2008年上海市高考数学试卷(文科)答案与解析
2008高考上海数学文科试卷含详细解答
2008年普通高等学校招生全国统一考试(上海卷)数 学(文科)一、填空题(本大题满分44分)本大题共有11题,只要求直接填写结果,每个空格填对得4分,否则一律得零分.1.不等式11x -<的解集是 . 解:由11102x x -<-<⇒<<.2.若集合{}|2A x x =≤,{}|B x x a =≥满足{2}A B = ,则实数a = . 解:由{2}, 22A B A B a =⇒⇒= 只有一个公共元素. 3.若复数z 满足(2)z i z =- (i 是虚数单位),则z = . 解:由22(1)(2)11(1)(1)i i i z i z z i i i i -=-⇒===+++-. 4.若函数()f x 的反函数为12()log fx x -=,则()f x = .解:令2log (0),y x x => 则y R ∈且2,yx =()()2.xf x x R ∴=∈5.若向量a ,b 满足12a b == ,且a 与b 的夹角为3π,则a b += .解:2||()()2a b a b a b a a b b a b +=++=++22||||2||||cos 73a b a b π=++= ||a b ⇒+= 6.若直线10ax y -+=经过抛物线24y x =的焦点,则实数a = . 解:直线10ax y -+=经过抛物线24y x =的焦点(1,0),F 则10 1.a a +=∴=-7.若z 是实系数方程220x x p ++=的一个虚根,且2z =,则p = .解:设z a bi =+,则方程的另一个根为z a bi '=-,且22z =⇒=,由韦达定理直线22,1,z z a a '+==-∴=-23,b b ∴==所以(1)(1) 4.p z z '=⋅=-+-=8.在平面直角坐标系中,从五个点:(00)(20)(11)(02)(22)A B C D E ,,,,,,,,,中任取三个,这三点能构成三角形的概率是 (结果用分数表示).解: 由已知得 A C E B C D 、、三点共线,、、三点共线,所以五点中任选三点能构成三角形的概率为333524.5C C -= 9.若函数()()(2)f x x a bx a =++(常数a b ∈R ,)是偶函数,且它的值域为(]4-∞,,则该函数的解析式()f x = . 解: 2()2 4.f x x ⇒=-+10.已知总体的各个体的值由小到大依次为2,3,3,7,a ,b ,12,13.7,18.3,20, 且总体的中位数为10.5.若要使该总体的方差最小,则a 、b 的取值分别 . 解:中位数为10.521,a b ⇒+=根据均值不等式知,只需10.5a b ==时,总体方差最小. 11.在平面直角坐标系中,点A B C ,,的坐标分别为(01)(42)(26),,,,,.如果()P x y ,是ABC △围成的区域(含边界)上的点,那么当xy ω=取到最大值时,点P 的坐标是 . 解:作图知xy ω=取到最大值时,点P 在线段BC 上,:210,[2,4],BC y x x =-+∈(210),xy x x ω∴==-+故当5,52x y ==时, ω取到最大值.二、选择题(本大题满分16分)12.设p 是椭圆2212516x y +=上的点.若12F F ,是椭圆的两个焦点,则12PF PF +等于( ) A .4B .5C .8D .10解: 由椭圆的第一定义知12210.PF PF a +==13.给定空间中的直线l 及平面α.条件“直线l 与平面α内两条相交直线都垂直”是“直线l 与平面α垂直”的( )A.充分非必要条件 B.必要非充分条件 C .充要条件 D.既非充分又非必要条件解:“直线l 与平面α内两条相交直线都垂直”⇔“直线l 与平面α垂直”.14.若数列{}n a 是首项为1,公比为32a -的无穷等比数列,且{}n a 各项的和为a ,则a 的值是( ) A.1 B.2 C.12 D.54解:由11123121 22153||1||1222a a a a S a q a a q a ⎧=⎧⎪⎧==⎪=-+⎪⎪⎪-⇒⇒⇒=⎨⎨⎨⎪⎪⎪<<<⎩-<⎪⎪⎩⎩或. 15.如图,在平面直角坐标系中,Ω是一个与x 轴的正半轴、y 轴的正半轴分别相切于点C 、D 的定圆所围成的区域(含边界),A 、B 、C 、D 是该圆的四等分点.若点()P x y ,、点()P x y ''',满足x x '≤且y y '≥,则称P 优于P '.如果Ω中的点Q 满足:不存在Ω中的其它点优于Q ,那么所有这样的点Q 组成的集合是劣弧( D ) A. ABB . BCC . CD D . DA 解:由题意知,若P 优于P ',则P 在P '的左上方,∴当Q 在 DA上时, 左上的点不在圆上, ∴不存在其它优于Q 的点, ∴Q 组成的集合是劣弧 DA. 三、解答题(本大题满分90分)本大题共有6题,解答下列各题必须写出必要的步骤. 16.(本题满分12分)如图,在棱长为2的正方体1111ABCD A B C D -中,E 是BC 1的中点.求直线DE 与平面ABCD 所成角的大小(结果用反三角函数值表示). 解:过E 作EF ⊥BC ,交BC 于F ,连接DF .∵ EF ⊥平面ABCD ,∴ ∠ED F 是直线DE 与平面ABCD 所成的角. ……………4分由题意,得EF =111.2CC =∵11,2CF CB DF ==∴=..8分∵ EF ⊥DF , ∴tan 5EF EDF DF ∠==……………..10分 故直线DE 与平面ABCD所成角的大小是arctan 5….12分17.(本题满分13分)如图,某住宅小区的平面图呈扇形AOC .小区的两个出入口设置在点A 及点C 处,小区里有两条笔直的小路AD DC ,,且拐弯处的转角为120 .已知某人从C 沿CD 走到D 用了10分钟,从D 沿DA 走到A 用了6分钟.若此人步行的速度为每分钟50米,求该扇形的半径OA 的长(精确到1米). 解:【解法一】设该扇形的半径为r 米. 由题意,得CD =500(米),DA =300(米),∠CDO=060……………………4分 在CDO ∆中,2222cos60,CD OD CD OD OC +-⋅⋅⋅=……6分即()()22215003002500300,2r r r +--⨯⨯-⨯=…………….9分解得490044511r =≈(米). ………………………………….13分【解法二】连接AC ,作OH ⊥AC ,交A C 于H ………………..2分 由题意,得CD =500(米),AD =300(米),0120CDA ∠=….4分2220222,2cos12015003002500300700,2ACD AC CD AD CD AD ∆=+-⋅⋅⋅=++⨯⨯⨯=在中 ∴ AC =700(米) …………………………..6分22211cos .214AC AD CD CAD AC AD +-∠==⋅⋅………….…….9分在直角11,350,cos 0,14HAO AH HA ∆=∠=中(米) ∴ 4900445cos 11AH OA HAO ==≈∠(米). …………………13分18.(本题满分15分)本题共有2个小题,第1个题满分5分,第2小题满分10分. 已知函数()sin 2f x x =, π()cos 26g x x ⎛⎫=+⎪⎝⎭,直线()x t t =∈R 与函数()()f x g x ,的图象分别 交于,M N 两点.(1)当π4t =时,求MN 的值;(2)求MN 在π02t ⎡⎤∈⎢⎥⎣⎦,时的最大值. 解:(1)sin 2cos 2446MN πππ⎛⎫⎛⎫=⨯-⨯+ ⎪ ⎪⎝⎭⎝⎭231cos .32π=-=(2)sin 2cos 26MN t t π⎛⎫=-+⎪⎝⎭3sin 222t t =-26t π⎛⎫=- ⎪⎝⎭∵ 0,,2,,2666t t πππππ⎡⎤⎡⎤∈-∈--⎢⎥⎢⎥⎣⎦⎣⎦∴ |MN .19.(本题满分16分)本题共有2个小题,第1小题满分8分,第2小题满分8分. 已知函数||1()22xx f x =-. (1)若()2f x =,求x 的值;(2)若2(2)()0tf t mf t +≥对于[12]t ∈,恒成立,求实数m 的取值范围.解:(1)()()100;0,22x x x f x x f x <=≥=-当时,当时. …………….2分由条件可知,2122,22210,2x x xx-=-⋅-=即解得 21x =±…………6分∵ (220,log 1x x >∴=+ …………..8分(2)当2211[1,2],2220,22t t t ttt m ⎛⎫⎛⎫∈-+-≥ ⎪ ⎪⎝⎭⎝⎭时 ……………10分即 ()()242121.t t m -≥--()22210,21.t t m ->∴≥+ ………………13分 ()2[1,2],12[17,5],t t ∈∴-+∈--故m 的取值范围是[5,)-+∞ …………….16分已知双曲线2212x C y -=:.(1)求双曲线C 的渐近线方程;(2)已知点M 的坐标为(01),.设P 是双曲线C 上的点,Q 是点P 关于原点的对称点.记MP MQ λ=.求λ的取值范围;(3)已知点D E M ,,的坐标分别为(21)(21)(01)---,,,,,,P 为双曲线C 上在第一象限内的点.记l 为经过原点与点P 的直线,s 为DEM △截直线l 所得线段的长.试将s 表示为直线l 的斜率k 的函数.解:(1)所求渐近线方程为0,0y y =+= ……………...3分 (2)设P 的坐标为()00,x y ,则Q 的坐标为()00,x y --, …………….4分 ()()000,1,1o MP MQ x y x y λ=⋅=-⋅---22200031 2.2x y x =--+=-+ ……………7分0xλ∴的取值范围是(,1].-∞- ……………9分(3)若P 为双曲线C 上第一象限内的点,则直线l的斜率.k ⎛∈ ⎝⎭……………11分由计算可得,当()1(0,],2k s k ∈=时当()1,2k s k ⎛∈= ⎝⎭时……………15分∴ s 表示为直线l 的斜率k 的函数是()1(0,],21.2k s k k ∈=⎛∈ ⎝⎭….16分已知数列{}n a :11a =,22a =,3a r =,32n n a a +=+(n 是正整数),与数列 {}n b :11b =,20b =,31b =-,40b =,4n n b b +=(n 是正整数). 记112233n n n T b a b a b a b a =++++ .(1)若1231264a a a a ++++= ,求r 的值; (2)求证:当n 是正整数时,124n T n =-;(3)已知0r >,且存在正整数m , 使得在121m T +,122m T +, ,1212m T +中有4项为100.求r 的值,并指出哪4项为100. 解:(1) 12312...a a a a ++++()()()12342564786r r r r =++++++++++++++484.r =+ .2分 48464, 4.r r +=∴= 4分(2)用数学归纳法证明:当12,4.n n Z T n +∈=-时① 当n=1时,1213579114,T a a a a a a =-+-+-=-等式成立….6分 ② 假设n=k 时等式成立,即124,k T k =- 那么当1n k =+时,()121211231251271291211121k k k k k k k k T T a a a a a a +++++++=+-+-+-………8分()()()()()()481884858488k k k r k k k r k =-++-+++-++++-+()4441,k k =--=-+等式也成立.根据①和②可以断定:当12,4.n n Z T n +∈=-时…………………...10分()1241.121,12241;123,12441;125,12645;127,1284;129,121044;m n n n n T m m n m m T m n m m T m r n n m m T m r n m m T m r n m m T m =-≥=++=+=++=-+-=++=+-=++=--=++=+当时,当时,当时,当时,当时,1211,1212,4 4.n n m m T m =++=--当时………..13分∵ 4m+1是奇数,41,4,44m r m r m -+-----均为负数,∴ 这些项均不可能取到100. .15分 此时,293294297298,,,T T T T 为100. 18分。
2008年普通高等学校招生全国统一考试数学(上海卷·文科)试卷与答案
已知函数f(x)=sin2x,g(x)=cos ,直线 与函数 的图像分别交于M、N两点.
(1)当 时,求|MN|的值;题满分16分)本题共有2个小题,第1小题满分8分,第2小题满分8分.
9.若函数 (常数 )是偶函数,且它的值域为 ,则该函数的解析式 .
10.已知总体的各个体的值由小到大依次为2,3,3,7,a,b,12,13.7,18.3,20,且总体的中位数为10.5.若要使该总体的方差最小,则a、b的取值分别是.
11.在平面直角坐标系中,点 的坐标分别为 .如果 是 围成的区域(含边界)上的点,那么当 取到最大值时,点 的坐标是______.
………………………………5分
(2)
…………...8分
…………………………….11分
∵ …………13分
∴|MN|的最大值为 .……………15分
19、【解】(1) .…………….2分
由条件可知, 解得 …………6分
∵ …………..8分
(2)当 ……………10分
即
………………13分
故m的取值范围是 …………….16分
记 .
(1)若 ,求 的值;
(2)求证:当 是正整数时, ;
(3)已知 ,且存在正整数 ,使得在 , , , 中有4项为100.求 的值,并指出哪4项为100.
2008年全国普通高等学校招生统一考试
上海数学试卷(文史类)答案要点及评分标准
__________录入者:福建泉州第七中学 林志敏老师
一、(第1题至第11题)
21、【解】(1)
………………..2分
∵ ………………..4分
2008年全国统一高考数学试卷(文科)(全国卷ⅱ)(含解析版)
2008 年全国统一高考数学试卷(文科)(全国卷Ⅱ)一、选择题(共12 小题,每小题5 分,满分60 分)1.(5 分)若sinα<0 且tanα>0,则α是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角2.(5 分)设集合M={m∈Z|﹣3<m<2},N={n∈Z|﹣1≤n≤3},则M∩N=()A.{0,1} B.{﹣1,0,1}C.{0,1,2} D.{﹣1,0,1,2}3.(5 分)原点到直线x+2y﹣5=0 的距离为()A.1 B.C.2D.4.(5分)函数f(x)=﹣x 的图象关于()A.y 轴对称B.直线y=﹣x 对称C.坐标原点对称D.直线y=x 对称5.(5 分)若x∈(e﹣1,1),a=lnx,b=2lnx,c=ln3x,则()A.a<b<c B.c<a<b C.b<a<c D.b<c<a6.(5 分)设变量x,y 满足约束条件:,则z=x﹣3y 的最小值()A.﹣2 B.﹣4 C.﹣6 D.﹣87.(5 分)设曲线y=ax2在点(1,a)处的切线与直线2x﹣y﹣6=0 平行,则a= ()A.1 B.C.D.﹣18.(5 分)正四棱锥的侧棱长为,侧棱与底面所成的角为60°,则该棱锥的体积为()A.3 B.6 C.9 D.189.(5分)的展开式中x 的系数是()A.﹣4 B.﹣3 C.3 D.410.(5 分)函数f(x)=sinx﹣cosx 的最大值为()A.1 B.C.D.211.(5 分)设△ABC 是等腰三角形,∠ABC=120°,则以A,B 为焦点且过点C 的双曲线的离心率为()A.B.C.D.12.(5 分)已知球的半径为2,相互垂直的两个平面分别截球面得两个圆,若两圆的公共弦长为2,则两圆的圆心距等于()A.1 B.C.D.2二、填空题(共4 小题,每小题5 分,满分20 分)13.(5分)设向量,若向量与向量共线,则λ=.14.(5 分)从10 名男同学,6 名女同学中选3 名参加体能测试,则选到的3 名同学中既有男同学又有女同学的不同选法共有种(用数字作答)15.(5 分)已知F 是抛物线C:y2=4x 的焦点,A,B 是C 上的两个点,线段AB 的中点为M(2,2),则△ABF 的面积等于.16.(5 分)平面内的一个四边形为平行四边形的充要条件有多个,如两组对边分别平行,类似地,写出空间中的一个四棱柱为平行六面体的两个充要条件:充要条件①;充要条件②.(写出你认为正确的两个充要条件)三、解答题(共6 小题,满分70 分)17.(10 分)在△ABC 中,cosA=﹣,cosB=.(I)求sinC 的值;(II)设BC=5,求△ABC 的面积.18.(12 分)等差数列{a n}中,a4=10 且a3,a6,a10 成等比数列,求数列{a n}前20 项的和S20.19.(12 分)甲、乙两人进行射击比赛,在一轮比赛中,甲、乙各射击一发子弹.根据以往资料知,甲击中8 环,9 环,10 环的概率分别为0.6,0.3,0.1,乙击中8 环,9 环,10 环的概率分别为0.4,0.4,0.2.设甲、乙的射击相互独立.(I)求在一轮比赛中甲击中的环数多于乙击中环数的概率;(II)求在独立的三轮比赛中,至少有两轮甲击中的环数多于乙击中环数的概率.20.(12 分)如图,正四棱柱ABCD﹣A1B1C1D1 中,AA1=2AB=4,点E 在CC1 上且C1E=3EC.(I)证明:A1C⊥平面BED;(II)求二面角A1﹣DE﹣B 的大小.21.(12 分)设a∈R,函数f(x)=ax3﹣3x2.(I)若x=2 是函数y=f(x)的极值点,求a 的值;(II)若函数g(x)=f(x)+f′(x),x∈[0,2],在x=0 处取得最大值,求a 的取值范围.22.(12 分)设椭圆中心在坐标原点,A(2,0),B(0,1)是它的两个顶点,直线y=kx(k>0)与AB 相交于点D,与椭圆相交于E、F 两点.(I)若,求k 的值;(II)求四边形AEBF 面积的最大值.2008 年全国统一高考数学试卷(文科)(全国卷Ⅱ)参考答案与试题解析一、选择题(共12 小题,每小题5 分,满分60 分)1.(5 分)若sinα<0 且tanα>0,则α是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角【考点】GC:三角函数值的符号.【分析】由正弦和正切的符号确定角的象限,当正弦值小于零时,角在第三四象限,当正切值大于零,角在第一三象限,要同时满足这两个条件,角的位置是第三象限,实际上我们解的是不等式组.【解答】解:sinα<0,α在三、四象限;tanα>0,α在一、三象限.故选:C.【点评】记住角在各象限的三角函数符号是解题的关键,可用口诀帮助记忆:一全部,二正弦,三切值,四余弦,它们在上面所述的象限为正2.(5 分)设集合M={m∈Z|﹣3<m<2},N={n∈Z|﹣1≤n≤3},则M∩N=()A.{0,1} B.{﹣1,0,1} C.{0,1,2} D.{﹣1,0,1,2}【考点】1E:交集及其运算.【分析】由题意知集合M={m∈z|﹣3<m<2},N={n∈z|﹣1≤n≤3},然后根据交集的定义和运算法则进行计算.【解答】解:∵M={﹣2,﹣1,0,1},N={﹣1,0,1,2,3},∴M∩N={﹣1,0,1},故选:B.【点评】此题主要考查集合和交集的定义及其运算法则,是一道比较基础的题.3.(5 分)原点到直线x+2y﹣5=0 的距离为()A.1 B.C.2 D.【考点】IT:点到直线的距离公式.【分析】用点到直线的距离公式直接求解.【解答】解析:.故选:D.【点评】点到直线的距离公式是高考考点,是同学学习的重点,本题是基础题.4.(5 分)函数f(x)=﹣x 的图象关于()A.y 轴对称B.直线y=﹣x 对称C.坐标原点对称D.直线y=x 对称【考点】3M:奇偶函数图象的对称性.【分析】根据函数f(x)的奇偶性即可得到答案.【解答】解:∵f(﹣x)=﹣+x=﹣f(x)∴是奇函数,所以f(x)的图象关于原点对称故选:C.【点评】本题主要考查函数奇偶性的性质,是高考必考题型.5.(5 分)若x∈(e﹣1,1),a=lnx,b=2lnx,c=ln3x,则()A.a<b<c B.c<a<b C.b<a<c D.b<c<a【考点】4M:对数值大小的比较.【分析】根据函数的单调性,求a 的范围,用比较法,比较a、b 和a、c 的大小.【解答】解:因为a=lnx 在(0,+∞)上单调递增,故当x∈(e﹣1,1)时,a∈(﹣1,0),于是b﹣a=2lnx﹣lnx=lnx<0,从而b<a.又a﹣c=lnx﹣ln3x=a(1+a)(1﹣a)<0,从而a<c.综上所述,b<a<c.故选:C.【点评】对数值的大小,一般要用对数的性质,比较法,以及0 或1 的应用,本题是基础题.6.(5 分)设变量x,y 满足约束条件:,则z=x﹣3y 的最小值()A.﹣2 B.﹣4 C.﹣6 D.﹣8【考点】7C:简单线性规划.【专题】11:计算题.【分析】我们先画出满足约束条件:的平面区域,求出平面区域的各角点,然后将角点坐标代入目标函数,比较后,即可得到目标函数z=x﹣3y 的最小值.【解答】解:根据题意,画出可行域与目标函数线如图所示,由图可知目标函数在点(﹣2,2)取最小值﹣8故选:D.【点评】用图解法解决线性规划问题时,分析题目的已知条件,找出约束条件和目标函数是关键,可先将题目中的量分类、列出表格,理清头绪,然后列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数.然后将可行域各角点的值一一代入,最后比较,即可得到目标函数的最优解.7.(5 分)设曲线y=ax2在点(1,a)处的切线与直线2x﹣y﹣6=0 平行,则a= ()A.1 B.C.D.﹣1【考点】6H:利用导数研究曲线上某点切线方程.【分析】利用曲线在切点处的导数为斜率求曲线的切线斜率;利用直线平行它们的斜率相等列方程求解.【解答】解:y'=2ax,于是切线的斜率k=y'|x=1=2a,∵切线与直线2x﹣y﹣6=0 平行∴有2a=2∴a=1故选:A.【点评】本题考查导数的几何意义:曲线在切点处的导数值是切线的斜率.8.(5 分)正四棱锥的侧棱长为,侧棱与底面所成的角为60°,则该棱锥的体积为()A.3 B.6 C.9 D.18【考点】LF:棱柱、棱锥、棱台的体积.【专题】11:计算题.【分析】先求正四棱锥的高,再求正四棱锥的底面边长,然后求其体积.【解答】解:高,又因底面正方形的对角线等于,∴底面积为,∴体积故选:B.【点评】本题考查直线与平面所成的角,棱锥的体积,注意在底面积的计算时,要注意多思则少算.9.(5 分)的展开式中x 的系数是()A.﹣4 B.﹣3 C.3 D.4【考点】DA:二项式定理.【分析】先利用平方差公式化简代数式,再利用二项展开式的通项公式求出第r+1 项,令x 的指数为1 求得展开式中x 的系数.【解答】解:=(1﹣x)4(1﹣x)4的展开式的通项为T r+1=C4r(﹣x)r=(﹣1)r C4r x r令r=1 得展开式中x 的系数为﹣4故选:A.【点评】本题考查二项展开式的通项公式是解决二项展开式的特定想问题的工具.10.(5 分)函数f(x)=sinx﹣cosx 的最大值为()A.1 B.C.D.2【考点】H4:正弦函数的定义域和值域;HJ:函数y=Asin(ωx+φ)的图象变换.【专题】11:计算题.【分析】根据两角和与差的正弦公式进行化简,即可得到答案.【解答】解:,所以最大值是故选:B.【点评】本题主要考查两角和与差的正弦公式和正弦函数的最值问题.三角函数中化为一个角的三角函数问题是三角函数在高考中的热点问题.11.(5 分)设△ABC 是等腰三角形,∠ABC=120°,则以A,B 为焦点且过点C 的双曲线的离心率为()A.B.C.D.【考点】KC:双曲线的性质.【专题】11:计算题;16:压轴题.【分析】根据题设条件可知2c=|AB|,所以,由双曲线的定义能够求出2a,从而导出双曲线的离心率.【解答】解:由题意2c=|AB|,所以,由双曲线的定义,有,∴故选:B.【点评】本题考查双曲线的有关性质和双曲线定义的应用.12.(5 分)已知球的半径为2,相互垂直的两个平面分别截球面得两个圆,若两圆的公共弦长为2,则两圆的圆心距等于()A.1 B.C.D.2【考点】LG:球的体积和表面积.【专题】11:计算题;5F:空间位置关系与距离.【分析】求解本题,可以从三个圆心上找关系,构建矩形利用对角线相等即可求解出答案.【解答】解:设两圆的圆心分别为O1、O2,球心为O,公共弦为AB,其中点为E,则OO1EO2 为矩形,于是对角线O1O2=OE,而OE==,∴O1O2=故选:C.【点评】本题考查球的有关概念,两平面垂直的性质,是基础题.10 610 6 10 6 10 6二、填空题(共 4 小题,每小题 5 分,满分 20 分) 13.(5 分)设向量 ,若向量与向量共线,则 λ= 2 .【考点】96:平行向量(共线).【分析】用向量共线的充要条件:它们的坐标交叉相乘相等列方程解. 【解答】解:∵a=(1,2),b=(2,3), ∴λα+b=(λ,2λ)+(2,3)=(λ+2,2λ+3). ∵向量 λα+b 与向量 c=(﹣4,﹣7)共线, ∴﹣7(λ+2)+4(2λ+3)=0, ∴λ=2. 故答案为 2【点评】考查两向量共线的充要条件.14.(5 分)从 10 名男同学,6 名女同学中选 3 名参加体能测试,则选到的 3 名同学中既有男同学又有女同学的不同选法共有 420种(用数字作答)【考点】D5:组合及组合数公式. 【专题】11:计算题;32:分类讨论.【分析】由题意分类:①男同学选 1 人,女同学中选 2 人,确定选法;②男同学 选 2 人,女同学中选 1 人,确定选法;然后求和即可.【解答】解:由题意共有两类不同选法,①男同学选 1 人,女同学中选 2 人,不同选法 C 1C 2=150; ②男同学选 2 人,女同学中选 1 人,不同选法 C 2C 1=270;共有:C 1C 2+C 2C 1=150+270=420 故答案为:420【点评】本题考查组合及组合数公式,考查分类讨论思想,是基础题.15.(5 分)已知 F 是抛物线 C :y 2=4x 的焦点,A ,B 是 C 上的两个点,线段 AB, 的中点为 M (2,2),则△ABF 的面积等于 2 .【考点】K8:抛物线的性质.【专题】5D :圆锥曲线的定义、性质与方程. 【分析】设 A (x 1,y 1),B (x 2,y 2),则=4x 2,两式相减可得:(y 1+y 2)(y 1﹣y 2)=4(x 1﹣x 2),利用中点坐标公式、斜率计算公式可得 k AB ,可得直线 AB 的方程为:y ﹣2=x ﹣2,化为 y=x ,与抛物线方程联立可得 A ,B 的坐标,利用弦长公式可得|AB |,再利用点到直线的距离公式可得点 F 到直线 AB 的距离 d ,利用三角形面积公式求得答案.【解答】解:∵F 是抛物线 C :y 2=4x 的焦点,∴F (1,0).设 A (x 1,y 1),B (x 2,y 2),则, =4x 2,两式相减可得:(y 1+y 2)(y 1﹣y 2)=4(x 1﹣x 2), ∵线段 AB 的中点为 M (2,2),∴y 1+y 2=2×2=4,又=k AB ,4k AB =4,解得 k AB =1,∴直线 AB 的方程为:y ﹣2=x ﹣2,化为 y=x ,联立 ,解得,,∴|AB |==4.点 F 到直线 AB 的距离 d=,∴S △ABF ===2,故答案为:2.【点评】本题主要考查了直线与抛物线相交问题弦长问题、“点差法”、点到直线的距离公式、三角形的面积计算公式,考查了推理能力与计算能力,属于难题.16.(5 分)平面内的一个四边形为平行四边形的充要条件有多个,如两组对边分别平行,类似地,写出空间中的一个四棱柱为平行六面体的两个充要条件:充要条件①三组对面分别平行的四棱柱为平行六面体;充要条件②平行六面体的对角线交于一点,并且在交点处互相平分;.(写出你认为正确的两个充要条件)【考点】29:充分条件、必要条件、充要条件;L2:棱柱的结构特征.【专题】16:压轴题;21:阅读型.【分析】本题考查的知识点是充要条件的定义及棱柱的结构特征及类比推理,由平行六面体与平行四边形的定义相似,故我们可以类比平行四边形的性质,类比推断平行六面体的性质.【解答】解:类比平行四边形的性质:两组对边分别平行的四边形为平行四边形,则我们类比得到:三组对面分别平行的四棱柱为平行六面体.类比平行四边形的性质:两条对角线互相平分,则我们类比得到:平行六面体的对角线交于一点,并且在交点处互相平分;故答案为:三组对面分别平行的四棱柱为平行六面体;平行六面体的对角线交于一点,并且在交点处互相平分;【点评】类比推理的一般步骤是:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).三、解答题(共6 小题,满分70 分)17.(10 分)在△ABC 中,cosA=﹣,cosB=.(I)求sinC 的值;(II)设BC=5,求△ABC 的面积.【考点】GG:同角三角函数间的基本关系;GP:两角和与差的三角函数.【专题】11:计算题.【分析】(Ⅰ)先利用同角三角函数的基本关系求得sinA 和sinB 的值,进而根据sinC=sin(A+B)利用正弦的两角和公式求得答案.(Ⅱ)先利用正弦定理求得AC,进而利用三角形面积公式求得三角形的面积.【解答】解:(Ⅰ)∵在△ABC 中,A+B+C=180°,sinC=sin(180﹣(A+B))=sin(A+B)由,得,由,得.所以.(Ⅱ)由正弦定理得.所以△ABC 的面积S=BC•AC•sinC=×5××=.【点评】本题主要考查了同角三角函数的基本关系的应用和正弦的两角和公式的应用.考查了学生对三角函数基础知识的理解和灵活运用.18.(12 分)等差数列{a n}中,a4=10 且a3,a6,a10 成等比数列,求数列{a n}前20 项的和S20.【考点】85:等差数列的前n 项和.【专题】54:等差数列与等比数列.【分析】先设数列{a n}的公差为d,根据a3,a6,a10 成等比数列可知a3a10=a62,把d 和a4 代入求得d 的值.再根据a4 求得a1,最后把d 和a1 代入S20 即可得到答案.【解答】解:设数列{a n}的公差为d,则a3=a4﹣d=10﹣d,a6=a4+2d=10+2d,a10=a4+6d=10+6d.由a3,a6,a10 成等比数列得a3a10=a62,即(10﹣d)(10+6d)=(10+2d)2,整理得10d2﹣10d=0,解得d=0 或d=1.当d=0 时,S20=20a4=200.当d=1 时,a1=a4﹣3d=10﹣3×1=7,于是=20×7+190=330.【点评】本题主要考查了等差数列和等比数列的性质.属基础题.19.(12 分)甲、乙两人进行射击比赛,在一轮比赛中,甲、乙各射击一发子弹.根据以往资料知,甲击中8 环,9 环,10 环的概率分别为0.6,0.3,0.1,乙击中8 环,9 环,10 环的概率分别为0.4,0.4,0.2.设甲、乙的射击相互独立.(I)求在一轮比赛中甲击中的环数多于乙击中环数的概率;(II)求在独立的三轮比赛中,至少有两轮甲击中的环数多于乙击中环数的概率.【考点】C8:相互独立事件和相互独立事件的概率乘法公式.【专题】11:计算题.【分析】(Ⅰ)甲、乙的射击相互独立,在一轮比赛中甲击中的环数多于乙击中环数包括三种情况,用事件分别表示为A=A1•B1+A2•B1+A2•B2,且这三种情况是互斥的,根据互斥事件和相互独立事件的概率公式得到结果.(Ⅱ)由题意知在独立的三轮比赛中,至少有两轮甲击中的环数多于乙击中环数表示三轮中恰有两轮或三轮甲击中环数多于乙击中的环数,这两种情况是互斥的,根据互斥事件和相互独立事件的概率公式得到结果.【解答】解:记A1,A2 分别表示甲击中9 环,10 环,B1,B2 分别表示乙击中8环,9 环,A 表示在一轮比赛中甲击中的环数多于乙击中的环数,B 表示在三轮比赛中至少有两轮甲击中的环数多于乙击中的环数,C1,C2 分别表示三轮中恰有两轮,三轮甲击中环数多于乙击中的环数.(I)甲、乙的射击相互独立在一轮比赛中甲击中的环数多于乙击中环数包括三种情况,用事件分别表示为A=A1•B1+A2•B1+A2•B2,且这三种情况是互斥的,根据互斥事件和相互独立事件的概率公式得到∴P(A)=P(A1•B1+A2•B1+A2•B2)=P(A1•B1)+P(A2•B1)+P(A2•B2)=P(A1)•P(B1)+P(A2)•P(B1)+P(A2)•P(B2)=0.3×0.4+0.1×0.4+0.1×0.4=0.2.(II)由题意知在独立的三轮比赛中,至少有两轮甲击中的环数多于乙击中环数表示三轮中恰有两轮或三轮甲击中环数多于乙击中的环数,这两种情况是互斥的,即B=C1+C2,∵P(C1)=C32[P(A)]2[1﹣P(A)]=3×0.22×(1﹣0.2)=0.096,P(C2)=[P(A)]3=0.23=0.008,∴P(B)=P(C1+C2)=P(C1)+P(C2)=0.096+0.008=0.104.【点评】考查运用概率知识解决实际问题的能力,包括应用互斥事件和相互独立事件的概率,相互独立事件是指两事件发生的概率互不影响,这是可以作为一个解答题的题目,是一个典型的概率题.20.(12 分)如图,正四棱柱ABCD﹣A1B1C1D1 中,AA1=2AB=4,点E 在CC1 上且C1E=3EC.(I)证明:A1C⊥平面BED;(II)求二面角A1﹣DE﹣B 的大小.【考点】LW:直线与平面垂直;MJ:二面角的平面角及求法.【专题】14:证明题;15:综合题;35:转化思想.【分析】法一:(Ⅰ)要证A1C⊥平面BED,只需证明A1C 与平面BED 内两条相交直线BD,EF 都垂直;(Ⅱ)作GH⊥DE,垂足为H,连接A1H,说明∠A1HG 是二面角A1﹣DE﹣B 的平面角,然后解三角形,求二面角A1﹣DE﹣B 的大小.法二:建立空间直角坐标系,(Ⅰ)求出,证明A1C⊥平面DBE.(Ⅱ)求出 平面 DA 1E 和平面 DEB 的法向量,求二者的数量积可求二面角 A 1﹣ DE ﹣B 的大小. 【解答】解:解法一:依题设知 AB=2,CE=1.(I ) 连接 AC 交 BD 于点 F ,则BD ⊥AC .由三垂线定理知,BD ⊥A 1C .(3 分)在平面 A 1CA 内,连接 EF 交 A 1C 于点 G , 由于,故 Rt △A 1AC ∽Rt △FCE ,∠AA 1C=∠CFE ,∠CFE 与∠FCA 1 互余.于是 A 1C ⊥EF .A 1C 与平面 BED 内两条相交直线 BD ,EF 都垂直,所以 A 1C ⊥平面 BED .(6 分)(II ) 作 GH ⊥DE ,垂足为 H ,连接 A 1H .由三垂线定理知 A 1H ⊥DE ,故∠A 1HG 是二面角 A 1﹣DE ﹣B 的平面角.(8 分),. ,又, ..所以二面角 A 1﹣DE ﹣B 的大小为.((12 分))解法二:以 D 为坐标原点,射线 DA 为 x 轴的正半轴,建立如图所示直角坐标系 D ﹣xyz .依题设,B (2,2,0),C (0,2,0),E (0,2,1),A 1(2,0,4).,.(3 分)(Ⅰ)因为,,故 A 1C ⊥BD ,A 1C ⊥DE . 又 DB ∩DE=D ,所以 A 1C ⊥平面 DBE .(6 分)(Ⅱ)设向量=(x ,y ,z )是平面 DA 1E 的法向量,则,.,.故2y+z=0,2x+4z=0.令y=1,则z=﹣2,x=4,=(4,1,﹣2).(9 分)等于二面角A1 ﹣DE﹣B 的平面角,所以二面角A1﹣DE﹣B 的大小为.(12分)【点评】本题考查直线与平面垂直的判定,二面角的求法,考查空间想象能力,逻辑思维能力,是中档题.21.(12 分)设a∈R,函数f(x)=ax3﹣3x2.(I)若x=2 是函数y=f(x)的极值点,求a 的值;(II)若函数g(x)=f(x)+f′(x),x∈[0,2],在x=0 处取得最大值,求a 的取值范围.【考点】6C:函数在某点取得极值的条件;6D:利用导数研究函数的极值;6E:利用导数研究函数的最值.【专题】16:压轴题.【分析】(Ⅰ)导函数在x=2 处为零求a,是必要不充分条件故要注意检验(Ⅱ)利用最大值g(0)大于等于g(2)求出a 的范围也是必要不充分条件注意检验【解答】解:(Ⅰ)f'(x)=3ax2﹣6x=3x(ax﹣2).因为x=2 是函数y=f(x)的极值点,所以f'(2)=0,即6(2a﹣2)=0,因此a=1.经验证,当a=1 时,x=2 是函数y=f(x)的极值点.(Ⅱ)由题设,g(x)=ax3﹣3x2+3ax2﹣6x=ax2(x+3)﹣3x(x+2).当g(x)在区间[0,2]上的最大值为g(0)时,g(0)≥g(2),即0≥20a﹣24.故得.反之,当时,对任意x ∈ [0 ,2] ,==≤0,而g(0)=0,故g(x)在区间[0,2]上的最大值为g(0).综上,a 的取值范围为.【点评】当函数连续且可导,极值点处的导数等于零是此点为极值点的必要不充分条件,所以解题时一定注意检验.22.(12 分)设椭圆中心在坐标原点,A(2,0),B(0,1)是它的两个顶点,直线y=kx(k>0)与AB 相交于点D,与椭圆相交于E、F 两点.(I)若,求k 的值;(II)求四边形AEBF 面积的最大值.【考点】96:平行向量(共线);KH:直线与圆锥曲线的综合.【专题】11:计算题;16:压轴题.【分析】(1)依题可得椭圆的方程,设直线AB,EF 的方程分别为x+2y=2,y=kx,D(x0,kx0),E(x1,kx1),F(x2,kx2),且x1,x2 满足方程(1+4k2)x2=4,进而求得x2 的表达式,进而根据求得x0 的表达式,由D 在AB 上知x0+2kx0=2,进而求得x0 的另一个表达式,两个表达式相等求得k.(Ⅱ)由题设可知|BO|和|AO|的值,设y1=kx1,y2=kx2,进而可表示出四边形AEBF 的面积进而根据基本不等式的性质求得最大值.【解答】解:(Ⅰ)依题设得椭圆的方程为,直线AB,EF 的方程分别为x+2y=2,y=kx(k>0).如图,设D(x0,kx0),E(x1,kx1),F(x2,kx2),其中x1<x2,且x1,x2 满足方程(1+4k2)x2=4,故.①由知x0﹣x1=6(x2﹣x0),得;由D 在AB 上知x0+2kx0=2,得.所以,化简得24k2﹣25k+6=0,解得或.(Ⅱ)由题设,|BO|=1,|AO|=2.由(Ⅰ)知,E(x1,kx1),F(x2,kx2),不妨设y1=kx1,y2=kx2,由①得x2>0,根据E 与F 关于原点对称可知y2=﹣y1>0,故四边形AEBF 的面积为S=S△OBE +S△OBF+S△OAE+S△OAF=•(﹣y1)==x2+2y2= = = ,当x2=2y2时,上式取等号.所以S 的最大值为.【点评】本题主要考查了直线与圆锥曲线的综合问题.直线与圆锥曲线的综合问题是支撑圆锥曲线知识体系的重点内容,问题的解决具有入口宽、方法灵活多样等,而不同的解题途径其运算量繁简差别很大.。
2008年普通高等学校招生全国统一考试(上海卷)数学(文)
2008年普通高等学校招生全国统一考试(上海卷)数学(文)一.填空题(本大题满分44分)本大题共有11题,只要求直接填写结果,每个空格填对得4分,否则一律得零分.1.不等式|1|1x -<的解集是 .2.若集合{|2}A x x =≤、{|}a B x x =≥满足2A B = ,则实数a = . 3.若复数z 满足(2)z i z =-(i 是虚数单位),则z = . 4.若函数()f x 的反函数12()log f x x -=,则()f x = . 5.若向量a 、b 满足| a |=1,| b |=2,且a 与b 的夹角为3π,则| a | + | b | = . 6.若直线10ax y -+=经过抛物线24y x =的焦点,则实数a = . 7.若z 是实系数方程220x x p ++=的一个虚根,且||2z =,则p = .8.在平面直角坐标系中,从五个点:(0,0)A 、(2,0)B 、(1,1)C 、(0,2)D 、(2,2)E 中任取三个,这三点能构成三角形的概率是 (结果用分数表示).9.若函数()()(2)f x x a bx a =++(常数R ,a b ∈)是偶函数,且它的值域为(,4]-∞,则该函数的解析()f x = .10.已知总体的各个体的值由小到大依次为2,3,3,7,a ,b ,12,13.7,18.3,20,且总体的中位数为10.5.若要使该总体的方差最小,则a 、b 的取值分别是 .11.在平面直角坐标系中,点A 、B 、C 的坐标分别为(0,1)、(4,2)、(2,6).如果(,)P x y 是ABC ∆围成的区域(含边界)上的点,那么当w xy =取得最大值时,点P 的坐标是 .二、选择题(本大题满分16分)本大题共有4 题,每题都给出代号为A ,B ,C ,D 的四个结论,其中有且只有一个结论是正确的,必须把正确结论的代号写在题后的圆括号内,选对得4分,不选、选错或者选出的代号超过一个(不论是否都写在圆括号内),一律得零分.12.设P 椭圆2212516x y +=上的点.若1F 、2F 是椭圆的两个焦点,则12||||PF PF +等于( ) A .4 B .5 C .8 D .10第15题图第16题图第17题图13.给定空间中的直线l 及平面α.条件“直线l 与平面α内两条相交直线都垂直”是“直线l 与平面α垂直”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件14.若数列{}n a 是首项为1,公比为32a -的无穷等比数列,且{}n a 各项的和为a ,则a 的值是( ) A .1 B .2 C .12 D .5415.如图,在平面直角坐标系中,Ω是一个与x 轴的正半轴、y 轴的正半轴分别相切于点C 、D 的定圆所围成的区域(含边界),A 、B 、C 、D 是该圆的四等分点.若点(,)P x y 、点(,)P x y '''满足x x '≤且y y '≥,则称P 优于P '.如果Ω中的点Q 满足:不存在Ω中的其它点优于Q ,那么所有这样的点Q 组成的集合是劣弧( )A . AB B . BCC . CD D . DA三、解答题(本大题满分90分)本大题共有6题,解答下列各题必须写出必要的步骤. 16.(本题满分12分)如图,在棱长为2的正方体1111ABCD A BC D -中,E 是1BC 的中点.求直线DE 与平面ABCD 所成角的大小(结果用反三角函数值表示).17.(本题满分13分)如图,某住宅小区的平面图呈扇形AOC .小区的两个出入口设置在点A 及点C 处.小区里有两条笔直的小路AD 、DC ,且拐弯处的转角为120.已知某人从C 沿CD 走到D 用了10分钟,从D 沿DA 走到A 用了6分钟.若此人步行的速度为每分钟50米,求该扇形的半径OA 的长(精确到1米).18.(本题满分15分)本题共有2个小题,第1小题满分5分,第2小题满分10分.已知函数()sin 2f x x =,()cos(2)6g x x π=+,直线x t =()t R ∈与函数()f x 、()g x 的图象分别交于M 、N 两点.(1)当4t π=时,求||MN 的值; (2)求||MN 在[0,2t π∈时的最大值.19.(本题满分16分)本题共有2个小题,第1小题满分8分,第2小题满分8分.已知函数||1()22xx f x =-. (1)若()2f x =,求x 的值;(2)若2(2)()0t f t mf t +≥对于[1,2]t ∈恒成立,求实数m 的取值范围.20.(本题满分16分)本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分7分.已知双曲线22:12x C y -=. (1)求双曲线C 的渐近线方程;(2)已知点M 的坐标为(0,1).设P 是双曲线C 上的点,Q 是点P 关于原点的对称点.记MP MQ λ=⋅.求λ的取值范围;(3)已知点D 、E 、M 的坐标分别为(2,1)--、(2,1)-、(0,1),P 为双曲线C 上在第一象限内的点.记l 为经过原点与点P 的直线,s 为DEM ∆截直线l 所得线段的长.试将s 表示为直线l 的斜率k 的函数.21.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.已知数列{}n a :11a =,22a =,3a r =,32n n a a +=+(n 是正整数),与数列{}n b :11b =,20b =,31b =-,40b =,4n n b b +=(n 是正整数).记112233n n n T b a b a b a b a ⋅⋅⋅+=+++. (1)若1312264a a a a ⋅⋅⋅++=++,求r 的值; (2)求证:当n 是正整数时,124n T n =-;(3)已知0r >,且存在正整数m ,使得在121m T +,122m T +,…,1212m T +中有4项为100.求r 的值,并指出哪第16题图4项为100.参考答案一、填空题(第1题至第11题) 1.(0,2)2. 23.1i + 4. 2x(R x ∈) 56.-1 7. 48.459.224x -+10.10.5a =,10.5b =11. 5(,5)2二、选择题(第12题至第15题) 12.D 13.C 14.B 15.D三、解答题(第16题至第21题)16.解:过E 作EF BC ⊥,交BC 于F ,连接DF . ∵ EF ⊥平面ABCD∴ EDF ∠是直线DE 与平面ABCD 所成的角. 由题意,得1112EF CC ==. ∵ 112CF CB ==,∴DF =. ∵ EF DF ⊥,∴tan 5EF EDF DF ∠==. 故直线DE 与平面ABCD所成角的大小是arctan .17.解法1:设该扇形的半径为r 米.由题意,得500CD =(米),300DA =(米),60CDO ∠=. 在CDO ∆中,2222cos60CD OD CD OD OC +-⋅⋅⋅=,第17题图即2221500(300)500(3020)2r r r ⨯⨯-⨯-=+-, 解得490044511r =≈(米). 答:该扇形的半径OA 的长约为445米.解法2:连接AC ,作OH AC ⊥,交AC 于H .由题意,得500CD =(米),300AD =(米),120CDA ∠=. 在ACD ∆中,2222cos120AC CD AD AD CD =+-⋅⋅⋅222150030500300207002=⨯⨯=+⨯+, ∴700AC =(米),22211214cos AC AD CD CAD AC CD +-∠==⋅⋅.在直角HAO ∆中,350AH =(米),1os 114c HAO ∠=, ∴ 4900445cos 11HAO AH OA =∠=≈(米).答:该扇形的半径OA 的长约为445米.18.解:(1))cos(24||sin(246MN πππ⨯-⨯+=.231cos32π=-=. (2)||si 2s 2n co (6t MN t π-+=3sin 22t t =)6t π=-.∵ [0,]2t π∈,26[,]66t ππππ∈---, ∴ ||MN19.解:(1)当0x <时,()0f x =;当0x ≥时,1()22xx f x =-. 由条件可知1222xx -=,即222210x x -⋅-=,解得21x=∵ 20x>,∴ 2log (1x =. (2)当[1,2]t ∈时,22112(2(2202tttt tm -+≥-, 即42(21())21t t m ≥---, ∵ 220t>,∴2(21)t m ≥-+. ∵ [1,2]t ∈,∴2(12)[17,5]t -+∈--, 故m 的取值范围是[)5,-+∞.20.解:(1)所求渐近线方程为02y x -=,02y x +=. (2)设P 的坐标为00(,)x y ,则Q 的坐标为00(,)x y --.0000(,1)(,)MP MQ x y x y λ=⋅=-⋅--22001x y =--+20322x =-+。
2008年全国统一高考数学试卷(文科)(全国卷ⅰ)(含解析版)
2008年全国统一高考数学试卷(文科)(全国卷Ⅰ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)函数y=+的定义域为()A.{x|x≤1}B.{x|x≥0}C.{x|x≥1或x≤0}D.{x|0≤x≤1}2.(5分)汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s看作时间t的函数,其图象可能是()A .B .C .D .3.(5分)(1+)5的展开式中x2的系数()A.10B.5C .D.14.(5分)曲线y=x3﹣2x+4在点(1,3)处的切线的倾斜角为()A.30°B.45°C.60°D.120°5.(5分)在△ABC 中,=,=.若点D 满足=2,则=()A .B .C .D .6.(5分)y=(sinx﹣cosx)2﹣1是()A.最小正周期为2π的偶函数B.最小正周期为2π的奇函数C.最小正周期为π的偶函数D.最小正周期为π的奇函数7.(5分)已知等比数列{a n}满足a1+a2=3,a2+a3=6,则a7=()A.64B.81C.128D.2438.(5分)若函数y=f(x)的图象与函数y=ln的图象关于直线y=x对称,则f(x)=()A.e2x﹣2B.e2x C.e2x+1D.e2x+29.(5分)为得到函数的图象,只需将函数y=sin2x的图象()A .向左平移个长度单位B .向右平移个长度单位C .向左平移个长度单位D .向右平移个长度单位10.(5分)若直线=1与圆x2+y2=1有公共点,则()A.a2+b2≤1B.a2+b2≥1C .D .11.(5分)已知三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC内的射影为△ABC 的中心,则AB1与底面ABC所成角的正弦值等于()A .B .C .D .12.(5分)将1,2,3填入3×3的方格中,要求每行、每列都没有重复数字,下面是一种填法,则不同的填写方法共有()A.6种B.12种C.24种D.48种二、填空题(共4小题,每小题5分,满分20分)13.(5分)若x,y 满足约束条件,则z=2x﹣y的最大值为.14.(5分)已知抛物线y=ax2﹣1的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为.15.(5分)在△ABC中,∠A=90°,tanB=.若以A、B为焦点的椭圆经过点C,则该椭圆的离心率e=.16.(5分)已知菱形ABCD中,AB=2,∠A=120°,沿对角线BD将△ABD折起,使二面角A﹣BD ﹣C为120°,则点A到△BCD所在平面的距离等于.三、解答题(共6小题,满分70分)17.(10分)设△ABC的内角A、B、C所对的边长分别为a、b、c,且acosB=3,bsinA=4.(Ⅰ)求边长a;(Ⅱ)若△ABC的面积S=10,求△ABC的周长l.18.(12分)四棱锥A﹣BCDE中,底面BCDE为矩形,侧面ABC⊥底面BCDE,BC=2,,AB=AC.(Ⅰ)证明:AD⊥CE;(Ⅱ)设CE与平面ABE所成的角为45°,求二面角C﹣AD﹣E的大小.19.(12分)在数列{a n}中,a1=1,a n+1=2a n+2n.(Ⅰ)设b n=.证明:数列{b n}是等差数列;(Ⅱ)求数列{a n}的前n项和S n.20.(12分)已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方案:方案甲:逐个化验,直到能确定患病动物为止.方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.求依方案甲所需化验次数不少于依方案乙所需化验次数的概率.21.(12分)已知函数f(x)=﹣x2+ax+1﹣lnx.(Ⅰ)当a=3时,求函数f(x)的单调递增区间;(Ⅱ)若f(x)在区间(0,)上是减函数,求实数a的取值范围.22.(12分)双曲线的中心为原点O,焦点在x轴上,两条渐近线分别为l1,l2,经过右焦点F垂直于l1的直线分别交l1,l2于A,B两点.已知||、||、||成等差数列,且与同向.(Ⅰ)求双曲线的离心率;(Ⅱ)设AB被双曲线所截得的线段的长为4,求双曲线的方程.2008年全国统一高考数学试卷(文科)(全国卷Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)函数y=+的定义域为()A.{x|x≤1}B.{x|x≥0}C.{x|x≥1或x≤0}D.{x|0≤x≤1}【考点】33:函数的定义域及其求法.【专题】51:函数的性质及应用.【分析】保证两个根式都有意义的自变量x的集合为函数的定义域.【解答】解:要使原函数有意义,则需,解得0≤x≤1,所以,原函数定义域为[0,1].故选:D.【点评】本题考查了函数定义域的求法,求解函数的定义域,是求使的构成函数解析式的各个部分都有意义的自变量x的取值集合.2.(5分)汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s看作时间t的函数,其图象可能是()A .B .C .D .【考点】3A:函数的图象与图象的变换.【专题】16:压轴题;31:数形结合.【分析】由已知中汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,汽车的行驶路程s看作时间t的函数,我们可以根据实际分析函数值S(路程)与自变量t(时间)之间变化趋势,分析四个答案即可得到结论.【解答】解:由汽车经过启动后的加速行驶阶段,路程随时间上升的速度越来越快,故图象的前边部分为凹升的形状;在汽车的匀速行驶阶段,路程随时间上升的速度保持不变故图象的中间部分为平升的形状;在汽车减速行驶之后停车阶段,路程随时间上升的速度越来越慢,故图象的前边部分为凸升的形状;分析四个答案中的图象,只有A答案满足要求,故选:A.【点评】从左向右看图象,如果图象是凸起上升的,表明相应的量增长速度越来越慢;如果图象是凹陷上升的,表明相应的量增长速度越来越快;如果图象是直线上升的,表明相应的量增长速度保持不变;如果图象是水平直线,表明相应的量保持不变,即不增长也不降低;如果图象是凸起下降的,表明相应的量降低速度越来越快;如果图象是凹陷下降的,表明相应的量降低速度越来越慢;如果图象是直线下降的,表明相应的量降低速度保持不变.3.(5分)(1+)5的展开式中x2的系数()A.10B.5C .D.1【考点】DA:二项式定理.【专题】11:计算题.【分析】利用二项展开式的通项公式求出展开式中x2的系数【解答】解:,故选:C.【点评】本题主要考查了利用待定系数法或生成法求二项式中指定项.4.(5分)曲线y=x3﹣2x+4在点(1,3)处的切线的倾斜角为()A.30°B.45°C.60°D.120°【考点】6H:利用导数研究曲线上某点切线方程.【专题】11:计算题.【分析】欲求在点(1,3)处的切线倾斜角,先根据导数的几何意义可知k=y′|x=1,再结合正切函数的值求出角α的值即可.【解答】解:y′=3x2﹣2,切线的斜率k=3×12﹣2=1.故倾斜角为45°.故选:B.【点评】本题考查了导数的几何意义,以及利用正切函数的图象求倾斜角,本题属于容易题.5.(5分)在△ABC 中,=,=.若点D 满足=2,则=()A .B .C .D .【考点】9B:向量加减混合运算.【分析】把向量用一组向量来表示,做法是从要求向量的起点出发,尽量沿着已知向量,走到要求向量的终点,把整个过程写下来,即为所求.本题也可以根据D点把BC分成一比二的两部分入手.【解答】解:∵由,∴,∴.故选:A.【点评】用一组向量来表示一个向量,是以后解题过程中常见到的,向量的加减运算是用向量解决问题的基础,要学好运算,才能用向量解决立体几何问题,三角函数问题,好多问题都是以向量为载体的6.(5分)y=(sinx﹣cosx)2﹣1是()A.最小正周期为2π的偶函数B.最小正周期为2π的奇函数C.最小正周期为π的偶函数D.最小正周期为π的奇函数【考点】GG:同角三角函数间的基本关系.【分析】把三角函数式整理,平方展开,合并同类项,逆用正弦的二倍角公式,得到y=Asin(ωx+φ)的形式,这样就可以进行三角函数性质的运算.【解答】解:∵y=(sinx﹣cosx)2﹣1=1﹣2sinxcosx﹣1=﹣sin2x,∴T=π且为奇函数,故选:D.【点评】同角三角函数的基本关系式揭示了同一个角的六种三角函数间的相互关系,其主要应用于同角三角函数的求值和同角三角函数之间的化简和证明.单在应用这些关系式子的时候就要注意公式成立的前提是角对应的三角函数要有意义.7.(5分)已知等比数列{a n}满足a1+a2=3,a2+a3=6,则a7=()A.64B.81C.128D.243【考点】87:等比数列的性质.【分析】由a1+a2=3,a2+a3=6的关系求得q,进而求得a1,再由等比数列通项公式求解.【解答】解:由a2+a3=q(a1+a2)=3q=6,∴q=2,∴a1(1+q)=3,∴a1=1,∴a7=26=64.故选:A.【点评】本题主要考查了等比数列的通项及整体运算.8.(5分)若函数y=f(x)的图象与函数y=ln的图象关于直线y=x对称,则f(x)=()A.e2x﹣2B.e2x C.e2x+1D.e2x+2【考点】4R:反函数.【专题】11:计算题.【分析】由函数y=f(x)的图象与函数y=ln的图象关于直线y=x对称知这两个函数互为反函数,故只要求出函数y=f(x)的反函数即可,欲求原函数的反函数,即从原函数y=ln中反解出x,后再进行x,y互换,即得反函数的解析式.【解答】解:∵,∴,∴x=(e y﹣1)2=e2y﹣2,改写为:y=e2x﹣2∴答案为A.【点评】本题主要考查了互为反函数图象间的关系及反函数的求法.9.(5分)为得到函数的图象,只需将函数y=sin2x的图象()A .向左平移个长度单位B .向右平移个长度单位C .向左平移个长度单位D .向右平移个长度单位【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【专题】11:计算题.【分析】先根据诱导公式将函数化为正弦的形式,再根据左加右减的原则进行平移即可得到答案.【解答】解:∵,只需将函数y=sin2x 的图象向左平移个单位得到函数的图象.故选:A.【点评】本题主要考查诱导公式和三角函数的平移.属基础题.10.(5分)若直线=1与圆x2+y2=1有公共点,则()A.a2+b2≤1B.a2+b2≥1C .D .【考点】J9:直线与圆的位置关系.【分析】用圆心到直线的距离小于或等于半径,可以得到结果.【解答】解:直线与圆有公共点,即直线与圆相切或相交得:d≤r,∴,故选:D.【点评】本题考查点到直线的距离公式,直线和圆的位置关系,是基础题.11.(5分)已知三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC内的射影为△ABC 的中心,则AB1与底面ABC所成角的正弦值等于()A .B .C .D .【考点】LP:空间中直线与平面之间的位置关系.【专题】11:计算题;31:数形结合;4R:转化法;5G:空间角.【分析】法一:由题意可知三棱锥A1﹣ABC为正四面体,设棱长为2,求出AB1及三棱锥的高,由线面角的定义可求出答案;法二:先求出点A1到底面的距离A1D的长度,即知点B1到底面的距离B1E的长度,再求出AE的长度,在直角三角形AEB1中求AB1与底面ABC所成角的正切,再由同角三角函数的关系求出其正弦.【解答】解:(法一)因为三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC内的射影为△ABC的中心,设为D,所以三棱锥A1﹣ABC为正四面体,设棱长为2,则△AA1B1是顶角为120°等腰三角形,所以AB1=2×2×sin60°=2,A1D==,所以AB1与底面ABC 所成角的正弦值为==;(法二)由题意不妨令棱长为2,点B1到底面的距离是B1E,如图,A1在底面ABC内的射影为△ABC的中心,设为D,故DA=,由勾股定理得A1D==故B1E=,如图作A1S⊥AB于中点S,过B1作AB的垂线段,垂足为F,BF=1,B1F=A1S=,AF=3,在直角三角形B1AF中用勾股定理得:AB1=2,所以AB1与底面ABC所成角的正弦值sin∠B1AE==.故选:B.【点评】本题考查了几何体的结构特征及线面角的定义,还有点面距与线面距的转化,考查了转化思想和空间想象能力.12.(5分)将1,2,3填入3×3的方格中,要求每行、每列都没有重复数字,下面是一种填法,则不同的填写方法共有()A.6种B.12种C.24种D.48种【考点】D4:排列及排列数公式.【专题】16:压轴题.【分析】填好第一行和第一列,其他的行和列就确定,因此只要选好第一行的顺序再确定第一列的顺序,就可以得到符合要求的排列.【解答】解:填好第一行和第一列,其他的行和列就确定,∴A33A22=12,故选:B.【点评】排列问题要做到不重不漏,有些题目带有一定的约束条件,解题时要先考虑有限制条件的元素.二、填空题(共4小题,每小题5分,满分20分)13.(5分)若x,y 满足约束条件,则z=2x﹣y 的最大值为9.【考点】7C:简单线性规划.【专题】11:计算题;13:作图题.【分析】首先作出可行域,再作出直线l0:y=2x,将l0平移与可行域有公共点,直线y=2x﹣z在y 轴上的截距最小时,z有最大值,求出此时直线y=2x﹣z经过的可行域内的点的坐标,代入z=2x ﹣y中即可.【解答】解:如图,作出可行域,作出直线l0:y=2x,将l0平移至过点A处时,函数z=2x﹣y有最大值9.【点评】本题考查线性规划问题,考查数形结合思想.14.(5分)已知抛物线y=ax2﹣1的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为2.【考点】K8:抛物线的性质.【专题】11:计算题.【分析】先根据抛物线y=ax2﹣1的焦点坐标为坐标原点,求得a,得到抛物线方程,进而可知与坐标轴的交点的坐标,进而可得答案.【解答】解:由抛物线y=ax2﹣1的焦点坐标为坐标原点得,,则与坐标轴的交点为(0,﹣1),(﹣2,0),(2,0),则以这三点围成的三角形的面积为故答案为2【点评】本题主要考查抛物线的应用.考查了学生综合运用所学知识,解决实际问题的能力.15.(5分)在△ABC中,∠A=90°,tanB=.若以A、B为焦点的椭圆经过点C,则该椭圆的离心率e=.【考点】K2:椭圆的定义.【专题】11:计算题;16:压轴题.【分析】令AB=4,椭圆的c可得,AC=3,BC=5依据椭圆定义求得a,则离心率可得.【解答】解:令AB=4,则AC=3,BC=5则2c=4,∴c=2,2a=3+5=8∴a=4,∴e=故答案为.【点评】本题主要考查了椭圆的定义.要熟练掌握椭圆的第一和第二定义.16.(5分)已知菱形ABCD中,AB=2,∠A=120°,沿对角线BD将△ABD折起,使二面角A﹣BD﹣C为120°,则点A到△BCD所在平面的距离等于.【考点】MJ:二面角的平面角及求法;MK:点、线、面间的距离计算.【专题】11:计算题;16:压轴题.【分析】本题考查了立体几何中的折叠问题,及定义法求二面角和点到平面的距离,我们由已知菱形ABCD中,AB=2,∠A=120°,沿对角线BD将△ABD折起,使二面角A﹣BD﹣C为120°,及菱形的性质:对角线互相垂直,我们易得∴∠AOC即为二面角A﹣BD﹣C的平面角,解△AOC后,OC边的高即为A点到平面BCD的距离.【解答】解:已知如下图所示:设AC∩BD=O,则AO⊥BD,CO⊥BD,∴∠AOC即为二面角A﹣BD﹣C的平面角∴∠AOC=120°,且AO=1,∴d=1×sin60°=故答案为:【点评】根据二面角的大小解三角形,一般先作出二面角的平面角.此题是利用二面角的平面角的定义作出∠AOC为二面角A﹣BD﹣C的平面角,通过解∠AOC所在的三角形求得∠AOC.其解题过程为:作∠AOC→证∠AOC是二面角的平面角→利用∠AOC解三角形AOC,简记为“作、证、算”.三、解答题(共6小题,满分70分)17.(10分)设△ABC的内角A、B、C所对的边长分别为a、b、c,且acosB=3,bsinA=4.(Ⅰ)求边长a;(Ⅱ)若△ABC的面积S=10,求△ABC的周长l.【考点】HR:余弦定理.【专题】11:计算题.【分析】(I)由图及已知作CD垂直于AB,在直角三角形BDC中求BC的长.(II)由面积公式解出边长c,再由余弦定理解出边长b,求三边的和即周长.【解答】解:(I)过C作CD⊥AB于D,则由CD=bsinA=4,BD=acosB=3∴在Rt△BCD中,a=BC==5(II)由面积公式得S=×AB×CD=×AB×4=10得AB=5又acosB=3,得cosB=由余弦定理得:b===2△ABC的周长l=5+5+2=10+2答:(I)a=5;(II)l=10+2【点评】本题主要考查了射影定理及余弦定理.18.(12分)四棱锥A﹣BCDE中,底面BCDE为矩形,侧面ABC⊥底面BCDE,BC=2,,AB=AC.(Ⅰ)证明:AD⊥CE;(Ⅱ)设CE与平面ABE所成的角为45°,求二面角C﹣AD﹣E的大小.【考点】LY:平面与平面垂直;MJ:二面角的平面角及求法.【专题】5F:空间位置关系与距离.【分析】(1)取BC中点F,证明CE⊥面ADF,通过证明线面垂直来达到证明线线垂直的目的.(2)在面AED内过点E作AD的垂线,垂足为G,由(1)知,CE⊥AD,则∠CGE即为所求二面角的平面角,△CGE中,使用余弦定理求出此角的大小.【解答】解:(1)取BC中点F,连接DF交CE于点O,∵AB=AC,∴AF⊥BC.又面ABC⊥面BCDE,∴AF⊥面BCDE,∴AF⊥CE.再根据,可得∠CED=∠FDC.又∠CDE=90°,∴∠OED+∠ODE=90°,∴∠DOE=90°,即CE⊥DF,∴CE⊥面ADF,∴CE⊥AD.(2)在面ACD内过C点作AD的垂线,垂足为G.∵CG⊥AD,CE⊥AD,∴AD⊥面CEG,∴EG⊥AD,则∠CGE即为所求二面角的平面角.作CH⊥AB,H为垂足.∵平面ABC⊥平面BCDE,矩形BCDE中,BE⊥BC,故BE⊥平面ABC,CH⊂平面ABC,故BE⊥CH,而AB∩BE=B,故CH⊥平面ABE,∴∠CEH=45°为CE与平面ABE所成的角.∵CE=,∴CH=EH=.直角三角形CBH中,利用勾股定理求得BH===1,∴AH=AB﹣BH=AC﹣1;直角三角形ACH中,由勾股定理求得AC2=CH2+AH2=3+(AC﹣1)2,∴AB=AC=2.由面ABC⊥面BCDE,矩形BCDE中CD⊥CB,可得CD⊥面ABC,故△ACD为直角三角形,AD===,故CG===,DG==,,又,则,∴,即二面角C﹣AD﹣E 的大小.【点评】本题主要考查通过证明线面垂直来证明线线垂直的方法,以及求二面角的大小的方法,属于中档题.19.(12分)在数列{a n}中,a1=1,a n+1=2a n+2n.(Ⅰ)设b n =.证明:数列{b n}是等差数列;(Ⅱ)求数列{a n}的前n项和S n.【考点】8E:数列的求和;8H:数列递推式.【专题】11:计算题;14:证明题.【分析】(1)由a n+1=2a n+2n 构造可得即数列{b n}为等差数列(2)由(1)可求=n,从而可得a n=n•2n﹣1利用错位相减求数列{a n}的和【解答】解:由a n+1=2a n+2n.两边同除以2n 得∴,即b n+1﹣b n=1∴{b n}以1为首项,1为公差的等差数列(2)由(1)得∴a n=n•2n﹣1S n=20+2×21+3×22+…+n•2n﹣12S n=21+2×22+…+(n﹣1)•2n﹣1+n•2n∴﹣S n=20+21+22+…+2n﹣1﹣n•2n=∴S n=(n﹣1)•2n+1【点评】本题考查利用构造法构造特殊的等差等比数列及错位相减求数列的和,构造法求数列的通项及错位相减求数列的和是数列部分的重点及热点,要注意该方法的掌握.20.(12分)已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方案:方案甲:逐个化验,直到能确定患病动物为止.方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.求依方案甲所需化验次数不少于依方案乙所需化验次数的概率.【考点】C5:互斥事件的概率加法公式.【专题】11:计算题;35:转化思想.【分析】(解法一)主要依乙所验的次数分类,并求出每种情况下被验中的概率,再求甲种方案的次数不少于乙种次数的概率;(解法二)先求所求事件的对立事件即甲的次数小于乙的次数,再求出它包含的两个事件“甲进行的一次即验出了和甲进行了两次,乙进行了3次”的概率,再代入对立事件的概率公式求解.【解答】解:(解法一):主要依乙所验的次数分类:若乙验两次时,有两种可能:①先验三只结果为阳性,再从中逐个验时,恰好一次验中概率为:(也可以用)②先验三只结果为阴性,再从其它两只中验出阳性(无论第二次验中没有,均可以在第二次结束)()∴乙只用两次的概率为.若乙验三次时,只有一种可能:先验三只结果为阳性,再从中逐个验时,恰好二次验中概率为:∴在三次验出时概率为∴甲种方案的次数不少于乙种次数的概率为:(解法二):设A 为甲的次数不小于乙的次数,则表示甲的次数小于乙的次数,则只有两种情况,甲进行的一次即验出了和甲进行了两次,乙进行了3次.则设A1,A2分别表示甲在第一次、二次验出,并设乙在三次验出为B∴∴【点评】本题考查了用计数原理来求事件的概率,并且所求的事件遇过于复杂的,要主动去分析和应用对立事件来处理.21.(12分)已知函数f(x)=﹣x2+ax+1﹣lnx.(Ⅰ)当a=3时,求函数f(x)的单调递增区间;(Ⅱ)若f(x)在区间(0,)上是减函数,求实数a的取值范围.【考点】3D:函数的单调性及单调区间;3E:函数单调性的性质与判断.【专题】16:压轴题.【分析】(1)求单调区间,先求导,令导函数大于等于0即可.(2)已知f(x)在区间(0,)上是减函数,即f′(x)≤0在区间(0,)上恒成立,然后用分离参数求最值即可.【解答】解:(Ⅰ)当a=3时,f(x)=﹣x2+3x+1﹣lnx∴解f′(x)>0,即:2x2﹣3x+1<0函数f(x )的单调递增区间是.(Ⅱ)f′(x)=﹣2x+a ﹣,∵f(x )在上为减函数,∴x ∈时﹣2x+a ﹣≤0恒成立.即a≤2x +恒成立.设,则∵x ∈时,>4,∴g′(x)<0,∴g(x )在上递减,∴g(x)>g ()=3,∴a≤3.【点评】本题考查函数单调性的判断和已知函数单调性求参数的范围,此类问题一般用导数解决,综合性较强.22.(12分)双曲线的中心为原点O,焦点在x轴上,两条渐近线分别为l1,l2,经过右焦点F垂直于l1的直线分别交l1,l2于A,B两点.已知||、||、||成等差数列,且与同向.(Ⅰ)求双曲线的离心率;(Ⅱ)设AB被双曲线所截得的线段的长为4,求双曲线的方程.【考点】KB:双曲线的标准方程;KC:双曲线的性质.【专题】11:计算题;16:压轴题.【分析】(1)由2个向量同向,得到渐近线的夹角范围,求出离心率的范围,再用勾股定理得出直角三角形的2个直角边的长度比,联想到渐近线的夹角,求出渐近线的斜率,进而求出离心率.(2)利用第(1)的结论,设出双曲线的方程,将AB方程代入,运用根与系数的关系及弦长公式,求出待定系数,即可求出双曲线方程.【解答】解:(1)设双曲线方程为,由,同向,∴渐近线的倾斜角范围为(0,),∴渐近线斜率为:,∴.∵||、||、||成等差数列,∴|OB|+|OA|=2|AB|,∴|AB|2=(|OB|﹣|OA|)(|OB|+|OA|)=(|OB|﹣|OA|)•2|AB|,∴,∴,可得:,而在直角三角形OAB中,注意到三角形OAF也为直角三角形,即tan∠AOB=,而由对称性可知:OA的斜率为k=tan,∴,∴2k2+3k﹣2=0,∴;∴,∴,∴.(2)由第(1)知,a=2b,可设双曲线方程为﹣=1,∴c=b.由于AB的倾斜角为+∠AOB,故AB的斜率为tan(+∠AOB )=﹣cot(∠AOB)=﹣2,∴AB的直线方程为y=﹣2(x﹣b),代入双曲线方程得:15x2﹣32bx+84b2=0,∴x1+x2=,x1•x2=,∴4=•=•,即16=﹣112b2,∴b2=9,所求双曲线方程为:﹣=1.【点评】做到边做边看,从而发现题中的巧妙,如据,联想到对应的是2渐近线的夹角的正切值,属于中档题.。
2008年高考试题—数学文(上海卷)(精品解析)
2008年全国普通高等学校招生统一考试上海数学试卷(文史类)考生注意:1.答卷前,考生务必将姓名、高考准考证号、校验码等填写清楚.2.本试卷共有21道试题,满分150分,考试时间120分钟.请考生用钢笔或圆珠笔将答案直接写在试卷上.一、填空题(本大题满分44分)本大题共有11题,只要求直接填写结果,每个空格填对得4分,否则一律得零分.1.不等式|1|1x -<的解集是 . 【解析】由11102x x -<-<⇒<<. 答案:(0,2)2.若集合A ={x |x ≤2}、B ={x |x ≥a }满足A ∩B ={2},则实数a = . 【解析】由{2}, 22A B A B a =⇒⇒= 只有一个公共元素 答案:23.若复数z 满足z =i (2-z)(i 是虚数单位),则z = . 【解析】由2(2)11iz i z z i i=-⇒==++. 答案:1i +4.若函数()f x 的反函数为12()log f x x -=,则()f x = . 【解析】令2log (0),y x x => 则y R ∈且2,yx =()()2.xf x x R ∴=∈答案:()2xx R ∈5.若向量→a 、→b 满足|→a |=1,|→b |=2,且→a 与→b 的夹角为π3,则|→a +→b |= .【解析】222||()()2||||2||||cos 7||3a b a b a b a a b b a b a b a b a b π+=++=++=++=⇒+=6.若直线10ax y -+=经过抛物线24y x =的焦点,则实数a = . 【解析】直线10ax y -+=经过抛物线24y x =的焦点(1,0),F 则10 1.a a +=∴=- 答案:-17. 若z 是实系数方程220x x p ++=的一个虚根,且2z =,则p = .【解析】设z a bi =+,则方程的另一个根为z a bi '=-,且22z =⇒=,由韦达定理直线22,1,z z a a '+==-∴=-23,b b ∴==所以(1)(1) 4.p z z '=⋅=--= 答案:48. 在平面直角坐标系中,从五个点:(00)(20)(11)(02)(22)A B C D E ,,,,,,,,,中任取三个,这三点能构成三角形的概率是 (结果用分数表示).【解析】由已知得 A C E B C D 、、三点共线,、、三点共线,所以五点中任选三点能构成三角形的概率为333524.5C C -= 答案:459.若函数()()(2)f x x a bx a =++(常数a b ∈R ,)是偶函数,且它的值域为(]4-∞,, 则该函数的解析式()f x = .【解析】22()()(2)(2)2f x x a bx a bx a ab x a =++=+++是偶函数,则其图象关于y 轴对称,202,a ab b ∴+=⇒=-22()22,f x x a ∴=-+且值域为(]4-∞,, 224,a ∴=2()2 4.f x x ∴=-+答案:224x -+10.已知总体的各个体的值由小到大依次为2,3,3,7,a ,b ,12,13.7,18.3,20,且总体的中位数为10.5,若要使该总体的方差最小,则a 、b 的取值分别是 .【解析】中位数为10.521,a b ⇒+=根据均值不等式知,只需10.5a b ==时,总体方差最小. 答案:10.5,10.5a b ==11.在平面直角坐标系中,点A B C ,,的坐标分别为(01)(42)(26),,,,,.如果()P x y , 是ABC △围成的区域(含边界)上的点,那么当xy ω=取到最大值时,点P 的坐标是 . 【解析】作图知xy ω=取到最大值时,点P 在线段BC 上,:210,[2,4],BC y x x =-+∈(210),xy x x ω∴==-+故当5,52x y ==时, ω取到最大值.答案:5,52⎛⎫ ⎪⎝⎭二、选择(本大题满分16分)本大题共有4题,每题都给出代号为A 、B 、C 、D 的四个结论,其中有只有一个结论是正确的,必须把正确结论的代号写在题后的圆括号内,选对得4分,不选、选错或者选出的代号超过一个(不论是否都写在圆括号内),一律得零分.12. 设p 是椭圆2212516x y +=上的点.若12F F ,是椭圆的两个焦点, 则12PF PF +等于( ) A .4B .5C .8D .10【解析】 由椭圆的第一定义知12210.PF PF a +== 答案:D13. 给定空间中的直线l 及平面α,条件“直线l 与平面α内无数条直线都垂直”是“直线l 与平面α垂直”的( )条件A .充要B .充分非必要C .必要非充分D .既非充分又非必要 【解析】“直线l 与平面α内两条相交直线都垂直”⇔“直线l 与平面α垂直”. 答案:C14. 若数列{a n }是首项为1,公比为a -32的无穷等比数列,且{a n }各项的和为a ,则a 的值是( )A .1B .2C .12D .54【解析】由11311 223||1||12a a S a q a q a ⎧=⎪⎧=-+⎪⎪-⇒⇒=⎨⎨⎪⎪<⎩-<⎪⎩.答案:B15.如图,在平面直角坐标系中,Ω是一个与x 轴的正半轴、y 轴的正半轴分别相切于点C 、D 的定圆所围成区域(含边界),A 、B 、C 、D 是该圆的四等分点,若点P(x ,y )、P ’(x ’,y ’)满足x ≤x ’ 且y ≥y ’,则称P 优于P ’,如果Ω中的点Q 满足:不存在Ω中的其它点优于Q ,那么所有这样的点Q 组成的集合是劣弧( ) A . AB ︵ B . BC ︵ C . CD ︵ D . DA ︵【解析】由题意知,若P 优于P ',则P 在P '的左上方,∴当Q 在 DA上时, 左上的点不在圆上, ∴不存在其它优于Q 的点,∴Q 组成的集合是劣弧 DA. 答案:D三、解答题(本大题满分90分)本大题共有6题,解答下列各题必须写出必要的步骤.16.(12’)如图,在棱长为2的正方体ABCD-A 1B 1C 1D 1中, E 是BC 1的中点,求直线DE 与平面ABCD 所成角的 大小(结果用反三角函数表示)【解析】过E 作EF BC ⊥,交BC 于F ,连接CO .EF ⊥平面ABCD ,∴EDF ∠是直线DE 与平面ABCD 所成的角. ……4分 由题意,得1112EF CC ==. 112CF CB == ∴DF =. ……8分EF DF ⊥,∴tan EF EDF DF ∠==……10分 故直线DE 与平面ABCD所成角的大小是arctan5. ……12分 17.(13’)如图,某住宅小区的平面图呈圆心角为120° 的扇形AOB ,小区的两个出入口设置在点A 及点C 处,且小区里有一条平行于BO 的小路CD ,已知某 人从C 沿CD 走到D 用了10分钟,从D 沿DA 走到A 用了6分钟,若此人步行的速度为每分钟50米, 求该扇形的半径OA 的长(精确到1米)【解析】[解法一] 设该扇形的半径为r 米,连接CO . ……2分 由题意,得 500CD =(米),300DA =(米),60CDO ∠=︒ ……4分在△CDO 中,2222cos60CD OD CD OD OC +-⋅⋅︒= ……6分即,2221500(300)2500(300)2r r r +--⨯⨯-⨯= ……9分 解得 490044511r =≈(米) 答:该扇形的半径OA 的长约为445米. ……13分[解法二] 连接AC ,作OH AC ⊥,交AC 于H , ……2分由题意,得500CD =(米),300AD =(米),120CDA ∠=︒ ……4分 在△CDO 中,2222cos120AC CD AD CD AD =+-⋅⋅⋅︒A EB 1D 1DC 1A 1BC AODBCADBCHAODBCF222150030025003007002=++⨯⨯⨯=. 700AC ∴=(米). ……6分22211cos 214AC AD CD CAD AC AD +-∠==⋅⋅. ……9分在直角△HAO 中,350AH =(米),11cos 14HAO ∠=, ∴ 4900445cos 11AH OA HAO ==≈∠(米).答:该扇形的半径OA 的长约为445米. ……13分18.(本题满分15分)本题共有2个小题,第1个题满分5分,第2小题满分10分. 已知函数()sin 2f x x =,()cos 26g x x π⎛⎫=+ ⎪⎝⎭,直线x =t (t ∈R)与函数f (x )、g (x )的图像分别交于M 、N 两点. (1) 当4t π=时,求|MN |的值; (2) 求|MN |在t ∈⎥⎦⎤⎢⎣⎡2,0π时的最大值. 【解析】(1)sin 2cos 2446MN πππ⎛⎫⎛⎫=⨯-⨯+ ⎪ ⎪⎝⎭⎝⎭…………….2分 231cos.32π=-=………………………………5分(2)sin 2cos 26MN t t π⎛⎫=-+⎪⎝⎭3sin 2222t t =-……...8分26t π⎛⎫=-⎪⎝⎭…………………………….11分 ∵ 0,,2,,2666t t πππππ⎡⎤⎡⎤∈-∈--⎢⎥⎢⎥⎣⎦⎣⎦ …………13分∴ |MN ……………15分19.(8’+8’)已知函数f (x )=2x -12|x |⑴ 若f (x )=2,求x 的值⑵ 若2t f (2t )+m f (t )≥0对于t ∈[1,2]恒成立,求实数m 的取值范围【解析】(1)当0x <时,()0f x =;当0x ≥时,1()22xx f x =-……2分 由条件可知1222xx -=,即222210x x --=解得 21x= ……6分20log (1x x >=∵∴ ……8分(2)当[1,2]t ∈时,22112(2)(2)022tttt t m -+-≥ ……10分 即24(21)(21)t t m -≥--,2210t->∵,2(21)t m ≥-+∴ ……13分[1,2]t ∈∵,2(21)[17,5]t -+∈--∴故m 的取值范围是[5,)-+∞ ……16分20.(本题满分16分)本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分7分.已知双曲线2212x C y -=:.(1)求双曲线C 的渐近线方程;(2)已知点M 的坐标为(01),.设P 是双曲线C 上的点,Q 是点P 关于原点的对称点. 记MP MQ λ=.求λ的取值范围;(3)已知点D E M ,,的坐标分别为(21)(21)(01)---,,,,,,P 为双曲线C 上在第一象限内的点.记l 为经过原点与点P 的直线,s 为DEM △截直线l 所得线段的长.试将s 表示为直线l 的斜率k 的函数.【解析】(1)所求渐近线方程为0,0y y x -=+= ……………...3分 (2)设P 的坐标为()00,x y ,则Q 的坐标为()00,x y --, …………….4分 ()()000,1,1o MP MQ x y x y λ=⋅=-⋅---22200031 2.2x y x =--+=-+ ……………7分0xλ∴的取值范围是(,1].-∞-……………9分(3)若P 为双曲线C 上第一象限内的点,则直线l 的斜率.k ⎛∈ ⎝⎭……………11分由计算可得,当()1(0,],2k s k ∈时当()1,2k s k ⎛∈= ⎝⎭时……………15分∴ s 表示为直线l 的斜率k 的函数是()1(0,],21.2k s k k ∈=⎛∈ ⎝⎭….16分21.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分. 已知数列{}n a :11a =,22a =,3a r =,32n n a a +=+(n 是正整数),与数列 {}n b :11b =,20b =,31b =-,40b =,4n n b b +=(n 是正整数). 记112233n n n T b a b a b a b a =++++ .(1)若1231264a a a a ++++= ,求r 的值; (2)求证:当n 是正整数时,124n T n =-;(3)已知0r >,且存在正整数m ,使得在121m T +,122m T +, ,1212m T +中有4项为100.求r 的值,并指出哪4项为100. 【解析】(1) 12312...a a a a ++++()()()12342564786r r r r =++++++++++++++484.r =+………………..2分∵ 48464, 4.r r +=∴=………………..4分(2)证明:用数学归纳法证明:当12,4.n n Z T n +∈=-时① 当n=1时,1213579114,T a a a a a a =-+-+-=-等式成立….6分 ② 假设n=k 时等式成立,即124,k T k =- 那么当1n k =+时,()121211231251271291211121k k k k k k k k T T a a a a a a +++++++=+-+-+-………8分()()()()()()481884858488k k k r k k k r k =-++-+++-++++-+()4441,k k =--=-+等式也成立.根据①和②可以断定:当12,4.n n Z T n +∈=-时…………………...10分(3)()1241.121,12241;123,12441;125,12645;127,1284;129,121044;m n n n n T m m n m m T m n m m T m r n n m m T m r n m m T m r n m m T m =-≥=++=+=++=-+-=++=+-=++=--=++=+当时,当时,当时,当时,当时,1211,1212,4 4.n n m m T m =++=--当时………………………..13分∵ 4m+1是奇数,41,4,44m r m r m -+-----均为负数, ∴ 这些项均不可能取到100. ………………………..15分此时,293294297298,,,T T T T 为100. …………………………18分。
2008年高考文科数学试题及参考答案(上海卷)
2008年全国普通高等学校招生统一考试上海数学试卷(文史类)考生注意:1.答卷前,考生务必将姓名、高考准考证号、校验码等填写清楚.2.本试卷共有21道试题,满分150分,考试时间120分钟.请考生用钢笔或圆珠笔将 答案直接写在试卷上.一、填空题(本大题满分44分)本大题共有11题,只要求直接填写结果,每个空格填对得4分,否则一律得零分. 1.不等式11x -<的解集是 . 【答案】(0,2)【解析】由11102x x -<-<⇒<<.2.若集合{}|2A x x =≤,{}|B x x a =≥满足{2}A B = ,则实数a = . 【答案】2【解析】由{2}, 22A B A B a =⇒⇒= 只有一个公共元素. 3.若复数z 满足(2)z i z =- (i 是虚数单位),则z = . 【答案】1i +【解析】由22(1)(2)11(1)(1)i i i z i z z i ii i -=-⇒===+++-.4.若函数()f x 的反函数为12()log f x x -=,则()f x = .【答案】()2xx R ∈【解析】令2log (0),y x x => 则y R ∈且2,yx =()()2.xf x x R ∴=∈5.若向量a ,b 满足12a b == ,且a 与b 的夹角为3π,则a b += .【解析】2||()()2a b a b a b a a b b a b +=++=++22||||2||||cos 73a b a b π=++= ||a b ⇒+=6.若直线10ax y -+=经过抛物线24y x =的焦点,则实数a = . 【答案】-1【解析】直线10ax y -+=经过抛物线24y x =的焦点(1,0),F 则10 1.a a +=∴=- 7.若z 是实系数方程220x x p ++=的一个虚根,且2z =,则p = . 【答案】4【解析】设z a bi =+,则方程的另一个根为z a bi '=-,且22z =⇒=,由韦达定理直线22,1,z z a a '+==-∴=-23,b b ∴==所以(1)(1) 4.p z z '=⋅=-+--=8.在平面直角坐标系中,从五个点:(00)(20)(11)(02)(22)A B C D E ,,,,,,,,,中 任取三个,这三点能构成三角形的概率是 (结果用分数表示). 【答案】45【解析】由已知得 A C E B C D 、、三点共线,、、三点共线, 所以五点中任选三点能构成三角形的概率为333524.5C C -=9.若函数()()(2)f x x a bx a =++(常数a b ∈R ,)是偶函数,且它的值域为(]4-∞,, 则该函数的解析式()f x = . 【答案】224x -+【解析】22()()(2)(2)2f x x a bx a bx a ab x a =++=+++是偶函数,则其图象关于y 轴对称, 202,a ab b ∴+=⇒=-22()22,f x x a ∴=-+且值域为(]4-∞,, 224,a ∴=2()2 4.f x x ∴=-+10.已知总体的各个体的值由小到大依次为2,3,3,7,a ,b ,12,13.7,18.3,20, 且总体的中位数为10.5.若要使该总体的方差最小,则a 、b 的取值分别 . 【答案】10.5,10.5a b ==【解析】中位数为10.521,a b ⇒+=根据均值不等式知,只需10.5a b ==时,总体方差最小.11.在平面直角坐标系中,点A B C ,,的坐标分别为(01)(42)(26),,,,,.如果()P x y , 是A B C △围成的区域(含边界)上的点,那么当xy ω=取到最大值时,点P 的坐标 是 . 【答案】5,52⎛⎫⎪⎝⎭【解析】作图知xy ω=取到最大值时,点P 在线段BC 上,:210,[2,4],BC y x x =-+∈(210),xy x x ω∴==-+故当5,52x y ==时, ω取到最大值.二、选择题(本大题满分16分)本大题共有4题,每题都给出代号为A 、B 、C 、D 的四个结论,其中有且只有一个结论是正确的,必须把正确结论的代号写在题后的圆括号内,选对得4分,不选、选错或者选出的代号超过一个(不论是否都写在圆括号内),一律得零分. 12.设p 是椭圆2212516xy+=上的点.若12F F ,是椭圆的两个焦点,则12PF PF +等于( ) A .4B .5C .8D .10【答案】D【解析】 由椭圆的第一定义知12210.PF PF a +==13.给定空间中的直线l 及平面α.条件“直线l 与平面α内两条相交直线都垂直”是“直线l 与平面α垂直”的( )A.充分非必要条件 B.必要非充分条件 C .充要条件 D.既非充分又非必要条件 【答案】C【解析】“直线l 与平面α内两条相交直线都垂直”⇔“直线l 与平面α垂直”. 14.若数列{}n a 是首项为1,公比为32a =的无穷等比数列,且{}n a 各项的和为a ,则a 的值是( )A.1 B.2 C.12 D.54【答案】B【解析】由11123121 22153||1||1222a a a a S a q a a q a ⎧=⎧⎪⎧==⎪=-+⎪⎪⎪-⇒⇒⇒=⎨⎨⎨⎪⎪⎪<<<⎩-<⎪⎪⎩⎩或.15.如图,在平面直角坐标系中,Ω是一个与x 轴的正半轴、y 轴的正半轴分别相切于点C 、D 的定圆所围成的区域(含边界),A 、B 、C 、D 是该圆的四等分点.若点()P x y ,、点()P x y ''',满足x x '≤且y y '≥,则称P 优于P '.如果Ω中的点Q 满足:不存在Ω中的其它点优于Q ,那么所有这样的点Q 组成的集合是劣弧( D ) A. ABB . BCC . CD D . DA 【答案】D【解析】由题意知,若P 优于P ',则P 在P '的左上方, ∴当Q 在 DA上时, 左上的点不在圆上, ∴不存在其它优于Q 的点, ∴Q 组成的集合是劣弧 DA.三、解答题(本大题满分90分)本大题共有6题,解答下列各题必须写出必要的步骤. 16.(本题满分12分)如图,在棱长为2的正方体1111ABC D A B C D -中,E 是BC 1的中点.求直线DE 与平面ABCD 所成角的大小(结果用反三角函数值表示). 16. 【解】过E 作EF ⊥BC ,交BC 于F ,连接DF .∵ EF ⊥平面ABCD ,∴ ∠ED F 是直线DE 与平面ABCD 所成的角. ……………4分由题意,得EF =111.2C C =∵11,2C F C BD F ==∴=..8分∵ EF ⊥DF , ∴tan 5EF ED F D F∠==……………..10分故直线DE 与平面ABCD所成角的大小是arctan5….12分17.(本题满分13分)如图,某住宅小区的平面图呈扇形AOC .小区的两个出入口设置在点A 及点C 处,小区里 有两条笔直的小路A D D C ,,且拐弯处的转角为120 .已知某人从C 沿C D 走到D 用了10分钟,从D 沿D A 走到A 用了6分钟.若此人步行的速度为每分钟50米,求该扇形的半径O A 的长(精确到1米).17. 【解法一】设该扇形的半径为r 米. 由题意,得CD =500(米),DA =300(米),∠CDO=060在C D O ∆中,22022cos 60,C DOD C D OD OC +-⋅⋅⋅=……………6分 即()()22215003002500300,2r r r +--⨯⨯-⨯=…………………….9分解得490044511r =≈(米). …………………………………………….13分【解法二】连接AC ,作OH ⊥AC ,交A C 于H …………………..2分由题意,得CD =500(米),AD =300(米),0120CDA ∠=222222,2cos12015003002500300700,2AC D AC C D AD C D AD ∆=+-⋅⋅⋅=++⨯⨯⨯=在中∴ AC =700(米)…………………………..6分22211cos .214AC AD CDCAD AC AD+-∠==⋅⋅………….…….9分在直角11,350,cos 0,14H A O A H H A ∆=∠=中(米)∴ 4900445cos 11A H O A H AO==≈∠(米). ………………………13分18.(本题满分15分)本题共有2个小题,第1个题满分5分,第2小题满分10分.已知函数f (x )=sin2x ,g (x )=cos π26x ⎛⎫+⎪⎝⎭,直线()x t t =∈R 与函数()()f x g x ,的图象分别交于M 、N 两点. (1)当π4t =时,求|MN |的值;(2)求|MN |在π02t ⎡⎤∈⎢⎥⎣⎦,时的最大值.18、【解】(1)sin 2cos 2446M N πππ⎛⎫⎛⎫=⨯-⨯+ ⎪ ⎪⎝⎭⎝⎭…………….2分 231cos.32π=-=………………………………5分(2)sin 2cos 26M N t t π⎛⎫=-+⎪⎝⎭3sin 2222t t =-……...8分s i n 26t π⎛⎫=- ⎪⎝⎭…………………………….11分∵ 0,,2,,2666t t πππππ⎡⎤⎡⎤∈-∈--⎢⎥⎢⎥⎣⎦⎣⎦…………13分∴ |MN . ……………15分19.(本题满分16分)本题共有2个小题,第1小题满分8分,第2小题满分8分. 已知函数||1()22xx f x =-.(1)若()2f x =,求x 的值;(2)若2(2)()0t f t m f t +≥对于[12]t ∈,恒成立,求实数m 的取值范围. 19、【解】(1)()()100;0,22x xx f x x f x <=≥=-当时,当时. …………….2分由条件可知,2122,22210,2x xxx-=-⋅-=即解得 21x=±…………6分∵ (220,log 1x x >∴=+ …………..8分(2)当2211[1,2],2220,22t tt t t t m ⎛⎫⎛⎫∈-+-≥ ⎪ ⎪⎝⎭⎝⎭时 ……………10分即 ()()242121.t t m -≥--()22210,21.ttm ->∴≥+ ………………13分()2[1,2],12[17,5],tt ∈∴-+∈--故m 的取值范围是[5,)-+∞ …………….16分第3小题满分7分.已知双曲线2212xC y -=:.(1)求双曲线C 的渐近线方程;(2)已知点M 的坐标为(01),.设P 是双曲线C 上的点,Q 是点P 关于原点的对称点.记M P M Q λ=.求λ的取值范围;(3)已知点D E M ,,的坐标分别为(21)(21)(01)---,,,,,,P 为双曲线C 上在第一象限内的点.记l 为经过原点与点P 的直线,s 为D E M △截直线l 所得线段的长.试将s表示为直线l 的斜率k 的函数.20、【解】(1)所求渐近线方程为0,022y y -=+= ……………...3分(2)设P 的坐标为()00,x y ,则Q 的坐标为()00,x y --, …………….4分 ()()000,1,1o M P M Q x y x y λ=⋅=-⋅---22200031 2.2x y x =--+=-+ ……………7分0x ≥λ∴的取值范围是(,1].-∞- ……………9分(3)若P 为双曲线C 上第一象限内的点,则直线l的斜率0,.2k ⎛∈ ⎪⎝⎭……………11分由计算可得,当()1(0,],2k s k ∈=时当()1,,22k s k ⎛⎫∈= ⎪ ⎪⎝⎭时 ……………15分∴ s 表示为直线l 的斜率k 的函数是()1(0,],21.22k s k k ∈⎪=⎛∈ ⎝⎭⎩….16分第3小题满分8分.已知数列{}n a :11a =,22a =,3a r =,32n n a a +=+(n 是正整数),与数列{}n b :11b =,20b =,31b =-,40b =,4n n b b +=(n 是正整数). 记112233n n n T b a b a b a b a =++++ .(1)若1231264a a a a ++++= ,求r 的值; (2)求证:当n 是正整数时,124n T n =-;(3)已知0r >,且存在正整数m ,使得在121m T +,122m T +, ,1212m T +中有4项为100.求r 的值,并指出哪4项为100. 21、【解】(1)()()()12312...12342564786a a a a r r r r ++++=++++++++++++++484.r =+………………..2分 ∵ 48464, 4.r r +=∴=………………..4分【证明】(2)用数学归纳法证明:当12,4.n n Z T n +∈=-时① 当n=1时,1213579114,T a a a a a a =-+-+-=-等式成立….6分 ② 假设n=k 时等式成立,即124,k T k =- 那么当1n k =+时,()121211231251271291211121k k k k k k k k T T a a a a a a +++++++=+-+-+-………8分()()()()()()481884858488k k k r k k k r k =-++-+++-++++-+()4441,k k =--=-+等式也成立.根据①和②可以断定:当12,4.n n Z T n +∈=-时…………………...10分【解】(3)()1241.121,12241;123,12441;125,12645;127,1284;129,121044;m n n n n T m m n m m T m n m m Tm r nn m m T m r n m m T m r n m m T m =-≥=++=+=++=-+-=++=+-=++=--=++=+当时,当时,当时,当时,当时,1211,1212,4 4.n n m m T m =++=--当时………………………..13分∵ 4m+1是奇数,41,4,44m r m r m -+-----均为负数,∴ 这些项均不可能取到100. ………………………..15分此时,293294297298,,,T T T T 为100. …………………………18分。
2008年全国统一高考数学试卷(文科)(全国卷ⅱ)(含解析版)
22.(12 分)设椭圆中心在坐标原点,A(2,0),B(0,1)是它的两个顶点, 直线 y=kx(k>0)与 AB 相交于点 D,与椭圆相交于 E、F 两点.
(Ⅰ)若
,求 k
2008 年全国统一高考数学试卷(文科)(全国卷Ⅱ)
参考答案与试题解析
双曲线的离心率为( )
A.
B.
C.
D.
12.(5 分)已知球的半径为 2,相互垂直的两个平面分别截球面得两个圆,若两
圆的公共弦长为 2,则两圆的圆心距等于( )
A.1
B.
C.
D.2
二、填空题(共 4 小题,每小题 5 分,满分 20 分)
13.(5 分)设向量
,若向量
与向量
共线,
则 λ=
.
14.(5 分)从 10 名男同学,6 名女同学中选 3 名参加体能测试,则选到的 3 名
充要条件①
;
充要条件②
.
(写出你认为正确的两个充要条件)
三、解答题(共 6 小题,满分 70 分) 17.(10 分)在△ABC 中,cosA=﹣ ,cosB= .
(Ⅰ)求 sinC 的值; (Ⅱ)设 BC=5,求△ABC 的面积.
18.(12 分)等差数列{an}中,a4=10 且 a3,a6,a10 成等比数列,求数列{an}前 20 项的和 S20.
【解答】解:sinα<0,α 在三、四象限;tanα>0,α 在一、三象限. 故选:C. 【点评】记住角在各象限的三角函数符号是解题的关键,可用口诀帮助记忆:一
全部,二正弦,三切值,四余弦,它们在上面所述的象限为正
2.(5 分)设集合 M={m∈Z|﹣3<m<2},N={n∈Z|﹣1≤n≤3},则 M∩N=( )
2008年高考真题精品解析2008年普通高等学校招生全国统一考试(上海卷)(文科)
2008年高考真题精品解析2008年普通高等学校招生全国统一考试(上海卷)(文科) 测试题 2019.91,设是椭圆上的点.若是椭圆的两个焦点,则等于( )A .4B .5C .8D .102,给定空间中的直线l 及平面.条件“直线l 与平面内两条相交直线都垂直”是“直线l 与平面垂直”的( )A.充分非必要条件 B.必要非充分条件 C .充要条件 D.既非充分又非必要条件3,若数列 是首项为1,公比为的无穷等比数列,且各项的和为a ,则的值是( )A.1 B.2 C. D.4,如图,在平面直角坐标系中,是一个与x 轴的正半轴、y 轴的正半轴分别相切于点C 、D 的定圆所围成的区域(含边界),A 、B 、C 、D 是该圆的四等分点.若点、点满足且,则称P 优于.如果中的点满足:不存在中的其它点优于Q ,那么所有这样的点Q 组成的集合是劣弧( )A.AB B .BC C .CD D .DAp 2212516x y +=12F F ,12PF PF +ααα{}n a 32a ={}n a a 1254Ω()P x y ,()P x y ''',x x '≤y y '≥P 'ΩQ Ω5,如图,在棱长为2的正方体中,E 是BC 1的中点.求直线DE 与平面ABCD 所成角的大小(结果用反三角函数值表示).6,如图,某住宅小区的平面图呈扇形AOC .小区的两个出入口设置在点A 及点C 处,小区里有两条笔直的小路,且拐弯处的转角为.已知某人从沿走到用了10分钟,从沿走到用了6分钟.若此人步行的速度为每分钟50米,求该扇形的半径的长(精确到1米).7,已知函数f(x)=sin2x ,g(x)=cos ,直线与函数的图象分别交于M 、N 两点.(1)当时,求|MN |的值;(2)求|MN |在时的最大值.8,已知函数.(1)若,求的值;1111ABCD A B C D-AD DC ,120C CD D D DA AOA π26x ⎛⎫+ ⎪⎝⎭()x t t =∈R ()()f x g x ,π4t =π02t ⎡⎤∈⎢⎥⎣⎦,||1()22x x f x =-()2f x =x(2)若对于恒成立,求实数m 的取值范围.9,已知双曲线.(1)求双曲线的渐近线方程;(2)已知点的坐标为.设是双曲线上的点,是点关于原点的对称点.记.求的取值范围;(3)已知点的坐标分别为,为双曲线上在第一象限内的点.记为经过原点与点的直线,为截直线所得线段的长.试将表示为直线的斜率的函数.10,已知数列:,,,(是正整数),与数列:,,,,(是正整数).记.(1)若,求的值;(2)求证:当是正整数时,;(3)已知,且存在正整数,使得在,,,中有4项为100.求的值,并指出哪4项为100.测试题答案2(2)()0t f t mf t +≥[12]t ∈,2212x C y -=:C M (01),P C Q P MP MQ λ=λD E M ,,(21)(21)(01)---,,,,,P C l P s DEM △l s l k {}n a 11a =22a =3a r =32n n a a +=+n {}n b 11b =20b =31b =-40b =4n n b b +=n 112233n n nT b a b a b a b a =++++1231264a a a a ++++=r n 124n T n =-0r >m 121m T +122m T +1212m T +r1, D【解析】 由椭圆的第一定义知 2, C【解析】“直线l 与平面内两条相交直线都垂直”“直线l 与平面垂直”. 3, B【解析】由4,【解析】由题意知,若P 优于,则P 在的左上方, 当Q 在DA 上时, 左上的点不在圆上, 不存在其它优于Q 的点,Q 组成的集合是劣弧DA.5, 【解】过E 作EF ⊥BC ,交BC 于F ,连接DF. ∵ EF ⊥平面ABCD ,∴ ∠EDF 是直线DE 与平面ABCD 所成的角由题意,得EF= ∵12210.PF PF a +==α⇔α11123121 22153||1||1222a a a a S a q a a q a ⎧=⎧⎪⎧==⎪=-+⎪⎪⎪-⇒⇒⇒=⎨⎨⎨⎪⎪⎪<<<⎩-<⎪⎪⎩⎩或D P 'P '∴∴∴111.2CC =11,2CF CB DF ==∴=∵ EF ⊥DF , ∴故直线DE 与平面ABCD 所成角的大小是6, 【解法一】设该扇形的半径为r 米. 由题意,得 CD=500(米),DA=300(米),∠CDO=在中,即解得(米).【解法二】连接AC ,作OH ⊥AC ,交AC 于H由题意,得CD=500(米),AD=300(米),∴ AC=700(米)在直角tan 5EF EDF DF ∠==arctan5060CDO ∆22022cos 60,CD OD CD OD OC +-⋅⋅⋅=()()22215003002500300,2r r r +--⨯⨯-⨯=490044511r =≈0120CDA ∠=2220222,2cos12015003002500300700,2ACD AC CD AD CD AD ∆=+-⋅⋅⋅=++⨯⨯⨯=在中22211cos .214AC AD CD CAD AC AD +-∠==⋅⋅11,350,cos 0,14HAO AH HA ∆=∠=中(米)∴(米).7, 【解】(1)(2)∵ ∴ |MN8, 【解】(1).由条件可知,解得∵(2)当即4900445cos 11AH OA HAO ==≈∠sin 2cos 2446MN πππ⎛⎫⎛⎫=⨯-⨯+ ⎪ ⎪⎝⎭⎝⎭231cos.32π=-=sin 2cos 26MN t t π⎛⎫=-+ ⎪⎝⎭3sin 222t t =26t π⎛⎫=- ⎪⎝⎭0,,2,,2666t t πππππ⎡⎤⎡⎤∈-∈--⎢⎥⎢⎥⎣⎦⎣⎦()()100;0,22x xx f x x f x <=≥=-当时,当时2122,22210,2x x x x -=-⋅-=即21x =(220,log 1x x >∴=+2211[1,2],2220,22t t t ttt m ⎛⎫⎛⎫∈-+-≥ ⎪ ⎪⎝⎭⎝⎭时()()242121.t t m -≥--()22210,21.t t m ->∴≥+()2[1,2],12[17,5],t t ∈∴-+∈--故m 的取值范围是9, 【解】(1)所求渐近线方程为(2)设P 的坐标为,则Q 的坐标为,的取值范围是(3)若P 为双曲线C 上第一象限内的点,则直线的斜率由计算可得,当当∴ s 表示为直线的斜率k 的函数是10, 【解】(1)∵[5,)-+∞0,022y x y x -=+=()00,x y ()00,x y --()()000,1,1o MP MQ x y x y λ=⋅=-⋅---22200031 2.2x y x =--+=-+02x ≥λ∴(,1].-∞-l .k ⎛∈ ⎝⎭()1(0,],2k s k ∈时()1,2k s k ⎛∈= ⎝⎭时l ()1(0,],21,.22k s k k ∈=⎛∈ ⎝⎭12312...a a a a ++++()()()12342564786r r r r =++++++++++++++484.r =+48464, 4.r r +=∴=【证明】(2)用数学归纳法证明:当① 当n=1时,等式成立….6分 ② 假设n=k 时等式成立,即 那么当时,等式也成立.根据①和②可以断定:当【解】(3)∵ 4m+1是奇数,均为负数, ∴ 这些项均不可能取到100. 此时,为100.12,4.n n Z T n +∈=-时1213579114,T a a a a a a =-+-+-=-124,k T k =-1n k =+()121211231251271291211121k k k k k k k k T T a a a a a a +++++++=+-+-+-()()()()()()481884858488k k k r k k k r k =-++-+++-++++-+()4441,k k =--=-+12,4.n n Z T n +∈=-时()1241.121,12241;123,12441;125,12645;127,1284;129,121044;m n n n n T m m n m m T m n m m T m r nn m m T m r n m m T m r n m m T m =-≥=++=+=++=-+-=++=+-=++=--=++=+当时,当时,当时,当时,当时,1211,1212,4 4.n n m m T m =++=--当时41,4,44m r m r m -+-----293294297298,,,T T T T。
2008年高考数学试卷(全国Ⅱ.文)含详解
2008年普通高等学校招生全国统一考试文科数学(必修+选修I)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3至10页. 考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.不能答在试题卷上.3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式:如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B = 球的体积公式如果事件A 在一次试验中发生的概率是p ,那么 34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(012)k kn k k n P k C p p k n -=-=,,,,一、选择题1.若sin 0α<且tan 0α>是,则α是( ) A .第一象限角 B . 第二象限角 C . 第三象限角 D . 第四象限角2.设集合{|32}M m m =∈-<<Z ,{|13}N n n M N =∈-=Z 则,≤≤( )A .{}01,B .{}101-,,C .{}012,,D .{}1012-,,,3.原点到直线052=-+y x 的距离为( ) A .1B .3C .2D .54.函数1()f x x x=-的图像关于( )A .y 轴对称B . 直线x y -=对称C . 坐标原点对称D . 直线x y =对称5.若13(1)ln 2ln ln x e a x b x c x -∈===,,,,,则( ) A .a <b <cB .c <a <bC . b <a <cD . b <c <a6.设变量x y ,满足约束条件:222y x x y x ⎧⎪+⎨⎪-⎩,,.≥≤≥,则y x z 3-=的最小值为( )A .2-B .4-C .6-D .8-7.设曲线2ax y =在点(1,a )处的切线与直线062=--y x 平行,则=a ( )A .1B .12C .12-D .1-8.正四棱锥的侧棱长为32,侧棱与底面所成的角为︒60,则该棱锥的体积为( ) A .3 B .6C .9D .189.44)1()1(x x +-的展开式中x 的系数是( )A .4-B .3-C .3D .410.函数x x x f cos sin )(-=的最大值为( ) A .1B .2 C .3D .211.设ABC △是等腰三角形,120ABC ∠=,则以A B ,为焦点且过点C 的双曲线的离心率为( ) A .221+ B .231+ C . 21+ D .31+12.已知球的半径为2,相互垂直的两个平面分别截球面得两个圆.若两圆的公共弦长为2,则两圆的圆心距等于( ) A .1 B .2C .3D .22008年普通高等学校招生全国统一考试文科数学(必修+选修I)第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上. 13.设向量(12)(23)==,,,a b ,若向量λ+a b 与向量(47)=--,c 共线,则=λ . 14.从10名男同学,6名女同学中选3名参加体能测试,则选到的3名同学中既有男同学又有女同学的不同选法共有 种(用数字作答)15.已知F 是抛物线24C y x =:的焦点,A B ,是C 上的两个点,线段AB 的中点为(22)M ,,则ABF △的面积等于 .16.平面内的一个四边形为平行四边形的充要条件有多个,如两组对边分别平行,类似地,写出空间中的一个四棱柱为平行六面体的两个充要条件:充要条件① ; 充要条件② . (写出你认为正确的两个充要条件)三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分) 在ABC △中,5cos 13A =-,3cos 5B =. (Ⅰ)求sinC 的值;(Ⅱ)设5BC =,求ABC △的面积. 18.(本小题满分12分)等差数列{}n a 中,410a =且3610a a a ,,成等比数列,求数列{}n a 前20项的和20S .19.(本小题满分12分)甲、乙两人进行射击比赛,在一轮比赛中,甲、乙各射击一发子弹.根据以往资料知,甲击中8环,9环,10环的概率分别为0.6,0.3,0.1,乙击中8环,9环,10环的概率分别为0.4,0.4,0.2.设甲、乙的射击相互独立.(Ⅰ)求在一轮比赛中甲击中的环数多于乙击中环数的概率;(Ⅱ)求在独立的三轮比赛中,至少有两轮甲击中的环数多于乙击中环数的概率. 20.(本小题满分12分) 如图,正四棱柱1111ABCD A B C D -中,124AA AB ==,点E 在1CC 上且EC E C 31=. (Ⅰ)证明:1A C ⊥平面BED ; (Ⅱ)求二面角1A DE B --的大小. 21.(本小题满分12分)设a ∈R ,函数233)(x ax x f -=.(Ⅰ)若2=x 是函数)(x f y =的极值点,求a 的值;(Ⅱ)若函数()()()[02]g x f x f x x '=+∈,,,在0=x 处取得最大值,求a 的取值范围. 22.(本小题满分12分)设椭圆中心在坐标原点,(20)(01)A B ,,,是它的两个顶点,直线)0(>=k kx y 与AB 相交于点D ,与椭圆相交于E 、F 两点. (Ⅰ)若6ED DF =,求k 的值; (Ⅱ)求四边形AEBF 面积的最大值.AB CD EA 1B 1C 1D 12008年普通高等学校招生全国统一考试 文科数学试题(必修+选修Ⅰ)参考答案和评分参考评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要 考查内容比照评分参考制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和 难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数.选择题不给中间分.一、选择题1.C 2.B 3.D 4.C 5.C 6.D 7.A 8.B 9.A 10.B 11.B 12.C 二、填空题13.2 14.420 15.216.两组相对侧面分别平行;一组相对侧面平行且全等;对角线交于一点;底面是平行四边形.注:上面给出了四个充要条件.如果考生写出其他正确答案,同样给分.1.若sin 0α<且tan 0α>是,则α是( ) A .第一象限角 B . 第二象限角 C . 第三象限角 D . 第四象限角 【答案】C【解析】sin 0α<,α在三、四象限;tan 0α>,α在一、三象限,∴选C 2.设集合{|32}M m m =∈-<<Z ,{|13}N n n M N =∈-=Z 则,≤≤( )A .{}01,B .{}101-,,C .{}012,,D .{}1012-,,,【答案】B【解析】{}1,0,1,2--=M ,{}3,2,1,0,1-=N ,∴{}1,0,1-=N M 【高考考点】集合的运算,整数集的符号识别 3.原点到直线052=-+y x 的距离为( ) A .1B .3C .2D .5【答案】D【解析】52152=+-=d【高考考点】点到直线的距离公式4.函数1()f x x x=-的图像关于( ) A .y 轴对称 B . 直线x y -=对称 C . 坐标原点对称 D . 直线x y =对称【答案】C 【解析】1()f x x x=-是奇函数,所以图象关于原点对称 【高考考点】函数奇偶性的性质5.若13(1)ln 2ln ln x e a x b x c x -∈===,,,,,则( ) A .a <b <cB .c <a <bC . b <a <cD . b <c <a【答案】C【解析】由0ln 111<<-⇒<<-x x e ,令x t ln =且取21-=t 知b <a <c 6.设变量x y ,满足约束条件:222y x x y x ⎧⎪+⎨⎪-⎩,,.≥≤≥,则y x z 3-=的最小值为( )A .2-B .4-C .6-D .8-【答案】D【解析】如图作出可行域,知可行域的顶点是A (-2,2)、B(32,32)及C(-2,-2) 于是8)(min -=A z7.设曲线2ax y =在点(1,a )处的切线与直线062=--y x 平行,则=a ( )A .1B .12C .12-D .1-【答案】A【解析】ax y 2'=,于是切线的斜率a y k x 2'1===,∴有122=⇒=a a8.正四棱锥的侧棱长为32,侧棱与底面所成的角为︒60,则该棱锥的体积为( ) A .3 B .6C .9D .18【答案】B【解析】高360sin 32=︒=h ,又因底面正方形的对角线等于32,∴底面积为 6332212=⨯⨯⨯=S ,∴体积63631=⨯⨯=V【备考提示】在底面积的计算时,要注意多思则少算 9.44)1()1(x x +-的展开式中x 的系数是( )A .4-B .3-C .3D .4【答案】A【解析】41666141404242404-=-+=-+C C C C C C 【易错提醒】容易漏掉1414C C 项或该项的负号 10.函数x x x f cos sin )(-=的最大值为( ) A .1 B .2 C .3D .2【答案】B【解析】)4sin(2cos sin )(π-=-=x x x x f ,所以最大值是2【高考考点】三角函数中化为一个角的三角函数问题【备考提示】三角函数中化为一个角的三角函数问题是三角函数在高考中的热点问题 11.设ABC △是等腰三角形,120ABC ∠=,则以A B ,为焦点且过点C 的双曲线的离心率为( ) A .221+ B .231+ C . 21+ D .31+【答案】B【解析】由题意BC c =2,所以c c AC 3260sin 220=⨯⨯=,由双曲线的定义,有c a c c BC AC a )13(2322-=⇒-=-=,∴231131+=-==a c e 【高考考点】双曲线的有关性质,双曲线第一定义的应用12.已知球的半径为2,相互垂直的两个平面分别截球面得两个圆.若两圆的公共弦长为2,则两圆的圆心距等于( ) A .1 B .2C .3D .2【答案】C【解析】设两圆的圆心分别为1O 、2O ,球心为O ,公共弦为AB ,其中点为E ,则21EO OO 为矩形,于是对角线OE O O =21,而3122222=-=-=AE OA OE ,∴321=O O 【高考考点】球的有关概念,两平面垂直的性质13.设向量(12)(23)==,,,a b ,若向量λ+a b 与向量(47)=--,c 共线,则=λ . 【答案】 2【解析】λ+a b =)32,2(++λλ则向量λ+a b 与向量(47)=--,c 共线274322=⇒--=++⇔λλλ14.从10名男同学,6名女同学中选3名参加体能测试,则选到的3名同学中既有男同学又有女同学的不同选法共有 种(用数字作答) 【答案】 420【解析】4202701501621026110=+=+C C C C15.已知F 是抛物线24C y x =:的焦点,A B ,是C 上的两个点,线段AB 的中点为(22)M ,,则ABF △的面积等于 .【答案】 2 【解析】设过M的直线方程为)2(2-=-x k y ,由0)1(444)2(22222=-+-⇒⎩⎨⎧=-=-k kx x k xy x k y ∴k x x 421=+,2221)1(4k k x x -=,由题意144=⇒=k k,于是直线方程为x y = 421=+x x ,021=x x ,∴24=AB ,焦点F (1,0)到直线x y =的距离21=d∴ABF △的面积是216.平面内的一个四边形为平行四边形的充要条件有多个,如两组对边分别平行,类似地,写出空间中的一个四棱柱为平行六面体的两个充要条件:充要条件① ; 充要条件② . (写出你认为正确的两个充要条件)【答案】两组相对侧面分别平行;一组相对侧面平行且全等;对角线交于一点;底面是平行四边形.注:上面给出了四个充要条件.如果考生写出其他正确答案,同样给分.三、解答题17.解:(Ⅰ)由5cos 13A =-,得12sin 13A =, 由3cos 5B =,得4sin 5B =. ··········································································· 2分所以16sin sin()sin cos cos sin 65C A B A B A B =+=+=. ····································· 5分(Ⅱ)由正弦定理得45sin 13512sin 313BC B AC A ⨯⨯===. ··········································· 8分 所以ABC △的面积1sin 2S BC AC C =⨯⨯⨯1131652365=⨯⨯⨯83=. ····················· 10分 18.解:设数列{}n a 的公差为d ,则3410a a d d =-=-, 642102a a d d =+=+,1046106a a d d =+=+. ················································································ 3分由3610a a a ,,成等比数列得23106a a a =,即2(10)(106)(102)d d d -+=+, 整理得210100d d -=,解得0d =或1d =.······················································································· 7分 当0d =时,20420200S a ==. ······································································ 9分 当1d =时,14310317a a d =-=-⨯=, 于是2012019202S a d ⨯=+207190330=⨯+=. ············································· 12分 19.解:记12A A ,分别表示甲击中9环,10环,12B B ,分别表示乙击中8环,9环,A 表示在一轮比赛中甲击中的环数多于乙击中的环数,B 表示在三轮比赛中至少有两轮甲击中的环数多于乙击中的环数,12C C ,分别表示三轮中恰有两轮,三轮甲击中环数多于乙击中的环数.(Ⅰ)112122A A B A B A B =++, ··································································· 2分112122()()P A P A B A B A B =++ 112122()()()P A B P A B P A B =++112122()()()()()()P A P B P A P B P A P B =++0.30.40.10.40.10.40.2=⨯+⨯+⨯=. ····························································· 6分 (Ⅱ)12B C C =+, ······················································································ 8分22213()[()][1()]30.2(10.2)0.096P C C P A P A =-=⨯⨯-=, 332()[()]0.20.008P C P A ===,1212()()()()0.0960.0080.104P B P C C P C P C =+=+=+=. ··························· 12分20.解法一:依题设,2AB =,1CE =.(Ⅰ)连结AC 交BD 于点F ,则BD AC ⊥.由三垂线定理知,1BD A C ⊥. ········································································· 3分 在平面1A CA 内,连结EF 交1A C 于点G ,由于1AA AC FC CE==,故1Rt Rt A AC FCE △∽△,1AA C CFE ∠=∠,CFE ∠与1FCA ∠互余.于是1A C EF ⊥.1A C 与平面BED 内两条相交直线BD EF ,都垂直,所以1A C ⊥平面BED . ·················································································· 6分 (Ⅱ)作GH DE ⊥,垂足为H ,连结1A H .由三垂线定理知1A H DE ⊥,故1A HG ∠是二面角1A DE B --的平面角.························································ 8分EF =CE CF CG EF ⨯==3EG ==. AB CDE A 1B 1C 1D 1 FH G13EG EF =,13EF FD GH DE ⨯=⨯=又1AC ==113A G A C CG =-=.11tan AG A HG HG∠== 所以二面角1A DE B --的大小为arctan ················································· 12分 解法二:以D 为坐标原点,射线DA 为x 轴的正半轴, 建立如图所示直角坐标系D xyz -.依题设,1(220)(020)(021)(204)B C E A ,,,,,,,,,,,.(021)(220)DE DB ==,,,,,,11(224)(204)AC DA =--=,,,,,. ······························ 3分 (Ⅰ)因为10AC DB =,10AC DE =, 故1A C BD ⊥,1A C DE ⊥. 又DBDE D =,所以1A C ⊥平面DBE . ·················································································· 6分 (Ⅱ)设向量()x y z =,,n 是平面1DA E 的法向量,则DE ⊥n ,1DA ⊥n .故20y z +=,240x z +=.令1y =,则2z =-,4x =,(412)=-,,n . ····················································· 9分 1AC <>,n 等于二面角1A DE B --的平面角, 11114cos 42A C A C A C<>==,n n n . 所以二面角1A DE B --的大小为arccos42. ················································· 12分21.解:(Ⅰ)2()363(2)f x ax x x ax '=-=-.因为2x =是函数()y f x =的极值点,所以(2)0f '=,即6(22)0a -=,因此1a =. 经验证,当1a =时,2x =是函数()y f x =的极值点. ········································· 4分 (Ⅱ)由题设,3222()336(3)3(2)g x ax x ax x ax x x x =-+-=+-+. 当()g x 在区间[02],上的最大值为(0)g 时,(0)(2)g g ≥,即02024a -≥.故得65a ≤. ································································································ 9分 反之,当65a ≤时,对任意[02]x ∈,,26()(3)3(2)5g x x x x x +-+≤23(210)5xx x =+- 3(25)(2)5xx x =+- 0≤,而(0)0g =,故()g x 在区间[02],上的最大值为(0)g .综上,a 的取值范围为65⎛⎤-∞ ⎥⎝⎦,. ··································································· 12分22.(Ⅰ)解:依题设得椭圆的方程为2214x y +=, 直线AB EF ,的方程分别为22x y +=,(0)y kx k =>. ····································· 2分 如图,设001122()()()D x kx E x kx F x kx ,,,,,,其中12x x <,且12x x ,满足方程22(14)4k x +=, 故21x x =-=由6ED DF =知01206()x x x x -=-,得021215(6)77x x x x =+==;由D 在AB 上知0022x kx +=,得0212x k=+.所以212k =+,化简得2242560k k -+=,解得23k =或38k =. ······················································································ 6分 (Ⅱ)解法一:根据点到直线的距离公式和①式知,点E F ,到AB的距离分别为1h ==2h ==······················································· 9分又AB ==,所以四边形AEBF 的面积为121()2S AB h h =+ 1525(14k =+== ≤当21k =,即当12k =时,上式取等号.所以S 的最大值为. ························ 12分 解法二:由题设,1BO =,2AO =.设11y kx =,22y kx =,由①得20x >,210y y =->, 故四边形AEBF 的面积为BEF AEF S S S =+△△222x y =+ ···································································································· 9分===当222x y =时,上式取等号.所以S 的最大值为 ······································· 12分。
2008年高考文科数学试题及参考答案(上海卷)
正常小儿的基础体温为36.9℃~37.5℃。
一般当体温超过基础体温1℃以上时,可认为发热。
其中,低热是指体温波动于38℃左右,高热时体温在39℃以上。
连续发热两个星期以上称为长期发热。
上述基础体温是指的直肠温度,即从肛门所测得,一般口腔温度较其低0.3℃~0.5℃,腋下温度又较口腔温度低0.3℃~0.5℃。
我的孩子有一回发烧,也是的,退烧药才吃下去,不一会就退下去了,过了几个小时又烧起来,如此反复。
送去医院看了,验了个血,为病毒性感染引起的发烧,病毒性感染的一个特征就是反复发烧。
医生并没有开退热针,也没吊瓶,只是开了3针抗病毒针,打了3天果然就没再高起来过。
若高烧38.5度以上,请立即让医生确诊是病毒感染的,还是细菌感染的,病毒感染就用抗病毒药(如:利巴韦林),细菌感染的就用抗菌素(如头孢类),不要急于退烧,烧只是表象,要把病因找出来。
另外我想说的是不要迷信输液。
医生说了,可以吃药的不要打针,可以打针的不要输液,关键是要用对药,而不是用重药。
注意环境温度是否过高。
在炎热的夏季,气温很高,婴儿自身调节体温的能力又差,妈妈抱着婴儿时热气不易散发,使体温升高。
但是这种发热一般时间不会太久,再给孩子放在凉爽的地方,稍微扇一扇,给孩子饮一些清凉的水果汁,或给孩子洗个温水澡,几小时后体温就会降到正常。
在冬季,如果室内温度过高,婴儿又包裹得过多,也会使婴儿体温升高。
·注意是否有细菌或病毒感染的情况存在。
主要的症状及原因有以下:发烧的同时流鼻涕——感冒(感冒症候群)咽喉痛——咽喉炎、扁桃腺炎持续发烧39℃左右,白眼珠充血且出眼屎——游泳池热在高温场所发高烧的同时,筋疲力尽——中暑症(日射病)腮腺肿胀——流行性腮腺炎耳朵流水、情绪不稳——中耳炎咳嗽得喘不过气来、呼吸困难——肺炎牙床发红、唾液多——口腔炎呕吐、抽筋、前囟门凸起——脑膜炎呕吐、抽筋、意识不清——肺炎、急性脑病尿的次数多、血尿——尿道感染发烧的同时,抽风——热性抽筋发烧伴下列情况者应送医院治疗:(一)注意孩子的精神状态。
2008高考数学试卷含答案(全word版)
2008年普通高等学校招生全国统一考试数学(文科)卷一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合{|0}A x x =>,{|12}B x x =-≤≤,则A B =(A ){|1}x x ≥- (B ){|2}x x ≤ (C ){|02}x x <≤ (D ){|12}x x -≤≤ (2)函数2(sin cos )1y x x =++的最小正周期是 (A )2π(B )π (C )32π (D )2π(3)已知a ,b 都是实数,那么“22b a >”是“a >b ”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 (4)已知{}n a 是等比数列,41252==a a ,,则公比q =(A )21-(B )2- (C )2 (D )21(5)0,0a b ≥≥,且2a b +=,则(A )12ab ≤(B )12ab ≥(C )222a b +≥ (D )223a b +≤(6)在)5)(4)(3)(2)(1(-----x x x x x 的展开式中,含4x 的项的系数是(A )-15 (B )85 (C )-120 (D )274(7)在同一平面直角坐标系中,函数])20[)(232cos(ππ,∈+=x x y 的图象和直线21=y 的交点个数是(A )0 (B )1 (C )2 (D )4 (8)若双曲线12222=-by ax 的两个焦点到一条准线的距离之比为3:2,则双曲线的离心率是(A )3 (B )5 (C )3 (D )5 (9)对两条不相交的空间直线a 和b ,必定存在平面α,使得(A ),a b αα⊂⊂ (B ),//a b αα⊂ (C ),a b αα⊥⊥ (D ),a b αα⊂⊥ABCD(10)若0,0≥≥b a ,且当⎪⎩⎪⎨⎧≤+≥≥1,0,0y x y x 时,恒有1≤+by ax ,则以a ,b 为坐标点(,)P a b 所形成的平面区域的面积等于 (A )12(B )4π(C )1 (D )2π二.填空题:本大题共7小题,每小题4分,共28分。
2008年高考试题——数学文(全国卷1)(有答案解析)
2008年普通高等学校招生全国统一考试文科数学(必修+选修Ⅰ)本试卷分第错误!未找到引用源。
卷(选择题)和第错误!未找到引用源。
卷(非选择题)两部分.第错误!未找到引用源。
卷1至2页,第错误!未找到引用源。
卷3至9页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷考生注意: 1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号、填写清楚 ,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目. 2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效.......... 3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式: 如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率其中R 表示球的半径()(1)(01,2)k k n kn n P k C P P k n -=-= ,,,一、选择题1.函数y ) A .{|1}x x ≤B .{|0}x x ≥C .{|10}x x x ≥或≤D .{|01}x x ≤≤1D 解析:依题意,10,0x x -≥⎧⎨≥⎩解得, 0≤x ≤1,所以函数y ={|01}x x ≤≤,选择D;点评:本题考查了不等式的解法,函数定义域的求法以及交集、并集等集合运算,是基础题目。
2.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( )2A 解析:(法一)由于汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,所以,从路程与时间的图像看,其图像的切线斜率由逐渐增大、定值、逐渐减小,易知,A 正确; (法二)根据汽车加速行驶212s at =、匀速行驶s=vt 、减速行驶212s at =-并结合图像易知选择A ;点评:本题考查了学生的识图能力与导数的概念及几何意义。
2008年高考真题(上海.文)含详解
all`试题12 0 0 8 年 全 国 普 通 高 等 学 校 招 生 统 一 考 试上海 数学试卷(文史类)考生注意:1. 答卷前,考生务必将姓名、高考准考证号、校验码等填写清楚.2. 本试卷共有21道试题,满分150分.考试时间120分钟. 请考生用钢笔或圆珠笔将答案直接写在试卷上.一. 填空题(本大题满分44分)本大题共有11题,只要求直接 填写结果,每个空格填对得4分,否则一律得零分.1.不等式11<-x 的解集是 .2.若集合{}2≤=x x A 、{}a x x B ≥=满足{}2=B A ,则实数a = . 3.若复数z 满足)2(i z z -=(i 是虚数单位),则z = . 4.若函数)(x f 的反函数为x x f21log )(=-,则=)(x f .5.若向量a 、b 满足1=a ,2=b ,且a 与b 的夹角为3π,则b a += .6.若直线01=+-y ax 经过抛物线x y 42=的焦点,则实数=a . 7.若z 是实系数方程022=++p x x 的一个虚根,且2=z ,则=p .8.在平面直角坐标系中,从五个点:)0,0(A 、)0,2(B 、)1,1(C 、)2,0(D 、)2,2(E 中任取三个,这三点能构成三角形的概率是__________(结果用分数表示).9.若函数)2)(()(a bx a x x f ++= )R (∈b a 、常数是偶函数,且它的值域为(]4,∞-, 则该函数的解析式=)(x f .all`试题2得 分 评 卷 人10.已知总体的各个体的值由小到大依次为2,3,3,7,a ,b ,12,13.7,18.3,20, 且总体的中位数为5.10. 若要使该总体的方差最小,则b a 、的取值分别是 .11.在平面直角坐标系中,点C B A 、、的坐标分别为),(10、),(24、),(62. 如果 ),(y x P 是△ABC 围成的区域(含边界)上的点,那么当xy w =取到最大值时,点P 的坐标是 .二. 选择题(本大题满分16分)本大题共有4 题,每题都给出代号为A 、B 、C 、D 的四个结论,其中有且只有一个结论 是正确的,必须把正确结论的代号写在题后的圆括号内, 选对得4分,不选、选错或者选出的代号超过一个(不论 是否都写在圆括号内),一律得零分.12. 设P 是椭圆1162522=+y x 上的点. 若1F 、2F 是椭圆的两个焦点,则21PF PF +等于[答] ( )(A) 4. (B) 5. (C) 8. (D) 10.13. 给定空间中的直线l 及平面α. 条件“直线l 与平面α内两条相交直线都垂直”是“直 线l 与平面α垂直”的 [答] ( ) (A) 充分非必要条件. (B) 必要非充分条件. (C) 充要条件. (D) 既非充分又非必要条件. 14. 若数列{}n a 是首项为1,公比为23-a 的无穷等比数列,且{}n a 各项的和为a ,则a 的值是 [答] ( ) (A) 1. (B) 2. (C)21. (D) 45. 15. 如图,在平面直角坐标系中,Ω是一个与x 轴的正半轴、y 轴的正半轴分别相切于点C 、D 的定圆所围成的区域(含边界),D C B A 、、、是该圆的四等分点. 若点),(y x P 、点()y x P ''',满足x x '≤且y y '≥, 则称P 优于P '. 如果Ω中的点Q 满足:不存在Ω中的其它点优于Q ,那么所有这样的点Q 组成的集合是劣弧 [答] ( )(A) . (B) . (C) . (D) .all`试题3得 分 评 卷 人三. 解答题(本大题满分90分)本大题共有6题,解答下列各题必须写出必要的步骤.16.(本题满分12分)如图,在棱长为 2 的正方体1111D C B A ABCD 中,1BC E 是的中点. 求直线DE 与平面ABCD 所成角的大小(结果用反三角函数值表示). [解]得分评卷人17.(本题满分13分)如图,某住宅小区的平面图呈扇形AOC. 小区的两个出入口设置在点A及点C处. 小区里有两条笔直的小路AD、DC,且拐弯处的转角为120°. 已知某人从C沿CD走到D用了10分钟,从D沿DA走到A用了6分钟. 若此人步行的速度为每分钟50米,求该扇形的半径OA的长(精确到1米).[解]all`试题 4all`试题518.(本题满分15分)本题共有2个小题,第1小题满分5分,第2小题满分10分.已知函数⎪⎭⎫ ⎝⎛+==6π2cos )(,2sin )(x x g x x f ,直线t x =)R (∈t 与函数)(x f 、)(x g 的图像分别交于N M 、两点. (1)当4π=t 时,求||MN 的值; (2)求||MN 在⎥⎦⎤⎢⎣⎡∈2π,0t 时的最大值.[解](1)(2)all`试题619.(本题满分16分)本题共有2个小题,第1小题满分8分,第2小题满分8分.已知函数||212)(x x x f -=.(1)若2)(=x f ,求x 的值;(2)若0)()2(2≥+t mf t f t 对于]2,1[∈t 恒成立,求实数m 的取值范围. [解] (1)(2)all`试题720.(本题满分16分)本题共有3个小题,第1小题满分3分, 第2小题满分6分,第3小题满分7分.已知双曲线12:22=-y x C .(1)求双曲线C 的渐近线方程;(2)已知点M 的坐标为)1,0(. 设P 是双曲线C 上的点,Q 是点P 关于原点的对称点. 记MQ MP ⋅=λ. 求λ的取值范围;(3)已知点M E D 、、的坐标分别为)1,0()1,2()1,2(、、---,P 为双曲线C 上在第一象限内的点. 记l 为经过原点与点P 的直线,s 为△DEM 截直线l 所得线段的长. 试将s 表示为直线l 的斜率k 的函数. [解](1)(2)(3)all`试题8all`试题921.(本题满分18分)本题共有3个小题,第1小题满分4分,第2 小题满分6分,第3小题满分8分.已知数列{}n a :11=a ,22=a ,r a =3,23+=+n n a a (n 是正整数),与数列{}n b :11=b ,02=b ,13-=b ,04=b ,n n b b =+4(n 是正整数). 记n n n a b a b a b a b T ++++= 332211.(1)若6412321=++++a a a a ,求r 的值; (2)求证:当n 是正整数时,n T n 412-=;(3)已知0>r ,且存在正整数m ,使得在 ,,212112++m m T T ,1212+m T 中有4项为100. 求r 的值,并指出哪4项为100. [解] (1)[证明](2)[解](3)all`试题102 0 0 8 年 全 国 普 通 高 等 学 校 招 生 统 一 考 试上海数学试卷(文史类)答案要点及评分标准说明1.本解答列出试题的一种或几种解法,如果考生的解法与所列解法不同,可参照解答中评分标准的精神进行评分.2.评阅试卷,应坚持每题评阅到底,不要因为考生的解答中出现错误而中断对该题的评阅,当考生的解答在某一步出现错误,影响了后继部分,但该步以后的解答未改变这一题的内容和难度时,可视影响程度决定后面部分的给分,这时原则上不应超过后面部分应给分数之半,如果有较严重的概念性错误,就不给分. 解答一、(第1题至第11题)1.)2,0(.2. 2.3. +1i .4. )R (2∈x x .5.7. 6. 1-. 7. 4. 8.54. 9. 422+-x . 10.5.10,5.10==b a . 11. ⎪⎭⎫⎝⎛5,25.二、(第12题至第15题)题 号12 13 14 15代 号DCBD 16.[解] 过E 作BC EF ⊥,交BC 于F ,连接DF . ABCD EF 平面⊥,EDF ∠∴是直线DE 与平面ABCD 所成的角. …… 4分 由题意,得1211==CC EF . 121==CB CF , 5=∴DF . …… 8分 DF EF ⊥ , 55tan ==∠∴DF EF EDF . …… 10分all`试题11故直线DE 与平面ABCD 所成角的大小是55arctan . …… 12分 17. [解法一] 设该扇形的半径为r 米. 由题意,得CD =500(米),DA =300(米),︒=∠60CDO . …… 4分在△CDO 中,22260cos 2OC OD CD OD CD =︒⋅⋅⋅-+, …… 6分 即22221)300(5002)300(500r r r =⨯-⨯⨯--+, …… 9分 解得445114900≈=r (米). 答:该扇形的半径OA 的长约为445米. …… 13分 [解法二] 连接AC ,作AC OH ⊥,交AC 于H . …… 2分 由题意,得CD =500(米),AD =300(米),︒=∠120CDA . …… 4分 在△ACD 中,︒⋅⋅⋅-+=120cos 2222AD CD AD CD AC 21300500230050022⨯⨯⨯++=2700=, ∴700=AC (米), …… 6分14112cos 222=⋅⋅-+=∠AD AC CD AD AC CAD . …… 9分 在直角△HAO 中,350=AH (米),1411cos =∠HAO , ∴ 445114900cos ≈=∠=HAO AH OA (米).答:该扇形的半径OA 的长约为445米. …… 13分18. [解] (1)⎪⎭⎫ ⎝⎛+⨯-⎪⎭⎫ ⎝⎛⨯=6π4π2cos 4π2sin ||MN …… 2分233π2cos1=-=. …… 5分 (2)||MN ⎪⎭⎫ ⎝⎛+-=6π2cos 2sin t tt t 2cos 232sin 23-=…… 8分 ⎪⎭⎫ ⎝⎛-=6π2sin 3t . …… 11分all`试题12⎥⎦⎤⎢⎣⎡∈2π,0t ,⎥⎦⎤⎢⎣⎡--∈-6ππ,6π6π2t , …… 13分 ∴ ||MN 的最大值为3. …… 15分 19. [解] (1)当0<x 时,0)(=x f ;当0≥x 时,xx x f 212)(-=. …… 2分 由条件可知 2212=-x x ,即 012222=-⋅-x x , 解得 212±=x . …… 6分 02>x ,()21log 2+=∴x . …… 8分(2)当]2,1[∈t 时,021*******≥⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-t t t t t m , …… 10分即 ()()121242--≥-t t m .0122>-t , ∴ ()122+-≥t m . …… 13分 ()]5,17[21],2,1[2--∈+-∴∈t t ,故m 的取值范围是),5[∞+-. …… 16分 20. [解](1)所求渐近线方程为022,022=+=-x y x y . …… 3分 (2)设P 的坐标为()00,y x ,则Q 的坐标为()00,y x --. …… 4分 ()()1,1,0000---⋅-=⋅=y x y x λ12020+--=y x 22320+-=x . …… 7分20≥x,∴ λ的取值范围是(]1,-∞-. …… 9分 (3)若P 为双曲线C 上第一象限内的点,则直线l 的斜率⎪⎪⎭⎫ ⎝⎛∈22,0k . …… 11分 由计算可得,当⎥⎦⎤⎝⎛∈21,0k 时,22112)(k k k s +-=; 当⎪⎪⎭⎫⎝⎛∈22,21k 时,22112)(k k k k k s +++=. …… 15分 s ∴表示为直线l 的斜率k 的函数是all`试题13⎪⎪⎩⎪⎪⎨⎧<<+++≤<+-=.2221,112,210,112)(2222k k k k k k k k k s …… 16分21. [解](1) 12321a a a a ++++)6(87)4(65)2(4321++++++++++++++=r r r rr 448+=. …… 2分 64448=+r ,∴4=r . …… 4分 [证明](2)用数学归纳法证明:当+∈Z n 时,n T n 412-=.① 当1=n 时,12T 1197531a a a a a a -+-+-=4-=,等式成立. …… 6分 ② 假设k n =时等式成立,即k T k 412-=, 那么当1+=k n 时,)1(12+k T k T 12=1112912712512312112++++++-+-+-+k k k k k k a a a a a a …… 8分)88()48()58()48()8()18(4+-++++-+++-++-=k r k k k r k k k 44--=k )1(4+-=k ,等式也成立.根据①和②可以断定:当+∈Z n 时,n T n 412-=. …… 10分 [解](3)m T m 412-=(1≥m ).当212,112++=m m n 时,n T 14+=m ; 当412,312++=m m n 时,n T r m -+-=14; 当612,512++=m m n 时,n T r m -+=54; 当812,712++=m m n 时,r m T n --=4; 当1012,912++=m m n 时,44+=m T n ;当1212,1112++=m m n 时,44--=m T n . …… 13分 14+m 是奇数,r m -+-14,r m --4,44--m 均为负数,∴ 这些项均不可能取到100. …… 15分 ∴ 1004454=+=-+m r m ,解得24=m ,1=r ,此时298297294293,,,T T T T 为100. …… 18分all`试题141.不等式11x -<的解集是 . 【答案】(0,2)【解析】由11102x x -<-<⇒<<. 2.若集合{}|2A x x =≤,{}|B x x a =≥满足{2}A B =,则实数a = .【答案】2 【解析】由{2}, 22AB A B a =⇒⇒=只有一个公共元素.3.若复数z 满足(2)z i z =- (i 是虚数单位),则z = . 【答案】1i +【解析】由22(1)(2)11(1)(1)i i i z i z z i i i i -=-⇒===+++-. 4.若函数()f x 的反函数为12()log f x x -=,则()f x = .【答案】()2x x R ∈ 【解析】令2log (0),y x x =>则y R ∈且2,y x =()()2.x f x x R ∴=∈5.若向量a ,b 满足12a b ==,且a 与b 的夹角为3π,则a b += . 7【解析】2||()()2a b a b a b a a b b a b +=++=++22||||2||||cos73a b a b π=++=||7.a b ⇒+=6.若直线10ax y -+=经过抛物线24y x =的焦点,则实数a = . 【答案】-1【解析】直线10ax y -+=经过抛物线24y x =的焦点(1,0),F 则10 1.a a +=∴=- 7.若z 是实系数方程220x x p ++=的一个虚根,且2z =,则p = . 【答案】4【解析】设z a bi =+,则方程的另一个根为z a bi '=-,且22z ==,由韦达定理直线22,1,zz a a '+==-∴=-23,b b ∴==所以(1)(1) 4.p z z '=⋅=-+--=8.在平面直角坐标系中,从五个点:(00)(20)(11)(02)(22)A B C D E ,,,,,,,,,中all`试题15任取三个,这三点能构成三角形的概率是 (结果用分数表示). 【答案】45【解析】由已知得 A C E B C D 、、三点共线,、、三点共线, 所以五点中任选三点能构成三角形的概率为333524.5C C -= 9.若函数()()(2)f x x a bx a =++(常数a b ∈R ,)是偶函数,且它的值域为(]4-∞,,则该函数的解析式()f x = . 【答案】224x -+【解析】22()()(2)(2)2f x x a bx a bx a ab x a =++=+++是偶函数,则其图象关于y 轴对称, 202,a ab b ∴+=⇒=-22()22,f x x a ∴=-+且值域为(]4-∞,,224,a ∴=2()2 4.f x x ∴=-+10.已知总体的各个体的值由小到大依次为2,3,3,7,a ,b ,12,13.7,18.3,20, 且总体的中位数为10.5.若要使该总体的方差最小,则a 、b 的取值分别 . 【答案】10.5,10.5a b ==【解析】中位数为10.521,a b ⇒+=根据均值不等式知,只需10.5a b ==时,总体方差最小.11.在平面直角坐标系中,点A B C ,,的坐标分别为(01)(42)(26),,,,,.如果()P x y , 是ABC △围成的区域(含边界)上的点,那么当xy ω=取到最大值时,点P 的坐标是 . 【答案】5,52⎛⎫ ⎪⎝⎭【解析】作图知xy ω=取到最大值时,点P 在线段BC 上,:210,[2,4],BC y x x =-+∈(210),xy x x ω∴==-+故当5,52x y ==时, ω取到最大值.二、选择题(本大题满分16分)本大题共有4题,每题都给出代号为A 、B 、C 、D 的四个结论,其中有且只有一个结论是正确的,必须把正确结论的代号写在题后的圆括号内,选对得4分,不选、选错或者选出的代号超过一个(不论是否都写在圆括号内),一律得零分.12.设p 是椭圆2212516x y +=上的点.若12F F ,是椭圆的两个焦点,all`试题16则12PF PF +等于( ) A .4B .5C .8D .10【答案】D【解析】 由椭圆的第一定义知12210.PF PF a +==13.给定空间中的直线l 及平面α.条件“直线l 与平面α内两条相交直线都垂直”是“直线l 与平面α垂直”的( )A.充分非必要条件 B.必要非充分条件C .充要条件 D.既非充分又非必要条件 【答案】C【解析】“直线l 与平面α内两条相交直线都垂直”⇔“直线l 与平面α垂直”. 14.若数列{}n a 是首项为1,公比为32a =的无穷等比数列,且{}n a 各项的和为a , 则a 的值是( )A.1 B.2 C.12 D.54【答案】B【解析】由11123121 22153||1||1222a a a a S a q a a q a ⎧=⎧⎪⎧==⎪=-+⎪⎪⎪-⇒⇒⇒=⎨⎨⎨⎪⎪⎪<<<⎩-<⎪⎪⎩⎩或. 15.如图,在平面直角坐标系中,Ω是一个与x 轴的正半轴、y 轴的正半轴分别相切于点C 、D 的定圆所围成的区域(含边界),A 、B 、C 、D 是该圆的四等分点.若点()P x y ,、点()P x y ''',满足x x '≤且y y '≥,则称P 优于P '.如果Ω中的点Q 满足:不存在Ω中的其它点优于Q ,那么所有这样的点Q 组成的集合是劣弧( D ) A.ABB .BC C .CD D .DA【答案】D【解析】由题意知,若P 优于P ',则P 在P '的左上方, ∴当Q 在DA 上时, 左上的点不在圆上, ∴不存在其它优于Q 的点, ∴Q 组成的集合是劣弧DA .all`试题三、解答题(本大题满分90分)本大题共有6题,解答下列各题必须写出必要的步骤. 16.(本题满分12分)如图,在棱长为2的正方体1111ABCD A B C D -中,E 是BC 1的中点.求直线DE 与平面ABCD 所成角的大小(结果用反三角函数值表示). 16. 【解】过E 作EF ⊥BC ,交BC 于F ,连接DF.∵ EF ⊥平面ABCD ,∴ ∠ED F 是直线DE 与平面ABCD 所成的角. ……………4分由题意,得EF =111.2CC = ∵ 11,2CF CB DF ==∴=..8分 ∵ EF ⊥DF , ∴ tan 5EF EDF DF ∠==……………..10分 故直线DE 与平面ABCD 所成角的大小是arctan 5….12分17.(本题满分13分) 如图,某住宅小区的平面图呈扇形AOC .小区的两个出入口设置在点A 及点C 处,小区里 有两条笔直的小路AD DC ,,且拐弯处的转角为120.已知某人从C 沿CD 走到D 用了10分钟,从D 沿DA 走到A 用了6分钟.若此人步行的速度为每分钟50米,求该扇形的半径OA 的长(精确到1米).17. 【解法一】设该扇形的半径为r 米. 由题意,得CD =500(米),DA =300(米),∠CDO=060在CDO ∆中,2222cos 60,CD OD CD OD OC +-⋅⋅⋅=即()()22215003002500300,2r r r +--⨯⨯-⨯=解得490044511r =≈(米). …………………………………………….13分【解法二】连接AC ,作OH ⊥AC ,交A C 于H …………………..2分由题意,得CD =500(米),AD =300(米),0120CDA ∠=all`试题182220222,2cos12015003002500300700,2ACD AC CD AD CD AD ∆=+-⋅⋅⋅=++⨯⨯⨯=在中 ∴ AC =700(米)…………………………..6分22211cos .214AC AD CD CAD AC AD +-∠==⋅⋅………….…….9分在直角11,350,cos 0,14HAO AH HA ∆=∠=中(米)∴ 4900445cos 11AH OA HAO ==≈∠(米). ………………………13分18.(本题满分15分)本题共有2个小题,第1个题满分5分,第2小题满分10分.已知函数f (x )=sin2x ,g (x )=cos π26x ⎛⎫+⎪⎝⎭,直线()x t t =∈R 与函数()()f x g x ,的图象分别交于M 、N 两点.(1)当π4t =时,求|MN |的值; (2)求|MN |在π02t ⎡⎤∈⎢⎥⎣⎦,时的最大值.18、【解】(1)sin 2cos 2446MN πππ⎛⎫⎛⎫=⨯-⨯+ ⎪ ⎪⎝⎭⎝⎭…………….2分231cos .32π=-=………………………………5分 (2)sin 2cos 26MN t t π⎛⎫=-+ ⎪⎝⎭3sin 2cos 222t t =-……...8分26t π⎛⎫=- ⎪⎝⎭…………………………….11分∵ 0,,2,,2666t t πππππ⎡⎤⎡⎤∈-∈--⎢⎥⎢⎥⎣⎦⎣⎦…………13分∴ |MN……………15分19.(本题满分16分)本题共有2个小题,第1小题满分8分,第2小题满分8分. 已知函数||1()22xx f x =-.all`试题19(1)若()2f x =,求x 的值;(2)若2(2)()0tf t mf t +≥对于[12]t ∈,恒成立,求实数m 的取值范围.19、【解】(1)()()100;0,22x xx f x x f x <=≥=-当时,当时. …………….2分 由条件可知,2122,22210,2x x x x -=-⋅-=即解得21x =…………6分 ∵(220,log 1x x >∴= …………..8分(2)当2211[1,2],2220,22t t t t t t m ⎛⎫⎛⎫∈-+-≥ ⎪ ⎪⎝⎭⎝⎭时 ……………10分即 ()()242121.t t m -≥--()22210,21.t t m ->∴≥+ ………………13分 ()2[1,2],12[17,5],t t ∈∴-+∈--故m 的取值范围是[5,)-+∞ …………….16分20.(本题满分16分)本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分7分.已知双曲线2212x C y -=:.(1)求双曲线C 的渐近线方程; (2)已知点M 的坐标为(01),.设P 是双曲线C 上的点,Q 是点P 关于原点的对称点.记MP MQ λ=.求λ的取值范围;(3)已知点D E M ,,的坐标分别为(21)(21)(01)---,,,,,,P 为双曲线C 上在第一象限内的点.记l 为经过原点与点P 的直线,s 为DEM △截直线l 所得线段的长.试将s 表示为直线l 的斜率k 的函数.20、【解】(1)所求渐近线方程为0,0y x y x == ……………...3分 (2)设P 的坐标为()00,x y ,则Q 的坐标为()00,x y --, …………….4分()()000,1,1o MP MQ x y x y λ=⋅=-⋅---22200031 2.2x y x =--+=-+ ……………7分02x ≥ λ∴的取值范围是(,1].-∞-……………9分(3)若P 为双曲线C 上第一象限内的点,则直线l的斜率.k ⎛∈ ⎝⎭……………11分all`试题20由计算可得,当()1(0,],2k s k ∈=时当()1,,22k s k ⎛∈= ⎝⎭时……………15分∴ s 表示为直线l 的斜率k 的函数是()1(0,],21.2k s k k ∈=⎛∈ ⎝⎭⎩….16分21.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分. 已知数列{}n a :11a =,22a =,3a r =,32n n a a +=+(n 是正整数),与数列{}n b :11b =,20b =,31b =-,40b =,4n n b b +=(n 是正整数).记112233n n n T b a b a b a b a =++++.(1)若1231264a a a a ++++=,求r 的值;(2)求证:当n 是正整数时,124n T n =-;(3)已知0r >,且存在正整数m ,使得在121m T +,122m T +,,1212m T +中有4项为100.求r 的值,并指出哪4项为100.21、【解】(1) 12312...a a a a ++++()()()12342564786r r r r =++++++++++++++484.r =+………………..2分∵ 48464, 4.r r +=∴=………………..4分【证明】(2)用数学归纳法证明:当12,4.n n Z T n +∈=-时① 当n=1时,1213579114,T a a a a a a =-+-+-=-等式成立….6分 ② 假设n=k 时等式成立,即124,k T k =- 那么当1n k =+时,()121211231251271291211121k k k k k k k k T T a a a a a a +++++++=+-+-+-………8分 ()()()()()()481884858488k k k r k k k r k =-++-+++-++++-+()4441,k k =--=-+等式也成立.根据①和②可以断定:当12,4.n n Z T n +∈=-时…………………...10分梦想不会辜负一个努力的人all`试题 21 【解】(3)()1241.121,12241;123,12441;125,12645;127,1284;129,121044;m n n n n T m m n m m T m n m m T m r n n m m T m r n m m T m r n m m T m =-≥=++=+=++=-+-=++=+-=++=--=++=+当时,当时,当时,当时,当时,1211,1212,4 4.n n m m T m =++=--当时………………………..13分∵ 4m+1是奇数,41,4,44m r m r m -+-----均为负数,∴ 这些项均不可能取到100. ………………………..15分此时,293294297298,,,T T T T 为100. …………………………18分。
2008年上海、四川、天津、浙江、重庆数学(文科)高考真题 共5套 及答案
[答] (
)
(A) 充要条件.
(B) 充分非必要条件.
(C) 必要非充分条件.
(D) 既非充分又非必要条件.
14.
若数列 an 是首项为
1,公比为 a
−
3 2
的无穷等比数列,且 an 各项的和为 a
,则 a
的值是
[答] (
)
(A) 1.
(B) 2.
1 (C) .
2
5 (D) .
4
15. 如图,在平面直角坐标系中, 是一个与 x 轴的正半轴、 y 轴的正半轴分别相切于点
抛物线上,试问动点 P 的轨迹落在哪种二次曲线上,并说明理由.
[解](1)
[证明](2)
[解](3)
得分
评卷人
21(. 本题满分 18 分)本题共有 3 个小题,第 1 小题满分 3 分, 第
2 小题满分 7 分,第 3 小题满分 8 分.
已知以 a1 为首项的数列 an 满足: an+1
=
an an
−
1 m
,
a3m+2
−
1 m
, a6m+2
−
1 m
, a9m+2
−
1 m
成等比数列当且仅当 d
=
3m .
[解](1)
(2)
[证明](3)
2008 年 全 国 普 通 高 等 学 校 招 生 统 一 考 试
上海数学试卷(理工农医类)答案要点及评分标准
说明 1.本解答列出试题的一种或几种解法,如果考生的解法与所列解法不同,可参照解答
分
EF ⊥ DF , tan EDF = EF = 5 . DF 5
…… 8 …… 10 分
2008年高考试题--数学文(上海卷)
2008年全国普通高等学校招生统一考试上海数学试卷(文史类)考生注意:1.答卷前,考生务必将姓名、高考准考证号、校验码等填写清楚.2.本试卷共有21道试题,满分150分,考试时间120分钟.请考生用钢笔或圆珠笔将答案直接写在试卷上.一、填空题(本大题满分44分)本大题共有11题,只要求直接填写结果,每个空格填对得4分,否则一律得零分..不等式11x -<的解集是 .2.若集合{}|2A x x =≤,{}|B x x a =≥满足{2}AB =,则实数a = ..若复数z 满足(2)z i z =- (i 是虚数单位),则z = . 4.若函数f (x )的反函数为12()log fx x -=,则()f x = ..若向量a ,b 满足12a b ==,且a 与b 的夹角为3π,则a b += . 6.若直线10ax y -+=经过抛物线24y x =的焦点,则实数a = . .若z 是实系数方程220x x p ++=的一个虚根,且2z =,则p = .8.在平面直角坐标系中,从六个点:(00)(20)(11)(02)(22)A B C D E ,,,,,,,,,中任取三个,这三点能构成三角形的概率是 (结果用分数表示)..若函数()()(2)f x x a bx a =++(常数a b ∈R ,)是偶函数,且它的值域为(]4-∞,,则该函数的解析式()f x = .10.已知总体的各个体的值由小到大依次为2,3,3,7,a ,b ,12,13.7,18.3,20,且总体的中位数为10.5.若要使该总体的方差最小,则a 、b 的取值分别是 ..在平面直角坐标系中,点A B C ,,的坐标分别为(01)(42)(26),,,,,.如果()P x y ,是ABC △围成的区域(含边界)上的点,那么当w xy =取到最大值时,点P 的坐标是 ______ .二、选择题(本大题满分16分)本大题共有4题,每题都给出代号为A 、B 、C 、D 的四个结论,其中有且只有一个结论是正确的,必须把正确结论的代号写在题后的圆括号内,选对得4分,不选、选错或者选出的代号超过一个(不论是否都写在圆括号内),一律得零分.12.设p 是椭圆2212516x y +=上的点.若12F F ,是椭圆的两个焦点,则12PF PF +等于( ) A .4 B .5 C .8 D .10.给定空间中的直线l 及平面α.条件“直线l 与平面α内两条相交直线都垂直”是“直线l 与平面α垂直”的( )A.充分非必要条件 B.必要非充分条件C .充要条件 D.既非充分又非必要条件14.若{}n a 是首项为l ,公比为32a -的无穷等比数列,且{}n a 各项的和为a ,则a 的值是( ) A.1 B.2 C.12 D.54.如图,在中,Ω是一个与x 轴的正半轴、y 轴的正半轴分别相切于点C 、D 的定圆所围成的区域(含边界),A 、B 、C 、D 是该圆的四等分点.若点()P x y ,、点()P x y ''',满足x x '≤且y y '≥,则称P 优于P '.如果Ω中的点Q 满足:不存在Ω中的其它点优于Q ,那么所有这样的点Q 组成的集合是劣弧( ) A.ABB .BCC .CD D .DA三、解答题(本大题满分90分)本大题共有6题,解答下列各题必须写出必要的步骤.16.(本题满分12分)如图,在棱长为2的正方体1111ABCD A B C D -中,E 是BC 1的中点.求直线DE 与平面ABCD 所成角的大小(结果用反三角函数值表示)..(本题满分13分)如图,某住宅小区的平面图呈扇形AOC .小区的两个出入口设置在点A 及点C 处,小区里有两条笔直的小路AD DC ,,且拐弯处的转角为120.已知某人从C 沿CD 走到D 用了10分钟,从D 沿DA 走到A 用了6分钟.若此人步行的速度为每分钟50米,求该扇形的半径OA 的长(精确到1米).18.(本题满分15分)本题共有2个小题,第1个题满分5分,第2小题满分10分. 已知函数f (x )=sin2x ,g (x )=cos π26x ⎛⎫+ ⎪⎝⎭,直线()x t t =∈R 与函数()()f x g x ,的图像分别交于M 、N 两点. (1)当π4t =时,求|MN |的值; (2)求|MN |在π02t ⎡⎤∈⎢⎥⎣⎦,时的最大值..(本题满分16分)本题共有2个小题,第1小题满分8分,第2小题满分8分. 已知函数||1()22xx f x =-. (1)若()2f x =,求x 的值;(2)若2(2)()0tf t mf t +≥对于[12]t ∈,恒成立,求实数m 的取值范围.20.(本题满分16分)本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分7分.已知双曲线2212x C y -=:.(1)求双曲线C 的渐近线方程;(2)已知点M 的坐标为(01),.设p 是双曲线C 上的点,Q 是点P 关于原点的对称点. 记MP MQ λ=.求λ的取值范围;(3)已知点D E M ,,的坐标分别为(21)(21)(01)---,,,,,,P 为双曲线C 上在第一象限内的点.记l 为经过原点与点P 的直线,s 为DEM △截直线l 所得线段的长.试将s 表示为直线l 的斜率k 的函数..(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分. 已知数列{}n a :11a =,22a =,3a r =,32n n a a +=+(n 是正整数),与数列 {}n b :11b =,20b =,31b =-,40b =,4n n b b +=(n 是正整数). 记112233n n n T b a b a b a b a =++++.(1)若1231264a a a a ++++=,求r 的值;(2)求证:当n 是正整数时,124n T n =-;(3)已知0r >,且存在正整数m ,使得在121m T +,122m T +,,1212m T +中有4项为100.求r 的值,并指出哪4项为100.2008年全国普通高等学校招生统一考试上海数学试卷(文史类)答案要点及评分标准一、(第1题至第11题) 1. (0,2). 2. 2.3. 1+i.4. ()2xx R ∈.5..6. -1.7. 4.8.45. 9. 224x -+10. 10.5,10.5a b ==11. 5,52⎛⎫ ⎪⎝⎭.二、(第12题至第15题)三、(第16题至第21题)16. 【解】过E 作EF ⊥BC ,交BC 于F ,连接DF. ∵ EF ⊥平面ABCD ,∴ ∠EDF 是直线DE 与平面ABCD 所成的角. ……………4分 由题意,得EF =111.2CC = ∵11,2CF CB DF ==∴=..8分 ∵ EF ⊥DF , ∴ tan EF EDF DF ∠==……………..10分 故直线DE 与平面ABCD 所成角的大小是arctan5.12分 17. 【解法一】设该扇形的半径为r 米. 由题意,得CD =500(米),DA =300(米),∠CDO=060……………………………4分 在CDO ∆中,2222cos 60,CD OD CD OD OC +-⋅⋅⋅=……………6分 即()()22215003002500300,2r r r +--⨯⨯-⨯=…………………….9分 解得490044511r =≈(米). …………………………………………….13分【解法二】连接AC ,作OH ⊥AC ,交A C 于H …………………..2分由题意,得CD =500(米),AD =300(米),0120CDA ∠=………….4分2220222,2cos12015003002500300700,2ACD AC CD AD CD AD ∆=+-⋅⋅⋅=++⨯⨯⨯=在中 ∴ AC =700(米) …………………………..6分22211cos .214AC AD CD CAD AC AD +-∠==⋅⋅………….…….9分在直角11,350,cos 0,14HAO AH HA ∆=∠=中(米) ∴ 4900445cos 11AH OA HAO ==≈∠(米). ………………………13分18、【解】(1)sin 2cos 2446MN πππ⎛⎫⎛⎫=⨯-⨯+ ⎪ ⎪⎝⎭⎝⎭…………….2分231cos.32π=-=………………………………5分 (2)sin 2cos 26MN t t π⎛⎫=-+⎪⎝⎭3sin 2222t t =- …………...8分26t π⎛⎫=-⎪⎝⎭…………………………….11分 ∵ 0,,2,,2666t t πππππ⎡⎤⎡⎤∈-∈--⎢⎥⎢⎥⎣⎦⎣⎦…………13分∴ |MN ……………15分 19、【解】(1)()()100;0,22x x x f x x f x <=≥=-当时,当时. …………….2分由条件可知,2122,22210,2x x x x -=-⋅-=即解得 21x =±…………6分∵ (220,log 1x x >∴= …………..8分(2)当2211[1,2],2220,22t t t t t t m ⎛⎫⎛⎫∈-+-≥ ⎪ ⎪⎝⎭⎝⎭时 ……………10分即 ()()242121.t t m -≥--()22210,21.t t m ->∴≥+ ………………13分 ()2[1,2],12[17,5],t t ∈∴-+∈--故m 的取值范围是[5,)-+∞ …………….16分20、【解】(1)所求渐近线方程为0,0y y == ……………...3分 (2)设P 的坐标为()00,x y ,则Q 的坐标为()00,x y --, …………….4分 ()()000,1,1o MP MQ x y x y λ=⋅=-⋅---22200031 2.2x y x =--+=-+ ……………7分02x ≥λ∴的取值范围是(,1].-∞- ……………9分(3)若P 为双曲线C 上第一象限内的点,则直线l的斜率.k ⎛∈ ⎝⎭……………11分由计算可得,当()1(0,],2k s k ∈时当()1,2k s k ⎛∈ ⎝⎭时……………15分∴ s 表示为直线l 的斜率k 的函数是()1(0,],21.2k s k k ∈=⎛∈ ⎝⎭⎩….16分21、【解】(1)()()()12312...12342564786a a a a r r r r ++++=++++++++++++++484.r =+………………..2分∵ 48464, 4.r r +=∴= ………………..4分【证明】(2)用数学归纳法证明:当12,4.n n Z T n +∈=-时① 当n=1时,1213579114,T a a a a a a =-+-+-=-等式成立….6分 ② 假设n=k 时等式成立,即124,k T k =- 那么当1n k =+时,()121211231251271291211121k k k k k k k k T T a a a a a a +++++++=+-+-+-………8分()()()()()()481884858488k k k r k k k r k =-++-+++-++++-+()4441,k k =--=-+等式也成立.根据①和②可以断定:当12,4.n n Z T n +∈=-时…………………...10分【解】(3)()1241.121,12241;123,12441;125,12645;127,1284;129,121044;m n n n n T m m n m m T m n m m T m r n n m m T m r n m m T m r n m m T m =-≥=++=+=++=-+-=++=+-=++=--=++=+当时,当时,当时,当时,当时,1211,1212,4 4.n n m m T m =++=--当时………………………..13分∵ 4m+1是奇数,41,4,44m r m r m -+-----均为负数, ∴ 这些项均不可能取到100. ………………………..15分此时,293294297298,,,T T T T 为100. …………………………18分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2008年上海市高考数学试卷(文科)参考答案与试题解析一、填空题(共11小题,每小题4分,满分44分)1.(4分)(2008•上海)不等式|x﹣1|<1的解集是(0,2).【考点】绝对值不等式的解法.【专题】计算题.【分析】先去掉绝对值然后再根据绝对值不等式的解法进行求解.【解答】解:∵|x﹣1|<1,∴﹣1<x﹣1<1⇒0<x<2.故答案为:(0,2).【点评】此题考查绝对值不等式的解法,解题的关键是去掉绝对值,此类题目是高考常见的题型,此题是一道基础题.2.(4分)(2008•上海)若集合A={x|x≤2}、B={x|x≥a}满足A∩B={2},则实数a=2.【考点】交集及其运算;集合的包含关系判断及应用.【专题】计算题.【分析】由题意A∩B={2},得集合B中必定含有元素2,且A,B只有一个公共元素2,可求得a即可.【解答】解:由A∩B={2},则A,B只有一个公共元素2;可得a=2.故填2.【点评】本题考查了集合的确定性、交集运算,属于基础题.3.(4分)(2008•上海)若复数z满足z=i(2﹣z)(i是虚数单位),则z=1+i.【考点】复数代数形式的混合运算.【分析】直接化简出z,然后化简表达式为a+bi(a、b∈R)即可.【解答】解:由.故答案为:1+i.【点评】本题考查复数代数形式的混合运算,是基础题.4.(4分)(2008•上海)若函数f(x)的反函数为f﹣1(x)=log2x,则f(x)=2x(x∈R).【考点】反函数.【专题】计算题.【分析】本题即要求y=log2x的反函数,欲求原函数y=log2x的反函数,即从原函数式中反解出x,后再进行x,y互换,即得反函数的解析式.【解答】解:令∵y=log2x(x>0),则y∈R且x=2y,∴f(x)=2x(x∈R).故答案为:2x(x∈R).【点评】本题考查反函数的求法,属于基础题目,要会求一些简单函数的反函数,掌握互为反函数的函数图象间的关系.5.(4分)(2008•上海)若向量,满足且与的夹角为,则=.【考点】平面向量数量积的运算.【分析】根据可得答案.【解答】解:∵且与的夹角为∴=7∴则=故答案为:【点评】本题主要考查向量的数量积运算,属基础题.6.(4分)(2008•上海)若直线ax﹣y+1=0经过抛物线y2=4x的焦点,则实数a=﹣1.【考点】抛物线的简单性质.【专题】计算题.【分析】先求出抛物线的焦点坐标,然后代入即可求出a.【解答】解:直线ax﹣y+1=0经过抛物线y2=4x的焦点F(1,0),则a+1=0∴a=﹣1.故答案为:﹣1【点评】本题主要考查抛物线的性质.属基础题.7.(4分)(2008•上海)若z是实系数方程x2+2x+p=0的一个虚根,且|z|=2,则p=4.【考点】复数代数形式的乘除运算.【分析】设出复数z,利用已知条件,结合韦达定理,及|z|=2,求得p.【解答】解:设z=a+bi,则方程的另一个根为z'=a﹣bi,且,由韦达定理直线z+z'=2a=﹣2,∴a=﹣1,∴,所以故答案为:4【点评】本题考查复数代数形式乘除运算,韦达定理的使用,复数的模,是中档题.8.(4分)(2008•上海)在平面直角坐标系中,从五个点:A(0,0),B(2,0),C(1,1),D(0,2),E(2,2)中任取三个,这三点能构成三角形的概率是(结果用分数表示).【考点】等可能事件的概率.【专题】计算题.【分析】由题意知本题是一个古典概型,总事件数是从5个点取三个有C53种取法,要求三点能构成三角形不好判断,我们从它的对立事件来考虑,先观察出共线的点,用总事件数减去,最后用古典概型公式得到结果.【解答】解析:从5个点取三个有C53种取法,由已知:A(0,0),B(2,0),C(1,1),D(0,2),E(2,2)得A、C、E三点都在直线y=x上即三点共线,B、C、D三点都在直线y=﹣x+2上即三点共线,∴五点中任选三点能构成三角形的概率为故答案为:.【点评】本题考查古典概型,要求理解古典概型的特征:试验结果的有限性和每一个试验结果出现的等可能性,掌握列举法,学会运用数形结合、分类讨论的思想解决概率和其他知识点结合的计算问题.9.(4分)(2008•上海)若函数f(x)=(x+a)(bx+2a)(常数a、b∈R)是偶函数,且它的值域为(﹣∞,4],则该函数的解析式f(x)=﹣2x2+4.【考点】函数解析式的求解及常用方法.【专题】计算题.【分析】利用函数的定义域、值域的特点得到函数是二次函数;据函数是偶函数关于y轴对称及二次函数的对称轴公式得到方程求出a,b的值;将求出的值代入二次函数解析式求其值域验证值域是否是(﹣∞,4].【解答】解:由于f(x)的定义域为R,值域为(﹣∞,4],可知b≠0,∴f(x)为二次函数,f(x)=(x+a)(bx+2a)=bx2+(2a+ab)x+2a2.∵f(x)为偶函数,∴其对称轴为x=0,∴﹣=0,∴2a+ab=0,∴a=0或b=﹣2.若a=0,则f(x)=bx2与值域是(﹣∞,4]矛盾,∴a≠0,若b=﹣2,又其最大值为4,∴=4,∴2a2=4,∴f(x)=﹣2x2+4.故答案为﹣2x2+4【点评】本题考查偶函数的图象特点、二次函数的对称轴公式、二次函数值域的求法.10.(4分)(2008•上海)已知总体的各个体的值由小到大依次为2,3,3,7,a,b,12,13.7,18.3,20,且总体的中位数为10.5,平均数为10.若要使该总体的方差最小,则a、b 的取值分别是a=10.5,b=10.5.【考点】极差、方差与标准差;众数、中位数、平均数.【专题】综合题;压轴题.【分析】根据中位数的定义得到a与b的关系式,要求总体的方差最小,即要求(a﹣10)2+(b﹣10)2最小,利用a与b的关系式消去a,得到关于b的二次函数,求出函数的最小值即可得到a和b的值.【解答】解:这10个数的中位数为=10.5.这10个数的平均数为10.要使总体方差最小,即(a﹣10)2+(b﹣10)2最小.又∵(a﹣10)2+(b﹣10)2=(21﹣b﹣10)2+(b﹣10)2=(11﹣b)2+(b﹣10)2=2b2﹣42b+221,∴当b=10.5时,(a﹣10)2+(b﹣10)2取得最小值.又∵a+b=21,∴a=10.5,b=10.5.故答案为:a=10.5,b=10.5【点评】考查学生掌握中位数及方差的求法,以及会利用函数的方法求最小值.此题是一道综合题.要求学生灵活运用二次函数的知识解决数学问题.11.(4分)(2008•上海)在平面直角坐标系中,点A,B,C的坐标分别为(0,1),(4,2),(2,6).如果P(x,y)是△ABC围成的区域(含边界)上的点,那么当ω=xy取到最大值时,点P的坐标是.【考点】简单线性规划的应用.【专题】计算题;压轴题.【分析】本题主要考查线性规划的基本知识,先画出由点A(0,1),B(4,2),C的坐标分别为(2,6)围成的△ABC区域(含边界)再分析xy出现最值时,对应点的大位位置,再结合基本不等式,求出具体的点的坐标.【解答】解:∵点A,B,C的坐标分别为(0,1),(4,2),(2,6).∴△ABC围成的区域(含边界)如下图示:由图可知:当ω=xy取到最大值时,点P在线段BC上,由线段BC上的点满足:y=﹣2x+10,x∈[2,4],∴ω=xy=x(﹣2x+10),故当时,ω取到最大值.故答案为:【点评】平面区域的最值问题是线性规划问题中一类重要题型,在解题时,关键是正确地画出平面区域,分析表达式的几何意义,然后结合数形结合的思想,分析图形,找出满足条件的点的坐标,即可求出答案.二、选择题(共4小题,每小题4分,满分16分)12.(4分)(2008•上海)设p是椭圆上的点.若F1,F2是椭圆的两个焦点,则|PF1|+|PF2|等于()A.4 B.5 C.8 D.10【考点】椭圆的简单性质.【专题】计算题.【分析】由椭圆的第一定义知|PF1|+|PF2|=2a,进而求得答案.【解答】解:由椭圆的第一定义知|PF1|+|PF2|=2a=10,故选D.【点评】本题主要考查了椭圆的性质,属基础题.13.(4分)(2008•上海)给定空间中的直线l及平面α,条件“直线l与平面α内无数条直线都垂直”是“直线l与平面α垂直”的()条件.A.充要 B.充分非必要C.必要非充分D.既非充分又非必要【考点】空间中直线与平面之间的位置关系.【分析】由垂直的定义,我们易得“直线l与平面α垂直”⇒“直线l与平面α内无数条直线都垂直”为真命题,反之,“直线l与平面α内无数条直线都垂直”⇒“直线l与平面α垂直”却不一定成立,根据充要条件的定义,即可得到结论.【解答】解:直线与平面α内的无数条平行直线垂直,但该直线未必与平面α垂直;即“直线l与平面α内无数条直线都垂直”⇒“直线l与平面α垂直”为假命题;但直线l与平面α垂直时,l与平面α内的每一条直线都垂直,即“直线l与平面α垂直”⇒“直线l与平面α内无数条直线都垂直”为真命题;故“直线l与平面α内无数条直线都垂直”是“直线l与平面α垂直”的必要非充分条件故选C【点评】判断充要条件的方法是:①若p⇒q为真命题且q⇒p为假命题,则命题p是命题q 的充分不必要条件;②若p⇒q为假命题且q⇒p为真命题,则命题p是命题q的必要不充分条件;③若p⇒q为真命题且q⇒p为真命题,则命题p是命题q的充要条件;④若p⇒q 为假命题且q⇒p为假命题,则命题p是命题q的即不充分也不必要条件.⑤判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.14.(4分)(2008•上海)若数列{a n}是首项为1,公比为a﹣的无穷等比数列,且{a n}各项的和为a,则a的值是()A.1 B.2 C.D.【考点】等比数列的前n项和;等比数列.【专题】压轴题.【分析】由无穷等比数列{a n}各项和为a,则利用等比数列前n项和公式列方程解之即可.【解答】解:由题意知a1=1,q=a﹣,且|q|<1,∴S n==a,即,解得a=2.故选B.【点评】本题主要考查等比数列前n项和公式与极限思想.15.(4分)(2008•上海)如图,在平面直角坐标系中,Ω是一个与x轴的正半轴、y轴的正半轴分别相切于点C、D的定圆所围成区域(含边界),A、B、C、D是该圆的四等分点,若点P(x,y)、P′(x′,y′)满足x≤x′且y≥y′,则称P优于P′,如果Ω中的点Q满足:不存在Ω中的其它点优于Q,那么所有这样的点Q组成的集合是劣弧()A.B.C.D.【考点】二元一次不等式(组)与平面区域.【专题】压轴题.【分析】P优于P′的几何意义是:过点P′分别作平行于两坐标轴的直线,则点P落在两直线构成的左上方区域内.【解答】解:依题意,在点Q组成的集合中任取一点,过该点分别作平行于两坐标轴的直线,构成的左上方区域与点Q组成的集合无公共元素,这样点Q组成的集合才为所求.故选D.【点评】本题考查如何把代数语言翻译成几何语言,即数与形的结合.三、解答题(共6小题,满分90分)16.(12分)(2008•上海)如图,在棱长为2的正方体ABCD﹣A1B1C1D1中,E是BC1的中点.求直线DE与平面ABCD所成角的大小(结果用反三角函数值表示).【考点】直线与平面所成的角.【专题】计算题.【分析】过E作EF⊥BC,交BC于F,连接DF,得到∠EDF是直线DE与平面ABCD所成的角,然后再在三角形EDF中求出此角即可.【解答】解:过E作EF⊥BC,交BC于F,连接DF.∵EF⊥BC,CC1⊥BC∴EF∥CC1,而CC1⊥平面ABCD∴EF⊥平面ABCD,∴∠EDF是直线DE与平面ABCD所成的角(4分)由题意,得EF=.∵(8分)∵EF⊥DF,∴.(10分)故直线DE与平面ABCD所成角的大小是(12分)【点评】本题主要考查了直线与平面之间所成角,考查空间想象能力、运算能力和推理论证能力,属于基础题.17.(13分)(2008•上海)如图,某住宅小区的平面图呈圆心角为120°的扇形AOB,小区的两个出入口设置在点A及点C处,且小区里有一条平行于BO的小路CD,已知某人从C 沿CD走到D用了10分钟,从D沿DA走到A用了6分钟,若此人步行的速度为每分钟50米,求该扇形的半径OA的长(精确到1米)【考点】弧长公式.【专题】三角函数的求值.【分析】连接OC,由CD∥OB知∠CDO=60°,可由余弦定理得到OC的长度.【解答】解:法一:设该扇形的半径为r米,连接CO.由题意,得CD=500(米),DA=300(米),∠CDO=60°在△CDO中,CD2+OD2﹣2CD•OD•cos60°=OC2即,解得(米)答:该扇形的半径OA的长约为445米.法二:连接AC,作OH⊥AC,交AC于H,由题意,得CD=500(米),AD=300(米),∠CDA=120°在△CDO中,AC2=CD2+AD2﹣2•CD•AD•cos120°=.∴AC=700(米)..在直角△HAO中,AH=350(米),,∴(米).答:该扇形的半径OA的长约为445米.【点评】本题主要考查用余弦定理求三角形边长.18.(15分)(2008•上海)已知函数f(x)=sin2x,g(x)=cos,直线x=t(t∈R).与函数f(x),g(x)的图象分别交于M、N两点.(1)当时,求|MN|的值;(2)求|MN|在时的最大值.【考点】三角函数的最值.【专题】计算题.【分析】(1)先根据题意表示出|MN|进而利用诱导公式化简,利用余弦函数的性质求得答案.(2)表示出|MN|的表达式,利用两角和公式对表达式化简整理,利用正弦函数的性质求得其最大值.【解答】解:(1)将代入函数f(x)、g(x)中得到∵==(2)∵==∵,∴|MN|的最大值为.【点评】本题主要考查了两角和公式和诱导公式化简求值,三角函数的最值问题等.注重了对数学基础知识的考查和基本的推理能力,计算能力的运用.19.(16分)(2008•上海)已知函数.(1)若f(x)=2,求x的值;(2)若3t f(2t)+mf(t)≥0对于恒成立,求实数m的取值范围.【考点】函数恒成立问题;函数的值.【专题】综合题.【分析】(1)当x≤0时得到f(x)=0而f(x)=2,所以无解;当x>0时解出f(x)=2求出x即可;(2)由时,3t f(2t)+mf(t)≥0恒成立得到,得到f(t)=,代入得到m的范围即可.【解答】解(1)当x<0时,f(x)=3x﹣3x=0,∴f(x)=2无解;当x>0时,,,∴(3x)2﹣2•3x﹣1=0,∴.∵3x>0,∴(舍).∴,∴.(2)∵,∴,∴.∴,即时m>﹣32t﹣1恒成立又﹣32t﹣1∈[﹣10,﹣4],∴m>﹣4.∴实数m的取值范围为(﹣4,+∞).【点评】考查学生理解函数恒成立的条件,以及会根据条件求函数值的能力.20.(16分)(2008•上海)已知双曲线.(1)求双曲线C的渐近线方程;(2)已知点M的坐标为(0,1).设P是双曲线C上的点,Q是点P关于原点的对称点.记.求λ的取值范围;(3)已知点D,E,M的坐标分别为(﹣2,﹣1),(2,﹣1),(0,1),P为双曲线C上在第一象限内的点.记l为经过原点与点P的直线,s为△DEM截直线l所得线段的长.试将s表示为直线l的斜率k的函数.【考点】双曲线的简单性质;直线与圆锥曲线的综合问题.【专题】计算题;压轴题.【分析】(1)在双曲线,把1换成0,就得到它的渐近线方程.(2)设P的坐标为(x0,y0),则Q的坐标为(﹣x0,﹣y0),先求出,然后运用向量数量积的坐标运算能够求出λ的取值范围.(3)根据P为双曲线C上第一象限内的点,可知直线l的斜率再由题设条件根据k的不同取值范围试将s表示为直线l的斜率k的函数.【解答】解:(1)在双曲线,把1换成0,所求渐近线方程为(2)设P的坐标为(x0,y0),则Q的坐标为(﹣x0,﹣y0),=∵∴λ的取值范围是(﹣∞,﹣1].(3)若P为双曲线C上第一象限内的点,则直线l的斜率由计算可得,当;当∴s表示为直线l的斜率k的函数是【点评】本题是直线与圆锥曲线的综合问题,解题要熟练掌握双曲线的性质和解题技巧.21.(18分)(2008•上海)已知数列{a n}:a1=1,a2=2,a3=r,a n+3=a n+2(n是正整数),与数列{b n}:b1=1,b2=0,b3=﹣1,b4=0,b n+4=b n(n是正整数).记T n=b1a1+b2a2+b3a3+…+b n a n.(1)若a1+a2+a3+…+a12=64,求r的值;(2)求证:当n是正整数时,T12n=﹣4n.【考点】数学归纳法;数列的应用.【专题】计算题;证明题;压轴题.【分析】本题考查的知识点是数列求和及数学归纳法证明.(1)由已知中a1=1,a2=2,a3=r,a n+3=a n+2,我们易给出a1+a2+a3+…+a12的表达式(含参数r),构造方程后,解方程即可进行求解.(2)要证明当n是正整数时,T12n=﹣4n,我们可以利用数学归纳法,对其进行论证.【解答】解:(1)a1+a2+a3+…+a12=1+2+r+3+4+(r+2)+5+6+(r+4)+7+8+(r+6)=48+4r.∵48+4r=64,∴r=4.证明:(2)用数学归纳法证明:当n∈Z+时,T12n=﹣4n.①当n=1时,T12=a1﹣a3+a5﹣a7+a9﹣a11=﹣4,等式成立②假设n=k时等式成立,即T12k=﹣4k,那么当n=k+1时,T12(k+1)=T12k+a12k+1﹣a12k+3+a12k+5﹣a12k+7+a12k+9﹣a12k+11=﹣4k+(8k+1)﹣(8k+r)+(8k+4)﹣(8k+5)+(8k+r+4)﹣(8k+8)=﹣4k﹣4=﹣4(k+1),等式也成立.根据①和②可以断定:当n∈Z+时,T12n=﹣4n.【点评】数学归纳法常常用来证明一个与自然数集N相关的性质,其步骤为:设P(n)是关于自然数n的命题,若1)(奠基)P(n)在n=1时成立;2)(归纳)在P(k)(k为任意自然数)成立的假设下可以推出P(k+1)成立,则P(n)对一切自然数n都成立.。