导数求出函数()f x 的最大值,由函数()g x 的定义结合()()g x f x =恒成立可知()f x k ≤,由此可得出k 的取值范围,进而可得出合适的选项.【详解】对于正数k ,定义函数:()()()(),,f x f x kg x k f x k ⎧≤⎪=⎨>⎪⎩,且()()g x f x =恒成立,则()f x k ≤.函数()ln22f x x x =-+的定义域为()0,∞+,且()111xf x x x-'=-=. 当01x <<时,()0f x '>,此时,函数()f x 单调递增; 当1x >时,()0f x '<,此时,函数()f x 单调递减. 所以,()()max 11ln 2f x f ==+,1ln 2k ∴≥+. 因此,k 的最小值为1ln 2+.故选:B. 【点睛】解决导数中的新定义的问题,要紧扣新定义的本质,将问题转化为导数相关的问题,本题将问题转为不等式()k f x ≥恒成立,从而将问题转化为求函数()f x 的最大值.8.C解析:C 【分析】采用三局两胜制,则甲在下列两种情况下获胜:甲净胜二局,前二局甲一胜一负,第三局甲胜,由此能求出甲胜概率,进而求得的最大值. 【详解】采用三局两胜制,则甲在下列两种情况下获胜: 甲净胜二局概率为2p ;前二局甲一胜一负,第三局甲胜概率为12(1)C p p p -⋅22(1)p p =-则22(1)q p p p =+-,得q p -222(1)p p p p =+--3223p p p =-+-(01)p <<, 设3223y p p p =-+-,(01)p <<, 则2661y p p '=-+-6(p p =--- 则函数y在单调递减,在单调递增,故函数在36p =+处取得极大值,也是最大值. 故选:C. 【点睛】本题考查了概率的求法和应用以及利用导数求函数最值的方法,解题时要认真审题,注意等价转化思想和分类讨论思想的合理运用,属于中档题.9.B解析:B 【分析】求导得到2()21'=++f x x ax ,然后根据()f x 在(,0)-∞,(3,)+∞上为增函数,在()1,2上为减函数,由(0)0(1)0(2)0(3)0f f f f ''≥⎧⎪≤⎪⎨''≤⎪⎪≥⎩求解.【详解】已知函数321()13f x x ax x =+++,则2()21'=++f x x ax ,因为()f x 在(,0)-∞,(3,)+∞上为增函数,在()1,2上为减函数,所以(0)0(1)0(2)0(3)0f f f f ''≥⎧⎪≤⎪⎨''≤⎪⎪≥⎩,即10121044109610a a a ≥⎧⎪++≤⎪⎨++≤⎪⎪++≥⎩,解得 5534a-≤≤-, 所以实数a 的取值范围为55,34⎡⎤--⎢⎥⎣⎦故选:B 【点睛】本题主要考查导数与函数的单调性以及二次函数与根的分布,还考查了逻辑推理和运算求解的能力,属于中档题.10.A解析:A 【分析】求导得()3(1)(1)f x x x =+-',从而知函数()f x 的单调性,再结合(0)0f =,f (1)2=,即可得解【详解】 .3()3f x x x =-,2()333(1)(1)f x x x x ∴=-=+-',令()0f x '=,则1x =或1-(舍负),当01x <时,()0f x '>,()f x 单调递增;当1x >时,()0f x '<,()f x 单调递减. 函数()f x 在[0,]m 上最大值为2,最小值为0,且(0)(3)0f f ==,f (1)2=,13m ∴≤.故选:A. 【点睛】本题考查利用导数研究函数的最值问题,理解原函数的单调性与导函数的正负性之间的联系是解题的关键,考查学生的逻辑推理能力和运算能力,属于基础题.11.D解析:D 【分析】求得导函数()'f x ,确定()f x 在1,1e ⎡⎤⎢⎥⎣⎦上的单调性,()f x 在1,1e ⎡⎤⎢⎥⎣⎦上的值域,从而可得题中平面区域面积,解之可得a . 【详解】解:()()2222a e x f x a e x x -⎛⎫'=-= ⎪⎝⎭,因为1,1x e ⎡⎤∈⎢⎥⎣⎦,0a >,所以()0f x '>,()f x 在1,1e ⎡⎤⎢⎥⎣⎦上单调递增,则()f x 在1,1e⎡⎤⎢⎥⎣⎦上的值域为()22,a e e a ⎡⎤+⎣⎦, 因为所有点()(),s f t (s ,t D ∈)所构成的平面区域面积为2e 1-,所以()221211a e e e e ⎛⎫---=-⎪⎝⎭, 解得2ea e =-, 故选:D . 【点睛】本题考查用导数求函数的值域,解题方法是求出导函数,用导数确定函数的单调性,求得值域区间,然后可计算出题设平面区域面积,得出结论.12.B解析:B 【分析】根据条件构造函数2()()g x x f x =,求函数的导数,判断函数的单调性,将不等式进行转化求解. 【详解】由题意,设2()()g x x f x =,则2'()2()()[2()'()]g x xf x x f x x f x xf x =+=+, 因为当0x >时,有2()'()0f x xf x +>, 所以当0x >时,'()0g x >,所以函数2()()g x x f x =在(0,)+∞上为增函数,因为(1)0f -=,又函数()f x 是偶函数,所以(1)(1)0f f =-=,所以(1)0g =,而当()0>g x 时,可得1x >,而()0>g x 时,有()0f x >, 根据偶函数图象的对称性,可知()0f x >的解集为()(),11,-∞-⋃+∞,故选B. 【点睛】该题考查的是与导数相关的构造新函数的问题,涉及到的知识点有函数的求导公式,应用导数研究函数的单调性,解相应的不等式,属于中档题目.二、填空题13.【分析】设则为偶函数由则在是上单调递增在是上单调递减设即求解分和两种情况解不等式和【详解】设由当时即所以在是上单调递增为奇函数则为偶函数在是上单调递减即()设当时即由为奇函数则所以由在是上单调递增所 解析:()()1,13,-+∞【分析】 设()()f x g x x =,则()g x 为偶函数,由()()()2xf x f x g x x'-'=, 则()g x 在()0+∞,是上单调递增,()g x 在()0-∞,是上单调递减,设1x t -=,即求解()0f t >,分0t >和0t <两种情况解不等式()0g t >和()0g t <.【详解】 设()()f x g x x =,由()()()2xf x f x g x x'-'= 当0x >时()()20f x xf x x'-<,即()0g x '>,所以()g x 在()0+∞,是上单调递增. ()y f x =为奇函数,则()()f x g x x=为偶函数,()g x 在()0-∞,是上单调递减 ()()2110x f x -->,即()10f x ->(1x ≠)设1x t -=,当0t >时,()0f t >,即()()0f t g t t=> 由()20f -=,()y f x =为奇函数,则()20f =,所以()20g =由()g x 在()0+∞,是上单调递增,()0g t >,所以2t >,即12x ->,所以3x > 当0t <时,()0f t >,即()()0f t g t t=< 由()20f -=,则()20g -=,根据()g x 在()0-∞,是上单调递减 所以当()0g t <时,则20t -<<,即210x -<-<,所以11x -<< 综上所述:不等式()()2110x f x -->的解集是:()()1,13,-+∞故答案为:()()1,13,-+∞【点睛】关键点睛:本题考查构造函数讨论单调性解不等式,解答本题的关键是构造函数()()f x g x x =,由()()()2xf x f x g x x'-'=结合条件和奇偶性得出其单调性, 属于中档题. 14.【分析】利用导数分析函数的单调性分和两种情况解不等式由此可得出原不等式的解集【详解】由函数的图象可知当时此时函数单调递减;当时此时函数单调递增因为当时由可得;当时由可得综上所述不等式的解集时故答案为 解析:()3,4-【分析】利用导数分析函数()f x 的单调性,分0x ≤和0x >两种情况解不等式()1f x <,由此可得出原不等式的解集. 【详解】由函数()y f x '=的图象可知,当0x <时,()0f x '<,此时函数()f x 单调递减; 当0x >时,()0f x '>,此时函数()f x 单调递增.因为()()431f f =-=,当0x ≤时,由()()13f x f <=-,可得30x -<≤; 当0x >时,由()()14f x f <=,可得04x <<. 综上所述,不等式()1f x <的解集时()3,4-.故答案为:()3,4-. 【点睛】思路点睛:根据函数单调性求解函数不等式的思路如下: (1)先分析出函数在指定区间上的单调性;(2)根据函数单调性将函数值的关系转变为自变量之间的关系,并注意定义域; (3)求解关于自变量的不等式 ,从而求解出不等式的解集.15.【分析】利用导数分析函数在区间上的单调性根据该函数在区间上有且只有一个零点求得参数的值进而利用导数可求得函数在区间上的最小值【详解】则①当时对任意的恒成立此时函数在区间上单调递增且不合乎题意;②当时 解析:4-【分析】利用导数分析函数()y f x =在区间(),0-∞上的单调性,根据该函数在区间(),0-∞上有且只有一个零点求得参数a 的值,进而利用导数可求得函数()y f x =在区间[]1,2-上的最小值. 【详解】()32f x x ax =--,则()23f x x a '=-.①当0a ≤时,对任意的(),0x ∈-∞,()0f x '>恒成立,此时,函数()y f x =在区间(),0-∞上单调递增,且()()020f x f <=-<,不合乎题意;②当0a >时,令()230f x x a '=-=,可得x =x =当x <()0f x '>,此时函数()y f x =单调递增;当0x <<时,()0f x '<,此时函数()y f x =单调递减.所以,()max20f x f ⎛=== ⎝,解得3a =,()332f x x x ∴=--. ()()()233311f x x x x '=-=-+,当11x -<<时,()0f x '<,此时函数()y f x =单调递减; 当12x <<时,()0f x '>,此时函数()y f x =单调递增.因此,函数()y f x =在1x =处取得极小值,亦即最小值,故()()min 14f x f ==-. 故答案为:4-. 【点睛】本题考查利用导数求解函数在区间上的最值,同时也考查了利用导数研究函数的零点,考查计算能力,属于中等题.16.【详解】解答:∵f(x)=ex(x−b)∴f′(x)=ex(x−b+1)若存在x ∈2使得f(x)+xf′(x)>0则若存在x ∈2使得ex(x−b)+xex(x−b+1)>0即存在x ∈2使得b<成立令解析:83b <【详解】 解答: ∵f(x)=e x (x−b), ∴f′(x)=e x (x−b+1), 若存在x ∈[12,2],使得f(x)+xf′(x)>0, 则若存在x ∈[12,2],使得e x (x−b)+xe x (x−b+1)>0, 即存在x ∈[12,2],使得b<221x x x ++ 成立, 令()221,,212x x g x x x +⎡⎤=∈⎢⎥+⎣⎦,则()()222201x x g x x ++'=>+ ,g(x)在1,22⎡⎤⎢⎥⎣⎦递增,∴g(x)最大值=g(2)=83, 则实数b 的取值范围是83b <17.【分析】将命题转化为使得恒成立是真命题令函数对其求导讨论导函数取正负的区间得出所构造的函数的单调性从而求出最值利用不等式恒成立的思想得出实数λ的取值范围【详解】因为∃使得成立是假命题所以使得恒成立是解析:(-∞【分析】将命题转化为1,22x ⎡⎤∀∈⎢⎥⎣⎦,使得12+x x λ≤恒成立是真命题,令函数()12+f x x x =,对其求导,讨论导函数取正负的区间,得出所构造的函数的单调性,从而求出最值,利用不等式恒成立的思想,得出实数λ的取值范围. 【详解】因为∃01,22x ⎡⎤∈⎢⎥⎣⎦,使得2002+10x x λ<-成立是假命题,所以1,22x ⎡⎤∀∈⎢⎥⎣⎦,使得22+10x x λ≥-恒成立是真命题,即1,22x ⎡⎤∀∈⎢⎥⎣⎦,使得12+x x λ≤恒成立是真命题,令()12+f x x x=,则()'212f x x =- ,当1,22x ⎛∈ ⎝⎭时,()'0f x <,函数()f x 在1,22⎛⎝⎭上单调递减,当2x ⎫∈⎪⎪⎝⎭时,()'>0f x ,函数()f x 在2⎫⎪⎪⎝⎭上单调递增,所以()f x f ≥=⎝⎭λ≤故答案为:(-∞.【点睛】本题考查全称命题和特称命题的关系,运用参变分离的方法求参数的范围,属于中档题.18.【分析】根据题意求出从初始位置出发至两点的纵坐标值再次相等时对应的的取值进而求得的取值范围用两点距离公式表示进而表示成关于的函数用导数的观点求的取值范围即可【详解】解:因为动点在函数图像上动点在函数解析:2⎡⎢⎣⎦【分析】根据题意求出AB 、从初始位置出发至A B 、两点的纵坐标值再次相等时对应的1x 的取值,进而求得1x 的取值范围,用两点距离公式表示AB ,进而表示成关于1x 的函数,用导数的观点求AB 的取值范围即可. 【详解】解:因为动点()11,A x y 在函数()31=4f x x 图像上,动点()22,B x y 在函数函数()2g x x =-图像上,所以311221,24y x y x ==-. 由题知:10x ≥,22x ≥,212x x =+.由当AB 、两点同时从纵坐标=0y 的初始位置出发,沿着各自函数图像向右上方运动至A B 、两点的纵坐标值再次相等时,得312124x x =-,所以31114x x =,解得10x =或12x =±. 所以,当AB 、两点同时从纵坐标=0y 的初始位置出发,沿着各自函数图像向右上方运动至A B 、两点的纵坐标值再次相等时12x =.102x ∴≤≤,AB ∴==[]10,2x =∈设[]21,0,4x t t =∈,则[]0,4AB t =∈. 设()[]2321111,0,44162g t t t t t t t ⎛⎫=-=-+∈ ⎪⎝⎭,则()23116g t t t ='-+,由0g t 得4t =或43t =. 40,3t ⎡⎤∴∈⎢⎥⎣⎦时,()0g t '>,g t 单调递增;4,43t ⎡⎤∈⎢⎥⎣⎦时,()0g t '<,g t 单调递减; 34t ∴=时,()max 43g t g ⎛⎫= ⎪⎝⎭,此时maxAB===;t=时,()()min00g t g==,此时,min2AB===.AB⎡∴∈⎢⎣⎦.故答案为:⎡⎢⎣⎦.【点睛】本题主要考查用导数求最值,考查学生用导数解决问题的能力,属于中档题.19.【分析】根据在R上递增结合将不等式恒成立转化为恒成立然后分和两种情况利用导数法求解【详解】因为所以成立所以在R上递增又成立所以恒成立即恒成立当时转化为恒成立令当时单调递减当时单调递增所以当时求得最小解析:10ae≤≤【分析】根据()f x在R上递增,结合()01f=,将x R∀∈不等式()21xf ax e a-+≤恒成立,转化为()2xa x e+≤,x R∀∈恒成立,然后分20x+≤和20x+>两种情况,利用导数法求解.【详解】因为()321f x x x=++,所以()2320f x x'=+>成立,所以()f x在R上递增,又()()01,21xf f ax e a=-+≤x R∀∈成立,所以20xax e a-+≤,x R∀∈恒成立,即()2xa x e+≤,x R∀∈恒成立,当20x+>时,转化为2xeax≤+恒成立,令()2xg xex=+,()()()212x xegxx+'=+,当21x-<<-时,()0g x'<,()g x单调递减,当1x>-时,()0g x'>,()g x单调递增,所以当1x=-时,()g x求得最小值min1()(1)g x ge=-=,所以1a e≤, 当20x +≤时,转化为2xe a x ≥+恒成立,(),(,2)a g x x ≥∈-∞-上恒成立, (,2)x ∈-∞-时,()0,()g x g x '<单调递减,又(,2),()0x g x ∈-∞-<,所以0a ≥不等式恒成立, 综上:实数a 的取值范围为10a e≤≤ 故答案为:10a e≤≤ 【点睛】本题主要考查导数与函数的单调性,导数与不等式恒成立,还考查了转化化归的思想,分类讨论思想和运算求解的能力,属于中档题.20.ln22)【分析】用表示出得出关于的函数根据的范围判断函数单调性得出值域即可【详解】显然由题意可知故由可得故设则在上单调递减又故答案为:【点睛】本题主要考查利用导数研究函数的单调性和最值意在考查学生解析:[ln 2,2) 【分析】用2x 表示出1x ,得出212x x -关于2x 的函数2()g x ,根据2x 的范围,判断函数单调性得出值域即可. 【详解】显然10x ,20x >,由题意可知212x x e +=,故212x x e =-,2212224x x x x e ∴-=-+,由2121x x e +=>可得110x -<,故2120x e -<-,202x ln ∴<, 设()24(02)x g x x e x ln =-+<,则()120x g x e '=-<,()g x ∴在(0,2]ln 上单调递减, 又(0)2g =,(2)2g ln ln =, 2()2ln g x ∴<.故答案为:[2ln ,2). 【点睛】本题主要考查利用导数研究函数的单调性和最值,意在考查学生对这些知识的理解掌握水平.三、解答题21.(1)11()f e e=-;(2)2a ≥- 【分析】(1)对函数求导,令'()ln 1=0=+f x x ,讨论函数的单调性即可求出结果.(2)由()g x 在区间[1,)+∞单调递增,可得'()0≥g x 在[1,)+∞恒成立,分离参数可得:1ln (1)+≥-+x a x,构造函数即可求出结果. 【详解】(1)()ln 1,'()ln 1=+=+f x x x f x x 令'()ln 1=0=+f x x ,解得1=x e当x 变化时,(),()f x f x '的变化情况如下:所以min ()()f x f ee ==-(2)1'()ln 1=+++g x x a x, ()g x 在区间[1,)+∞单调递增,所以'()0≥g x 在[1,)+∞恒成立,即1ln (1)+≥-+x a x在[1,)+∞恒成立 设221111()ln ,'()0-=+∴=-=>x h x x h x x x x x 1()ln ∴=+h x x x[1,)+∞单调递增,min ()=(1)=1h x h 只需1(1)≥-+a 即可,解得2a ≥- 【点睛】方法点睛:()g x 在区间[1,)+∞单调递增'()0⇔≥g x 在[1,)+∞恒成立,分离参数,构造函数是常用方法.本题考查了运算求解能力和逻辑推理能力,属于中档题目..22.(1)220x y --=;(2)函数()f x 的单调增区间为,⎛-∞ ⎝⎭,⎫∞⎪⎪⎝⎭,单调减区间为⎛ ⎝⎭.【分析】(1)求出()1f 、()1f '的值,利用点斜式可得出所求切线的方程;(2)解方程()0f x '=,列表分析()f x '的符号变化,由此可得出函数()f x 的单调递增区间和递减区间. 【详解】(1)由()3f x x x =-,得()231f x x '=-,所以()12f '=,又()10f =,所以曲线()y f x =在点()()1,1f 处的切线方程为:()21y x =-,即220x y --=.(2)令()2310f x x '=-=,得x =, x 、()f x '、()f x 在R 上的情况如下:所以函数()f x 的单调增区间为,⎛-∞ ⎝⎭,3⎛⎫∞ ⎪ ⎪⎝⎭,单调减区间为⎛ ⎝⎭. 【点睛】方法点睛:利用导数求解函数单调区间的基本步骤: (1)求函数()f x 的定义域; (2)求导数()f x ';(3)解不等式()0f x '>,并与定义域取交集得到的区间为函数()f x 的单调增区间;解不等式()0f x '<,并与定义域取交集得到的区间为函数()f x 的单调减区间. 23.(1)11ln 2,022⎡⎫-+⎪⎢⎣⎭;(2)证明见解析. 【分析】(1)方程()f x t =在1,12⎡⎤-⎢⎥⎣⎦上有两个实数解,等价于函数()f x 在区间1,12⎡⎤-⎢⎥⎣⎦上的图像与直线y t =有两个交点,所以利用导数求出()f x 在1,02⎡⎤-⎢⎥⎣⎦上单调递增,在(]0,1上单调递减,再比较出(1)f 和12f ⎛⎫ ⎪⎝⎭的大小即可得答案;(2)由0m n >>,要证(1)(1)n m m n +<+,只需证ln(1)ln(1)n m m n +<+,只需证ln(1)ln(1)m n m n ++<,构造函数ln(1)(),(0)x g x x x+=>,然后利用导数证明()g x 是减函数即可 【详解】解:(1)由()(1)ln(1)f x x x x =-++,定义域为()1,-+∞,()ln(1)f x x '=-+,()ln(1)00f x x x '=-+=⇒=,当102x -≤<时,()()0,f x f x '>单调递增, 当01x <≤时,()()0,f x f x '<单调递减, 则()f x 在1,02⎡⎤-⎢⎥⎣⎦上单调递增,在(]0,1上单调递减, 又111(0)0,(1)1ln 4,()ln 2222f f f ==--=-+, 135(1)()ln 20,222∴--=-<f f 1(1)2f f ⎛⎫∴< ⎪⎝⎭∴ 当11ln 2,022⎡⎫∈-+⎪⎢⎣⎭t 时,方程()f x t =有两解. (2)∵ 0m n >>.∴ 要证:(1)(1)n m m n +<+,只需证ln(1)ln(1)n m m n +<+, 只需证:ln(1)ln(1)m n m n ++<. 设ln(1)(),(0)x g x x x+=>, 则22ln(1)(1)ln(1)1()(1)xx x x x x g x x x x -+-+++=+'=. 由(1)知()(1)ln(1)f x x x x =-++在(0,)+∞单调递减, 又()00=f ,∴ (1)ln(1)0x x x -++<, 即()g x 是减函数,而m n >. ∴ ()()g m g n <,故原不等式成立. 【点睛】关键点点睛:此题考查导数的应用,考查利用导数证明不等式,考查数学转化思想,解题的关键是把(1)(1)n m m n +<+,转化为ln(1)ln(1)m n m n ++<,再构造函数,再利用导数判断此函数为减函数即可,属于中档题24.(1)有1个零点;(2)(,)e +∞.【分析】(1)求导得到函数的单调性,再利用零点存在性定理得解;(2)分离参变量,不等式恒成立转化为求函数的最值得解.【详解】(1)当1a =-时,()1e x f x x =-, 则()110ex f x =+>', ∴()f x 在[)0,+∞上单调递增,又(0)10f =-<,1(1)10ef =->, 故0(0,1)x ∃∈,使得()00f x =,∴函数()f x 在区间[0,)+∞上有1个零点;(2)若()2f x >对任意的实数x 恒成立,即e (2)x a x >-恒成立,令()e (2)x g x x =-,则()e (1)x g x x '=-,令()0g x '>,得1x <;令()0g x '<,得1x >.∴()g x 在(,1)-∞上递增,在(1,)+∞上递减,∴max [()](1)e g x g ==,∴a 的取值范围为(e,)+∞.【点睛】方法点睛:不等式恒成立问题解决思路:一般参变量分离、转化为最值问题.25.(1)证明见解析;(2)证明见解析.【分析】(1)求导根据导数()0f x '>,()0f x '<求出最小值()10f =进而有()0f x ≥成立 (2)有(1)得ln 1≤-x x ,令112n x =+得11ln 122n n ⎛⎫+< ⎪⎝⎭,不等式通项可加性相加,根据等比数列求和化简即可证明.【详解】解:(1)由题意得()111x f x x x-'=-= 当1x >时()0f x '>,()f x 单调增当01x <<时()0f x '<,()f x 单调减所以()f x 的最小值为()10f =,所以()()01x f f ≥=即()0f x ≥成立(2)由(1)知ln 1≤-x x 令112n x =+得11ln 122n n ⎛⎫+< ⎪⎝⎭ 所以2212111111ln 1ln 1ln 1222222n ⎛⎫⎛⎫⎛⎫+++++<++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭111221111212n n ⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎛⎫⎝⎭==-< ⎪⎝⎭- 即22111ln 1111ln 222e ⎛⎫⎛⎫⎛⎫⎛⎫+⋅++<= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭所以2111111222n e ⎛⎫⎛⎫⎛⎫+++< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭ 【点睛】已知不等式证明问题常用的方法:(1)证明()min f x a ≥或()max f x a ≤;(3)构造两个函数()()f x g x <,证明()min max ()f x g x <26.(1)11ln 22y x =+-;(2)证明见解析. 【分析】(1)求出()f x 的导函数,由()0k f '=,可得答案.(2)求出()f x 的导函数,讨论出函数()f x 的单调性,得出其最小值,可证明.【详解】(1)解:1()2x f x e x '=-+, 当0x =时,()102k f '==, 又()01ln 2f =-,所以切线方程为()11ln 22y x --=,即11ln 22y x =+-.(2)解:1()2x f x e x '=-+在区间()2,-+∞上单调递增, 又()10f '-<,()00f '>,故()0f x '=在区间()2,-+∞上有唯一实根0x ,且()01,0x ∈-,当()02,x x ∈-时,()0f x '<;当()0,x x ∈+∞时,()0f x '>,从而当0x x =时,()f x 取得最小值.由()00f x '=,得0012x e x =+,()00ln 2x x +=-, 故()()20000011()022x f x f x x x x +≥=+=>++. 【点睛】本题考查求函数在某点出的切线方程和利用导数证明不等式.解答本题的关键是由1()2x f x e x '=-+在区间()2,-+∞上单调递增,得出()0f x '=在区间()2,-+∞上有唯一实根0x ,从而得出()f x 的单调区,即()()20000011()22x f x f x x x x +≥=+=++,属于中档题.。
(常考题)北师大版高中数学选修1-1第四章《导数应用》检测题(含答案解析)(4)
一、选择题1.已知函数()2ln (0,)f x ax bx x a b R =+->∈,若对任意0x >,有()()1f x f ≥,则( ) A .ln 2a b <-B .ln 2a b >-C .ln 2a b =-D .ln 2a b ≥-2.已知函数21()ln 2f x x x a =--,若0x ∃>,()0f x ≥,则a 的取值范围是( ) A .1,2⎛⎤-∞- ⎥⎝⎦B .1,2⎛⎤-∞ ⎥⎝⎦C .(],1-∞D .(],e -∞3.已知α,β∈R ,则“0αβ+<”是“sin sin αβαβ+<+”的( ) A .充分不必要条件 B .必要不充分条件 C .既不充分也不必要条件 D .充分必要条件4.已知函数()2()xxf x x e e x-=⋅-+,若()()()f x f y f x y <<+,则( )A .0xy >B .0xy <C .0x y +>D .0x y +<5.已知函数()f x 定义域为R ,其导函数为f x ,且()()30f x f x '->在R 上恒成立,则下列不等式定成立的是( ) A .()()310f e f <B .()()210f e f < C .()()310f e f >D .()()210f e f >6.已知函数ln ,0()(2),0x xx f x x x e x ⎧>⎪=⎨⎪+≤⎩,若函数()()g x f x a =-仅有一个零点,则实数a的取值范围为( ). A .(2,)+∞B .31(2,),e ⎛⎫+∞⋃-∞-⎪⎝⎭C .311,2,e e⎛⎤⎛⎫⋃-∞- ⎪⎥⎝⎦⎝⎭D .31,e ⎛⎫-∞-⎪⎝⎭7.已知实数2343a e =,4565b e =,6787c e =,那么a ,b ,c 大小关系为( ) A .a b c >> B .b a c >> C .c b a >> D .a c b >>8.已知函数()ln f x x =,若对任意的12,(0,)x x ∈+∞,都有()()()()2221212122f x f x x x k x x x -->+⎡⎤⎣⎦恒成立,则实数k 的最大值是( ) A .1-B .0C .1D .29.已知函数,0(),0x e x f x x x ⎧≥=⎨-<⎩(其中e 为自然对数的底数),若函数2()y f x ax =-恰有三个零点,则()A.24ea>B.24ea C.22ea>D.2ea>10.设函数()xf x e x=-,直线y ax b=+是曲线()y f x=的切线,则+a b的最大值是()A.11e-B.1 C.1e-D.22e-11.()f x是R上的偶函数,当()0,x∈+∞时,()()0xf x f x'->,且()30f=,则不等式()f xx>的解集为()A.()3,+∞B.()(),33,-∞-+∞C.()()3,03,-⋃+∞D.()()3,00,3-12.已知函数()2xf x=,2()g x x ax=+(其中a R∈).对于不相等的实数12,x x,设1212()()f x f xmx x-=-,1212()()g x g xnx x-=-.现有如下命题:(1)对于任意不相等的实数12,x x,都有0m>;(2)对于任意的a及任意不相等的实数12,x x,都有0n>;(3)对于任意的a,存在不相等的实数12,x x,使得m n=;(4)对于任意的a,存在不相等的实数12,x x,使得m n=-.其中真命题的个数有()A.3个B.2个C.1个D.0个二、填空题13.已知函数()2ln()x ax a ax x Rf=--∈的图象与x轴交于不同两点,则实数a的取值范围为______.14.已知()f x满足()()431f f=-=,()f x'为其导函数,且导函数()y f x'=的图象如图所示,则()1f x<的解集是_________.15.定义在R上的函数()f x满足:()()22f x f x x-+=,且当0x≤时,()2f x x'<,则不等式()()25510f x x xf+-+≥的解集为______.16.如图,现有一个圆锥形的铁质毛坯材料,底面半径为6,高为8.某工厂拟将此材料切割加工成一个圆柱形构件,并要求此材料的底面加工成构件的一个底面,则可加工出该圆柱形构件的最大体积为__________.17.已知函数,0()(1),0xlnx x f x e x x >⎧=⎨+⎩,若函数()()()F x f x c c R =-∈恰有3个零点,则实数c 的取值范围是________.18.如图,两条距离为4的直线都与y 轴平行,它们与抛物线()22014y px p =-<<和圆()2249x y -+=分别交于A ,B 和C ,D ,且抛物线的准线与圆相切,则22AB CD ⋅的最大值为______.19.设定义在R 上的连续函数()f x 的导函数为()f x ',已知函数()y x f x =⋅'的图象(如图)与x 轴的交点分别为()2,0-,()0,0,()2,0.给出下列四个命题:①函数()f x 的单调递增区间是()2,0-,(2,)+∞; ②函数()f x 的单调递增区间是(–,2)∞-,(2,)+∞; ③2x =-是函数()f x 的极小值点; ④2x =是函数()f x 的极小值点. 其中,正确命题的序号是__________.20.函数31()3f x x ax =-的极大值为a =__________. 三、解答题21.已知函数()2ln f x x a x x=--. (1)已知()f x 在点()()1,1f 处的切线方程为2y x =-,求实数a 的值; (2)已知()f x 在定义域上是增函数,求实数a 的取值范围. 22.已知函数()()222ln f x x mx x m m R =+++∈.(1)求曲线()y f x =在点()()1,1f 处的切线方程; (2)函数()f x 有两个不同的极值点()1212,x x x x <,求()211f x x x +的取值范围. 23.已知()21ln f x ax x =--(1)当2a =时,求()f x 的单调增区间; (2)若()0f x ≥,求实数a 的取值范围. 24.已知函数32()392f x x x x =-++-.(1)求函数()y f x =的图象在点()()1,1f 处的切线方程; (2)求()f x 的单调区间.25.已知e 是自然对数的底数,函数()122x f x eax -=-,其中a R ∈.(1)当1a =时,若()()g x f x '=,求()g x 的单调区间; (2)若()f x 在R 上恰有三个零点,求a 的取值范围. 26.(1)证明:1x e x ≥+; (2)证明:ln 1≤-x x ; (3)证明:1ln(1)x e x ->+.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据()()1f x f ≥,可得x =1是()f x 的极小值点,即()01f '=,可得a ,b 的关系,对ln a 与2b -的作差,可得ln (2)ln 24a b a a --=+-,构造()ln 42,(0)g x x x x =-+>,即可求得()g x 的极大值1()1ln 404g =-<,化简整理,即可得答案. 【详解】由题意得1()2f x ax b x'=+-, 因为()()1f x f ≥,所以()f x 在x =1处取得最小值,即为x =1是()f x 的极小值点, 所以(1)210f a b '=+-=,即12b a =-, 所以ln (2)ln 2ln 24a b a b a a --=+=+-, 令()ln 42,(0)g x x x x =-+>,则114()4x g x x x-'=-=, 令()0g x '=,解得14x =, 当1(0,)4x ∈时,()0g x '>,所以()g x 为增函数,当1(,)4x ∈+∞时,()0g x '<,所以()g x 为减函数,所以11()()ln 121ln 4044g x g ≤=-+=-<,所以()ln 42ln (2)0g a a a a b =-+=--<,即ln 2a b <-.故选:A 【点睛】解题的关键是熟练掌握利用导函数求解函数极值,判断单调性的方法,并灵活应用,比较两式大小,常用作差法或作商法,难点在于构造()g x 并求极大值,属中档题.2.A解析:A 【分析】 由()f x 得21ln 2a x x ≤-,设21()ln 2g x x x =-,利用导数求()g x 的最大值可得答案. 【详解】 由21()ln 2f x x x a =--,得21ln 2a x x ≤-.设21()ln 2g x x x =-,则211()x g x x x x-'=-=.令()0g x '>,得01x <<;令()0g x '<,得1x >, 则()g x 在(0,1)上单调递增,在(1,)+∞上单调递减,从而1()(1)2g x g ≤=-,故12a ≤-. 故选:A. 【点睛】本题考查了能成立求参数的问题,关键点是构造函数利用导数求最值,考查了分析问题、解决问题的能力.3.D解析:D 【分析】首先构造函数()sin x x x f -=,利用导数判断函数的单调性,再判断选项. 【详解】构造函数()sin x x x f -=,()1cos 0f x x '=-≥恒成立,()f x ∴是单调递增函数,0αβ+<,即αβ<-,()()f f αβ∴<-,即()()sin sin ααββ-<---,即sin sin αβαβ+<+,反过来,若sin sin αβαβ+<+,即()()sin sin ααββ-<---,αβ∴<-,即0αβ+<.故选:D 【点睛】关键点点睛:本题的关键是通过条件观察后构造函数()sin x x x f -=,通过判断函数的单调性,比较大小.4.A解析:A 【分析】先判断函数的奇偶性和单调性,再分析得解. 【详解】由题得函数的定义域为R.()22())()(x x x x f x x e e x e e x x f x --=-+=-=-⋅-+,所以函数是偶函数.当0x >时,1()()2xx x x f x e xe xe x e-'=-+++, 因为0x >,所以()0f x '>,所以函数()f x 在(0,)+∞上单调递增,因为函数是偶函数,所以函数()f x 在(,0)-∞上单调递减,在(0,)+∞上单调递增. 如果0,0x y >>,则0x y +>,因为()()()f x f y f x y <<+,所以x y x y <<+,与已知相符; 如果0,0x y <<,则0x y +<,所以x y x y >>+,与已知相符; 如果0,0x y ><,因为()()f x f y <,所以0y x y <+<, 所以()()f y f x y >+,与已知矛盾;如果0,0x y <>,因为()()f x f y <,所以0y x y >+>, 所以()()f y f x y >+,与已知矛盾;当,x y 之中有一个为零时,不妨设0y =,()()f x y f x += ,()()()f x f y f x <<,显然不成立.故选:A 【点睛】方法点睛:对于函数的问题,要灵活利用函数的奇偶性和单调性分析函数的问题,利用函数的图象和性质分析函数的问题.5.A解析:A 【分析】 构造函数()()3xf xg x e=,由()()30f x f x '->得0g x ,进而判断函数()g x 的单调性,判断各选项不等式. 【详解】()()3x f x g x e=,则()()()()()()3323333x x x x f x e f x e f x f x g x e e ⋅--==''', 因为()()30f x f x '->在R 上恒成立, 所以0g x在R 上恒成立,故()g x 在R 上单调递减, 所以()()10g g <,即()()3010f f e e <,即()()310f e f <, 故选:A. 【点睛】函数的单调性是函数的重要性质之一,它的应用贯穿于整个高中数学的教学之中.某些数学问题从表面上看似乎与函数的单调性无关,但如果我们能挖掘其内在联系,抓住其本质,那么运用函数的单调性解题,能起到化难为易、化繁为简的作用.因此对函数的单调性进行全面、准确的认识,并掌握好使用的技巧和方法,这是非常必要的.根据题目的特点,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧.许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效.6.C解析:C转化为()y f x =的图象与直线y a =仅有一个交点,利用导数得到函数的性质,根据函数的性质作出函数的图象,根据图象可得解. 【详解】当0x >时,ln ()x fx x=,21ln ()x x x f x x ⋅-'=21ln xx -=, 当0x e <<时,()'f x 0>,当x e >时,()0f x '<,所以()f x 在(0,)e 上递增,在(,)e +∞上递减,所以()f x 在x e =处取得极大值为1()f e e=,当0x ≤时,()(2)x f x x e =+,()(2)(3)x x xf x e x e x e '=++=+,当3x <-时,()0f x '<,当3x >-时,()0f x '>, 所以()f x 在(,3)-∞-上递减,在(3,0]-上递增,所以()f x 在3x =-处取得极小值为331(3)f e e --=-=-,又(0)2f =, 因为函数()()g x f x a =-仅有一个零点,所以()y f x =的图象与直线y a =仅有一个交点,作出函数()f x 的图象,如图:由图可知:12a e <≤或31a e<-. 故实数a 的取值范围为311,2,e e ⎛⎤⎛⎫⋃-∞- ⎪⎥⎝⎦⎝⎭.故选:C 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.7.C【分析】根据所给实数的表达式进行构造函数,然后利用导数判断出函数的单调性,最后利用函数的单调性进行判断即可. 【详解】构造函数'()(2)()(1)xxf x x e f x x e =-⇒=-,当1x >时,'()0,()f x f x <单调递减, 当1x <时,'()0,()f x f x >单调递增.因为2342()33a e f ==,4564()55b e f ==,6786()77c e f ==,246357<<,所以642()()()753f f f >>,即c b a >>.故选:C 【点睛】关键点睛:根据几个实数的特征构造函数,利用导数判断其单调性是解决此类问题的关键.8.B解析:B 【分析】首先代入函数,变形为1221ln1x kx x x >-,再通过换元设12x t x =(1t >),则ln 1k t t >-,利用参变分离转化为(1)ln k t t <-,设()()1ln g t t t =-(1t >),转化为求函数()g t 的最小值. 【详解】 设12x x >,因为()()()()2221212122f x f x x x k x x x -->+⎡⎤⎣⎦,变形为()()()()121212212ln ln x x x x x x kx x x -+->+,即12212lnx kx x x x >-, 等价于1221ln1x k x x x >-,因为120x x >>,令12x t x =(1t >),则ln 1k t t >-,即(1)ln k t t <-. 设()()1ln g t t t =-(1t >),则min ()k g t <.当1t >时1()ln 10g t t t'=+->恒成立,故()g t 在()1,+∞上单调递增,()(1)0g t g >=. 所以0k ≤,k 的最大值为0. 故选:B . 【点睛】关键点点睛:本题的关键是将条件变形为12212lnx kx x x x >-,并进一步变形为1221ln1x k x x x >-,再通过换元,参变分离后转化为求函数的最值.9.A解析:A 【分析】由(0)1f =,故0不是函数()2y f x ax =-的零点,则由2()0f x ax -=,得2()(0)f x a x x =≠,令2()()f x g x x =2,01,0xe x x x x⎧>⎪⎪=⎨⎪-<⎪⎩,则题目转化为y a =与()y g x =有三个零点,利用导数研究函数()y g x =的性质并作出示意图可求得答案. 【详解】由(0)1f =,故0不是函数()2y f x ax =-的零点,则由2()0f x ax -=,得2()(0)f x a x x =≠, 令2()()f x g x x =2,01,0xe x x x x⎧>⎪⎪=⎨⎪-<⎪⎩,则题目转化为y a =与()y g x =有三个零点, 当0x >时,2()x e g x x =,则4(2)()x xe x g x x-'=, 则()g x 在(0,2)上递减,在(2,)+∞上递增,当2x =时,()g x 有最小值为2(2)4e g =,当0x →时,()g x →+∞,作出()y g x =的示意图如图所示:由图知,若函数()2y f x ax =-恰有三个零点,则24e a >. 故选:A. 【点睛】方法点睛:求函数()f x 的零点个数的方法如下:直接解方程()0f x =,求出零点可得零点个数.; 数形结合法:转化为两个函数的交点;参变分离法:将参数分离出来,再作函数的图像进而转化为y a =与()y g x =(分离后的函数)的交点问题.10.C解析:C 【分析】先设切点写出曲线的切线方程,得出a 、b 的值,再利用构造函数利用导数求+a b 的最大值即可. 【详解】解:由题得()1x f x e '=-,设切点(t ,())f t ,则()tt f t e =-,()1t f t e '=-;则切线方程为:()(1)()t ty e t e x t --=--, 即(1)(1)tty e x e t =-+-,又因为y ax b =+, 所以1t a e =-,(1)tb e t =-, 则12t t a b e te +=-+-,令()12ttg t e te =-+-,则()(1)tg t t e '=-,则有1t >,()0g t '<;1t <,()0g t '>,即()g t 在(),1-∞上递增,在()1,+∞上递减, 所以1t =时,()g t 取最大值(1)121g e e e =-+-=-, 即+a b 的最大值为1e -. 故选:C. 【点睛】本题考查了利用导数求曲线的切线方程和研究函数的最值,属于中档题.11.C解析:C 【分析】 构造函数()()f xg x x=,求导,利用()g x 的单调性和奇偶性解不等式. 【详解】 设()()f xg x x=(0x ≠), 则()()()2xf x f x g x x '-'=,∵当()0,x ∈+∞时,()()0xf x f x '->, ∴()0g x '>,即()g x 在()0,∞+上单调递增, 又()f x 是R 上的偶函数,∴()()()()f x f x g x g x x x--==-=--, 即()g x 是()(),00,-∞⋃+∞上的奇函数, ∴()g x 在(),0-∞上单调递增, ∵()30f =, ∴()()()33303f g g -=-=-=. 而不等式()0f x x>等价于()0g x >, ∴30x -<<或3x >. 故选:C. 【点睛】本题主要考查函数的单调性与奇偶性的应用,利用条件构造函数,然后利用导数研究函数的单调性是解决本题的关键,属于中档题.12.B解析:B 【分析】运用指数函数的单调性,即可判断(1);由二次函数的单调性,即可判断(2); 通过函数2()2x h x x ax =+-,求出导数判断单调性,即可判断(3); 通过函数2()2x h x x ax =++,求出导数判断单调性,即可判断(4). 【详解】解:对于(1),由于21>,由指数函数的单调性可得()f x 在R 上递增,即有0m >,则(1)正确;对于(2),由二次函数的单调性可得()g x 在(,)2a -∞-递减,在(2a-,)+∞递增,则0n >不恒成立,则(2)错误;对于(3),由m n =,可得1212()()()()f x f x g x g x -=-,即为1122()()()()g x f x g x f x -=-,考查函数2()2x h x x ax =+-,()222x h x x a ln '=+-, 当a →-∞,()h x '小于0,()h x 单调递减,则(3)错误;对于(4),由m n =-,可得1212()()[()()]f x f x g x g x -=--,考查函数2()2x h x x ax =++,()222x h x x a ln '=++,对于任意的a ,()h x '不恒大于0或小于0,则(4)正确. 故选:B . 【点睛】本题考查函数的单调性及运用,注意运用指数函数和二次函数的单调性,以及导数判断单调性是解题的关键,属于中档题.二、填空题13.【分析】先由题意得到关于的方程在上有两不等实根即在上有两不等实根令对其求导判定其单调性以及的取值情况即可得出结果【详解】因为函数的图象与x 轴交于不同两点所以关于的方程在上有两不等实根即在上有两不等实 解析:1a >【分析】先由题意,得到关于x 的方程2ln 0x ax a x --=在()0,∞+上有两不等实根,即2ln 1x x x a +=在()0,∞+上有两不等实根,令()2ln x x g x x+=,对其求导,判定其单调性,以及()g x 的取值情况,即可得出结果. 【详解】因为函数()2ln ()x ax a a x x R f =--∈的图象与x 轴交于不同两点,所以关于x 的方程2ln 0x ax a x --=在()0,∞+上有两不等实根,即2ln 1x x x a+=在()0,∞+上有两不等实根,令()2ln x x g x x +=,则()2ln x x g x x+=与直线1y a =有两个不同交点, 又()()24311ln 212ln x x x x x x x g x x x ⎛⎫+-+⋅ ⎪--⎝⎭'==, 令()12ln h x x x =--,则()210h x x'=--<在()0,∞+上恒成立,则()12ln h x x x =--在()0,∞+上单调递减,又()10h =,所以当()0,1x ∈时,()0h x >,即()312ln 0x xg x x--'=>,则()g x 单调递增; 当()1,x ∈+∞时,()0h x <,即()312ln 0x xg x x--'=<,则()g x 单调递减; 所以()()max 110g x g ==>,又211101eg e e -⎛⎫=< ⎪⎝⎭,所以存在01,1x e ⎛⎫∈ ⎪⎝⎭,使得()0g x =; 因此当()00,x x ∈时,()0g x <;当()0,1x x ∈时,()0g x >;又当1x >时,ln 0x >,所以()0g x >; 因此,为使()2ln x x g x x +=与直线1y a =有两个不同交点,只需101a<<,解得1a >. 故答案为:1a >. 【点睛】 思路点睛:利用导数的方法处理由函数零点个数求参数问题时,一般需要根据函数零点个数,得到对应方程的根的个数,再分离参数,构造新的函数,对新函数求导,利用导数的方法判定其单调性,确定函数的取值情况,进而可求出结果.(也可利用数形结合的方法求解)14.【分析】利用导数分析函数的单调性分和两种情况解不等式由此可得出原不等式的解集【详解】由函数的图象可知当时此时函数单调递减;当时此时函数单调递增因为当时由可得;当时由可得综上所述不等式的解集时故答案为 解析:()3,4-【分析】利用导数分析函数()f x 的单调性,分0x ≤和0x >两种情况解不等式()1f x <,由此可得出原不等式的解集. 【详解】由函数()y f x '=的图象可知,当0x <时,()0f x '<,此时函数()f x 单调递减; 当0x >时,()0f x '>,此时函数()f x 单调递增.因为()()431f f =-=,当0x ≤时,由()()13f x f <=-,可得30x -<≤; 当0x >时,由()()14f x f <=,可得04x <<. 综上所述,不等式()1f x <的解集时()3,4-.故答案为:()3,4-. 【点睛】思路点睛:根据函数单调性求解函数不等式的思路如下: (1)先分析出函数在指定区间上的单调性;(2)根据函数单调性将函数值的关系转变为自变量之间的关系,并注意定义域; (3)求解关于自变量的不等式 ,从而求解出不等式的解集.15.【分析】令问题转化为根据函数的单调性求出不等式的解集即可【详解】因为所以令则所以为奇函数又因为当时所以在上单调递减即在上单调递减而不等式所以所以故答案为:【点睛】构造辅助函数是高中数学中一种常用的方解析:5,2⎛⎤-∞ ⎥⎝⎦ 【分析】令()()2g x f x x =-,问题转化为()()5g x x g -≥,根据函数的单调性求出不等式的解集即可. 【详解】因为()()22f x f x x -+=,所以()()()220f x x f x x ---+-=,令()()2g x f x x =-,则()()0g x g x -+=,所以()g x 为奇函数.又因为当0x ≤时,()()20g x f x x ''=-<, 所以()g x 在(],0-∞上单调递减, 即()g x 在R 上单调递减.而不等式()()()()()()()2225510555f x f x x f x x f x x g x g x +≥-+⇔-≥---⇔≥-,所以5x x ≤-,所以52x ≤. 故答案为:5,2⎛⎤-∞ ⎥⎝⎦【点睛】构造辅助函数是高中数学中一种常用的方法,解题中若遇到有关不等式、方程及最值之类问题,设法建立起目标函数,并确定变量的限制条件,通过研究函数的单调性、最值等问题,常可使问题变得明了,准确构造出符合题意的函数是解题的关键;解这类不等式的关键点也是难点就是构造合适的函数,构造函数时往往从两方面着手:①根据导函数的“形状”变换不等式“形状”;②若是选择题,可根据选项的共性归纳构造恰当的函数.16.【分析】利用几何体的轴截面进行计算结合导数求得圆柱形构件的最大体积【详解】画出圆锥及圆柱的轴截面如下图所示其中四边形为矩形设圆柱的底面半径为即则即所以圆柱的体积为由于所以在区间上单调递增;区间上单调 解析:1283π 【分析】利用几何体的轴截面进行计算,结合导数求得圆柱形构件的最大体积. 【详解】画出圆锥及圆柱的轴截面如下图所示.其中8,6AG GC GB ===,AG BC ⊥,四边形HIDE 为矩形. 设圆柱的底面半径为()06x x <<,即GI GH x ==, 则AG DI CG IC =,即()844686633DI DI x x x =⇒=-=--. 所以圆柱的体积为()()22332444886333V x x x x x x x πππ⎛⎫⎛⎫=⨯⨯-=⨯-=-+ ⎪ ⎪⎝⎭⎝⎭,06x <<.()()()()'22431244443V x x x x x x x πππ=-+=-⨯-=-⨯⨯-, 由于06x <<,所以()V x 在区间()0,4上()'0V x >,()V x 单调递增;区间()4,6上()'0V x <,()V x 单调递减.所以()V x 在4x =处取得极大值也即是最大值为:()()()3244412824646496323333V ππππ=-+⨯=-+=⨯=. 故答案为:1283π【点睛】本小题主要考查圆锥的最大内接圆柱有关计算,考查利用导数求最值,属于中档题.17.【分析】利用导数判断出函数的单调区间作出函数的图象数形结合即可得解;【详解】解:当时函数单调递增;当时则时且时时故当时在上单调递减在上单调递增在处取极小值极小值为;作出函数的图象如图:函数恰有3个零解析:()2,0e --【分析】利用导数判断出函数()f x 的单调区间,作出函数()f x 的图象,数形结合即可得解; 【详解】解:当0x >时,函数()f x lnx =单调递增;当0x 时,()(1)xf x e x =+,则()(2)0x f x e x '=+=时,2x =-,且2x <-时,()0f x '<,20x -<时,()0f x '>,故当0x 时,()f x 在(,2)-∞-上单调递减,在(2,0)-上单调递增,()f x 在2x =-处取极小值,极小值为2(2)f e --=-; 作出函数()f x 的图象如图:函数()()()F x f x c c R =-∈恰有3个零点,等价于函数()f x 与y c =的图象有且仅有3个零点,由图可知,20e c --<<, 故答案为:()2,0e --. 【点睛】本题考查函数零点与方程根的关系,涉及利用导数判断函数单调性,数形结合思想等,属于中档题.18.【分析】先设直线的方程为再利用直线与圆锥曲线的位置关系将用表示再利用导数求函数的最值即可得解【详解】解:由抛物线的准线与圆相切得或7又∴设直线的方程为则直线的方程为则设令得;令得即函数在为增函数在为 解析:3【分析】先设直线AB 的方程为()03x t t =-<<,再利用直线与圆锥曲线的位置关系将AB CD ⋅用t 表示,再利用导数求函数的最值即可得解. 【详解】解:由抛物线的准线与圆相切得12p=或7,又014p <<,∴2p =. 设直线AB 的方程为()03x t t =-<<,则直线CD 的方程为4x t =-, 则())2224298903AB CD t t t t t ⋅=-=-<<.设()()()2903f t t tt =-<<,()2'93f t t=-,令()'0f t >,得03t <<()'0f t <33t <<.即函数()f t 在(3为增函数,在)3,3为减函数,故()max363f t f ==22AB CD ⋅的最大值为28633⨯=故答案为:3843 【点睛】本题考查了利用导数求函数的最值,重点考查了运算能力,属中档题.19.②④【分析】根据函数和图象可得的单调区间和单调性从而得到答案【详解】由函数和图象可得当时得所以函数单调递增当时得所以函数单调递减当时得所以函数单调递减当时得所以函数单调递增所以①错误;②正确;③是函解析:②④ 【分析】根据函数()y x f x =⋅'和图象可得()f x 的单调区间和单调性,从而得到答案. 【详解】由函数()y x f x =⋅'和图象可得,当2()–,x ∞-∈时,0y <,得()0f x '>,所以函数()f x 单调递增, 当()2,0x ∈-时,0y >,得()0f x '<,所以函数()f x 单调递减, 当(0,2)x ∈时,0y <,得()0f x '<,所以函数()f x 单调递减, 当(2,)x ∈+∞时,0y >,得()0f x '>,所以函数()f x 单调递增, 所以①错误;②正确;③2x =-是函数()f x 的极大值点,错误;④正确. 故答案为:②④. 【点睛】本题结合图象考查函数的单调性和判断极值,属于基础题.20.3【分析】求导数取导数为0计算代入原函数计算极大值得到答案【详解】函数的极大值为由题意知:当时有极大值所以故答案为3【点睛】本题考查了函数的极大值意在考查学生的计算能力解析:3 【分析】求导数,取导数为0,计算x =. 【详解】函数31()3f x x ax =-的极大值为 2()f x x a '=- 由题意知:0,a x >⇒=当x =(f =所以3a = 故答案为3 【点睛】本题考查了函数的极大值,意在考查学生的计算能力.三、解答题21.(1)2a =;(2)(-∞.【分析】(1)由题意可得出()11f '=,由此可求得实数a 的值;(2)求出函数()f x 的定义域为()0,∞+,由题意可知,()2210af x x x'=+-≥在()0,∞+上恒成立,利用参变量分离法得出min 2a x x ⎛⎫≤+ ⎪⎝⎭,利用基本不等式求出2x x +在()0,∞+上的最小值,由此可得出实数a 的取值范围.【详解】 (1)()2ln f x x a x x =--,()221af x x x'∴=+-,()13f a '∴=-,又()f x 在点()()1,1f 处的切线方程为2y x =-,()131f a '∴=-=,解得2a =; (2)()f x 的定义域为()0,∞+,()f x 在定义域上为增函数,()2210af x x x'∴=+-≥在()0,∞+上恒成立, 2a x x∴≤+在()0,∞+上恒成立,min 2a x x ⎛⎫∴≤+ ⎪⎝⎭,由基本不等式2x x +=≥x时等号成立,故min 2x x ⎛⎫+= ⎪⎝⎭ 故a的取值范围为(-∞. 【点睛】结论点睛:利用函数的单调性求参数,可按照以下原则进行:(1)函数()f x 在区间D 上单调递增()0f x '⇔≥在区间D 上恒成立; (2)函数()f x 在区间D 上单调递减()0f x '⇔≤在区间D 上恒成立; (3)函数()f x 在区间D 上不单调()f x '⇔在区间D 上存在异号零点; (4)函数()f x 在区间D 上存在单调递增区间x D ⇔∃∈,使得()0f x '>成立; (5)函数()f x 在区间D 上存在单调递减区间x D ⇔∃∈,使得()0f x '<成立. 22.(1)()4230m x y m +-+-=;(2)(),4-∞-. 【分析】(1)对()y f x =求导,切线斜率为()1f ',再求切点坐标,利用点斜式即可写出切线方程;(2)由题意可得1x ,2x 是方程()0f x '=的两个不等式的实根,等价于1x ,2x 是方程210x mx ++=的两个根,由根与系数的关系可得12x x m +=-,121=x x ,将()211f x x x +转化为关于2x ()21x >的函数,再利用单调性求最值即可求解. 【详解】(1)由题意知()0,x ∈+∞,因为()222f x x m x'=++, 所以()142f m '=+,()113f m =+,所以所求切线方程为()()()13421y m m x -+=+-,即()4230m x y m +-+-=;(2)由(1)知()()221222x mx f x x m x x++'=++=, 因为()1212,x x x x <是()f x 的两个不同的极值点,所以1x ,2x 是方程210x mx ++=的两个根,可得12x x m +=-,121=x x ,221m x x ⎛⎫=-+ ⎪⎝⎭,易得21>x ,所以()22122211222ln 1f x x x mx x m x x x +++++=22222222222222211122ln 2ln 211x x x x x x x x x x x x x ⎛⎫⎛⎫-++-++ ⎪ ⎪--+-⎝⎭⎝⎭==()3222222222ln 1x x x x x x =---+>,()()32222222222ln 1g x x x x x x x =---+>,()()2222232ln g x x x x '=-+-,()2221621g x x x ⎛⎫''=-+- ⎪⎝⎭,因为21>x 可得2110x -<,260x -<所以()20g x ''<,()()2222232ln g x x x x '=-+-在()1,+∞单调递减,()()()2132ln1150g x g ''<=-+-=-<,所以()2g x 在()1,x ∈+∞上单调递减,()()214g x g <=-, 从而()211f x x x +的取值范围为(),4-∞-. 【点睛】方法点睛:求曲线切线方程的一般步骤是(1)求出()y f x =在0x x =处的导数,即()y f x =在点P 00(,())x f x 出的切线斜率(当曲线()y f x =在P 处的切线与y 轴平行时,在P 处导数不存在,切线方程为0x x =);(2)由点斜式求得切线方程'00()()y y f x x x -=⋅-.23.(1)1,2⎛⎫+∞ ⎪⎝⎭;(2)12a e ≥.【分析】(1)求出导函数()'f x ,在定义域内由()0f x '>得增区间;(2)分离参数得21ln x a x +≥.设()21ln xg x x+=,由导数求得()g x 最大值即可得结论. 【详解】(1)当2a =时,()()221ln ,0,f x x x x =--∈+∞.由()()()221211414x x x f x x x x x+--'=-==, 令()0f x '>,得12x >, 所以()f x 的单调增区间为1,2⎛⎫+∞⎪⎝⎭. (2)由()21ln 0f x ax x =--≥,则21ln xa x +≥. 设()21ln x g x x +=,则()312ln xg x x--'=. 令()0g x '=,得12x e -=,且当120,x e -⎛⎫∈ ⎪⎝⎭时,()0g x '>;当12,x e -⎛⎫∈+∞ ⎪⎝⎭时,()0g x '<,所以()g x 在120,e -⎛⎫ ⎪⎝⎭上单调递增,在12e ,-⎛⎫+∞ ⎪⎝⎭上单调递减,所以当12x e -=到时,()g x 取得最大值为12e , 所以12a e ≥. 【点睛】方法点睛:本题考查用导数求函数的单调区间,研究不等式恒成立问题.不等式恒成立问题的解题方法通常是利用分离参数法分离参数,然后引入新函数,利用导数求得新函数的最值,则可得参数范围.24.(1)1230x y --=;(2)单调递减区间为(,1)-∞-和(3,)+∞,单调递增区间为()1,3-.【分析】(1)求出导函数()'f x ,然后计算导数得斜率,从而得切线方程;(2)由()0f x '>得增区间,()0f x '<得减区间. 【详解】解:(1)∵32()392f x x x x =-++-, ∴2()369f x x x '=-++, ∴()112f '=. 又∵()19f =,∴函数()y f x =的图象在点()()1,1f 处的切线方程为912(1)y x -=-, 即1230x y --=.(2)由(1),得2()3693(1)(3)f x x x x x '=-++=-+-,令()0f x '=,解得1x =-或3x =; 当()0f x '<时,1x <-或3x >; 当()0f x '>时,13x.∴()f x 的单调递减区间为(,1)-∞-和(3,)+∞,单调递增区间为()1,3-. 【点睛】关键点点睛:本题考查导数的几何意义,考查求函数的单调区间.解题方法是求出导函数()'f x ,计算0()f x '得切线斜率,由点斜式写出切线方程并整理成一般式.而求单调区间只要解不等式()0f x '>即得增区间,解不等式()0f x '<即得减区间.25.(1)()g x 的单调递减区间为(,1)-∞,单调递增区间为(1,)+∞;(2)2e ⎛⎫+∞ ⎪⎝⎭,. 【分析】(1)当1a =时()122x f x ex -=-,先对()f x 求导得()g x 的解析式,再对()g x 求导,由()0g x '<得单间区间,由()0g x '>得单增区间; (2)由题意可得方程()1202x f x eax --==有三个不等的实根,等价于方程122x e a x-=有三个不等的实根,即y a =与122()(0)x eh x x x-=≠两个函数图象有三个不同的交点,对()h x 求导判断其单调性,作出其图象,数形结合即可求解.【详解】(1)当1a =时,1()22x f x e x -'=-, 令()()g x f x '=,则1()22x g x e -'=-,当1x <时()0g x '<,()g x 在(,1)-∞上单调递减; 当1x >时()0g x '>,()g x 在(1,)+∞上单调递增.所以()g x 的单调递减区间为(,1)-∞,单调递增区间为(1,)+∞; (2)2(0)0f e=≠,0x ∴≠, 所以若()f x 在R 上恰有三个零点等价于()1202x f x eax --==有三个不等的实根,等价于方程122x e a x -=有三个不等的实根, 设122()(0)x e h x x x-=≠, 则y a =与122()(0)x eh x x x-=≠两个函数图象有三个不同的交点, 因为1211432222(2)()x x x e x e x e x h x x x---⋅-⋅-'== 令()0h x '=,得2x =,且(2)2eh =当()x ∈∞-,0时,()0h x '>,()h x 单调递增且()()0,h x ∈+∞,当()0,2x ∈时,()0h x '<,()h x 单调递减且()+2e h x ⎛⎫∈∞ ⎪⎝⎭,, 当()0,x ∈+∞时,()0h x '>,()h x 单调递增且()+2e h x ⎛⎫∈∞ ⎪⎝⎭,作出其图象如图所示:当2x =时,2122(2)22e eh -==, 由图知当2ea >时,y a =与()y h x =的图象有三个交点, 即()f x 有三个不同的零点,所以a 的取值范围是2e ⎛⎫+∞ ⎪⎝⎭,. 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.26.(1)证明见解析;(2)证明见解析;(3)证明见解析. 【分析】(1)令()(1)x f x e x =-+,求出导函数()'f x ,确定单调性得最小值,从而证得不等式成立;(2)令()ln (1)(0)g x x x x =-->,求导确定单调性得最大值后可证得不等式成立; (3)(1)变形得1x e x -≥,(2)变形可得ln(1)x x ,两个等号不同时成立,可证得不等式成立. 【详解】证明:(1)令()(1)x f x e x =-+,则有()1xf x e =-'.令()0f x '<得,0x <,令()0f x '>得,0x >所以()f x 在(,0)-∞单调递减,(0,)+∞上单调递增.所以0()(0)10f x f e ≥=-=,即(1)0x e x +≥-.所以1x e x ≥+.(2)令()ln (1)(0)g x x x x =-->,则1()1g x x'=-. 令()0g x '<得,0x >,令()0g x '>得,01x <<.所以()g x 在(0,1)单调递增,(1,)+∞上单调递减,所以()(1)ln1(11)0g x g ≤=--=,即ln (1)0x x --≤, 所以ln 1≤-x x .(3)由(1)得1x e x ≥+,所以1(1)1x e x x -≥-+=(当且仅当1x =时取等号)①.由(2)得ln 1≤-x x ,所以ln(1)(1)1x x x +≤+-=(当且仅当0x =时取等号)② 因为①式与②式取等号的条件不同,所以1ln(1)x e x ->+. 【点睛】结论点睛:本题考查用导数证明不等式,证明方法是引入函数,用导数确定函数的单调性得到函数的最值,从而可证不等式成立.1x e x ≥+和ln 1≤-x x 是两个典型的不等式,例如它可变形得1x e x -≥,ln(1)x x ,有许多函数不等式都是考查这两个不等式的应用.请务必注意掌握.。
(常考题)北师大版高中数学选修1-1第四章《导数应用》检测(包含答案解析)(4)
一、选择题1.已知函数()()22ln x x t f x x+-=,若对任意的[]2,3x ∈,()()0f x f x x '+>恒成立,则实数t 的取值范围是( )A .(),2-∞B .5,2⎛⎫-∞ ⎪⎝⎭C .103⎛⎫-∞ ⎪⎝⎭,D .()2,+∞2.已知α,β∈R ,则“0αβ+<”是“sin sin αβαβ+<+”的( ) A .充分不必要条件 B .必要不充分条件 C .既不充分也不必要条件D .充分必要条件3.函数3()1218f x x x =-+在区间[]3,3-上的最大值为( ) A .34B .16C .24D .174.已知定义在R 上的函数()f x 满足()()f x f x '<-,则下列式子成立的是( ) A .(2020)(2021)f ef > B .(2020)(2021)f ef < C .(2020)(2021)ef f >D .(2020)(2021)ef f <5.已知函数()()30f x ax bx c ac =++<,则函数()y f x =的图象可能是( ).A .B .C .D .6.下列不可能是函数()()()xx f x xee Z αα-=-∈的图象的是( )A .B .C .D .7.已知函数()ln f x x =,若对任意的12,(0,)x x ∈+∞,都有()()()()2221212122f x f x x x k x x x -->+⎡⎤⎣⎦恒成立,则实数k 的最大值是( ) A .1-B .0C .1D .28.函数()21x f x -=的值域是( ) A .3⎡⎢⎣⎦ B .3⎫∞⎪⎪⎝⎭C .(3D .)3,⎡+∞⎣9.已知函数()()()0ln 10xe xf x x x ax x -⎧-<⎪=⎨++>⎪⎩,若()f x 的图象上存在关于原点对称的点,则实数a 的取值范围是( ) A .(),1e -∞-B .()1,e -+∞C .[)1,e -+∞D .(],1e -∞-10.设()f x 是定义在R 上的偶函数,()f x '为其导函数,()20f =,当0x >时,有()()'>xf x f x 恒成立,则不等式()0xf x <的解集为( )A .()2,2-B .()(),20,2-∞-C .()()2,00,2-D .()()2,02,-+∞11.函数()2xf x ae x =+在R 上有两个零点1x ,2x ,且212x x ≥,则实数a 的最小值为( ) A .ln 22-B .ln 2-C .2e-D .ln 212.已知函数()()()2122x x f x m e m R =+++∈有两个极值点,则实数m 的取值范围为( )A .10e ⎡⎤-⎢⎥⎣⎦,B .111e⎛⎫--- ⎪⎝⎭,C .1e ⎛⎫-∞- ⎪⎝⎭,D .()0+∞,二、填空题13.已知()y f x =是定义在R 上的奇函数,()20f -=,且当0x >时()()20f x xf x x'-<,则不等式()()2110x f x -->的解集是______. 14.已知函数1()ln (0)a x f x x a x x a e=++-<,若()0f x ≥在[)2,x ∈+∞上恒成立,则实数a 的取值范围为___________.15.已知函数()2ln ()x ax a a x x R f =--∈的图象与x 轴交于不同两点,则实数a 的取值范围为______.16.若0x ∀>,不等式ln 2(0)a x b a x ++≥>恒成立,则ba的最大值为________. 17.请写出一个使得函数()2()2xf x x ax e =++既有极大值又有极小值的实数a 的值___________.18.已知奇函数()f x 是定义在R 上的可导函数,当0x >时,有22()()f x xf x x '+>,则不等式2(2021)(2021)4(2)0x f x f +++-<的解集为________.19.已知函数()1ln x f x x+=,若关于x 的不等式()()20f x af x ->恰有两个整数解,则实数a 的取值范围是_______.20.已知函数()(1)2x f x e a x =---(e 为自然对数的底数),若0(0,)x ∃∈+∞,使得()()00lg f x f x >成立,则a 的取值范围为________. 三、解答题21.已知函数1()ln1xf x x+=-. (1)求证:当(0,1)x ∈时,3()2()3x f x x >+;(2)设实数k 使得3()()3x f x k x >+对(0,1)x ∈恒成立,求k 的最大值.22.已知a 为实数,()()()24f x x x a =--.(1)若1x =-是函数()f x 的极值点,求()f x 在[]2,2-上的最大值和最小值; (2)若()f x 在(],2-∞-和[)2,+∞上都是递增的,求a 的取值范围. 23.已知函数2()22ln (,)f x x mx x m m n R =+-+∈. (1)若直线2y mx =与曲线()y f x =相切,求m 的值;(2)若函数()()4ln g x f x x =+有两个不同的极值点()1212,x x x x <,求()211g x x x +的取值范围.24.已知函数32()f x x ax =-+. (1)讨论函数()f x 的单调性;(2)设1a =-,若()(ln )f x x k x <-,求实数k 的取值范围.25.“既要金山银山,又要绿水青山”.滨江风景区在一个直径AB 为100米的半圆形花园中设计一条观光线路(如图所示).在点A 与圆弧上的一点C (不同于A ,B 两点)之间设计为直线段小路,在直线段小路的两侧(注意是两侧)种植绿化带;再从点C 到点B 设计为沿弧的弧形小路,在弧形小路的内侧(注意是一侧)种植绿化带(注:小路及绿化带的宽度忽略不计).(1)设BAC θ∠= (弧度),将绿化带总长度表示为θ的函数()S θ;(2)试确定θ的值,使得绿化带总长度最大.(弧度公式:l r α=⋅,其中α为弧所对的圆心角)26.设函数1()ln ,f x a x a x=+∈R .(Ⅰ)设l 是()y f x =图象的一条切线,求证:当0a =时,l 与坐标轴围成的三角形的面积与切点无关;(Ⅱ)若函数()()g x f x x =-在定义域上单调递减,求a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】求导函数()f x ',化简()()0f x f x x'+>得10x t x+->在[]2,3x ∈恒成立,参变分离即可求参数范围. 【详解】∵()2222ln 2x x t f x x-+-'=,∴对任意的[]2,3x ∈,()()0f x f x x'+>恒成立⇔对任意的[]2,3x ∈,()()0xf x f x '+>恒成立, ⇔对任意的[]2,3x ∈,10x t x+->恒成立, ⇔1x t x+>恒成立, 又()1g x x x =+在[]2,3上单调递增,∴()()225min g x g ==, ∴52t <.则实数t 的取值范围是5,2⎛⎫-∞ ⎪⎝⎭.故选:B 【点睛】对于恒成立问题,常用到以下两个结论: (1)()a f x ≥ 恒成立()max a f x ⇔≥; (2) ()a f x ≤ 恒成立()min a f x ⇔≤.2.D解析:D 【分析】首先构造函数()sin x x x f -=,利用导数判断函数的单调性,再判断选项. 【详解】构造函数()sin x x x f -=,()1cos 0f x x '=-≥恒成立,()f x ∴是单调递增函数,0αβ+<,即αβ<-,()()f f αβ∴<-,即()()sin sin ααββ-<---,即sin sin αβαβ+<+,反过来,若sin sin αβαβ+<+,即()()sin sin ααββ-<---,αβ∴<-,即0αβ+<.故选:D 【点睛】关键点点睛:本题的关键是通过条件观察后构造函数()sin x x x f -=,通过判断函数的单调性,比较大小.3.A解析:A 【分析】对函数求导,求出函数()y f x =的极值点,分析函数的单调性,再将极值与端点函数值比较大小,找出其中最大的作为函数()y f x =的最大值. 【详解】()31218f x x x =-+,则()2312f x x '=-,令'0f x,解得2x =±,列表如下:所以,函数y f x =的极大值为234f -=,极小值为22f =,又()327f -=,()39f =,因此,函数()y f x =在区间[]3,3-上的最大值为34, 故选:A . 【点睛】方法点睛:本题考查利用导数求函数在定区间上的最值,解题时严格按照导数求最值的基本步骤进行,考查计算能力,属于中等题.4.A解析:A 【分析】构造函数()()xg x e f x =,求导判定函数单调性,根据单调性得(2020)(2021)g g >化简即可. 【详解】解:依题意()()0f x f x '+<,令()()xg x e f x =,则()(()())0xg x f x f x e ''=+<在R 上恒成立, 所以函数()()xg x e f x =在R 上单调递减, 所以(2020)(2021)g g >即20202021(2020)(2021)(2020)(2021)e e e f f f f >⇒>故选:A. 【点睛】四种常用导数构造法:(1)对于不等式()()0f x g x ''+> (或0<) ,构造函数()()()F x f x g x =+. (2)对于不等式()()0f x g x ''->(或0<) ,构造函数()()()F x f x g x =-.(3)对于不等式()()0f x f x '+>(或0<) ,构造函数()()xF x e f x =.(4)对于不等式()()0f x f x '->(或0<) ,构造函数()()x f x F x e=. 5.B解析:B【分析】利用函数()f x 的对称性排除A 选项;然后分0a >和0a <两种情况讨论,利用导数分析函数()f x 的单调性,结合()0f 的符号可得出合适的选项. 【详解】()3f x ax bx c =++,则()3f x ax bx c -=--+,()()2f x f x c ∴+-=,所以,函数()f x 的图象关于点()0,c 对称,排除A 选项;()3f x ax bx c =++,则()23f x ax b '=+,当0a >,x →+∞时,()0f x '>,函数()f x 单调递增, 又0ac <,()00f c ∴=<,排除D 选项;当0a <,x →+∞时,()0f x '<,函数()f x 单调递减, 又0ac <,()00f c ∴=>,排除C 选项. 故选:B . 【点睛】思路点睛:函数图象的辨识可从以下方面入手: (1)从函数的定义域,判断图象的左右位置; (2)从函数的值域,判断图象的上下位置. (3)从函数的单调性,判断图象的变化趋势; (4)从函数的奇偶性,判断图象的对称性; (5)函数的特征点,排除不合要求的图象.6.B解析:B 【分析】 由函数()()xx f x xee α-=-,分0a =, a 为正整数,a 为正偶数,a 为正奇数,a 为负整数分析其定义域,奇偶性和单调性判断. 【详解】当0α=时,()xxf x e e -=-其定义域为{}|0x x ≠,关于原点对称,又()()()xx x x f x ee e ef x ---=-=--=-,所以()f x 是奇函数,且单调递增,没有选项符合题意;当α为正整数时,()()xx f x x ee α-=-的定义域为R ,图象经过原点,当0x >时, ()()11()())(x x x x x xf x x e e e e x e e x x x ααααα-----'⎡⎤⎡⎤==-+++⎣⎦+⎣-⎦,因为0,0xxx x e ee e --->+>,所以()0f x '>,则()f x 递增,又存在0M >,当x M >时,随着x 的增大,()'f x 的变化率越来越大,若α为正偶数,则()f x 是奇函数,此时C 选项符合题意; 若α为正奇数,则()f x 是偶函数,此时A 选项符合题意; 当α为负整数时,()()xx f x xee α-=-的定义域为{}|0x x ≠,当α为负奇数,()()()()xx f x x e e f x α--=--=,()f x 为{}|0x x ≠上的偶函数,无选项符合;当α为负偶数时且4α≤-时,()()()()xx f x x ee f x α--=--=-,()f x 为{}|0x x ≠上的奇函数, 当0x >时,()()211(())x x x x f x x e e x x x x x e e x ααααααα----+⎛⎫+--+ ⎪-⎝'⎡⎤=+=⎦⎭⎣, 令()2,0x x S x e x x αα-+=+>-, 则()()()()()2222222xxxxx x S x e x x e ααααα---+-'=-=-⨯--,令(),0x x x x αϕ->=,则()01xx ϕ'<=, 故(),0xx x x αϕ->=为减函数,而()00ϕα=->,()()()23ln ln 2ln t t t αααϕ---+=+=-,其中2t =≥,令()232ln ,2u t t t t t =+-≥,则()()2223,2t t u t t t+-'=≥,则()()22232+440tt +-≤⨯-<,故()232ln ,2u t t t t t =+-≥为减函数,所以()2ln 240u t ≤-<,()()ln 0ϕα-<,所以存在()00x ∈+∞,,使得当()00,x x ∈时,()0x ϕ>即()0S x '<, 当()0,x x ∈+∞时,()0x ϕ<即()0S x '>,故()S x 在()00,x 为减函数,在()0,x +∞为增函数,因为()00S =,故()00S x <,而当x a >-时,()0S x >,故存在()10,x ∈+∞,使得当()10,x x ∈时,()0S x <即()0f x '<,当()1,x x ∈+∞时,()0S x >即()0f x '>,所以()f x 在()10,x 上为减函数,在()1,x +∞为增函数, 又当0x >时,()0f x >恒成立,故D 选项符合题意. 对任意的整数α,当α为非负整数时,()f x 在0x =处有定义,且()f x '在0x =不间断,故B 不符合题意,当α为负整数时,()f x 在0x =处没有定义,故B 不符合题意, 故选:B. 【点睛】方法点睛:对于知式选图问题的解法:1、从函数的定义域,判断函数图象的左右位置,从函数的值域判断图象的上下位置;2、从函数的单调性,判断函数图象的变换趋势;3、从函数的奇偶性,判断函数图象的对称性;4、从函数的周期性,判断函数图象图的循环往复;5、从函数的特殊点,排除不和要求的图象;7.B解析:B 【分析】首先代入函数,变形为1221ln1x kx x x >-,再通过换元设12x t x =(1t >),则ln 1k t t >-,利用参变分离转化为(1)ln k t t <-,设()()1ln g t t t =-(1t >),转化为求函数()g t 的最小值. 【详解】 设12x x >,因为()()()()2221212122f x f x x x k x x x -->+⎡⎤⎣⎦,变形为()()()()121212212ln ln x x x x x x kx x x -+->+,即12212lnx kx x x x >-, 等价于1221ln1x k x x x >-,因为120x x >>,令12x t x =(1t >),则ln 1k t t >-,即(1)ln k t t <-. 设()()1ln g t t t =-(1t >),则min ()k g t <.当1t >时1()ln 10g t t t'=+->恒成立,故()g t 在()1,+∞上单调递增,()(1)0g t g >=. 所以0k ≤,k 的最大值为0.故选:B . 【点睛】关键点点睛:本题的关键是将条件变形为12212lnx kx x x x >-,并进一步变形为1221ln1x k x x x >-,再通过换元,参变分离后转化为求函数的最值.8.A解析:A 【分析】求出函数的定义域,然后求出导函数,确定单调性,得值域. 【详解】由21020x x ⎧-≥⎨+≠⎩得11x -≤≤,()f x '==当112x -≤<-时,()0f x '>,()f x 递增,112x -<≤时,()0f x '<,()f x 递减, 所以12x =-时,max()22f x ==-+(1)(1)0f f -==, 所以()f x的值域是⎡⎢⎣⎦. 故选:A . 【点睛】本题考查用导数求函数的值域,解题方法是由导数确定函数的单调性,得出最大值和最小值,得值域.9.C解析:C 【分析】转化条件为当0x >时,ln 1x e x x a x--=有解,令()ln 1,0x e x x g x x x --=>,通过导数确定()g x 的取值范围即可得解. 【详解】若()f x 的图象上存在关于原点对称的点, 则当0x >时,()()ln 1x ex x ax ----=++有解,即当0x >时,ln 1x e x x ax =++有解,所以当0x >时,ln 1x e x x a x--=有解, 令()ln 1,0x e x x g x x x--=>, 则()()()2ln 1ln 1x x e x x e x x g x x -----'=()()()221111x x x e x e x x x ----+==, 当()0,1x ∈时,()0g x '<,()g x 单调递减,当()1,x ∈+∞时,()0g x '>,()g x 单调递增,所以()()min 11g x g e ==-,()[)1,g x e ∈-+∞,所以[)1,a e ∈-+∞.故选:C.【点睛】本题考查了函数与方程的综合应用及利用导数研究方程有解问题,考查了运算求解能力与转化化归思想,属于中档题.10.B解析:B【分析】构造函数()()f x g x x=,易知()g x 在()0,∞+上单调递增,由()f x 是定义在R 上的偶函数可推出()g x 是定义在()(),00,-∞⋃+∞上的奇函数,故()g x 在(),0-∞上也单调递增,且()()220g g =-=.而不等式()0xf x <的解可等价于即()0g x <的解,从而得解.【详解】解:设()()f x g x x =,0x ≠,则()()()'2xf x f x g x x-'=, ∵当0x >时,有()()'xfx f x >恒成立,∴当0x >时,()0g x '>,()g x 在()0,∞+上单调递增,∵()f x 是定义在R 上的偶函数,∴()()()()f x f x g x g x x x--===---,即()g x 是定义在()(),00,-∞⋃+∞上的奇函数, ∴()g x 在(),0-∞上也单调递增.又()20f =,∴()()2202f g ==,∴()20g -=. 不等式()0xf x <的解可等价于即()0g x <的解,∴02x <<或2x <-,∴不等式的解集为()(),20,2-∞-.故选:B .【点睛】 本题主要考查函数奇偶性的应用,考查函数的单调性,利用了构造思想,导函数的运用,属于中档题.11.B解析:B【分析】函数()2x f x ae x =+,变形为2x x a e =-,令()2x x g x e=-,利用导数求函数的最值,可得20a e-<<,结合212x x ≥,可得212x x =时,a 取得最小值,再把1x ,2x 代入20x ae x +=,求解1x ,再代入112x ae x =-,即可求得a 的最小值【详解】函数()2x f x ae x =+,变形为2x x a e =-,令()2x x g x e =-,得()()21xx g x e -'=, 当(),1x ∈-∞时,0g x,当()1,∈+∞x 时,0g x ,可得1x =时,函数()g x 取得最小值2e-. 又当x →-∞时,()g x →+∞,当x →+∞时,()0g x <, 且函数()2xf x ae x =+在R 上有两个零点1x ,2x ,得20a e -<<. 由212x x ≥,可得212x x =时,a 取得最小值. 由112x ae x =-,222x aex =-,得1214x ae x =-,∴12x e =,解得1ln 2x =. 代入112x ae x =-,解得ln 2a =-.∴a 的最小值为ln 2-.故选:B.【点睛】此题考查利用导数研究函数的单调性与最值,考查化归与转化的数学思想,考查计算能力,属于中档题12.B解析:B【分析】求导()()1x f x x m e '=++,将问题转化为()()1xf x x m e '=++有两个不同的零点,也即是关于x 的方程1x x m e --=有两个不同的解,构造函数()xx g x e =,求导()1xx g x e -'=,分析导函数取得正负的区间,从而得函数()g x 的单调性和最值,从而可得选项. 【详解】函数()f x 的定义域为R ,()()'1x fx x m e =++,因为函数()f x 有两个极值点, 所以()()1x f x x m e '=++有两个不同的零点,故关于x 的方程1x x m e --=有两个不同的解, 令()x x g x e =,则()1x x g x e-'=,当(,1)x ∈-∞时, ()0g x '>,当(1,+)x ∈∞时,()0g x '<,所以函数()g x 在区间(,1)-∞上单调递增,在区间(1,+∞)上单调递减,又当x →-∞时,()g x →-∞;当x →+∞时,()0g x →,且0,()0x g x >>()11g e=,故101m e <--<, 即111m e--<<-. 故选:B.【点睛】 本题考查运用导函数研究函数的单调性、最值、极值,关键在于构造合适的函数,参变分离的方法的运用,属于中档题.二、填空题13.【分析】设则为偶函数由则在是上单调递增在是上单调递减设即求解分和两种情况解不等式和【详解】设由当时即所以在是上单调递增为奇函数则为偶函数在是上单调递减即()设当时即由为奇函数则所以由在是上单调递增所 解析:()()1,13,-+∞ 【分析】设()()f x g x x =,则()g x 为偶函数,由()()()2xf x f x g x x'-'=, 则()g x 在()0+∞,是上单调递增,()g x 在()0-∞,是上单调递减,设1x t -=,即求解()0f t >,分0t >和0t <两种情况解不等式()0g t >和()0g t <.【详解】设()()f x g x x =,由()()()2xf x f x g x x'-'=当0x >时()()20f x xf x x'-<,即()0g x '>,所以()g x 在()0+∞,是上单调递增. ()y f x =为奇函数,则()()f x g x x=为偶函数,()g x 在()0-∞,是上单调递减 ()()2110x f x -->,即()10f x ->(1x ≠)设1x t -=,当0t >时,()0f t >,即()()0f t g t t => 由()20f -=,()y f x =为奇函数,则()20f =,所以()20g =由()g x 在()0+∞,是上单调递增,()0g t >,所以2t >,即12x ->,所以3x > 当0t <时,()0f t >,即()()0f t g t t=< 由()20f -=,则()20g -=,根据()g x 在()0-∞,是上单调递减 所以当()0g t <时,则20t -<<,即210x -<-<,所以11x -<<综上所述:不等式()()2110x f x -->的解集是:()()1,13,-+∞故答案为:()()1,13,-+∞【点睛】 关键点睛:本题考查构造函数讨论单调性解不等式,解答本题的关键是构造函数()()f x g x x =,由()()()2xf x f x g x x'-'=结合条件和奇偶性得出其单调性, 属于中档题. 14.【分析】根据不等式恒成立得到在上恒成立令函数对其求导判定其在区间上的单调性得到在上恒成立再令利用导数的方法求出其最大值即可得出结果【详解】由在上恒成立得:在上恒成立易知当时令函数则在上恒成立则单调递 解析:[,0)e -【分析】根据不等式恒成立,得到ln ln a a x x x x e e ---≥-在[2,)x ∈+∞上恒成立,令函数()ln (01)g t t t t =-<<,对其求导,判定其在区间[2,)+∞上的单调性,得到ln x a x ≥-在[2,)x ∈+∞上恒成立,再令()(2)ln x F x x x=-≥,利用导数的方法求出其最大值,即可得出结果.【详解】 由()0f x ≥在[2,)x ∈+∞上恒成立,得:ln ln a a x x x x e e ---≥-在[2,)x ∈+∞上恒成立,易知当[2,)x ∈+∞,0a <时,01a x <<,01x e -<<,令函数()ln (01)g t t t t =-<<,则1()10g t t'=->在()0,1t ∈上恒成立,则()g t 单调递增,故有a x x e -≥,则log ln x x x a e x-≥=-在[2,)x ∈+∞上恒成立, 令()(2)ln x F x x x=-≥,则21ln ()(ln )x F x x '-=,由()0F x '=得x e =, 所以()2x e ∈,时,()0F x '>,则()F x 单调递增;,)[x e ∈+∞时,()0F x '<,则()F x 单调递减;故max ()()F x F e e ==-,则a e ≥-,所以0e a -≤<.故答案为:[,0)e -.【点睛】方法点睛:由不等式恒成立(或能成立)求参数时,一般可对不等式变形,分离参数,根据分离参数后的结果,构造函数,由导数的方法求出函数的最值,进而可求出结果;有时也可根据不等式,直接构成函数,根据导数的方法,利用分类讨论求函数的最值,即可得出结果. 15.【分析】先由题意得到关于的方程在上有两不等实根即在上有两不等实根令对其求导判定其单调性以及的取值情况即可得出结果【详解】因为函数的图象与x 轴交于不同两点所以关于的方程在上有两不等实根即在上有两不等实 解析:1a >【分析】先由题意,得到关于x 的方程2ln 0x ax a x --=在()0,∞+上有两不等实根,即2ln 1x x x a +=在()0,∞+上有两不等实根,令()2ln x x g x x+=,对其求导,判定其单调性,以及()g x 的取值情况,即可得出结果.【详解】因为函数()2ln ()x ax a a x x R f =--∈的图象与x 轴交于不同两点, 所以关于x 的方程2ln 0x ax a x --=在()0,∞+上有两不等实根,即2ln 1x x x a +=在()0,∞+上有两不等实根,令()2ln x x g x x +=,则()2ln x x g x x+=与直线1y a =有两个不同交点, 又()()24311ln 212ln x x x x x x x g x x x ⎛⎫+-+⋅ ⎪--⎝⎭'==, 令()12ln h x x x =--,则()210h x x'=--<在()0,∞+上恒成立,则()12ln h x x x =--在()0,∞+上单调递减,又()10h =,所以当()0,1x ∈时,()0h x >,即()312ln 0x x g x x --'=>,则()g x 单调递增; 当()1,x ∈+∞时,()0h x <,即()312ln 0x x g x x --'=<,则()g x 单调递减; 所以()()max 110g x g ==>, 又211101e g e e-⎛⎫=< ⎪⎝⎭,所以存在01,1x e ⎛⎫∈ ⎪⎝⎭,使得()0g x =; 因此当()00,x x ∈时,()0g x <;当()0,1x x ∈时,()0g x >;又当1x >时,ln 0x >,所以()0g x >;因此,为使()2ln x x g x x +=与直线1y a =有两个不同交点,只需101a <<,解得1a >. 故答案为:1a >.【点睛】思路点睛:利用导数的方法处理由函数零点个数求参数问题时,一般需要根据函数零点个数,得到对应方程的根的个数,再分离参数,构造新的函数,对新函数求导,利用导数的方法判定其单调性,确定函数的取值情况,进而可求出结果.(也可利用数形结合的方法求解) 16.【分析】先设对其求导求出其最小值为得到再令对其求导导数的方法研究其单调性得出最大值即可得出结果【详解】设则因为所以当时则函数单调递减;当时则函数单调递增;所以则令则;由可得;所以当时则函数单调递增; 解析:2e【分析】先设()ln 2a f x x x=++,对其求导,求出其最小值为()min ln 3f x a =+,得到ln 3b a a a +≤,再令()ln 3a g a a+=,对其求导,导数的方法研究其单调性,得出最大值,即可得出结果.【详解】设()ln 2a f x x x =++,则()221a x a f x x x x '-=-=,因为0a >, 所以当()0,x a ∈时,()20x a f x x -'=<,则函数()f x 单调递减; 当(),x a ∈+∞时,()20x a f x x'-=>,则函数()f x 单调递增;所以()()min ln 3f x f a a b ==+≥, 则ln 3b a a a +≤,令()ln 3a g a a +=,则()221ln 32ln a a g a a a --+'==-; 由()0g a '=可得,2a e -=;所以当()20,a e -∈时,()22ln 0a g a a +'=->,则函数()g a 单调递增; 当()2,a e -∈+∞时,()22ln 0a g a a +'=-<,则函数()g a 单调递减; 所以()()2222max ln 3e g a g e e e---+===,即b a 的最大值为2e . 故答案为:2e【点睛】思路点睛:导数的方法研究函数最值时,通常需要先对函数求导,解对应的不等式,求出单调区间,得出函数单调性,得出极值,进而可得出最值.17.【分析】由题意可得:有2个不相等的实根也即有2个不相等的实根利用即可求解【详解】由题意可得:有2个不相等的实根也即有2个不相等的实根所以即解得:或故答案为:【点睛】本题主要考查了极值和导数的关系属于 解析:()(),22,-∞-+∞【分析】由题意可得:()20()22x f x x a x a e '⎡⎤=++++⎣=⎦有2个不相等的实根,也即 ()2220x a x a ++++=有2个不相等的实根,利用0∆>即可求解.【详解】由题意可得:()20()22xf x x a x a e '⎡⎤=++++⎣=⎦有2个不相等的实根, 也即()2220x a x a ++++=有2个不相等的实根, 所以()()22420a a ∆=+-+>,即()()2240a a ++->,解得:2a >或2a <-,故答案为:()(),22,-∞-+∞【点睛】本题主要考查了极值和导数的关系,属于中档题. 18.【分析】构造函数判断函数的单调性和奇偶性得到解得答案【详解】设函数当时函数单调递增为奇函数故为奇函数故函数在上单调递增即即解得故答案为:【点睛】本题考查了利用函数的单调性和奇偶性解不等式构造函数判断解析:(),2019-∞-【分析】构造函数()()2g x x f x =,判断函数的单调性和奇偶性,得到()()20212g x g +<,解得答案.【详解】设函数()()2g x x f x =, 当0x >时,()()()()()23220g x xf x x f x x f x xf x x '''=+=+>>⎡⎤⎣⎦,函数单调递增,()f x 为奇函数,故()g x 为奇函数,故函数()g x 在R 上单调递增,22(2021)(2021)4(2)(2021)(2021)4(2)0x f x f x f x f +++-=++-<, 即()()20212g x g +<,即20212x +<,解得2019x <-.故答案为:(),2019-∞-.【点睛】本题考查了利用函数的单调性和奇偶性解不等式,构造函数判断单调性和奇偶性是解题的关键.19.【分析】先对函数求导判定其单调性分别讨论三种情况即可得出结果【详解】因为所以由得;由得;所以函数在上单调递增在上单调递减;画出函数的大致图象如下当时由得或为使满足关于的不等式恰有两个整数解只需即;当 解析:1ln 31ln 2,32++⎡⎫⎪⎢⎣⎭ 【分析】先对函数()1ln x f x x+=求导,判定其单调性,分别讨论0a >,0a =,0a <三种情况,即可得出结果.【详解】 因为()1ln x f x x+=, 所以()2211ln ln x x f x x x --'==-, 由()0f x '>得01x <<;由()0f x '<得1x >;所以函数()f x 在()0,1上单调递增,在()1,+∞上单调递减;画出函数()f x 的大致图象如下,当0a >时,由()()20f x af x ->得()f x a >或()0f x <,为使满足关于x 的不等式()()20f x af x ->恰有两个整数解,只需()()23f a f a ⎧>⎪⎨≤⎪⎩, 即1ln 31ln 2,32a ++⎡⎫∈⎪⎢⎣⎭; 当0a =时,由()()20f x af x ->得()20f x >,即()0f x >或()0f x <,所以1≥x ,不能满足题意;当0a <时,由()()20fx af x ->得()f x a <-或()0f x >,所以1≥x ,不能满足题意; 综上,1ln 31ln 2,32a ++⎡⎫∈⎪⎢⎣⎭. 故答案为:1ln 31ln 2,32a ++⎡⎫∈⎪⎢⎣⎭. 【点睛】本题主要考查导数的方法研究不等式能成立的问题,熟记导数的方法研究函数的单调性即可,属于常考题型. 20.【分析】可知从而根据条件可判断为减函数或存在极值点求导数从而可判断不可能为减函数只能存在极值点从而方程有解这样由指数函数的单调性即可得出的取值范围【详解】要满足使得成立则函数为减函数或存在极值点当时 解析:()1,+∞【分析】可知00lg x x <,从而根据条件可判断()f x 为减函数或存在极值点,求导数()1x f x e a '=-+,从而可判断()f x 不可能为减函数,只能存在极值点,从而方程1x a e -=有解,这样由指数函数x y e =的单调性即可得出a 的取值范围.【详解】00lg x x <,∴要满足0(0,)x ∃∈+∞,使得()()00lg f x f x >成立,则函数()f x 为减函数或存在极值点,()1x f x e a '=-+,当()0,x ∈+∞时,()0f x '≤不恒成立,即函数()f x 不是减函数,∴只能()f x 存在极值点,()0f x '∴=有解,即方程1x a e -=有解,即11x a e =+>,()1,a ∴∈+∞,故答案为:()1,+∞【点睛】本题考查了导数研究不等式能成立问题,考查了导数在研究函数单调性、极值中的应用,考查了转化与化归的思想,解题的关键是求出导数,属于中档题.三、解答题21.(1)证明见详解;(2)2【分析】(1)构造新函数利用函数的单调性证明命题成立.(2)对k 进行讨论,利用新函数的单调性求参数k 的取值范围.【详解】(1)证明:()()1()ln ln 1ln 11x f x x x x+==+---, ()2112111f x x x x'=+=+-- 令()3()2()3x g x f x x =-+, 则()()()4222211x g x f x x x ''=-+=-, 因为()()001g x x '><<,所以()g x 在()0,1上单调递增,所以()()00g x g >=,()0,1x ∈,即当()0,1x ∈时,3()2()3x f x x >+. (2)由(1)可知,当k 2≤时,3()()3x f x k x >+对(0,1)x ∈恒成立, 当2k >时,令()3()()3x h x f x k x =-+,则()()2222()(1)1kx k h x f x k x x--''=-+=-,所以当0x <<()0h x '<,因此()h x 在区间⎛ ⎝上单调递减,当0x <<()()00h x h <=, 即3()()3x f x k x <+,所以当2k >时,3()()3x f x k x >+并非对(0,1)x ∈恒成立,综上可知,k 的最大值为2. 【点睛】关键点点睛:本题考查了构造新函数,利用导数判断函数的单调性,证明不等式,利用导数研究不等式恒成立,解题的关键是由(1)确定当k 2≤时,3()()3x f x k x >+对(0,1)x ∈恒成立,考查了运算求解能力.22.(1)最大值为92,最小值为5027-;(2)[]2,2-.【分析】(1)求出导数,由()10f '-=求出参数值,代入导函数中,求出极值点.比较极值点处函数值与区间端点函数值的大小,得出最值.(2)由导函数为二次函数,且在(],2-∞和[)2,+∞函数值恒大于等于零,结合二次函数图像求解. 【详解】解:(1)由原式的()3244f x x ax x a =--+,∴()2324f x x ax '=--;由()10f '-=,得12a =,此时有()234f x x x '=--; ()10f '-=得43x =或1x =-,故极值点为43x =和1x =- 又450327f ⎛⎫=-⎪⎝⎭,()912f -=,()20f -=,()20f =, 所以()f x 在[]2,2-上的最大值为92,最小值为5027-. (2)()2324f x x ax '=--的图像为开口向上且过点()0,4-的二次函数,由条件知,()2324f x x ax '=--在(],2-∞-和[)2,+∞上恒大于等于零 故仅须满足()20f '-≥,()20f '≥, ∴22a -≤≤.所以a 的取值范围为[]2,2-. 【点睛】二次函数、二次方程与二次不等式统称“三个二次”,它们常结合在一起,有关二次函数的问题,数形结合,密切联系图象是探求解题思路的有效方法.一般从:①开口方向;②对称轴位置;③判别式;④端点函数值符号四个方面分析. 23.(1)1m =-;(2)(,4)-∞-. 【分析】(1)求出导函数()'f x ,由导数的几何意义可求得m 值:设切点00(,)x y ,0()2f x m '=,及切点在切线上又在函数图象上可得;(2)求出()'g x ,()0g x '=的两解为12,x x ,由韦达定理得1212221,1,x x m x x m x x ⎛⎫+=-==-+ ⎪⎝⎭,可得21>x ,这样()211g x x x +可表示为2x 的函数,再由导数可求得其范围. 【详解】(1)由题意知(0,)x ∈+∞,2()22f x x m x'=+-,设直线2y mx =与曲线()y f x =相切于点()00,x y 所以()()0000022f x m y f x y mx '⎧=⎪=⎨⎪=⎩,,,整理得201x =,得01,1x m ==-;(2)2()22ln g x x mx x m =+++,所以()2212()22x mx g x x m x x'++=++=, 所以12,x x ,是方程210x mx ++=的两个根,所以1212221,1,x x m x x m x x ⎛⎫+=-==-+ ⎪⎝⎭, 因为120x x <<,所以21>x ,所以()22122211222ln 1g x x x mx x m x x x +++++=()3322222222ln 1x x x x x x =---+>,令()()()()3222222222222222ln 1,32ln h x x x x x x x h x x x x '=---+>=-+-,()ln p x x x =-,则11()1x p x x x-'=-=,1x >时,()0p x '<,()p x 递减,所以()(1)10p x p <=-<,所以220ln x x <-,所以()()220h x h x '<,在(1,)x ∈+∞上单调递减,()2(1)4h x h <=-,从而()211g x x x +的取值范围为(,4)-∞-. 【点睛】关键点点睛:本题考查导数的几何意义,考查用导数研究函数的取值范围.解题关键是对多变量函数()211g x x x +进行消元,转化为一元函数,然后利用导数求得其取值范围.根据是12,x x 是方程()0g x '=的两根,由韦达定理建立三个变量之间的关系. 24.(1)单调递减区间为2(,0),,3a ⎛⎫-∞+∞⎪⎝⎭,单调递增区间为20,3a ⎛⎫⎪⎝⎭;(2)13ln ,24⎛⎫-+∞ ⎪⎝⎭. 【分析】(1)求出导函数()(32)f x x x a '=--,讨论0a =、0a <或0a >,利用导数与函数单调性之间的关系即可求解.(2)将不等式分离参数转化为2ln k x x x >--在(0,)+∞上恒成立,令2()ln g x x x x =--,利用导数求出()g x 的最大值即可求解.【详解】解:(1)2()32(32)f x x ax x x a '=-+=--令()0f x '=,得12203x x a ==, 当0a =时,()0f x '≤恒成立,且仅在0x =时取等号, 故()f x 在R 上单调递减 当0a <时,在区间2,3a ⎛⎫-∞ ⎪⎝⎭和(0,)+∞上()0f x '<,在区间2a,03⎛⎫⎪⎝⎭上()0f x '>, 所以()f x 的单调递减区间为2,(0,)3a ⎛⎫-∞+∞ ⎪⎝⎭,, ()f x 的单调递增区间为2a,03⎛⎫⎪⎝⎭当0a >时,在区间2(,0),,3a ⎛⎫-∞+∞ ⎪⎝⎭上()0f x '<,在区间20,3a ⎛⎫⎪⎝⎭上()0f x '>. 所以()f x 的单调递减区间为2(,0),,3a ⎛⎫-∞+∞⎪⎝⎭,单调递增区间为20,3a ⎛⎫⎪⎝⎭(2)当1a =-时,由题意可知,()(ln )f x x k x <-在(0,)+∞上恒成立, 即322(ln )ln x x x k x k x x x --<-⇒>--在(0,)+∞上恒成立设2()ln g x x x x =--,则2121(1)(21)()21x x x x g x x x x x'--+-+-=--==令()0g x '>得10,2x ⎛⎫∈ ⎪⎝⎭;令()0g x '<得1,2x ⎛⎫∈+∞ ⎪⎝⎭,所以函数()g x 在10,2⎛⎤⎥⎝⎦上单调递增,在1,2⎛⎫+∞ ⎪⎝⎭上单调递减 113()ln 224g x g ⎛⎫∴≤=- ⎪⎝⎭∴实数k 的取值范围是13ln ,24⎛⎫-+∞ ⎪⎝⎭. 【点睛】关键点点睛:本题考查了利用导数研究函数的单调性,利用导数研究不等式恒成立,解题的关键是分离参数,将不等式转化为2ln k x x x >--在(0,)+∞上恒成立,考查了分类讨论的思想.25.(1)()200cos 100,0,2S πθθθθ⎛⎫⎛⎫=+∈ ⎪ ⎪⎝⎭⎝⎭;(2)6πθ=.【分析】(1)在直角三角形ABC 中,求出AC ,在扇形COB 中利用弧长公式求出弧BC 的长度,则可得函数()S θ; (2)利用导数可求得结果. 【详解】(1)如图,连接,BC OC ,在直角三角形ABC 中,100,,AB BAC θ=∠= 所以100cos ,AC θ=由于22,BOC BAC θ∠=∠= 则弧BC 的长为250100,l r αθθ=⋅=⋅=()22100cos 100200cos 100,0,2S AC l πθθθθθθ⎛⎫⎛⎫∴=+=⨯+=+∈ ⎪ ⎪⎝⎭⎝⎭(2)由(1)可知()200sin 100S θθ'=-+, 令()0,S θ'= 得1sin 2θ=,因为(0,)2πθ∈所以6πθ=,当0,,()0,()6S S πθθθ'⎛⎫∈> ⎪⎝⎭单调递增,当,,()0,()62S S ππθθθ'⎛⎫∈< ⎪⎝⎭单调递减,所以当6πθ=时,使得绿化带总长度()S θ最大.【点睛】关键点点睛:仔细审题,注意题目中的关键词“两侧”和“一侧”是解题关键. 26.(Ⅰ)证明见解析;(Ⅱ)(,2]-∞. 【分析】(Ⅰ)设切点为001(,)P x x ,求出切线方程并计算l 与坐标轴围成的三角形的面积为2,故可得相应的结论.(Ⅱ)由题设可得()0g x '≤,利用参变分离可得a 的取值范围.【详解】(Ⅰ)当0a =时,1(),0f x x x =>,21()f x x'=-,设()f x 图象上任意一点001(,)P x x ,切线l 斜率为0201()k f x x =-'=. 过点001(,)P x x 的切线方程为020011()y x x x x -=--. 令0x =,解得02y x =;令0y =,解得02x x =. 切线与坐标轴围成的三角形面积为0012|||2|22S x x =⋅=. 所以l 与坐标轴围成的三角形的面积与切点无关. (Ⅱ)由题意,函数()g x 的定义域为(0,)+∞. 因为()g x 在(0,)+∞上单调递减, 所以21()10a g x x x'=--≤在(0,)+∞上恒成立, 即当(0,)x ∈+∞,1a x x≤+恒成立, 所以min 1()a x x≤+ 因为当(0,)x ∈+∞,12x x+≥,当且仅当1x =时取等号. 所以当1x =时,min 1()2x x+= 所以2a ≤.所以a 的取值范围为(,2]-∞. 【点睛】结论点睛:一般地,若()f x 在区间(),a b 上可导,且()()()00f x f x ''><,则()f x 在(),a b 上为单调增(减)函数;反之,若()f x 在区间(),a b 上可导且为单调增(减)函数,则()()()00f x f x ''≥≤.。
(常考题)北师大版高中数学选修1-1第四章《导数应用》检测(答案解析)(4)
一、选择题1.定义在R 上的偶函数()f x 的导函数为(),f x '若对任意的0x >的实数,都有:()()22f x xf x '+<恒成立,则使()()2211x f x f x -<-成立的实数x 的取值范围为( )A .{}1xx ≠±∣ B .(-1,1) C .()(),11,-∞-+∞D .(-1,0)()0,1⋃2.已知函数23()2ln (0)xf x x x a a=-+>,若函数()f x 在[]1,2上单调递减,则a 的取值范围是( ) A .2,5⎡⎫+∞⎪⎢⎣⎭B .20,5⎛⎤ ⎥⎝⎦C .(0,1]D .[1,)+∞3.已知函数21()ln 2f x x x a =--,若0x ∃>,()0f x ≥,则a 的取值范围是( ) A .1,2⎛⎤-∞- ⎥⎝⎦B .1,2⎛⎤-∞ ⎥⎝⎦C .(],1-∞D .(],e -∞4.设函数()f x '是奇函数()()f x x R ∈的导函数,()10f -=,当0x >时,()()0xf x f x '-<,则使得()0f x >成立的x 的取值范围是( )A .()()0,11,+∞B .()(),11,-∞-+∞C .()(),10,1-∞-⋃D .()()1,01,-⋃+∞5.已知函数()2()x xf x x e e x-=⋅-+,若()()()f x f y f x y <<+,则( )A .0xy >B .0xy <C .0x y +>D .0x y +<6.对任意0x >,若不等式2e ln e xa x ax x++≥恒成立(e 为自然对数的底数),则正实数a 的取值范围是( )A .(0,e]B .2(0,e ]C .2[,e]eD .22[,e ]e7.已知实数2343a e =,4565b e =,6787c e =,那么a ,b ,c 大小关系为( ) A .a b c >> B .b a c >>C .c b a >>D .a c b >>8.下列不可能是函数()()()xx f x xee Z αα-=-∈的图象的是( )A .B .C .D .9.已知函数()f x (x ∈R )满足()34f =,且()f x 的导函数()1f x '<,则不等式()221f x x -<的解集为( )A .()2,2-B .()(),22,-∞-+∞C .(3,3-D .((),33,-∞-+∞10.函数3()3f x x x =-在[0,]m 上最大值为2,最小值为0,则实数m 取值范围为( ) A .[13]B .[1,)+∞C .(13]D .(1,)+∞11.定义在R 上的函数()f x 满足()()2f x f x '+<,则下列不等式一定成立的是( ) A .(3)2(2)2ef f e +<+ B .(3)2(2)2ef f e +>+ C .(3)2(2)2f e ef +<+D .(3)2(2)2f e ef +>+12.已知函数()()()22ln 0f x a e x xa =->,1,1D e ⎡⎤=⎢⎥⎣⎦若所有点()(),s f t (s ,t D ∈)所构成的平面区域面积为2e 1-,则a =( ) A .eB .1e 2- C .1 D .2e e - 二、填空题13.已知()y f x =是定义在R 上的奇函数,()20f -=,且当0x >时()()20f x xf x x'-<,则不等式()()2110x f x -->的解集是______.14.如果定义在R 上的函数()f x ,对任意两个不相等的实数1x ,2x ,都有()()()()11221221x f x x f x x f x x f x +>+,则称函数()f x 为“H 函数”,给出下列函数:①e 1x y =+ ②()32sin cos y x x x =-- ③32331y x x x =+++ ④ln ,0,0x x y x x ⎧≠=⎨=⎩以上函数是“H 函数”的所有序号为________.15.若函数()ln 1f x x x =+的图象总在直线y ax =的上方,则实数a 的取值范围是______.16.已知定义在R 上的函数()f x 关于y 轴对称,其导函数为()f x '. 当0x ≥时,()()1xf x f x '>-. 若对任意x ∈R ,不等式()()0x x x e f e e ax axf ax -+->恒成立,则正整数a 的最大值为_____.17.已知三次函数()y f x =的图象如图所示,则函数()f x 的解析式是_______.18.已知函数()()()3ln 06x f x a x x x a =-->,当0x >时,()0f x '≥(()f x '为函数()f x 的导函数),则实数a 的取值范围为______.19.若函数32()1f x x ax x =-++在()2,+∞上单调递增,则实数a 的取值范围是__________.20.已知函数()(1)2x f x e a x =---(e 为自然对数的底数),若0(0,)x ∃∈+∞,使得()()00lg f x f x >成立,则a 的取值范围为________. 三、解答题21.如图一边长为10cm 的正方形硬纸板,四角各截去一个大小相同的小正方形,然后折起,可以做成一个无盖长方体手工作品.所得作品的体积V (单位:cm 2)是关于截去的小正方形的边长x (单位:cm )的函数.(1)写出体积V 关于x 的函数表达式()f x .(2)截去的小正方形的边长为多少时,作品的体积最大?最大体积是多少? 22.已知函数2()(41)43(0)xf x ax a x a e a ⎡⎤=-+++≠⎣⎦. (1)若1a =,求曲线()y f x =在(0,(0))f 处的切线方程; (2)若()f x 在2x =处取得极小值,求a 的取值范围. 23.已知函数()ln 1f x x =+.(1)直线20l x y -+=:,求曲线()y f x =上的点到直线l 的最短距离; (2)若曲线21()(1)()(03)2g x x a x f x x =-++<<存在两个不同的点,使得在这两点处的切线都与x 轴平行,求实数a 的取值范围.24.已知函数32()691f x x x x =-++. (1)求曲线()y f x =在点()0,1处的切线方程.(2)证明:()()1ln 2cos x x f x x +->对1()2,x ∈+∞恒成立. 25.已知函数()()22ln f x x t x t x =++-.(1)若3x =是()f x 的极值点,求()f x 的极大值;(2)若()ln 1xg x e t x =+-,求实数t 的范围,使得()()f x g x ≤恒成立.26.已知函数32()24,1f x x ax x =-+=是函数()f x 的一个极值点.(1)求函数()f x 的单调递增区间;(2)当[1,2]x ∈-,求函数()f x 的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C 解析:C 【分析】根据已知构造合适的函数,对函数求导,根据函数的单调性,求出函数的取值范围,并根据偶函数的性质的对称性,求出0x <的取值范围. 【详解】当0x >时,由2()()20f x xf x +'-<可知:两边同乘以x 得:22()()20xf x x f x x +'-< 设:22()()g x x f x x =-则2()2()()20g x xf x x f x x '=+'-<,恒成立:()g x ∴在(0,)+∞单调递减,由()()21x f x f -21x <-()()2211x f x x f ∴-<-即()()1g x g < 即1x >;当0x <时,函数是偶函数,同理得:1x <-综上可知:实数x 的取值范围为(-∞,1)(1-⋃,)+∞, 故选:C 【点睛】关键点点睛:主要根据已知构造合适的函数,函数求导,并应用导数法判断函数的单调性,偶函数的性质,属于中档题.2.D解析:D 【分析】求出()'f x 由()0f x '≤得314x a x ≤-,令1()4g x x x=-,判断出()g x 的单调性并利用单调性可得()g x 的最小值可得答案. 【详解】31()4(0)f x x x a x'=-+>,因为函数()f x 在[]1,2上单调递减, 所以3140x a x -+≤,即314x a x≤-, 令1()4g x x x =-,由于114,y x y x ==-在[]1,2都是增函数, 所以1()4g x x x=-在[]1,2单调递增,所以()(1)3g x g ≤=,所以33a ≤,又0a >,解得1a ≥. 故选:D. 【点睛】本题考查了利用函数的单调性求参数的范围问题,关键点是令1()4g x x x=-并求出最小值,考查了学生分析问题、解决问题的能力.3.A解析:A 【分析】 由()f x 得21ln 2a x x ≤-,设21()ln 2g x x x =-,利用导数求()g x 的最大值可得答案. 【详解】 由21()ln 2f x x x a =--,得21ln 2a x x ≤-.设21()ln 2g x x x =-,则211()x g x x x x-'=-=.令()0g x '>,得01x <<;令()0g x '<,得1x >, 则()g x 在(0,1)上单调递增,在(1,)+∞上单调递减,从而1()(1)2g x g ≤=-, 故12a ≤-. 故选:A. 【点睛】本题考查了能成立求参数的问题,关键点是构造函数利用导数求最值,考查了分析问题、解决问题的能力.4.C解析:C 【分析】 构造函数()()f xg x x=,分析出函数()g x 为偶函数,且在()0,∞+上为减函数,由()0f x >可得出()00g x x ⎧>⎨>⎩或()0g x x ⎧<⎨<⎩,解这两个不等式组即可得解.【详解】构造函数()()f xg x x=,该函数的定义域为{}0x x ≠, 由于函数()f x 为奇函数,则()()()()()f x f x f x g x g x x x x---====--,所以,函数()()f xg x x=为偶函数. 当0x >时,()()()20xf x f x g x x'-'=<,所以,函数()g x 在()0,∞+上为减函数, 由于函数()()f xg x x=为偶函数,则函数()g x 在(),0-∞上为增函数. ()10f -=,则()10f =且()00f =,所以,()()110g g -==.不等式()0f x >等价于()()010g x g x ⎧>=⎨>⎩或()()010g x g x ⎧<=-⎨<⎩,解得1x <-或01x <<.因此,不等式()0f x >的解集为()(),10,1-∞-⋃. 故选:C. 【点睛】方法点睛:利用函数的奇偶性与单调性求解抽象函数不等式,要设法将隐性划归为显性的不等式来求解,方法是:(1)把不等式转化为()()f g x f h x >⎡⎤⎡⎤⎣⎦⎣⎦;(2)判断函数()f x 的单调性,再根据函数的单调性把不等式的函数符号“f ”脱掉,得到具体的不等式(组),但要注意函数奇偶性的区别.5.A解析:A 【分析】先判断函数的奇偶性和单调性,再分析得解. 【详解】由题得函数的定义域为R.()22())()(x x x x f x x e e x e e x x f x --=-+=-=-⋅-+,所以函数是偶函数.当0x >时,1()()2xx xx f x e xe xe x e-'=-+++, 因为0x >,所以()0f x '>,所以函数()f x 在(0,)+∞上单调递增,因为函数是偶函数,所以函数()f x 在(,0)-∞上单调递减,在(0,)+∞上单调递增. 如果0,0x y >>,则0x y +>,因为()()()f x f y f x y <<+,所以x y x y <<+,与已知相符; 如果0,0x y <<,则0x y +<,所以x y x y >>+,与已知相符; 如果0,0x y ><,因为()()f x f y <,所以0y x y <+<, 所以()()f y f x y >+,与已知矛盾;如果0,0x y <>,因为()()f x f y <,所以0y x y >+>, 所以()()f y f x y >+,与已知矛盾;当,x y 之中有一个为零时,不妨设0y =,()()f x y f x += ,()()()f x f y f x <<,显然不成立.故选:A 【点睛】方法点睛:对于函数的问题,要灵活利用函数的奇偶性和单调性分析函数的问题,利用函数的图象和性质分析函数的问题.6.B解析:B 【分析】将不等式化简并换元,构造函数2()ln e (e)f t t a t t =-+≥,则min ()0f t ≥即可,对函数求导,判断导函数零点与区间端点的关系,分类讨论得出函数的单调性和最小值,代入求解可得正实数a 的取值范围. 【详解】22e e e ln e ln e 0x x x a x ax a x x x ++≥⇔-+≥,令e x t x=(由e e x x ≥可知e t ≥), 则2ln e 0t a t -+≥,设2()ln e (e)f t t a t t =-+≥,则min ()0f t ≥即可,易得()1(e)a t a f t t t t-'=-=≥, ①当0e a <≤时,()0f t '≥,所以此时()(e)y f t t =≥是增函数,故2min ()(e)e e 0f t f a ==-+≥,解得2e e a ≤+,又0e a <≤,所以0e a <≤;②当e a >时,则()y f t =在[,)e a 上递减,在(,)a +∞上递增,故min ()()f t f a =,min ()0()0f t f a ≥⇔≥,所以2ln e 0a a a -+≥,设2()ln e (e)g a a a a a =-+>,故()0g a ≥即可,而()ln (e)g a a a '=->,显然()0g a '<,即()y g a =在(e,)+∞上递减,又2(e )0g =,而()0g a ≥,所以2()(e )g a g ≥,所以2e a ≤,又e a >,因此2e e a <≤.综上所述,0e a <≤或2e e a <≤,即2(0,e ]a ∈. 故选:B 【点睛】方法点睛:本题考查不等式的恒成立问题,考查导数在单调性和最值中的应用,考查分类讨论思想,关于恒成立问题的几种常见解法总结如下: 1.参变分离法,将不等式恒成立问题转化为函数求最值问题;2.主元变换法,把已知取值范围的变量作为主元,把求取值范围的变量看作参数;3.分类讨论,利用函数的性质讨论参数,分别判断单调性求出最值;4.数形结合法,将不等式两端的式子分别看成两个函数,作出函数图象,列出参数的不等式求解.7.C解析:C 【分析】根据所给实数的表达式进行构造函数,然后利用导数判断出函数的单调性,最后利用函数的单调性进行判断即可. 【详解】构造函数'()(2)()(1)x x f x x e f x x e =-⇒=-,当1x >时,'()0,()f x f x <单调递减, 当1x <时,'()0,()f x f x >单调递增.因为2342()33a e f ==,4564()55b e f ==,6786()77c e f ==,246357<<,所以642()()()753f f f >>,即c b a >>.故选:C 【点睛】关键点睛:根据几个实数的特征构造函数,利用导数判断其单调性是解决此类问题的关键.8.B解析:B 【分析】 由函数()()xx f x xee α-=-,分0a =, a 为正整数,a 为正偶数,a 为正奇数,a 为负整数分析其定义域,奇偶性和单调性判断. 【详解】当0α=时,()xxf x e e -=-其定义域为{}|0x x ≠,关于原点对称,又()()()xx x x f x ee e ef x ---=-=--=-,所以()f x 是奇函数,且单调递增,没有选项符合题意;当α为正整数时,()()xx f x xee α-=-的定义域为R ,图象经过原点,当0x >时, ()()11()())(x x x x x xf x x e e e e x e e x x x ααααα-----'⎡⎤⎡⎤==-+++⎣⎦+⎣-⎦,因为0,0x xx x e ee e --->+>,所以()0f x '>,则()f x 递增,又存在0M >,当x M >时,随着x 的增大,()'f x 的变化率越来越大, 若α为正偶数,则()f x 是奇函数,此时C 选项符合题意; 若α为正奇数,则()f x 是偶函数,此时A 选项符合题意; 当α为负整数时,()()xx f x xee α-=-的定义域为{}|0x x ≠,当α为负奇数,()()()()xx f x x e e f x α--=--=,()f x 为{}|0x x ≠上的偶函数,无选项符合;当α为负偶数时且4α≤-时,()()()()xx f x x ee f x α--=--=-,()f x 为{}|0x x ≠上的奇函数, 当0x >时,()()211(())x x x x f x x e e x x x x x e e x ααααααα----+⎛⎫+--+ ⎪-⎝'⎡⎤=+=⎦⎭⎣, 令()2,0x x S x e x x αα-+=+>-, 则()()()()()2222222xxxxx x S x ex x e ααααα---+-'=-=-⨯--,令(),0x x x x αϕ->=,则()01xx ϕ'<=,故(),0xx x x αϕ->=为减函数,而()00ϕα=->,()()()23ln ln 2ln t t t αααϕ---+=+=-,其中2t =≥,令()232ln ,2u t t t t t =+-≥,则()()2223,2t t u t t t+-'=≥,则()()22232+440tt +-≤⨯-<,故()232ln ,2u t t t t t =+-≥为减函数,所以()2ln 240u t ≤-<,()()ln 0ϕα-<,所以存在()00x ∈+∞,,使得当()00,x x ∈时,()0x ϕ>即()0S x '<, 当()0,x x ∈+∞时,()0x ϕ<即()0S x '>,故()S x 在()00,x 为减函数,在()0,x +∞为增函数,因为()00S =,故()00S x <,而当x a >-时,()0S x >,故存在()10,x ∈+∞,使得当()10,x x ∈时,()0S x <即()0f x '<,当()1,x x ∈+∞时,()0S x >即()0f x '>,所以()f x 在()10,x 上为减函数,在()1,x +∞为增函数, 又当0x >时,()0f x >恒成立,故D 选项符合题意. 对任意的整数α,当α为非负整数时,()f x 在0x =处有定义,且()f x '在0x =不间断,故B 不符合题意,当α为负整数时,()f x 在0x =处没有定义,故B 不符合题意, 故选:B. 【点睛】方法点睛:对于知式选图问题的解法:1、从函数的定义域,判断函数图象的左右位置,从函数的值域判断图象的上下位置;2、从函数的单调性,判断函数图象的变换趋势;3、从函数的奇偶性,判断函数图象的对称性;4、从函数的周期性,判断函数图象图的循环往复;5、从函数的特殊点,排除不和要求的图象;9.B解析:B 【分析】构造函数()()g x f x x =-,求导后可证得()g x 在R 上单调递减,将原不等式可转化为()()()221133f x x f ---<-,即()()213g x g -<,再利用函数单调性的定义求解.【详解】令()()g x f x x =-,则()()10g x f x ''=-<, 所以()g x 在R 上单调递减.因为不等式()221f x x -<可等价于()()()221133f x x f ---<-,即()()213g x g -<,所以213x ->, 解得2x >或2x <-, 故选:B. 【点睛】本题主要考查函数的单调性与导数以及利用函数的单调性解不等式,还考查了运算求解的能力,属于中档题.10.A解析:A 【分析】求导得()3(1)(1)f x x x =+-',从而知函数()f x 的单调性,再结合(0)0f =,f (1)2=,即可得解 【详解】.3()3f x x x =-,2()333(1)(1)f x x x x ∴=-=+-',令()0f x '=,则1x =或1-(舍负),当01x <时,()0f x '>,()f x 单调递增;当1x >时,()0f x '<,()f x 单调递减.函数()f x 在[0,]m 上最大值为2,最小值为0,且(0)0f f ==,f (1)2=,13m ∴≤≤故选:A. 【点睛】本题考查利用导数研究函数的最值问题,理解原函数的单调性与导函数的正负性之间的联系是解题的关键,考查学生的逻辑推理能力和运算能力,属于基础题.11.A解析:A 【分析】设()()2xxF x e f x e =-,求导并利用()()2f x f x '+<可得()F x 在R 上单调递减,根据(2)(3)F F >可得结果.【详解】设()()2x xF x e f x e =-,则[]()()()2()()2x x x xF x e f x e f x e ef x f x '''=+-=+-,因为()()2f x f x '+<,所以()()()20F x e f x f x ''⎡⎤=+-<⎣⎦,所以()F x 在R 上单调递减,则(2)(3)F F >,即2233(2)2(3)2e f e e f e ->-,故(3)2(2)2ef f e +<+. 故选:A. 【点睛】本题考查了构造函数解决导数问题,考查了利用导数研究函数的单调性,利用单调性比较大小,属于中档题.12.D解析:D 【分析】求得导函数()'f x ,确定()f x 在1,1e ⎡⎤⎢⎥⎣⎦上的单调性,()f x 在1,1e ⎡⎤⎢⎥⎣⎦上的值域,从而可得题中平面区域面积,解之可得a . 【详解】解:()()2222a e x f x a e x x -⎛⎫'=-= ⎪⎝⎭,因为1,1x e ⎡⎤∈⎢⎥⎣⎦,0a >,所以()0f x '>,()f x 在1,1e ⎡⎤⎢⎥⎣⎦上单调递增,则()f x 在1,1e ⎡⎤⎢⎥⎣⎦上的值域为()22,a e e a ⎡⎤+⎣⎦,因为所有点()(),s f t (s ,t D ∈)所构成的平面区域面积为2e 1-,所以()221211a e e e e ⎛⎫---=-⎪⎝⎭, 解得2ea e =-, 故选:D . 【点睛】本题考查用导数求函数的值域,解题方法是求出导函数,用导数确定函数的单调性,求得值域区间,然后可计算出题设平面区域面积,得出结论.二、填空题13.【分析】设则为偶函数由则在是上单调递增在是上单调递减设即求解分和两种情况解不等式和【详解】设由当时即所以在是上单调递增为奇函数则为偶函数在是上单调递减即()设当时即由为奇函数则所以由在是上单调递增所 解析:()()1,13,-+∞【分析】 设()()f x g x x =,则()g x 为偶函数,由()()()2xf x f x g x x'-'=, 则()g x 在()0+∞,是上单调递增,()g x 在()0-∞,是上单调递减,设1x t -=,即求解()0f t >,分0t >和0t <两种情况解不等式()0g t >和()0g t <.【详解】设()()f x g x x =,由()()()2xf x f x g x x '-'=当0x >时()()20f x xf x x'-<,即()0g x '>,所以()g x 在()0+∞,是上单调递增. ()y f x =为奇函数,则()()f x g x x=为偶函数,()g x 在()0-∞,是上单调递减 ()()2110x f x -->,即()10f x ->(1x ≠)设1x t -=,当0t >时,()0f t >,即()()0f t g t t=> 由()20f -=,()y f x =为奇函数,则()20f =,所以()20g =由()g x 在()0+∞,是上单调递增,()0g t >,所以2t >,即12x ->,所以3x > 当0t <时,()0f t >,即()()0f t g t t=< 由()20f -=,则()20g -=,根据()g x 在()0-∞,是上单调递减 所以当()0g t <时,则20t -<<,即210x -<-<,所以11x -<< 综上所述:不等式()()2110x f x -->的解集是:()()1,13,-+∞故答案为:()()1,13,-+∞【点睛】关键点睛:本题考查构造函数讨论单调性解不等式,解答本题的关键是构造函数()()f x g x x =,由()()()2xf x f x g x x'-'=结合条件和奇偶性得出其单调性, 属于中档题. 14.①②③【分析】根据题意可知H 函数为增函数转化为判断函数在上是否为增函数根据解析式可知①正确;根据导数可知②③正确;根据解析式可知④不正确【详解】因为可化为所以根据题意可知函数为上的增函数即H 函数为增解析:①②③ 【分析】根据题意可知“H 函数”为增函数,转化为判断函数在R 上是否为增函数,根据解析式可知①正确;根据导数可知②③正确;根据解析式可知④不正确. 【详解】因为()()()()11221221x f x x f x x f x x f x +>+可化为[]1212()()()0f x f x x x -->, 所以根据题意可知,函数()f x 为R 上的增函数,即“H 函数”为增函数, ①e 1x y =+显然是增函数,故①正确; ②()32sin cos y x x x =--,因为32cos 2sin y x x '=--=3)4x π-+30≥->,所以函数()32sin cos y x x x =--为R 上的增函数,故②正确;③32331y x x x =+++,223633(1)0y x x x '=++=+≥,且只有当1x =-时,y '0=,所以函数32331y x x x =+++为R 上的增函数,故③正确;④ln ,0,0x x y x x ⎧≠=⎨=⎩,当0x >时,ln y x =在(0,)+∞上递增,当0x <时,()ln y x =-在(,0)-∞上递减,所以ln ,0,0x x y x x ⎧≠=⎨=⎩不是R 上的增函数,故④不正确.故答案为:①②③ 【点睛】关键点点睛:转化为判断函数在R 上是否为增函数是解题关键.15.【分析】根据图象关系利用分离变量法将问题转化为恒成立问题令利用导数可求得则【详解】图象总在上方恒成立定义域为恒成立令当时;当时在上单调递减在上单调递增即实数的取值范围为故答案为:【点睛】结论点睛:分 解析:(),1-∞【分析】根据图象关系,利用分离变量法将问题转化为1ln a x x<+恒成立问题,令()()1ln 0g x x x x=+>,利用导数可求得()()min 1g x g =,则()1a g <. 【详解】()f x 图象总在y ax =上方,ln 1x x ax ∴+>恒成立, ()f x 定义域为()0,∞+,1ln a x x∴<+恒成立,令()()1ln 0g x x x x =+>,()22111x g x x x x-'∴=-=,当()0,1x ∈时,()0g x '<;当()1,x ∈+∞时,()0g x '>,()g x ∴在()0,1上单调递减,在()1,+∞上单调递增,()()min 11g x g ∴==, 1a ∴<,即实数a 的取值范围为(),1-∞.故答案为:(),1-∞. 【点睛】结论点睛:分离变量法是处理恒成立问题的基本方法,若()a f x ≤恒成立,则()min a f x ≤;若()a f x ≥恒成立,则()max a f x ≥.16.2【分析】令利用可得在单调递增不等式恒成立等价于即当时分离参数可得可求出正整数的最大值为2再检验当时对于不等式恒成立即可求解【详解】因为定义在上的函数关于轴对称所以函数为上的偶函数令则因为当时即所以解析:2 【分析】令()()g x xf x x =-,利用()()1xf x f x '>-可得()g x 在[)0,+∞单调递增,不等式()()0x x x e f e e ax axf ax -+->恒成立等价于()()x g e g ax >,即e x ax >,当0x >时,分离参数可得()xe a h x x<=,可求出正整数a 的最大值为2,再检验当2a =时,对于0x <,不等式恒成立,即可求解. 【详解】因为定义在R 上的函数()f x 关于y 轴对称, 所以函数()f x 为R 上的偶函数,令()()g x xf x x =-,则()()()1g x f x xf x ''=+-,因为当0x ≥时,()()1xf x f x '>-,即()()()10g x f x xf x ''=+->, 所以()g x 在[)0,+∞单调递增, 不等式()()0xx xe f e eax axf ax -+->恒成立,即()()xx xe f eeaxf ax ax ->-,即()()x g e g ax >,所以e x ax >,当0x >时,()xe a h x x <=,则()()21x e x h x x-'=, 可得()h x 在()0,1单调递减,在()1,+∞单调递增, 所以()()min 1h x h e ==, 所以a e <,此时最大的正整数a 为2,2a =对于0x <时,e x ax >恒成立,综上所述:正整数a 的最大值为2, 故答案为:2 【点睛】关键点点睛:本题的关键点是构造函数()()g x xf x x =-,利用导数判断出()g x 在[)0,+∞单调递增,不等式恒成立即()()x g e g ax >,利用单调性可得e x ax >,再分类参数求最值.17.【分析】待定系数法:设利用图象上点坐标代入与联立求解可得【详解】设由题知:由图象知解得故答案为:【点睛】求函数解析式的四种方法:配凑法换元法待定系数法解方程组法解题时根据具体条件对应方法求解析式 解析:32()232f x x x【分析】待定系数法:设32()f x ax bx cx d =+++,利用图象上点坐标代入,与(0)(1)=0f f ''= 联立求解可得. 【详解】设32()f x ax bx cx d =+++,2()32f x ax bx c '=++由题知:(0)2(1)1f f ,== ,由图象知(0)(1)=0f f ''=2++103+20d a b c d c a b c =⎧⎪+=⎪∴⎨=⎪⎪+=⎩ 解得2302a b c d =⎧⎪=-⎪⎨=⎪⎪=⎩32()232f x x x故答案为:32()232f x x x【点睛】求函数解析式的四种方法:配凑法、换元法、待定系数法、解方程组法,解题时根据具体条件对应方法求解析式.18.【分析】转化条件得设求导后求出函数的最小值令即可得解【详解】由题意得由于时故设则由于所以当时单调递减;当时单调递增于是所以即故实数的取值范围是故答案为:【点睛】本题考查了利用导数解决不等式恒成立问题 解析:(]0,e【分析】转化条件得()min 0f x '≥,设()()g x f x '=,求导后求出函数()g x 的最小值()min g x ,令()min 0g x ≥即可得解. 【详解】由题意得()2ln 2x f x a x '=-.由于0x >时,()0f x '≥,故()min 0f x '≥.设()()g x f x '=,则()(2x x x a g x xx+-'==.由于0x >,所以当(x ∈时,()0g x '<,()g x 单调递减;当)x ∈+∞时,()0g x '>,()g x 单调递增.于是()()()min min 1ln 022a af xg x ga a '===-=-≥, 所以ln 1a ≤即0a e <≤,故实数a 的取值范围是(]0,e . 故答案为:(]0,e 【点睛】本题考查了利用导数解决不等式恒成立问题,考查了推理能力,属于中档题.19.【分析】求出函数的导函数利用导函数与函数单调性的关系只需在上即可【详解】由函数所以函数在上单调递增则即所以令因为由对勾函数的单调性可知在单调递增故故即实数a 的取值范围是故答案为:【点睛】本题考查了导解析:13,4⎛⎤-∞ ⎥⎝⎦【分析】求出函数的导函数()f x ',利用导函数与函数单调性的关系只需在()2,+∞上()0f x '≥即可. 【详解】由函数32()1f x x ax x =-++,所以()2321f x x ax '=-+,函数()f x 在()2,+∞上单调递增, 则()0f x '≥,即23210x ax -+≥,所以3122x a x≤+, 令()13133222x g x x x x ⎛⎫ ⎪=+=⋅+ ⎪ ⎪⎝⎭,因为()2,x ∈+∞, 由对勾函数的单调性可知()g x 在()2,+∞单调递增, 故()()1324g x g >=,故134a ≤,即实数a 的取值范围是13,4⎛⎤-∞ ⎥⎝⎦故答案为:13,4⎛⎤-∞ ⎥⎝⎦. 【点睛】本题考查了导函数在函数单调性的应用,考查了分离参数法求参数的取值范围,属于中档题.20.【分析】可知从而根据条件可判断为减函数或存在极值点求导数从而可判断不可能为减函数只能存在极值点从而方程有解这样由指数函数的单调性即可得出的取值范围【详解】要满足使得成立则函数为减函数或存在极值点当时 解析:()1,+∞【分析】可知00lg x x <,从而根据条件可判断()f x 为减函数或存在极值点,求导数()1x f x e a '=-+,从而可判断()f x 不可能为减函数,只能存在极值点,从而方程1x a e -=有解,这样由指数函数xy e =的单调性即可得出a 的取值范围.【详解】00lg x x <,∴要满足0(0,)x ∃∈+∞,使得()()00lg f x f x >成立,则函数()f x 为减函数或存在极值点,()1x f x e a '=-+,当()0,x ∈+∞时,()0f x '≤不恒成立,即函数()f x 不是减函数,∴只能()f x 存在极值点,()0f x '∴=有解,即方程1x a e -=有解,即11x a e =+>,()1,a ∴∈+∞,故答案为:()1,+∞ 【点睛】本题考查了导数研究不等式能成立问题,考查了导数在研究函数单调性、极值中的应用,考查了转化与化归的思想,解题的关键是求出导数,属于中档题.三、解答题21.(1)()()2102V f x x x ==-⋅,()0,5x ∈;(2)小正方形的边长为53cm 时,作品的体积最大,最大体积是200027cm 3. 【分析】(1)根据长方体的体积公式可得答案; (2)利用导数求()f x 单调区间及极值可得答案. 【详解】(1)由题意可得()()2102V f x x x ==-⋅,()0,5x ∈.(2)()()()()24320254355f x x x x x '=-+=--,令()0f x '=得53x =,5x =,∴53x =时,()f x 的最大值为327f ⎛⎫= ⎪⎝⎭,截去的小正方形的边长为53cm 时,作品的体积最大,最大体积是()3200027cm . 【点睛】思路点睛:解函数应用题的一般程序:第一步:审题——弄清题意,分清条件和结论,理顺数量关系;第二步:建模——将文字语言转化成数学语言,用数学知识建立相应的数学模型; 第三步:求模——求解数学模型,得到数学结论;第四步:还原——将用数学方法得到的结论还原为实际问题的意义;第五步:反思回顾——对于数学模型得到的数学结果,必须验证这个数学解对实际问题的合理性.22.(1)27y x =+;(2)1,2⎛⎫+∞ ⎪⎝⎭. 【分析】(1)求出导函数()'f x ,得切线斜率(0)f ',从而可得切线方程; (2)求出()'f x ,求出()0f x '=的两根1a和2,根据两根的大小讨论()f x 的极值,由2是极小值点得出a 的范围. 【详解】本题考查利用导数研究函数性质.解析(1)若1a =,()2()57xf x x x e =-+, 所以()2()32xf x x x e '=-+, 所以(0)2 f '=,又(0)7f =,因此曲线()y f x =在(0,(0))f 处的切线方程为27y x =+. (2)2()(21)2(1)(2)xxf x ax a x e ax x e '⎡⎤=-++=--⎣⎦, 令()0 f x '=,得1x a=或2x =, 若102a <<,即12a > 则当1,2x a ⎛⎫∈⎪⎝⎭时,()0f x '<,当(2,)x ∈+∞时,()0f x '>, 所以()f x 在2x =处取得极小值..若12a ≤,且0a ≠,则当(0,2)x ∈时,112ax x ≤<, 所以10ax ,同时20x -<,所以()0f x '>,从而2x =不是()f x 的极小值点..综上可知,a 的取值范围是1,2⎛⎫+∞⎪⎝⎭.【点睛】本题考查导数的几何意义,考查由极值点求参数范围.掌握极值的定义是解题关键.方法是:求出导函数()'f x ,确定()0f x '=的根,然后由根分实数为若干个区间,讨论各区间中()'f x 和正负,得单调区间,若在0x 左侧递减,右侧递增,则0x 是极小值点,若在0x 左侧递增,右侧递减,则0x 是极大值点. 23.(1;(2)7(1,)3. 【分析】(1)可得与l 平行且与()y f x =相切的切线的切点到直线距离最短,求出切点即可得出;(2)求出()g x 的导数,题目等价于2(1)10x a x -++=在()0,3上有两个不同的根,则列出式子即可求出. 【详解】解:(1)设曲线()y f x =上的点()00,A x y 到直线l 的距离最短,则在点A 的切线与l 平行,001()1f x x ='=,∴01x =,求得01y =, ∴在点A 的切线方程为y x =, ∴点A 到直线l= (2)由题意得21()(1)ln 1(03)2g x x a x x x =-+++<<, ∴21(1)1()(1)x a x g x x a x x-++'=-++=,∵曲线()y g x =上存在两个不同的点,使得在这两点处的切线都与x 轴平行, ∴关于x 的方程()0g x '=,即2(1)10x a x -++=在()0,3上有两个不同的根, 设2()(1)1h x x a x =-++,则()()()()21400101032393110a h a h a ⎧∆=+->⎪=>⎪⎪⎨+<<⎪⎪=-++>⎪⎩,解得713<<a , ∴实数a 的取值范围是7(1,)3. 【点睛】本题考查利用导数解决方程的根的问题,解题的关键是将题目等价为2(1)10x a x -++=在()0,3上有两个不同的根.24.(1)91y x =+;(2)证明见解析. 【分析】(1)求出函数在0x =处的导数后可得切线方程.(2)设函数()1ln g x x x =+-,利用导数可证明在1(,)2+∞上有()()1,1f x g x ≥≥,但等号不同时成立,结合余弦函数的性质可证明()()1ln 2cos x x f x x +->在1()2,x ∈+∞恒成立.【详解】(1)解:2()3129f x x x -'=+,则()09f =,故曲线()y f x =在点()0,1处的切线方程为91y x =+. (2)证明:当1(,1)(3,)2x ∈⋃+∞时,()0f x '>, 则()f x 在1(,1),(3,)2+∞上单调递增;当()1,3x ∈时,()0f x '<,则()f x 在()1,3上单调递减. 因为133()(3)128f f =>=, 所以()f x 在1(,)2+∞上的最小值为()31f =.设函数()1ln g x x x =+-.则1()(0)x g x x x -'=>. 当1(,1)2x ∈时,()0g x '<,则()g x 在1(,1)2上单调递减;当(1,)x ∈+∞时,()0g x '>,则()g x 在(1,)+∞上单调递增. 故()()12g x g ≥=.从而()()1ln 2x x f x +-≥,但由于()1f x ≥与()2g x ≥的取等条件不同, 所以()()1ln 2x x f x +->. 因为2cos 2x ≤,所以()()1ln 2cos x x f x x +->对1()2,x ∈+∞恒成立. 【点睛】方法点睛:对于不等式的恒成立的问题,如果该不等式中含有三角函数,那么可以利用三角函数的有界性把前者转化为与三角函数无关的不等式,这样便于问题的讨论与处理. 25.(1)7-;(2)t e ≥-.【分析】(1)先对函数求导,结合极值存在的条件可求t ,然后结合导数可研究函数的单调性,进而可求极大值;(2)由已知代入可得,221x e x x t x -+--≤在0x >时恒成立,构造函数()221x e x x h x x-+-=,结合导数及函数的性质可求. 【详解】解:(1)()22t f x x t x '=--+,0x >,由题意可得,()23403f t '=-=,解可得6t =,∴()()()213628x x f x x x x--'=-+=, 所以,当3x >,01x <<时 ,()0f x '>,函数单调递增,当13x <<时,()0f x '<,函数单调递减,故当1x =时,函数取得极大值()17f =-;(2)由()()f x g x ≤得()22ln ln 1xx t x t x e t x -++≤+-在0x >时恒成立可得,221x e x x t x -+--≤在0x >时恒成立,2min 21x e x x t x ⎛⎫-+--≤ ⎪⎝⎭令()221x e x x h x x-+-=,则()()()()()()2222222211111xx xx e x x e x x x e x e x x h x x x x-+--+------+'===, 令()1xF x e x =--,所以()'1xF x e =-,令()'0F x =,提0x =,所以当0x >,()'0F x >,函数单调递增,当0x <时,()'0F x <,函数单调递减,故当0x =时,函数取得最小值()00F =,又0x >,所以10x e x -->, 所以()h x 在()0,1上单调递减,在()1,+∞上单调递增, 所以()()min 1h x h e ==,可得()min t h x e -≤=,所以t e ≥-. 【点睛】方法点睛:不等式恒成立问题常见方法:① 分离参数()a f x ≥恒成立(()max a f x ≥即可)或()a f x ≤恒成立(()min a f x ≤即可);② 数形结合(()y f x = 图象在()y g x = 上方即可); ③ 讨论最值()min 0f x ≥或()max 0f x ≤恒成立.26.(1)(,0)-∞和(1,)+∞;(2)1-. 【分析】(1)由极值点求出参数3a =,再代入,解不等式()0f x '>求递增区间 (2)求()f x 在[1,2]-上的极值,与端点值比较得出最小值. 【详解】(1)由题意2()62f x x ax '=-()01f '=,则3a =32()234,()6(1)f x x x f x x x '=-+=-,当(,0)x ∈-∞时,()0f x '>;当(0,1)x ∈时,()0f x '<;当(1,)x ∈+∞时,()0f x '>. 所以,函数()f x 的单调递增区间为(,0)-∞和(1,)+∞ (2)当[1,2]x ∈-时,(),()f x f x '的变化情况如下表当1,(1)2343x f ==-+=.所以当[1,2]x ∈-时,函数()f x 的最小值为1-.【点睛】用导数法求最值方法:先求导,然后求出在给定区间上的极值,最后结合端点值,求出最值;。
北师大数学选修新素养应用案巩固提升:第四章 §1 1.1 导数与函数的单调性 含解析
[A 基础达标]1.函数y =x ln x 在(0,5)上( ) A .是增加的 B .是减少的C .在⎝⎛⎭⎫0,1e 上是减函数,在⎝⎛⎭⎫1e ,5上是增函数 D .在⎝⎛⎭⎫0,1e 上是增函数,在⎝⎛⎭⎫1e ,5上是减函数 解析:选C .y ′=(x ln x )′=ln x +x ·1x =ln x +1,当x =1e时,y ′=0,当x ∈⎝⎛⎭⎫0,1e 时,y ′<0,当x ∈⎝⎛⎭⎫1e ,+∞时,y ′>0,又x ∈(0,5),即y 在⎝⎛⎭⎫0,1e 上是递减的,在⎝⎛⎭⎫1e ,5上是递增的,故选C .2.函数f (x )=ln x -x 的递减区间为( ) A .(-∞,0),(1,+∞) B .(1,+∞) C .(-∞,0)D .(0,1)解析:选B .f ′(x )=(ln x -x )′=1x -1=1-x x ,令f ′(x )<0得1-x x <0,所以x (1-x )<0,解得x >1或x <0.又x >0,所以x >1.3.f ′(x )是f (x )的导函数,若f ′(x )的图像如图所示,则f (x )的图像可能是( )解析:选C .由导函数的图像可知,当x <0时,f ′(x )>0,即函数f (x )为增函数;当0<x <x 1时,f ′(x )<0,即函数f (x )为减函数;当x >x 1时,f ′(x )>0,即函数f (x )为增函数.观察选项易知C 正确.4.若函数f (x )=x 3+2x 2+mx +1在(-∞,+∞)内是增加的,则m 的取值范围是( ) A .m ≥43B .m >43C .m ≤43D .m <43解析:选A .f ′(x )=3x 2+4x +m ,由题意f ′(x )≥0在R 上恒成立,即对任意x ∈R ,3x 2+4x +m ≥0,所以m ≥-(3x 2+4x ),由于-(3x 2+4x )的最大值是43,故m ≥43.5.若f (x )=ln xx ,e <a <b ,则( )A .f (a )>f (b )B .f (a )=f (b )C .f (a )<f (b )D .f (a )f (b )>1解析:选A .因为f ′(x )=1x·x -ln x x 2=1-ln x x 2,当x ∈(e ,+∞)时,1-ln x <0, 所以f ′(x )<0,所以f (x )在(e ,+∞)内为减函数. 故f (a )>f (b ).故选A .6.已知函数f (x )=e x cos x ,则f ⎝⎛⎭⎫π6与f ⎝⎛⎭⎫π5的大小关系为________. 解析:因为f ′(x )=e x (cos x -sin x ) =2e x sin ⎝⎛⎭⎫π4-x ,所以⎣⎡⎦⎤0,π4是函数f (x )的一个递增区间, 又0<π6<π5<π4,所以f ⎝⎛⎭⎫π6<f ⎝⎛⎭⎫π5. 答案:f ⎝⎛⎭⎫π6<f ⎝⎛⎭⎫π57.函数f (x )=(x 2+x +1)e x (x ∈R )的减区间为________. 解析:f ′(x )=(2x +1)e x +(x 2+x +1)e x =e x (x 2+3x +2) =e x (x +1)(x +2),令f ′(x )<0,解得-2<x <-1, 所以函数f (x )的减区间为(-2,-1). 答案:(-2,-1)8.若函数f (x )=(x 2+mx )e x 的单调减区间是[-32,1],则实数m 的值为________.解析:f ′(x )=[x 2+(m +2)x +m ]e x ,因为f (x )的单调减区间是[-32,1],所以f ′(x )=0的两个根分别为x 1=-32,x 2=1,即⎩⎪⎨⎪⎧f ′(-32)=0f ′(1)=0,解得m =-32.答案:-329.已知函数f (x )=x 3-6x -1. (1)求函数f (x )在x =2处的切线方程; (2)求函数f (x )的单调区间.解:(1)因为f ′(x )=3x 2-6,所以f ′(2)=6, 因为f (2)=-5,所以切线方程为y -(-5)=6(x -2), 所以y =6x -17,即6x -y -17=0. (2)令f ′(x )>0,则3(x 2-2)>0, 所以x >2或x <-2,同理,令f ′(x )<0,则-2<x <2.所以f (x )在(-∞,-2),(2,+∞)上是增加的,f (x )在(-2,2)上是减少的. 10.已知函数f (x )满足f (x )=x 3+f ′⎝⎛⎭⎫23x 2-x +C ⎝⎛⎭⎫其中f ′⎝⎛⎭⎫23为f (x )在点x =23处的导数,C 为常数. (1)求函数f (x );(2)求函数f (x )的单调区间.解:(1)由f (x )=x 3+f ′⎝⎛⎭⎫23x 2-x +C ,得f ′(x )=3x 2+2f ′⎝⎛⎭⎫23x -1. 取x =23,得f ′⎝⎛⎭⎫23=3×⎝⎛⎭⎫232+2f ′⎝⎛⎭⎫23×⎝⎛⎭⎫23-1,解之,得f ′⎝⎛⎭⎫23=-1, 所以f (x )=x 3-x 2-x +C . (2)由(1)得f ′(x )=3x 2-2x -1 =3⎝⎛⎭⎫x +13(x -1), 令f ′(x )>0得x <-13或x >1;令f ′(x )<0得-13<x <1.所以f (x )在⎝⎛⎭⎫-∞,-13和(1,+∞)上是增加的;f (x )在⎝⎛⎭⎫-13,1上是减少的. [B 能力提升]11.定义在R 上的函数f (x ),g (x )的导函数分别为f ′(x ),g ′(x )且f ′(x )<g ′(x ).则下列结论一定成立的是( )A .f (1)+g (0)<g (1)+f (0)B .f (1)+g (0)>g (1)+f (0)C .f (1)-g (0)>g (1)-f (0)D .f (1)-g (0)<g (1)-f (0)解析:选A .令h (x )=f (x )-g (x )(x ∈R ),因为f ′(x )<g ′(x )(x ∈R ), 所以h ′(x )=f ′(x )-g ′(x )<0(x ∈R ), 即h (x )=f (x )-g (x )在R 上为减函数, 所以h (0)>h (1),即f (0)-g (0)>f (1)-g (1), 所以f (1)+g (0)<g (1)+f (0).12.已知定义域为R 的函数f (x )满足f (1)=3,且f (x )的导数f ′(x )<2x +1,则不等式f (2x )<4x 2+2x +1的解集为________.解析:由f (2x )<4x 2+2x +1得f (2x )-(4x 2+2x )+2<3. 令u =2x ,则f (u )-(u 2+u )+2<3.①记F (u )=f (u )-(u 2+u )+2,则F (1)=f (1)=3,则①式可化为F (u )<F (1). 因为f ′(x )<2x +1,所以F ′(u )=f ′(u )-(2u +1)<0,所以F (u )在R 上是递减的.故由F (u )<F (1)得u >1,即2x >1,故x >12.答案:⎝⎛⎭⎫12,+∞ 13.当x >0时,证明不等式:ln(x +1)>x -12x 2.证明:设f (x )=ln(x +1),g (x )=x -12x 2,F (x )=f (x )-g (x ),则F (x )=ln(x +1)-x +12x 2,且函数F (x )的定义域为(-1,+∞).F ′(x )=1x +1-1+x =x 2x +1.当x >0时,F ′(x )>0恒成立, 所以函数F (x )在(0,+∞)上是增函数. 故F (x )>F (0)=0,从而f (x )>g (x ), 即ln(x +1)>x -12x 2.14.(选做题)已知函数f (x )=x 2+2a ln x . (1)试讨论函数f (x )的单调区间;(2)若函数g (x )=2x +f (x )在[1,2]上是减函数,求实数a 的取值范围.解:(1)f ′(x )=2x +2ax,定义域是(0,+∞),f ′(x )=2⎝ ⎛⎭⎪⎫x 2+a x ,当a ≥0时,f ′(x )≥0,此时函数的递增区间为(0,+∞),没有递减区间. 当a <0时,令f ′(x )=0,得x =±-a ,因为x >0,所以x =-a ,x ∈(0,-a )时,f ′(x )<0;x ∈(-a ,+∞)时,f ′(x )>0, 此时函数的递增区间为(-a ,+∞),递减区间为(0,-a ).(2)由g (x )=2x +f (x ),得g (x )=2x +x 2+2a ln x ,g ′(x )=-2x 2+2x +2a x ,因为g (x )在[1,2]上是递减的,所以对于x ∈[1,2],g ′(x )≤0恒成立, 即-2x 2+2x +2ax ≤0,x ∈[1,2]恒成立,所以a ≤1x-x 2,x ∈[1,2]恒成立,令h (x )=1x -x 2,x ∈[1,2],h ′(x )=-1x2-2x ,当x∈[1,2]时,h′(x)<0,所以h(x)在[1,2]上为减函数,则h(x)min=h(2)=-72,x∈[1,2],所以a≤-7.2。
2019-2020学年北师大版数学选修1-1新素养同步讲义:第四章 导数应用 章末复习提升课
章末复习提升课1.由导数与函数的单调性的关系可得的结论(1)函数f(x)在(a,b)内可导,且f′(x)在(a,b)任意子区间内都不恒等于0.f′(x)≥0⇔函数f(x)在(a,b)上是递增的;f′(x)≤0⇔函数f(x)在(a,b)上是递减的.(2)f′(x)>0(<0)在(a,b)上成立是f(x)在(a,b)上递增(减)的充分条件.2.函数的最值一般地,在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.特别地,若函数f(x)在[a,b]上是递增的,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上是递减的,则f(a)为函数的最大值,f(b)为函数的最小值.1.利用导数讨论函数的单调性需注意的几个问题(1)确定函数的定义域.解决问题的过程中,只能在函数的定义域内进行,通过讨论导数值的符号,来判断函数的单调区间.(2)在划分函数的单调区间时,除了必须确定使导数等于0的点外,还要注意定义区间内的不连续点或不可导点.(3)如果一个函数单调性相同的区间不止一个,这些区间之间不能用“∪”连接,只能用逗号或“和”字隔开,如把增区间写为(-∞,-2)∪(1,+∞)是不正确的,因为(-∞,-2)∪(1,+∞)不是一个全区间,该函数在(-∞,-2)∪(1,+∞)上不一定是递增的.2.极值与最值的区别(1)函数的最值是比较整个定义域内的函数值得出的;函数的极值是比较极值点附近的函数值得出的.(2)函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止一个,也可能一个都没有,且极大值并不一定比极小值大.(3)极值只能在定义域内部取得,而最值可以在区间的端点处取得;有极值未必有最值,有最值未必有极值;极值有可能成为最值,最值只要不在端点处必定是极值.导数与函数的单调性设函数f (x )=e x x 2-k ⎝⎛⎭⎫2x +ln x (k ≤0),求函数f (x )的单调区间. [解] 函数y =f (x )的定义域为(0,+∞). f ′(x )=x 2e x -2x e x x 4-k ⎝⎛⎭⎫-2x 2+1x=x e x -2e x x 3-k (x -2)x 2=(x -2)(e x -kx )x 3.由k ≤0可得e x -kx >0,所以当x ∈(0,2)时,f ′(x )<0,函数y =f (x )是递减的; 当x ∈(2,+∞)时,f ′(x )>0,函数y =f (x )是递增的. 所以f (x )的递减区间为(0,2),递增区间为(2,+∞).导数与函数的极值、最值(1)已知f (x )=-ln x +12x +32x +1,求f (x )的极值.(2)求函数f (x )=x 3+3|x -a |(a >0)在[-1,1]上的最小值g (a ). [解] (1)因为f (x )=-ln x +12x +32x +1(x >0),所以f ′(x )=-1x -12x 2+32=3x 2-2x -12x 2=(3x +1)(x -1)2x 2.令f ′(x )=0,解得x 1=1,x 2=-13.⎝⎛⎭⎫因为x 2=-13不在定义域内,舍去当x ∈(0,1)时,f ′(x )<0,故f (x )在(0,1)上为减函数; 当x ∈(1,+∞)时,f ′(x )>0,故f (x )在(1,+∞)上为增函数. 故f (x )在x =1处取得极小值f (1)=3.f (x )在[-1,1]上无极大值.(2)因为f (x )=⎩⎪⎨⎪⎧x 3+3x -3a ,x >a ,x 3-3x +3a ,x <a ,所以f ′(x )=⎩⎪⎨⎪⎧3x 2+3,x >a3x 2-3,x <a .因为a >0,-1≤x ≤1,所以①当0<a <1时,若x ∈(-1,a ),则f (x )=x 3-3x +3a ,f ′(x )=3x 2-3<0,故f (x )在(-1,a )上是减函数; 若x ∈(a ,1),则f (x )=x 3+3x -3a ,f ′(x )=3x 2+3>0,故f (x )在(a ,1)上是增函数. 所以g (a )=f (a )=a 3.②当a ≥1时,有x ≤a ,则f (x )=x 3-3x +3a ,f ′(x )=3x 2-3<0,故f (x )在(-1,1)上是减函数,所以g (a )=f (1)=-2+3a .综上,g (a )=⎩⎨⎧a 3,0<a <1,-2+3a ,a ≥1.导数与不等式的求解(证明)已知函数f (x )=e x-x 22-ax -1,其中a 为实数.(1)若a =-12时,求曲线y =f (x )在点(1,f (1))处的切线方程;(2)当x ≥12时,若关于x 的不等式f (x )≥0恒成立,试求a 的取值范围.[解] (1)当a =-12时,f (x )=e x-x 22+12x -1,f ′(x )=e x -x +12,从而得f (1)=e -1,f ′(1)=e -12,故曲线y =f (x )在点(1,f (1))处的切线方程为y -e +1=⎝⎛⎭⎫e -12(x -1),即⎝⎛⎭⎫e -12x -y -12=0.(2)由f (x )≥0,得ax ≤e x -12x 2-1,因为x ≥12,所以a ≤e x -12x 2-1x,令g (x )=e x -12x 2-1x,则g ′(x )=e x (x -1)-12x 2+1x2, 令φ(x )=e x (x -1)-12x 2+1,则φ′(x )=x (e x -1),因为x ≥12,所以φ′(x )>0,即φ(x )在⎣⎡⎭⎫12,+∞上是递增的. 所以φ(x )≥φ⎝⎛⎭⎫12=78-e2>0,因此g ′(x )>0,故g (x )在⎣⎡⎭⎫12,+∞上是递增的. 则g (x )≥g ⎝⎛⎭⎫12=e 12-18-112, 因此a 的取值范围是a ≤2e -94.导数与函数的零点或方程的根函数f (x )为R 上的奇函数,当x >0时,f (x )=x ln x . (1)求函数f (x )的解+析式; (2)当x ≠0时,求函数f (x )的极值;(3)关于x 的方程f (x )=m 有且只有一个实数解,求m 的取值范围. [解] (1)设x <0,则-x >0,则f (-x )=-x ln(-x ), 得f (x )=x ln(-x ),当x =0时f (x )=0.综上:f (x )=⎩⎨⎧x ln x ,x >0,0,x =0,x ln (-x ),x <0.(2)x >0时f (x )=x ln x .所以f ′(x )=ln x +1, 所以f ′(x )<0得x ∈⎝⎛⎭⎫0,1e ,f (x )是递减的, f ′(x )>0得x ∈⎝⎛⎭⎫1e ,+∞,f (x )是递增的,综上:函数极小值为f ⎝⎛⎭⎫1e =-1e. 又因为函数是奇函数,所以函数极大值为f ⎝⎛⎭⎫-1e =1e . (3)由图像可知m >1e 或m <-1e.1.把一个周长为12 cm 的长方形卷成一个圆柱,当圆柱的体积最大时,该圆柱底面周长与高的比为( )A .1∶2B .1∶πC .2∶1D .2∶π详细分析:选C .设圆柱高为x ,底面半径为r ,则r =6-x 2π,圆柱体积V =π⎝ ⎛⎭⎪⎫6-x 2π2·x =14π(x 3-12x 2+36x )(0<x <6),V ′=34π(x -2)(x -6),易知当x ∈(0,2)时V ′>0,当x ∈(2,6)时V ′<0,故x =2是V 的一个极大值点.即V 的最大值点,所以当圆柱底面周长与圆柱高的比为2∶1时,该圆柱的体积最大.2.设函数f (x )=e x +x -2,g (x )=ln x +x 2-3.若实数a ,b 满足f (a )=0,g (b )=0,则( ) A .g (a )<0<f (b ) B .f (b )<0<g (a ) C .0<g (a )<f (b )D .f (b )<g (a )<0 详细分析:选A .由f (a )=e a +a -2=0,得0<a <1.由g (b )=ln b +b 2-3=0,得1<b <2.因为g (a )=ln a +a 2-3<0,f (b )=e b +b -2>0,所以f (b )>0>g (a ),故选A .3.如果函数f (x )=13x 3-a 2x 满足:对于任意的x 1、x 2∈[0,1],都有|f (x 1)-f (x 2)|≤1恒成立,则实数a 的取值范围是( )A .⎣⎡⎦⎤-233,233B .⎝⎛⎭⎫-233,233C .⎣⎡⎭⎫-233,0∪⎝⎛⎦⎤0,233D .⎝⎛⎭⎫-233,0∪⎝⎛⎭⎫0,233详细分析:选A .法一:(赋值法)令a =0,233可知选A .法二:对于任意的x 1,x 2∈[0,1]都有|f (x 1)-f (x 2)|≤1恒成立,只需f (x )max -f (x )min ≤1即可.f ′(x )=x 2-a 2=(x +a )(x -a ),当|a |≥1时,f ′(x )≤0,函数f (x )=13x 3-a 2x 在[0,1]上是递减的;当|a |<1时,函数f (x )=13x 3-a 2x 在[0,|a |]上是递减的,在[|a |,1]上是递增的,故有⎩⎪⎨⎪⎧|a |≥1,a 2-13≤1或⎩⎨⎧|a |<1,f (0)-f (|a |)≤1,f (1)-f (|a |)≤1,解得a ∈⎣⎡⎦⎤-233,233,选A .4.若对任意x >0,恒有ln x ≤px -1(p >0),则p 的取值范围是________.详细分析:由题意不等式p ≥ln x +1x 对x >0恒成立,令f (x )=ln x +1x (x >0),f ′(x )=-ln xx 2,在x ∈(0,1)上,f ′(x )>0,在x ∈(1,+∞)上,f ′(x )<0,所以f (x )最大=f (1)=1,所以p ≥1即p 的取值范围是[1,+∞).答案:[1,+∞)5.若f (x )=x 3+3ax 2+3(a +2)x +1有极大值和极小值,则a 的取值范围是________. 详细分析:f ′(x )=3x 2+6ax +3(a +2),由题意f ′(x )=0有两个不等实根,所以Δ=36a 2-36(a +2)=36(a 2-a -2)>0,即a 2-a -2>0,解得a <-1或a >2,所以a 的取值范围是(-∞,-1)∪(2,+∞).答案:(-∞,-1)∪(2,+∞)。
北师大数学选修新素养应用案巩固提升:第四章 章末复习提升课巩固提升训练 含解析
1.复数1-2+i +11-2i的虚部是( ) A .15i B .15 C .-15i D .-15解析:选B.因为1-2+i +11-2i =-2-i 4+1+1+2i 1+4=-2-i 5+1+2i 5=-1+i 5, 所以1-2+i +11-2i的虚部是15. 2.复数z =-3+i 2+i的共轭复数是( ) A .2+iB .2-iC .-1+iD .-1-i解析:选D.z =-3+i 2+i =(-3+i )(2-i )(2+i )(2-i )=-5+5i 5=-1+i ,所以其共轭复数为z -=-1-i.3.在复平面内,复数i 1+i+(1+3i)2对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限解析:选B.原式=i (1-i )1-i 2+(1+23i +3i 2) =-32+⎝⎛⎭⎫12+23i , 所以其对应的点位于第二象限.4.已知复数z =m -2i(m ∈R ),ω=z (z +i)的虚部减去它的实部所得的差为-4m ,则|z |=________.解析:因为z =m -2i ,所以ω=z (z +i)=(m -2i)(m -2i +i)=m 2-2-3m i ,所以-3m -(m 2-2)=-4m ,解得m =-1或m =2,所以z =-1-2i 或z =2-2i ,所以|z|=5或2 2. 答案:5或2 25.已知复数z=x+y i(x,y∈R)且|z-2|=3,则yx的最大值是________,最小值是________.解析:如图所示,因为|z-2|=3,所以(x-2)2+y2=3,所以⎝⎛⎭⎫yx max =k OA=31=3,⎝⎛⎭⎫yx min=k OB=- 3.答案:3- 36.设z∈C,求满足条件2≤|z|≤4的点Z的集合对应图形的面积.解:满足2≤|z|≤4的点Z的集合对应的图形面积是以原点为圆心,以2及4为半径的圆所夹的圆环的面积,即S=π×42-π×22=12π.。
北师大数学选修新素养应用案巩固提升:第四章 章末综合检测四 含解析
章末综合检测(四)(时间:120分钟,满分:150分)一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数z 满足z1+i=2i ,则z 对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限解析:选B.因为z1+i =2i ,所以z =2i(1+i)=-2+2i ,故选B.2.“复数z 是实数”的充分不必要条件为( ) A .|z |=z B .z =z -C .z 2是实数D .z +z -是实数 解析:选A.由|z |=z 可知z 必为实数,但由z 为实数不一定得出|z |=z ,如z =-2,此时|z |≠z ,故“|z |=z ”是“z 为实数”的充分不必要条件.3.若z =4+3i ,则z-|z |=( )A .1B .-1 C.45+35i D .45-35i解析:选D.z -|z |=4-3i 42+32=45-35i ,故选D.4.已知i 为虚数单位,则1i +1i 3+1i 5+1i 7=( )A .0B .2iC .-2iD .4i解析:选A.因为i 2=-1, 所以1i +1i 3+1i 5+1i 7=1i -1i +1i -1i =0.5.复数⎝⎛⎭⎫52-i 2的共轭复数是( )A .2-iB .2+iC .3-4iD .3+4i解析:选C.原式=⎣⎢⎡⎦⎥⎤5(2+i )(2-i )(2+i )2=(2+i)2=3+4i.所以其共轭复数为3-4i.6.如图,在复平面内,复数z 1和z 2对应的点分别是A 和B ,则z 2z 1=( )A.15+25i B .25+15iC .-15-25iD .-25-15i解析:选C.由题图,知z 1=-2-i ,z 2=i ,则z 2z 1=-i2+i =-i (2-i )(2+i )(2-i )=-2i -i 24-i 2=-15-25i.故选C.7.复数z =(x -2)+y i(x ,y ∈R )在复平面内对应向量的模为2,则|z +2|的最大值为( ) A .2 B .4 C .6 D .8 解析:选B.由于|z |=2,所以(x -2)2+y 2=2,即(x -2)2+y 2=4,故点(x ,y )在以(2,0)为圆心,2为半径的圆上,而|z +2|=|x +y i|=x 2+y 2,它表示点(x ,y )与原点的距离,结合图形易知|z +2|的最大值为4,故选B.8.z -是复数z 的共轭复数,若z ×z -i +2=2z ,则z =( ) A .1+i B .1-i C .-1+iD .-1-i解析:选A.令z =a +b i(a ,b ∈R ), 则有2+(a 2+b 2)i =2a +2b i ,所以⎩⎪⎨⎪⎧2=2a ,a 2+b 2=2b ,所以⎩⎪⎨⎪⎧a =1,b =1,z =1+i.9.若1+2i 是关于x 的实系数方程x 2+bx +c =0的一个复数根,则( ) A .b =2,c =3 B .b =-2,c =3C .b =-2,c =-1D .b =2,c =-1解析:选B.因为1+2i 是实系数方程的一个复数根,所以1-2i 也是方程的根,则1+2i +1-2i =2=-b ,(1+2i)(1-2i)=3=c ,解得b =-2,c =3.10.设复数z 满足条件|z |=1,那么|z +22+i|的最大值是( ) A .3 B .4 C .1+2 2D .2 3解析:选B.因为|z |=1,所以z 对应的点在以原点为圆心的单位圆上,|z +22+i|表示圆上的点到(-22,-1)的距离,最大值为1+(22)2+1=4.11.定义运算=ad -bc ,则符合条件=4+2i 的复数z 为( )A .3-iB .1+3iC .3+iD .1-3i解析:选A.由=4+2i 得z i +z =4+2i ,即z (1+i)=4+2i.所以z =4+2i 1+i =(4+2i )(1-i )(1+i )(1-i )=4-4i +2i +22=6-2i2=3-i.故选A.12.已知复数z =-3+2i(i 为虚数单位)是关于x 的方程2x 2+px +q =0(p ,q 为实数)的一个根,则p +q 的值为( )A .22B .36C .38D .42解析:选C.因为z =-3+2i 是关于x 的方程 2x 2+px +q =0的一个根,所以有2(-3+2i)2+p (-3+2i)+q =0, 即2(9-4-12i)-3p +2p i +q =0, 得10-24i -3p +2p i +q =0, 得10+q -3p +(2p -24)i =0. 由复数相等得⎩⎪⎨⎪⎧10+q -3p =0,2p -24=0,解得⎩⎪⎨⎪⎧p =12,q =26,所以p +q =38.二、填空题:本题共4小题,每小题5分.13.复数a +b i(a ,b ∈R )等于它共轭复数的倒数的充要条件是______.解析:a +b i =1a -b i ,所以(a +b i)(a -b i)=1,即a 2+b 2=1.答案:a 2+b 2=114.若a ∈R ,则复数(a 2-4a +5)-6i 在复平面内表示的点在第______象限. 解析:因为a 2-4a +5=(a -2)2+1>0,-6<0, 所以该复数表示的点在第四象限. 答案:四15.设a ,b ∈R ,a +b i =11-7i1-2i (i 为虚数单位),则a +b 的值为______.解析:a +b i =11-7i 1-2i =()11-7i ()1+2i ()1-2i ()1+2i =25+15i5=5+3i ,依据复数相等的充要条件可得a =5,b =3. 从而a +b =8.答案:816.使不等式m 2-(m 2-3m )i<(m 2-4m +3)i +10成立的实数m 的取值集合是________. 解析:因为只有两个复数均为实数时,才能比较大小,所以由条件得⎩⎨⎧m 2-3m =0,m 2-4m +3=0,m 2<10.所以⎩⎪⎨⎪⎧m =0或m =3,m =1或m =3,-10<m <10,从而m =3.答案:{3}三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)已知复数z =(3+b i)(1+3i)(b ∈R )是纯虚数. (1)求b 的值;(2)若ω=3+b i2+i ,求复数ω的模|ω|.解:(1)z =(3+b i)(1+3i)=(3-3b )+(9+b )i. 因为z 是纯虚数,所以3-3b =0,且9+b ≠0, 所以b =1.(2)ω=3+i 2+i =(3+i )(2-i )(2+i )(2-i )=7-i 5=75-15i ,所以|ω|=(75)2+(-15)2= 2. 18.(本小题满分12分)已知z =1+i , (1)若ω=z 2+3z --4,求|ω|;(2)若z 2+az +b z 2-z +1=1-i ,求实数a ,b 的值.解:(1)ω=(1+i)2+3(1-i)-4=-1-i , 所以|ω|= 2.(2)由条件知,(1+i )2+a (1+i )+b (1+i )2-(1+i )+1=2i +a +b +a i2i -i=(a +b )+(a +2)ii =1-i ,所以(a +b )+(a +2)i =1+i ,所以⎩⎪⎨⎪⎧a +b =1,a +2=1,解得⎩⎪⎨⎪⎧a =-1,b =2.19.(本小题满分12分)已知复数z 1满足(1+i)z 1=-1+5i ,z 2=a -2-i ,其中i 为虚数单位,a ∈R ,若|z 1-z -2|<|z 1|,求a 的取值范围.解:因为z 1=-1+5i 1+i =2+3i ,z 2=a -2-i ,z -2=a -2+i ,所以|z 1-z -2|=|(2+3i)-(a -2+i)|=|4-a +2i| =(4-a )2+4,又因为|z 1|=13,|z 1-z -2|<|z 1|, 所以(4-a )2+4<13,所以a 2-8a +7<0,解得1<a <7. 所以a 的取值范围是(1,7).20.(本小题满分12分)已知x 2-(3-2i)x -6i =0. (1)若x ∈R ,求x 的值; (2)若x ∈C ,求x 的值.解:(1)x ∈R 时,由方程得(x 2-3x )+(2x -6)i =0,则⎩⎪⎨⎪⎧x 2-3x =0,2x -6=0,解得x =3. (2)x ∈C 时,设x =a +b i(a ,b ∈R )代入方程整理得(a 2-b 2-3a -2b )+(2ab -3b +2a -6)i =0,则⎩⎪⎨⎪⎧a 2-b 2-3a -2b =0,2ab -3b +2a -6=0,解得⎩⎪⎨⎪⎧a =0,b =-2或⎩⎪⎨⎪⎧a =3,b =0.故x =3或x =-2i.21.(本小题满分12分)设复数z 1=(a 2-4sin 2θ)+(1+2cos θ)i ,a ∈R ,θ∈(0,π),z 2在复平面内对应的点在第一象限,且z 22=-3+4i. (1)求z 2及|z 2|;(2)若z 1=z 2,求θ与a 的值.解:(1)设z 2=m +n i(m ,n ∈R ),则z 22=(m +n i)2=m 2-n 2+2mn i =-3+4i , 即⎩⎪⎨⎪⎧m 2-n 2=-3,2mn =4, 解得⎩⎪⎨⎪⎧m =1,n =2,或⎩⎪⎨⎪⎧m =-1,n =-2,所以z 2=1+2i ,或z 2=-1-2i.又因为z 2在复平面内对应的点在第一象限, 所以z 2=-1-2i 应舍去, 故z 2=1+2i ,|z 2|= 5.(2)由(1)知(a 2-4sin 2θ)+(1+2cos θ)i =1+2i ,即⎩⎪⎨⎪⎧a 2-4sin 2θ=1,1+2cos θ=2,解得cos θ=12,因为θ∈(0,π),所以θ=π3,所以a 2=1+4sin 2θ=1+4×34=4,a =±2.综上,θ=π3,a =±2.22.(本小题满分12分)已知关于x 的方程x 2-(6+i)x +9+a i =0(a ∈R )有实数根b . (1)求实数a ,b 的值;(2)若复数z 满足|z --a -b i|=2|z |,求z 为何值时,|z |有最小值并求出最小值. 解:(1)将b 代入题中方程x 2-(6+i)x +9+a i =0,整理得(b 2-6b +9)+(a -b )i =0.则b 2-6b +9=0,且a -b =0,解得a =b =3. (2)设z =x +y i(x ,y ∈R ), 则(x -3)2+(y +3)2=4(x 2+y 2), 即(x +1)2+(y -1)2=8.所以点Z 在以(-1,1)为圆心,22为半径的圆上.画图可知,z =1-i 时,|z |min = 2.。
北师大数学选修新素养应用案巩固提升:第四章 §2 2.2 第1课时 函数的最值与导数 含解析
[A 基础达标]1.函数f (x )=x -12x 在区间[0,+∞)上( )A .有最大值,无最小值B .有最大值,有最小值C .无最大值,无最小值D .无最大值,有最小值解析:选A .由已知得f (x )的定义域为[0,+∞),f ′(x )=12x -12,令f ′(x )>0,得f (x )的单调增区间为[0,1);令f ′(x )<0,得f (x )的单调减区间为(1,+∞).所以f (x )在区间[0,+∞)上有最大值,无最小值.2.函数f (x )=xe x 在x ∈[2,4]上的最小值为( )A .0B .1eC .4e4D .2e2解析:选C .f ′(x )=e x -x e x (e x )2=1-xe x,当x ∈[2,4]时,f ′(x )<0,即函数f (x )在x ∈[2,4]上是减少的,故当x =4时,函数f (x )有最小值4e4.3.函数f (x )=x 3-3ax -a 在(0,1)内有最小值,则a 的取值范围为( ) A .0≤a <1 B .0<a <1 C .-1<a <1D .0<a <12解析:选B .因为f ′(x )=3x 2-3a ,令f ′(x )=0,可得a =x 2,所以x =±a ,又因为x ∈(0,1),所以0<a <1,即0<a <1,故选B .4.已知a ,b 为正实数,函数f (x )=ax 3+bx +2x 在[0,1]上的最大值为4,则f (x )在[-1,0]上的最小值为 ( )A .-32B .32C .-2D .2解析:选A .因为a >0,b >0,所以f (x )=ax 3+bx +2x 在[-1,1]上是增加的,故f (x )在[0,1]上的最大值f (1)=a +b +2=4,a +b =2,f (x )在[-1,0]上的最小值f (-1)=-(a +b )+2-1=-2+12=-32.5.已知函数f (x )=-x 3+ax 2-4在x =2处取得极值,若m ,n ∈[-1,1],则f (m )+f ′(n )的最小值为( )A .-13B .-15C .10D .15解析:选A .f ′(x )=-3x 2+2ax ,由题意f ′(2)=-12+4a =0,所以a =3.所以f ′(x )=-3x 2+6x ,其对称轴x =1,开口向下,当n ∈[-1,1]时,f ′(n )最小=f ′(-1)=-9,令f ′(x )=-3x (x -2)=0,则x =0或x =2, 当x ∈(-1,0)时,f ′(x )<0,当x ∈(0,1)时, f ′(x )>0,所以当m ∈[-1,1]时,f (m )最小=f (0)=-4,故f (m )+f ′(n )的最小值为-13. 6.函数y =ln xx的最大值为________.解析:函数的定义域为(0,+∞),y ′=(ln x )′x -ln x ·x ′x 2=1-ln xx 2,令y ′=0,得x =e ,当x >e 时,y ′<0;当0<x <e 时,y ′>0,所以x =e 是函数的极大值点,也是最大值点,故y max =ln e e =1e. 答案:1e7.若存在正数x 使2x (x -a )<1成立,则a 的取值范围是________. 解析:因为2x (x -a )<1,所以a >x -12x .令f (x )=x -12x ,所以f ′(x )=1+2-x ln 2>0, 所以f (x )在(0,+∞)上单调递增, 所以f (x )>f (0)=0-1=-1, 所以a 的取值范围为(-1,+∞).答案:(-1,+∞) 8.若函数f (x )=x x 2+a(a >0)在[1,+∞)上的最大值为33,则a 的值为________.解析:f ′(x )=x 2+a -2x 2(x 2+a )2=a -x 2(x 2+a )2.令f ′(x )=0,解得x =a 或x =-a (舍去). 当x >a 时,f ′(x )<0;当0<x <a 时,f ′(x )>0; 当a ≥1时,f (x )max =f (a )=a 2a =33,a =32<1,不合题意. 当0<a <1时,f (x )max =f (1)=11+a =33,解得a =3-1. 答案:3-19.已知函数f (x )=ax 3+bx +c 在x =2处取得极值为c -16. (1)求a ,b 的值;(2)若f (x )有极大值28,求f (x )在[-3,3]上的最小值. 解:(1)因为f (x )=ax 3+bx +c , 故f ′(x )=3ax 2+b ,由于f (x )在点x =2处取得极值为c -16,故有⎩⎪⎨⎪⎧f ′(2)=0,f (2)=c -16,即⎩⎪⎨⎪⎧12a +b =0,8a +2b +c =c -16,化简得⎩⎪⎨⎪⎧12a +b =0,4a +b =-8,解得⎩⎪⎨⎪⎧a =1,b =-12.(2)由(1)知f (x )=x 3-12x +c ,f ′(x )=3x 2-12, 令f ′(x )=0,得x 1=-2,x 2=2,当x ∈(-∞,-2)时,f ′(x )>0,故f (x )在(-∞,-2)上是增加的; 当x ∈(-2,2)时,f ′(x )<0,故f (x )在(-2,2)上是减少的; 当x ∈(2,+∞)时,f ′(x )>0,故f (x )在(2,+∞)上是增加的.由此可知f (x )在x 1=-2处取得极大值f (-2)=16+c ,f (x )在x 2=2处取得极小值f (2)=c -16,由题设条件知16+c =28,得c =12,此时f (-3)=9+c =21,f (3)=-9+c =3,f (2)=c -16=-4,因此f (x )在[-3,3]上的最小值为f (2)=-4.10.已知函数f (x )=13x 3+ax +b (a ,b ∈R )在x =2处取得极小值-43.(1)求f (x )的单调递增区间;(2)若f (x )≤m 2+m +103在[-4,3]上恒成立,求实数m 的取值范围.解:(1)f ′(x )=x 2+a ,由f ′(2)=0,得a =-4;再由f (2)=-43,得b =4.所以f (x )=13x 3-4x +4,f ′(x )=x 2-4.令f ′(x )=x 2-4>0,得x >2或x <-2.所以f (x )的单调递增区间为(-∞,-2),(2,+∞).(2)因为f (-4)=-43,f (-2)=283,f (2)=-43,f (3)=1,所以函数f (x )在[-4,3]上的最大值为283.要使f (x )≤m 2+m +103在[-4,3]上恒成立,只需m 2+m +103≥283,解得m ≥2或m ≤-3.[B 能力提升]11.已知函数f (x )=13x 3-x 2+a ,函数g (x )=x 2-3x ,它们的定义域为[1,+∞),并且函数f (x )的图像始终在函数g (x )图像的上方,那么a 的取值范围是( )A .(0,+∞)B .(-∞,0)C .⎝⎛⎭⎫-43,+∞ D .⎝⎛⎭⎫-∞,-43 解析:选A .设h (x )=f (x )-g (x )=13x 3-x 2+a -x 2+3x ,则h ′(x )=x 2-4x +3=(x -3)(x-1),所以当x ∈(1,3)时,h (x )单调递减;当x ∈(3,+∞)时,h (x )单调递增.当x =3时,函数h (x )取得最小值.因为f (x )的图像始终在g (x )的图像上方,则有h (x )min>0,即h (3)=a >0,所以a 的取值范围是(0,+∞).12.函数f (x )=x e 2x 在定义域内的最小值为________. 解析:函数的定义域为R , f ′(x )=(x e 2x )′=[x (e 2)x ]′=e 2x +x [(e 2)x ]′ =e 2x +x (e 2)x ln e 2=e 2x +2x e 2x =e 2x (1+2x ), 令f ′(x )=0得x =-12,当x ∈⎝⎛⎭⎫-∞,-12时,f ′(x )<0,当x ∈⎝⎛⎭⎫-12,+∞时,f ′(x )>0. 所以f (x )最小=f (x )极小=f ⎝⎛⎭⎫-12=-12e -1=-12e . 答案:-12e13.已知函数f (x )=ax sin x -32(a ∈R )在⎣⎡⎦⎤0,π2上的最大值为π-32,求函数f (x )的解析式. 解:由已知得f ′(x )=a (sin x +x cos x ),对任意x ∈⎝⎛⎭⎫0,π2,有sin x +x cos x >0, 当a =0时,f (x )=-32,不合题意.当a <0,x ∈⎝⎛⎭⎫0,π2时,f ′(x )<0, 从而f (x )在⎝⎛⎭⎫0,π2内是减少的. 又f (x )在⎣⎡⎦⎤0,π2上的图像是连续不断的,故f (x )在⎣⎡⎦⎤0,π2上的最大值为f (0)=-32,不合题意;当a >0,x ∈⎝⎛⎭⎫0,π2时,f ′(x )>0,从而f (x )在⎝⎛⎭⎫0,π2内是增加的,又f (x )在⎣⎡⎦⎤0,π2上的图像是连续不断的,故f (x )在⎣⎡⎦⎤0,π2上的最大值为f ⎝⎛⎭⎫π2,即π2a -32=π-32,解得a =1.综上所述,f (x )=x sin x -32.14.(选做题)已知函数f (x )=ln x +a (1-x ). (1)讨论f (x )的单调性;(2)当f (x )有最大值,且最大值大于2a -2时,求a 的取值范围. 解:(1)f (x )的定义域为(0,+∞),f ′(x )=1x -a .若a ≤0,则f ′(x )>0,所以f (x )在(0,+∞)上是递增的.若a >0,则当x ∈⎝⎛⎭⎫0,1a 时,f ′(x )>0; 当x ∈⎝⎛⎭⎫1a ,+∞时,f ′(x )<0. 所以f (x )在⎝⎛⎭⎫0,1a 上是递增的,在⎝⎛⎭⎫1a ,+∞上是递减的. (2)由(1)知,当a ≤0时,f (x )在(0,+∞)上无最大值;当a >0时,f (x )在x =1a 处取得最大值,最大值为f ⎝⎛⎭⎫1a =ln 1a +a ⎝⎛⎭⎫1-1a =-ln a +a -1. 因此f ⎝⎛⎭⎫1a >2a -2等价于ln a +a -1<0. 令g (a )=ln a +a -1,g ′(a )=1a +1>0,则g (a )在(0,+∞)上是递增的, 又g (1)=0,于是,当0<a <1时,g (a )<0;当a >1时,g (a )>0. 因此,a 的取值范围是(0,1).。
北师大数学选修新素养应用案巩固提升:第四章 §1 1.2 函数的极值 含解析
[A 基础达标]1.若函数f (x )=x 2+ax +1在x =1处取极值,则a =( )A .1B .3C .2D .4解析:选B .f ′(x )=x 2+2x -a (x +1)2,由题意知f ′(1)=3-a22=0,所以a =3. 2.设函数f (x )=2x +ln x ,则( )A .x =12为f (x )的极大值点B .x =12为f (x )的极小值点C .x =2为f (x )的极大值点D .x =2为f (x )的极小值点解析:选D .f ′(x )=x -2x 2,由f ′(x )=0得x =2,又当x ∈(0,2)时,f ′(x )<0,当x ∈(2,+∞)时,f ′(x )>0,所以x =2是f (x )的极小值点.3.函数f (x )=ax 3+bx 2+cx 的图像如图所示,且f (x )在x =x 0与x =2处取得极值,则f (1)+f (-1)的值一定( )A .等于0B .大于0C .小于0D .小于或等于0解析:选B .f ′(x )=3ax 2+2bx +c ,由f (x )的图像知当x 趋于+∞时,f (x )是增加的,所以a >0,因为x 0<-2,所以x 0+2=-2b3a <0,所以b >0,所以f (1)+f (-1)=a +b +c +(-a +b -c )=2b >0.4.函数f (x )=13ax 3+ax 2+x +3有极值的充要条件是 ( )A .a >1或a ≤0B .a >1C .0<a <1D .a >1或a <0解析:选D .f (x )有极值的充要条件是f ′(x )=ax 2+2ax +1=0有两个不相等的实根,即4a 2-4a >0,解得a <0或a >1.故选D .5.方程x 3-6x 2+9x -10=0的实根的个数是( ) A .3 B .2 C .1D .0解析:选C .令f (x )=x 3-6x 2+9x -10,则f ′(x )=3x 2-12x +9.所以f ′(x )=3(x -1)(x -3).所以当x <1或x >3时,f ′(x )>0,f (x )是增加的;当1<x <3时,f ′(x )<0,f (x )是减少的.所以f (x )极大值=f (1)=-6<0.故f (x )的极大值在x 轴下方,如图,即f (x )的图像与x 轴只有一个交点,原方程只有一个实根,故选C .6.已知函数f (x )=e x -ax 在区间(0,1)上有极值,则实数a 的取值范围是________. 解析:由题意f ′(x )=e x -a =0在(0,1)上有解,所以a =e x ∈(1,e). 答案:(1,e)7.已知函数f (x )=ax 3+bx 2+c ,其导函数f ′(x )的图像如图所示,则函数的极小值是________.解析:由题图可知,当x <0时,f ′(x )<0, 当0<x <2时,f ′(x )>0,故x =0时函数f (x )取极小值f (0)=c . 答案:c8.函数f (x )=x 3-3x 2-9x +3,若函数g (x )=f (x )-m 在x ∈[-2,5]上有3个零点,则m 的取值范围为________.解析:f ′(x )=3x 2-6x -9,令f ′(x )=0得x 1=-1,x 2=3.易知⎩⎪⎨⎪⎧f (x )极大=f (-1)f (x )极小=f (3),由题意知,g (x )在[-2,5]上与x 轴有三个交点,所以⎩⎪⎨⎪⎧g (-1)>0,g (3)<0,g (-2)≤0,g (5)≥0,解得1≤m <8,即m 的取值范围为[1,8).答案:[1,8)9.求函数f (x )=12(x -5)2+6ln x 的极值.解:因为f (x )=12(x -5)2+6ln x =12x 2-5x +6ln x +252(x >0),所以f ′(x )=x -5+6x =(x -2)(x -3)x.令f ′(x )=0,解得x 1=2,x 2=3.当0<x <2或x >3时,f ′(x )>0,故f (x )在(0,2),(3,+∞)上为增函数;当2<x <3时,f ′(x )<0,故f (x )在(2,3)上为减函数.由此可知,f (x )在x =2处取得极大值f (2)=92+6ln 2,在x =3处取得极小值f (3)=2+6ln3.10.已知函数f (x )=x -a ln x (a ∈R ).(1)当a =2时,求曲线y =f (x )在点A (1,f (1))处的切线方程; (2)当a >0时,求函数f (x )的极值.解:函数f (x )的定义域为(0,+∞),f ′(x )=1-ax.(1)当a =2时,f (x )=x -2ln x ,f ′(x )=1-2x (x >0),因而f (1)=1,f ′(1)=-1,所以曲线y =f (x )在点A (1,f (1))处的切线方程为y -1=-(x -1),即x +y -2=0. (2)由f ′(x )=1-a x =x -ax ,x >0知:当a >0时,由f ′(x )=0,解得x =a .又当x ∈(0,a )时,f ′(x )<0;当x ∈(a ,+∞)时,f ′(x )>0,从而函数f (x )在x =a 处取得极小值,且极小值为f (a )=a -a ln a ,无极大值.所以当a >0时,函数f (x )在x =a 处取得极小值a -a ln a ,无极大值.[B 能力提升]11.函数f (x )=x 3+bx 2+cx +d 的图像如图所示,则x 21+x 22等于( )A .23B .43C .83D .163解析:选C .由题图可得f (x )=0的根为0,1,2,故d =0,f (x )=x (x 2+bx +c ),则1,2为x 2+bx +c =0的根,由根与系数的关系得b =-3,c =2,故f (x )=x 3-3x 2+2x ,则f ′(x )=3x 2-6x +2,由图可得x 1,x 2为3x 2-6x +2=0的根,则x 1+x 2=2,x 1x 2=23,故x 21+x 22=(x 1+x 2)2-2x 1x 2=83.12.已知函数f (x )=x 3+ax 2+bx +a 2在x =1处有极值为10,则f (2)=________. 解析:f ′(x )=3x 2+2ax +b .所以⎩⎪⎨⎪⎧3+2a +b =0,1+a +b +a 2=10,解得⎩⎪⎨⎪⎧a =4,b =-11或⎩⎪⎨⎪⎧a =-3,b =3.当⎩⎪⎨⎪⎧a =-3b =3时f ′(x )=3(x -1)2≥0,所以在x =1处不存在极值;当⎩⎪⎨⎪⎧a =4,b =-11时,f ′(x )=3x 2+8x -11=(3x +11)·(x -1),所以当x ∈⎝⎛⎭⎫-113,1时,f ′(x )<0;当x ∈(1,+∞)时,f ′(x )>0,所以⎩⎪⎨⎪⎧a =4,b =-11符合此题意,所以f (2)=8+16-22+16=18.答案:1813.设函数f (x )=a3x 3+bx 2+cx +d (a >0),且方程f ′(x )-9x =0的两个根分别为1,4.(1)当a =3且曲线y =f (x )过原点时,求f (x )的解析式; (2)若f (x )在(-∞,+∞)内无极值点,求a 的取值范围.解:(1)由f (x )=a3x 3+bx 2+cx +d ,得f ′(x )=ax 2+2bx +c .因为f ′(x )-9x =ax 2+(2b -9)x +c =0的两个根分别为1,4,所以⎩⎪⎨⎪⎧a +2b +c -9=016a +8b +c -36=0,(*)当a =3时,由(*)式得⎩⎪⎨⎪⎧2b +c -6=0,8b +c +12=0,解得b =-3,c =12. 又因为曲线y =f (x )过原点, 所以d =0.故f (x )=x 3-3x 2+12x .(2)由于a >0,因为f (x )=a3x 3+bx 2+cx +d 在(-∞,+∞)内无极值点,所以f ′(x )=ax 2+2bx +c ≥0在(-∞,+∞)内恒成立. 由(*)式得2b =9-5a ,c =4a , 所以Δ=(2b )2-4ac =9(a -1)(a -9).解⎩⎪⎨⎪⎧a >0,Δ=9(a -1)(a -9)≤0,得a ∈[1,9],即a 的取值范围为[1,9]. 14.(选做题)已知函数f (x )=x 3-3ax -1,a ≠0. (1)求f (x )的单调区间;(2)若f (x )在x =-1处取得极值,直线y =m 与y =f (x )的图像有三个不同的交点,求m 的取值范围.解:(1)f ′(x )=3x 2-3a =3(x 2-a ), 当a <0时,对x ∈R ,有f ′(x )>0,所以当a <0时,f (x )的递增区间为(-∞,+∞); 当a >0时,由f ′(x )>0, 解得x <-a 或x >a , 由f ′(x )<0,解得-a <x <a ,所以当a >0时,f (x )的递增区间为(-∞,-a ),(a ,+∞),f (x )的递减区间为(-a ,a ).(2)因为f (x )在x =-1处取得极值, 所以f ′(-1)=3×(-1)2-3a =0. 所以a =1.所以f (x )=x 3-3x -1,f ′(x )=3x 2-3. 由f ′(x )=0,解得x 1=-1,x 2=1.由(1)中f(x)的单调性,可知f(x)在x=-1处取得极大值f(-1)=1,在x=1处取得极小值f(1)=-3.因为直线y=m与函数y=f(x)的图像有三个不同的交点,结合f(x)的单调性,可知m的取值范围是(-3,1).。
北师大数学选修新素养应用案巩固提升:第四章 1.1 数的概念的扩展应用 含解析
[A 基础达标]1.已知复数z =1+i 3(i 是虚数单位),则z 的虚部是( )A .i 3B .-iC .-1D .1解析:选C.因为z =1+i 3=1-i ,所以z 的虚部是-1.2.以-3+i 的虚部为实部,以3i +i 2的实部为虚部的复数是( )A .1-iB .1+iC .-3+3iD .3+3i解析:选A.-3+i 的虚部为1,3i +i 2=-1+3i ,其实部为-1,故所求复数为1-i.3.若复数2-b i(b ∈R )的实部与虚部互为相反数,则b 的值为( )A .-2B .23C .-23D .2解析:选D.复数2-b i 的实部为2,虚部为-b ,由题意知2=-(-b ),所以b =2.4.复数z =a 2-b 2+(a +|a |)i(a ,b ∈R )为实数的充要条件是( )A .|a |=|b |B .a <0且a =-bC .a >0且a ≠bD .a ≤0解析:选D.复数z 为实数的充要条件是a +|a |=0,即|a |=-a ,得a ≤0,故应选D.5.下列命题:①若z =a +b i ,则仅当a =0,b ≠0时z 为纯虚数;②若z 21+z 22=0,则z 1=z 2=0;③若实数a 与a i 对应,则实数集与纯虚数集可建立一一对应关系.其中正确命题的个数是( )A .0B .1C .2D .3解析:选A.在①中未对z =a +b i 中a ,b 的取值加以限制,故①错误;在②中将虚数的平方与实数的平方等同,如若z 1=1,z 2=i ,则z 21+z 22=1-1=0,但z 1≠z 2≠0,故②错误;在③中忽视0·i =0,故③也是错误的.故选A.6.复数1+2i 2的实部是________,虚部是________.解析:1+2i 2=1-2=-1.答案:-1 07.若(y 2-3y )+y i(y ∈R )是纯虚数,则y =________.解析:因为(y 2-3y )+y i(y ∈R )是纯虚数,所以⎩⎪⎨⎪⎧y 2-3y =0,y ≠0,解得y =3. 答案:38.满足复数x 2-2x -3+(9y 2-6y +1)i 是零的实数对(x ,y )表示的点的个数为__________.解析:由题意得⎩⎪⎨⎪⎧x 2-2x -3=0,9y 2-6y +1=0,解得⎩⎪⎨⎪⎧x =-1,y =13或⎩⎪⎨⎪⎧x =3,y =13.答案:29.写出下列复数的实部与虚部,并指出哪些是实数,哪些是虚数,哪些是纯虚数.4,2-3i ,0,-12+43i ,5+2i ,6i. 解:4,2-3i ,0,-12+43i ,5+2i ,6i 的实部分别是4,2,0,-12,5,0;虚部分别是0,-3,0,43,2,6. 4,0是实数;2-3i ,-12+43i ,5+2i ,6i 是虚数,其中6i 是纯虚数. 10.复数z =m 2-2m -3+(m 2+2m -8)i(m ∈R ),当m 为何值时,z 为虚数?解:由题意得⎩⎪⎨⎪⎧m 2-2m -3≥0,m 2+2m -8≠0, 即⎩⎪⎨⎪⎧m ≥3或m ≤-1,m ≠2且m ≠-4,所以m ≥3或m ≤-1且m ≠-4.所以当m 的取值范围是{m |m ≥3或m ≤-1且m ≠-4}时,z 为虚数.[B 能力提升]11.已知复数z =cos α+icos 2α(0<α<2π)的实部与虚部互为相反数,则α的取值集合为( )A.⎩⎨⎧⎭⎬⎫π,2π3,4π3 B .⎩⎨⎧⎭⎬⎫π3,5π3 C.⎩⎨⎧⎭⎬⎫π,π6,11π6 D .⎩⎨⎧⎭⎬⎫π,π3,5π3 解析:选D.由条件,知cos α+cos 2α=0,所以2cos 2 α+cos α-1=0,解得cos α=-1或12.又0<α<2π,所以α=π或π3或5π3,故选D. 12.若复数z =(sin θ+cos θ+1)+(sin θ-cos θ)i 是纯虚数.则sin 2 017θ+cos 2 017θ=________.解析:由题意得⎩⎪⎨⎪⎧sin θ+cos θ+1=0,①sin θ-cos θ≠0, 由①得sin θ+cos θ=-1,又sin 2θ+cos 2θ=1.所以⎩⎪⎨⎪⎧sin θ=0,cos θ=-1或⎩⎪⎨⎪⎧sin θ=-1,cos θ=0. 所以sin 2 017θ+cos 2 017θ=(-1)2 017+02 017=-1.答案:-113.已知m ∈R ,复数z =m (m +2)m -1+(m 2+2m -3)i ,当m 为何值时,(1)z ∈R ;(2)z 是虚数;(3)z 是纯虚数.解:(1)当z ∈R 时,则有⎩⎪⎨⎪⎧m 2+2m -3=0,m -1≠0,解得m =-3,所以当m =-3时,z ∈R .(2)当z 是虚数时,则有⎩⎪⎨⎪⎧m -1≠0,m 2+2m -3≠0, 解得m ≠-3且m ≠1,所以当m ≠-3且m ≠1时,z 是虚数.(3)当z 是纯虚数时,则有⎩⎪⎨⎪⎧m (m +2)=0,m -1≠0,m 2+2m -3≠0,解得m =0或m =-2,所以当m =0或m =-2时,z 是纯虚数.14.(选做题)已知z =sin A +(k sin A +cos A -1)i ,A 为△ABC 的一内角.若不论A 为何值,z 总是虚数,求实数k 的取值范围.解:法一:令k sin A +cos A -1=0,则k =1-cos A sin A ,因为1-cos A sinA =2sin 2A 22sin A 2cos A 2=tan A 2, 其中A ∈(0,π).因为当A 2∈⎝⎛⎭⎫0,π2时,tan A 2∈(0,+∞), 所以1-cos A sin A的值域为(0,+∞). 所以当k ≤0时,1-cos A sin A≠k 恒成立. 即当k ≤0时,不论A 为何值,k sin A +cos A -1≠0恒成立,z 总是虚数.法二:因为1-cos A sin A =-1sin Acos A -1,而sin A cos A -1表示点(cos A ,sin A )与(1,0)连线的斜率,又(cos A ,sin A ),A ∈(0,π)表示除去端点的半圆,如图,利用数形结合,有sin A cos A -1∈(-∞,0), 所以1-cos A sin A∈(0,+∞). 以下同法一.。
新北师大版高中数学选修1-1第四章《导数应用》检测卷(有答案解析)(2)
一、选择题1.在数学的研究性学习中,常利用函数的图象研究函数的性质,也利用函数的解析式研究函数的性质,下列函数的解析式(其中 2.71828e =⋅⋅⋅为自然对数的底数)与所给图象最契合的是( )A .22sin 1xy x =+B .221xy x =+C .x xx x e e y e e ---=+D .x xx xe e y e e --+=-2.对任意0x >,若不等式2e ln e xa x ax x++≥恒成立(e 为自然对数的底数),则正实数a 的取值范围是( )A .(0,e]B .2(0,e ]C .2[,e]eD .22[,e ]e3.已知函数()()()()221ln 10,,2a f x a x x a a xb x a b =-++--+>∈∈R R .若函数()f x 有三个零点,则( )A .1a >,0b <B .01a <<,0b >C .0a <,0b >D .01a <<,0b <4.函数3()1218f x x x =-+在区间[]3,3-上的最大值为( ) A .34 B .16C .24D .175.已知函数21ln 22y x a x x =--在1,2⎡⎫+∞⎪⎢⎣⎭上单调递增,则实数a 的取值范围为( ) A .34a ≤-B .1a ≤-C .1a ≤D .01a ≤≤6.已知函数()f x 的导函数是'()f x ,'()f x 的图象如图所示,下列说法正确的是( )A .函数()f x 在(2,1)--上单调递减B .函数()f x 在3x =处取得极大值C .函数()f x 在(1,1)-上单调递减D .函数()f x 共有4个极值点7.对于正数k ,定义函数:()()()(),,f x f x kg x k f x k ⎧≤⎪=⎨>⎪⎩.若对函数()ln22f x x x =-+,有()()g x f x =恒成立,则( )A .k 的最大值为1ln 2+B .k 的最小值为1ln 2+C .k 的最大值为ln 2D .k 的最小值为ln 28.对于R 上可导的任意函数()f x ,若当2x ≠时满足()02f x x '≤-,则必有( ) A .()()()1322f f f +< B .()()()1322f f f +≤ C .()()()1322f f f +≥ D .()()()1322f f f +>9.已知函数321()13f x x ax x =+++在(,0)-∞,(3,)+∞上为增函数,在()1,2上为减函数,则实数a 的取值范围为( ) A .(,1]-∞-B .55,34⎡⎤--⎢⎥⎣⎦C .5,13⎛⎤-- ⎥⎝⎦D .55,34⎛⎫--⎪⎝⎭10.若函数32()21f x ax x x =+++在(1,2)上有最大值无最小值,则实数a 的取值范围为( ) A .34a >-B .53a <-C .5334a -<<- D .5334a -≤≤- 11.()f x 是R 上的偶函数,当()0,x ∈+∞时,()()0xf x f x '->,且()30f =,则不等式()0f x x>的解集为( ) A .()3,+∞B .()(),33,-∞-+∞C .()()3,03,-⋃+∞D .()()3,00,3-12.已知函数2()f x x m =+与函数1()ln3g x x x =--,1,22x ⎡∈⎤⎢⎥⎣⎦的图象上恰有两对关于x 轴对称的点,则实数m 的取值范围是( )A .5ln )4[2,2+ B .5[2ln 2,ln 2)4-+ C .5(ln 2,2ln 2)4+-D .(]2ln2,2-二、填空题13.函数()y f x =的导函数的图像如图所示,给出下列判断:①函数()y f x =在区间(3)5,内单调递增; ②函数()y f x =在区间1(3)2-,内单调递减; ③函数()y f x =在区间(22)-,内单调递增; ④当12x =-时,函数()y f x =有极大值;⑤当2x =时,函数()y f x =有极大值; 则上述判断中正确的是________. 14.已知函数,0()(1),0xlnx x f x e x x >⎧=⎨+⎩,若函数()()()F x f x c c R =-∈恰有3个零点,则实数c 的取值范围是________. 15.若函数()()32111562f x x mx n x =-++-+是[]0,1上的单调增函数,其中0m ≥,0n ≥,则()()2268m n +++的最小值为________.16.定义在(0,)+∞上的函数()f x 满足()1xf x '<,且(1)1f =,则不等式(31)ln(31)1f x x ->-+的解集是________.17.若函数()()20xf x ae xa =-≠仅有1个零点,则实数a 的取值范围是______.18.使“函数()xe f x x=在区间(0,m ]上单调递减”成立的一个m 值是_____.19.已知函数()()31f x x ax b =---,x ∈R ,其中a 、b ∈R ,若()f x 存在极值点0x ,且()()10f x f x =,其中10x x ≠,则102x x +=_______.20.已知函数22(0)()4(0)x e x f x x x ⎧>=⎨+≤⎩,若x R ∀∈,()f x mx ≥,则实数m 的取值范围是________. 三、解答题21.已知函数()ln ()=+∈f x x x ax a R . (Ⅰ)当0a =,求()f x 的最小值;(Ⅱ)若函数()()ln g x f x x =+在区间[1,)+∞上为增函数,求实数a 的取值范围;22.已知函数()()()2220xf x ax x e a =++>,其中e 是自然对数的底数.(1)若()f x 在[]22-,上是单调增函数,求a 的取值范围; (2)证明:当1a =时,方程()5f x x =+有且只有两个零点.23.已知函数()21xx x f x e+-=. (1)求曲线()y f x =在点()()0,0f 处的切线的方程; (2)求函数()y f x =的极值.24.如图所示,某风景区在一个直径AB 为200m 的半圆形花园中设计一条观光路线,在点A 与圆弧上一点C 之间设计为直线段小路,在路的两侧边缘种植绿化带;从点C 到点B 设计为沿圆弧BC 的弧形小路,在路的一侧边缘种植绿化带.(注:小路及绿化带的宽度忽略不计)(1)设BAC θ∠=(弧度),将绿化带总长度()S θ表示为θ的函数; (2)试确定θ的值,使得绿化带总长度最大. 25.已知()()2log 1f x x =+.(1)若()()0121f x f x <--<,求x 的取值范围; (2)若关于x 的方程()40xf x m -+=有解,求实数m 的取值范围.26.设函数33,().()2,x x x af x a R x x a⎧-=∈⎨->⎩ (1)若0a =,则()f x 的最大值为;(2)若()f x 无最大值,则求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】分析合选项中函数值符号、单调性、奇偶性,并与题中的函数图象作比较,由此可得出合适的选项. 【详解】对于A 选项,当2x ππ<<时,22sin 01xy x =<+,与题中函数图象不符; 对于B 选项,设()221xf x x =+,该函数的定义域为R , ()()()222211xxf x f x x x --==-=-+-+,函数()221x f x x =+为奇函数, 当0x >时,()2201xf x x =>+,()()()()()22222222142111x x x f x xx+--'==++,由()0f x '>,可得11x -<<;由()0f x '<,可得1x <-或1x >.所以,函数()f x 的单调递减区间为(),1-∞-、()1,+∞,单调递增区间为()1,1-, 与题中函数图象相符;对于C 选项,()()()2222212121111x x x xx x x x x x x x x x x e e e e e e e y e e e e e e e e -----+---=+====-++++,所以,函数x xx xe e y e e---=+为R 上的增函数,与题中函数图象不符; 对于D 选项,对于函数x xx xe e y e e--+=-,0x x e e --≠,可得0x ≠,该函数的定义域为{}0x x ≠,与题中函数图象不符. 故选:B. 【点睛】思路点睛:函数图象的辨识可从以下方面入手: (1)从函数的定义域,判断图象的左右位置; (2)从函数的值域,判断图象的上下位置. (3)从函数的单调性,判断图象的变化趋势;(4)从函数的奇偶性,判断图象的对称性; (5)函数的特征点,排除不合要求的图象.2.B解析:B 【分析】将不等式化简并换元,构造函数2()ln e (e)f t t a t t =-+≥,则min ()0f t ≥即可,对函数求导,判断导函数零点与区间端点的关系,分类讨论得出函数的单调性和最小值,代入求解可得正实数a 的取值范围. 【详解】22e e e ln e ln e 0x x x a x ax a x x x ++≥⇔-+≥,令e x t x=(由e e x x ≥可知e t ≥), 则2ln e 0t a t -+≥,设2()ln e (e)f t t a t t =-+≥,则min ()0f t ≥即可,易得()1(e)a t af t t t t-'=-=≥, ①当0e a <≤时,()0f t '≥,所以此时()(e)y f t t =≥是增函数,故2min ()(e)e e 0f t f a ==-+≥,解得2e e a ≤+,又0e a <≤,所以0e a <≤; ②当e a >时,则()y f t =在[,)e a 上递减,在(,)a +∞上递增,故min ()()f t f a =,min ()0()0f t f a ≥⇔≥,所以2ln e 0a a a -+≥,设2()ln e (e)g a a a a a =-+>,故()0g a ≥即可,而()ln (e)g a a a '=->,显然()0g a '<,即()y g a =在(e,)+∞上递减,又2(e )0g =,而()0g a ≥,所以2()(e )g a g ≥,所以2e a ≤,又e a >,因此2e e a <≤.综上所述,0e a <≤或2e e a <≤,即2(0,e ]a ∈. 故选:B 【点睛】方法点睛:本题考查不等式的恒成立问题,考查导数在单调性和最值中的应用,考查分类讨论思想,关于恒成立问题的几种常见解法总结如下: 1.参变分离法,将不等式恒成立问题转化为函数求最值问题;2.主元变换法,把已知取值范围的变量作为主元,把求取值范围的变量看作参数;3.分类讨论,利用函数的性质讨论参数,分别判断单调性求出最值;4.数形结合法,将不等式两端的式子分别看成两个函数,作出函数图象,列出参数的不等式求解.3.B解析:B 【分析】首先求出函数的导函数,要使函数()f x 有三个零点,则()0f x '=必定有两个正实数根,即可求出参数a 的取值范围,再求出函数的单调区间,从而得到()10f a ->,即可判断b 的范围;【详解】解:因为()()()()221ln 10,,2a f x a x x a a xb x a b =-++--+>∈∈R R 所以()()()()()()()222111111ax a a x a a ax x a f x ax aa xxx+--+---+-'=++--==要使函数()f x 有三个零点,则()0f x '=必定有两个正实数根,即11x a=,21x a =-,所以1010a a->⎧⎪⎨>⎪⎩解得01a <<,此时111x a =>,211x a =-<,令()0f x '>,解得01x a <<-或1x a >,即函数在()0,1a -和1,a ⎛⎫+∞ ⎪⎝⎭上单调递增,令()0f x '<,解得11a x a -<<或1x a >,即函数在11,a a ⎛⎫- ⎪⎝⎭上单调递减,所以()f x 在1x a =-处取得极大值,在1x a=处取得极小值; 因为当0x →时,()f x →-∞;当x →+∞时,()f x →+∞,要使函数函数()f x 有三个零点,则()10f a ->,10f a ⎛⎫< ⎪⎝⎭即()()()()()()2211ln 11112a f a a a a a a ab -=--+-+---+ ()()()()211ln 102a a a a b -+⎡⎤=--++>⎢⎥⎣⎦且()()2211111ln 102a f a a a b a a a a ⎛⎫⎛⎫=-++--+< ⎪ ⎪⎝⎭⎝⎭ 因为01a <<,所以011a <-<,20a -<,所以()()2102a a -+<,()ln 10a -<,所以()()()()211ln 102a a a a -+⎡⎤--+<⎢⎥⎣⎦,又()()()()211ln 102a a a a b -+⎡⎤--++>⎢⎥⎣⎦,所以0b >故选:B 【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系. (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用.4.A解析:A 【分析】对函数求导,求出函数()y f x =的极值点,分析函数的单调性,再将极值与端点函数值比较大小,找出其中最大的作为函数()y f x =的最大值. 【详解】()31218f x x x =-+,则()2312f x x '=-,令'0f x,解得2x =±,列表如下:所以,函数y f x =的极大值为234f -=,极小值为22f =,又()327f -=,()39f =,因此,函数()y f x =在区间[]3,3-上的最大值为34, 故选:A . 【点睛】方法点睛:本题考查利用导数求函数在定区间上的最值,解题时严格按照导数求最值的基本步骤进行,考查计算能力,属于中等题.5.B解析:B 【分析】 由函数21ln 22y x a x x =--在1,2⎡⎫+∞⎪⎢⎣⎭上单调递增,知'0y ≥在1,2⎡⎫+∞⎪⎢⎣⎭上恒成立,分离参数,求最值得答案. 【详解】 因为函数21ln 22y x a x x =--在1,2⎡⎫+∞⎪⎢⎣⎭上单调递增, 所以22'20a x x ay x x x --=--=≥在1,2⎡⎫+∞⎪⎢⎣⎭上恒成立,所以222(1)1a x x x ≤-=--在1,2⎡⎫+∞⎪⎢⎣⎭上恒成立, 所以1a ≤-,故选:B. 【点睛】方法点睛:该题考查的是有关根据函数在给定区间上单调增求你参数的取值范围的问题,解题方法如下:(1)利用函数在给定区间上单调递增,得到其导数大于等于零在给定区间上恒成立; (2)求导;(3)分离参数,求最小值,得结果.6.C解析:C 【分析】对于选项A ,函数()f x 在(2,1)--上单调递增,故A 错误;对于选项B ,函数()f x 在(1,3)上单调递增,在(3,)+∞上单调递增,所以3x =不是()f x 的极值点,故B 错误;对于选项C ,函数()f x 在(1,1)-上单调递减,故C 正确;对于选项D ,由导函数的图象得函数()f x 共有3个极值点,故D 错误. 【详解】对于选项A ,由导函数的图象得函数()f x 在(2,1)--上单调递增,故A 错误;对于选项B ,由导函数的图象得函数()f x 在(1,3)上单调递增,在(3,)+∞上单调递增,所以3x =不是()f x 的极值点,故B 错误;对于选项C ,由导函数的图象得函数()f x 在(1,1)-上单调递减,故C 正确; 对于选项D ,由导函数的图象得函数()f x 共有3个极值点,3,1x x =-=是极小值点,1x =-是极大值点,故D 错误.故选:C. 【点睛】结论点睛:(1)函数()f x 的()0f x '>在(,)a b 上恒成立,则函数()f x 在(,)a b 上单调递增;函数()f x 的()0f x '<在(,)a b 上恒成立,则函数()f x 在(,)a b 上单调递减.(2)如果函数()f x 的极值点是0x ,则0x 附近左右两边的导数符号相反.7.B解析:B 【分析】利用导数求出函数()f x 的最大值,由函数()g x 的定义结合()()g x f x =恒成立可知()f x k ≤,由此可得出k 的取值范围,进而可得出合适的选项.【详解】对于正数k ,定义函数:()()()(),,f x f x kg x k f x k ⎧≤⎪=⎨>⎪⎩,且()()g x f x =恒成立,则()f x k ≤.函数()ln22f x x x =-+的定义域为()0,∞+,且()111x f x x x-'=-=. 当01x <<时,()0f x '>,此时,函数()f x 单调递增; 当1x >时,()0f x '<,此时,函数()f x 单调递减. 所以,()()max 11ln 2f x f ==+,1ln 2k ∴≥+. 因此,k 的最小值为1ln 2+. 故选:B. 【点睛】解决导数中的新定义的问题,要紧扣新定义的本质,将问题转化为导数相关的问题,本题将问题转为不等式()k f x ≥恒成立,从而将问题转化为求函数()f x 的最大值.8.B解析:B 【分析】根据()02f x x '≤-,得到2x >时,()f x 单调非递增函数,2x <时,()f x 单调非递减函数求解. 【详解】 因为()02f x x '≤-, 所以当20x ->,即2x >时,()0f x '≤,则()f x 单调非递增函数, 所以()()32f f ≤;当20x -<,即2x <时,()0f x '≥,()f x 单调非递减函数, 所以()()12f f ≤;由不等式的性质得:()()()1322f f f +≤. 故选:B 【点睛】本题主要考查导数与函数的单调性以及不等式的基本性质,属于中档题.9.B解析:B 【分析】求导得到2()21'=++f x x ax ,然后根据()f x 在(,0)-∞,(3,)+∞上为增函数,在()1,2上为减函数,由(0)0(1)0(2)0(3)0f f f f ''≥⎧⎪≤⎪⎨''≤⎪⎪≥⎩求解.【详解】 已知函数321()13f x x ax x =+++, 则2()21'=++f x x ax ,因为()f x 在(,0)-∞,(3,)+∞上为增函数,在()1,2上为减函数,所以(0)0(1)0(2)0(3)0f f f f ''≥⎧⎪≤⎪⎨''≤⎪⎪≥⎩,即10121044109610a a a ≥⎧⎪++≤⎪⎨++≤⎪⎪++≥⎩,解得 5534a -≤≤-, 所以实数a 的取值范围为55,34⎡⎤--⎢⎥⎣⎦故选:B 【点睛】本题主要考查导数与函数的单调性以及二次函数与根的分布,还考查了逻辑推理和运算求解的能力,属于中档题.10.C解析:C 【详解】分析:函数()3221f x ax x x =+++在()1,2上有最大值无最小值,则极大值在()1,2之间,一阶导函数有根在()1,2,且左侧函数值小于0,右侧函数值大于0,列不等式求解 详解:f ′(x )=3ax 2+4x +1,x ∈(1,2).a =0时,f ′(x )=4x +1>0,函数f (x )在x ∈(1,2)内单调递增,无极值,舍去. a ≠0时,△=16﹣12a . 由△≤0,解得43a ≥,此时f ′(x )≥0,函数f (x )在x ∈(1,2)内单调递增,无极值,舍去.由△>0,解得a 43<(a ≠0),由f ′(x )=0,解得x1=,x223a-+=.当403a <<时,x 1<0,x 2<0,因此f ′(x )≥0,函数f (x )在x ∈(1,2)内单调递增,无极值,舍去.当a <0时,x 1>0,x 2<0,∵函数f (x )=ax 3+2x 2+x +1在(1,2)上有最大值无最小值,∴必然有f ′(x 1)=0,∴12,a <0.解得:53-<a 34-<. 综上可得:53-<a 34-<. 故选:C .点睛:极值转化为最值的性质:1、若()[]f x x a,b ∈在上有唯一的极小值,且无极大值,那么极小值为()f x 的最小值;2、若()[]f x x a,b ∈在上有唯一的极大值,且无极小值,那么极大值为()f x 的最大值;11.C解析:C 【分析】 构造函数()()f xg x x=,求导,利用()g x 的单调性和奇偶性解不等式. 【详解】 设()()f xg x x=(0x ≠), 则()()()2xf x f x g x x'-'=, ∵当()0,x ∈+∞时,()()0xf x f x '->, ∴()0g x '>,即()g x 在()0,∞+上单调递增, 又()f x 是R 上的偶函数, ∴()()()()f x f x g x g x x x--==-=--, 即()g x 是()(),00,-∞⋃+∞上的奇函数, ∴()g x 在(),0-∞上单调递增, ∵()30f =, ∴()()()33303f g g -=-=-=. 而不等式()0f x x>等价于()0g x >, ∴30x -<<或3x >.故选:C. 【点睛】本题主要考查函数的单调性与奇偶性的应用,利用条件构造函数,然后利用导数研究函数的单调性是解决本题的关键,属于中档题.12.A解析:A 【分析】将问题转化为()()f x g x =-在1,22⎡⎤⎢⎥⎣⎦恰有两个不同的解,令()()()h x f x g x =+,将问题转化为()h x 在1,22⎡⎤⎢⎥⎣⎦上有两个零点的问题,利用导数可求得()h x 的单调性,进而确定区间端点值和最值,由此构造不等式求得结果. 【详解】()f x 与()g x 在1,22x ⎡∈⎤⎢⎥⎣⎦的图象上恰有两对关于x 轴对称的点,()()f x g x ∴=-在1,22⎡⎤⎢⎥⎣⎦恰有两个不同的解,即221ln3ln 30x m x x x x m x +--=+-+=在1,22⎡⎤⎢⎥⎣⎦上恰有两个不同的解, 令()2ln 3h x x x x m =+-+,则()()()2211123123x x x x h x x x x x---+'=+-==, ∴当1,12x ⎛⎫∈ ⎪⎝⎭时,()0h x '<;当()1,2x ∈时,()0h x '>,()h x ∴在1,12⎛⎫⎪⎝⎭上单调递减,在()1,2上单调递增,又15ln 224h m ⎛⎫=--+ ⎪⎝⎭,()12h m =-,()2ln 22h m =-+, 原问题等价于()h x 在1,22⎡⎤⎢⎥⎣⎦上恰有两个零点,则5ln 2024m m --+≥>-,解得:5ln 224m +≤<,即m 的取值范围为5ln 2,24⎡⎫+⎪⎢⎣⎭. 故选:A . 【点睛】本题考查根据函数零点个数求解参数范围的问题,关键是能够将两函数图象对称点个数的问题转化为方程根的个数的问题,进一步通过构造函数的方式将问题转化为函数零点个数的问题.二、填空题13.③⑤【分析】根据导函数图像得出导数正负根据导数正负判定单调区间根据左正右负和左负有正判定极值【详解】解:对于①当时单调递减当时单调递增所以①错;对于②当时单调递增当时单调递减所以②错;对于③当时单调解析:③⑤ 【分析】根据导函数图像得出导数正负,根据导数正负判定单调区间,根据左正右负和左负有正判定极值. 【详解】解:对于①,当(34)x ∈,时()0f x '<,()f x 单调递减, 当(4,5)x ∈时()0f x '>,()f x 单调递增,所以①错;对于②,当1(2)2x ∈-,时()0f x '>,()f x 单调递增, 当(23)x ∈,时()0f x '<,()f x 单调递减,所以②错; 对于③,当(22)x ∈-,时()0f x '>,()f x 单调递增,所以③对; 对于④,当(22)x ∈-,时()0f x '>,()f x 单调递增,故当12x =-时()f x 不是极大值,所以④错;对于⑤,当1(2)2x ∈-,时()0f x '>,()f x 单调递增, 当(23)x ∈,时()0f x '<,()f x 单调递减,故2x =时函数()y f x =取得极大值,所以⑤对.故答案为:③⑤. 【点睛】求函数的极值或极值点的步骤:(1)求导数()'f x ,不要忘记函数()f x 的定义域; (2)求方程()0f x '=的根;(3)检查在方程的根的左右两侧()'f x 的符号,确定极值点或函数的极值.14.【分析】利用导数判断出函数的单调区间作出函数的图象数形结合即可得解;【详解】解:当时函数单调递增;当时则时且时时故当时在上单调递减在上单调递增在处取极小值极小值为;作出函数的图象如图:函数恰有3个零解析:()2,0e --【分析】利用导数判断出函数()f x 的单调区间,作出函数()f x 的图象,数形结合即可得解; 【详解】解:当0x >时,函数()f x lnx =单调递增;当0x 时,()(1)x f x e x =+,则()(2)0x f x e x '=+=时,2x =-,且2x <-时,()0f x '<,20x -<时,()0f x '>,故当0x 时,()f x 在(,2)-∞-上单调递减,在(2,0)-上单调递增,()f x 在2x =-处取极小值,极小值为2(2)f e --=-; 作出函数()f x 的图象如图:函数()()()F x f x c c R =-∈恰有3个零点,等价于函数()f x 与y c =的图象有且仅有3个零点,由图可知,20e c --<<,故答案为:()2,0e --.【点睛】本题考查函数零点与方程根的关系,涉及利用导数判断函数单调性,数形结合思想等,属于中档题.15.49【分析】求出函数的导数根据函数的单调性得到关于的不等式组根据两点间的距离公式求出其最小值即可【详解】若在上递增则故满足条件的平面区域如图示:的几何意义表示和阴影部分的点的距离故到阴影部分的最小值解析:49 【分析】求出函数的导数,根据函数的单调性得到关于m ,n 的不等式组,根据两点间的距离公式求出其最小值即可. 【详解】21()(1)2f x x mx n '=-++-,若()f x 在[0,1]上递增, 则(0)10f n '=-,()11102m n f =-++-', 故满足条件001102m n n m n ⎧⎪⎪⎪⎨⎪⎪-+⎪⎩的平面区域如图示:22(6)(8)m n -+-的几何意义表示(6,8)和阴影部分的点的距离,故(6,8)到阴影部分的最小值是自(6,8)向1n =作垂线, 故垂线段是7,故22(6)(8)m n -+-的最小值是49, 故答案为:49. 【点睛】本题考查了函数的单调性问题,考查导数的应用以及简单的线性规划问题,考查了数学运算能力和数形结合思想.16.【分析】构造函数利用导数判断单调性再利用单调性解不等式即可【详解】构造函数则依题意知即在上是减函数又因为所以所以的解为即即的解为所以的解为即即解集是故答案为:【点睛】本题考查了利用函数单调性解不等式解析:12,33⎛⎫⎪⎝⎭【分析】构造函数()()ln 1(0)g x f x x x =-->,利用导数判断单调性,再利用单调性解不等式即可. 【详解】构造函数()()ln 1(0)g x f x x x =-->,则1()1()()xf x g x f x x x'-''=-=,依题意知()0g x '<,即()()ln 1g x f x x =--在0,上是减函数.又因为(1)1f =,所以(1)(1)ln110g f =--=,所以()(1)g x g >的解为01x <<,即()ln 10f x x -->即()ln 1f x x >+的解为01x <<,所以(31)ln(31)1f x x ->-+的解为0311x <-<,即1233x <<,即解集是12,33⎛⎫ ⎪⎝⎭. 故答案为:12,33⎛⎫⎪⎝⎭. 【点睛】本题考查了利用函数单调性解不等式,属于中档题.17.(或)【分析】令分离常数构造函数利用导数研究的单调性和极值结合与有一个交点求得的取值范围【详解】解:方程可化为令有当时;当或时所以函数的增区间为减区间为可得处取得极小值0处取得极大值画出的图象和直线解析:24a e >(或24(,)e +∞) 【分析】令()0f x = 分离常数2x x a e=,构造函数2()x xg x e =,利用导数研究()g x 的单调性和极值,结合y a = 与()g x 有一个交点,求得a 的取值范围.【详解】解:方程()0f x = 可化为2x x a e=,令2()x xg x e =,有(2)()xx x g x e -'=, 当02x <<时,()0g x '>;当0x <或2x >时,()0g x '<, 所以函数()g x 的增区间为(0,2),减区间为(,0)-∞,(2,)+∞, 可得0x = 处()g x 取得极小值 0,2x = 处取得极大值24e , 画出()y g x = 的图象和直线y a =,可得当24a e >时,()y g x = 和y a = 的图象有 1 个交点. 故答案为:24,e ⎛⎫+∞ ⎪⎝⎭. 【点睛】本小题主要考查利用导数研究函数的零点,考查利用导数研究函数的单调性、极值,考查化归与转化的数学思想方法,属于中档题.18.;【分析】首先有且根据导函数得到的单调区间及对应的单调性使函数在区间(0m 上单调递减成立即(0m 包含于的单调递减区间即可得到一个m 值【详解】由题意知:且∴当且时即单调递减当时即单调递增故要使在区间(解析:12; 【分析】首先有2(1)()xx e f x x-'=且0x ≠,根据导函数得到()f x 的单调区间及对应的单调性,使“函数()xe f x x=在区间(0,m ]上单调递减”成立,即(0,m ]包含于()f x 的单调递减区间,即可得到一个m 值 【详解】由题意,知:2(1)()xx e f x x -'=且0x ≠∴当0x ≠且1x <时,()0f x '<,即()f x 单调递减 当1x >时,()0f x '> ,即()f x 单调递增故,要使()f x 在区间(0,m ]上单调递减,则01m <<即可 ∴12m =符合要求 故答案为:12【点睛】本题考查了根据命题的真假求参数范围,结合导函数研究函数的单调区间,由命题中函数单调的成立条件确定区间的包含关系,进而求参数范围19.【分析】根据得出再根据利用作差因式分解可得出的值【详解】由题意可得则即即故答案为:【点睛】本题考查利用极值点求代数式的值主要考查因式分解考查计算能力属于中等题 解析:3【分析】根据()00f x '=得出()2031a x =-,再根据()()10f x f x =利用作差因式分解可得出102x x +的值.【详解】()()31f x x ax b =---,()()231f x x a '∴=--,由题意可得()()200310f x x a '=--=,则()2031a x =-,10x x ≠,100x x ∴-≠,()()10f x f x =,()()33110011x ax b x ax b ∴---=---,()()()33101011x x a x x ∴---=-,()()()()()()22101100101111x x x x x x a x x ⎡⎤∴--+--+-=-⎣⎦,()()()()()22211000111131x x x x a x ∴-+--+-==-,()()()()221100111210x x x x ∴-+----=,()()()()1010111210x x x x ∴---⋅-+-=⎡⎤⎡⎤⎣⎦⎣⎦,即()()1010230x x x x -+-=,10230x x ∴+-=,即1023x x +=.故答案为:3. 【点睛】本题考查利用极值点求代数式的值,主要考查因式分解,考查计算能力,属于中等题.20.【分析】由函数的解析式分类讨论利用分离参数结合导数和基本不等式即可求解【详解】由题意函数(1)当时由可得即设可得当时单调递减;当时单调递增所以即;(2)当时由可得当时显然成立;当时可得因为当且仅当时 解析:[4,2]e -【分析】由函数的解析式,分类讨论,利用分离参数,结合导数和基本不等式,即可求解. 【详解】由题意,函数22,0,()4,0,x e x f x x x ⎧>=⎨+≤⎩,(1)当0x >时,由()f x mx ≥,可得2xe mx ≥,即2xe m x≤,设2()x e g x x =,可得22(21)()x e x g x x-'=, 当102x <<时,()0g x '<,()g x 单调递减;当12x >时,()0g x '>,()g x 单调递增, 所以min 1()22g x g e ⎛⎫== ⎪⎝⎭,即2m e ≤;(2)当0x ≤时,由()f x mx ≥,可得24x mx +≥, 当0x =时显然成立; 当0x <时,可得4m x x ≥+,因为444x x x x ⎛⎫+=--+≤- ⎪-⎝⎭,当且仅当1x =-时取等号, 所以4m ≥-.综上可得,实数m 的取值范围是[4,2]e -,故答案为:[4,2]e -. 【点睛】本题主要考查了函数的恒成立问题的求解,以及分段函数的性质的应用,其中解答中根据分段函数的分段条件,合理分类讨论,利用分离参数,结合导数和基本不等式求解是解答的关键,着重考查了转化思想,分类讨论思想,以及推理与运算能力.三、解答题21.(1)11()f e e=-;(2)2a ≥- 【分析】(1)对函数求导,令'()ln 1=0=+f x x ,讨论函数的单调性即可求出结果.(2)由()g x 在区间[1,)+∞单调递增,可得'()0≥g x 在[1,)+∞恒成立,分离参数可得:1ln (1)+≥-+x a x,构造函数即可求出结果. 【详解】(1)()ln 1,'()ln 1=+=+f x x x f x x 令'()ln 1=0=+f x x ,解得1=x e当x 变化时,(),()f x f x '的变化情况如下:所以min ()()f x f ee ==-(2)1'()ln 1=+++g x x a x, ()g x 在区间[1,)+∞单调递增,所以'()0≥g x 在[1,)+∞恒成立,即1ln (1)+≥-+x a x在[1,)+∞恒成立 设221111()ln ,'()0-=+∴=-=>x h x x h x x x x x 1()ln ∴=+h x x x[1,)+∞单调递增,min ()=(1)=1h x h 只需1(1)≥-+a 即可,解得2a ≥- 【点睛】方法点睛:()g x 在区间[1,)+∞单调递增'()0⇔≥g x 在[1,)+∞恒成立,分离参数,构造函数是常用方法.本题考查了运算求解能力和逻辑推理能力,属于中档题目.. 22.(1)(]0,1;(2)证明见解析. 【分析】(1)转化为()22140ax a x +++≥在[]22-,上恒成立,利用二次函数知识可求得结果; (2)构造函数()()2225xh x x x e x =++--,利用导数可得()h x 在()0,x -∞上单调递减,在()0,x +∞上单调递增,其中()01,0x ∈-,再根据零点存在性定理可证结论成立. 【详解】(1)因为()f x 在[]22-,上是单调增函数, 所以()()()()2222222140x x xf x ax e ax x e ax a x e '⎡⎤=++++=+++⎦≥⎣在[]22-,上恒成立,又0x e >,所以()22140ax a x +++≥在[]22-,上恒成立. 令()()2214g x ax a x =+++,又0a >,故对称轴为110x a=--<. ①当112a--≤-,即01a <≤时,()g x 在[]22-,上单调递增, 则()()min 244(1)40g x g a a =-=-++=,所以此时()()20g x g ≥-=恒成立. ②当1210a -<--<,即1a >时,()g x 在12,1a ⎡⎤---⎢⎥⎣⎦上单调递减,在11,2a ⎛⎤-- ⎥⎝⎦上单调递增,所以min 1()1g x g a ⎛⎫=-- ⎪⎝⎭()21112114a a a a ⎛⎫⎛⎫=--++--+ ⎪ ⎪⎝⎭⎝⎭1()2a a =-++()21a a -=-0<,所以()0g x ≥在[]22-,上不恒成立,故1a >不合题意,综上所述,a 的取值范围是(]0,1.(2)因为1a =,设()()2225xh x x x e x =++--,则()()()()2222221441x x xh x x e x x e x x e =++'++-=++-.令()()2441xx x x e ϕ=++-,则()()()()()()2224446842x x x xx x e x x e x x e x x e ϕ=+++'+=++=++,由()()()420xx x x e ϕ'=++=,得4x =-或2x =-.所以4410x e =-=-<极大值,210x =-=-<极小值因为()1110eϕ-=-<,()030ϕ=>,所以存在()01,0x ∈-,使()00x ϕ=, 当()0,x x ∈-∞时,()0x ϕ<,()0h x '<;当()0,x x ∈+∞时,()0x ϕ>,()0h x '>, 所以()h x 在()0,x -∞上单调递减,在()0,x +∞上单调递增. 又因为()51750h e -=>,()410410h e -=-<,()030h =-<,()1560h e =->, 故根据零点存在定理,可知()0h x =的根()15,4x ∈--,()20,1x ∈, 所以方程()5f x x =+有且只有两个零点. 【点睛】关键点点睛:第(1)问转化为()22140ax a x +++≥在[]22-,上恒成立是解题关键,第(2)问构造函数()()2225xh x x x e x =++--,利用导数研究函数的零点是解题关键.23.(1)210x y --=;(2)极小值为e -,极大值为25e . 【分析】(1)求出函数的导数,计算()()0,0f f '的值,求出函数的切线方程即可;(2)求出函数的导数,解关于导函数的不等式求出函数的单调区间,求出函数的极值即可. 【详解】(1)函数()21xx x f x e+-=定义域为R , 且()()()()()22211x x x x x e x x e f x e ''+-⋅-+-'=()()22211=xxxx e x x e e+⋅-+-⋅22=x x x e -++()()12=xx x e-+-, ∵曲线()y f x =在点()()0,0f 处的切线斜率()02k f ='=,又()01f =-,则切点为()0,1-,∴所求切线方程为()()120y x --=-即210x y --=. (2)∵()()()12xx x f x e-+-'=又>0x e ,由()0f x '=得1x =-或2x =,当(),1x ∈-∞-和()2,+∞时,()0f x '<,此时()f x 为减函数; 当()1,2x ∈-时,()0f x '>,此时()f x 为增函数,由()f x 的单调性知函数的极小值为()1f e -=-,极大值为()22525=f e e -=. 【点睛】本题考查函数的切线方程、极值的问题,关键点是由导数的几何意义可求出切线方程,第二问求出导函数利用单调性求出函数的极值,考查了学生的基础知识、计算能力.24.(1)()400cos 200S θθθ=+,0,2πθ⎛⎫∈ ⎪⎝⎭;(2)6πθ=. 【分析】(1)在直角三角形ABC 中,100AB =,BAC θ∠=,可得AC 的长.由于22BOC BAC θ∠=∠=,可得弧BC 的长; (2)利用导数求()s θ最大值可得答案.【详解】(1)如图,连结OC ,BC ,在直角三角形ABC 中,CAB θ∠=,200AB =(m ), 所以200cos AC θ=(m ),由于22COB CAB θ∠=∠=,所以弧BC 的长为1002200θθ⨯=(m ), 所以()2200cos 200400cos 200S θθθθθ=⨯+=+(m ),0,2πθ⎛⎫∈ ⎪⎝⎭,(2)由(1)得()400cos 200S θθθ=+0,2πθ⎛⎫∈ ⎪⎝⎭,所以()()2002sin 1S θθ'=-+,0,2πθ⎛⎫∈ ⎪⎝⎭, 当06πθ<<时,()0S θ'>,当6πθ=时,()0S θ'=,当62ππθ<<时,()0S θ'<, 所以()S θ在0,6π⎛⎫⎪⎝⎭上单调递增,在,62ππ⎛⎫ ⎪⎝⎭上单调递减,当6πθ=时,()S θ有最大值100400cos 2006663S ππππ⎛⎫=+⨯=⎪⎝⎭, 所以当6πθ=时,绿化带总长度最大.【点睛】本题考查解实际问题的应用,关键正确理解题意,正确列出等量关系或函数关系式,考查了分析问题、解决问题的能力.25.(1)10,3⎛⎫⎪⎝⎭;(2)(],1-∞-.【分析】(1)利用对数的运算法则化简,求解对数不等式. 注意化简前保证真数大于零.(2)分离参数,利用方程()2log 41xx m +-=-有解,构造函数()()2log 41x g x x =+-,求导,分析函数单调性,求出最值,得到m 的取值范围.【详解】(1)()()212log 22f x x -=-()()()()222lo 2212log 22g 1log 11f x x x x x xf ----+-=<+= 1220110222x x x x ⎧⎪->⎪+>⎨⎪-<+⎩<⎪ 则103x <<故x 的取值范围为10,3⎛⎫ ⎪⎝⎭.(2)()40xf x m -+=则()()2log 4104xxf x m m x =+-++=- ()2log 41xx m +-=- 设()()2log 41xg x x =+-()()'ln 444111441ln 2x x x x g x ⋅-=-=++⋅ 当(),0x ∈-∞时,'0gx当()0,x ∈+∞时,()'0g x >且x →-∞时,()g x →+∞()2min log 21g x ==故1m -≥ 则1m ≤-故m 的取值范围为:(],1-∞- 【点睛】利用导数求函数值域时,一种是利用导数判断函数的单调性,进而根据单调性求函数的值域;一种是利用导数与极值、最值的关系求函数的值域. 26.(1)2;(2)(,1)-∞-. 【分析】(1)将0a =代入,求出函数的导数,分析函数的单调性可得当1x =-时,()f x 有最大值2;(2)若()f x 无最大值,则3123a a a a ≤-⎧⎨->-⎩或312322a a a a a >-⎧⎪->-⎨⎪->⎩,解得可得答案. 【详解】(1)若0a =,33,0()2,0x x x f x x x ⎧-=⎨->⎩,所以233,0()2,0x x f x x ⎧-=⎨->⎩',当1x <-时,()0f x '>,此时函数为单调递增函数,当1x >-时,()0f x '<,此时函数为单调递减函数, 故当1x =-时()f x 有最大值为2 .(2)233,()2,x x af x x a⎧-=⎨->'⎩,令()0f x '=,则1x =±,若()f x 无最大值,则3123a a a a ≤-⎧⎨->-⎩ ① 或312322a a a a a >-⎧⎪->-⎨⎪->⎩②, 由①得(,1)a ∈-∞-,由②得无解, 所以(,1)a ∈-∞-. 故答案为:2;(,1)-∞-. 【点睛】分段函数在高考中的常见题型有:已知分段函数求值、已知分段函数求值域、已知分段函数求不等式解集、已知分段函数求参数取值范围等,分段函数问题要注意分类讨论,涉及分段函数的单调性、奇偶性、周期性等问题,要善于利用数形结合的思想解决问题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
章末综合检测(四)[学生用书P137(单独成册)](时间:120分钟,满分:150分)一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.使函数f (x )=x +2cos x 在⎣⎡⎦⎤0,π2上取最大值的x 为 ( ) A .0 B .π4C .π3D .π2解析:选B .f ′(x )=1-2sin x ,所以f (x )在⎣⎡⎦⎤0,π4上是递增的,在⎣⎡⎦⎤π4,π2上是递减的,所以选B .2.定义在R 上的函数y =f (x )的图像如图所示,则关于x 的不等式xf ′(x )<0的解集为( )A .(-2,-1)∪(1,2)B .(-1,0)∪(1,+∞)C .(-∞,-1)∪(0,1)D .(-∞,-2)∪(2,+∞)解析:选C .当x ∈(-∞,-1)∪(1,+∞)时, f ′(x )>0,又xf ′(x )<0, 所以x ∈(-∞,-1).当x ∈(-1,1)时,f ′(x )<0,又xf ′(x )<0,所以x ∈(0,1).综上可知解集为(-∞,-1)∪(0,1).故选C .3.函数f (x )=x -a x 在x ∈[1,4]上是递减的,则实数a 的最小值为( ) A .1 B .2 C .3D .4 解析:选D .依题意得,当x ∈[1,4]时,f ′(x )=1-a 2x≤0,即a ≥2x 恒成立.注意到x ∈[1,4]时,y =2x 的最大值是24=4,因此,实数a 的最小值为4,选D .4.已知f (x )=x 3+ax 2+(a +6)x +1有极大值和极小值,则a 的取值集合为( ) A .{a |-1<a <2}B .{a |-3<a <6}C .{a |a <-1,或a >2}D .{a |a <-3,或a >6}解析:选D .f ′(x )=3x 2+2ax +(a +6), 因为函数f (x )有极大值和极小值, 所以f ′(x )=0有两个不同实根, 即Δ>0,(2a )2-4×3(a +6)>0, 解得a <-3或a >6.5.若函数f (x )=12x 2-m ln x 在⎝⎛⎭⎫12,+∞内是递增的,则实数m 的取值范围是( ) A .m =14B .0<m <14C .m ≥14D .m ≤14解析:选D .f ′(x )=x -m x ≥0在⎝⎛⎭⎫12,+∞上恒成立,即m ≤x 2,设h (x )=x 2,x ∈⎝⎛⎭⎫12,+∞的值域为⎝⎛⎭⎫14,+∞,所以m ≤14. 6.函数f (x )=12e x (sin x +cos x )在区间⎣⎡⎦⎤0,π2上的值域为( ) A .⎣⎡⎦⎤12,12e π2B .⎝⎛⎭⎫12,12e π2C .[1,e π2]D .(1,e π2)解析:选A .因为f (x )=12e x (sin x +cos x )=22e x sin ⎝⎛⎭⎫x +π4, 所以f ′(x )=22e x sin ⎝⎛⎭⎫x +π4+22e x cos ⎝⎛⎭⎫x +π4 =e x sin ⎝⎛⎭⎫x +π2=e x cos x . 在区间⎣⎡⎦⎤0,π2上f ′(x )=e x cos x ≥0, 所以f (x )在区间⎣⎡⎦⎤0,π2上的值域为⎣⎡⎦⎤f (0),f ⎝⎛⎭⎫π2=⎣⎡⎦⎤12,12e π2,故选A . 7.对于R 上可导的任意函数f (x ),若满足f (x )+xf ′(x )>0且f (-1)=0,则f (x )>0的解集是( )A .(-∞,-1)B .(0,+∞)C .(-∞,-1)∪(0,+∞)D .(-1,0)解析:选C .令F (x )=xf (x ),由f (x )+xf ′(x )>0知F ′(x )>0,F (x )在R 上是递增的,又f (-1)=0,所以F (-1)=0,当x ∈(-∞,-1)时,F (x )=xf (x )<0,f (x )>0;当x ∈(-1,+∞)时,F (x )=xf (x )>0,若x ∈(-1,0]时,f (x )≤0,若x ∈(0,+∞)时f (x )>0. 故f (x )>0的解集为(-∞,-1)∪(0,+∞).8.已知函数g (x )=ax 3+bx 2+cx (a ∈R 且a ≠0),g (-1)=0,且g (x )的导函数f (x )满足f (0)f (1)≤0.若方程f (x )=0有两个实根,则ba的取值范围为( )A .⎣⎡⎦⎤-23,2 B .⎣⎡⎦⎤23,1 C .⎣⎡⎦⎤-23,1 D .⎣⎡⎦⎤-23,3 解析:选C .因为g (x )=ax 3+bx 2+cx , 所以g (-1)=-a +b -c =0,即c =b -a . 又f (x )=g ′(x )=3ax 2+2bx +c , 由f (0)f (1)≤0,得c (3a +2b +c )≤0, 所以(b -a )(3b +2a )≤0.因为a ≠0,所以⎝⎛⎭⎫b a -1⎝⎛⎭⎫3·b a +2≤0, 解得-23≤ba ≤1.又3ax 2+2bx +c =0(a ≠0)的根的判别式Δ=(2b )2-4·3a ·c =4b 2-12a (b -a )=4⎝⎛⎭⎫b -32a 2+3a 2>0,满足题意,所以ba的取值范围是⎣⎡⎦⎤-23,1. 9.已知函数y =f (x ),其导函数y =f ′(x )的图像如图所示,则y =f (x )( )A .在(-∞,0)上为减函数B .在x =0处取极小值C .在(4,+∞)上为减函数D .在x =2处取极大值解析:选C .在(-∞,0)上,f ′(x )>0,故f (x )在(-∞,0)上为增函数,A 错;在x =0处,导数由正变负,f (x )由增变减,故f (x )在x =0处取极大值,B 错;在(4,+∞)上,f ′(x )<0,f (x )为减函数,C 对;在x =2处取极小值,D 错.10.已知函数y =f (x )对任意x ∈⎝⎛⎭⎫-π2,π2满足f ′(x )cos x +f (x )sin x >0[其中f ′(x )是函数f (x )的导函数],则下列不等式成立的是( )A .2f ⎝⎛⎭⎫-π3>f ⎝⎛⎭⎫-π4 B .2f ⎝⎛⎭⎫π3<f ⎝⎛⎭⎫π4 C .f (0)>2f ⎝⎛⎭⎫π4 D .f (0)<2f ⎝⎛⎭⎫π3解析:选D .设g (x )=f (x )cos x ,则g ′(x )=f ′(x )cos x +f (x )sin x cos 2x .因为y =f (x )对任意的x ∈⎝⎛⎭⎫-π2,π2满足f ′(x )cos x +f (x )·sin x >0,所以g ′(x )>0在x ∈⎝⎛⎭⎫-π2,π2上恒成立,所以g (x )是⎝⎛⎭⎫-π2,π2上的增函数,所以g (0)<g ⎝⎛⎭⎫π3,即f (0)<2f ⎝⎛⎭⎫π3.故选D .11.已知e 为自然对数的底数,设函数f (x )=(e x -1)(x -1)k (k =1,2),则( ) A .当k =1时,f (x )在x =1处取到极小值 B .当k =1时,f (x )在x =1处取到极大值 C .当k =2时,f (x )在x =1处取到极小值 D .当k =2时,f (x )在x =1处取到极大值解析:选C .当k =1时,f (x )=(e x -1)(x -1),则f ′(x )=e x (x -1)+(e x -1)=e x x -1,所以f ′(1)=e -1≠0,所以f (1)不是极值.当k =2时,f (x )=(e x -1)(x -1)2,则f ′(x )=e x (x -1)2+2(e x -1)(x -1)=e x (x 2-1)-2(x -1)=(x -1)[e x (x +1)-2], 所以f ′(1)=0,且当x >1时,f ′(x )>0;在x =1附近的左侧,f ′(x )<0,所以f (1)是极小值. 12.已知函数f (x )=|x e x |,关于x 的方程f 2(x )+tf (x )+1=0(t ∈R )有四个不等实数根,则t 的取值范围为( )A .⎝⎛⎭⎫e 2+1e ,+∞B .⎝⎛⎭⎫2,e 2+1eC .⎝⎛⎭⎫-e2+1e ,-2 D .⎝⎛⎭⎫-∞,-e 2+1e解析:选D .设g (x )=x e x ,g ′(x )=e x (1+x ),当x >-1时,g ′(x )>0,g (x )是递增的,当x <-1时,g ′(x )<0,g (x )是递减的,且x 趋于-∞,g (x )趋于0. g (x )最小=g (-1)=-1e,g (0)=0,所以f (x )=y =|x e x |的图像如图,由题意知,f (x )有两个不等正值使方程成立.设为a ,b (a <b ),则a ∈⎝⎛⎭⎫0,1e ,b >1e . 由根与系数的关系⎩⎪⎨⎪⎧Δ=t 2-4>0-t =a +b >01=ab,所以-t =a +b =a +1a 在⎝⎛⎭⎫0,1e 是递减的,a +1a >e +1e ,故t <-⎝⎛⎭⎫e +1e ,即t 的取值范围为⎝⎛⎭⎪⎫-∞,-e 2+1e .所以选D .二、填空题:本题共4小题,每小题5分.13.要做一个圆锥形的漏斗,其母线长为20 cm ,要使其体积最大,则高为________ cm . 解析:设该漏斗的高为x cm ,则其底面半径为202-x 2 cm ,体积V =13π(202-x 2)x =13π(400x -x 3)(0<x <20),则V ′=13π·(400-3x 2).令V ′=0,解得x =2033或x =-2033(舍去).当0<x <2033时,V ′>0;当2033<x <20时,V ′<0,所以当x =2033时,V 取得极大值,也是最大值.答案:203314.已知函数f (x )是定义在区间(-1,1)上的奇函数,且对于x ∈(-1,1)恒有f ′(x )<0成立,若f (-2a 2+2)+f (a 2+2a +1)<0,则实数a 的取值范围是________.解析:因为当x ∈(-1,1)时,f ′(x )<0, 所以f (x )在(-1,1)上是减少的.由题意,得f (-2a 2+2)<-f (a 2+2a +1). 又f (x )为奇函数,所以f (-2a 2+2)<f (-a 2-2a -1),即⎩⎪⎨⎪⎧-1<-2a 2+2<1,-1<-a 2-2a -1<1,-2a 2+2>-a 2-2a -1.所以-1<a <-22.答案:⎝⎛⎭⎫-1,-22 15.若函数f (x )=x 3+x 2-ax -4在区间[-1,1]上恰有一个极值点,则实数a 的取值范围为________.解析:f ′(x )=3x 2+2x -a ,由题意知f ′(x )在[-1,1]内有一个变号零点,有三种情况: (1)若f ′(-1)f ′(1)<0,即(1-a )(5-a )<0,所以1<a <5,(2)若⎩⎪⎨⎪⎧f ′(-1)=0f ′(1)>0,即⎩⎪⎨⎪⎧1-a =0,5-a >0所以a =1.(3)若⎩⎪⎨⎪⎧f ′(-1)>0,f ′(1)=0即⎩⎪⎨⎪⎧1-a >0,5-a =0无解,故a 的取值范围是[1,5). 答案:[1,5)16.已知函数f (x )=13x 3-x 2-3x +43,直线l :9x +2y +c =0,若当x ∈[-2,2]时,函数y =f (x )的图像恒在直线l 的下方,则c 的取值范围是________.解析:由题意知h (x )=f (x )+9x +c2<0在[-2,2]上恒成立,h ′(x )=x 2-2x +32=(x -1)2+12>0,h (x )在[-2,2]上是递增的,h (x )最大=h (2)=3+c2<0,所以c <-6. 答案:(-∞,-6)三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.17.(本小题满分10分)已知函数f (x )=(x 2+a )·e x (x ∈R )在点A (0,f (0))处的切线l 的斜率为-3.(1)求a 的值以及切线l 的方程;(2)求f(x)在R上的极大值和极小值.解:(1)f(x)=(x2+a)·e x⇒f′(x)=(x2+2x+a)·e x,所以f′(0)=-3⇒a=-3,所以f(0)=-3,切线方程为3x+y+3=0.(2)f(x)=(x2+a)·e x⇒f′(x)=(x2+2x-3)·e x=(x+3)(x-1)e x,由f′(x)=0⇒x=-3或x=1. 当x∈(-∞,-3)时,f′(x)>0,f(x)是递增的,当x∈(-3,1)时,f′(x)<0,f(x)是递减的,当x∈(1,+∞)时,f′(x)>0,f(x)是递增的,所以极大值为f(-3)=6e-3,极小值为f(1)=-2e.18.(本小题满分12分)已知函数f(x)=e-x+ax.(1)已知x=-1是函数f(x)的极值点,求实数a的值;(2)若a=1,求函数f(x)的极值.解:(1)由f(x)=e-x+ax,得:f′(x)=-e-x+a,因为x=-1是函数f(x)的极值点,所以f′(-1)=-e+a=0,解得:a=e,经检验a=e符合条件.(2)令f′(x)=-e-x+1=0,得:x=0,列表如下,当x=0时19.(本小题满分12分)已知函数f(x)=x3+2x2-4x+5.(1)求f(x)的单调区间;(2)求f(x)在[-3,1]上的最大值和最小值.解:(1)f(x)=x3+2x2-4x+5,所以f′(x)=3x2+4x-4,令f ′(x )>0,则x <-2或x >23,令f ′(x )<0,则-2<x <23,所以递增区间为(-∞,-2),⎝⎛⎭⎫23,+∞,递减区间为⎝⎛⎭⎫-2,23. (2)令f ′(x )=0,得x =-2或x =23,所以x =-2为极大值点,x =23为极小值点,又f (-3)=8,f (-2)=13,f ⎝⎛⎭⎫23=9527, f (1)=4,所以y =f (x )在[-3,1]上的最大值为13,最小值为9527.20.(本小题满分12分)设函数f (x )=e x -e -x . (1)证明:f (x )的导数f ′(x )≥2;(2)若对所有x ≥0都有f (x )≥ax ,求a 的取值范围. 解:(1)证明:f ′(x )=e x +e -x ,由基本不等式得e x +e -x ≥2e x ·e -x =2,故f ′(x )≥2,当且仅当x =0时等号成立,即f ′(x )=2.(2)令g (x )=f (x )-ax =e x -e -x -ax (x ≥0),则g (0)=0,g ′(x )=e x +e -x -a . 若对任意x ≥0,都有g (x )≥0, 则需g ′(0)=2-a ≥0,得a ≤2(a ≤2是g (x )≥0(x ≥0)恒成立的必要条件).当a ≤2时,g ′(x )=e x +e -x -a ≥2-a ≥0,因此函数g (x )在区间[0,+∞)上是递增的,故g (x )≥g (0)=0(x ≥0)恒成立.所以a 的取值范围是(-∞,2].21.(本小题满分12分)设函数f (x )=-13x 3+2ax 2-3a 2x +b (0<a <1).(1)求函数f (x )的单调区间和极值;(2)当a =23时,关于x 的方程f (x )=0在区间[1,3]上恒有两个相异的实根,求实数b 的取值范围.解:(1)f ′(x )=-x 2+4ax -3a 2=-(x -a )·(x -3a ). 令f ′(x )=0,得x =a 或x =3a .当x 变化时,f ′(x )、f (x )的变化情况如下表:所以f (x )当x =a 时,f (x )取得极小值,f (x )极小值=f (a )=b -43a 3;当x =3a 时,f (x )取得极大值,f (x )极大值=f (3a )=b . (2)当a =23时,f (x )=-13x 3+43x 2-43x +b .f ′(x )=-x 2+83x -43,由f ′(x )=0,即-x 2+83x -43=0,解得x 1=23,x 2=2,即f (x )在⎝⎛⎭⎫-∞,23上是减函数, 在⎝⎛⎭⎫23,2上是增函数,在(2,+∞)上是减函数. 要使f (x )=0在[1,3]上恒有两个相异实根, 即f (x )在(1,2),(2,3)上各有一个实根, 于是有⎩⎪⎨⎪⎧f (1)≤0,f (2)>0,f (3)≤0,即⎩⎪⎨⎪⎧-13+b ≤0,b >0,-1+b ≤0,解得0<b ≤13.22.(本小题满分12分)如图,在半径为10 3 cm 的半圆形(O 为圆心)铁皮上截取一块矩形材料ABCD ,其中点A 、B 在直径上,点C 、D 在圆周上,将所截得的矩形铁皮ABCD 卷成一个以AD 为母线的圆柱形罐子的侧面(不计裁剪和拼接损耗),记圆柱形罐子的体积为V (cm 3).(1)按下列要求建立函数关系式: ①设AD =x cm ,将V 表示为x 的函数; ②设∠AOD =θ(rad),将V 表示为θ的函数;(2)请您用(1)问中的一个函数关系,求圆柱形罐子的最大体积. 解:(1)①AB =2(103)2-x 2=2πr ,r =300-x 2π, V =f (x )=π⎝ ⎛⎭⎪⎫300-x 2π2·x =1π(-x 3+300x ),0<x <103. ②AD =103sin θ,AB =203cos θ=2πr , r =103cos θπ, V =g (θ)=π⎝⎛⎭⎫103cos θπ2·103sin θ=3 0003πsin θcos 2θ,0<θ<π2. (2)选用f (x ):f ′(x )=-3π(x 2-100)=-3π(x +10)(x -10),0<x <103,令f ′(x )=0,则x =10. 列表得:x (0,10) 10 (10,103)f ′(x ) +0 -f (x )极大值所以f (x )max =f (10)=2 000π;选用g (θ):令t =sin θ,0<θ<π2,0<t <1,h (t )=3 0003πt (1-t 2), 所以h ′(t )=3 0003π(-3t 2+1)= -9 0003π⎝⎛⎭⎫t +33⎝⎛⎭⎫t -33, 令h ′(t )=0,则t =33. 列表得:所以h (t )max =h ⎝⎛⎭⎫33=2 000π,即g (θ)max =2 000π. 即圆柱形罐子的最大体积为2 000π.。