数列的概念及简单表示方法
2025届高考数学一轮总复习第六章数列第一节数列的概念与简单表示法
第一节 数列的概念与简单表示法
课标
1.了解数列的概念和表示方法(表格、图象、通项公式、递推公式).
解读
2.了解数列是一种特殊的函数.
强基础 增分策略
知识梳理
1.数列的有关概念
概念
含义
数列的项
按照 确定的顺序 排列的一列数
数列中的 每一个数
数列的通项
数列{an}的第n项an
数列
通项公式
前n项和
如果数列{an}的递推公式满足an+1-an=f(n)的形式,且f(n)可求和,那么就可
以运用累加法an=(an-an-1)+(an-1-an-2)+(an-2-an-3)+…+(a2-a1)+a1,求出数列
{an}的通项公式.
对点训练
1
3 数列{an}中,a1=0,an+1-an= + +1,且
√ √
an=9,则 n=
.
答案 100
1
解析∵an+1-an= + +1
√ √
= √ + 1 − √,
∴an=an-an-1+an-1-an-2+…+a2-a1+a1=√ − -1 + -1 − -2+…+√2 −
√1+0=√-1.∵an=9,即√-1=9,解得 n=100.
考向2.累乘法
-1
· ··
…·
2 3 4
+1
1
1
1
1
1
∴S30=1- + − +…+ −
2
2
3
30
数列的概念及简单表示方法
§6.1 数列的概念及简单表示法1.数列的定义按照一定次序排列起来的一列数叫做数列,数列中的每一个数叫做这个数列的项.2.数列的分类3.数列有三种表示法,它们分别是列表法、图象法和解析法. 4. 数列的通项公式如果数列{a n }的第n 项a n 与n 之间的关系可以用一个函数式a n =f (n )来表示,那么这个公式叫做这个数列的通项公式.5.已知S n ,则a n =⎩⎪⎨⎪⎧S 1 (n =1)S n -S n -1 (n ≥2).1. 判断下面结论是否正确(请在括号中打“√”或“×”)(1)所有数列的第n 项都能使用公式表达.( × ) (2)根据数列的前几项归纳出数列的通项公式可能不止一个.( √ ) (3)数列:1,0,1,0,1,0,…,通项公式只能是a n =1+(-1)n +12.( × )(4)如果数列{a n }的前n 项和为S n ,则对∀n ∈N +,都有a n +1=S n +1-S n . ( √ ) (5)在数列{a n }中,对于任意正整数m ,n ,a m +n =a mn +1,若a 1=1,则a 2=2.( √ ) (6)若已知数列{a n }的递推公式为a n +1=12a n -1,且a 2=1,则可以写出数列{a n }的任何一项.( √ ) 2. 设数列{a n }的前n 项和S n =n 2,则a 8的值为( )A .15B .16C .49D .64 答案 A解析 ∵S n =n 2,∴a 1=S 1=1.当n ≥2时,a n =S n -S n -1=n 2-(n -1)2=2n -1. ∴a n =2n -1,∴a 8=2×8-1=15.3. 已知数列{a n }的前n 项和S n 满足:S n +S m =S n +m ,且a 1=1,那么a 10等于 ( )A .1B .9C .10D .55答案 A解析 ∵S n +S m =S n +m ,a 1=1,∴S 1=1. 可令m =1,得S n +1=S n +1,∴S n +1-S n =1. 即当n ≥1时,a n +1=1,∴a 10=1.4. (2013·课标全国Ⅰ)若数列{a n }的前n 项和S n =23a n +13,则{a n }的通项公式是a n =_____.答案 (-2)n -1解析 当n =1时,a 1=1;当n ≥2时,a n =S n -S n -1=23a n -23a n -1,故a n a n -1=-2,故a n =(-2)n -1.当n =1时,也符合a n =(-2)n -1. 综上,a n =(-2)n -1.5. (2013·安徽)如图,互不相同的点A1,A 2,…,A n ,…和B 1,B 2,…,B n …分别在角O 的两条边上,所有A n B n 相互平行,且所有梯形A n B n B n +1A n +1的面积均相等.设OA n =a n ,若a 1=1,a 2=2,则数列{a n }的通项公式是________.答案 a n =3n -2由相似三角形面积比是相似比的平方知OA 2n +OA 2n +2=2OA 2n +1,即a 2n +a 2n +2=2a 2n +1, 因此{a 2n }为等差数列且a 2n =a 21+3(n -1)=3n -2,故a n =3n -2.题型一 由数列的前几项求数列的通项 例1 写出下面各数列的一个通项公式:(1)3,5,7,9,…;(2)12,34,78,1516,3132,…; (3)-1,32,-13,34,-15,36,…;(4)3,33,333,3 333,….思维启迪 先观察各项的特点,然后归纳出其通项公式,要注意项与项数之间的关系,项与前后项之间的关系.解 (1)各项减去1后为正偶数,所以a n =2n +1.(2)每一项的分子比分母少1,而分母组成数列21,22,23,24,…,所以a n =2n -12n .(3)奇数项为负,偶数项为正,故通项公式中含因子(-1)n ;各项绝对值的分母组成数列1,2,3,4,…;而各项绝对值的分子组成的数列中,奇数项为1,偶数项为3,即奇数项为2-1,偶数项为2+1,所以a n =(-1)n ·2+(-1)nn.也可写为a n=⎩⎪⎨⎪⎧-1n ,n 为正奇数,3n ,n 为正偶数.(4)将数列各项改写为93,993,9993,9 9993,…,分母都是3,而分子分别是10-1,102-1,103-1,104-1,…,所以a n =13(10n -1).思维升华 根据所给数列的前几项求其通项时,需仔细观察分析,抓住其几方面的特征:分式中分子、分母的各自特征;相邻项的联系特征;拆项后的各部分特征;符号特征,应多进行对比、分析,从整体到局部多角度观察、归纳、联想.(1)数列-1,7,-13,19,…的一个通项公式是a n =________.(2)数列{a n }的前4项是32,1,710,917,则这个数列的一个通项公式是a n =________.答案 (1)(-1)n ·(6n -5) (2)2n +1n 2+1解析 (1)符号问题可通过(-1)n 或(-1)n +1表示,其各项的绝对值的排列规律为后面的数的绝对值总比前面的数的绝对值大6,故通项公式为a n =(-1)n (6n -5).(2)数列{a n }的前4项可变形为2×1+112+1,2×2+122+1,2×3+132+1,2×4+142+1,故a n =2n +1n 2+1.题型二 由数列的前n 项和S n 求数列的通项例2 已知下面数列{a n }的前n 项和S n ,求{a n }的通项公式:(1)S n =2n 2-3n ; (2)S n =3n +b .思维启迪 当n =1时,由a 1=S 1,求a 1;当n ≥2时,由a n =S n -S n -1消去S n ,得a n +1与a n 的关系.转化成由递推关系求通项. 解 (1)a 1=S 1=2-3=-1, 当n ≥2时,a n =S n -S n -1=(2n 2-3n )-[2(n -1)2-3(n -1)]=4n -5, 由于a 1也适合此等式,∴a n =4n -5. (2)a 1=S 1=3+b , 当n ≥2时,a n =S n -S n -1 =(3n +b )-(3n -1+b )=2·3n -1.当b =-1时,a 1适合此等式. 当b ≠-1时,a 1不适合此等式. ∴当b =-1时,a n =2·3n -1;当b ≠-1时,a n =⎩⎪⎨⎪⎧3+b , n =1,2·3n -1, n ≥2.思维升华 数列的通项a n 与前n 项和S n 的关系是a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.当n =1时,a 1若适合S n -S n -1,则n =1的情况可并入n ≥2时的通项a n ;当n =1时,a 1若不适合S n -S n -1,则用分段函数的形式表示.已知数列{a n }的前n 项和S n =3n 2-2n +1,则其通项公式为________________.答案 a n =⎩⎪⎨⎪⎧2,n =16n -5,n ≥2解析 当n =1时,a 1=S 1=3×12-2×1+1=2; 当n ≥2时,a n =S n -S n -1=3n 2-2n +1-[3(n -1)2-2(n -1)+1]=6n -5,显然当n =1时,不满足上式.故数列的通项公式为a n =⎩⎪⎨⎪⎧2,n =1,6n -5,n ≥2.题型三 由数列的递推关系求数列的通项公式例3 (1)设数列{a n }中,a 1=2,a n +1=a n +n +1,则通项a n =________.(2)数列{a n }中,a 1=1,a n +1=3a n +2,则它的一个通项公式为a n =________.(3)在数列{a n }中,a 1=1,前n 项和S n =n +23a n .则{a n }的通项公式为________.思维启迪 观察递推式的特点,可以利用累加(乘)或迭代法求通项公式. 答案 (1)n (n +1)2+1 (2)2×3n -1-1 (3)a n =n (n +1)2解析 (1)由题意得,当n ≥2时,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=2+(2+3+…+n )=2+(n -1)(2+n )2=n (n +1)2+1.又a 1=2=1×(1+1)2+1,符合上式,因此a n =n (n +1)2+1.(2)方法一 (累乘法)a n +1=3a n +2,即a n +1+1=3(a n +1),即a n +1+1a n +1=3,所以a 2+1a 1+1=3,a 3+1a 2+1=3,a 4+1a 3+1=3,…,a n +1+1a n +1=3. 将这些等式两边分别相乘得a n +1+1a 1+1=3n .因为a 1=1,所以a n +1+11+1=3n ,即a n +1=2×3n -1(n ≥1), 所以a n =2×3n -1-1(n ≥2), 又a 1=1也满足上式,故数列{a n }的一个通项公式为a n =2×3n -1-1. 方法二 (迭代法)a n +1=3a n +2,即a n +1+1=3(a n +1)=32(a n -1+1)=33(a n -2+1)=…=3n (a 1+1)=2×3n (n ≥1), 所以a n =2×3n -1-1(n ≥2), 又a 1=1也满足上式,故数列{a n }的一个通项公式为a n =2×3n -1-1. (3)由题设知,a 1=1.当n >1时,a n =S n -S n -1=n +23a n -n +13a n -1.∴a na n -1=n +1n -1.∴a na n -1=n +1n -1,…,a 4a 3=53,a 3a 2=42,a 2a 1=3.以上n -1个式子的等号两端分别相乘,得到a n a 1=n (n +1)2,又∵a 1=1,∴a n =n (n +1)2.思维升华 已知数列的递推关系,求数列的通项时,通常用累加、累乘、构造法求解. 当出现a n =a n -1+m 时,构造等差数列;当出现a n =xa n -1+y 时,构造等比数列;当出现a n =a n -1+f (n )时,用累加法求解;当出现a na n -1=f (n )时,用累乘法求解.(1)已知数列{a n }满足a 1=1,a n =n -1na n -1(n ≥2),则a n =________.(2)已知数列{a n }的前n 项和为S n ,且S n =2a n -1(n ∈N +),则a 5等于 ( ) A .-16 B .16 C .31 D .32 答案 (1)1n(2)B解析 (1)∵a n =n -1na n -1 (n ≥2),∴a n -1=n -2n -1a n -2,…,a 2=12a 1. 以上(n -1)个式子相乘得 a n =a 1·12·23·…·n -1n =a 1n =1n.(2)当n =1时,S 1=2a 1-1,∴a 1=1. 当n ≥2时,S n -1=2a n -1-1, ∴a n =2a n -2a n -1, ∴a n =2a n -1.∴{a n }是等比数列且a 1=1,q =2, 故a 5=a 1×q 4=24=16.数列问题中的函数思想典例:(12分)已知数列{a n }.(1)若a n =n 2-5n +4, ①数列中有多少项是负数?②n 为何值时,a n 有最小值?并求出最小值.(2)若a n =n 2+kn +4且对于n ∈N +,都有a n +1>a n .求实数k 的取值范围.思维启迪 (1)求使a n <0的n 值;从二次函数看a n 的最小值.(2)数列是一类特殊函数,通项公式可以看作相应的解析式f (n )=n 2+kn +4.f (n )在N +上单调递增,但自变量不连续.从二次函数的对称轴研究单调性. 规范解答解 (1)①由n 2-5n +4<0,解得1<n <4. ∵n ∈N +,∴n =2,3.∴数列中有两项是负数,即为a 2,a 3. [4分]②∵a n=n 2-5n +4=⎝ ⎛⎭⎪⎫n -522-94的对称轴方程为n =52.又n ∈N +,∴当n =2或n =3时,a n 有最小值,其最小值为a 2=a 3=-2.[8分](2)由a n +1>a n 知该数列是一个递增数列,又因为通项公式a n =n 2+kn +4,可以看作是关于n 的二次函数,考虑到n ∈N +,所以-k 2<32,即得k >-3.[12分]温馨提醒 (1)本题给出的数列通项公式可以看做是一个定义在正整数集N +上的二次函数,因此可以利用二次函数的对称轴来研究其单调性,得到实数k 的取值范围,使问题得到解决.(2)在利用二次函数的观点解决该题时,一定要注意二次函数对称轴位置的选取. (3)易错分析:本题易错答案为k >-2.原因是忽略了数列作为函数的特殊性,即自变量是正整数.方法与技巧1. 求数列通项或指定项.通常用观察法(对于交错数列一般用(-1)n 或(-1)n +1来区分奇偶项的符号);已知数列中的递推关系,一般只要求写出数列的前几项,若求通项可用归纳、猜想和转化的方法.2. 强调a n 与S n 的关系:a n =⎩⎪⎨⎪⎧S 1 (n =1)S n -S n -1 (n ≥2).3. 已知递推关系求通项:对这类问题的要求不高,但试题难度较难把握.一般有二种常见思路:(1)算出前几项,再归纳、猜想;(2)利用累加或累乘法可求数列的通项公式.失误与防范1. 数列是一种特殊的函数,在利用函数观点研究数列时,一定要注意自变量的取值,如数列a n =f (n )和函数y =f (x )的单调性是不同的. 2. 数列的通项公式不一定唯一.A 组 专项基础训练 (时间:40分钟)一、选择题1. 数列0,1,0,-1,0,1,0,-1,…的一个通项公式是a n 等于( )A.(-1)n +12B .cosn π2C .cosn +12π D .cosn +22π答案 D解析 令n =1,2,3,…逐一验证四个选项,易得D 正确.2. 数列{a n }的前n 项和为S n ,若a 1=1,a n +1=3S n (n ≥1),则a 6等于 ( )A .3×44B .3×44+1C .45D .45+1答案 A解析 当n ≥1时,a n +1=3S n ,则a n +2=3S n +1, ∴a n +2-a n +1=3S n +1-3S n =3a n +1,即a n +2=4a n +1, ∴该数列从第二项开始是以4为公比的等比数列.又a 2=3S 1=3a 1=3,∴a n =⎩⎪⎨⎪⎧1(n =1),3×4n -2(n ≥2).∴当n =6时,a 6=3×46-2=3×44.3. 若数列{a n }的通项公式是a n =(-1)n (3n -2),则a 1+a 2+…+a 10等于( )A .15B .12C .-12D .-15 答案 A解析 由题意知,a 1+a 2+…+a 10=-1+4-7+10+…+(-1)10×(3×10-2)=(-1+4)+(-7+10)+…+[(-1)9×(3×9-2)+(-1)10×(3×10-2)] =3×5=15.4. 已知数列{a n }的通项公式为a n =(49)n -1-(23)n -1,则数列{a n }( )A .有最大项,没有最小项B .有最小项,没有最大项C .既有最大项又有最小项D .既没有最大项也没有最小项 答案 C解析 ∵数列{a n }的通项公式为a n =(49)n -1-(23)n -1,令t =(23)n -1,t ∈(0,1],t 是减函数,则a n=t 2-t =(t -12)2-14, 由复合函数单调性知a n 先递增后递减. 故有最大项和最小项,选C.5. 若S n 为数列{a n }的前n 项和,且S n =nn +1,则1a 5等于 ( )A.56B.65C.130 D .30答案 D解析 当n ≥2时,a n =S n -S n -1=nn +1-n -1n=1n (n +1),所以1a 5=5×6=30.二、填空题 6. 已知数列{n 2n 2+1},则0.98是它的第________项.答案 7解析 n 2n 2+1=0.98=4950,∴n =7.7. 数列{a n }中,a 1=1,对于所有的n ≥2,n ∈N +,都有a 1·a 2·a 3·…·a n =n 2,则a 3+a 5=_____.答案6116解析 由题意知:a 1·a 2·a 3·…·a n -1=(n -1)2, ∴a n =(nn -1)2(n ≥2),∴a 3+a 5=(32)2+(54)2=6116. 8. 已知{a n }是递增数列,且对于任意的n ∈N +,a n =n 2+λn 恒成立,则实数λ的取值范围是________. 答案 (-3,+∞) 解析 方法一 (定义法)因为{a n }是递增数列,所以对任意的n ∈N +,都有a n +1>a n , 即(n +1)2+λ(n +1)>n 2+λn ,整理,得2n +1+λ>0,即λ>-(2n +1).(*)因为n ≥1,所以-(2n +1)≤-3,要使不等式(*)恒成立,只需λ>-3. 方法二 (函数法)设f (n )=a n =n 2+λn ,其图象的对称轴为直线n =-λ2,要使数列{a n }为递增数列,只需使定义在正整数上的函数f (n )为增函数, 故只需满足f (1)<f (2),即λ>-3. 三、解答题9. 数列{a n }的通项公式是a n =n 2-7n +6.(1)这个数列的第4项是多少?(2)150是不是这个数列的项?若是这个数列的项,它是第几项? (3)该数列从第几项开始各项都是正数? 解 (1)当n =4时,a 4=42-4×7+6=-6. (2)令a n =150,即n 2-7n +6=150, 解得n =16或n =-9(舍去), 即150是这个数列的第16项.(3)令a n =n 2-7n +6>0,解得n >6或n <1(舍). 故数列从第7项起各项都是正数.10.已知数列{a n }的通项公式为a n =9n (n +1)10n,试判断此数列是否有最大项?若有,第几项最大,最大项是多少?若没有,说明理由. 解 a n +1-a n =9n +1(n +2)10n +1-9n (n +1)10n =9n 10n ·8-n10,当n <8时,a n +1-a n >0,即a n +1>a n ; 当n =8时,a n +1-a n =0,即a n +1=a n ; 当n >8时,a n +1-a n <0,即a n +1<a n . 则a 1<a 2<a 3<…<a 8=a 9>a 10>a 11>…,故数列{a n }有最大项,为第8项和第9项, 且a 8=a 9=98×9108=99108.B 组 专项能力提升 (时间:30分钟)1. 跳格游戏:如图,人从格子外只能进入第1个格子,在格子中每次可向前跳1格或2格,那么人从格子外跳到第8个格子的方法种数为( )A .8种B .13种C .21种D .34种 答案 C解析 设跳到第n 个格子的方法种数有a n ,则到达第n 个格子的方法有两类: ①向前跳1格到达第n 个格子,方法种数为a n -1;②向前跳2格到达第n 个格子,方法种数为a n -2,则a n =a n -1+a n -2, 由数列的递推关系得到数列的前8项分别是1,1,2,3,5,8,13,21. ∴跳到第8个格子的方法种数是21.故选C.2. 数列{a n }满足a n +a n +1=12(n ∈N +),a 2=2,S n 是数列{a n }的前n 项和,则S 21为( )A .5 B.72 C.92 D.132答案 B解析 ∵a n +a n +1=12(n ∈N +),∴a 1=12-a 2=12-2,a 2=2,a 3=12-2,a 4=2,…,故a 2n =2,a 2n -1=12-2.∴S 21=10×12+a 1=5+12-2=72.3. 若数列{n (n +4)(23)n }中的最大项是第k 项,则k =________.答案 4解析由题意得⎩⎪⎨⎪⎧k (k +4)(23)k ≥(k +1)(k +5)(23)k +1k (k +4)(23)k≥(k -1)(k +3)(23)k -1,所以⎩⎪⎨⎪⎧k 2≥10k 2-2k -9≤0,由k ∈N +可得k =4.4. 已知数列{a n }满足前n 项和S n=n 2+1,数列{b n }满足b n =2a n +1,且前n 项和为T n ,设c n =T 2n +1-T n .(1)求数列{b n }的通项公式; (2)判断数列{c n }的增减性.解 (1)a 1=2,a n =S n -S n -1=2n -1(n ≥2).∴b n=⎩⎪⎨⎪⎧23(n =1)1n (n ≥2).(2)∵c n =b n +1+b n +2+…+b 2n +1 =1n +1+1n +2+…+12n +1, ∴c n +1-c n =12n +2+12n +3-1n +1=12n +3-12n +2=-1(2n +3)(2n +2)<0, ∴{c n }是递减数列.5. 设数列{a n }的前n 项和为S n .已知a 1=a ,a n +1=S n +3n ,n ∈N +.(1)设b n =S n -3n ,求数列{b n }的通项公式; (2)若a n +1≥a n ,n ∈N +,求a 的取值范围. 解 (1)依题意,S n +1-S n =a n +1=S n +3n ,即S n +1=2S n +3n ,由此得S n +1-3n +1=2(S n -3n ). 即b n +1=2b n ,又b 1=S 1-3=a -3,因此,所求通项公式为b n =S n -3n =(a -3)2n -1,n ∈N +. (2)由(1)知S n =3n +(a -3)2n -1,n ∈N +, 于是,当n ≥2时,a n =S n -S n -1=3n +(a -3)2n -1-3n -1-(a -3)2n -2=2×3n -1+(a -3)2n -2,a n +1-a n =4×3n -1+(a -3)2n -2=2n -2[12(32)n -2+a -3], 当n ≥2时,a n +1≥a n ⇒12(32)n -2+a -3≥0⇒a ≥-9.又a 2=a 1+3>a 1.综上,所求的a 的取值范围是[-9,+∞).。
数列的概念与简单表示法
第六章 数 列§6.1 数列的概念与简单表示法考点梳理1.数列的概念(1)定义:按照一定顺序排列着的一列数称为数列,数列中的每一个数叫做这个数列的________.数列中的每一项都和它的序号有关,排在第一位的数称为这个数列的第1项(通常也叫做__________),排在第n 位的数称为这个数列的第n 项.所以,数列的一般形式可以写成__________,其中a n 是数列的第n 项,叫做数列的通项.常把一般形式的数列简记作{a n }.(2)通项公式:如果数列{a n }的__________与序号__________之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.(3)从函数的观点看,数列可以看作是一个定义域为正整数集N *(或它的有限子集{1,2,3,…,n })的函数(离散的),当自变量从小到大依次取值时所对应的一列________.(4)数列的递推公式:如果已知数列的第1项(或前几项),且从第二项(或某一项)开始的任一项__________与它的前一项__________ (或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式.(5)数列的表示方法有__________、__________、__________、__________. 2.数列的分类(1)数列按项数是有限还是无限来分,分为__________、__________.(2)按项的增减规律分为__________、__________、__________和__________.递增数列⇔a n +1______a n ;递减数列⇔a n +1_____a n ;常数列⇔a n +1______a n .递增数列与递减数列统称为__________.3.数列前n 项和S n 与a n 的关系已知S n ,则a n =⎩⎪⎨⎪⎧(n =1)_________,(n ≥2)_________.自查自纠:1.(1)项 首项 a 1,a 2,a 3,…,a n ,… (2)第n 项 n (3)函数值 (4)a n a n -1(5)通项公式法(解析式法) 列表法 图象法 递推公式法 2.(1)有穷数列 无穷数列 (2)递增数列 递减数列 摆动数列 常数列 > < = 单调数列 3.S 1 S n -S n -1典型例题讲练类型一 数列的通项公式例题1 根据下面各数列前几项的值,写出数列的一个通项公式: (1)-1,7,-13,19,…; (2)23,415,635,863,1099,…; (3)12,2,92,8,252,…; (4)5,55,555,5 555,….解:(1)偶数项为正,奇数项为负,故通项公式正负性可用(-1)n 调节,观察各项的绝对值,后一项的绝对值总比它前一项的绝对值大6,故数列的一个通项公式为a n =(-1)n (6n -5).(2)这是一个分数数列,其分子构成偶数数列,而分母可分解为1×3,3×5,5×7,7×9,9×11,…,每一项都是两个相邻奇数的乘积.故数列的一个通项公式为a n =2n(2n -1)(2n +1).(3)数列的各项,有的是分数,有的是整数,可将数列的各项都统一成分数再观察.即12,42,92,162,252,…,故数列的一个通项公式为a n =n 22. (4)将原数列改写为59×9,59×99,59×999,…,易知数列9,99,999,…的通项为10n-1,故数列的一个通项公式为a n =59(10n -1).变式1 写出下列数列的一个通项公式:(1)-1,12,-13,14,-15,…;(2)3,5,9,17,33,…; (3)23,-1,107,-179,2611,…. (4)1,2,2,4,3,8,4,16,….解:(1)a n =(-1)n ·1n ;(2)a n =2n +1;(3)由于-1=-55,故分母为3,5,7,9,11,…,即{2n +1},分子为2,5,10,17,26,…,即{n 2+1}.符号看作各项依次乘1,-1,1,-1,…,即{(-1)n +1},故a n =(-1)n +1·n 2+12n +1. (4)观察数列{a n }可知,奇数项成等差数列,偶数项成等比数列,∴a n =⎩⎨⎧n +12(n 为奇数),2n 2(n 为偶数).类型二 由前n 项和公式求通项公式例题2 (1)若数列{a n }的前n 项和S n =n 2-10n ,则此数列的通项公式为a n =______________.(2)若数列{a n }的前n 项和S n =2n +1,则此数列的通项公式为a n = .解:(1)当n =1时,a 1=S 1=1-10=-9; 当n ≥2时,a n =S n -S n -1=n 2-10n -[(n -1)2-10(n -1)]=2n -11. 当n =1时,2×1-11=-9=a 1.∴a n =2n -11. 故填2n -11.(2)当n =1时,a 1=S 1=21+1=3; 当n ≥2时,a n =S n -S n -1=(2n +1)-(2n -1+1) =2n -2n -1=2n -1.综上有 a n =⎩⎪⎨⎪⎧3(n =1),2n -1(n ≥2).故填⎩⎪⎨⎪⎧3(n =1),2n -1(n ≥2).变式2 已知下列数列{a n }的前n 项和S n ,分别求它们的通项公式a n . (1)S n =2n 2-3n ; (2)S n =3n +b.解:(1)a 1=S 1=2-3=-1,当n ≥2时,a n =S n -S n -1=(2n 2-3n )-[2(n -1)2-3(n -1)]=4n -5,a 1也适合此等式,∴a n =4n -5. (2)a 1=S 1=3+b , 当n ≥2时,a n =S n -S n -1 =(3n +b )-(3n -1+b )=2·3n -1. 当b =-1时,a 1适合此等式. 当b ≠-1时,a 1不适合此等式. ∴当b =-1时,a n =2·3n -1;当b ≠-1时,a n =⎩⎪⎨⎪⎧3+b ,n =1,2·3n -1,n ≥2.类型三 由递推公式求通项公式例题3 写出下面各数列{a n }的通项公式.(1)a 1=2,a n +1=a n +n +1;(2)a 1=1,前n 项和S n =n +23a n;(3)a 1=1,a n +1=3a n +2.解:(1)由题意得,当n ≥2时,a n -a n -1=n , ∴a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=2+(2+3+…+n )=2+(n -1)(2+n )2=n (n +1)2+1.又a 1=2=1×(1+1)2+1,适合上式,因此a n =n (n +1)2+1.(2)由题设知,a 1=1. 当n ≥2时,a n =S n -S n -1=n +23a n -n +13a n -1. ∴a n a n -1=n +1n -1. ∴a na n -1=n +1n -1,…,a 4a 3=53,a 3a 2=42,a 2a 1=3.以上n -1个式子的等号两端分别相乘, 得到a n a 1=n (n +1)2.又∵a 1=1,∴a n =n (n +1)2.(3)解法一:(累乘法)a n +1=3a n +2,得a n +1+1=3(a n +1),即a n +1+1a n +1=3,∴a 2+1a 1+1=3,a 3+1a 2+1=3,a 4+1a 3+1=3,…,a n +1+1a n +1=3. 将这些等式两边分别相乘得a n +1+1a 1+1=3n .∵a 1=1,∴a n +1+11+1=3n ,即a n +1=2×3n -1(n ≥1), ∴a n =2×3n -1-1(n ≥2), 又a 1=1也适合上式,故数列{a n }的一个通项公式为a n =2×3n -1-1. 解法二:(迭代法) a n +1=3a n +2,即a n +1+1=3(a n +1)=32(a n -1+1)=33(a n -2+1)=…=3n (a 1+1)=2×3n (n ≥1), ∴a n =2×3n -1-1(n ≥2),又a 1=1也满足上式,故数列{a n }的一个通项公式为a n =2×3n -1-1.变式3 写出下面各递推公式表示的数列{a n }的通项公式.(1)a 1=2,a n +1=a n +1n (n +1);(2)a 1=1,a n +1=2n a n ; (3)a 1=1,a n +1=2a n +1.解:(1)∵当n ≥2时,a n -a n -1=1n (n -1)=1n -1-1n,∴当n ≥2时,a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=⎝ ⎛⎭⎪⎫1n -1-1n +⎝ ⎛⎭⎪⎫1n -2-1n -1+…+⎝⎛⎭⎫12-13+⎝⎛⎭⎫1-12+2=3-1n . 当n =1时,适合.故a n =3-1n .(2)∵a n +1a n =2n ,∴a 2a 1=21,a 3a 2=22,…,a na n -1=2n -1, 将这n -1个等式叠乘, 得a n a 1=21+2+…+(n -1)=2n (n -1)2,∴a n =2n (n -1)2.当n =1时,适合.故a n =2n (n -1)2.(3)由题意知a n +1+1=2(a n +1),∴数列{a n +1}是以2为首项,2为公比的等比数列,∴a n +1=2n ,∴a n =2n -1.类型四 数列通项的性质例题4 已知数列{a n },且a n =(n +1)⎝⎛⎭⎫1011n(n ∈N *).求数列{a n }的最大项.解:因为a n =(n +1)⎝⎛⎭⎫1011n 是积幂形式的式子且a n >0,所以可用作商法比较a n 与a n -1的大小.解:令a na n -1≥1(n ≥2), 即(n +1)⎝⎛⎭⎫1011nn ·⎝⎛⎭⎫1011n -1≥1,整理得n +1n ≥1110,解得n ≤10.令a na n +1≥1,即(n +1)⎝⎛⎭⎫1011n (n +2)⎝⎛⎭⎫1011n +1≥1,整理得n +1n +2≥1011,解得n ≥9.∴从第1项到第9项递增,从第10项起递减.故a 9=a 10=1010119最大.变式4 数列{a n }的通项a n =nn 2+90,则数列{a n }中的最大项是( )A .310B .19 C.119 D.1060解:易得a n =1n +90n ,运用基本不等式得,1n +90n ≤1290,由于n ∈N *,不难发现当n=9或10时,a n =119最大.故选C.方法规律总结1.已知数列的前几项,求数列的通项公式,应从以下几方面考虑:(1)如果符号正负相间,则符号可用(-1)n 或(-1)n +1来调节.(2)分式形式的数列,分子和分母分别找通项,并充分借助分子和分母的关系来解决. (3)对于比较复杂的通项公式,要借助于等差数列、等比数列和其他方法来解决.2.a n =⎩⎪⎨⎪⎧S 1(n =1),S n -S n -1(n ≥2),注意a n =S n -S n -1的条件是n ≥2,还须验证a 1是否符合a n (n ≥2),是则合并,否则写成分段形式.3.已知递推关系求通项掌握先由a 1和递推关系求出前几项,再归纳、猜想a n 的方法,以及“累加法”“累乘法”等.(1)已知a 1且a n -a n -1=f (n ),可以用“累加法”得: a n =a 1+f (2)+f (3)+…+f (n -1)+f (n ).(2)已知a 1且a na n -1=f (n ),可以用“累乘法”得:a n =a 1·f (2)·f (3)·…·f (n -1)·f (n ).注:以上两式均要求{f (n )}易求和或积. 4.数列的简单性质(1)单调性:若a n +1>a n ,则{a n }为递增数列;若a n +1<a n ,则{a n }为递减数列.(2)周期性:若a n +k =a n (n ∈N *,k 为非零正整数),则{a n }为周期数列,k 为{a n }的一个周期.(3)最大值与最小值:若⎩⎪⎨⎪⎧a n ≥a n +1,a n ≥a n -1, 则a n 最大;若⎩⎪⎨⎪⎧a n ≤a n +1,a n ≤a n -1, 则a n 最小.课后练习1.1,2,7,10,13,…中,219是这个数列的( ) A .第16项 B .第24项 C .第26项 D .第28项解:观察a 1=1=1,a 2=2=4,a 3=7,a 4=10,a 5=13,…,所以a n =3n -2.令a n =3n -2=219=76,得n =26.故选C.2.数列{a n }的前n 项积为n 2,那么当n ≥2时,a n =( )A .2n -1B .n 2C.(n +1)2n 2D.n 2(n -1)2解:设数列{a n }的前n 项积为T n ,则T n =n 2,当n ≥2时,a n =T n T n -1=n 2(n -1)2.故选D.3.数列{a n }满足a n +1+a n =2n -3,若a 1=2,则a 8-a 4=( ) A .7 B .6 C .5 D .4解:依题意得(a n +2+a n +1)-(a n +1+a n )=[2(n +1)-3]-(2n -3),即a n +2-a n =2,∴a 8-a 4=(a 8-a 6)+(a 6-a 4)=2+2=4.故选D.4.已知数列{a n }的前n 项和S n =2a n -1,则满足a nn ≤2的正整数n 的集合为( )A .{1,2}B .{1,2,3,4}C .{1,2,3}D .{1,2,4}解:B5.在数列{a n }中,a 1=2,a n +1=a n +lg ⎝⎛⎭⎫1+1n ,则a n 的值为( ) A .2+lg nB .2+(n -1)lg nC .2+n lg nD .1+n lg n解法一:∵a n +1-a n =lg n +1n,∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1 =lgn n -1+lg n -1n -2+…+lg 21+2=lg ⎝ ⎛⎭⎪⎫n n -1·n -1n -2·…·32·21+2=lg n +2. 解法二:a n +1=a n +lg(n +1)-lg n ,a n +1-lg(n +1)=a n -lg n ,所以数列{a n -lg n }是常数列,a n -lg n =a 1-lg1=2,a n =2+lg n.故选A.6.若数列{a n }满足a 1=2,a n +1a n =a n -1,则a 2017的值为( )A .-1 B.12C .2D .3解:根据题意,∵数列{a n }满足a 1=2,a n +1a n =a n -1,∴a n +1=1-1a n ,∴a 2=12,a 3=-1,a 4=2,…,可知数列的周期为3,∵2017=3×672+1,∴a 2017=a 1=2.故选C.7.已知数列{a n }满足a s ·t =a s a t (s ,t ∈N *),且a 2=2,则a 8=________.解:令s =t =2,则a 4=a 2×a 2=4,令s =2, t =4,则a 8=a 2×4=a 2×a 4=8.故填8. 8.下列关于星星图案的个数构成一个数列,该数列的一个通项公式是a n =________.解:从题图中可观察星星的个数构成规律,n=1时,有1个;n=2时,有3个;n=3时,有6个;n=4时,有10个;…,∴a n=1+2+3+4+…+n=n(n+1)2.故填n(n+1)2.9.若数列{a n}满足1a n+1-pa n=0,n∈N*,p为非零常数,则称数列{a n}为“梦想数列”.已知正项数列{1b n}为“梦想数列”,且b1b2b3…b99=299,则b8+b92的最小值是________.解:4依题意可得b n+1=pb n,则数列{b n}为等比数列.又b1b2b3…b99=299=b9950,则b50=2. b8+b92≥2b8·b92=2b50=4,当且仅当b8=b92,即该数列为常数列时取等号.10.已知数列{a n}的前n项和为S n.(1)若S n=(-1)n+1·n,求a5+a6及a n;(2)若S n=3n+2n+1,求a n.解:(1)a5+a6=S6-S4=(-6)-(-4)=-2,当n=1时,a1=S1=1;当n≥2时,a n=S n-S n-1=(-1)n+1·n-(-1)n·(n-1)=(-1)n+1·[n+(n-1)]=(-1)n+1·(2n-1), a1适合此式,∴a n=(-1)n+1·(2n-1).(2)当n=1时,a1=S1=6;当n≥2时,a n=S n-S n-1=(3n+2n+1)-[3n-1+2(n-1)+1]=2·3n -1+2,a 1不适合此式,∴a n =⎩⎪⎨⎪⎧6,n =1,2·3n -1+2,n ≥2.。
数列的概念及简单表示法(高三一轮复习)
所以数列
S 2
n
是首项为S
2 1
=a
2 1
=1,公差为1的等差数列,所以S
2 n
=n,所以Sn=
n
(n∈N*).
数学 N 必备知识 自主学习 关键能力 互动探究
— 20 —
命题点2 由数列的递推公式求通项公式
考向1 累加法
例2
设数列
a
n
满足a1=1,且an+1-an=1(n∈N*),则数列
1 3
an+1,所以a2=3S1=3×
16 3
=16.当n≥2时,有an=Sn-Sn-1
=13an+1-13an,即an+1=4an.
所以从第二项起,数列an为首项为16,公比为4的等比数列,所以an= 4n(n≥2).
经检验,an=4n对n=1不成立,
所以an=136,n=1, 4n,n≥2.
数学 N 必备知识 自主学习 关键能力 互动探究
,所以a2=
4 2-a1
=
4 2-4
=-2,a3=
4 2-a2
=
4 2+2
=1,a4=
4 2-a3
=
4 2-1
=4,…,所以数列
a
n
是以3为周期的周期数列,又2
022=
673×3+3,所以a2 022=a673×3+3=1.
数学 N 必备知识 自主学习 关键能力 互动探究
— 12 —
4.(易错题)若数列
— 7—
4.数列的表示法 数列有三种表示法,它们分别是 8 列表法 、图象法和 9 解析法 .
数学 N 必备知识 自主学习 关键能力 互动探究
— 8—
常用结论► (1)数列是按一定“次序”排列的一列数,一个数列不仅与构成它的“数”有 关,还与这些“数”的排列顺序有关. (2)项与项数的概念:数列的项是指数列中某一确定的数,而项数是指数列的项 对应的位置序号. (3)若数列{an}的前n项和为Sn,则数列{an}的通项公式为an=SS1n,-nS=n-11,,n≥2.
高考数学知识点:数列的概念与简单表示法
高考数学知识点:数列的概念与简单表示法1500字数列是指按照一定规律排列的数字集合。
在高考数学中,数列是一个重要的知识点,它不仅会在选择题和填空题中出现,还会涉及到解答题的证明和计算。
本文将从数列的概念、简单表示法、常见数列以及数列的应用等方面,详细介绍高考数学数列知识点。
一、数列的概念数列中的数字按照一定的顺序排列,每个数字依次被称为数列的项。
一般来说,数列用字母表示,如a₁, a₂, a₃, ...,其中a₁表示数列的第一项,a₂表示数列的第二项,以此类推。
数列中的项可以是整数、分数或者实数,也可以是变量。
数列可以分为等差数列和等比数列两种。
等差数列是指相邻的两项之差都是一常数的数列,等差数列的通项公式一般为an = a₁ + (n-1)d,其中a₁表示首项,d表示公差,n表示项数。
等比数列是指相邻的两项之比都是一常数的数列,等比数列的通项公式一般为an = a₁ * r^(n-1),其中a₁表示首项,r表示公比,n表示项数。
二、数列的简单表示法在高考数学中,常见的数列表示法有两种:通项公式和递推公式。
通项公式是指通过数列的第n项表示数列的任意一项,递推公式是指通过数列的前一项表示数列的后一项。
以等差数列为例,该数列的递推公式为an = an-1 + d,表示每一项都是前一项与公差之和。
而通项公式为an = a₁ + (n-1)d,表示数列的任意一项可以通过项数和公差计算得出。
另外,数列也可以通过数列的前几项给出,例如{1, 2, 3, ...}表示自然数列,{2, 4, 6, ...}表示偶数列。
这种表示法在高考数学中较少使用,但在解答题时可能会用到。
三、常见数列在高考数学中,有一些常见的数列被广泛应用。
这些数列包括等差数列、等比数列、等差数列的前n项和、等比数列的前n项和、斐波那契数列等等。
1. 等差数列:等差数列是指相邻的两项之差都是一常数的数列。
例如{1, 3, 5, 7, ...}是一个公差为2的等差数列。
数列的概念和简单表示法ppt
递增性
总结词
数列的各项按照从小到大的顺序排列。
详细描述
递增性指的是数列中的每一项都比前一项大,即数列按照从小到大的顺序排列。 例如,一个递增的整数数列可以是1,2,3,4,5,…。
递减性
总结词
数列的各项按照从大到小的顺序排列。
详细描述
递减性指的是数列中的每一项都比后一项小,即数列按照从大到小的顺序排 列。例如,一个递减的整数数列可以是5,4,3,2,1,…。
2023
数列的概念和简单表示法
目录
• 数列的定义和分类 • 数列的表示法 • 数列的特性 • 数列的简单运算 • 数列的扩展知识 • 数列的应用案例
01
数列的定义和分类
数列的定义
数列是一种特殊的函数,它按照顺序排列一组实数。 数列的第一个数叫做首项,最后一个数叫做末项。
数列中的每一个数叫做项,而每个项与它前面的那个 数的差叫做公差。
数列的极限和收敛性
数列的极限
如果当n趋向无穷大时,数列的项无限接近某个常数a,则称a为该数列的极限。
数列的收敛性
如果一个数列存在极限,则称该数列为收敛数列。
06
数列的应用案例
数列在金融领域的应用
复利计算
01
数列常用于计算投资收益的复利,如等比数列的求和公式被广
泛应用于计算累计利息。
风险评估
02
等差数列的性质
等差数列的任意一项都等于其首项加上一个常数,即第n 项a_n=a_1+(n-1)d,其中d为公差。
等比数列的概念和性质
等比数列的定义
如果一个数列从第二项起,每一项与前一项的比等于同一个常数,这个数列 就叫做等比数列。这个常数叫做等比数列的公比。
等比数列的性质
数学知识点:数列的概念及简单表示法_知识点总结
数学知识点:数列的概念及简单表示法_知识点总结
一般地按一定次序排列的一列数叫作数列,数列中的每一个数叫作这个数列的项,数列的一般形式可以写成,简记为数列{an},其中数列的第一项a1也称首项,an是数列的第n项,也叫数列的通项2、数列的递推公式:如果已知数列的第1项(或前几项),且从第2项(或某一项)开始的任一项an与它的前一项an-1(或前几项)间的关系可以用一个公式表示,那么这个公式就叫做这个数列的递推公式,递推公式也是给出数列的一种方法。
从函数角度看数列:
数列可以看作是一个定义域为正整数集N'(或它的有限子集{l,2,3,…,n})的函数,即当自变量从小到大依次取值时对应的一列函数值,这里说的函数是一种特殊函数,其特殊性为自变量只能取正整数,且只能从I开始依次增大.可以将序号作为横坐标,相应的项作为纵坐标描点画图来表示一个数列,从数列的图象可以看出数列中各项的变化情况。
特别提醒:
①数列是一个特殊的函数,因此在解决数列问题时,要善于利用函数的知识、函数的观点、函数的思想方法来解题,学习规律,即用共性来解决特殊问题;
②还要注意数列的特殊性(离散型),由于它的定义域是N'或它的子集{1,2,…,n},因而它的图象是一系列孤立的点,而不像我们前面所研究过的初等函数一般都是连续的曲线,因此在解决问题时,要充分利用这一特殊性.。
2.1.1数列的概念与简单表示法
已知下列数列: 例 1 已知下列数列: (1)2,22,222,2222; ; n-1 - 1 2 (2)0, , ,…, n ,…; ,2 3 1 1 1 (3)1, , ,…, n-1,…; , 3 9 3 (-1)n-1 ) (4)-1,0,- ,…, - ,-1,0, ,…; ,- 2 (5)a,a,a,a,…. , , , ,
写出下面数列的一个通项公式, 例 2 写出下面数列的一个通项公式, 使它的前 4 项分别 是下列各数: 是下列各数: 1 1 1 1 (1) ,- , ,- ; 1×2 2×3 3×4 4×5 × × × × 22-1 32-1 42-1 52-1 (2) 2 , 3 , 4 , 5 ; 1 1 1 1 (3)1 ,2 ,3 ,4 ; 2 4 8 16 (4)9,99,999,9999. [分析 细心寻找每一项 an 与序号 n 之间的变化规律即 分析] 分析 可.
ห้องสมุดไป่ตู้
3.由数列的前几项归纳其通项公式的方法 由数列的前几项归纳其通项公式的方法 据所给数列的前几项求其通项公式时, 据所给数列的前几项求其通项公式时 , 需仔细观察分 抓住其几方面的特征: 析,抓住其几方面的特征: (1)分式中分子、分母的特征; 分式中分子、 分式中分子 分母的特征; (2)相邻项的变化特征; 相邻项的变化特征; 相邻项的变化特征 (3)拆项后的特征; 拆项后的特征; 拆项后的特征 (4)各项的符号特征和绝对值特征. 各项的符号特征和绝对值特征. 并对此进行联想、 各项的符号特征和绝对值特征 并对此进行联想、 转 归纳. 化、归纳.
1 1 [解] (1)是无穷递减数列 > 是无穷递减数列( ). 解 是无穷递减数列 n . n+1 + (2)是有穷递增数列 项随着序号的增加而增大 . 是有穷递增数列(项随着序号的增加而增大 是有穷递增数列 项随着序号的增加而增大). (3)是无穷数列,由于奇数项为正,偶数项为负,故为摆 是无穷数列, 是无穷数列 由于奇数项为正,偶数项为负, 动数列. 动数列. (4)是有穷递增数列. 是有穷递增数列. 是有穷递增数列 (5)是无穷数列,也是摆动数列. 是无穷数列, 是无穷数列 也是摆动数列. (6)是无穷数列,且是常数列. 是无穷数列,且是常数列 是无穷数列
高中数学-数列
二、数列的分类
分类原则
类型
满足条件
按项数分类
有穷数列 无穷数列
项数有限 项数无限
按项与项间的大小关 系分类
按其他标准分类
递增数列 递减数列 常数列 有界数列
摆动数列
an+1>an
an+1<an
其中 n∈N+
an+1=an
存在正数 M,使|an|≤M
从第二项起,有些项大于它的前一项,
有些项小于它的前一项的数列
12.若an 是等差数列,公差为d ,则ak、ak +m、ak +2m …(k,m∈N+)是公差为 md 的等差
数列
13.若数列 an
是等差数列,前
n
项和为
Sn
,则
Sn n
也是等差数列,其首项和 an
的首
项相同,公差是
an
公差的
1 2
14.若三个数成等差数列,则通常可设这三个数分别为 x − d, x, x + d ;若四个数成等差数
an−1
an
3.等比中项:如果三个数 x,G,y 组成等比数列,那么 G 叫做 x 与 y 的等比中项,其中
G= xy
二、等比数列的通项公式及前 n 项和公式
1.若等比数列an 的首项为a1 ,公比是 q ,则其通项公式为an = a1q n −1
通项公式的推广: an = amq n −m
( ) 2.等比数列的前 n 项和公式:当 q =1 时, Sn = na1
(2)若 f (n) 是关于 n 的指数函数,累加后可转化为等比数列求和
(3)若 f (n) 是关于 n 的二次函数,累加后可分组求和
(4)若 f (n) 是关于 n 的分式函数,累加后可裂项求和
数列的概念与简单表示法-1
§2.1数列的概念与简单表示法学习目标 1.理解数列及其有关概念(难点);2.理解数列的通项公式,并会用通项公式写出数列的任意一项(重点);3.对于比较简单的数列,会根据其前几项写出它的一个通项公式.4、理解数列的几种表示方法,能从函数的观点研究数列;5.理解递推公式的含义,能根据递推公式求出数列的前几项(重、难点).知识点一数列的概念1.数列与数列的项按照一定顺序排列的一列数称为数列,数列中的每一个数叫做这个数列的项.数列中的每一项都和它的序号有关,排在第一位的数称为这个数列的第1项(通常也叫做首项),排在第二位的数称为这个数列的第2项,……,排在第n位的数称为这个数列的第n项.2.数列的表示方式数列的一般形式可以写成a1,a2,…,a n,…,简记为{a n}.3.数列中的项的性质:(1)确定性;(2)可重复性;(3)有序性.知识点二数列的分类1.按项的个数分类2.按项的变化趋势分类知识点三数列的函数性质1.数列可以看成以正整数集N*(或它的有限子集{1,2,…,n})为定义域的函数an=f(n),当自变量按照从小到大的顺序依次取值时所对应的一列函数值.2.在数列{an}中,若an+1>an,则{an}是递增数列;若an+1<an,则{an}为递减数列;若an+1=an,则{an}为常数列.知识点四数列的表示方法1、如果数列{a n}的第n项与序号n之间的关系可以用一个式子来表示,那么这个式子叫做这个数列的通项公式.2.数列的递推公式:如果数列{an}的第1项或前几项已知,并且数列{an}的任一项an与它的前一项an -1(或前几项)间的关系可以用一个式子来表示,那么这个式子就叫做这个数列的递推公式.3.数列的通项公式与递推公式有什么区别?题型一 数列的概念与分类规律方法 处理数列分类问题的技巧 (1)有穷数列与无穷数列.判断给出的数列是有穷数列还是无穷数列,只需观察数列是有限项还是无限项.若数列含有限项,则是有穷数列,否则为无穷数列. (2)数列的单调性若满足a n <a n +1(n ∈N *)则是递增数列;若满足a n >a n +1(n ∈N *)则是递减数列;若满足a n =a n +1(n ∈N *)则是常数列;若a n 与a n +1(n ∈N *)的大小不确定时,则是摆动数列.【例1】 (1)下列四个数列中,既是无穷数列又是递增数列的是( ) A.1,12,13,14,… B.sin π7,sin 2π7,sin 3π7,…C.-1,-12,-14,-18,… D.1,2,3,…,21(2)设函数f (x )=⎩⎨⎧(3-a )x -3,x ≤7,a x -6,x >7,数列{a n }满足a n =f (n ),n ∈N *,且数列{a n }是递增数列,则实数a 的取值范围是( ) A.⎝ ⎛⎭⎪⎫94,3 B.[94,3) C.(1,3) D.(2,3) 答案 (1)C (2)D【训练】 下列形式中哪些是数列?若是数列,哪些是有穷数列,哪些是无穷数列? (1){0,1,2,3,4};(2)0,1,2,3,4; (3)0,1,2,3,4,…;(4)1,-1,1,-1,1,-1,…; (5)6,6,6,6,6.解 (1)是集合,不是数列;(2)(3)(4)(5)是数列.其中(3)(4)是无穷数列,(2)(5)是有穷数列.题型二 数列的通项公式规律方法 1.根据数列的前几项求通项公式的思路 (1)统一项的结构,如都化成分数,根式等;(2)分析结构中变化的部分与不变的部分,探索变化部分的规律与对应序号间的函数关系式; (3)对于符号交替出现的情况,可先观察其绝对值,再用(-1)n 处理符号;(4)对于周期出现的数列,可考虑拆成几个简单数列和的形式,或者利用周期函数,如三角函数等.2.利用数列的通项公式求某项的方法数列的通项公式给出了第n项a n与它的位置序号n之间的关系,只要用序号代替公式中的n,就可以求出数列的相应项.3.判断某数值是否为该数列的项的方法先假定它是数列中的第n项,然后列出关于n的方程.若方程解为正整数,则是数列的一项;若方程无解或解不是正整数,则不是该数列的一项.方向1 根据通项公式写数列的项【例2-1】根据下面数列{a n}的通项公式,写出它的前5项:(1)a n=nn+1; (2)a n=(-1)n n.方向2 观察法求数列的通项公式【例2-2】根据数列的前几项,写出下面各数列的一个通项公式.(1)-3,0,3,6,9,…;(2)3,5,9,17,33,…;(3)2,0,2,0,2,0,…;(4)12,14,-58,1316,-2932,6164,….解(1) a n=-3+(n-1)×3=3n-6(n∈N*).(2)a n=2n+1(n∈N*).(3)a n=1+(-1)n-1(n∈N*).(4)a n=(-1)n 2n-32n(n∈N*).方向3 数列的通项公式的简单应用【例2-3】已知数列{a n}的通项公式为a n=1n(n+2)(n∈N*),则(1)计算a3+a4的值;(2)1120是不是该数列中的项?若是,应为第几项?若不是,说明理由.解(1)∴a3+a4=115+124=13120.(2)若1120为数列{a n}中的项,则1n(n+2)=1120,∴n(n+2)=120,∴n2+2n-120=0,∴n=10或n=-12(舍),即1120是数列{a n}的第10项.题型三 数列的函数特性1.已知数列{a n }的通项公式是a n =(n +1)⎝ ⎛⎭⎪⎫1011n,试问该数列有没有最大项?若有,求出最大项和最大项的序号;若没有,请说明理由.解 法一 a n +1-a n =(n +2)⎝ ⎛⎭⎪⎫1011n +1-(n +1)⎝ ⎛⎭⎪⎫1011n =(9-n )⎝ ⎛⎭⎪⎫1011n11,当n <9时,a n +1-a n >0,即a n +1>a n ;当n =9时,a n +1-a n =0,即a n +1=a n ; 当n >9时,a n +1-a n <0,即a n +1<a n . 则a 1<a 2<a 3<…<a 9=a 10>a 11>a 12>…,故数列{a n }有最大项,为第9项和第10项,且a 9=a 10=10×⎝ ⎛⎭⎪⎫10119.法二 根据题意,令⎩⎨⎧a n -1≤a na n ≥a n +1,即⎩⎨⎧n ×⎝ ⎛⎭⎪⎫1011n -1≤(n +1)⎝ ⎛⎭⎪⎫1011n (n +1)⎝ ⎛⎭⎪⎫1011n ≥(n +2)⎝ ⎛⎭⎪⎫1011n +1,解得9≤n ≤10.又n ∈N *,则n =9或n =10.故数列{a n }有最大项,为第9项和第10项,且a 9=a 10=10×⎝ ⎛⎭⎪⎫10119.规律方法 1.由于数列是特殊的函数,所以可以用研究函数的思想方法来研究数列的相关性质,如单调性、最大值、最小值等,此时要注意数列的定义域为正整数集或其有限子集{1,2,…,n }这一条件.2.可以利用不等式组⎩⎨⎧a n -1≤a n ,a n ≥a n +1,找到数列的最大项;利用不等式组⎩⎨⎧a n -1≥a n ,a n ≤a n +1,找到数列的最小项.【训练】 已知数列{a n }的通项公式为a n =nn 2+9(n ∈N *),写出其前5项,并判断数列{a n }的单调性.解 当n =1,2,3,4,5时,a n 依次为110,213,16,425,534, a n +1-a n =n +1(n +1)2+9-nn 2+9=-n 2-n +9[(n +1)2+9][n 2+9].∵函数f (x )=-x 2-x +9=-⎝⎛⎭⎪⎫x +122+374在[1,+∞)上单调递减,又f (1)=7>0,f (2)=3>0,f (3)<0,∴当n =1,2时,a n +1>a n ,当n ≥3,n ∈N *时,a n +1<a n , 即a 1<a 2<a 3>a 4>a 5>….∴数列{a n}的前3项是递增的,从第3项往后是递减的.题型四数列的递推数列规律方法 1.由递推公式写出通项公式的步骤(1)先根据递推公式写出数列的前几项(至少是前3项).(2)根据写出的前几项,观察归纳其特点,并把每一项统一形式.(3)写出一个通项公式并证明.2.递推公式的常见类型及通项公式的求法(1)求形如a n+1=a n+f(n)的通项公式.将原来的递推公式转化为a n+1-a n=f(n),再用累加法(逐差相加法)求解,即a n=a1+(a2-a1)+(a3-a2)+…+(a n-a n-1)=a1+f(1)+f(2)+f(3)+…+f(n-1).(2)求形如a n+1=f(n)a n的通项公式.将原递推公式转化为an+1an=f(n),再利用累乘法(逐商相乘法)求解,即由a2a1=f(1),a3a2=f(2),…,an a n-1=f(n-1),累乘可得ana1=f(1)f(2)…f(n-1).方向1 由递推公式写出数列的项1、已知数列{a n}的第一项a1=1,以后的各项由递推公式a n+1=2a nan+2给出,试写出这个数列的前5项.解∵a1=1,a n+1=2a nan+2,∴a2=2a1a1+2=23,a3=2a2a2+2=2×2323+2=12,a4=2a3a3+2=2×1212+2=25,a 5=2a4a4+2=2×2525+2=13.故该数列的前5项为1,23,12,25,13.方向2 由数列的递推公式求通项公式2、已知数列{a n}满足a1=1,a n=a n-1+1n(n-1)(n≥2),写出该数列前5项,并归纳出它的一个通项公式.解∵a1=1,a n=a n-1+1n(n-1)(n≥2),∴a2=a1+12×1=1+12=32,a3=a2+13×2=32+16=53,a 4=a3+14×3=53+112=74,a5=a4+15×4=74+120=95.故数列的前5项分别为1,32,53,74,95.由于1=2×1-11,32=2×2-12,53=2×3-13,74=2×4-14,95=2×5-15,故数列{a n }的一个通项公式为a n =2n -1n=2-1n.方向3 构造数列法求通项公式3、设{a n }是首项为1的正项数列,且(n +1)a 2n +1-na 2n +a n +1a n =0(n ∈N *),则它的通项公式a n =________.法一 (累乘法):把(n +1)a 2n +1-na 2n +a n +1a n =0分解因式,得[(n +1)a n +1-na n ](a n +1+a n )=0. ∵a n >0,∴a n +1+a n >0,∴(n +1)a n +1-na n =0,∴a n +1a n =n n +1,∴a 2a 1·a 3a 2·a 4a 3·…·a na n -1=12×23×34×…×n -1n ,∴a n a 1=1n .又∵a 1=1,∴a n =1n a 1=1n . 法二 (迭代法):同法一,得a n +1a n =n n +1,∴a n +1=n n +1a n ,∴a n =n -1n ·a n -1=n -1n ·n -2n -1·a n -2=n -1n ·n -2n -1·n -3n -2·a n -3…=n -1n ·n -2n -1·n -3n -2·…·12a 1=1n a 1.又∵a 1=1,∴a n =1n .法三 (构造特殊数列法):同法一,得a n +1a n =nn +1, ∴(n +1)a n +1=na n ,∴数列{na n }是常数列,∴na n =1·a 1=1,∴a n =1n.练习1.下列叙述正确的是( D )A.数列1,3,5,7与7,5,3,1是相同的数列B.数列0,1,2,3,…可以表示为{n }C.数列0,1,0,1,…是常数列 D.数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫n n +1是递增数列 2.数列2,3,4,5,…的一个通项公式为( B )A.a n =nB.a n =n +1C.a n =n +2D.a n =2n 解析 这个数列的前4项都比序号大1,所以,它的一个通项公式为a n =n +1. 3.数列-1,85,-157,249,…的一个通项公式是(D )A.a n =(-1)n·n 2+n 2n +1 B.a n =(-1)n·n 2+32n -1C.a n =(-1)n·(n +1)2-12n -1 D.a n =(-1)n ·n (n +2)2n +14.已知数列{a n }的通项公式a n =(-1)n -1·n2n -1,则a 1=________;a n +1=________.a 1=(-1)1-1×12×1-1=1,a n+1=(-1)n+1-1(n+1)2(n+1)-1=(-1)n(n+1)2n+1.答案 1(-1)n(n+1)2n+15.已知数列{a n}的通项公式为a n=-n2+n+110.(1)20是不是{a n}中的一项?(2)当n取何值时,a n=0.解(1)令a n=-n2+n+110=20,即n2-n-90=0,∴(n+9)(n-10)=0,∴n=10或-9(舍). ∴20是数列{a n}中的一项,且为数列{a n}中的第10项.(2)令a n=-n2+n+110=0,即n2-n-110=0,∴(n-11)(n+10)=0,∴n=11或n=-10(舍),∴当n=11时,a n=0.6.下列四个命题:①如果已知一个数列的递推公式及其首项,那么可以写出这个数列的任何一项;②数列23,34,45,56,…的通项公式是a n=nn+1;③数列的图象是一群孤立的点;④数列1,-1,1,-1,…与数列-1,1,-1,1,…是同一数列.其中真命题的个数是()A.1B.2C.3D.4解析只有③正确.①中,如已知a n+2=a n+1+a n,a1=1,无法写出除首项外的其他项.②中a n=n+1n+2,④中-1和1排列的顺序不同,即二者不是同一数列.7.数列2,4,6,8,10,…的递推公式是( c )A.a n=a n-1+2(n≥2)B.a n=2a n-1(n≥2)C.a1=2,a n=a n-1+2(n≥2)D.a1=2,a n=2a n-1(n≥2)解析A,B中没有说明某一项,无法递推,D中a1=2,a2=4,a3=8,不合题意.8.数列{x n}中,若x1=1,x n+1=1xn+1-1,则x2 017等于( D )A.-1B.-12C.12D.1解析∵x1=1,∴x2=-12,∴x3=1,∴数列{x n}的周期为2,∴x2 017=x1=1.9.已知数列{a n},对于任意的p,q∈N*,都有a p+a q=a p+q,若a1=19,则a36=________.由已知得a1+a1=a1+1=a2,∴a2=29,同理a4=49,a8=89,∴a9=a8+1=a8+a1=89+19=1,∴a36=2a18=4a9=4.10.求数列{-2n2+29n+3}中的最大项.a n =-2n2+29n+3=-2⎝⎛⎭⎪⎫n-2942+10818.由于n∈N*,故当n取距离294最近的正整数7时,a n取得最大值108,∴数列{-2n2+29n+3}中的最大项为a7=108.。
2.1数列的概念与简单表示法
第二章 数列2.1 数列的概念与简单表示法【学习目标】1. 理解数列概念,了解数列的分类;理解数列和函数之间的关系,会用列表法和图象法表示数列;2. 理解数列的通项公式的概念,并会用通项公式写出数列的前几项,会根据简单数列的前几项写出它的一个通项公式;提高观察、抽象的能力. 【知识梳理】1.数列的定义:按照一定顺序排列的一列数称为叫做数列(sequence of number).【注意】⑴数列的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不同,那么它们就是不同的数列;⑵定义中并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出现. 思考:简述数列与数集的区别_________________________________________________________________2.数列的项:数列中的每一个数叫做这个数列的项(term). 各项依次叫做这个数列的第1项(或首项),第2项,…,第n 项,…. 3.数列的分类:按项数分类:_______________ _______________按项与项间的大小关系 4.数列的通项公式:如果数列{}n a 的第n 项与 序号n 之间的关系可以用一个公式来表 示,那么这个公式就叫做这个数列的通项公式(the formula of general term ).注意:⑴并不是所有数列都能写出其通项公式,如数列1,1.4,1.41, 1.414,…;⑵一个数列的通项公式有时是不唯一的,如数列:1,0,1,0,1,0,…它的通项公式可以是2)1(11+-+=n n a , 也可以是|21cos |π+=n a n . ⑶数列通项公式的作用:① 求数列中任意一项; ②检验某数是否是该数列中的一项5. 数列的图像都是一群孤立的点.从映射、函数的观点来看,数列可以看作是一个定义域为正整数集N *(或它的有限子集{1,2,3,…,n})的函数,当自变量从小到大依次取值时对应的一列函数值,数列的通项公式就是相应函数的解析式,因此,数列也可根据其通项公式画出其对应图象. 6.数列与函数的关系从函数观点看,数列可以看作定义域为正整数集N *(或它的有限子集)的函数,当自变量从小到大依次取值时,该函数对应的一列函数值就是这个数列. 7.数列的表示形式:_________ __________ __________ 8.a n 与S n 的关系若数列{a n }的前n 项和为S n ,通项公式为a n ,则a n =⎩⎪⎨⎪⎧S 1, n =1 ,S n -S n -1, n ≥2 .【典例精析】:【例1】下面的数列,哪些是递增数列、递减数列、常数列、摆动数列? (1)0,1,2,3,…。
2019高考数学数列:数列的概念与简单表示法
数列的概念与简单表示法【考点梳理】1.数列的定义按照一定顺序排列着的一列数称为数列,数列中的每一个数叫做这个数列的项. 2.数列的分类分类标准 类型 满足条件 项数有穷数列项数有限无穷数列 项数无限单调性递增数列a n +1>a n 其中n ∈N *递减数列 a n +1<a n 常数列a n +1=a n摆动数列从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列3.数列的表示法数列有三种表示法,它们分别是列表法、图象法和解析法. 4.数列的通项公式如果数列{a n }的第n 项与序号n 之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.5.数列的递推公式如果已知数列的第1项(或前几项),且从第二项(或某一项)开始的任一项a n 与它的前一项a n -1(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式.6.a n 与S n 的关系若数列{a n }的前n 项和为S n ,通项公式为a n ,则a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.【考点突破】考点一、由a n 与S n 的关系求通项a n【例1】(1)已知数列{a n }的前n 项和为S n =14n 2+23n +3,则数列{a n }的通项公式a n =________.(2)设数列{a n }的前n 项和S n =n 2,则a 8的值为( )A .15B .16C .49D .64 [答案] (1) ⎩⎪⎨⎪⎧4712,n =1,12n +512,n ≥2 (2) A[解析] (1)当n =1时,a 1=S 1=4712,当n ≥2时,a n =S n -S n -1=14n 2+23n +3-⎣⎢⎡⎦⎥⎤14(n -1)2+23(n -1)+3 =12n +512, 经检验a 1=4712不满足上式所以这个数列的通项公式为a n=⎩⎪⎨⎪⎧4712,n =1,12n +512,n ≥2.(2)当n =8时,a 8=S 8-S 7=82-72=15. 【类题通法】 已知S n 求a n 的3步骤 (1)先利用a 1=S 1求出a 1;(2)用n -1替换S n 中的n 得到一个新的关系,利用a n =S n -S n -1(n ≥2)便可求出当n ≥2时a n 的表达式;(3)注意检验n =1时的表达式是否可以与n ≥2的表达式合并. 【对点训练】1.已知数列{a n }的前n 项和S n =2n 2-3n ,则数列{a n }的通项公式a n =________. [答案] 4n -5[解析] a 1=S 1=2-3=-1,当n ≥2时,a n =S n -S n -1=(2n 2-3n )-[2(n -1)2-3(n -1)]=4n -5, 由于a 1也适合上式,∴a n =4n -5.2.数列{a n }的前n 项和S n =2n 2-3n (n ∈N *),若p -q =5,则a p -a q =( ) A .10 B .15 C .-5 D .20[答案] D[解析] 当n ≥2时,a n =S n -S n -1=2n 2-3n -[2(n -1)2-3(n -1)]=4n -5,当n =1时,a 1=S 1=-1,符合上式,所以a n =4n -5,所以a p -a q =4(p -q )=20.【例2】(1)若数列{a n }的前n 项和S n =23a n +13,则{a n }的通项公式a n =________.(2)设S n 是数列{a n }的前n 项和,且a 1=-1,a n +1=S n S n +1,则S n =________. [答案] (1) (-2)n -1(2) -1n[解析] (1)由S n =23a n +13,得当n ≥2时,S n -1=23a n -1+13,两式相减,得a n =23a n -23a n -1,∴当n ≥2时,a n =-2a n -1,即a na n -1=-2. 又n =1时,S 1=a 1=23a 1+13,a 1=1,∴a n =(-2)n -1.(2)∵a n +1=S n +1-S n ,a n +1=S n S n +1, ∴S n +1-S n =S n S n +1. ∵S n ≠0,∴1S n -1S n +1=1,即1S n +1-1S n=-1.又1S 1=-1,∴⎩⎨⎧⎭⎬⎫1S n 是首项为-1,公差为-1的等差数列. ∴1S n =-1+(n -1)×(-1)=-n ,∴S n =-1n.【类题通法】S n 与a n 关系问题的求解思路根据所求结果的不同要求,将问题向不同的两个方向转化. (1)利用a n =S n -S n -1(n ≥2)转化为只含S n ,S n -1的关系式,再求解. (2)利用S n -S n -1=a n (n ≥2)转化为只含a n ,a n -1的关系式,再求解. 【对点训练】1.已知数列{a n }的前n 项和为S n ,若S n =2a n -4(n ∈N *),则a n =( ) A .2n +1B .2nC .2n -1D .2n -2[答案] A[解析] 由S n =2a n -4可得S n -1=2a n -1-4(n ≥2),两式相减可得a n =2a n -2a n -1(n ≥2),即a n =2a n -1(n ≥2).又a 1=2a 1-4,a 1=4,所以数列{a n }是以4为首项,2为公比的等比数列,则a n =4×2n -1=2n +1,故选A.2.已知数列{a n }的前n 项和为S n ,且a 1=2,a n +1=S n +1(n ∈N *),则S 5=( ) A .31 B .42 C .37 D .47 [答案] D[解析] 由题意,得S n +1-S n =S n +1(n ∈N *),∴S n +1+1=2(S n +1)(n ∈N *),故数列{S n +1}为等比数列,其首项为3,公比为2,则S 5+1=3×24,所以S 5=47.考点二、由递推公式求数列的通项公式【例3】在数列{a n }中,(1)若a 1=2,a n +1=a n +3n +2,则数列{a n }的通项公式a n =________. (2)若a 1=1,na n -1=(n +1)a n (n ≥2),则数列{a n }的通项公式a n =________. (3)若a 1=1,a n +1=2a n +3,则通项公式a n =________. [答案] (1) 32n 2+n 2 (2) 2n +1 (3) 2n +1-3[解析] (1)由题意,得a n +1-a n =3n +2,所以a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1 =(3n -1)+(3n -4)+…+5+2=n (3n +1)2.即a n =32n 2+n 2.(2)由na n -1=(n +1)a n (n ≥2),得a n a n -1=nn +1(n ≥2). 所以a n =a n a n -1·a n -1a n -2·a n -2a n -3·…·a 3a 2·a 2a 1·a 1 =nn +1·n -1n ·n -2n -1·…·34·23·1 =2n +1,又a 1也满足上式. 所以a n =2n +1. (3)设递推公式a n +1=2a n +3可以转化为a n +1+t =2(a n +t ),即a n +1=2a n +t ,解得t =3. 故a n +1+3=2(a n +3).令b n =a n +3,则b 1=a 1+3=4,且b n +1b n =a n +1+3a n +3=2. 所以{b n }是以4为首项,2为公比的等比数列. ∴b n =4·2n -1=2n +1,∴a n =2n +1-3.【类题通法】1.形如a n +1=a n +f (n )的递推关系式利用累加法求通项公式,特别注意能消去多少项,保留多少项.2.形如a n +1=a n ·f (n )的递推关系式可化为a n +1a n=f (n )的形式,可用累乘法,也可用a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1代入求出通项. 3.形如a n +1=pa n +q 的递推关系式可以化为(a n +1+x )=p (a n +x )的形式,构成新的等比数列,求出通项公式,求变量x 是关键. 【对点训练】 在数列{a n }中, (1)若a 1=3,a n +1=a n +1n (n +1),则通项公式a n =________.(2)若a 1=1,a n +1=2na n ,则通项公式a n =________.(3)若a 1=1,a n +1=3a n +2,则数列{a n }的通项公式a n =________. [答案] (1) 4-1n(2) ()122n n - (3) 2·3n -1-1[解析] (1)原递推公式可化为a n +1=a n +1n -1n +1,则a 2=a 1+11-12,a 3=a 2+12-13,a 4=a 3+13-14,…,a n -1=a n -2+1n -2-1n -1,a n =a n -1+1n -1-1n,以上(n -1)个式子的等号两端分别相加得,a n =a 1+1-1n,故a n =4-1n.(2)由a n +1=2na n ,得a n a n -1=2n -1(n ≥2), 所以a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1 =2n -1·2n -2·…·2·1=21+2+3+…+(n -1)=()122n n -.又a 1=1适合上式,故a n =()122n n -.(3)∵a n +1=3a n +2,∴a n +1+1=3(a n +1), ∴a n +1+1a n +1=3, ∴数列{a n +1}为等比数列,公比q =3, 又a 1+1=2,∴a n +1=2·3n -1,∴a n =2·3n -1-1.考点三、数列的性质及应用【例3】已知数列{a n }满足a n +1=11-a n ,若a 1=12,则a 2 018=( )A .-1B .12 C .1 D .2[答案] D[解析] 由a 1=12,a n +1=11-a n ,得a 2=11-a 1=2,a 3=11-a 2=-1,a 4=11-a 3=12,a 5=11-a 4=2,…, 于是可知数列{a n }是以3为周期的周期数列,因此a 2 018=a 3×672+2=a 2=2. 【类题通法】解决数列周期性问题的方法先根据已知条件求出数列的前几项,确定数列的周期,再根据周期性求值. 【对点训练】已知数列{a n }满足a 1=1,a n +1=a 2n -2a n +1(n ∈N *),则a 2 018=________. [答案] 0[解析] ∵a 1=1,∴a 2=(a 1-1)2=0,a 3=(a 2-1)2=1,a 4=(a 3-1)2=0,…,可知数列{a n }是以2为周期的数列,∴a 2 018=a 2=0.。
数列的概念与简单表示法
数列的概念与简单表示法1.数列的有关概念2.数列的表示方法3.a n 与S n 的关系若数列{a n }的前n 项和为S n , 则a n =⎩⎨⎧S 1,n =1,S n -S n -1,n ≥2.4.数列的分类(1)与函数的关系:数列是一种特殊的函数,定义域为N*或其有限子集数列的图象是一群孤立的点.(2)周期性:若a n+k=a n(n∈N*,k为非零正整数),则{a n}为周期数列,k为{a n}的一个周期.[四基自测]1.(教材改编)已知数列{a n}的通项公式为a n=9+12n,则在下列各数中,不是{a n}的项的是()A.21B.33C.152 D.153答案:C2.在数列{a n}中,a1=1,a n=1+1a n-1(n≥2),则a4=()A.32B.53C.74D.85答案:B3.把1,3,6,10,15,21,…这些数叫做三角形数,这是因为以这些数目的点可以排成一个正三角形(如图).则第7个三角形数是( )A .27B .28C .29D .30答案:B4.(2018·高考全国卷Ⅰ改编)记S n 为{a n }的前n 项和,若3S n =S n -1+S n +1(n ≥2),a 1=2,a 2=-1,则a 5为________. 答案:35.数列1,23,35,47,59,…的一个通项公式a n =________. 答案:n2n -1考点一 已知数列的前几项写通项公式◄考基础——练透[例1] (1)下列公式可作为数列{a n }:1,2,1,2,1,2,…,的通项公式的是( ) A .a n =1 B .a n =(-1)n +12C .a n =2-⎪⎪⎪⎪⎪⎪sin n π2D .a n =(-1)n -1+32(2)根据数列的前几项,写出下列各数列的一个通项公式: ①-1,7,-13,19,…; ②0.8,0.88,0.888,…;③12,14,-58,1316,-2932,6164,…; ④32,1,710,917,…; ⑤0,1,0,1,….解析:(1)由a n =2-⎪⎪⎪⎪⎪⎪sin n π2可得a 1=1,a 2=2,a 3=1,a 4=2,….故选C .(2)①符号问题可通过(-1)n 或(-1)n +1表示,其各项的绝对值的排列规律为:后面的数的绝对值总比前面数的绝对值大6,故通项公式为a n =(-1)n (6n -5). ②将数列变形为89(1-0.1),89(1-0.01),89(1-0.001),…, ∴a n =89⎝ ⎛⎭⎪⎫1-110n .③各项的分母分别为21,22,23,24,…,易看出第2,3,4项的分子分别比分母少3.因此把第1项变为-2-32,原数列可化为-21-321,22-322,-23-323,24-324,…,∴a n =(-1)n·2n -32n .④将数列统一为32,55,710,917,…,对于分子3,5,7,9,…,是序号的2倍加1,可得分子的通项公式为b n =2n +1,对于分母2,5,10,17,…,联想到数列1,4,9,16,…,即数列{n 2},可得分母的通项公式为c n =n 2+1,因此可得它的一个通项公式为a n =2n +1n 2+1.⑤a n =⎩⎪⎨⎪⎧0,(n 为奇数),1,(n 为偶数).答案:(1)C (2)见解析由前几项归纳数列通项公式的常用方法及具体策略(1)常用方法:观察(观察规律)、比较(比较已知数列)、归纳、转化(转化为特殊数列)、联想(联想常见的数列)等方法.(2)具体策略:①分式中分子、分母的特征; ②相邻项的变化特征;③各项的符号特征和绝对值特征;④对于分式还可以考虑对分子、分母各个击破,或寻找分子、分母之间的关系; ⑤对于正负号交替出现的情况,可用(-1)k 或(-1)k +1,k ∈N *处理.写出下列各数列的一个通项公式: (1)3,5,7,9,…; (2)12,34,78,1516,3132,…; (3)-1,32,-13,34,-15,36,…;(4)3,33,333,3 333,…. 解析:(1)各项减去1后为正偶数, 所以a n =2n +1,n ∈N *. (2)每一项的分子比分母少1, 而分母组成数列21,22,23,24,…, 所以a n =2n -12n ,n ∈N *.(3)奇数项为负,偶数项为正,故第n 项的符号为(-1)n ;各项绝对值的分母组成数列1,2,3,4,…;而各项绝对值的分子组成的数列中,奇数项为1,偶数项为3,即奇数项为2-1,偶数项为2+1,所以a n =(-1)n ·2+(-1)nn,也可写为a n =⎩⎪⎨⎪⎧-1n ,n 为正奇数,3n ,n 为正偶数.(4)将数列各项改写为:93,993,9993,9 9993,…,分母都是3,而分子分别是10-1,102-1,103-1,104-1,…. 所以a n =13(10n-1),n ∈N *.考点二 已知递推关系求通项公式◄考能力——知法[例2] 根据下列已知条件,求数列{a n }的通项公式: 累加法:(1)a 1=2,a n +1=a n +ln ⎝ ⎛⎭⎪⎫1+1n ;累乘法:(2)a 1=12,a n =n -1n +1a n -1(n ≥2);构造法:(3)a 1=1,a n +1=2a n +3; 构造法:(4)a 1=56,a n +1=13a n +⎝ ⎛⎭⎪⎫12n +1;取倒数:(5)a 1=1,a n =a n -13a n -1+1;取对数:(6)a 1=3,a n +1=a 2n . 解析:(1)∵a n +1=a n +ln ⎝ ⎛⎭⎪⎫1+1n ,∴a n +1-a n =ln n +1n (n ≥1), ∴a n -a n -1=ln nn -1(n ≥2),∴a n -1-a n -2=ln n -1n -2,…,a 2-a 1=ln 21(n ≥2),∴a n -a 1=ln nn -1+ln n -1n -2+…+ln 21=ln n (n ≥2),∴a n =ln n +a 1(n ≥2),又a 1=2,∴a n =ln n +2. (2)因为a n =n -1n +1a n -1(n ≥2), 所以当n ≥2时,a na n -1=n -1n +1,所以a na n -1=n -1n +1,…,a 3a 2=24,a 2a 1=13,以上n -1个式子相乘得a n a n -1·a n -1a n -2·…·a 3a 2·a 2a 1=n -1n +1·n -2n ·…·24·13,即a n a 1=1n +1·1n ×2×1,所以a n=1n (n +1). 当n =1时,a 1=11×2=12,也与已知a 1=12相符,所以数列{a n }的通项公式为a n =1n (n +1).(3)设递推公式a n +1=2a n +3可以转化为a n +1-t =2(a n -t ),即a n +1=2a n -t ,解得t =-3,故递推公式为a n +1+3=2(a n +3). 令b n =a n +3,则b 1=a 1+3=4,且b n +1b n =a n +1+3a n +3=2.所以{b n }是以b 1=4为首项,2为公比的等比数列. 所以b n =4×2n -1=2n +1,即a n =2n +1-3.(4)在a n +1=13a n +⎝ ⎛⎭⎪⎫12n +1两边分别乘以2n +1,得2n +1·a n +1=23(2n ·a n )+1.令b n =2n ·a n ,则b n +1=23b n +1,根据待定系数法,得b n +1-3=23(b n -3).所以数列{b n -3}是首项为b 1-3=2×56-3=-43,公比为23的等比数列. 所以b n -3=-43·⎝ ⎛⎭⎪⎫23n -1,即b n =3-2⎝ ⎛⎭⎪⎫23n . 于是,a n =b n 2n =3⎝ ⎛⎭⎪⎫12n -2⎝ ⎛⎭⎪⎫13n.(5)取倒数,得1a n =3a n -1+1a n -1=3+1a n -1.∴⎩⎨⎧⎭⎬⎫1a n 是等差数列,1a n =1a 1+3(n -1)=1+3(n -1)⇒a n =13n -2.(6)由题意知a n >0,将a n +1=a 2n 两边取常用对数得到lg a n +1=2lg a n ,即lg a n +1lg a n=2,所以数列{lg a n }是以lg a 1=lg 3为首项,2为公比的等比数列.所以lg a n =(lg 3)·2n -1,所以a n =32n -1.由递推公式求通项的方法1.将本例(1)改为:在数列{a n }中,a 1=2,a n +1=a n +3n +2,则a n =________. 解析:因为a n +1-a n =3n +2,所以a n -a n -1=3n -1(n ≥2),所以a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=n (3n +1)2(n ≥2).当n =1时,a 1=2=12×(3×1+1),符合上式,所以a n =32n 2+n2.答案:32n 2+n 22.将本例(2)改为已知数列{a n }中,a 1=1,(n +1)a n =na n +1,则数列{a n }的通项公式a n =________.解析:由(n +1)a n =na n +1,可得a n +1a n=n +1n .∴当n ≥2时,a na n -1=nn -1,a n -1a n -2=n -1n -2,…,a 3a 2=32,a 2a 1=2.将以上各式累乘求得a na 1=n ,∴a n =n ,而n =1也适合.∴数列的通项公式为a n =n . 答案:n3.将本例(3)改为在数列{a n }中a 1=1,a n +1=3a n +2.求a n . 解析:因为a n +1=3a n +2, 所以a n +1+1=3(a n +1), 所以a n +1+1a n +1=3,所以数列{a n +1}为等比数列,公比q =3. 又a 1+1=2, 所以a n +1=2·3n -1, 所以a n =2·3n -1-1.考点三 S n 与a n 的关系的应用◄考素养——懂理[例3] (1)(2018·菏泽模拟)已知数列{a n }的前n 项和S n =3n 2-2n +1,则其通项公式为________.解析:当n =1时,a 1=S 1=3-2+1=2, 当n ≥2时,S n -1=3(n -1)2-2(n -1)+1,∴a n =S n -S n -1=(3n 2-2n +1)-[3(n -1)2-2(n -1)+1]=6n -5, ∴a n =⎩⎪⎨⎪⎧2,n =16n -5,n ≥2.答案:a n =⎩⎨⎧2,n =16n -5,n ≥2(2)(2019·广东化州第二次模拟)已知S n 为数列{a n }的前n 项和,且log 2(S n +1)=n +1,则数列{a n }的通项公式为________. 解析:由log 2(S n +1)=n +1,得S n +1=2n +1,当n =1时,a 1=S 1=3;当n ≥2时,a n =S n -S n -1=2n , 所以数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧3,n =1,2n ,n ≥2.答案:a n =⎩⎨⎧3,n =12n ,n ≥21.已知S n 求a n 的三个步骤 (1)先利用a 1=S 1求出a 1.(2)用n -1替换S n 中的n 得到一个新的关系,利用a n =S n -S n -1(n ≥2)便可求出当n ≥2时a n 的表达式.(3)注意检验n =1时的表达式是否可以与n ≥2的表达式合并. 2.S n 与a n 关系问题的求解思路根据所求结果的不同要求,将问题向不同的两个方向转化. (1)利用a n =S n -S n -1(n ≥2)转化为只含S n ,S n -1的关系式,再求解. (2)利用S n -S n -1=a n (n ≥2)转化为只含a n ,a n -1的关系式,再求解.1.(2019·广东江门模拟)记数列{a n }的前n 项和为S n ,若∀n ∈N *,2S n =a n +1,则a 2 018=________. 解析:∵2S n =a n +1, ∴2S n -1=a n -1+1(n ≥2),∴2S n -2S n -1=2a n =a n -a n -1(n ≥2),即a n =-a n -1(n ≥2),又2S 1=2a 1=a 1+1, ∴a 1=1,∴a 2 018=a 2=-a 1=-1. 答案:-12.已知数列{a n }满足2S n =4a n -1,当n ∈N *时,{(log 2a n )2+λlog 2a n }是递增数列,则实数λ的取值范围是________.解析:∵2S n =4a n -1,2S n -1=4a n -1-1(n ≥2),两式相减可得2a n =4a n -4a n-1(n ≥2),∴a n =2a n -1(n ≥2),又2a 1=4a 1-1,∴a 1=12,∴数列{a n }是公比为2的等比数列,∴a n =2n -2,设b n =(log 2a n )2+λlog 2a n =(n -2)2+λ(n -2),∵{(log 2a n )2+λlog 2a n }是递增数列,∴b n +1-b n =2n -3+λ>0恒成立,∴λ>3-2n 恒成立,∵(3-2n )max =1,∴λ>1,故实数λ的取值范围是(1,+∞). 答案:(1,+∞)逻辑推理——数列的定义与通项公式中的学科素养求数列的通项公式,无论是已知前n 项归纳猜想出通项公式,还是根据递推关系式求通项公式,其主要工作就是逻辑推理,从特殊到一般或从一般到特殊. [例] 已知数列{a n }的前n 项和S n =n 2a n (n ≥2),且a 1=1,通过计算a 2,a 3,猜想a n 等于( ) A .2(n +1)2B .2n (n +1)C .12n -1D .12n -1解析:因为S n =n 2a n ,所以a n +1=S n +1-S n =(n +1)2a n +1-n 2a n , 故a n +1=nn +2a n ,当n =2时,a 1+a 2=4a 2,a 1=1,所以a 2=13.所以a 1=1=21×2,a 2=13=22×3,a 3=22+2a 2=12×13=16=23×4,a 4=33+2a 3=35×16=110=24×5,a 5=44+2a 4=23×110=115=25×6,由此可猜想a n =2n (n +1).答案:B课时规范练A 组 基础对点练1.已知数列{a n }的前4项为2,0,2,0,则归纳该数列的通项不可能是( ) A .a n =(-1)n -1+1 B .a n =⎩⎨⎧2,n 为奇数0,n 为偶数C .a n =2sin n π2D .a n =cos(n -1)π+1解析:对于C ,当n =3时,sin 3π2=-1,则a 3=-2,与题意不符. 答案:C2.已知数列2,5,22,11,…,则25是这个数列的( ) A .第6项 B .第7项 C .第19项D .第11项解析:数列即:2,5,8,11,…,据此可得数列的通项公式为:a n =3n -1,由3n -1=25,解得:n =7,即25是这个数列的第7项.3.设数列{a n }的前n 项和S n =n 2+n ,则a 4的值为( ) A .4 B .6 C .8D .10解析:a 4=S 4-S 3=20-12=8. 答案:C4.已知数列{a n }的前n 项和为S n ,a 1=1,S n =2a n +1,则S n =( ) A .2n -1B .⎝ ⎛⎭⎪⎫32n -1C .⎝ ⎛⎭⎪⎫23n -1D .12n -1解析:由已知S n =2a n +1得S n =2(S n +1-S n ),即2S n +1=3S n ,S n +1S n=32,而S 1=a 1=1,所以S n =⎝ ⎛⎭⎪⎫32n -1,故选B .答案:B5.设数列{a n }满足a 1=1,a 2=3,且2na n =(n -1)a n -1+(n +1)a n +1,则a 20的值是( ) A .415 B .425 C .435D .445解析:由题知:a n +1=2na n -(n -1)a n -1n +1,a 3=2×2×3-13=113,a 4=2×3×113-2×34=4,a 5=2×4×4-3×1135=215,a 6=2×5×215-4×46=266,故a n =5n -4n ,所以a 20=5×20-420=245=445.6.(2019·北京模拟)数列{a n }满足a n +1(a n -1-a n )=a n -1(a n -a n +1),若a 1=2,a 2=1,则a 20=( ) A .1210B .129C .110D .15解析:数列{a n }满足a n +1(a n -1-a n ) =a n -1(a n -a n +1), 展开化为1a n -1+1a n +1=2a n.所以数列⎩⎨⎧⎭⎬⎫1a n 是等差数列,公差为1a 2-1a 1=12,首项为12.所以1a 20=12+12×19=10,解得a 20=110.答案:C7.(2019·唐山模拟)设数列{a n }的前n 项和为S n ,且S n =a 1(4n -1)3,若a 4=32,则a 1=__________.解析:∵S n =a 1(4n -1)3,a 4=32,∴255a 13-63a 13=32,∴a 1=12.答案:128.已知数列{a n }的前n 项和S n =2n ,则a 3+a 4=________. 解析:当n ≥2时,a n =2n -2n -1=2n -1,所以a 3+a 4=22+23=12. 答案:129.(2019·长沙模拟)在数列{a n }中,a 1=1,a n +1=(-1)n (a n +1),记S n 为{a n }的前n 项和,则S 2 018=________.解析:因为数列{a n }满足a 1=1,a n +1=(-1)n (a n +1), 所以a 2=-(1+1)=-2,a 3=-2+1=-1,a 4=-(-1+1)=0,a 5=0+1=1,a 6=-(1+1)=-2,a 7=-2+1=-1,…,所以{a n }是以4为周期的周期数列,因为2 018=504×4+2,所以S 2 018=504×(1-2-1+0)+1-2=-1 009. 答案:-1 00910.传说古希腊毕达哥拉斯学派的数学家经常在沙滩上面画点或用小石子表示数.他们研究过如图所示的三角形数:将三角形数1,3,6,10,…记为数列{a n },则数列{a n }的通项公式为_______. 解析:由题干图可知,a n +1-a n =n +1,a 1=1,由累加法可得a n =n (n +1)2.答案:a n =n (n +1)2B 组 能力提升练11.已知数列{a n }的前n 项和为S n ,若S n =2a n -4,n ∈N *,则a n =( ) A .2n +1 B .2n C .2n -1D .2n -2解析:∵a n +1=S n +1-S n =2a n +1-4-(2a n -4),∴a n +1=2a n ,∵a 1=2a 1-4,∴a 1=4,∴数列{a n }是以4为首项,2为公比的等比数列,∴a n =4·2n -1=2n+1,故选A .答案:A12.在数列{a n }中,a 1=1,a n a n -1=a n -1+(-1)n (n ≥2,n ∈N *),则a 3a 5的值是( )A .1516B .158C .34D .38解析:由已知得a 2=1+(-1)2=2,∴2a 3=2+(-1)3,a 3=12,∴12a 4=12+(-1)4,a 4=3,∴3a 5=3+(-1)5,∴a 5=23,∴a 3a 5=12×32=34.答案:C13.已知数列{a n }满足a 1=15,且3a n +1=3a n -2.若a k ·a k +1<0,则正整数k =( ) A .21 B .22 C .23D .24解析:由3a n +1=3a n -2得a n +1=a n -23,则{a n }是等差数列,又a 1=15,∴a n =473-23n .∵a k ·a k +1<0,∴⎝ ⎛⎭⎪⎫473-23k ·⎝ ⎛⎭⎪⎫453-23k <0,∴452<k <472,∴k =23.故选C . 答案:C14.如果数列{a n }满足a 1=2,a 2=1,且a n -1-a n a n -1=a n -a n +1a n +1(n ≥2),则这个数列的第10项等于( ) A .1210 B .129 C .15D .110解析:∵a n -1-a n a n -1=a n -a n +1a n +1,∴1-a n a n -1=a n a n +1-1,即a n a n -1+a n a n +1=2,∴1a n -1+1a n +1=2a n ,故⎩⎨⎧⎭⎬⎫1a n 是等差数列.又∵d =1a 2-1a 1=12,∴1a 10=12+9×12=5,故a 10=15. 答案:C15.(2019·黄冈模拟)已知数列{a n }的前n 项和S n =n 2-2n +2,则数列{a n }的通项公式为________.解析:当n =1时,a 1=S 1=1;当n ≥2时,a n =S n -S n -1=2n -3,由于n =1时a 1的值不适合n ≥2的解析式,故通项公式为a n =⎩⎪⎨⎪⎧1,n =1,2n -3,n ≥2.答案:a n =⎩⎨⎧1,n =1,2n -3,n ≥216.(2019·郑州模拟)意大利数学家列昂纳多·斐波那契以兔子繁殖为例,引入“兔子数列”:1,1,2,3,5,8,13,21,34,55,89,144,233,…,即F(1)=F(2)=1,F(n)=F(n-1)+F(n-2)(n≥3,n∈N*),此数列在现代物理、准晶体结构、化学等领域都有着广泛的应用,若此数列被3整除后的余数构成一个新数列{b n},则b2 018=________.解析:由题意得,引入“兔子数列”:1,1,2,3,5,8,13,21,34,55,89,144,233,….此数列被3整除后的余数构成一个新数列为1,1,2,0,2,2,1,0,1,1,2,0,2,2,1,0,…构成以8为周期的周期数列,所以b2 018=b2=1.答案:1第二节等差数列及其前n项和[基础梳理]1.等差数列的有关概念(1)定义:①文字语言:从第2项起,每一项与它的前一项的差都等于同一个常数.②符号语言:a n+1-a n=d(n∈N*,d为常数).(2)等差中项:数列a,A,b成等差数列的充要条件是A=a+b2,其中A叫做a,b的等差中项.2.等差数列的有关公式 (1)通项公式:a n =a 1+(n -1)d .(2)前n 项和公式:S n =na 1+n (n -1)2d =n (a 1+a n )2.3.等差数列的性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n . (3)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.(4)若S n 为等差数列{a n }的前n 项和,则数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列.1.两个重要技巧(1)若奇数个数成等差数列,可设中间三项为a -d ,a ,a +D .(2)若偶数个数成等差数列,可设中间两项为a -d ,a +d ,其余各项再依据等差数列的定义进行对称设元. 2.三个必备结论(1)若等差数列{a n }的项数为偶数2n ,则①S 2n =n (a 1+a 2n )=…=n (a n +a n +1);②S 偶-S 奇=nd ,S 奇S 偶=a na n +1.(2)若等差数列{a n }的项数为奇数2n +1,则①S 2n +1=(2n +1)a n +1;②S 奇S 偶=n +1n .(3)在等差数列{a n }中,若a 1>0,d <0,则满足⎩⎪⎨⎪⎧a m ≥0,a m +1≤0的项数m 使得S n 取得最大值S m ;若a 1<0,d >0,则满足⎩⎪⎨⎪⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值S m .3.两个函数等差数列{a n },当d ≠0时,a n =dn +(a 1-d ),是关于n 的一次函数; S n =d 2n 2+(a 1-d2)n 是无常数项的二次函数.[四基自测]1.(教材改编)已知数列{a n }中,a n =3n +4,若a n =13,则n 等于( ) A .3 B .4 C .5 D .6答案:A2.已知等差数列{a n }满足:a 3=13,a 13=33,则数列{a n }的公差为( ) A .1 B .2 C .3 D .4 答案:B3.(教材改编)已知等差数列{a n }的前n 项和为S n ,若a 4=18-a 5,则S 8=( ) A .18 B .36 C .54 D .72 答案:D4.在100以内的正整数中有________个能被6整除的数. 答案:165.已知等差数列5,427,347,…,则前n 项和S n =________. 答案:514(15n -n 2)考点一 等差数列的性质及基本量的运算◄考基础——练透角度1 用等差数列的基本量a 1和d 进行计算[例1] (1)(2018·高考全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和,若3S 3=S 2+S 4,a 1=2,则a 5=( ) A .-12 B .-10 C .10D .12解析:设等差数列{a n }的公差为d ,由3S 3=S 2+S 4,得3⎣⎢⎡⎦⎥⎤3a 1+3×(3-1)2×d =2a 1+2×(2-1)2×d +4a 1+4×(4-1)2×d ,将a 1=2代入上式,解得d =-3, 故a 5=a 1+(5-1)d =2+4×(-3)=-10. 故选B . 答案:B(2)已知等差数列{a n }的各项都为整数,且a 1=-5,a 3a 4=-1,则|a 1|+|a 2|+…+|a 10|=( ) A .70 B .58 C .51D .40解析:设等差数列{a n }的公差为d , 由各项都为整数得d ∈Z ,因为a 1=-5,所以a 3a 4=(-5+2d )(-5+3d )=-1,化简得6d 2-25d +26=0,解得d =2或d =136(舍去),所以a n =2n -7,所以|a 1|+|a 2|+…+|a 10|=5+3+1+1+3+…+13=9+7×(1+13)2=58.故选B . 答案:B角度2 用等差数列性质进行计算[例2] (1)已知等差数列{a n }的前n 项和为S n ,若a 2+a 3+a 10=9,则S 9=( ) A .3 B .9 C .18D .27解析:设等差数列{a n }的首项为a 1,公差为D .∵a 2+a 3+a 10=9,∴3a 1+12d =9,即a 1+4d =3,∴a 5=3,∴S 9=9×(a 1+a 9)2=9×2a 52=27.故选D . 答案:D(2)(2019·河北唐山第二次模拟)设{a n }是任意等差数列,它的前n 项和、前2n 项和与前4n 项和分别为X ,Y ,Z ,则下列等式中恒成立的是( ) A .2X +Z =3Y B .4X +Z =4Y C .2X +3Z =7YD .8X +Z =6Y解析:设数列{a n }的前3n 项的和为R ,则由等差数列的性质得X ,Y -X ,R -Y ,Z -R 成等差数列,所以2(Y -X )=X +R -Y ,解之得R =3Y -3X ,又因为2(R -Y )=Y -X +Z -R ,把R =3Y -3X 代入得8X +Z =6Y ,故选D . 答案:D等差数列的计算技巧1.已知等差数列{a n }中,a 2=1,前5项和S 5=-15,则数列{a n }的公差为( ) A .-3 B .-52 C .-2D .-4解析:设等差数列{a n }的首项为a 1,公差为d ,因为⎩⎪⎨⎪⎧a 2=1,S 5=-15,所以⎩⎨⎧a 1+d =1,5a 1+5×42d =-15,解得d =-4,故选D . 答案:D2.在等差数列{a n }中,a 1+a 5=8,a 4=7,则a 5=( ) A .11 B .10 C .7D .3解析:∵a 1+a 5=2a 3=8,∴a 3=4, 又∵a 3+a 5=2a 4, ∴a 5=2a 4-a 3=14-4=10. 故选B . 答案:B3.等差数列{a n }中,3(a 3+a 5)+2(a 7+a 10+a 13)=24,则该数列的前13项和为( ) A .13 B .26 C .52D .156解析:3(a 3+a 5)+2(a 7+a 10+a 13)=24,∴6a 4+6a 10=24,∴a 4+a 10=4,∴S 13=13(a 1+a 13)2=13(a 4+a 10)2=13×42=26,故选B .答案:B考点二 等差数列的判定与证明◄考能力——知法角度1 用等差数列定义证明[例3] (2019·南京模拟)已知数列{a n }的前n 项和为S n 且满足a n +2S n ·S n -1=0(n ≥2),a 1=12.(1)求证:⎩⎨⎧⎭⎬⎫1S n 是等差数列.(2)求a n 的表达式.解析:(1)证明:因为a n =S n -S n -1(n ≥2),又a n =-2S n ·S n -1,所以S n -1-S n =2S n ·S n -1,S n ≠0.因此1S n -1S n -1=2(n ≥2).故由等差数列的定义知⎩⎨⎧⎭⎬⎫1S n 是以1S 1=1a 1=2为首项,2为公差的等差数列.(2)由(1)知1S n=1S 1+(n -1)d =2+(n -1)×2=2n ,即S n =12n . 由于当n ≥2时,有a n =-2S n ·S n -1=-12n (n -1),又因为a 1=12,不适合上式. 所以a n =⎩⎪⎨⎪⎧12(n =1),-12n (n -1)(n ≥2).角度2 用等差中项法证明[例4] 已知等比数列{a n }的公比为q ,前n 项和为S n .(1)若S 3,S 9,S 6成等差数列,求证:a 2,a 8,a 5成等差数列;(2)若a m +2是a m +1和a m 的等差中项,则S m ,S m +2,S m +1成等差数列吗? 解析:(1)证明:由S 3,S 9,S 6成等差数列,得S 3+S 6=2S 9.若q =1,则3a 1+6a 1=18a 1,解得a 1=0,这与{a n }是等比数列矛盾,所以q ≠1, 于是有a 1(1-q 3)1-q +a 1(1-q 6)1-q =2a 1(1-q 9)1-q ,整理得q 3+q 6=2q 9.因为q ≠0且q ≠1,所以q 3=-12,a 8=a 2q 6=14a 2,a 5=a 2q 3=-12a 2, 所以2a 8=a 2+a 5,即a 8-a 2=a 5-a 8,故a 2,a 8,a 5成等差数列.(2)依题意,得2a m +2=a m +1+a m ,则2a 1q m +1=a 1q m +a 1q m -1.在等比数列{a n }中,a 1≠0,q ≠0,所以2q 2=q +1,解得q =1或q =-12.当q =1时,S m +S m +1=ma 1+(m +1)a 1=(2m +1)a 1,S m +2=(m +2)a 1. 因为a 1≠0,所以2S m +2≠S m +S m +1,此时S m ,S m +2,S m +1不成等差数列. 当q =-12时,S m +2=a 1[1-⎝ ⎛⎭⎪⎫-12m +2]1-⎝ ⎛⎭⎪⎫-12=2a 13[1-(-12)m +2]=2a 13 [1-14×(-12)m ], S m +S m +1=a 1[1-⎝ ⎛⎭⎪⎫-12m ]1-(-12)+a 1[1-⎝ ⎛⎭⎪⎫-12m +1]1-(-12)=2a 13[1-(-12)m +1-(-12)m +1] =2a 13[2-12×(-12)m ], 所以2S m +2=S m +S m +1.故当q =1时,S m ,S m +2,S m +1不成等差数列;当q =-12时,S m ,S m +2,S m +1成等差数列.判定数列{a n}是等差数列的常用方法(1)定义法:对任意n∈N*,a n+1-a n是同一个常数.(证明用)(2)等差中项法:对任意n≥2,n∈N*,满足2a n=a n+1+a n-1.(证明用)(3)通项公式法:数列的通项公式a n是n的一次函数.(4)前n项和公式法:数列的前n项和公式S n是n的二次函数,且常数项为0. 提醒:判断是否为等差数列,最终一般都要转化为定义法判断.将本例1条件变为“数列{a n}的前n项和为S n(n∈N*),2S n-na n=n,”求证:{a n}为等差数列.证明:因为2S n-na n=n,①所以当n≥2时,2S n-1-(n-1)a n-1=n-1,②所以①-②得:(2-n)a n+(n-1)a n-1=1,(1-n)a n+1+na n=1,所以2a n=a n-1+a n+1(n≥2),所以数列{a n}为等差数列.考点三等差数列前n项和及综合问题◄考素养——懂理[例5](1)(2018·高考全国卷Ⅱ)记S n为等差数列{a n}的前n项和,已知a1=-7,S3=-15.①求{a n}的通项公式;②求S n,并求S n的最小值.解析:①设{a n }的公差为d ,由题意得3a 1+3d =-15. 由a 1=-7得d =2.所以{a n }的通项公式为a n =a 1+(n -1)d =2n -9. ②由①得S n =a 1+a n2·n =n 2-8n =(n -4)2-16. 所以当n =4时,S n 取得最小值,最小值为-16.(2)已知数列{a n }满足a 1=2,n (a n +1-n -1)=(n +1)(a n +n )(n ∈N *).①求证数列⎩⎨⎧⎭⎬⎫a n n 是等差数列,并求其通项公式;②设b n =2a n -15,求数列{|b n |}的前n 项和T n . 解析:①∵n (a n +1-n -1)=(n +1)(a n +n )(n ∈N *), ∴na n +1-(n +1)a n =2n (n +1),∴a n +1n +1-a nn =2,∴数列⎩⎨⎧⎭⎬⎫a n n 是等差数列,其公差为2,首项为2,∴a nn =2+2(n -1)=2n .②由①知a n =2n 2,∴b n =2a n -15=2n -15,则数列{b n }的前n 项和S n =n (-13+2n -15)2=n 2-14n .令b n =2n -15≤0,解得n ≤7.∴n ≤7时,数列{|b n |}的前n 项和T n =-b 1-b 2-…-b n =-S n =-n 2+14n . n ≥8时,数列{|b n |}的前n 项和T n =-b 1-b 2-…-b 7+b 8+…+b n =-2S 7+S n =-2×(72-14×7)+n 2-14n =n 2-14n +98.∴T n =⎩⎪⎨⎪⎧14n -n 2,n ≤7,n 2-14n +98,n ≥8.关于等差数列前n 项和问题,主要是求和方法及性质的应用,其关键点为: (1)定性质,根据已知条件判断出数列具有哪些特性.(2)定方法,根据已知条件或具有的性质,确定解决问题的方法. ①求和:用哪个公式,需要哪些量. ②求S n 最值:(ⅰ)借助S n 的二次函数法; (ⅱ)借用通项的邻项变号法a 1>0,d <0,满足⎩⎪⎨⎪⎧a m ≥0a m +1≤0S n 取得最大值S m ;a 1<0,d >0,满足⎩⎪⎨⎪⎧a m ≤0a m +1≥0,S n 取得最小值S m .1.在等差数列{a n }中,a 1+a 3+a 5=105,a 2+a 4+a 6=99,以S n 表示{a n }的前n 项和,则使S n 达到最大值的n 是( ) A .21 B .20 C .19D .18解析:由a 1+a 3+a 5=3a 3=105,∴a 3=35. a 2+a 4+a 6=3a 4=99,∴a 4=33,∴d =a 4-a 3=-2. ∴a n =a 4+(n -4)×d =33+(n -4)×(-2)=-2n +41. ∴a 20>0,a 21<0,∴当n =20时,S 20最大,故选B . 答案:B2.已知数列{a n }满足2a n +1=a n +a n +2(n ∈N *),它的前n 项和为S n ,且a 3=10,S 6=72,若b n =12a n -30,设数列{b n }的前n 项和为T n ,求T n 的最小值.解析:∵2a n +1=a n +a n +2,∴a n +1-a n =a n +2-a n +1, 故数列{a n }为等差数列.设数列{a n }的首项为a 1,公差为d ,由a 3=10,S 6=72得,⎩⎪⎨⎪⎧a 1+2d =10,6a 1+15d =72,解得a 1=2,d =4.故a n =4n -2,则b n =12a n -30=2n -31, 令⎩⎪⎨⎪⎧b n ≤0,b n +1≥0,即⎩⎪⎨⎪⎧2n -31≤0,2(n +1)-31≥0, 解得292≤n ≤312, ∵n ∈N *,∴n =15,即数列{b n }的前15项均为负值,∴T 15最小. ∵数列{b n }的首项是-29,公差为2, ∴T 15=15×(-29+2×15-31)2=-225,∴数列{b n }的前n 项和T n 的最小值为-225.数学建模——传统文化中的数列的学科素养在传统文化中,涉及很多等差数列的模型,经过转化用等差数列的知识求解,体现了数学建模,数学运算的素养.[例1] 《张丘建算经》卷上第22题——“女子织布”问题:某女子善于织布,一天比一天织得快,而且每天增加的数量相同.已知第一天织布5尺,30天共织布390尺,则该女子织布每天增加( ) A .47尺 B .1629尺 C .815尺D .1631尺解析:设该女子织布每天增加d 尺,由题意知S 30=30×5+30×292d =390,解得d =1629.故该女子织布每天增加1629尺.故选B . 答案:B[例2] 中国古诗词中,有一道“八子分绵”的数学名题:“九百九十六斤绵,赠分八子作盘缠,次第每人多十七,要将第八数来言”.题意是:把996斤绵分给8个儿子作盘缠,按照年龄从大到小的顺序依次分绵,年龄小的比年龄大的多17斤绵,那么第8个儿子分到的绵是( ) A .174斤 B .184斤 C .191斤D .201斤解析:用a 1,a 2,…,a 8表示8个儿子按照年龄从大到小得到的绵数,由题意得数列a 1,a 2,…,a 8是公差为17的等差数列,且这8项的和为996,∴8a 1+8×72×17=996,解得a 1=65.∴a 8=65+7×17=184,即第8个儿子分到的绵是184斤,故选B . 答案:B课时规范练A 组 基础对点练1.在单调递增的等差数列{a n }中,若a 3=1,a 2a 4=34,则a 1=( ) A .-1 B .0 C .14D .12解析:由题知,a 2+a 4=2a 3=2,又∵a 2a 4=34,数列{a n }单调递增,∴a 2=12,a 4=32.∴公差d =a 4-a 22=12.∴a 1=a 2-d =0. 答案:B2.等差数列{a n }中,a 1=1,a n =100(n ≥3).若{a n }的公差为某一自然数,则n 的所有可能取值为( ) A .3,7,9,15,100 B .4,10,12,34,100 C .5,11,16,30,100D .4,10,13,43,100解析:由等差数列的通项公式得,公差d =a n -a 1n -1=99n -1.又因为d ∈N ,n ≥3,所以n -1可能为3,9,11,33,99,n 的所有可能取值为4,10,12,34,100,故选B . 答案:B3.设S n 是等差数列{a n }的前n 项和,若a 1+a 3+a 5=3,则S 5=( ) A .5 B .7 C .9D .11解析:因为{a n }是等差数列,∴a 1+a 5=2a 3,即a 1+a 3+a 5=3a 3=3,∴a 3=1, ∴S 5=5(a 1+a 5)2=5a 3=5,故选A .答案:A4.等差数列{a n }的前n 项和为S n ,若S 8-S 4=36,a 6=2a 4,则a 1=( ) A .-2 B .0 C .2D .4解析:设等差数列{a n }的公差为d ,∵S 8-S 4=36,a 6=2a 4, ∴⎩⎨⎧⎝ ⎛⎭⎪⎫8a 1+8×72d -⎝ ⎛⎭⎪⎫4a 1+4×32d =36,a 1+5d =2a 1+6d ,解得⎩⎪⎨⎪⎧a 1=-2,d =2.故选A .答案:A5.若等差数列{a n }的前5项之和S 5=25,且a 2=3,则a 7=( )A .12B .13C .14D .15解析:由S 5=(a 2+a 4)·52,得25=(3+a 4)·52,解得a 4=7,所以7=3+2d ,即d =2,所以a 7=a 4+3d =7+3×2=13. 答案:B6.已知等差数列{a n }前9项的和为27,a 10=8,则a 100=( ) A .100 B .99 C .98D .97解析:由题意可知,⎩⎪⎨⎪⎧a 1+4d =3,a 1+9d =8,解得a 1=-1,d =1, 所以a 100=-1+99×1=98. 答案:C7.已知等差数列{a n }中,a n ≠0,若n ≥2且a n -1+a n +1-a 2n =0,S 2n -1=38,则n 等于__________.解析:∵{a n }是等差数列,∴2a n =a n -1+a n +1,又∵a n -1+a n +1-a 2n =0,∴2a n -a 2n =0,即a n (2-a n )=0.∵a n ≠0,∴a n =2.∴S 2n -1=(2n -1)a n =2(2n -1)=38,解得n =10. 答案:108.中位数为1 010的一组数构成等差数列,其末项为2 015,则该数列的首项为________.解析:设数列首项为a 1,则a 1+2 0152=1 010,故a 1=5.答案:59.已知等差数列的前三项依次为a ,4,3a ,前n 项和为S n ,且S k =110. (1)求a 及k 的值.(2)已知数列{b n }满足b n =S nn ,证明数列{b n }是等差数列,并求其前n 项和T n . 解析:(1)设该等差数列为{a n },则a 1=a ,a 2=4,a 3=3a ,由已知有a +3a =8,得a 1=a =2,公差d =4-2=2,所以S k =ka 1+k (k -1)2·d =2k +k (k -1)2×2=k 2+k .由S k =110,得k 2+k -110=0,解得k =10或k =-11(舍去),故a =2,k =10. (2)由(1)得S n =n (2+2n )2=n (n +1),则b n =S nn =n +1,故b n +1-b n =(n +2)-(n +1)=1,即数列{b n }是首项为2,公差为1的等差数列, 所以T n =n (2+n +1)2=n (n +3)2.10.已知数列{a n }满足a 1=1,a n =a n -12a n -1+1(n ∈N *,n ≥2),数列{b n }满足关系式b n =1a n(n ∈N *).(1)求证:数列{b n }为等差数列; (2)求数列{a n }的通项公式.解析:(1)证明:∵b n =1a n ,且a n =a n -12a n -1+1,∴b n +1=1a n +1=1a n 2a n +1=2a n +1a n , ∴b n +1-b n =2a n +1a n-1a n=2.又∵b1=1a1=1,∴数列{b n}是以1为首项,2为公差的等差数列.(2)由(1)知数列{b n}的通项公式为b n=1+(n-1)×2=2n-1,又b n=1a n,∴a n=1b n=12n-1.∴数列{a n}的通项公式为a n=12n-1.B组能力提升练11.(2019·唐山统考)已知等差数列{a n}的前n项和为S n,若S11=22,则a3+a7+a8=()A.18 B.12C.9 D.6解析:设等差数列{a n}的公差为d,由题意得S11=11(a1+a11)2=11(2a1+10d)2=22,即a1+5d=2,所以a3+a7+a8=a1+2d+a1+6d+a1+7d=3(a1+5d)=6,故选D.答案:D12.已知数列{a n}是等差数列,数列{b n}是等比数列,公比为q,数列{c n}中,c n=a n b n,S n是数列{c n}的前n项和.若S m=11,S2m=7,S3m=-201(m为正偶数),则S4m的值为()A.-1 601 B.-1 801C.-2 001 D.-2 201解析:令A=S m=11,B=S2m-S m=-4,C=S3m-S2m=-208,则q m·A=(a1b1+a2b2+…+a m b m)q m=a1b m+1+…+a m b2m.故B-q m·A=(a m+1-a1)b m+1+…+(a2m-a m)b2m=md(b m+1+…+b2m),其中,d是数列{a n}的公差,q是数列{b n}的公比.同理C-q m·B=md(b2m+1+…+b3m)=md(b m+1+…+b2m)·q m,故C-q m·B=q m(B-q m·A).代入已知条件,可得11(q m)2+8q m-208=0,解得q m =4或q m =-5211(因m 为正偶数,舍去).又S 4m -S 3m =(a 1b 1+a 2b 2+…+a m b m )q 3m +3md (b m +1+…+b 2m )q 2m =11×43+3(B -q m ·A )×42=11×43-3×12×43=-1 600. 故S 4m =S 3m -1 600=-1 801. 答案:B13.(2019·长春质检)设等差数列{a n }的前n 项和为S n ,a 1>0且a 6a 5=911,则当S n取最大值时,n 的值为( ) A .9 B .10 C .11D .12解析:由题意,不妨设a 6=9t ,a 5=11t ,则公差d =-2t ,其中t >0,因此a 10=t ,a 11=-t ,即当n =10时,S n 取得最大值,故选B . 答案:B14.设等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若对任意正整数n 都有S n T n=2n -34n -3,则a 9b 5+b 7+a 3b 8+b 4的值为________. 解析:因为{a n },{b n }为等差数列, 所以a 9b 5+b 7+a 3b 8+b 4=a 92b 6+a 32b 6=a 9+a 32b 6=a 6b 6,因为S 11T 11=a 1+a 11b 1+b 11=2a 62b 6=2×11-34×11-3=1941.所以a 6b 6=1941.答案:194115.(2019·银川模拟)在等差数列{a n }中,已知a 3=7,a 6=16,依次将等差数列的各项排成如图所示的三角形数阵,则此数阵中,第10行从左到右的第5个数是________.解析:由题知公差d =a 6-a 36-3=16-73=3,所以a n =7+(n -3)d =3n -2,第10行从左到右的第5个数是原等差数列中第1+2+…+9+5=50项,即为a 50=3×50-2=148. 答案:14816.(2019·太原模拟)设等差数列{a n }的前n 项和为S n ,若a 1<0,S 2 015=0. (1)求S n 的最小值及此时n 的值. (2)求n 的取值集合,使其满足a n ≥S n .解析:(1)设公差为d ,则由S 2 015=0⇒2 015a 1+2 015×2 0142d =0⇒a 1+1 007d=0,d =-11 007a 1,a 1+a n =2 015-n 1 007a 1, 所以S n =n 2(a 1+a n )=n 2·20 15-n1 007a 1 =a 12 014(2 015n -n 2). 因为a 1<0,n ∈N *,所以当n =1 007或1 008时,S n 取最小值504a 1. (2)a n =1 008-n1 007a 1,S n ≤a n ⇔a 12 014(2 015n -n 2)≤1 008-n 1 007a 1. 因为a 1<0,所以n 2-2 017n +2 016≤0, 即(n -1)(n -2 016)≤0,解得1≤n≤2 016.故所求n的取值集合为{n|1≤n≤2 016,n∈N*}.第三节等比数列及其前n项和[基础梳理]1.等比数列的有关概念(1)定义:①文字语言:从第2项起,每一项与它的前一项的比都等于同一个常数.②符号语言:a n+1a n=q(n∈N*,q为非零常数).(2)等比中项:如果a,G,b成等比数列,那么G叫做a与b的等比中项.即:G是a与b的等比中项⇔a,G,b成等比数列⇔G2=ab(a、G、b不为零).2.等比数列的有关公式(1)通项公式:a n =a 1q n -1. (2)前n 项和公式:S n =⎩⎨⎧na 1,q =1,a 1(1-q n )1-q =a 1-a n q 1-q ,q ≠1.3.等比数列的性质(1)通项公式的推广:a n =a m ·q n -m (m ,n ∈N *).(2)对任意的正整数m ,n ,p ,q ,若m +n =p +q ,则a m ·a n =a p ·a q .特别地,若m +n =2p ,则a m ·a n =a 2p .(3)若等比数列前n 项和为S n ,则S m ,S 2m -S m ,S 3m -S 2m 仍成等比数列,即(S 2m -S m )2=S m (S 3m -S 2m )(m ∈N *,公比q ≠-1).(4)数列{a n }是等比数列,则数列{pa n }(p ≠0,p 是常数)也是等比数列. (5)在等比数列{a n }中,等距离取出若干项也构成一个等比数列,即a n ,a n +k ,a n +2k ,a n +3k ,…为等比数列,公比为q k .1.(1)在等比数列求和时,要注意q =1和q ≠1的讨论. (2)当{a n }是等比数列且q ≠1时,S n =a 11-q -a 11-q ·q n =A -A ·q n .2.当项数是偶数时,S 偶=S 奇·q ; 当项数是奇数时,S 奇=a 1+S 偶·q .[四基自测]1.等比数列{a n }中,a 4=4,则a 2·a 6等于( ) A .4 B .8 C .16 D .32答案:C2.设{a n }是公比为正数的等比数列,若a 1=1,a 5=16,则数列{a n }前7项的和为( )A .63B .64C .127D .128答案:C3.在3与192中间插入两个数,使它们同这两个数成等比数列,则这两个数为________. 答案:12,484.设等比数列{a n }的前n 项和为S n ,若S 6S 3=12,则S 9S 3=________.答案:345.记S n 为数列{a n }的前n 项和,若S n =2a n +1,则a n =________. 答案:-2n -1考点一 等比数列的基本运算及性质◄考基础——练透角度1 利用基本量进行计算[例1] (1)(2018·高考全国卷Ⅰ)记S n 为数列{a n }的前n 项和.若S n =2a n +1,则S 6=________.解析:∵S n =2a n +1,当n ≥2时,S n -1=2a n -1+1, ∴a n =S n -S n -1=2a n -2a n -1, 即a n =2a n -1,当n =1时,a 1=S 1=2a 1+1,得a 1=-1.∴数列{a n }是首项a 1为-1,公比q 为2的等比数列, ∴S n =a 1(1-q n )1-q =-1(1-2n )1-2=1-2n ,∴S 6=1-26=-63.答案:-63(2)(2018·高考全国卷Ⅲ)等比数列{a n }中,a 1=1,a 5=4a 3. ①求{a n }的通项公式;②记S n 为{a n }的前n 项和.若S m =63,求m . 解析:①设{a n }的公比为q ,由题设得a n =q n -1. 由已知得q 4=4q 2,解得q =0(舍去),q =-2或q =2. 故a n =(-2)n -1或a n =2n -1.②若a n =(-2)n -1,则S n =1-(-2)n3.由S m =63得(-2)m =-188,此方程没有正整数解. 若a n =2n -1,则S n =2n -1. 由S m =63得2m =64,解得m =6. 综上,m =6.角度2 利用性质进行计算[例2] (1)在等比数列{a n }中,已知a 3,a 7是方程x 2-6x +1=0的两根,则a 5=( ) A .1 B .-1 C .±1D .3解析:在等比数列{a n }中,因为a 3,a 7是方程x 2-6x +1=0的两个根,所以a 3+a 7=6>0,a 3·a 7=1>0,所以a 3>0,a 7>0,a 5>0,因为a 3·a 7=a 25=1,所以a 5=1. 答案:A(2)已知数列1,a 1,a 2,9是等差数列,数列1,b 1,b 2,b 3,9是等比数列,则b 2a 1+a 2=________.解析:因为数列1,a 1,a 2,9是等差数列,所以a 1+a 2=1+9=10;因为数列1,b 1,b 2,b 3,9是等比数列,所以b 22=1×9=9,又b 2=1×q 2>0(q 为等比数列的公比),所以b 2=3,则b 2a 1+a 2=310.答案:310解决等比数列的基本运算常用方法1.已知等比数列{a n }中,a 3=3,a 10=384,则该数列的通项公式a n =________.解析:设等比数列{a n }的公比为q ,则⎩⎪⎨⎪⎧a 3=a 1q 2=3,①a 10=a 1q 9=384,②②÷①,得q 7=128,即q =2,把q =2代入①,得a 1=34,所以数列{a n }的通项公式为a n =a 1q n -1=34×2n -1=3×2n -3.答案:3×2n -32.等比数列{a n }的各项均为实数,其前n 项的和为S n ,已知S 3=74,S 6=634,则a 8=________.解析:当q =1时,显然不符合题意;当q ≠1时,⎩⎪⎨⎪⎧a 1(1-q 3)1-q=74a 1(1-q 6)1-q =634,解得⎩⎨⎧a 1=14,q =2,则a 8=14×27=32.答案:323.(2019·哈尔滨模拟)等比数列{a n }的各项为正数,且a 5a 6+a 4a 7=18,则log 3a 1+log 3a 2+…+log 3a 10=( ) A .12 B .10 C .8D .2+log 3a 5解析:由题a 5a 6+a 4a 7=18,所以a 5a 6=9,log 3a 1+log 3a 2+…+log 3a 10=log 3(a 1a 2…a 10)=log 3(a 5a 6)5=5log 39=10. 答案:B4.在等比数列{a n }中,如果a 1+a 2=40,a 3+a 4=60,那么a 7+a 8=( ) A .135 B .100 C .95D .80解析:由等比数列前n 项和的性质知,a 1+a 2,a 3+a 4,a 5+a 6,a 7+a 8成等比数列,其首项为40,公比为6040=32.所以a 7+a 8=40×(32)3=135. 答案:A考点二 等比数列的判定与证明◄考能力——知法[例3] (1)对任意等比数列{a n },下列说法一定正确的是( ) A .a 1,a 3,a 9成等比数列 B .a 2,a 3,a 6成等比数列 C .a 2,a 4,a 8成等比数列 D .a 3,a 6,a 9成等比数列解析:设等比数列的公比为q ,则a 3=a 1q 2,a 6=a 1q 5,a 9=a 1q 8,满足(a 1q 5)2=a 1q 2·a 1q 8,即a 26=a 3·a 9.答案:D(2)(2018·高考全国卷Ⅰ)已知数列{a n }满足a 1=1,na n +1=2(n +1)a n .设b n =a n n . ①求b 1,b 2,b 3;②判断数列{b n }是否为等比数列,并说明理由; ③求{a n }的通项公式.解析:①由条件可得a n +1=2(n +1)n a n .将n =1代入得,a 2=4a 1,而a 1=1,所以a 2=4. 将n =2代入得,a 3=3a 2,所以a 3=12. 从而b 1=1,b 2=2,b 3=4.②{b n }是首项为1,公比为2的等比数列. 由条件可得a n +1n +1=2a nn ,即b n +1=2b n ,又b 1=1,所以{b n }是首项为1,公比为2的等比数列. ③由②可得a nn =2n -1, 所以a n =n ·2n -1.等比数列的判断与证明的常用方法。
第一节 数列的概念与简单表示方法
第六章数列(必修5)第一节数列的概念与简单表示方法高考概览:1.了解数列的概念和几种简单的表示方法(列表、图象、通项公式);2.了解数列是自变量为正整数的一类函数.[知识梳理]1.数列的有关概念(1)数列的定义按照一定顺序排列的一列数称为数列.数列中的每一个数叫做这个数列的项.(2)数列的分类(3)数列的表示法 数列有三种表示法,它们分别是列表法、图象法和解析式法.2.数列的通项公式(1)数列的通项公式如果数列{a n }的第n 项与序号n 之间的关系可以用一个式子来表达,那么这个公式叫做这个数列的通项公式.(2)已知数列{a n }的前n 项和S n ,则a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2. [辨识巧记]1.一个重要关系数列是一种特殊的函数,在研究数列问题时,既要注意函数方法的普遍性,又要考虑数列方法的特殊性.2.两个特殊问题(1)对于数列与周期性有关的题目,关键是找出数列的周期.(2)求数列最大项的方法:①利用数列{a n }的单调性;②解不等式组⎩⎪⎨⎪⎧a k ≥a k -1,a k ≥a k +1, [双基自测]1.判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)相同的一组数按不同顺序排列时都表示同一个数列.( )(2)一个数列中的数是不可以重复的.( )(3)所有数列的第n 项都能使用公式表达.( )(4)根据数列的前几项归纳出的数列的通项公式可能不止一个.( )[答案] (1)× (2)× (3)× (4)√2.(必修5P 31例3改编)在数列{a n }中,a 1=1,a n =1+(-1)na n -1(n ≥2),则a 5=( )A.32B.53C.85D.23[解析] 由a 1=1,a n =1+(-1)na n -1(n ≥2),得a 2=1+1=2,a 3=1-12=12,a 4=1+2=3,a 5=1-13=23.故选D.[答案] D3.已知数列{a n }为32,1,710,917,…,则可作为数列{a n }的通项公式的是( )A .a n =n -1n 2+1B .a n =n +1n 2+1C .a n =2n +1n 2+1D .a n =2n -1n 2+1[解析] 由32,55,710,917,…,归纳得a n =2n +1n 2+1,故选C. [答案] C4.已知数列,1,3,5,7,…,2n -1,…,则35是它的( )A .第22项B .第23项C .第24项D .第28项[解析] 由35=45=2×23-1,可知35是该数列的第23项.故选B.[答案] B5.已知数列{a n }的前n 项和S n =3+2n ,则a n =________. [解析] ∵S n =3+2n ,∴S n -1=3+2n -1(n ≥2),a n =S n -S n -1=2n -1(n ≥2). 而a 1=S 1=5,∴a n =⎩⎪⎨⎪⎧ 5,n =1,2n -1,n ≥2. [答案] ⎩⎪⎨⎪⎧5,n =1,2n -1,n ≥2考点一 归纳数列通项公式【例1】 写出下面各数列的一个通项公式:(1)12,34,78,1516,3132,…;(2)-1,32,-13,34,-15,36,…;(3)23,-1,107,-179,2611,-3713,…;(4)3,33,333,3333,….[解] (1)每一项的分子比分母少1,而分母组成数列21,22,23,24,…,所以a n =2n -12n .(2)奇数项为负,偶数项为正,故通项公式的符号因数为(-1)n ;各项绝对值的分母组成数列1,2,3,4,…;而各项绝对值的分子组成的数列中,奇数项为1,偶数项为3,即奇数项为2-1,偶数项为2+1,所以a n =(-1)n ·2+(-1)n n .也可写为a n =⎩⎪⎨⎪⎧ -1n ,n 为奇数,3n ,n 为偶数.(3)偶数项为负,而奇数项为正,故通项公式中必含有因子(-1)n +1,观察各项绝对值组成的数列,从第3项到第6项可见,分母分别由奇数7,9,11,13组成,而分子则是32+1,42+1,52+1,62+1,按照这样的规律,第1、2两项可改写为12+12+1,-22+12·2+1, 所以a n =(-1)n +1n 2+12n +1. (4)将数列各项改写为:93,993,9993,99993,…,分母都是3,而分子分别是10-1,102-1,103-1,104-1,….所以a n =13(10n -1).(1)根据所给数列的前几项求其通项时,需仔细观察分析,抓住其几方面的特征:分式中分子、分母的各自特征;相邻项的联系特征;拆项后的各部分特征;符号特征.应多进行对比、分析,从整体到局部多角度观察、归纳、联想.(2)对于正负符号变化,可用(-1)n 或(-1)n +1来调整.[对点训练]1.下列关于星星的图案构成一个数列,该数列的一个通项公式是( )A .a n =n 2-n +1B .a n =n (n -1)2C .a n =n (n +1)2D .a n =n (n +2)2[解析] 从图中可观察星星的构成规律,n =1时,有1个;n =2时,有3个;n =3时,有6个;n =4时,有10个;…∴a n =1+2+3+4+…+n =n (n +1)2.故选C.[答案] C2.已知数列{a n }的前4项为2,0,2,0,则依此归纳该数列的通项不可能是( )A .a n =(-1)n -1+1B .a n =⎩⎪⎨⎪⎧2,n 为奇数,0,n 为偶数 C .a n =2sin n π2D .a n =cos(n -1)π+1[解析] 对于选项C ,a 3=2sin 3π2=-2≠2,故选C.[答案] C考点二 S n 与a n 的关系【例2】 (1)已知数列{a n }的前n 项和S n =3n 2-2n ,求数列{a n }的通项公式.(2)已知数列{a n }的前n 项和S n =23a n +13,求数列{a n }的通项公式.[思路引导] 利用a n =S n -S n -1(n ≥2)转化→验证n =1→确定结果[解] (1)当n =1时,a 1=S 1=3×12-2×1=1;当n ≥2时,a n =S n -S n -1=(3n 2-2n )-[3(n -1)2-2(n -1)]=6n -5.∵a 1=1也适合上式,∴a n =6n -5. (2)由S n =23a n +13得,当n ≥2时,S n -1=23a n -1+13,两式相减整理得:当n ≥2时,a n =-2a n -1.又n =1时,S 1=a 1=23a 1+13,∴a 1=1,∴{a n }是首项为1,公比为-2的等比数列,∴a n =(-2)n -1.[拓展探究] (1)若把本例(1)中“S n =3n 2-2n ”改为“S n =3n 2-2n +1”,其他条件不变,数列{a n }的通项公式是________.(2)本例(2)中条件改为a 1=-1,a n +1=S n S n +1,则S n =__________.[解析] (1)当n =1时,a 1=S 1=3×12-2×1+1=2;当n ≥2时,a n =S n -S n -1=(3n 2-2n +1)-[3(n -1)2-2(n -1)+1]=6n -5.∵a 1=2不适合上式,∴a n =⎩⎪⎨⎪⎧2,n =1,6n -5,n ≥2. (2)由已知得a n +1=S n +1-S n =S n S n +1,两边同时除以S n S n +1得1S n-1S n +1=1, 即1S n +1-1S n =-1.又1S 1=-1, 所以⎩⎨⎧⎭⎬⎫1S n 是首项为-1,公差为-1的等差数列, 所以1S n=-1+(n -1)×(-1)=-n , 即S n =-1n .[答案] (1)a n =⎩⎪⎨⎪⎧2,n =1,6n -5,n ≥2 (2)-1n已知S n 求a n 的一般步骤(1)当n =1时,由a 1=S 1求a 1的值.(2)当n ≥2时,由a n =S n -S n -1,求得a n 的表达式.(3)检验a 1的值是否满足(2)中的表达式,若不满足,则分段表示a n .(4)写出a n 的完整表达式.[对点训练]已知数列{a n }的前n 项和为S n .(1)若S n =(-1)n +1·n ,求a 5+a 6及a n ;(2)若S n =3n +2n +1,求a n .[解] (1)a 5+a 6=S 6-S 4=(-6)-(-4)=-2,当n =1时,a 1=S 1=1;当n ≥2时,a n =S n -S n -1=(-1)n +1·n -(-1)n ·(n -1)=(-1)n +1·[n +(n -1)]=(-1)n +1·(2n -1),又a 1也适合此式,所以a n =(-1)n +1·(2n -1).(2)因为当n =1时,a 1=S 1=6;当n ≥2时,a n =S n -S n -1=(3n +2n +1)-[3n -1+2(n -1)+1]=2·3n -1+2, 由于a 1不适合此式,所以a n =⎩⎪⎨⎪⎧6,n =1,2·3n -1+2,n ≥2. 考点三 数列的函数性质【例3】 (1)(2018·内蒙古阿拉善左旗月考)已知数列{a n }中,a 1=1,a n +1=-1a n +1,则a 2018等于( ) A .1 B .-1 C .-12 D .-2(2)已知{a n }是递增数列,且对于任意的n ∈N *,a n =n 2+λn 恒成立,则实数λ的取值范围是________. [思路引导] (1)递推a 1,a 2,a 3,a 4等→确定数列{a n }的周期→求值[解析] (1)∵a 1=1,a n +1=-1a n +1,∴a 2=-1a 1+1=-12,a 3=-1a 2+1=-2,a 4=-1a 3+1=1.由上述可知该数列为周期数列,其周期为3.又∵2018=3×672+2,∴a 2018=a 2=-12.故选C.(2)解法一:(定义法)因为{a n }是递增数列,所以对任意的n ∈N *,都有a n +1>a n ,即(n +1)2+λ(n +1)>n 2+λn ,整理,得2n +1+λ>0,即λ>-(2n +1) (*).因为n ≥1,所以-(2n +1)≤-3,要使不等式(*)恒成立,只需λ>-3.解法二:(函数法)设f (n )=a n =n 2+λn ,其图象的对称轴为直线n =-λ2,要使数列{a n }为递增数列,只需使定义在正整数集上的函数f (n )为增函数,故只需满足f (1)<f (2),即λ>-3.[答案] (1)C (2)λ>-3(1)周期数列的常见形式: ①所给递推关系中含有三角函数,利用三角函数的周期性;②相邻多项之间的递推关系,如后一项是前两项的差;③相邻两项的递推关系,等式中一侧含有分式,又较难变形构造出特殊数列.(2)利用数列与函数之间的特殊关系,将数列的单调性转化为相应函数的单调性,利用函数的性质求解参数的取值范围,但要注意数列通项中n 的取值范围.[对点训练]1.数列{a n }中,a 1=2,a 2=3,a n +1=a n -a n -1(n ≥2),那么a 2019=( )A .1B .-2C .3D .-3[解析] 因为a n =a n -1-a n -2(n ≥3),所以a n +1=a n -a n -1=(a n -1-a n -2)-a n -1=-a n -2,所以a n +3=-a n ,所以a n +6=-a n +3=a n ,所以{a n }是以6为周期的周期数列.因为2019=336×6+3,所以a 2019=a 3=a 2-a 1=3-2=1.故选A.[答案] A2.(2018·山东济宁期中)已知数列{a n }满足a n =⎩⎪⎨⎪⎧a n -2,n <4,(6-a )n -a ,n ≥4,若对任意的n ∈N *都有a n <a n +1成立,则实数a 的取值范围为( )A .(1,4)B .(2,5)C .(1,6)D .(4,6)[解析] 因为对任意的n ∈N *都有a n <a n +1成立,所以数列是递增数列,因此⎩⎪⎨⎪⎧ 1<a ,6-a >0,a <(6-a )×4-a ,解得1<a <4.故选A.[答案] A课后跟踪训练(三十四)基础巩固练一、选择题1.数列0,1,0,-1,0,1,0,-1,…的一个通项公式是a n 等于( )A.(-1)n +12B .cos n π2 C.n +12πD .cos n +22π [解析] 令n =1,2,3,…,逐一验证四个选项,易得D 正确.故选D.[答案] D2.(2019·福建福州八中质检)已知数列{a n }满足a 1=1,a n +1=a 2n -2a n +1(n ∈N *),则a 2017=( )A .1B .0C .2017D .-2017[解析] ∵a 1=1,∴a 2=(a 1-1)2=0,a 3=(a 2-1)2=1,a 4=(a 3-1)2=0,…,可知数列{a n }是以2为周期的数列,∴a 2017=a 1=1.故选A.[答案] A3.某数列{a n }的前四项为0,2,0,2,给出下列各式:①a n =22[1+(-1)n ];②a n =1+(-1)n ;③a n =⎩⎪⎨⎪⎧2(n 为偶数),0(n 为奇数).其中可作为{a n }的通项公式的是( )A .①B .①②C .②③D .①②③[解析] 把每个式子中的前四项算出来与已知对照一下即可.[答案] D4.数列{a n }中,a n =-2n 2+29n +3,则此数列最大项的值是( )A .103 B.8658 C.8258 D .108[解析] 根据题意并结合二次函数的性质可得a n =-2n 2+29n +3=-2⎝ ⎛⎭⎪⎫n -2942+3+8418, ∴n =7时,a n 取得最大值,最大项a 7的值为108.故选D.[答案] D5.已知数列{a n }满足a 1=1,a n +1·a n =2n (n ∈N *),则a 10=( )A .64B .32C .16D .8[解析] 由a n +1·a n =2n ,所以a n +2·a n +1=2n +1,故a n +2a n=2,又a 1=1,可得a 2=2,故a 10=25=32.故选B.[答案] B二、填空题6.在数列-1,0,19,18,…,n -2n 2,…中,0.08是它的第________项.[解析] 令n -2n 2=0.08,得2n 2-25n +50=0,即(2n -5)(n -10)=0.解得n =10或n =52(舍去).[答案] 107.(2019·河北唐山一模)设数列{a n }的前n 项和为S n ,且S n =a 1(4n -1)3,若a 4=32,则a 1=________. [解析] ∵S n =a 1(4n -1)3,a 4=32, ∴255a 13-63a 13=32,∴a 1=12.[答案] 128.已知数列{a n }满足a 1=1,a n =a 2n -1-1(n >1),则a 2017=________,|a n +a n +1|=________(n >1).[解析] 由a 1=1,a n =a 2n -1-1(n >1),得a 2=a 21-1=12-1=0,a 3=a 22-1=02-1=-1,a 4=a 23-1=(-1)2-1=0,a 5=a 24-1=02-1=-1,由此可猜想当n >1,n 为奇数时a n =-1,n 为偶数时a n =0,∴a 2017=-1,|a n +a n +1|=1.[答案] -1 1三、解答题9.(1)(2018·广东化州第二次模拟)已知S n 为数列{a n }的前n 项和,且log 2(S n +1)=n +1,求数列{a n }的通项公式.(2)已知数列{a n }的各项均为正数,S n 为其前n 项和,且对任意n∈N *,均有2S n =a n +a 2n ,求数列{a n }的通项公式.[解] (1)由log 2(S n +1)=n +1,得S n +1=2n +1,当n =1时,a 1=S 1=3;当n ≥2时,a n =S n -S n -1=2n ,所以数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧3,n =1,2n ,n ≥2 (2)∵2S n =a n +a 2n ,当n =1时,2S 1=2a 1=a 1+a 21. 又a 1>0,∴a 1=1.当n ≥2时,2a n =2(S n -S n -1)=a n +a 2n -a n -1-a 2n -1,∴(a 2n -a 2n -1)-(a n +a n -1)=0,∴(a n +a n -1)(a n -a n -1)-(a n +a n -1)=0,∴(a n +a n -1)(a n -a n -1-1)=0,∵a n +a n -1>0,∴a n -a n -1=1,∴{a n }是以1为首项,1为公差的等差数列,∴a n =n (n ∈N *).10.已知数列{a n }的通项公式是a n =n 2+kn +4.(1)若k =-5,则数列中有多少项是负数?n 为何值时,a n 有最小值?并求出最小值.(2)若{a n }为递增数列,求实数k 的取值范围.[解] (1)由n 2-5n +4<0,解得1<n <4.∵n ∈N *,∴n =2,3.∴数列中有两项是负数,即为a 2,a 3.∵a n =n 2-5n +4=⎝ ⎛⎭⎪⎫n -522-94,由二次函数性质,得当n =2或n =3时,a n 有最小值,其最小值为a 2=a 3=-2.(2)解法一:因为通项公式a n =n 2+kn +4,可以看作是关于n 的二次函数,考虑到n ∈N *,所以-k 2<32,注意比较对象,即得k >-3.解法二:因为{a n }是递增数列,则a n +1>a n ,∴(n +1)2+k (n +1)+4>n 2+kn +4.解得:k >-3.∴k 的取值范围为(-3,+∞).能力提升练11.(2019·湖南六校联考)已知数列{a n }满足:∀m ,n ∈N *,都有a n ·a m =a n +m ,且a 1=12,那么a 5=( )A.132B.116C.14D.12[解析] ∵数列{a n }满足:∀m ,n ∈N *,都有a n ·a m =a n +m ,且a 1=12,∴a 2=a 1a 1=14,a 3=a 1·a 2=18.那么a 5=a 3·a 2=132.故选A.[答案] A12.已知a n =n -2017n -2018(n ∈N *),则数列{a n }的前50项中最小项和最大项分别是( )A .a 1,a 50B .a 1,a 44C .a 45,a 50D .a 44,a 45[解析] a n =n -2017n -2018=n -2018+2018-2017n -2018=1+2018-2017n -2018,要使a n 最大,则需n -2018最小,且n -2018>0,∴n =45时,a n 最大.同理可得n =44时,a n 最小.故选D.[答案] D13.在一个数列中,如果∀n ∈N *,都有a n a n +1a n +2=k (k 为常数),那么这个数列叫做等积数列,k 叫做这个数列的公积.已知数列{a n }是等积数列,且a 1=1,a 2=2,公积为8,则a 1+a 2+a 3+…+a 12=________.[解析] 依题意得数列{a n }是周期为3的数列,且a 1=1,a 2=2,a 3=4,因此a 1+a 2+a 3+…+a 12=4(a 1+a 2+a 3)=4×(1+2+4)=28.[答案] 2814.(2019·河南洛阳第二次统一考试)已知数列{a n }中,a 1=1,其前n 项和为S n ,且满足2S n =(n +1)a n (n ∈N *).(1)求数列{a n }的通项公式;(2)记b n =3n -λa 2n ,若数列{b n }为递增数列,求λ的取值范围.[解] (1)∵2S n =(n +1)a n ,∴2S n +1=(n +2)a n +1,∴2a n +1=(n +2)a n +1-(n +1)a n ,即na n +1=(n +1)a n ,∴a n +1n +1=a n n ,∴a n n =a n -1n -1=…=a 11=1, ∴a n =n (n ∈N *).(2)b n =3n -λn 2.b n +1-b n =3n +1-λ(n +1)2-(3n -λn 2)=2·3n -λ(2n +1).∵数列{b n }为递增数列,∴2·3n -λ(2n +1)>0,即λ<2·3n 2n +1. 令c n =2·3n2n +1,即c n +1c n=2·3n +12n +3·2n +12·3n =6n +32n +3>1. ∴{c n }为递增数列,∴λ<c 1=2,即λ的取值范围为(-∞,2).拓展延伸练15.(2019·陕西咸阳二模)已知正项数列{a n }中,a 1+a 2+…+a n =n (n +1)2(n ∈N *),则数列{a n }的通项公式为( )A .a n =nB .a n =n 2C .a n =n 2D .a n =n 22[解析] ∵a 1+a 2+…+a n =n (n +1)2, ∴a 1+a 2+…+a n -1=n (n -1)2(n ≥2), 两式相减得a n =n (n +1)2-n (n -1)2=n (n ≥2),∴a n =n 2(n ≥2),(*)又当n =1时,a 1=1×22=1,a 1=1适合(*),∴a n =n 2,n ∈N *.故选B.[答案] B16.(2019·湖南永州二模)已知数列{a n }的前n 项和S n =3n (λ-n )-6,若数列{a n }单调递减,则λ的取值范围是( )A .(-∞,2)B .(-∞,3)C .(-∞,4)D .(-∞,5)[解析] ∵S n =3n (λ-n )-6,①∴S n -1=3n -1(λ-n +1)-6,n ≥2,②①-②得a n =3n -1(2λ-2n -1)(n ≥2),当n =1时,a 1=3λ-9,不适合上式,∴a n =⎩⎪⎨⎪⎧3λ-9,n =1,3n -1(2λ-2n -1),n ≥2, ∵{a n }为单调递减数列,∴a n >a n +1(n ≥2),且a 1>a 2,∴3n -1(2λ-2n -1)>3n (2λ-2n -3)(n ≥2),且λ<2,化为λ<n +2(n ≥2),且λ<2,∴λ<2,∴λ的取值范围是(-∞,2).故选A.[答案] A。
2.1.1 数列的概念与简单表示法
奇数项都为负,且分子都是1,偶数项都为正,且分子
都是3,分母依次是1,2,3,4,…正负号可以用
(-1)n调整.
an
3
n
1 (n n (n
2k 1), 2k),其中k
N
. *
由于1=2-1,3=2+1,所以数列的通项公式可合写成
an= (1)n 2 (1)n .
2.(1)这个数列各项的整数部分分别为1,2,3,4,
…,恰好是序号n;分数部分分别为 1,2,3,4,…,与序
2345
号n的关系是
n
n
1
,所以这个数列的一个通项公式是an=
n n n2 2n . n 1 n 1
(2)数列各项的绝对值为1,3,5,7,9,…,是连续的
正奇数;考虑(-1)n具有转换符号的作用,所以数列的一
5,那么可以叫做数列的个数为( )
A.1
B.2
C.3
D.4
【解析】选D.按照数列定义得出四种形式均为数列.
3.已知数列 3, 5 , 7 , 9 , a b ,…,根据前三项给
2 4 6 a b 10
出的规律,则实数对(a,b)可能是( )
A.(19,3) C.( 19,3 )
22
B.(19,-3) D.( 19, 3 )
个通项公式为an=(-1)n(2n-1).
(3)数列1,0,1,0,…的通项公式为 (1)n1 1,数列
2
0,1,0,1…的通项公式为 (1)n 1 ,因此数列a,0,
2
a,0…的通项公式为 (1)n1 1a ,数列0,b,0,b,…
2
的通项公式为 (1)n 1b ,所以数列a,b,a,b,a,b,
数列的概念及简单表示方法
= ()
+1
在数列 中,
=
且1
+2
= 2, 求数列 的通项公式
3、构造法:
形如+1 = +
在数列 中, 1 = 1, +1 =
2
3
+ 1,求数列 的通项公式
, +
若数列 的前项和为 :
1 , = 1
则 = ቊ
− −1 , ≥ 2
习题练习
求数列的通项公式
一、观察法:写出下面各数列的一个通项公式
(1)1,-3,5,-7,9,… = (−1)−1 × (2 − 1)
(2)9, 9,999,9999,… = 10 − 1
摆动数列
数列的函数特性
1、数列与函数的关系
数列可以看成一类特殊的函数 = (),定义域
为正整数集(或正整数集的有限子集),所以它的图
像是一系列鼓励的点,而不是连续不断的曲线。
2、数列的性质:单调性、周期性。
数列的前n项和 和通项 的关系
= 1 + 2 + 3 + ⋯ +
(或某一项)开始的任一项 与它的前一项n−1 (或前
几项)( ≥ 2)的关系可以用一个公式表示,那么这个公
式就叫做该数列的递推公式。
例如:+1 = + 2, 1 = 1
递推公式包括两部分:开头,递推关系;
通项公式可以直接求出数列的任意一项,递推公式不可以
直接求出;
递推公式、通项公式共同点:都可以确定一个数列,求出
子 =(), ∈ + 表达,这个式子叫做数列 的通项
公式。
2025高考数学一轮复习-6.1-数列的概念与简单表示方法【课件】
『变式训练』 1.设 Sn 为数列{an}的前 n 项和,若 2Sn=3an-3,则 a4 等于( B ) A.27 B.81 C.93 D.243
【解析】 根据 2Sn=3an-3,可即 an+1=3an,当 n=1 时,2S1=3a1-3,解得 a1=3,所以数列{an}是以 3 为首项,3 为公 比的等比数列,所以 a4=a1q3=34=81.故选 B.
【解析】 ∵Sn=3+2n, ∴Sn-1=3+2n-1(n≥2),an=Sn-Sn-1=2n-1(n≥2). 而 a1=S1=5,∴an=52, n-1n,=n1≥,2.
易错点睛:(1)数列是特殊的函数,注意其自变量为正整数. (2)求数列前 n 项和 Sn 的最值时,注意项为零的情况. (3)使用 an=Sn-Sn-1 求 an 时注意 n≥2 这一条件,要验证 n=1 时是否成立.
满足条件
有穷数列 无穷数列
项数 项数
有限 无限
递增数列 递减数列
常数列
an+1 an+1 an+1
> an < an = an
其中 n∈N*
从第 2 项起,有些项大于它的前一项,有些项小
于它的前一项的数列
3.数列的表示法 数列有三种表示法,它们分别是列表法、图象法和 解析法 . 4.数列与函数的关系 数列{an}是从正整数集 N*(或它的有限子集{1,2,…,n})到实数集 R 的函数,其自变 量是序号 n,对应的函数值是数列的第 n 项 an,记为 an=f(n).也就是说,当自变量从 1 开始,按照从小到大的顺序依次取值时,对应的一列函数值 f(1),f(2),…,f(n),…就是 数列{an}.
同理令2nn-+11=15,得 n=2,∴15为数列{an}的项;
高三 一轮复习 2数列的概念及简单的表示法 教案
数列的概念与简单表示法1.数列的定义、分类与通项公式 (1)数列的定义:①数列:按照一定顺序排列的一列数. ②数列的项:数列中的每一个数. (2)数列的分类:分类标准 类型 满足条件 项数有穷数列 项数有限 无穷数列 项数无限项与项间的大小关系递增数列a n +1>a n 其中n ∈N *递减数列 a n +1<a n 常数列a n +1=a n(3)数列的通项公式:如果数列{a n }的第n 项与序号n 之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.2.数列的递推公式如果已知数列{a n }的首项(或前几项),且任一项a n 与它的前一项a n -1(n ≥2)(或前几项)间的关系可用一个公式来表示,那么这个公式叫数列的递推公式.1.数列是按一定“次序”排列的一列数,一个数列不仅与构成它的“数”有关,而且还与这些“数”的排列顺序有关.2.易混项与项数两个不同的概念,数列的项是指数列中某一确定的数,而项数是指数列的项对应的位置序号. [试一试]1.已知数列{a n }的前4项为1,3,7,15,写出数列{a n }的一个通项公式为________.2.已知数列{a n }的通项公式是a n =⎩⎪⎨⎪⎧2·3n -1(n 为偶数),2n -5(n 为奇数),则a 4·a 3=________.1.辨明数列与函数的关系数列是一种特殊的函数,即数列是一个定义在非零自然数集或其子集上的函数,当自变量依次从小到大取值时所对应的一列函数值,就是数列. 2.明确a n 与S n 的关系a n =⎩⎪⎨⎪⎧S 1 (n =1),S n -S n -1(n ≥2).[练一练]1.(2013·南京、淮安二模)已知数列{a n }的通项为a n =7n +2,数列{b n }的通项为b n =n 2.若将数列{a n },{b n }中相同的项按从小到大的顺序排列后记作数列{c n },则c 9的值是________.2.(2014·苏锡常镇调研)设u (n )表示正整数n 的个位数,a n =u (n 2)-u (n ),则数列{a n }的前2 014项和等于________.考点一由数列的前几项求数列的通项公式1.(2014·南通二模)将正偶数按如下所示的规律排列:2 4 6 8 10 12 14 16 18 20 …则第n (n ≥4)行从左向右的第4个数为________.2.根据数列的前几项,写出各数列的一个通项公式:(1)4,6,8,10,…;(2)-11×2,12×3,-13×4,14×5,…;(3)a,b,a,b,a,b,…(其中a,b为实数);(4)9,99,999,9 999,….[类题通法]用观察法求数列的通项公式的技巧(1)根据数列的前几项求它的一个通项公式,要注意观察每一项的特点,观察出项与n之间的关系、规律,可使用添项、通分、分割等办法,转化为一些常见数列的通项公式来求.对于正负符号变化,可用(-1)n或(-1)n+1来调整.(2)根据数列的前几项写出数列的一个通项公式是不完全归纳法,它蕴含着“从特殊到一般”的思想.考点二由an与S n的关系求通项a n[典例]已知下面数列{a n}的前n项和S n,求{a n}的通项公式:(1)S n=2n2-3n;(2)S n=3n+b.[类题通法]已知数列{a n }的前n 项和S n ,求数列的通项公式,其求解过程分为三步: (1)先利用a 1=S 1求出a 1;(2)用n -1替换S n 中的n 得到一个新的关系,利用a n =S n -S n -1(n ≥2)便可求出当n ≥2时a n 的表达式; (3)对n =1时的结果进行检验,看是否符合n ≥2时a n 的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分n =1与n ≥2两段来写. [针对训练]已知各项均为正数的数列{a n }的前n 项和满足S n >1,且6S n =(a n +1)(a n +2),n ∈N *,求{a n }的通项公式.考点三由递推关系式求数列的通项公式递推公式和通项公式是数列的两种表示方法,它们都可以确定数列中的任意一项,只是由递推公式确定数列中的项时,不如通项公式直接,归纳起来常见的命题角度有: (1)形如a n +1=a n f (n ),求a n ; (2)形如a n +1=a n +f (n ),求a n ;(3)形如a n +1=Aa n +B (A ≠0且A ≠1),求a n . 角度一 形如a n +1=a n f (n ),求a n1.已知数列{a n }中,a 1=1,前n 项和S n =n +23a n .(1)求a 2,a 3; (2)求{a n }的通项公式.[课堂练通考点]1.(2014·苏北四市质检)在数列{a n }中,已知a 1=2,a 2=3,当n ≥2时,a n +1是a n ·a n -1的个位数,则a 2014=________.2.(2013·盐城三调)已知函数f (x )=⎩⎪⎨⎪⎧(3-a )x -3,x ≤7,a x -6, x >7,数列{a n }满足a n =f (n ),n ∈N *,且数列{a n }是递增数列,则实数a 的取值范围是________.3.已知数列{a n }满足a st =a s a t (s ,t ∈N *),且a 2=2,则a 8=________.4.已知数列{a n }中,a 1=1,a n +1=(-1)n (a n +1),记S n 为{a n }前n 项的和,则S 2 013=____________.5.已知数列{a n }的前n 项和S n =2n 2+2n ,数列{b n }的前n 项和T n =2-b n .求数列{a n }与{b n }的通项公式.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§数列的概念及简单表示法1. 数列的定义按照一定次序排列起来的一列数叫做数列,数列中的每一个数叫做这个数列的项. 2. 数列的分类分类原则 类型 满足条件 按项数分类 有穷数列 项数有限 无穷数列 项数无限按项与项间的大小关系分类 递增数列 a n +1__>__a n 其中n ∈N +递减数列 a n +1__<__a n 常数列 a n +1=a n按其他标准分类有界数列 存在正数M ,使|a n |≤M摆动数列从第二项起,有些项大于它的前一项,有些项小于它的前一项的数列3. 数列有三种表示法,它们分别是列表法、图象法和解析法. 4. 数列的通项公式如果数列{a n }的第n 项a n 与n 之间的关系可以用一个函数式a n =f (n )来表示,那么这个公式叫做这个数列的通项公式.5.已知S n ,则a n =⎩⎪⎨⎪⎧S 1 ?n =1?S n -S n -1 ?n ≥2?.1. 判断下面结论是否正确(请在括号中打“√”或“×”)(1)所有数列的第n 项都能使用公式表达.( × ) (2)根据数列的前几项归纳出数列的通项公式可能不止一个. ( √ ) (3)数列:1,0,1,0,1,0,…,通项公式只能是a n =1+?-1?n +12.( × )(4)如果数列{a n }的前n 项和为S n ,则对?n ∈N +,都有a n +1=S n +1-S n . ( √ )(5)在数列{a n }中,对于任意正整数m ,n ,a m +n =a mn +1,若a 1=1,则a 2=2.( √ ) (6)若已知数列{a n }的递推公式为a n +1=12a n -1,且a 2=1,则可以写出数列{a n }的任何一项.( √ ) 2. 设数列{a n }的前n 项和S n =n 2,则a 8的值为( )A .15B .16C .49D .64 答案 A解析 ∵S n =n 2,∴a 1=S 1=1.当n ≥2时,a n =S n -S n -1=n 2-(n -1)2=2n -1. ∴a n =2n -1,∴a 8=2×8-1=15.3. 已知数列{a n }的前n 项和S n 满足:S n +S m =S n +m ,且a 1=1,那么a 10等于 ( )A .1B .9C .10D .55 答案 A解析 ∵S n +S m =S n +m ,a 1=1,∴S 1=1. 可令m =1,得S n +1=S n +1,∴S n +1-S n =1. 即当n ≥1时,a n +1=1,∴a 10=1.4. (2013·课标全国Ⅰ)若数列{a n }的前n 项和S n =23a n +13,则{a n }的通项公式是a n =_____.答案 (-2)n -1解析 当n =1时,a 1=1;当n ≥2时,a n =S n -S n -1=23a n -23a n -1,故a n a n -1=-2,故a n =(-2)n -1. 当n =1时,也符合a n =(-2)n -1.综上,a n =(-2)n -1.5. (2013·安徽)如图,互不相同的点A 1,A 2,…,A n ,…和B 1,B 2,…,B n …分别在角O 的两条边上,所有A n B n 相互平行,且所有梯形A n B n B n +1A n +1的面积均相等.设OA n =a n ,若a 1=1,a 2=2,则数列{a n }的通项公式是________.答案 a n =3n -2由相似三角形面积比是相似比的平方知OA 2n +OA 2n +2=2OA 2n +1,即a 2n +a 2n +2=2a 2n +1, 因此{a 2n }为等差数列且a 2n =a 21+3(n -1)=3n -2, 故a n =3n -2.题型一 由数列的前几项求数列的通项 例1 写出下面各数列的一个通项公式: (1)3,5,7,9,…; (2)12,34,78,1516,3132,…;(3)-1,32,-13,34,-15,36,…;(4)3,33,333,3 333,….思维启迪 先观察各项的特点,然后归纳出其通项公式,要注意项与项数之间的关系,项与前后项之间的关系.解 (1)各项减去1后为正偶数,所以a n =2n +1.(2)每一项的分子比分母少1,而分母组成数列21,22,23,24,…,所以a n =2n-12n .(3)奇数项为负,偶数项为正,故通项公式中含因子(-1)n;各项绝对值的分母组成数列1,2,3,4,…;而各项绝对值的分子组成的数列中,奇数项为1,偶数项为3,即奇数项为2-1,偶数项为2+1,所以a n =(-1)n·2+?-1?nn.也可写为a n=⎩⎪⎨⎪⎧-1n,n 为正奇数,3n ,n 为正偶数.(4)将数列各项改写为93,993,9993,9 9993,…,分母都是3,而分子分别是10-1,102-1,103-1,104-1,…,所以a n =13(10n-1).思维升华 根据所给数列的前几项求其通项时,需仔细观察分析,抓住其几方面的特征:分式中分子、分母的各自特征;相邻项的联系特征;拆项后的各部分特征;符号特征,应多进行对比、分析,从整体到局部多角度观察、归纳、联想.(1)数列-1,7,-13,19,…的一个通项公式是a n =________.(2)数列{a n }的前4项是32,1,710,917,则这个数列的一个通项公式是a n =________.答案 (1)(-1)n·(6n -5) (2)2n +1n 2+1解析 (1)符号问题可通过(-1)n或(-1)n +1表示,其各项的绝对值的排列规律为后面的数的绝对值总比前面的数的绝对值大6,故通项公式为a n =(-1)n(6n -5). (2)数列{a n }的前4项可变形为2×1+112+1,2×2+122+1,2×3+132+1,2×4+142+1,故a n =2n +1n 2+1. 题型二 由数列的前n 项和S n 求数列的通项例2 已知下面数列{a n }的前n 项和S n ,求{a n }的通项公式: (1)S n =2n 2-3n ; (2)S n =3n+b .思维启迪 当n =1时,由a 1=S 1,求a 1;当n ≥2时,由a n =S n -S n -1消去S n ,得a n +1与a n 的关系.转化成由递推关系求通项. 解 (1)a 1=S 1=2-3=-1, 当n ≥2时,a n =S n -S n -1=(2n 2-3n )-[2(n -1)2-3(n -1)]=4n -5, 由于a 1也适合此等式,∴a n =4n -5. (2)a 1=S 1=3+b , 当n ≥2时,a n =S n -S n -1 =(3n+b )-(3n -1+b )=2·3n -1.当b =-1时,a 1适合此等式. 当b ≠-1时,a 1不适合此等式. ∴当b =-1时,a n =2·3n -1;当b ≠-1时,a n =⎩⎪⎨⎪⎧3+b , n =1,2·3n -1, n ≥2.思维升华 数列的通项a n 与前n项和S n 的关系是a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.当n =1时,a 1若适合S n -S n -1,则n =1的情况可并入n ≥2时的通项a n ;当n =1时,a 1若不适合S n -S n -1,则用分段函数的形式表示.已知数列{a n }的前n 项和S n =3n 2-2n +1,则其通项公式为________________.答案 a n =⎩⎪⎨⎪⎧2,n =16n -5,n ≥2解析 当n =1时,a 1=S 1=3×12-2×1+1=2; 当n ≥2时,a n =S n -S n -1=3n 2-2n +1-[3(n -1)2-2(n -1)+1]=6n -5,显然当n =1时,不满足上式.故数列的通项公式为a n =⎩⎪⎨⎪⎧2,n =1,6n -5,n ≥2.题型三 由数列的递推关系求数列的通项公式例3 (1)设数列{a n }中,a 1=2,a n +1=a n +n +1,则通项a n =________. (2)数列{a n }中,a 1=1,a n +1=3a n +2,则它的一个通项公式为a n =________. (3)在数列{a n }中,a 1=1,前n 项和S n =n +23a n .则{a n }的通项公式为________.思维启迪 观察递推式的特点,可以利用累加(乘)或迭代法求通项公式. 答案 (1)n ?n +1?2+1 (2)2×3n -1-1 (3)a n =n ?n +1?2解析 (1)由题意得,当n ≥2时,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=2+(2+3+…+n )=2+?n -1??2+n ?2=n ?n +1?2+1.又a 1=2=1×?1+1?2+1,符合上式, 因此a n =n ?n +1?2+1.(2)方法一 (累乘法)a n +1=3a n +2,即a n +1+1=3(a n +1),即a n +1+1a n +1=3, 所以a 2+1a 1+1=3,a 3+1a 2+1=3,a 4+1a 3+1=3,…,a n +1+1a n +1=3. 将这些等式两边分别相乘得a n +1+1a 1+1=3n. 因为a 1=1,所以a n +1+11+1=3n,即a n +1=2×3n-1(n ≥1), 所以a n =2×3n -1-1(n ≥2),又a 1=1也满足上式,故数列{a n }的一个通项公式为a n =2×3n -1-1.方法二 (迭代法)a n +1=3a n +2,即a n +1+1=3(a n +1)=32(a n -1+1)=33(a n -2+1) = (3)(a 1+1)=2×3n (n ≥1), 所以a n =2×3n -1-1(n ≥2),又a 1=1也满足上式,故数列{a n }的一个通项公式为a n =2×3n -1-1.(3)由题设知,a 1=1. 当n >1时,a n =S n -S n -1=n +23a n -n +13a n -1.∴a n a n -1=n +1n -1. ∴a n a n -1=n +1n -1,…,a 4a 3=53, a 3a 2=42,a 2a 1=3. 以上n -1个式子的等号两端分别相乘,得到a n a 1=n ?n +1?2,又∵a 1=1,∴a n =n ?n +1?2.思维升华 已知数列的递推关系,求数列的通项时,通常用累加、累乘、构造法求解.当出现a n =a n -1+m 时,构造等差数列;当出现a n =xa n -1+y 时,构造等比数列;当出现a n =a n -1+f (n )时,用累加法求解;当出现a na n -1=f (n )时,用累乘法求解. (1)已知数列{a n }满足a 1=1,a n =n -1na n -1(n ≥2),则a n =________. (2)已知数列{a n }的前n 项和为S n ,且S n =2a n -1(n ∈N +),则a 5等于 ( ) A .-16 B .16 C .31 D .32 答案 (1)1n(2)B解析 (1)∵a n =n -1na n -1 (n ≥2), ∴a n -1=n -2n -1a n -2,…,a 2=12a 1. 以上(n -1)个式子相乘得 a n =a 1·12·23·…·n -1n =a 1n =1n .(2)当n =1时,S 1=2a 1-1,∴a 1=1. 当n ≥2时,S n -1=2a n -1-1,∴a n =2a n -2a n -1, ∴a n =2a n -1.∴{a n }是等比数列且a 1=1,q =2, 故a 5=a 1×q 4=24=16.数列问题中的函数思想典例:(12分)已知数列{a n }.(1)若a n =n 2-5n +4, ①数列中有多少项是负数②n 为何值时,a n 有最小值并求出最小值.(2)若a n =n 2+kn +4且对于n ∈N +,都有a n +1>a n .求实数k 的取值范围.思维启迪 (1)求使a n <0的n 值;从二次函数看a n 的最小值.(2)数列是一类特殊函数,通项公式可以看作相应的解析式f (n )=n 2+kn +(n )在N +上单调递增,但自变量不连续.从二次函数的对称轴研究单调性. 规范解答解 (1)①由n 2-5n +4<0,解得1<n <4. ∵n ∈N +,∴n =2,3.∴数列中有两项是负数,即为a 2,a 3.[4分]②∵a n =n 2-5n +4=⎝ ⎛⎭⎪⎫n -522-94的对称轴方程为n =52.又n ∈N +,∴当n =2或n =3时,a n 有最小值,其最小值为a 2=a 3=-2.[8分](2)由a n +1>a n 知该数列是一个递增数列,又因为通项公式a n =n 2+kn +4,可以看作是关于n 的二次函数,考虑到n ∈N +,所以-k 2<32,即得k >-3.[12分]温馨提醒 (1)本题给出的数列通项公式可以看做是一个定义在正整数集N +上的二次函数,因此可以利用二次函数的对称轴来研究其单调性,得到实数k 的取值范围,使问题得到解决. (2)在利用二次函数的观点解决该题时,一定要注意二次函数对称轴位置的选取.(3)易错分析:本题易错答案为k >-2.原因是忽略了数列作为函数的特殊性,即自变量是正整数.方法与技巧1. 求数列通项或指定项.通常用观察法(对于交错数列一般用(-1)n或(-1)n +1来区分奇偶项的符号);已知数列中的递推关系,一般只要求写出数列的前几项,若求通项可用归纳、猜想和转化的方法.2. 强调a n 与S n 的关系:a n =⎩⎪⎨⎪⎧S 1 ?n =1?S n -S n -1 ?n ≥2?.3. 已知递推关系求通项:对这类问题的要求不高,但试题难度较难把握.一般有二种常见思路:(1)算出前几项,再归纳、猜想;(2)利用累加或累乘法可求数列的通项公式. 失误与防范1. 数列是一种特殊的函数,在利用函数观点研究数列时,一定要注意自变量的取值,如数列a n =f (n )和函数y=f (x )的单调性是不同的. 2. 数列的通项公式不一定唯一.A 组 专项基础训练 (时间:40分钟)一、选择题1. 数列0,1,0,-1,0,1,0,-1,…的一个通项公式是a n 等于( )B .cosn π2 C .cosn +12π D .cosn +22π答案 D解析 令n =1,2,3,…逐一验证四个选项,易得D 正确. 2. 数列{a n }的前n 项和为S n ,若a 1=1,a n +1=3S n (n ≥1),则a 6等于( )A .3×44B .3×44+1 C .45D .45+1答案 A解析 当n ≥1时,a n +1=3S n ,则a n +2=3S n +1, ∴a n +2-a n +1=3S n +1-3S n =3a n +1,即a n +2=4a n +1, ∴该数列从第二项开始是以4为公比的等比数列.又a 2=3S 1=3a 1=3,∴a n =⎩⎪⎨⎪⎧1?n =1?,3×4n -2?n ≥2?.∴当n =6时,a 6=3×46-2=3×44.3. 若数列{a n }的通项公式是a n =(-1)n(3n -2),则a 1+a 2+…+a 10等于( )A .15B .12C .-12D .-15 答案 A解析 由题意知,a 1+a 2+…+a 10=-1+4-7+10+…+(-1)10×(3×10-2)=(-1+4)+(-7+10)+…+[(-1)9×(3×9-2)+(-1)10×(3×10-2)] =3×5=15.4. 已知数列{a n }的通项公式为a n =(49)n -1-(23)n -1,则数列{a n }( )A .有最大项,没有最小项B .有最小项,没有最大项C .既有最大项又有最小项D .既没有最大项也没有最小项 答案 C解析 ∵数列{a n }的通项公式为a n =(49)n -1-(23)n -1,令t =(23)n -1,t ∈(0,1],t 是减函数,则a n =t 2-t =(t -12)2-14,由复合函数单调性知a n 先递增后递减. 故有最大项和最小项,选C. 5. 若S n 为数列{a n }的前n 项和,且S n =nn +1,则1a 5等于( )D .30答案 D解析 当n ≥2时,a n =S n -S n -1=nn +1-n -1n =1n ?n +1?,所以1a 5=5×6=30.二、填空题 6. 已知数列{n 2n 2+1},则是它的第________项.答案 7 解析n 2n 2+1==4950,∴n =7. 7. 数列{a n }中,a 1=1,对于所有的n ≥2,n ∈N +,都有a 1·a 2·a 3·…·a n =n 2,则a 3+a 5=_____.答案6116解析 由题意知:a 1·a 2·a 3·…·a n -1=(n -1)2, ∴a n =(nn -1)2(n ≥2),∴a 3+a 5=(32)2+(54)2=6116.8. 已知{a n }是递增数列,且对于任意的n ∈N +,a n =n 2+λn 恒成立,则实数λ的取值范围是________.答案 (-3,+∞) 解析 方法一 (定义法)因为{a n }是递增数列,所以对任意的n ∈N +,都有a n +1>a n , 即(n +1)2+λ(n +1)>n 2+λn ,整理,得 2n +1+λ>0,即λ>-(2n +1).(*)因为n ≥1,所以-(2n +1)≤-3,要使不等式(*)恒成立,只需λ>-3. 方法二 (函数法)设f (n )=a n =n 2+λn ,其图象的对称轴为直线n =-λ2,要使数列{a n }为递增数列,只需使定义在正整数上的函数f (n )为增函数, 故只需满足f (1)<f (2),即λ>-3. 三、解答题9. 数列{a n }的通项公式是a n =n 2-7n +6.(1)这个数列的第4项是多少(2)150是不是这个数列的项若是这个数列的项,它是第几项 (3)该数列从第几项开始各项都是正数 解 (1)当n =4时,a 4=42-4×7+6=-6. (2)令a n =150,即n 2-7n +6=150, 解得n =16或n =-9(舍去), 即150是这个数列的第16项.(3)令a n =n 2-7n +6>0,解得n >6或n <1(舍). 故数列从第7项起各项都是正数.10.已知数列{a n }的通项公式为a n =9n?n +1?10n,试判断此数列是否有最大项若有,第几项最大,最大项是多少若没有,说明理由. 解 a n +1-a n =9n +1?n +2?10n +1-9n ?n +1?10n=9n10n ·8-n10, 当n <8时,a n +1-a n >0,即a n +1>a n ; 当n =8时,a n +1-a n =0,即a n +1=a n ; 当n >8时,a n +1-a n <0,即a n +1<a n . 则a 1<a 2<a 3<…<a 8=a 9>a 10>a 11>…,故数列{a n }有最大项,为第8项和第9项, 且a 8=a 9=98×9108=99108.B 组 专项能力提升(时间:30分钟)1. 跳格游戏:如图,人从格子外只能进入第1个格子,在格子中每次可向前跳1格或2格,那么人从格子外跳到第8个格子的方法种数为 ( )A .8种B .13种C .21种D .34种答案 C解析 设跳到第n 个格子的方法种数有a n ,则到达第n 个格子的方法有两类:①向前跳1格到达第n 个格子,方法种数为a n -1;②向前跳2格到达第n 个格子,方法种数为a n -2,则a n =a n -1+a n -2,由数列的递推关系得到数列的前8项分别是1,1,2,3,5,8,13,21.∴跳到第8个格子的方法种数是21.故选C.2. 数列{a n }满足a n +a n +1=12(n ∈N +),a 2=2,S n 是数列{a n }的前n 项和,则S 21为( ) A .5答案 B解析 ∵a n +a n +1=12(n ∈N +), ∴a 1=12-a 2=12-2,a 2=2,a 3=12-2,a 4=2,…, 故a 2n =2,a 2n -1=12-2. ∴S 21=10×12+a 1=5+12-2=72. 3. 若数列{n (n +4)(23)n }中的最大项是第k 项,则k =________. 答案 4解析 由题意得⎩⎪⎨⎪⎧ k ?k +4??23?k ≥?k +1??k +5??23?k +1k ?k +4??23?k ≥?k -1??k +3??23?k -1,所以⎩⎪⎨⎪⎧ k 2≥10k 2-2k -9≤0,由k ∈N +可得k =4.4. 已知数列{a n }满足前n 项和S n =n 2+1,数列{b n }满足b n =2a n +1,且前n 项和为T n ,设c n =T 2n +1-T n . (1)求数列{b n }的通项公式;(2)判断数列{c n }的增减性.解 (1)a 1=2,a n =S n -S n -1=2n -1(n ≥2).∴b n =⎩⎪⎨⎪⎧ 23?n =1?1n ?n ≥2?.(2)∵c n =b n +1+b n +2+…+b 2n +1 =1n +1+1n +2+…+12n +1, ∴c n +1-c n =12n +2+12n +3-1n +1 =12n +3-12n +2=-1?2n +3??2n +2?<0, ∴{c n }是递减数列.5. 设数列{a n }的前n 项和为S n .已知a 1=a ,a n +1=S n +3n ,n ∈N +.(1)设b n =S n -3n ,求数列{b n }的通项公式;(2)若a n +1≥a n ,n ∈N +,求a 的取值范围. 解 (1)依题意,S n +1-S n =a n +1=S n +3n , 即S n +1=2S n +3n ,由此得S n +1-3n +1=2(S n -3n ). 即b n +1=2b n ,又b 1=S 1-3=a -3, 因此,所求通项公式为b n =S n -3n =(a -3)2n -1,n ∈N +. (2)由(1)知S n =3n +(a -3)2n -1,n ∈N +,于是,当n ≥2时, a n =S n -S n -1=3n +(a -3)2n -1-3n -1-(a -3)2n -2 =2×3n -1+(a -3)2n -2,a n +1-a n =4×3n -1+(a -3)2n -2=2n -2[12(32)n -2+a -3],当n ≥2时,a n +1≥a n ?12(32)n -2+a -3≥0?a ≥-9. 又a 2=a 1+3>a 1.综上,所求的a 的取值范围是[-9,+∞).。