第八章_季节性时间序列模型案例

合集下载

第八章时间序列分析

第八章时间序列分析

第⼋章时间序列分析第⼋章时间序列分析与预测【课时】6学时【本章内容】§ 时间序列的描述性分析时间序列的含义、时间序列的图形描述、时间序列的速度分析§ 时间序列及其构成分析时间序列的构成因素、时间序列构成因素的组合模型§ 时间序列趋势变动分析移动平均法、指数平滑法、模型法§ 时间序列季节变动分析[原始资料平均法、趋势-循环剔除法、季节变动的调整§ 时间序列循环变动分析循环变动及其测定⽬的、测定⽅法本章⼩结【教学⽬标与要求】1.掌握时间序列的四种速度分析2.掌握时间序列的四种构成因素3.掌握时间序列构成因素的两种常⽤模型4.掌握测定长期趋势的移动平均法5.了解测定长期趋势的指数平滑法6.;7.掌握测定长期趋势的线性趋势模型法8.了解测定长期趋势的⾮线性趋势模型法9.掌握分析季节变动的原始资料平均法10.掌握分析季节变动的循环剔出法11.掌握测定循环变动的直接法和剩余法【教学重点与难点】1.对统计数据进⾏趋势变动分析,利⽤移动平均法、指数平滑法、线性模型法求得数据的长期趋势;2.对统计数据进⾏季节变动分析,利⽤原始资料平均法、趋势-循环剔除法求得数据的季节变动;3.对统计数据进⾏循环变动分析,利⽤直接法、剩余法求得循环变动。

【导⼊】;很多社会经济现象总是随着时间的推移不断发展变化,为了探索现象随时间⽽发展变化的规律,不仅要从静态上分析现象的特征、内部结构以及相互关联的数量关系,⽽且应着眼于现象随时间演变的过程,从动态上去研究其发展变动的过程和规律。

这时需要⼀些专门研究按照时间顺序观测的序列数据的统计分析⽅法,这就是统计学中的时间序列分析。

通过介绍⼀些时间序列分析的例⼦,让同学们了解时间序列的应⽤,并激发学⽣学习本章知识的兴趣。

1.为了表现中国经济的发展状况,把中国经济发展的数据按年度顺序排列起来,据此来研究。

2.公司对未来的销售量作出预测。

这种预测对公司的⽣产进度安排、原材料采购、存货策略、资⾦计划等都⾄关重要。

第八章非平稳和季节时间序列模型分析方法

第八章非平稳和季节时间序列模型分析方法

第八章非平稳和季节时间序列模型分析方法时间序列是指观测值按照时间顺序排列的一组数据,其中具有季节性和非平稳性的时间序列数据具有特殊的分析需求。

本文将介绍非平稳和季节时间序列的分析方法。

一、非平稳时间序列分析方法非平稳时间序列是指其统计特征在时间上发生了变化,无法满足平稳性的要求。

非平稳时间序列具有趋势性、周期性、季节性和不规则性等特征。

对于非平稳时间序列的分析,我们可以采用以下方法:1.差分法:差分法是通过对时间序列取一阶或多阶差分来消除趋势性的影响。

通过差分后的时间序列进行分析,我们可以得到一个稳定的时间序列,并进行后续的建模和预测。

2.移动平均法:移动平均法是通过计算一定窗口范围内的观测值的平均值来消除短期波动的影响,从而得到一个平滑的时间序列。

通过移动平均后的时间序列进行分析,我们可以在一定程度上消除非平稳性的影响。

3.分解法:分解法是将非平稳时间序列分解为趋势项、季节项和随机项三个部分。

通过分解后的各个部分进行分析,我们可以了解趋势、季节和随机成分在时间序列中的作用,从而更好地进行建模和预测。

二、季节时间序列分析方法季节时间序列是指具有明显季节性的时间序列数据。

对于季节时间序列的分析,我们可以采用以下方法:1.季节性指数:季节性指数是用来描述季节性的强度和方向的指标。

通过计算每个季节的平均值与总平均值之比,可以得到季节性指数。

根据季节性指数的变化趋势,我们可以判断时间序列的季节性变化情况,并进行后续的建模和预测。

2.季节性趋势模型:季节性趋势模型是一种常用的季节时间序列建模方法。

该模型将时间序列分解为趋势项、季节项和随机项三个部分,并通过对这三个部分进行建模来分析季节性时间序列。

常用的季节性趋势模型包括季节性自回归移动平均模型(SARIMA)、季节性指数平滑模型等。

总结起来,非平稳和季节时间序列模型的分析方法主要包括差分法、移动平均法和分解法等对非平稳时间序列进行分析,以及季节性指数和季节性趋势模型等对季节性时间序列进行分析。

季节性时间序列分析方法(PPT37张)

季节性时间序列分析方法(PPT37张)
(1 1B S B S 1S B S 1 ) X t at 。
(1 1B n B n )(1 S B S ) X t at
(7.3.8)
由此可求得偏自相关函数。这种方法可以推广到 AR(n)模型
( B)U ( B S ) X t at ,
或更一般的情形 即
(7.2.6a)
只考虑不同年份同月的资料之间的相关关系。 (7.2.6b)
表示同年不同月之间几乎不存在依赖关系,但受前一期 扰动的影响。即时间序列资料消除了季节因素之后适合于一 个 MA(1)模型。 更一般的是模型(7.2.5)和(7.2.6)中的周期长度 12 可以用 S 替代。
3. (1 B S ) X t C (1 1B)(1 S B S )at 4. (1 B) X t (1 S B S )at 5. (1 B S ) X t (1 S B S )at 6. (1 1B)(1 B S ) X t (1 S B S )at 7. (1 1B S ) X t C (1 1B)at 8. (1 B S )2 X t C 2 S ( B)at
D (1 1 B S ) S X t et
一阶移动平均季节模型 Wt et 1et S ,或Wt (1 1B S )et
D S X t (1 1B S )et
一般的季节性 ARMA 模型 U ( B S )Wt V ( B S )et
D U ( B S ) S X t V ( B S )et
D X t V ( B S )et 在随机季节模型 U ( B S ) S
(7.1.6)
中,由于 et 不是独立的,因此不妨假设 et 适合一个 ARIMA(n,d,m): ( B) d et ( B)at ,

季节性时间序列分析方法

季节性时间序列分析方法

季节性时间序列分析方法在经济领域中得到的观测数据一般都具有较强的随时间变化的趋势,如果是季度或月度数据又有明显的季节变化规律。

因此研究经济时间序列必须考虑其趋势性和季节性的特点,既要考虑趋势变动,又要考虑季节变动,建立季节模型。

第一节 简单的时间序列模型一、 季节时间序列序列是季度数据或月度数据(周,日)表现为周期的波动。

二、随机季节模型例1 假定t x 是一个时间序列,通过一次季节差分后得到的平稳序列,且遵从一阶自回归季节模型,即有 t s s t t t x B x x w )1(-=-=-1tt s t w w 或 1(1)s t t B w 将t w =t s x )B (-1代入则有1(1)(1)s s t t B B x SARIMA(1,1,0)更一般的情况,随机序列模型的表达式为11(1)(1)(1)s s S t t B B x B SARIMA(1,1,1)第二节 乘积模型值得注意的是t a 不一定是白噪声序列。

因为我们仅仅消除了不同周期相同周期点之间具有的相关部分,相同周期而不同周期点之间的也有一定的相关性。

所以,在此情况下,模型有一定的拟合不足,如果假设t 是),(q p ARMA 模型,则1(1)(1)s s t t B B x 式可以改为1()(1)(1)()s s t t B B B x B如果序列}{t x 遵从的模型为()()()()s d D s s t t B U B x B V B (3.26) 其中ks k s s s B BB B U ΓΓΓ----= 2211)(ms m s s s B B B B V H H H ----= 2211)(p p B B B φφΦ---= 11)(q q B B B θθΘ---= 11)(d d B )1(-=∇D s D s B )1(-=∇则称(3.26)为乘积季节模型,记为),,(),,(q d p m D k ARIMA ⨯。

季节性时间序列模型

季节性时间序列模型

季节性时间序列模型季节性时间序列模型通常包括四个主要组成部分:趋势、周期、季节和残差。

趋势表示数据的长期增长或下降趋势,可以是线性或非线性的。

周期表示数据中的循环模式,例如月度或年度循环。

季节表示数据在特定季节中的重复模式,例如每年夏季销售增长。

残差表示无法通过趋势、周期和季节解释的部分,即剩余误差。

为了建立季节性时间序列模型,首先需要对数据进行季节性分解,以提取趋势、周期和季节成分。

常用的方法包括移动平均法和指数平滑法。

移动平均法通过计算一系列连续时间段内的平均值来平滑数据,并提取趋势和周期成分。

指数平滑法则通过加权计算最近一段时间内的数据,赋予更高的权重,以反映近期数据的影响力,进而提取趋势成分。

一旦趋势、周期和季节成分被提取,可以使用这些成分来预测未来的值。

最常用的方法是加法模型和乘法模型。

加法模型中,趋势、周期和季节成分相加得到预测值。

乘法模型中,趋势、周期和季节成分相乘得到预测值。

具体选择哪种模型取决于数据的性质。

季节性时间序列模型还可以通过调整模型参数和增加复杂度来提高预测性能。

常用的技术包括自回归(AR)模型、移动平均(MA)模型和自回归移动平均(ARMA)模型。

这些模型通过考虑多个时间点的数据来提高预测的准确性。

季节性时间序列模型在实际应用中具有广泛的价值。

例如,在销售领域,可以使用季节性时间序列模型预测未来几个月的销售量,以制定合理的库存管理策略。

在经济学中,可以使用该模型预测未来几个季度的经济增长率,以指导政府的宏观调控政策。

然而,季节性时间序列模型也面临一些挑战和限制。

首先,它依赖于数据中的季节性模式,如果季节性模式发生变化,则模型的准确性可能会下降。

其次,模型的复杂度和参数调整可能会带来计算上的困难。

此外,模型所能提供的准确度也取决于数据的质量和可用性。

总的来说,季节性时间序列模型是一种强大的工具,可以用于分析和预测数据中的季节性变化。

通过合理的调整和选择模型参数,可以提高预测的准确性。

第八章季节性时间序列模型

第八章季节性时间序列模型
第八章季节性时间序列模型
n
表4.1 单变量时间序列观测数据表
n 例如,1993~2000年各月中国社会消费品零售总额序列, 是一个月度资料,其周期S=12,起点为1993年1月,具 体数据见附录。
第八章季节性时间序列模型
n 二、季节时间序列的重要特征 n 季节性时间序列的重要特征表现为周期性。在一个序列
第八章季节性时间序列模型
第八章季节性时间序列模型
第八章季节性时间序列模型
n 可见当得到样本的自相关函数后,各滑动平均参数的矩 法估计式也就不难得到了。
n 更一般的情形,如果一个时间序列服从模型
n
n
(8.18)
n 其中,
。整理后可以看出该时间
序列模型是疏系数MA(ms+q),可以求出其自相关函数,
2348 2454.9 2881.7
1998 2549.5 2306.4 2279.7 2252.7 2265.2
2326 2286.1 2314.6 2443.1
2536 2652.2 3131.4
1999 2662.1 2538.4 2403.1 2356.8
2364 2428.8 2380.3 2410.9 2604.3 2743.9 2781.5 3405.7
n 如果这个比值小于1,就说明该季度的值 常常低于总平均值
n 如果序列的季节指数都近似等于1,那就 说明该序列没有明显的季节效应
第八章季节性时间序列模型源自例1 季节指数的计算第八章季节性时间序列模型
季节指数图
第八章季节性时间序列模型
二、综合分析
n 常用综合分析模型
n 加法模型
n 乘法模型
n 混合模型
个模型组合而成。由于序列存在季节趋势,故先

第八章 季节性时间序列分析方法

第八章 季节性时间序列分析方法

81❝§8.1 季节性时间序列的重要特征82❝§8.2 季节性时间序列模型❝§8.3 季节性检验❝§8.4 季节性时间序列模型的建立所谓是指具有某种周期性变化季节性时间序列,是指具有某种周期性变化规律的随机序列,并且这种周期性的变化规律往往是由于季节变化引起由于季节变化引起。

如果一个随机序列经过个时间间隔后观测数据呈现相似性比如同处于波峰或波谷则我们称该序S 呈现相似性,比如同处于波峰或波谷,则我们称该序列具有以为周期的周期特征,并称其为季节性时S 间序列,为季节长度。

S季节性时间序列存在着规则的周期如果我们把季节性时间序列存在着规则的周期,如果我们把原序列按周期重新排列,即可得到一个所谓的二维表。

对于季节性时间序列按周期进行重新排列是极其有益的不仅有助于考察同周期点的变化情况加有益的,不仅有助于考察同一周期点的变化情况、加深对序列周期性的理解,而且对于形成建模思想和理解季节模型的结构也都是很有帮助的。

影响一个季节性时间序列的因素除了季节因素外❝影响一个季节性时间序列的因素除了季节因素外,往往还存在趋势变动和随机变动等。

t t t tX S T I =++❝研究季节性时间序列的目的,就是分解影响经济指标变动的季节因素、趋势因素和随机因素,从而了解它们对经济的影响。

❝1. 简单季节模型❝2. 乘积季节模型季节性时间序列表现出也就是说时间 同期相关性,也就是说时间相隔为的两个时间点上的随机变量有较强的相关性。

比如对于月度数据S 12比如,对于月度数据则与相关性较强。

我们可以利用这种同期相关性在与之12,S =t X 12t X -t X 12t X -间进行拟合。

简单季节模型通过简单的趋势差分季节差分之通过简单的趋势差分、季节差分之后序列即可转化为平稳,它的模型结构通常表示如下:()(1)(),(*)S S D St tB B X B aΦ-=ΘSAR算子其中为白噪声序列,{}ta2()1,S S S pSB B B BΦ=-Φ-Φ--Φ12212()1.pS S S qSqB B B BΘ=-Θ-Θ--ΘSMA算子称(*)为简单季节模型,或季节性自回归求和移动SARIMA p D q平均模型,简记为模型。

季节ARIMA模型

季节ARIMA模型

2.8 季节时间序列模型在某些时间序列中,存在明显的周期性变化。

这种周期是由于季节性变化(包括季度、月度、周度等变化)或其他一些固有因素引起的。

这类序列称为季节性序列。

比如一个地区的气温值序列(每隔一小时取一个观测值)中除了含有以天为周期的变化,还含有以年为周期的变化。

在经济领域中,季节性序列更是随处可见。

如季度时间序列、月度时间序列、周度时间序列等。

处理季节性时间序列只用以上介绍的方法是不够的。

描述这类序列的模型之一是季节时间序列模型(seasonal ARIMA model),用SARIMA表示。

较早文献也称其为乘积季节模型(multiplicative seasonal model)。

设季节性序列(月度、季度、周度等序列都包括其中)的变化周期为s,即时间间隔为s的观测值有相似之处。

首先用季节差分的方法消除周期性变化。

季节差分算子定义为,∆s = 1- L s若季节性时间序列用y t表示,则一次季节差分表示为∆s y t = (1- L s) y t = y t- y t - s对于非平稳季节性时间序列,有时需要进行D次季节差分之后才能转换为平稳的序列。

在此基础上可以建立关于周期为s的P阶自回归Q阶移动平均季节时间序列模型(注意P、Q 等于2时,滞后算子应为(L s)2 = L2s。

A P (L s) ∆s D y t =B Q(L s) u t(2.60)对于上述模型,相当于假定u t是平稳的、非自相关的。

当u t非平稳且存在ARMA成分时,则可以把u t描述为Φp (L)∆d u t = Θq (L) v t(2.61)其中v t为白噪声过程,p, q分别表示非季节自回归、移动平均算子的最大阶数,d表示u t的一阶(非季节)差分次数。

由上式得u t = Φp-1(L)∆-dΘq (L) v t(2.62)把(2.62) 式代入(2.60) 式,于是得到季节时间序列模型的一般表达式。

Φp(L) A P(L s) (∆d∆s D y t) = Θq(L) B Q(L s) v t(2.63)其中下标P, Q, p, q分别表示季节与非季节自回归、移动平均算子的最大滞后阶数,d, D分别表示非季节和季节性差分次数。

季节时间序列模型

季节时间序列模型

乘积季节模型拟合效果图
黑点为序列观察值,红线为模型拟合值
乘积季节模型
使用场合:
季节序列既有季节效应又有长期趋势效应
模型结构: ARIMA (p,d,q)×(P,D,Q)
BU
BS
d
D S
X
t
B V
BS
t
d
1
B
d

D S
1 BS
D
其中
U
V
BS BS
1 1BS 2B2S 1 1BS 2B2S
P B PS Q BQS
季节时间序列的重要特征表现为周期性。
在一个序列中,如果经过S个时间间隔后观测点呈现出相似性,比如 同处于波峰或波谷,我们就说该序列具有以S为周期的周期特性。
一般,季度资料的一个周期表现为一年的四个季度,月度资料的周期 表现为一年的12各月,周资料表现为一周的7天或5天。
处理季节性时间序列的一个重要工具:
1BS
D
Xt V
BS
t
U BS 11BS 2B2S PBPS
V BS 11BS 2B2S QBQS
消除了序列在 不同周期相同 周期点上的季 节相关成分
D为季节差分阶数,P为季节自回归的阶数,Q 为季节移
动平均的阶数
U(BS)为季节自回归多项式, V(BS)为季节移动平均多项式
EVIEWS上的实现: i S A R iS , j S M A jS
(B)
பைடு நூலகம்
(B)
1 1
1B 1B
2 B 2 2B2
pBp qBq
E V IE W S 实 现 :
i S A R iS i S M A iS i A R i i M A i

统计学_第八章__时间序列分析

统计学_第八章__时间序列分析
第八章 时间序列分析
1978—2003年GDP和最终消费(亿元) 140000 120000 100000 80000 60000 40000 20000 0
年 份 1979 1981 1983 1985 1987 1989 1991 1993 1995 1997 1999 2001
GDP 最终消费
4、二者关系 (1)各逐期增长量之和等于相应的累计增长量
an a0 (a1 a0 ) (a2 a1 ) (a3 a2 ) (an an1 )
(2)相邻两期的逐期增长量之和等于相应的 累计增长量;相邻两期的累计增长量之差等于 相应的逐期增长量
(二)平均增长量 1、概念 一段时期内平均每期增加或者减少的绝 对数量。或者说是逐期增长量的序时平均数。 2、计算公式
a0 a1 a 2 a n 或 a n 1
af a f

B、如果是间断时点数列,计算方法为: 『两个假设条件: 一是假设上期期末水平等于本期期初水平; 二是假设现象在间隔期内数量变化是均匀的。』 Ⅰ、间隔期相等的时点数列,采用“首尾(首末)折半 法”计算。 先计算各间隔期的平均数;然后再将这些平均数进行 简单算术平均。例如:
第一节
时间序列分析概述
一、时间序列的概念和作用
(一)、概念: 1、时间序列:将不同时间的某一统计指标数据按照 时间的先后顺序排列起来而形成的统计序列,也称时间 数列或动态数列。 2、基本构成要素(从形式上看): 一是时间顺序(现象所属的时间)。可以是年份、季 度、月份或其他任何时间,称时间要素(常用t表示); 二是不同时间的统计数据(现象在不同时间上的观察 值)。可以是绝对数、相对数、平均数,称数据要素 (常用小写的英文字母a、b、c表示)。

数据分析中的时间序列模型

数据分析中的时间序列模型

数据分析中的时间序列模型时间序列模型是数据分析中一种重要的统计方法,它用于揭示数据随时间变化的模式和趋势。

时间序列模型可以应用于多个领域,例如经济学、气象学、市场营销等等。

本文将介绍时间序列模型的基本概念、常见的方法和应用案例。

一、时间序列模型的基本概念时间序列是按照时间顺序排列的一系列数据,它可以是离散的或连续的。

时间序列模型的目标是对时间序列数据进行建模和预测。

在实际应用中,时间序列通常具有趋势(Trend)、季节性(Seasonality)和周期性(Cyclical)等组成部分。

1. 趋势:指时间序列数据在长期内表现出的整体上升或下降的趋势,可以是线性或非线性的。

2. 季节性:指时间序列数据在特定时间段内重复出现的规律,比如每年夏季的销售额通常会高于其他季节。

3. 周期性:指时间序列数据在较长时间内出现的波动,可能是由于经济周期或其他周期性因素引起。

二、常见的时间序列模型方法时间序列模型包括很多不同的方法和算法,下面介绍几种常见的方法。

1. 移动平均模型(Moving Average,MA):MA模型基于数据的移动平均值,用于捕捉数据的平稳性和周期性。

它通常表示为MA(q),其中q表示模型中的滞后阶数。

2. 自回归模型(Autoregressive,AR):AR模型假设当前的观测值可以由过去若干观测值的线性组合表示,用于描述趋势和周期性。

它通常表示为AR(p),其中p表示模型中的滞后阶数。

3. 自回归移动平均模型(Autoregressive Moving Average,ARMA):ARMA模型结合了AR和MA模型,用于同时考虑趋势和周期性。

它通常表示为ARMA(p, q),其中p和q分别表示AR和MA模型中的滞后阶数。

4. 季节性自回归移动平均模型(Seasonal Autoregressive Moving Average,SARMA):SARMA模型用于处理具有明显季节性的时间序列数据,它在ARMA模型的基础上添加了季节性因素。

季节性时间序列分析方法

季节性时间序列分析方法

季节性时间序列分析方法由于季节性时刻序列在经济生活中大量存在,故将季节时刻序列从非平稳序列中抽出来,单独作为一章加以研究,具有较强的现实意义。

本章共分四节:简单随机时刻序列模型、乘积季节模型、季节型时刻序列模型的建立、季节调整方法X-11程序。

本章的学习重点是季节模型的一样形式和建模。

§1 简单随机时序模型在许多实际问题中,经济时刻序列的变化包含专门多明显的周期性规律。

比如:建筑施工在冬季的月份当中将减少,旅行人数将在夏季达到高峰,等等,这种规律是由于季节性〔seasonality〕变化或周期性变化所引起的。

关于这各时刻数列我们能够说,变量同它上一年同一月〔季度,周等〕的值的关系可能比它同前一月的值的相关更紧密。

一、季节性时刻序列1.含义:在一个序列中,假设通过S个时刻间隔后出现出相似性,我们说该序列具有以S为周期的周期性特性。

具有周期特性的序列就称为季节性时刻序列,那个地点S为周期长度。

注:①在经济领域中,季节性的数据几乎无处不在,在许多场合,我们往往能够从直观的背景及物理变化规律得知季节性的周期,如季度数据〔周期为4〕、月度数据〔周期为12〕、周数据〔周期为7〕;②有的时刻序列也可能包含长度不同的假设干种周期,如客运量数据〔S=12,S=7〕2.处理方法:〔1〕建立组合模型;(1)将原序列分解成S个子序列〔Buys-Ballot 1847〕关于如此每一个子序列都能够给它拟合ARIMA 模型,同时认为各个序列之间是相互独立的。

然而这种做法不可取,缘故有二:〔1〕S 个子序列事实上并不相互独立,硬性划分如此的子序列不能反映序列{}t x 的总体特点;〔2〕子序列的划分要求原序列的样本足够大。

启发意义:假如把每一时刻的观看值与上年同期相应的观看值相减,是否能将原序列的周期性变化排除?〔或实现平稳化〕,在经济上,确实是考查与前期相比的净增值,用数学语言来描述确实是定义季节差分算子。

定义:季节差分能够表示为S t t t S t S t X X X B X W --=-=∇=)1(。

(VR虚拟现实)13季节ARIMA模型

(VR虚拟现实)13季节ARIMA模型

2.8 季节时间序列模型在某些时间序列中,存在明显的周期性变化。

这种周期是由于季节性变化(包括季度、月度、周度等变化)或其他一些固有因素引起的。

这类序列称为季节性序列。

比如一个地区的气温值序列(每隔一小时取一个观测值)中除了含有以天为周期的变化,还含有以年为周期的变化。

在经济领域中,季节性序列更是随处可见。

如季度时间序列、月度时间序列、周度时间序列等。

处理季节性时间序列只用以上介绍的方法是不够的。

描述这类序列的模型之一是季节时间序列模型(seasonal ARIMA model),用SARIMA表示。

较早文献也称其为乘积季节模型(multiplicative seasonal model)。

设季节性序列(月度、季度、周度等序列都包括其中)的变化周期为s,即时间间隔为s的观测值有相似之处。

首先用季节差分的方法消除周期性变化。

季节差分算子定义为,∆s = 1- L s若季节性时间序列用y t表示,则一次季节差分表示为∆s y t = (1- L s) y t = y t- y t - s对于非平稳季节性时间序列,有时需要进行D次季节差分之后才能转换为平稳的序列。

在此基础上可以建立关于周期为s的P阶自回归Q阶移动平均季节时间序列模型(注意P、Q 等于2时,滞后算子应为(L s)2 = L2s。

A P (L s) ∆s D y t =B Q(L s) u t(2.60)对于上述模型,相当于假定u t是平稳的、非自相关的。

当u t非平稳且存在ARMA成分时,则可以把u t描述为Φp (L)∆d u t = Θq (L) v t(2.61)其中v t为白噪声过程,p, q分别表示非季节自回归、移动平均算子的最大阶数,d表示u t的一阶(非季节)差分次数。

由上式得u t = Φp-1(L)∆-dΘq (L) v t(2.62)把(2.62) 式代入(2.60) 式,于是得到季节时间序列模型的一般表达式。

Φp(L) A P(L s) (∆d∆s D y t) = Θq(L) B Q(L s) v t(2.63)其中下标P, Q, p, q分别表示季节与非季节自回归、移动平均算子的最大滞后阶数,d, D分别表示非季节和季节性差分次数。

时间序列分析试题ARIMA模型与季节性调整

时间序列分析试题ARIMA模型与季节性调整

时间序列分析试题ARIMA模型与季节性调整时间序列分析被广泛应用于许多领域,如经济学、金融学、气象学等等。

它是一种研究随时间变化的数值序列的方法。

在时间序列分析中,ARIMA模型和季节性调整是常用的技术。

本文将介绍ARIMA模型和季节性调整的相关概念和应用。

一、ARIMA模型ARIMA模型是自回归移动平均模型(Autoregressive Integrated Moving Average Model)的缩写。

它是一种常用的时间序列分析方法,被广泛用于预测和建模。

ARIMA模型的核心思想是通过将时间序列分解成自回归(AR)成分、差分(I)成分和移动平均(MA)成分,来进行建模和预测。

ARIMA模型的建立包括三个步骤:确定模型阶数、估计模型参数、模型检验和预测。

1.1 确定模型阶数在确定ARIMA模型的阶数时,可以利用自相关函数(ACF)和偏自相关函数(PACF)的图形分析来寻找最佳的阶数。

ACF图可以帮助我们确定移动平均项的阶数,PACF图可以帮助我们确定自回归项的阶数。

通过观察图形,我们可以找到ACF和PACF截尾的位置,从而得到ARIMA模型的阶数。

1.2 估计模型参数在确定了模型的阶数后,我们需要估计模型的参数。

最常用的估计方法是最大似然估计法,通过最大化似然函数来估计模型的参数。

根据模型的阶数,我们可以建立ARIMA模型的估计方程,并利用时间序列数据进行参数估计。

1.3 模型检验和预测在估计了模型的参数后,我们需要对模型进行检验。

常用的检验方法有残差分析、模型拟合度检验、预测准确度检验等。

通过这些检验,我们可以评估模型的拟合效果和预测能力。

二、季节性调整很多时间序列数据都具有季节性变动的特点,这对于建模和预测带来了一定的困难。

为了解决这个问题,我们可以对时间序列进行季节性调整。

季节性调整的目标是将数据的季节性成分从原始数据中分离出来,以便更好地进行预测和分析。

常用的季节性调整方法有移动平均法、指数平滑法和X-12-ARIMA等方法。

季节性时间序列模型(PPT 67页)

季节性时间序列模型(PPT 67页)
选择模型(无交易日影响)
xt TtStIt
X11过程获得的季节指数图
季节调整后的序列图
趋势拟合图
随机波动序列图
§第四节 季节时间序列模型
4.1季节时间序列的重要特征 一、季节时间序列表示 许多商业和经济时间序列都包含季节现象,例如,冰淇淋的销量的
季度序列在夏季最高,序列在每年都会重复这一现象。相应的周期 为4。类似地,在美国汽车的月度销售量和销售额数据在每年的7月 和8月也趋于下降,因为每年这时汽车厂家将会推出新的产品;在西 方,玩具的销售量在每年12月份会增加,主要是因为圣诞节的缘故; 在中国,每年农历5月份糯米的销售量大大地增加,这是因为中国的 端午节有吃粽子的习惯。以上三种情况的季节周期都是12个月。由 上面的例子可以看到,很多的实际问题中,时间序列会显示出周期 变化的规律,这种周期性是由于季节变化或其他物理因素所致,我 们称这类序列为季节性序列。单变量的时间序列为了分析方便,可 以编制成一个二维的表格,其中一维表示周期,另一维表示某个周 期的一个观测值,如表8.1所示。

表4.1 单变量时间序列观测数据表
例如,1993~2000年各月中国社会消费品零售总额序列, 是一个月度资料,其周期S=12,起点为1993年1月,具 体数据见附录。
二、季节时间序列的重要特征
季节性时间序列的重要特征表现为周期性。在一个序列 中,如果经过S个时间间隔后观测点呈现出相似性,比如 同处于波峰或波谷,我们就说该序列具有以S为周期的周 期特性。具有周期特性的序列称为季节时间序列,S为周 期的长度,不同的季节时间序列会表现出不同的周期, 季度资料的一个周期表现为一年的四个季度,月度资料 的周期表现为一年的12各月,周资料表现为一周的7天或 5天。

季节性时间序列模型PPT课件

季节性时间序列模型PPT课件

数据。
SARIMA模型
02
季节性自回归积分滑动平均模型,适用于具有明显季节性的时
间序列数据。
SARIMA-X模型
03
基于SARIMA模型的扩展,适用于具有特定季节性和非季节性
特征的时间序列数据。
季节性时间序列模型的参数
AR参数
自回归模型的参数,用于描述时间序列数据 的自相关关系。
P参数
季节性自回归模型的参数,用于描述时间序 列数据的季节性特征。
在股票价格的时间序列分析中,可以使用季节性自回归积分滑动 平均模型(SARIMA)等季节性时间序列模型来拟合数据,并预 测未来的股票价格走势。
通过对股票价格的时间序列数据进行季节性分析和预测,可以帮 助投资者制定更加科学和有效的投资策略,提高投资收益。
案例二:气温变化的季节性分析
01
气温变化的季节性分析是另一个应用季节性时间序列模型的案例。通过对气温 历史数据的季节性分析,可以了解气温变化的规律和趋势,为气象预测和气候 变化研究提供支持。
感谢您的观看
02
03
季节性时间序列模型的分类:根据不同 的分类标准,季节性时间序列模型可以 分为不同的类型。常见的分类标准包括 模型的复杂度、季节性周期的长度等。 常见的季节性时间序列模型包括季节性 自回归积分滑动平均模型(SARIMA)、 季节性指数平滑模型(SEAS)等。
季节性时间序列模型的应用实例: SARIMA模型在股票市场预测中取得 了较好的效果;SEAS模型在电力需求 预测中得到了广泛应用。这些应用实 例证明了季节性时间序列模型在数据 分析和预测中的实用性和有效性。
对未来研究方向的展望
改进现有模型的性能
尽管现有的季节性时间序列模型取得 了一定的成果,但仍存在一些局限性 ,如对异常值的敏感性、对非平稳数 据的适应性等。未来的研究可以针对 这些局限性,对现有模型进行改进, 提高模型的预测精度和稳定性。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


季节模型
xij x S j Iij
上一页 下一页 返回本节首页
季节指数的计算

计算周期内各期平均数
xk
x
i 1
n
ik

计算总平均数
x
n
, k 1,2, , m
x
i 1 k 1
n
m
ik

计算季节指数
nm
xk Sk x
, k 1,2,, m
季节指数的理解
xt Tt St I t
X11过程获得的季节指数图
季节调整后的序列图
趋势拟合图
随机波动序列图
§第四节 季节时间序列模型

4.1季节时间序列的重要特征 一、季节时间序列表示 许多商业和经济时间序列都包含季节现象,例如,冰淇淋的销量的 季度序列在夏季最高,序列在每年都会重复这一现象。相应的周期 为4。类似地,在美国汽车的月度销售量和销售额数据在每年的7月 和8月也趋于下降,因为每年这时汽车厂家将会推出新的产品;在西 方,玩具的销售量在每年12月份会增加,主要是因为圣诞节的缘故; 在中国,每年农历5月份糯米的销售量大大地增加,这是因为中国的 端午节有吃粽子的习惯。到,很多的实际问题中,时间序列会显示出周期 变化的规律,这种周期性是由于季节变化或其他物理因素所致,我 们称这类序列为季节性序列。单变量的时间序列为了分析方便,可 以编制成一个二维的表格,其中一维表示周期,另一维表示某个周 期的一个观测值,如表8.1所示。
2549.5
2306.4 2279.7 2252.7 2265.2 2326 2286.1 2314.6
2662.1
2538.4 2403.1 2356.8 2364 2428.8 2380.3 2410.9
2774.7
2805 2627 2572 2637 2645 2597 2636
9
10 11 12
(5)残差检验
xt ˆ Tt I t ˆ S
t
(6)短期预测
ˆ T ˆ ˆt (l ) S x t l t l
三、X-11过程

简介

X-11过程是美国国情调查局编制的时间序列季节调整过 程。它的基本原理就是时间序列的确定性因素分解方法

因素分解


长期趋势起伏 季节波动 不规则波动 交易日影响
2743.9 2781.5 3405.7
2854
3029 3108 3680
(1)绘制时序图
(2)选择拟合模型

长期递增趋势和以年为固定周期的季节 波动同时作用于该序列,因而尝试使用 混合模型(b)拟合该序列的发展
xt S t (Tt I t )
(3)计算季节指数
月份 季节指数 月份 季节指数




季节指数反映了该季度与总平均值之间 的一种比较稳定的关系 如果这个比值大于1,就说明该季度的值 常常会高于总平均值 如果这个比值小于1,就说明该季度的值 常常低于总平均值 如果序列的季节指数都近似等于1,那就 说明该序列没有明显的季节效应
例1 季节指数的计算
季节指数图
二、综合分析

常用综合分析模型
第八章 季节性时间序列模型
第一节 第二节 第三节 第四节
季节指数 综合分析 X11过程 随机季节差分
【例】以北京市1995年——2000年月平均 气温序列为例,介绍季节性时间序列模 型的基本思想和具体操作步骤。
时序图
一、季节指数

季节指数的概念

所谓季节指数就是用简单平均法计算的周期 内各时期季节性影响的相对数


表4.1 单变量时间序列观测数据表

例如,1993~2000年各月中国社会消费品零售总额序列, 是一个月度资料,其周期S=12,起点为1993年1月,具 体数据见附录。



二、季节时间序列的重要特征 季节性时间序列的重要特征表现为周期性。在一个序列 中,如果经过S个时间间隔后观测点呈现出相似性,比如 同处于波峰或波谷,我们就说该序列具有以S为周期的周 期特性。具有周期特性的序列称为季节时间序列,S为周 期的长度,不同的季节时间序列会表现出不同的周期, 季度资料的一个周期表现为一年的四个季度,月度资料 的周期表现为一年的12各月,周资料表现为一周的7天或 5天。 例如,图4.16的数据是1993年1月到2000年12月的中国 社会消费品月销售总额。
1023.3
1051.1 1102 1415.5
1396.2
1444.1 1553.8 1932.2
1756
1818 1935.2 2389.5
2083.5
2148.3 2290.1 2848.6
2239.6
2348 2454.9 2881.7
2443.1
2536 2652.2 3131.4
2604.3

加法模型
xt Tt St I t

乘法模型
xt Tt S t I t

混合模型
a) xt S t Tt I t b) xt S t (Tt I t )
上一页 下一页 返回本节首页
例2
月份
对1993年——2000年中国社会消费品零售
总额序列进行确定性时序分析
加法模型 乘法模型
上一页 下一页 返回本节首页

模型

方法特色

普遍采用移动平均的方法


用多次短期中心移动平均消除随机波动 用周期移动平均消除趋势 用交易周期移动平均消除交易日影响
例2 续


对1993年——2000年中国社会消费品零 售总额序列使用X-11过程进行季节调整 选择模型(无交易日影响)
1
2 3 4 5 6
0.982
0.943 0.920 0.911 0.925 0.951
7
8 9 10 11 12
0.929
0.940 1.001 1.054 1.100 1.335
季节指数图
季节调整后的序列图
xt Tt I t ˆ S
t
(4)拟合长期趋势
ˆ 1015 T .522 20.93178 t t
1993 1994 1995 1996 1997 1998 1999 2000
1
2 3 4 5 6 7 8
977.5
892.5 942.3 941.3 962.2 1005.7 963.8 959.8
1192.2
1162.7 1167.5 1170.4 1213.7 1281.1 1251.5 1286
1602.2
1491.5 1533.3 1548.7 1585.4 1639.7 1623.6 1637.1
1909.1
1911.2 1860.1 1854.8 1898.3 1966 1888.7 1916.4
2288.5
2213.5 2130.9 2100.5 2108.2 2164.7 2102.5 2104.4
相关文档
最新文档