全等三角形优质课课件

合集下载

三角形全等的判定优秀教学课件

三角形全等的判定优秀教学课件

笑当你快乐时,你要想,这快乐不是永 恒的.当你痛苦时,你要想,这痛苦也不是 永恒的.
第22页,共23页。

11、这个世界其实很公平,你想要比
别人强,你就必须去做别人不想做的事,
你想要过更好的生活,你就必须去承受更
多的困难,承受别人不能承受的压力。

12、逆境给人宝贵的磨炼机会。只有
经得起环境考验的人,才能算是真正的强
第5页,共23页。
新知探究
判定两个三角形全等的方法:
两边和它们的夹角分别相等的两个 三角形全等.
简写成“边角边”或“SAS”.
第6页,共23页。
举例分析
例2:如图,有一池塘,要测池塘两端A,B的距离,可先 在平地上取一个点C,从点C不经过池塘可以直接到达点A和 B.连接AC并延长到点D,使CD=CA.连接BC并延长到点E,使 CE=CB.连接DE,那么量出DE的长就是A,B的距离,为什么?
AE = CF (已知)
A●
D

E
F

∠A=∠C(已证)
B
●C
AD= CB (已知)
∴△ADE≌△CBF (SAS) ∴∠AED=∠CFB ∴∠FED=∠EFB
∴ DE∥BF
第17页,共23页。
4.若AB=AC,则添加什么条件可得△ABD≌△ACD?
A AD=AD ∠BAD= ∠CAD AB=AC
在△AFB 和△DEC中,
AB=DC
BE
∠B=∠C
BF=CE
∴ △AFB ≌ △DEC
∴ ∠A= ∠D
FC
第13页,共23页。
备选练习
1.在下列推理中填写需要补充的条件,使结
论成立:
(1)如图,在△AOB和△DOC中 ADLeabharlann AO=DO(已知)O

人教版八年级数学上册优质课《全等三角形第一课时》PPT课件

人教版八年级数学上册优质课《全等三角形第一课时》PPT课件
Please Criticize And Guide The Shortcomings
讲师:XXXXXX
XX年XX月XX日
19
思考
∆ABC≌ ∆DEF,对应边有什么关系? 对应角呢?
全等三角形的性质: 全等三角形的对应边相等 全等三角形的对应角相等
图形参考 13
填一填

AB=DF

AC=DE

BC=EF
角 ∠A=∠D
角 ∠B=∠F
角 ∠ACB=∠DEF
问题: ∆ABC通过怎样的变化得到∆DFE?
14
填一填

AM=BM

MC=MD

AC=BD

∠A=∠B
△_AM_C_≌△_B_MD_ 角
∠C=∠D
角 ∠AMC=∠BMD
15
试一试
1。如果∆ABC≌ ∆ADC,AB=AD, ∠B=70°,BC=3cm,那么
∠D=_7_0_°_,DC=__3__cm
2.如果 ∆ABC≌ ∆DEF,且∆ABC的周长为 100cm,A、B分别与D 、E对应,
• 其中点A和_点_D ,点B和_点_E,点C和_点_F是 对应顶点。
• AB和_DE_,BC和_EF_,AC和_DF_是对应边。
• ∠A和_∠_D ,∠B和_∠E_, ∠C和∠_ F_ 是对 应角。 你能否直接从记作 ∆ABC≌C ∆DEF中判断出 F 所有的对应顶点、对应 边和对应角?
A
B
D
E
12
AB=30cm,DF=25cm,则BC的长为( A)
A.45cm B.55cm C.30cm D. 25cm
16
3.如图,矩形ABCD沿AM

全等三角形判定ppt课件

全等三角形判定ppt课件

若两个三角形全等,则它们的周长也 相等。
对应角相等
在全等三角形中,任意两个对应 的角都相等。
若两个三角形全等,则它们的内 角和也相等,且均为180度。
可以通过测量两个三角形的三个 内角来判断它们是否全等。
面积相等
若两个三角形全等,则它们的面积也相等。 可以通过计算两个三角形的面积来判断它们是否全等。
1 2
定义
两边和它们的夹角分别相等的两个三角形全等。
图形语言
若a=a',∠B=∠B',b=b',则⊿ABC≌⊿A'B'C'。
3
符号语言
∵a=a',∠B=∠B',b=b',∴⊿ABC≌⊿A'B'C'( SAS)。
角边角判定法(ASA)
01
02
03
定义
两角和它们的夹边分别相 等的两个三角形全等。
图形语言
实例1
证明两个三角形全等并求出未知 边长
实例2
利用全等三角形判定方法证明两个 四边形面积相等
实例3
利用全等三角形判定方法解决一个 实际问题,如测量一个不可直接测 量的距离
06
总结与展望
判定全等三角形的方法总结
三边分别相等的两个三角形全等。这是最基本的判定 方法,通过比较三角形的三边长度来确定两个三角形
证明过程
可以通过AAS(角角边)全等条件进行证明,即 如果两个三角形有两个角和其中一个角的对边分 别相等,则这两个三角形全等。这也是一种常用 的全等三角形判定方法。
实际应用举例
在实际应用中,角角边判定法常用于解决与角度 和边长有关的问题。例如,在建筑设计中,如果 需要确保两个建筑结构的角度和边长完全相等, 就可以利用角角边判定法来进行验证。

《全等三角形》数学教学PPT课件(6篇)

《全等三角形》数学教学PPT课件(6篇)
加深理解
E A
F
B
C
∆ABC ≌ ∆FDE
对应顶点 对应顶点 对应顶点 对应角 对应角 对应角 对应边 对应边 对应边
41
课堂测试 1.如果∆ABC≌ ∆ADC,AB=AD,∠B=70°, BC=3cm,那么∠D=___7_0,D°C=____3cm
D
课堂测试
2、若△AOC≌△BOD,对应边是 应角是 ;
小组讨论完成
解:∵ △ABD ≌ △EBC,∴AB=EB,BD=BC, ∵BD=ED+EB ∴DE=BD-EB=BC-AB=5-3=2cm.
三、巩固练习
基础练习(教材第三十二页练习1-2题)
四、课堂小结,请大家回顾一下:
这节课你学到了什么?还有哪些疑惑?学生充分讨论回答。
点评梳理:
(1)全等三角形的概念及表示方法; (2)全等三角形的性质及应用。
思考
将两个全等三角形重合在一起,
重合的顶点叫对应顶点
A
D
重合的边叫对应边
重合的角叫对应角
根据动画效果,你能说出
这两个全等三角形的对应顶点、
B
CE
F 对应边、对应角各是什么吗?
36
全等三角形表示
如果两个三角形全等,那么该如何表示吗?
A
D
右图中的∆ABC和∆DEF全等
记作: ∆ABC ≌ ∆DEF
五、课后练习
1、教材第33-34页,1-6题。
第十二章 全等三角形
12.1 全等三角形
人教版 数学(初中) (八年级 上)
Please Enter Your Detailed Text Here, The Content Should Be Concise And Clear, Concise And Concise Do Not Need Too Much Text

人教版八年级数学上册《全等三角形》PPT优质课件

人教版八年级数学上册《全等三角形》PPT优质课件
【结论】全等三角形的对应边相等,全
等三角形的对应角相等。
知识梳理
知识点一:全等形
1.能够完全重合的两个图形叫做全等形。
2.全等形关注的是两个图形的形状和大小.一个图形经过平移
、翻折、旋转后,位置变化了,但形状、大小都没有改变,即
平移、翻折、旋转前后的图形全等。
知识梳理
例题 1:请观察图中的6组图案,其中是全等形的是 1、4、5、6
等时,对应的顶点放在对应的位置上.
知识梳理
例题 1:如图所示,△
≌△ ,指出所有的对应边和对应
角.,AC与DB,BC与CB是对应边;
AB与DC
∠ABC与∠DCB,∠A与∠D,∠ACB与∠DBC是对应角。
【解答】(1)已知△ABC≌△DCB,故公共边BC和CB
是对应边,它们所对的∠A和∠D是对应角,最短边
点E平分线段BC;
(3)DE ⊥ BC,
理由如下:因为△ BDE ≌△ CDE,所以BD = CD,
BABC中,点A的坐标为( − 1,1),点C的坐

标为 ( − 2,2) ,点 B 的坐标为 ( − 5,1) ,如果 △
ABD与 △ ABC全等,求点D的坐标。
10∠ ,则 =
.
【结论】本题考查全等三角形的性质,解题时应
注重识别全等三角形中的对应边,要根据对应角
去找对应边.
知识梳理
例题 2:如图所示,△ 沿直线 向右平移线段 长的距离后与△

重合,则△△

;相等的角有
∠ = ∠
,相等的边有
, =
边,写出其他对应边和对应角.
【解答】对应边:AN与AM,BN与CM;
对应角:∠BAN与∠CAM,∠ANB与∠AMC.

《全等三角形》ppt课件

《全等三角形》ppt课件

《全等三角形》ppt课件•全等三角形基本概念与性质•判定全等三角形方法探讨•辅助线在证明全等过程中作用•相似三角形与全等三角形关系探讨目录•生活中全等三角形应用举例•总结回顾与拓展延伸全等三角形基本概念与性质全等三角形定义及判定方法定义SSS(边边边)SAS(边角边)HL(斜边、直角边)ASA(角边角)AAS(角角边)对应边相等对应角相等对应关系确定030201对应边、对应角关系全等三角形性质总结判定全等三角形方法探讨SSS判定法定义应用举例注意事项应用举例SAS判定法定义在证明两个三角形全等时,若已知两边及夹角相等,则可直接应用SAS判定法。

注意事项ASA判定法定义AAS判定法定义比较分析案例分析01020304ASA和AAS判定法比较与案例分析辅助线在证明全等过程中作用构造辅助线策略与技巧分享观察图形特征在证明全等三角形时,首先要仔细观察图形,分析已知条件和目标结论,从而确定需要构造的辅助线类型。

利用基本图形熟悉并掌握一些基本图形(如角平分线、中线、高线等)的性质,可以帮助我们更快地构造出合适的辅助线。

构造平行线或垂直线根据题目条件,有时需要构造平行线或垂直线来利用相关性质进行证明。

典型辅助线构造方法剖析角平分线法01中线法02高线法03复杂图形中辅助线应用实例在复杂图形中,有时需要综合运用多种辅助线构造方法才能解决问题。

例如,可以先构造角平分线,再利用中线或高线的性质进行证明。

在一些特殊情况下,可能需要构造多条辅助线才能找到解决问题的突破口。

这时需要仔细分析图形特点,灵活运用所学知识进行构造和证明。

通过学习和掌握典型辅助线的构造方法和应用实例,可以提高学生的几何思维能力和解决问题的能力,为后续的数学学习打下坚实的基础。

相似三角形与全等三角形关系探讨性质面积比等于相似比的平方。

定义:两个三角形如果它们的对应角相等,则称这两个三角形相似。

周长比等于相似比;010203040506相似三角形定义及性质回顾相似三角形判定方法简介预备定理判定定理1判定定理2判定定理3相似三角形与全等三角形联系和区别联系区别全等三角形的性质在相似三角形中同全等三角形的性质更为严格和具体,而相似三角形的性质相对较为宽松和生活中全等三角形应用举例建筑设计中全等三角形应用稳定性美学效果美术创作中全等三角形构图技巧平衡感动态感其他领域(如工程、测量)中全等三角形应用工程测量机械设计地图制作总结回顾与拓展延伸全等三角形的判定方法熟练掌握SSS、SAS、ASA、AAS及HL等全等三角形的判定方法。

全等三角形优质PPT课件公开课获奖课件省赛课一等奖课件

全等三角形优质PPT课件公开课获奖课件省赛课一等奖课件

D
B
C
E
F
∵△ABC≌△DEF(已知) ∴AB=DE, AC=DF,BC=EF(全等三角形相应边相等)
∠A=∠D, ∠B=∠E, ∠C=∠F(全等三角形相应角相等)
先写出全等式,再指出
它们旳相应边和相应角
A
D
C
E
B
F
∵△ACB≌△DEF
∴AB=DF, CB=EF,AC=DE.
∴∠A=∠D,∠CBA=∠F,∠C= ∠DEF.
在全等三角形中,一般是:
1.有公共边,则公共边为 相应边
2.有公共角,则公共角为 相应角
4.相应角旳对边为相应边; 5.相应边旳对角为相应角。 6.根据书写规范,按照相应 7.顶点找相应边或相应角。
找出下列全等三角形旳相应边、相应角
A
△ABD≌△CBD
B
D
C
找出下列全等三角形旳相应边、相应角
D
点此播放教学视频
活动一:找出下图形中形状、大小相同旳图形。

F ②

a
F d e
解后思:
位置不同,
b
c
但形状、大
小相同
f
g
h
活动2:
你能再举某些生活中形状、大小相 同旳图形吗?
同一张底片洗出旳照片
点此播放教学视频
两张纸重叠后剪纸,得到旳两个图形大小、 形状相同。
能够完全重叠旳两个图形称为全等形
相应角旳大小有无变化?由此你能得到什
么结论?
A
D
B
A
C EM
SF
C
O
O B
D
N
T
全等三角形旳相应边相等, 全等三角形旳相应角相等.

全等三角形的判定PPT课件共34张

全等三角形的判定PPT课件共34张
24
2024/1/30
06
判定全等三角形的注意事项
25
准确理解全等三角形的定义和性质
2024/1/30
全等三角形的定义
两个三角形如果三边及三角分别对应 相等,则称这两个三角形全等。
全等三角形的性质
全等三角形的对应边相等,对应角相 等;全等三角形的周长、面积相等; 全等三角形的对应边上的中线、高线 、角平分线分别相等。
结论
三边分别相等的两个三角 形全等,简称“SSS”。
16
SAS判定法的证明
已知条件
两边和它们的夹角分别相 等的两个三角形。
2024/1/30
证明过程
将其中一个三角形旋转至 与另一个三角形两边重合 ,由于夹角相等,因此两 个三角形全等。
结论
两边和它们的夹角分别相 等的两个三角形全等,简 称“SAS”。
示例
若三角形ABC和三角形DEF中,∠A=∠D,∠B=∠E ,BC=EF,则三角形ABC全等于三角形DEF。
2024/1/30
14
2024/1/30
04
判定方法的证明与推导
15
SSS判定法的证明
01
02
03
已知条件
三边分别相等的两个三角 形。
2024/1/30
证明过程
通过平移或旋转其中一个 三角形,使得两个三角形 的三边分别重合,从而证 明两个三角形全等。
2024/1/30
在计算三角形面积时,如果知道两个三角形全等,那么可以直接得出它们的面积相 等。
9
2024/1/30
03
全等三角形的判定方法
10
边边边判定法(SSS)
定义
三边分别相等的两个三角形全等 。

全等三角形 (优质课)获奖课件

全等三角形 (优质课)获奖课件
12.1
全等三角形
1.了解全等形及全等三角形的概念. 2.理解全等三角形的性质.
重点 探究全等三角形的性质.
难点
掌握两个全等三角形的对应边、对应角的寻找规 律 ,能迅速正确地指出两个全等三角形的对应元 素.
一、情境导入
一位哲人曾经说过:“世界上没有完全相同的叶了”,但
是在我们的周围却有着好多形状、大小完全相同的图案.你 能举出这样的例子吗?
角形的外角?
2.探究三角形外角的性质. 老师布置学生自学教材第15页思考的内容,然后同学间 进行交流、讨论,归纳三角形的外角有什么性质,并提出 以下问题: 你能否用证明的方法说明你所归纳的性质?
学生归纳得出三角形外角的性质:
三角形的外角等于与它不相邻的两个内角的和
三、举例分析 例1 如图 , ∠ BAE , ∠ CBF , ∠ ACD 是△ ABC 的三个外角 , 它们的和是多少?
本节课通过学生在做模型、画图、动手操作等活动中亲身 体验,加深对三角形全等、对应含义的理解,即培养了学 生的画图识图能力,又提高了逻辑思维能力.
11.2
与三角形有关的角
三角形的外角
11.2.2
1.了解三角形的外角. 2 . 知道三角形的外角等于与它不相邻的两个内角的 和.
3.学会运用简单的说理来计算三角形相关的角.
A.1 B.2 C.3 D.4 3.如图,已知△ABC≌△DEF,∠A=85°,∠B=60°, AB=8,EF=5,求∠DFE的度数与DE的长.
补充题答案: 1.D 2.D 3.∠DFE=35°,DE=8
五、小结与作业
1.全等形及全等三角形的概念. 2.全等三角形的性质.
作业:教材习题12.1第2,3,4,5,6题.

《全等三角形》_课件-完美版

《全等三角形》_课件-完美版

如图, C是BF的中点,AB =DC,AC=DF.
求证:△ABC ≌ △DCF.
B
证明:∵C是BF中点,
∴BC=CF.
C
A
在△ABC 和△DCF中,
AB = DC,(已知)
F
D
AC = DF,(已知)
BC = CF,(已证)
∴ △ABC ≌ △DCF (SSS).
【获奖课件ppt】《全等三角形》_课 件-完美 版1-课 件分析 下载
知识要点
“边边边”判定方法
u文字语言:三边对应相等的两个三角形全等.
(简写为“边边边”或“SSS”) A u几何语言:
在△ABC和△ DEF中,
AB=DE, BC=EF,
B
C
D
CA=FD,
∴ △ABC ≌△ DEF(SSS).
E
F
【获奖课件ppt】《全等三角形》_课 件-完美 版1-课 件分析 下载
想一想:
如果只满足这些条件中的一部分,那么能保证 △ABC≌△DEF吗?
一 三角形全等的判定(“边边边”定理)
探究活动1:一个条件可以吗?
(1)有一条边相等的两个三角形 不一定全等 (2)有一个角相等的两个三角形 不一定全等
结论:有一个条件相等不能保证两个三角形全等.
探究活动2:两个条件可以吗?
【获奖课件ppt】《全等三角形》_课 件-完美 版1-课 件分析 下载
典例精析
例2 如图, △ABC是一个钢架,AB=AC,AD是连接A与
BC中点D的支架,试说明:∠B=∠C.
解:∵D是BC的中点,
A
∴BD=CD.
在△ABD与△ACD中, B AB=AC(已知),
D
C

《全等三角形》PPT优质课件

《全等三角形》PPT优质课件
D A
O
C B
AD
O
B
C
A
B D
E C
A
E
D
B
C
1. 有公共边,则公共边为对应边; 2. 有公共角(对顶角),则公共角(对顶角)为对应角; 3.最大边与最大边(最小边与最小边)为对应边;
最大角与最大角(最小角与最小角)为对应角;
4. 对应角的对边为对应边;对应边的对角为对应角.
探究新知
找一找下列全等图形的对应元素?
A
D
A
2 B E CF
A
3 21 4
B E
CF
B
D CF
A
D
1
23 4
B
C
探究新知
全等的表示方法
“全等”用符号“≌”表示,读作“全等于”.
A
F
B
CD
E
△ABC≌△FDE
记两个三角形全等时,通常把表示对应顶点的字母写在 对应的位置上.
探究新知
全等的性质
全等三角形的对应边相等,对应角相等.
A
D
B
C
E
∠A=∠F,∠B=∠D,∠C=∠E. (全等三角形对应角相等)
探究新知
素养考点 1 识别全等三角形的对应元素
例1 如图,若△BOD≌△COE,∠B=∠C,指出这两个全 等三角形的对应边;若△ADO≌△AEO,指出这两个三角 形的对应角.
解:△BOD与△COE的对应边为: BO与CO,OD与OE,BD与CE; △ADO与△AEO的对应角为:
课堂检测
拼接的图形展示
课堂小结
全等 三角形
定 义 能够完全重合的两个三角形叫做全等三角形
基本 性质

三角形全等的判定定理SAS市公开课一等奖省优质课获奖课件

三角形全等的判定定理SAS市公开课一等奖省优质课获奖课件
探究
假如在△ABC和△ A′B′C′中,
∠ B=∠B′, AB = A′B′,BC = B′C′ △ABC 与△ A′B′C′全等吗?
1.假如△ABC和△ A′B′C′位置关系如图所表示, △ABC和△ A′B′C′全等吗?
A′ A
A (A′)
C′
B (B′)
C B (B′)
C (C′)
第2页
2.假如△ABC和△ A′B′C′位置关系如图所表示, △ABC和△ A′B′C′全等吗?
A
A′
C′
B
C B′
第3页
3.假如△ABC和△ A′B′C′位置关系如图所表示, △ABC和△ A′B′C′全等吗?
A
B′C′B源自C A′第4页判定三角形全等方法:
边角边定理 有两边和它们夹角对应相等
两个三角形全等(“边角边”或“SAS”).
第5页
例1
如图,AO=BO,CO=DO,试问△ ACO和△ BDO全等吗?
解 选择地点O,从O处能够看到
A处与B处.连结AO并延长至A′,
使OA′=AO;连结BO并延长至B′,
使OB′=BO.连结A′B ′.
A
B
在△AOB和△ A′OB′中,因为
O
B′
A′
第7页
所以 于是得
AO= A′O ∠AOB= ∠A′OB ′ BO=B′O △AOB≌△ A′OB′
A′B′ = AB
A
B
所以A′B′长度就是这座大山
A处与B处距离.
O
B′
A′
第8页
动脑筋
你还能想出其它方案,来测量A、B
两处距离吗?
第9页
探究
画△ABC使∠B=45°, AB=3cm, AC=2.5cm,比较各位同学画△ABC , 它们全等吗?你能得出什么结论?

直角三角形全等的判定课件市公开课一等奖省优质课获奖课件

直角三角形全等的判定课件市公开课一等奖省优质课获奖课件
AC=BD ∴ RT Δ ACE ≌ RT Δ BDF(HL) ∴ CE=DF(全等三角形对应边相等)
第11页
做一做
如图,已知∠ACB=∠BDA=900 , 要使△ABC≌△BDA, 还需要增加一个什么条件?把它们分别写出来.
增加AC=BD;
C
D
增加BC=AD;
增加∠ABC=∠BAD ;
增加∠CAB=∠DBA ;
由例题你得到了什么结论
第9页
角内部,到角两边距离相等点 ,在这 个角平分线上
练习1如图,在Δ ABC中,D是BC中点,DE ┴ AB于E,DF ┴ AC于F,且DE=DF,则AB=AC。 说明理由。 解∵ DE ┴ AB,DF ┴ AC(已知) ∴ ∠ BED= ∠ CFD=RT ∠ (垂直意义) ∵ DE=DF(已知) ∵ BD=CD(中点意义) ∴ RT Δ BDE ≌ RT Δ CDF(HL) ∴ ∠ B= ∠ C(全等三角形对应角相等) ∴ AB=AC(等角对等边)
学习目标
• 1.会用“HL”判定两个直角三角形是否全等。 • 2.已知斜边及一直角边,会用尺规画直角三角形。 • 学习重点: • 了解直角三角形全等特殊方法“HL”。并会应用。 • 学习难点: • 已知斜边及一直角边长,画直角三角形。
第2页
抢答
1、全等三角形对应边 ----相---等--,,对应 角----相---等---2、判定三角形全等方法有:
c
一直角边CB=a,斜边AB=c.
分析:首先作出边BC,由∠C为直角能够作出另 一直角边所在射线,由AB=c能够确定点A。
第7页
a
c
画法:1.画∠MCN=90 °.
N
2.在射线CM上取CB=a.
A

三角形全等的判定(SSS)课件(共22张PPT) 人教版初中数学八年级上册

三角形全等的判定(SSS)课件(共22张PPT)  人教版初中数学八年级上册

证明: ∵BB ′=CC ′ ∴BC=B ′C ′ 在△ABC和△A ′B ′C ′中
AB=A ′B ′ AC=A ′C ′
BC=B ′C ′ ∴ △ABC≌△ A ′B ′C ′ (SSS) ∴ ∠A=∠A ′
3. A O
D
C B
E
如图,已知线段AB,CD相交于点O, AD,CB的延长线交于点E,OA=OC, EA=EC,请说明∠A=∠C
分析:根据条件OA=OC,EA=EC。OA,EA和
OC,EC恰好分别是△AOE和△COE的两条
边,故可以构成两个三角形,利用全等
三角形解决
A
O
C
证明:
D
B
E
连接OE,在△AOE和△COE中
AO=CO
OE=OE
EA=EC ∴ △ AOE ≌△ COE (SSS) ∴ ∠A=∠C
第四部分 课程小结
☺ 三边分别相等的两个三角形 全等
探究1 答:不一定全等 • 当满足一个条件时
一条边相等
一个角相等
探究1 • 当满足两个条件时
一个角和一条边相等
3cm 4cm
3cm 4cm
两条边相等
30°
60°
30°
60°
两个角相等
探究2
☺ 先任意画出一个△ABC.再画一个 △A′B′C′,使A′B′=AB, B′C′=BC, C′A′=CA,把画好的 △A′B′C′减下来,放在△ABC 上,它们全等吗?
A
A′
B
B′
C
C′
答: △ABC≌△A′B′C′
思考
探究1
上述六个条件中,有些条件是相关的. 能否在上述六个条件中选择一部分条件, 简捷地判定两个三角形全等呢?

三角形全等的判定ppt课件

三角形全等的判定ppt课件
∴△ABC≌△A1B1C1(AAS)
5.HL(H.L.) 在Rt△ABC与Rt△A1B1C1中,
AB=A1B1(已知)
BC=B1C1(已证) ∴△ABC≌△A1B1C1(HL)
例题精讲
例:已知:如图,点A,C,B,D在同一条直线上,
AC=BD,AM=CN,BM=DN 求证:AM∥CN,BM∥DN.
拓展延伸
8.如图所示,AB=AC,EB=EC,AE的延长线交BC于D,且D
为BC边的中点,那么图中的全等三角形有哪几对?并选
择一对进行证明
△ABD≌△ACD
证明:∵D为BC边的中点
A
∴BD=CD
在△ABD和△ACD中
E
AB=AC
BD=CD
AD=AD
B
D
C
∴ △ABD≌△ACD(SSS)
拓展延伸
8.如图所示,AB=AC,EB=EC,AE的延长线交BC于D,且D
证明:∵AC=BD ∴AC+CB=BD+BC 即AB=CD
M
N
在△AMB和△CND中 AM=CN
BM=DN
A
C
B
D
AB=CD
∴ △AMB≌△CND(SSS)
∴∠A=∠NCD,∠MBA=∠D ∴AM∥CN,BM∥DN
例:如图,A,E,C,F在同一条直线上,AB=FD,BC=DE,
AE=FC
求证:△ABC≌△FDE.
(2)全等三角形对应角相等
PART II 全等三角形的判定 1.SSS(S.S.S.) 在△ABC与△A1B1C1中,
AB=A1B1(已知) BC=B1C1(已知) AC=A1C1(已证)
∴△ABC≌△A1B1C1(SSS)

直角三角形全等判定HL(全国优质课)ppt课件

直角三角形全等判定HL(全国优质课)ppt课件
情况3:不全等
.
15
5.一个锐角及一边对应相等的两个直角三角形. 不一定全等
.
16
例1
已知:如图,在△ABC和△ABD中,AC⊥BC, AD⊥BD, 垂足分别为C,D,AD=BC,求证: △ABC≌△BAD.
证明:∵ AC⊥BC, AD⊥BD
D
∴∠C=∠D=90°
在Rt△ABC和Rt△BAD中
A B BA
并且AB=DE,AP=DQ,∠BAC=∠EDF,
求证:△ABC≌△DEF
A
分析: △ABC≌△DEF
∠BAC=∠EDF, AB=DE,∠B=∠E
B
Rt△ABP≌Rt△DEQ
PC D
AB=DE,AP=DQ
E
QF
已知:如图,在△ABC和△DEF中,AP、DQ分别是高, 并且AB=DE,AP=DQ,∠BAC=∠EDF, 求证:△ABC≌△DEF
M B
⑷ 连接AB.
M B
C
AN
C
△ABC就是所求作的三角形.
.
AN
5
动动手 做一做 比比看
把我们刚画好的直角三角形剪下来,和同桌的比比 看,这些直角三角形有怎样的关系呢?
B
5cm
B′
5cm

A
4cm
C
A′
4cm
C′
Rt△ABC≌ R△ tA′ B′ C′
.
7
已知:如图,在△ABC和△A’B‘C’中, ∠ACB=∠A‘C’B‘=90°,AB=A’B‘, AC=A’C‘
证明:∵AP、DQ是△ABC和△DEF的高
B
C
AD
A
∴ Rt△ABC≌Rt△BAD (HL)

全等三角形ppt课件

全等三角形ppt课件

其他领域的应用在工程领源自中,全等三角形可用于解 决一些复杂的几何问题,例如机构设 计、零件配合等。
在物理学中,全等三角形可用于分析 光的反射、折射等现象,以及解决一 些与角度、长度相关的物理问题。
2024/1/25
在地理学和地质学中,全等三角形可 用于测量地形高度、计算地层厚度等 。
18
05
全等三角形拓展知识
误区二
忽视三角形的边长和角度的对应关系。
2024/1/25
纠正
在判断三角形是否全等时,必须确保边长和角度的 对应关系正确。
误区三
错误使用SSS、SAS、ASA、AAS或HL判定方法。
纠正
熟练掌握并正确应用各种全等三角形的判定方法,注意 判定条件的准确性和完整性。
6
02
全等三角形证明方法
2024/1/25
12
求解角度大小问题
利用全等三角形对应角相等的 性质,通过构造全等三角形来 求解角度大小。
2024/1/25
在复杂图形中,通过寻找或构 造全等三角形,将问题转化为 简单的角度计算。
利用全等三角形的性质进行角 度的平移、旋转等操作,以简 化问题并求解角度大小。
13
判定图形形状问题
利用全等三角形的性质来判断图 形的形状,例如通过证明两个三 角形全等来证明四边形是平行四
7
边角边定理及应用
边角边定理:如果两个三角形有两边和 夹角分别对应相等,则这两个三角形全 等。
在几何图形中,通过已知条件寻找全等 三角形,从而推导其他边的长度或角的 大小。
用于证明两个三角形全等。
2024/1/25
示例:在△ABC和△DEF中,如果AB=DE ,BC=EF,∠B=∠E,则△ABC≌△DEF。

三角形全等的判定观摩课市公开课一等奖省优质课获奖课件

三角形全等的判定观摩课市公开课一等奖省优质课获奖课件
思索
对于两个直角三角形,除了直角相等 条件,还要满足几个条件,这两个直角三 角形就全等了?
A
D
B
C
E
F
第2页
对于两个直角三角形,假如满足,斜
边和一条直角边对应相等,这两个直角三 角形全等吗?
A
D
B
CEF第3页Fra bibliotek探究8
任意画出一个Rt△ABC, 使∠C=900,再画一个Rt△A/B/C/, 使∠C/=900 ,A/B/=AB,B/C/=BC, 把画好Rt△A/B/C/剪下,放到 Rt△ABC上,它们全等吗?
第5页
规律
探究8反应规律是: 有斜边和一条直角边对应相等
两个直角三角形全等(简写成“斜 边、直角边”或“HL”).
第6页
例题解析
例1. 已知: AC⊥BC,BD⊥AD,AC=BD. 求证:BC=AD.
D
C
A
B
第7页
练习
1. 如图,C是路段AB中点,两人从C同时出 发,以相同速度分别 沿两条直线行走,并同 时抵达D,E两地,DA⊥AB,EB⊥AB,D, E与路段AB距离相等吗?为何?
D
A E
C
B
第8页
练习
2. 如图,AB=CD,AE⊥BC,DF⊥BC,
CE=BF. 求证:AE=DF.
C
D
F E
A
B
第9页
小结
1. 学习了HL. 2. 由实践证实HL是真命题.
第10页
作业
书本15页习题11.2第6,7题
第11页
第4页
画法
画一个Rt△A/B/C/,使∠C/=900 ,A/B/=AB, B/C/=BC:
1. 画∠DC/ E= 900 .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全等三角形的判定(一)
晋江市磁灶中学 张火木
导入
小明不小心把家里的玻璃打破了,剩下 三块碎玻璃,要到玻璃店配一个,如果只 拿一块的话,该拿哪一块碎玻璃,才能保 证配回来的玻璃和原来的一样?
做一做
已知两条线段和一个角,以这两条线段为边, 已知两条线段和一个角,以这两条线段为边, 以这个角为这两条边的夹角,画一个三角形。 以这个角为这两条边的夹角,画一个三角形。 1. 画一线段 , AB=4cm 画一线段AB, 2. 画∠MAB= 45° ° 3. 在射线 在射线AM上截取 上截取AC=3cm 上截取 4. 连接 连接BC △ABC就是所求的三角形 就是所求的三角形
AC=DC ∠ACB=∠DCE BC=EC △ACB≌△DCE AB=DE
思考
已知两边一夹角的两个三角形会全等, 已知两边一夹角的两个三角形会全等,那么如果 是两边一对角, 是两边一对角,两个三角形会全等吗 画△ABC和△DEF。使得: ∠ B=∠E=30° 和 。使得: ∠ ° AB=DE=5cm AC=DF=3cm
拓展
• 因铺设电线的需要,要在池塘两侧A、B处各埋设 因铺设电线的需要,要在池塘两侧 、 处各埋设 一根电线杆(如图),因无法直接量出A、 两点 ),因无法直接量出 一根电线杆(如图),因无法直接量出 、B两点 的距离,现有一足够的米尺。请你设计一种方案, 的距离,现有一足够的米尺。请你设计一种方案, 粗略测出A、 两杆之间的距离 两杆之间的距离。 粗略测出 、B两杆之间的距离。
A
D
C
1.要使两个三角形全等,还 要使两个三角形全等, 要使两个三角形全等 要添加什么条件? 要添加什么条件? 如图, = (1)如图,OA=OB, OC=OD . △AOC≌△BOD ≌ (2)如图,BD=CE , AB=AC . 如图, △AEC ≌ △ADB C D A
D
C
O
(1)
B
A
E(2)
把你们所画的三角形剪下来与同桌所画的 三角形进行比较,它们能互相重合吗? 三角形进行比较,它们能互相重合吗?
如图: 在△ABC和△A’B’C’中, △ 和 中 已知AB=A’B’,∠ B=∠B’ 已知 ∠ ∠ BC=B’C’.
C C’
B
A B’ A’
全等三角形的判定方法一: 如果两个三角形有两边及其夹角分别对应相 等,那么这两个三角形全等,简记为SAS A (或边角边) 用符号语言表达为: 用符号语言表达为: 在△ABC与△DEF中 与 中 AB=DE
作业
• 必做题:书本P68 习题19.2第2题 • 选做题:练习册
B
如图所示,根据题目条件 2.如图所示 根据题目条件,判断下面 如图所示 根据题目条件, 的三角形是否全等. 的三角形是否全等. (1) AC=DF,∠C=∠F,BC=EF; ) = , = , = ; (2) BC=BD,∠ABC=∠ABD. ) = , = .
答案: 答案:
(1)全等 (1)全等
设计方案
• 小明的设计方案:先在池塘旁取一个能直 小明的设计方案: 接到达A和 处的点 处的点C,连结AC并延长至 并延长至D 接到达 和B处的点 ,连结 并延长至 并延长至E点 点,使AC=DC,连结 并延长至 点,使 ,连结BC并延长至 BC=EC,连结 ,用米尺测出 的长, 的长, ,连结CD,用米尺测出DE的长 这个长度就等于A, 两点的距离 两点的距离。 这个长度就等于 ,B两点的距离。请你说 明理由。 明理由。 在△ ACB和△DCE中 和 中
A D
300
BC AE Nhomakorabea300
F D

300

E
300
F
结论:两边一对角的两个三角形不一定会全等, 结论:两边一对角的两个三角形不一定会全等, 所以两边一对角不能做为全等三角形的判定方法
今天大家学到了什么?
1.三角形全等的判定 两边和它们的夹 三角形全等的判定,两边和它们的夹 三角形全等的判定 角对应相等的两个三角形全等 (边角边 边角边 或SAS) 两边一对角, 2.两边一对角,两个三角形不一定 两边一对角 全等, 全等,不能当成三角形的判定方法
(2)全等 (2)全等
是等腰梯形ABCD底边 的中点, 底边AB的中点 3.点M是等腰梯形 点 是等腰梯形 底边 的中点, 求证△ 求证△AMD≌△BMC ≌ 证明: 四边形 证明:∵四边形ABCD是等腰梯形 是等腰梯形 等腰梯形的两腰相等) ∴AD=BC (等腰梯形的两腰相等) ∠A=∠B(等腰梯形的两底角相等) = (等腰梯形的两底角相等) ∵点M是AB的中点 是 的中点 ∴AM=BM 在△ADM和△BCM中 和 中 AD=BC, (已证 已证) = , 已证 已证) ∠A=∠B, (已证 = , 已证 AM=BM, (已证 已证) = , 已证 ∴△AMD≌△BMC (S.A.S) ≌
B C D E F
∠B=∠E BC=EF
∴△ABC≌△DEF(SAS) ≌ ( )
例题1 例题1
如图, 如图,在△ABC中,AB=AC,AD平分 中 , 平分 ∠BAC,试说明△ABD≌△ACD ,试说明△ ≌
证明: ∵ AD平分∠BAC, 平分∠ 平分 , ∴ ∠BAD=∠CAD. = . 在△ABD与△ACD中, 与 中 AB=AC,(已知 已知) = , 已知 ∵ ∠BAD=∠CAD,(已证 已证) = , 已证 B AD=AD,(公共边 公共边) = , 公共边 ∴ △ABD≌△ACD(S.A.S.). ≌ ( ).
相关文档
最新文档