奥数讲义全集(1-66)

合集下载

1小学数学奥数基础教程(六年级)目30讲全

1小学数学奥数基础教程(六年级)目30讲全

小学奥数基础教程(六年级)109页第1讲比较分数的大小第2讲巧求分数第3讲分数运算的技巧第4讲循环小数与分数第5讲工程问题(一)第6讲工程问题(二)第7讲巧用单位“1”第8讲比和比例第9讲百分数第10讲商业中的数学第11讲圆与扇形第12讲圆柱与圆锥第13讲立体图形(一)第14讲立体图形(二)第15讲棋盘的覆盖第16讲找规律第17讲操作问题第18讲取整计算第19讲近似值与估算第20讲数值代入法第21讲枚举法第22讲列表法第23讲图解法第24讲时钟问题第25讲时间问题第26讲牛吃草问题第27讲运筹学初步(一)第28讲运筹学初步(二)第29讲运筹学初步(三)第30讲趣题巧解第一讲比较分数的大小同学们从一开始接触数学,就有比较数的大小问题。

比较整数、小数的大小的方法比较简单,而比较分数的大小就不那么简单了,因此也就产生了多种多样的方法。

对于两个不同的分数,有分母相同,分子相同以及分子、分母都不相同三种情况,其中前两种情况判别大小的方法是:分母相同的两个分数,分子大的那个分数比较大;分子相同的两个分数,分母大的那个分数比较小。

第三种情况,即分子、分母都不同的两个分数,通常是采用通分的方法,使它们的分母相同,化为第一种情况,再比较大小。

由于要比较的分数千差万别,所以通分的方法不一定是最简捷的。

下面我们介绍另外几种方法。

1.“通分子”。

当两个已知分数的分母的最小公倍数比较大,而分子的最小公倍数比较小时,可以把它们化成同分子的分数,再比较大小,这种方法比通分的方法简便。

如果我们把课本里的通分称为“通分母”,那么这里讲的方法可以称为“通分子”。

2.化为小数。

这种方法对任意的分数都适用,因此也叫万能方法。

但在比较大小时是否简便,就要看具体情况了。

3.先约分,后比较。

有时已知分数不是最简分数,可以先约分。

4.根据倒数比较大小。

5.若两个真分数的分母与分子的差相等、则分母(子)大的分数较大;若两个假分数的分子与分母的差相等,则分母(子)小的分数较大。

打印学而思小学奥数36个精彩讲座总汇全-90页文档资料

打印学而思小学奥数36个精彩讲座总汇全-90页文档资料

第1讲计算综合(一)繁分数的运算,涉及分数与小数的定义新运算问题,综合性较强的计算问题.1.繁分数的运算必须注意多级分数的处理,如下所示:甚至可以简单地说:“先算短分数线的,后算长分数线的”.找到最长的分数线,将其上视为分子,其下视为分母.2.一般情况下进行分数的乘、除运算使用真分数或假分数,而不使用带分数.所以需将带分数化为假分数.3.某些时候将分数线视为除号,可使繁分数的运算更加直观.4.对于定义新运算,我们只需按题中的定义进行运算即可.5.本讲要求大家对分数运算有很好的掌握,可参阅《思维导引详解》五年级[第1讲循环小数与分数].1.计算:71147 182621358 1333416⨯+⨯-÷【分析与解】原式=712372317 461224 1488128 131233+⨯=⨯=-2.计算:【分析与解】注意,作为被除数的这个繁分数的分子、分母均含有5199.于是,我们想到改变运算顺序,如果分子与分母在5199后的两个数字的运算结果一致,那么作为被除数的这个繁分数的值为1;如果不一致,也不会增加我们的计算量.所以我们决定改变作为被除数的繁分数的运算顺序.而作为除数的繁分数,我们注意两个加数的分母相似,于是统一通分为1995×0.5.具体过程如下:原式=5919(3 5.22)19930.41.6 910() 52719950.51995 19(6 5.22)950+-⨯÷+⨯-+3.计算:1111111987 -+-【分析与解】原式=11198711986-+=198613973-=198739734.计算:已知=181111+12+1x+4=,则x等于多少?【分析与解】方法一:1118x 68114x 112x 7111+11148x 62+214x 1x+4+====+++++++交叉相乘有88x+66=96x+56,x=1.25. 方法二:有11131118821x 4+==+++,所以18222133x 4+==++;所以13x 42+=,那么x =1.25. 5.求944,43,443,...,44...43个这10个数的和.【分析与解】方法一:方法二:先计算这10个数的个位数字和为39+4=31⨯;再计算这10个数的十位数字和为4×9=36,加上个位的进位的3,为36339+=; 再计算这10个数的百位数字和为4×8=32,加上十位的进位的3,为32335+=; 再计算这10个数的千位数字和为4×7=28,加上百位的进位的3,为28331+=; 再计算这10个数的万位数字和为4×6=24,加上千位的进位的3,为24327+=; 再计算这10个数的十万位数字和为4×5=20,加上万位的进位的2,为20222+=; 再计算这10个数的百万位数字和为4×4=16,加上十万位的进位的2,为16218+=; 再计算这10个数的千万位数字和为4×3=12,加上百万位的进位的1,为12113+=; 再计算这10个数的亿位数字和为4×2=8,加上千万位的进位的1,为819+=;最后计算这10个数的十亿位数字和为4×1=4,加上亿位上没有进位,即为4.所以,这10个数的和为4938271591.6.如图1-1,每一线段的端点上两数之和算作线段的长度,那么图中6条线段的长度之和是多少? 【分析与解】 因为每个端点均有三条线段通过,所以这6条线段的长度之和为:7.我们规定,符号“○”表示选择两数中较大数的运算,例如:3.5○2.9=2.9○3.5=3.5.符号“△”表示选择两数中较小数的运算,例如:3.5△2.9=2.9△3.5=2.9.请计算:23155(0.625)(0.4)333841235(0.3)( 2.25)3104⨯+ 【分析与解】原式8.规定(3)=2×3×4,(4)=3×4×5,(5)=4×5×6,(10)=9×10×11,….如果111(16)(17)(17)-=⨯,那么方框内应填的数是多少?【分析与解】111(17)()1(16)(17)(17)(16)=-÷=-=161718111516175⨯⨯-=⨯⨯.9.从和式11111124681012+++++中必须去掉哪两个分数,才能使得余下的分数之和等于1?【分析与解】因为1116124+=,所以12,14,16,112的和为l,因此应去掉18与110.10.如图1-2排列在一个圆圈上10个数按顺时针次序可以组成许多个整数部分是一位的循环小数,例如1.892915929.那么在所有这种数中。

小学数学奥数基础教程(六年级)目30讲全

小学数学奥数基础教程(六年级)目30讲全

小学奥数基础教程(六年级)第1讲比较分数的大小第2讲巧求分数第3讲分数运算的技巧第4讲循环小数与分数第5讲工程问题(一)第6讲工程问题(二)第7讲巧用单位“1”第8讲比和比例第9讲百分数第10讲商业中的数学第11讲圆与扇形第12讲圆柱与圆锥第13讲立体图形(一)第14讲立体图形(二)第15讲棋盘的覆盖第16讲找规律第17讲操作问题第18讲取整计算第19讲近似值与估算第20讲数值代入法第21讲枚举法第22讲列表法第23讲图解法第24讲时钟问题第25讲时间问题第26讲牛吃草问题第27讲运筹学初步(一)第28讲运筹学初步(二)第29讲运筹学初步(三)第30讲趣题巧解第一讲比较分数的大小同学们从一开始接触数学,就有比较数的大小问题。

比较整数、小数的大小的方法比较简单,而比较分数的大小就不那么简单了,因此也就产生了多种多样的方法。

对于两个不同的分数,有分母相同,分子相同以及分子、分母都不相同三种情况,其中前两种情况判别大小的方法是:分母相同的两个分数,分子大的那个分数比较大;分子相同的两个分数,分母大的那个分数比较小。

第三种情况,即分子、分母都不同的两个分数,通常是采用通分的方法,使它们的分母相同,化为第一种情况,再比较大小。

由于要比较的分数千差万别,所以通分的方法不一定是最简捷的。

下面我们介绍另外几种方法。

1.“通分子”。

当两个已知分数的分母的最小公倍数比较大,而分子的最小公倍数比较小时,可以把它们化成同分子的分数,再比较大小,这种方法比通分的方法简便。

如果我们把课本里的通分称为“通分母”,那么这里讲的方法可以称为“通分子”。

2.化为小数。

这种方法对任意的分数都适用,因此也叫万能方法。

但在比较大小时是否简便,就要看具体情况了。

3.先约分,后比较。

有时已知分数不是最简分数,可以先约分。

4.根据倒数比较大小。

5.若两个真分数的分母与分子的差相等、则分母(子)大的分数较大;若两个假分数的分子与分母的差相等,则分母(子)小的分数较大。

小学三年级奥数精品讲义1-34讲全

小学三年级奥数精品讲义1-34讲全

小学三年级奥数精品讲义目录第一讲加减法的巧算(一)第二讲加减法的巧算(二)第三讲乘法的巧算第四讲配对求和第五讲找简单的数列规律第六讲图形的排列规律第七讲数图形第八讲分类枚举第九讲填符号组算式第十讲填数游戏第十一讲算式谜(一)第十二讲算式谜(二)第十三讲火柴棒游戏(一)第十四讲火柴棒游戏(二)第十五讲从数量的变化中找规律第十六讲数阵中的规律第十七讲时间与日期第十八讲推理第十九讲循环第二十讲最大和最小第二十一讲最短路线第二十二讲图形的分与合第二十三讲格点与面积第二十四讲一笔画第二十五讲移多补少与求平均数第二十六讲上楼梯与植树第二十七讲简单的倍数问题第二十八讲年龄问题第二十九讲鸡兔同笼问题第三十讲盈亏问题第三十一讲还原问题第三十二讲周长的计算第三十三讲等量代换第三十四讲一题多解第三十五讲总复习第一讲加减法的巧算森林王国的歌舞比赛进行得既紧张又激烈。

选手们为争夺冠军,都在舞台上发挥着自己的最好水平。

台下的工作人员小熊和小白兔正在统计着最后的得分。

由于他们对每个选手分数的及时通报,台下的观众频频为选手取得的好成绩而热烈鼓掌,同时,观众也带着更浓厚的兴趣边看边猜测谁能拿到冠军。

观众的情绪也影响着两位分数统计者。

只见分数一到小白兔手中,就像变魔术般地得出了答案。

等小熊满头大汗地算出来时,小白兔已欣赏了一阵比赛,结果每次小熊算得结果和小白兔是一样的。

小熊不禁问:“白兔弟弟,你这么快就算出了答案,有什么决窍吗”小白兔说:“比如2号选手是93、95、98、96、88、89、87、91、93、91,去掉最高分98,去掉最低分87,剩下的都接近90为基准数,超过90的表示成90+‘零头数’,不足90的表示成90-‘零头数’。

于是(93+95+96+88+89+91+93+91)÷8=90+(3+5+6―2―1+1+3+1)÷8=90+2=92。

你可以试一试。

”小熊照着小白兔说的去做,果然既快又对。

这下小熊明白了,掌握了速算的技巧,在工作和生活中的作用很大。

小学奥数系统讲义完整版

小学奥数系统讲义完整版

求和公式二:1 +2 +3 +……n =求和公式三:1 +2 +3 +……n =完全平方和(差)公式:(a±b ) = a ±2ab+b平方差公式: a -b = (a+b)(a-b)小学奥数知识点分类小学奥数大约 80 个知识点,可分成 5 大类,数论和行程是重点也是难点。

小学奥数系统复习讲义(完整版)2 2 2 23 3 3 36. 速算巧算基本方法凑整法、改变运算次序法、连续数求和、基准法、分组法、拆分法 7. 等差数列,等比数列,【拆分与裂项】,【换元法】,【错位相消法】,【构造法】等较难的计算方法。

拆分裂项公式:等差数列公式:第一部分计算能力万丈高楼平地起,计算能力任何时候都是学好数学的根基,必须高度重视! 基本公式1. 运算顺序第一级:括号:( )→[ ] → { } 第二级:×÷: 同一级别可以交换运算次序 简单等比公式:例题分析第三级:+-: 同一级别可以交换运算次序 2. 去括号1.393+404+397+398+405+401+400+399+391+402① ② ③ a +(b +c)=a +b +c a +(b -c)=a +b -c a -(b +c)=a -b -c a -(b -c)=a -b +c a×(b×c)=a×b×c a×(b÷c)=a×b÷c2.比较下面 A,B 两数的大小:A=2009×2009, B=2008×2010④ a÷(b×c)=a÷b÷c a÷(b÷c)=a÷b×c 3. 分配律/结合律乘法: a×(b +c) = a×b +a×ca×b +a×c = a×(b +c)除法:(a +b) ÷c = a÷c +b÷ ca÷c +b÷ c = (a +b) ÷c4. 两个必须掌握的性质两个数的和一定,则两数越相近,积越大 3.4. 结果末尾有多少个零?100 +99+98-97-96-95+……+10+9+8-7-6-5+4+3+2-1两个数的积一定,则两数越分散,和越大 巩固练习 5. 几个计算公式 2 225.376+385+391+380+377+389+383+374+366+3782 2求和公式一:1+2+3+……+n =6. 1÷50+2÷50+3÷50+……50÷502010 ÷2010 第二部分基础知识基础知识点列表7.8.9999999×2009 7777×3333÷11119. 比较下面A,B 两数的大小:A=987654321×123456789;B=987654322×123456788 归一问题【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。

五年级同步奥数讲义(全册)

五年级同步奥数讲义(全册)

第一讲最不利原则例1.盒子里有5支红笔,3支蓝笔,10支黑笔。

现在随意抓一把笔要确保其中至少有1支红笔,则一把必须不少于几支?分析:抓得巧,只要抓1支即可。

然而并不能保证实现这种情况。

最不利的情况是抓了13支,都是不想要的黑笔与蓝笔。

不过,只要再多抓1支就必定包含红的了。

解:10+3+1=14(支)例2.一列2个小方格,每个方格中随意涂红黑两种颜色中的一种,当涂毕第几列时,至少有2列是相同的?(有一列与另一列重复)。

分析:不妨这样想:要实现两列所用颜色一样,涂的顺序也相同。

然而,由于是任意选的,据最不利原则总是先考虑已涂各列没有重复的。

如:红红黑黑……红黑黑红……实际上各不相同的列数总共只有4列。

到第5列就必定重复前面涂过的4种中的某一种。

如果并非遇到最不利情况,那么在前5列中重复的列数就不止2列。

这与“至少2列”并不矛盾。

解:4+1=5(列)练习一1.盒子里有3支红笔,6支蓝笔,10支黑笔。

现在随意抓一把笔要确保其中至少有1支红笔,则一把必须不少于几支?2.鱼池中有30条白鳞鱼,50条黑鳞鱼,50条金鳞鱼。

至少在多少名钓鱼者中才可保证他们一次钓出的鱼中,必有金鳞鱼?3.在一个口袋中有10个黑球、 6个白球、 4个红球。

问:至少从中取出多少个球,才能保证其中有白球?4.口袋中有三种颜色的筷子各10根,问:至少取多少根才能保证三种颜色都取到?5.在三个口袋中各有10个黑球、10个白球、10个红球。

问:至少从中取出多少个球,才能保证其中有白球?第二讲抽屉原理专题简析:如果给你5盒饼干,让你把它们放到4个抽屉里,那么可以肯定有一个抽屉里至少有2盒饼干。

如果把4封信投到3个邮箱中,那么可以肯定有一个邮箱中至少有2封信。

如果把3本联练习册分给两位同学,那么可以肯定其中有一位同学至少分到2本练习册。

这些简单内的例子就是数学中的“抽屉原理”。

基本的抽屉原理有两条:(1)如果把x+k(k≥1)个元素放到x 个抽屉里,那么至少有一个抽屉里含有2个或2个以上的元素。

小学六年级奥数经典讲义(全套36讲)

小学六年级奥数经典讲义(全套36讲)

第一讲循环小数与分数第二讲和差倍分问题第三讲行程问题第五讲质数与合数第六讲工程问题第七讲牛吃草问题第八讲包含与排除第九讲整数的拆分第十讲逻辑推理第十一讲通分与裂项第十二讲几何综合第十三讲植树问题第十五讲余数问题第十六讲直线面积第十七讲圆与扇形第十八讲数列与数表综合第十九讲数字迷综合第二十讲计数综合第二十一讲行程与工程第二十二讲复杂工程问题第二十三讲运用比例求解行程问题第二十四讲应用题综合第二十五讲数论综合2第二十六讲进位制问题第二十七讲取整问题第二十八讲数论综合3第二十九讲数论综合4第三十讲几何综合2第三十一讲图形变换第三十二讲勾股定理第三十三讲计数综合第三十四讲最值问题第三十五讲构造与论证1第三十六讲构造与论证2第一讲循环小数与分数循环小数与分数的互化,循环小数之间简单的加、减运算,涉及循环小数与分数的主要利用运算定律进行简算的问题.1.真分数7a化为小数后,如果从小数点后第一位的数字开始连续若干个数字之和是1992,那么a 是多少?【分析与解】17=0.142857 ,27=0.285714 ,37=0.428571 ,47=0.571428 ,57=0.714285 , 67=0.857142. 因此,真分数7a化为小数后,从小数点第一位开始每连续六个数字之和都是1+4+2+8+5+7=27,又因为1992÷27=73……21,27-21=6,而6=2+4,所以7a =0..857142 ,即a =6.评注:7a的特殊性,循环节中数字不变,且顺序不变,只是开始循环的这个数有所变化.2.某学生将1.23乘以一个数a 时,把1.23 误看成1.23,使乘积比正确结果减少0.3.则正确结果该是多少?【分析与解】 由题意得:1.23 a -1.23a =0.3,即:0.003 a =0.3,所以有:3390010a =.解得a = 90,所以1.23a =1.23 × 90=123290-×90=11190× 90=111.3.计算:0.1+0.125+0.3+0.16,结果保留三位小数. 【分析与解】 方法一:0.1+0.125+0.3+0.16≈-0.1111+0.1250+0.3333+0.1666=0.7359≈0.736方法二:0.1+0.125+0.3+0.16113159899011118853720.7361=+++=+== ≈0.7364.计算:0.010.120.230.340.780.89+++++ 【分析与解】 方法一:0.010.120.230.340.780.89+++++ =1121232343787898909090909090-----+++++ =11121317181909090909090+++++ =21690=2.4方法二:0.010.120.230.340.780.89+++++ =0+0.1+0.2+0.3+0.7+0.8+(0.010.020.030.040.080.09+++++ ) =2.1+0.01×(1+2+3+4+8+9) =2.1+190×27 =2.1+0.3 =2.4方法三:如下式, 0.011111… 0.122222... 0.233333... 0.344444...(1+2+3+4+8+9=27) 0.788888...+0.899999... 2.399997...注意到,百万分位的7是因为没有进位造成,而实际情况应该是2.399999…=2.39 =2.4.评注:0.9=99=1 ,0.09 =919010=.5.将循环小数0.027与0.179672 相乘,取近似值,要求保留一百位小数,那么该近似值的最后一位小数是多少?【分析与解】0.×0.179672=27179672117967248560.00485699999999937999999999999⨯=⨯== 循环节有6位,100÷6=16……4,因此第100位小数是循环节中的第4位8,第10l 位是5.这样四舍五入后第100位为9.6.将下列分数约成最简分数:166********66666666664【分析与解】 找规律:161644=,16616644=,1666166644= ,166661666644=,…所以1666666666666666666664=14评注:类似问题还有38538853888538888538888888885234 (29729972999729999729999999997)+⨯+⨯+⨯++.7.将下列算式的计算结果写成带分数:0.523659119⨯⨯【分析与解】0.523659119⨯⨯=11859119⨯=1(1)119-×59=59-59119=58601198.计算:744808333÷2193425909÷11855635255【分析与解】 744808333÷2193425909÷11855635255=62811259093525583332193453811⨯⨯ =373997131993564111136412119973331993⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯=7523⨯⨯=5569.计算:1111111 81282545081016203240648128 ++++++【分析与解】原式1111111 81288128406420321016508254 =++++++2111118128406420321016508254 =+++++ 1111114064406420321016508254 =+++++ 11111203220321016508254=++++111110161016508254=+++111508508254=++11254254=+1127=10.计算:153219(4.85 3.6 6.153) 5.5 1.75(1) 4185321⎡⎤⨯÷-+⨯+-⨯+⎢⎥⎣⎦【分析与解】原式=1757193.6(4.851 6.15)5.5443421⨯⨯-++-⨯-⨯=135193.610 5.5412+⨯⨯+-=9+5.5-4.5 =1011.计算: 41.2×8.1+11×194+537×0.19【分析与解】原式=412×0.81+11×9.25+0.19×(412+125) =412×(0.81+0.19)+11×9.25+0.19×125 =412+11×8+11×1.25+19×1.25=412+88+1.25×30=500+37.5=537.512.计算:2255 (97)() 7979+÷+【分析与解】原式=656555 ()() 7979+÷+=[]555513()()137979⨯+÷+=13.计算:12324648127142113526104122072135⨯⨯+⨯⨯+⨯⨯+⨯⨯⨯⨯+⨯⨯+⨯⨯+⨯⨯【分析与解】 原式=33333333123(1247)1232135(1247)1355⨯⨯⨯+++⨯⨯==⨯⨯⨯+++⨯⨯14.(1)已知等式0.126×79+1235×□-6310÷25=10.08,那么口所代表的数是多少? (2)设上题答案为a .在算式(1993.81+a )×○的○内,填入一个适当的一位自然数,使乘积的个位数字达到最小值.问○内所填的数字是多少? 【分析与解】 (1)设口所代表的数是x ,0.126×79+1235x -6310÷25=10.08,解得:x =0.03,即口所代表的数是0.03.(2)设○内所填的数字是y ,(1993.81+O.03)×y =1993.84×y ,有当y 为8时1993.84×y =1993.84×8=15050.94,所以○内所填的数字是8.15.求下述算式计算结果的整数部分:111111()38523571113+++++⨯ 【分析与解】原式=111111(38538538538538538523571113⨯+⨯+⨯+⨯+⨯+⨯≈192.5+128.3+77+55+35+29.6=517.4 所以原式的整数部分是517.第二讲 和差倍分问题各种具有和差倍分关系的综合应用题,重点是包含分数的问题.基本的解题方法是将已知条件用恰当形式写出或变形,并结合起来进行比较而求出相关的量,其中要注意单位“1”的恰当选取.1.有甲、乙两个数,如果把甲数的小数点向左移两位,就是乙数的18,那么甲数是乙数的多少倍?【分析与解】甲数的小数点向左移动两位,则甲数缩小到原来的1100,设这时的甲数为“1”,则乙数为1×8=8,那么原来的甲数=l×100=100,则甲数是乙数的100÷8=12.5倍.2.有三堆棋子,每堆棋子数一样多,并且都只有黑、白两色棋子.已知第一堆里的黑子和第二堆里的白子一样多,第三堆里的黑子占全部黑子的25.如果把这三堆棋子集中在一起,那么白子占全部棋子的几分之几?【分析与解】如下表所示:设全部黑子为“5”份,则第三堆里的黑子为“2”份,那么剩下的黑子占5-2=“3”份,而第一堆里的黑子和第二堆里的白子一样多,将第一堆黑子和第二堆白子调换,则第二堆全部为黑子.所以第二堆棋子总数为“3”份,三堆棋子总数为3×3=“9”份,其中黑子占“5”份,则白子占剩下的9-5=“4”份,那么白子占全部棋子的4÷9=49.3.甲、乙两厂共同完成一批机床的生产任务,已知甲厂比乙厂少生产8台机床,并且甲厂的生产量是乙厂的1213,那么甲、乙两厂一共生产了机床多少台?【分析与解】因为甲厂生产的是乙厂的1213,也就是甲厂为12份,乙厂为13份,那么甲厂比乙厂少1份=8台.总共=8×(12+13)=200台.4.足球赛门票15元一张,降价后观众增加了一半,收入增加了五分之一,那么一张门票降价多少元?【分析与解】设原来人数为“1”,则现在有1+0.5=1.5.原来收入为l×15=15,降价后收人为15×(1+15)=18元,那么降价后门票为18÷1.5=12元,则一张门票降价15-12=3元.5.李刚给军属王奶奶运蜂窝煤,第一次运了全部的38,第二次运了50块.这时,已运来的恰好是没运来的57.问还有多少块蜂窝煤没有运来?【分析与解】已经运来的是没有运来的57,则运来的是5份,没有运来的是7份,也就是运来的占总数的512.则共有50÷(512-38)=1200块,还剩下1200×712=700块.6.有两条纸带,一条长21厘米,一条长13厘米,把两条纸带都剪下同样长的一段以后,发现短纸带剩下的长度是长纸带剩下的长度的813.问剪下的一段长多少厘米?【分析与解】方法一:开始时,两条纸带的长度差为21-13=8厘米.因为两条纸带都剪去同样长度,所以两条纸带前后的长度差不变.设剪后短纸带长度为“8”份,长纸带即为“13”份,那么它们的差为13-8=5份,则每份为8÷5=1.6(厘米).所以,剪后短纸带长为1.6×8=12.8(厘米),于是剪去13-12.8=O.2(厘米).方法二:设剪下x厘米,则1382113xx-=-,交叉相乘得:13×(13-x)=8×(21-x),解得x=0.2,即剪下的一段长0.2厘米.7.为挖通300米长的隧道,甲、乙两个施工队分别从隧道两端同时相对施工.第一天甲、乙两队各掘进了10米,从第二天起,甲队每天的工作效率总是前一天的2倍,乙队每天的工作效率总是前一天的l 12倍.那么,两队挖通这条隧道需要多少天?【分析与解】如下表所示:天数工作量1 2 3 4 5甲10 20 40 80 160乙10 15 22.5 33.75 50.625 当天工作量20 35 62.5 113.75 210.625已完成工作量20 55 117.5 231.25 441.375 说明在第五天没有全天干活,则第四天干完以后剩下:300-231.25=68.75米,那么共用时间为4+68.75÷210.625=4110 337天.8.有一块菜地和一块麦地.菜地的一半和麦地的三分之一放在一起是13公顷.麦地的一半和菜地的三分之一放在一起是12公顷.那么菜地是多少公顷?【分析与解】如下表所示:菜地12麦地13⇒13公顷菜地3 麦地2 ⇒78公顷菜地2 麦地3 ⇒72公顷菜地13麦地12⇒12公顷即5倍菜地公顷数+5倍麦地公顷数=78+72=150,所以菜地与麦地共有150÷5=30(公顷).而菜地减去麦地,为78-72=6(公顷),所以菜地有(30+6)÷2=18(公顷).9.春风小学原计划栽种杨树、柳树和槐树共1500棵.植树开始后,当栽种了杨树总数的3 5和30棵柳树以后,又临时运来15棵槐树,这时剩下的3种树的棵数恰好相等.问原计划要栽植这三种树各多少棵?【分析与解】将杨树分为5份,以这样的一份为一个单位,则:杨树=5份;柳树=2份+30棵;槐树=2份-15棵,则一份为(1500-30+15)÷(2+2+5)=165棵,有:杨树=5×165=825棵;柳树=165×2+30=360棵;槐树=165×2-15=315棵.10.师徒二人共同加工170个零件,师傅加工零件个数的13比徒弟加工零件个数的14还多10个.那么,徒弟一共加工了多少个零件?【分析与解】我们用“师”表示师傅加工的零件个数,“徒”表示徒弟加工的零件个数,有:1 3“师”-14“徒”=10,4“师”- 3“徒”=120,而4“师”+4“徒”=170×4=680.那么有7“徒”=680-120=560,“徒”=80,徒弟一共加工了80个零件.11. 一批工人到甲、乙两个工地进行清理工作,甲工地的工作量是乙工地的工作量的11 2倍.上午去甲工地的人数是去乙工地人数的3倍,下午这批工人中有712的人去甲工地,其他人到乙工地.到傍晚时,甲工地的工作已做完,乙工地的工作还需4名工人再做1天.那么这批工人共有多少名?【分析与解】设甲工地的工作量为“1.5”,则乙工地的工作量为“1”.甲乙上午33134=+11134=+下午7121-712=512于是甲工地一整天平均用了这批工人的372()24123+÷=,乙工地一整天平均用了这批工人的1-21 33 =.这批工人的23完成了“1.5”的工作量,那么13的这批工人完成1.5÷2=“0.75”的工作量,于是乙工地还剩下1-0.75=“0.25”的工作量,这“0.25”的工作量需要4人工作1天.而甲、乙工地的工作量为1.5+1=2.5,那么需2.5÷0.25× 4=40人工作1天.所以原来这批工人共有40-4=36人.12.有一个分数,如果分子加1,这个分数就等于12;如果分母加1,这个分数就等于13.问原来的分数是多少?【分析与解】如果分子加1,则分数为12,设这时的分数为:2xx,则原来的分数为12xx-,分母加1后为:11213xx-=+,交叉相乘得:3(x-1)=2x+1,解得x=4,则原分数为38.13.图2-1是某市的园林规划图,其中草地占正方形的34,竹林占圆形的67,正方形和圆形的公共部分是水池.已知竹林的面积比草地的面积大450平方米.问水池的面积是多少平方米?【分析与解】因为水池是正方形的14,是圆的17,则正方形是水池的4倍,圆是水池的7倍,相差7-4=3倍,差450平方米,则水池=450÷3=150平方米.14.唐僧师徒四人吃了许多馒头,唐僧和猪八戒共吃了总数的12,唐僧和沙僧共吃了总数的13,唐僧和孙悟空共吃了总数的14.那么唐僧吃了总数的几分之几?【分析与解】唐+猪=12、唐+沙=13、唐+孙=14.(两边同时加减)唐+猪+唐+沙+唐+孙=2唐+(唐+猪+沙+孙)=2唐+1=12+13+14=1112.则:2唐=112,唐=124.唐僧吃了总数的124.15.小李和小张同时开始制作同一种零件,每人每分钟能制作1个零件,但小李每制作3个零件要休息1分钟,小张每制作4个零件要休息1.5分钟.现在他们要共同完成制作300个零件的任务,需要多少分钟?【分析与解】方法一:先估算出大致所需时间,然后再进行调整.因为小李、小张的工作效率大致相等,那么完成时小李完成300÷2=150个零件左右;小李完成150个零件需要150÷3×4=200分钟;在200分钟左右,198分钟是5.5的整数倍,此时乙生产198÷5.5×4=144个零件,并且刚休息完,所以在2分钟后,即200分钟时完成144+2=146个零件;那么在200分钟时,小李、小张共生产150+146=296个零件,还剩下4个零件未完成,所以再需2分钟,小李生产2个零件,小张生产2个零件,正好完成.所以共需202分钟才能完成.方法二:把休息时间包括进去,小李每4分钟做3个,小张每5.5分钟做4个.则在44分钟内小李做了:44÷4×3=33个,小张做了:44÷5.5×4=32个,他们一共做了:33+32=65个.300÷65=4……40,也就是他们共同做了4个44分钟即:44×4=176分钟后,还剩下40个零件没有做完.而22=4+4+4+4+4+2=5.5×4,所以22分钟内小李做了:3+3+3+3+3+2=17个,小张做了:4×2=16个,那么还剩下:40-17-16=7个,4分钟内小李做3个,小张做4个,共做4+3=7个,即这40个零件还需要26分钟.所以共用时间:44×4+26=202分钟.第三讲行程问题(1)涉及分数的行程问题.顺水速度、逆水速度与流速的关系,以及与此相关的问题.环形道路上的行程问题.解题时要注意发挥图示的辅助作用,有时宜恰当选择运动过程中的关键点分段加以考虑.1.王师傅驾车从甲地开往乙地交货.如果他往返都以每小时60千米的速度行驶,正好可以按时返回甲地.可是,当到达乙地时,他发现从甲地到乙地的速度只有每小时55千米.如果他想按时返回甲地,他应以多大的速度往回开?【分析与解】设甲地到乙地的路程为单位“1”,那么按时的往返一次需时间260,现在从甲到乙花费了时间1÷55=155千米,所以从乙地返回到甲地时所需的时间只能是211 605566-=.即如果他想按时返回甲地,他应以每小时66千米的速度往回开.2.甲、乙两地相距100千米,小张先骑摩托车从甲地出发,1小时后小李驾驶汽车从甲地出发,两人同时到达乙地.摩托车开始速度是每小时50千米,中途减速后为每小时40千米.汽车速度是每小时80千米,汽车曾在途中停驶1O 分钟.那么小张驾驶的摩托车减速是在他出发后的多少小时?【分析与解】 汽车从甲地到乙地的行驶时问为100÷80=1.25小时=1小时15分钟,加上中途停驶的10分钟,共用时1小时25分钟.而小张先小李1小时出发,但却同时到达,所以小张从甲到乙共用了2小时25分钟,即2最小时.以下给出两种解法:方法一:设小张驾驶的摩托车减速是在他出发后x 小时,有50×x +40×5210012x ⎛⎫-= ⎪⎝⎭,解得13x =. 所以小张驾驶的摩托车减速是在他出发后13小时. 方法二:如果全程以每小时50千米的速度行驶,需100÷50=2小时的时间,全程以每小时40千米的速度行驶,需100÷40=2.5小时.依据鸡兔同笼的思想知,小张以每小时50千米的速度行驶了52.521122.526-=-的路程,即行驶了10015010063⨯=千米的路程,距出发5015033÷=小时.3. 一位少年短跑选手,顺风跑90米用了10秒钟.在同样的风速下,逆风跑70米,也用了10秒钟.问:在无风的时候,他跑100米要用多少秒?【分析与解】 我们知道顺风速度=无风速度+风速,逆风速度=无风速度-风速. 有顺风时速度为90÷10=9米/秒,逆风速度为70÷10=7米/秒. 则无风速度=2顺风速度+逆风速度=982+7=米/秒 所以无风的时候跑100米,需100÷8=12.5秒.124.一条小河流过A ,B, C 三镇.A,B 两镇之间有汽船来往,汽船在静水中的速度为每小时11千米.B,C 两镇之间有木船摆渡,木船在静水中的速度为每小时3.5千米.已知A,C 两镇水路相距50千米,水流速度为每小时1.5千米.某人从A 镇上船顺流而下到B 镇,吃午饭用去1小时,接着乘木船又顺流而下到C 镇,共用8小时.那么A,B 两镇间的距离是多少千米?【分析与解】 如下画出示意图,有A →B 段顺水的速度为11+1.5=12.5千米/小时, 有B →C 段顺水的速度为3.5+1.5=5千米/小时. 而从A →C 全程的行驶时间为8-1=7小时. 设AB 长x 千米,有50712.55x x -+=,解得x =25. 所以A,B 两镇间的距离是25千米.5.一条大河有A,B 两个港口,水由A 流向B,水流速度是每小时4千米.甲、乙两船同时由A 向B 行驶,各自不停地在A,B 之间往返航行,甲船在静水中的速度是每小时28千米,乙船在静水中的速度是每小时20千米.已知两船第二次迎面相遇的地点与甲船第二次追上乙船(不算甲、乙在A 处同时开始出发的那一次)的地点相距40千米,求A,B 两个港口之间的距离.【分析与解】 设AB 两地的路程为单位“1”,则:甲、乙两人在A 、B 往返航行,均从A 点同时同向出发,则第n 次同向相遇时,甲、乙两人的路程差为2n ;甲、乙两人在A 、B 往返航行,均从A 点同时同向出发,则第n 次相向相遇时,甲、乙两人的路程和为2n ;甲、乙两人在A 、B 往返航行,分别从A 、B 两点相向出发,则第n 次同向相遇时,甲、乙两人的路程差为(2n -1);甲、乙两人在A 、B 往返航行,分别从A 、B 两点相向出发,则第n 次相向相遇时,甲、乙两人的路程和为(2n -1).有甲船的顺水速度为32千米/小时,逆水速度为24千米/小时, 乙船的顺水速度为24千米/小时,逆水速度为16千米/小时. 两船第二次迎面相遇时,它们的路程和为“4”;甲船第二次追上乙船时,它们的路程差为“4”.(一)第二次迎面相遇时,一定是甲走了2~3个AB 长度,乙走了2~1个AB 长度,设甲走了2+x 个AB 的长度,则乙走了2-x 个AB 的长度,有11322432x ++=112416x -+,解得13x =,即第二次迎面相遇的地点距A 点13AB 的距离.(二)①第二次甲追上乙时,有甲行走2y z +(y 为整数,z ≤1)个AB 的长度,则乙行走了24y z -+个AB 的长度,有322432y y z ++=22241624y y z --++,化简得320y z +=,显然无法满足y 为整数,z ≤1;②第二次甲追上乙时,有甲行走21y z ++(y 为整数,z ≤1)个AB 的长度,则乙行走了23y z -+个AB 的长度,有1322424y y z +++=12241616y y z--++,化简有3213y z +=,有0.5z =,4y =. 即第二次甲追上乙时的地点距B 点12AB 的距离,那么距A 也是12AB 的距离.所以,题中两次相遇点的距离为(111236⎛⎫-= ⎪⎝⎭AB ,为40千米,所以AB 全长为240千米.6.甲、乙两船分别在一条河的A ,B 两地同时相向而行,甲顺流而下,乙逆流而上.相遇时,甲乙两船行了相等的航程,相遇后继续前进,甲到达B 地、乙到达A 地后,都立即按原来路线返航,两船第二次相遇时,甲船比乙船少行1000米.如果从第一次相遇到第二次相遇的时间相隔为1小时20分,那么河水的流速为每小时多少千米? 【分析与解】 因为甲、乙第一次相遇时行驶的路程相等,所以有甲、乙同时刻各自到达B 、A 两地.接着两船再分别从B 、A 两地往AB 中间行驶.所以在第二次相遇前始终是一船逆流、一船顺流,那么它们的速度和始终等于它们在静水中的速度和.有:甲静水速度+水速=乙静水速度-水速.还有从开始到甲第一次到达B 地,乙第一次到达A 地之前,两船在河流中的速度相等.所以甲船比乙船少行驶的1000米是在甲、乙各自返航时产生的.甲乙返航时,有甲在河流中行驶的速度为:甲静水速度-水速,乙在河流中的速度为:乙静水速度+水速.它们的速度差为4倍水速.从第一次相遇到第二次相遇,两船共行驶了2AB 的路程,而从返航到第二次相遇两船共行驶了AB 的路程,需时间80÷2=40分钟. 有4倍水速=401000150060⎛⎫÷=⎪⎝⎭,有水速=375米/小时=0.375千米/小时. 即河水的流速为每小时0.375千米.7.甲、乙二人骑自行车从环形公路上同一地点同时出发,背向而行.现在已知甲走一圈的时间是70分钟,如果在出发后45分钟甲、乙二人相遇,那么乙走一圈的时间是多少分钟? 【分析与解】 甲行走45分钟,再行走70-45=25分钟即可走完一圈.而甲行走45分钟,乙行走45分钟也能走完一圈.所以甲行走25分钟的路程相当于乙行走45分钟的路程. 甲行走一圈需70分钟,所以乙需70÷25×45=126分钟.即乙走一圈的时间是126分钟.8.如图3-1,甲和乙两人分别从一圆形场地的直径两端点同时开始以匀速按相反的方向绕此圆形路线运动,当乙走了100米以后,他们第一次相遇,在甲走完一周前60米处又第二次相遇.求此圆形场地的周长.【分析与解】 注意观察图形,当甲、乙第一次相遇时,甲乙共走完12圈的路程,当甲、乙第二次相遇时,甲乙共走完1+12=32圈的路程. 所以从开始到第一、二次相遇所需的时间比为1:3,因而第二次相遇时乙行走的总路程为第一次相遇时行走的总路程的3倍,即100×3=300米. 有甲、乙第二次相遇时,共行走(1圈-60)+300,为32圈,所以此圆形场地的周长为480米.9.甲、乙二人在同一条椭圆形跑道上作特殊训练:他们同时从同一地点出发,沿相反方向跑,每人跑完第一圈到达出发点后立即回头加速跑第二圈,跑第一圈时,乙的速度是甲速度的23.甲跑第二圈时速度比第一圈提高了13;乙跑第二圈时速度提高了15.已知沿跑道看从甲、乙两人第二次相遇点到第一次相遇点的最短路程是190米,那么这条椭圆形跑道长多少米? 【分析与解】设甲跑第一圈的速度为3,那么乙跑第一圈的速度为2,甲跑第二圈的速度为4,乙跑第二圈的速度为125. 如下图,第一次相遇地点逆时针方向距出发点35的跑道长度. 有甲回到出发点时,乙才跑了23的跑道长度.在乙接下来跑了13跑道的距离时,甲以“4”的速度跑了122433÷⨯=圈.所以还剩下13的跑道长度,甲以4的速度,乙以125的速度相对而跑,所以乙跑了112124355⎡⎤⎛⎫⨯÷+ ⎪⎢⎥⎝⎭⎣⎦18=圈.也就是第二次相遇点逆时针方向距出发点18圈.即第一次相遇点与第二次相遇点相差31195840-=圈, 所以,这条椭圆形跑道的长度为1919040040÷=米.10.如图3-2,在400米的环形跑道上,A,B 两点相距100米.甲、乙两人分别从A ,B 两点同时出发,按逆时针方向跑步.甲每秒跑5米,乙每秒跑4米,每人每跑100米,都要停10秒钟.那么甲追上乙需要时间是多少秒?【分析与解】 如果甲、乙均不休息,那么甲追上乙的时间为100÷(5-4)=100秒. 此时甲跑了100×5=500米,乙跑了100×4=400米.而实际上甲跑500米,所需的时间为100+4×10=140秒,所以140~150秒时甲都在逆时针距A 点500处.而乙跑400米所需的时间为100+3×10=130秒,所以130~140秒时乙走在逆时针距B点400处.显然从开始计算140秒时,甲、乙在同一地点,即甲追上乙需要时间是140秒.11.周长为400米的圆形跑道上,有相距100米的A ,B 两点.甲、乙两人分别从A ,B 两点同时相背而跑,两人相遇后,乙即转身与甲同向而跑,当甲跑到A 时,乙恰好跑到B .如果以后甲、乙跑的速度和方向都不变,那么甲追上乙时,甲从出发开始,共跑了多少米? 【分析与解】 如下图,记甲乙相遇点为C.当甲跑了AC 的路程时,乙跑了BC 的路程;而当甲跑了400米时,乙跑了2BC 的路程. 由乙的速度保持不变,所以甲、乙第一次相向相遇所需的时间是甲再次到达A 点所需时间的12. 即AC=12×400=200(米),也就是甲跑了200米时,乙跑了100米,所以甲的速度是乙速度的2倍.那么甲到达A ,乙到达B 时,甲追上乙时需比乙多跑400-100=300米的路程,所以此后甲还需跑300÷(2-1)×2=600米,加上开始跑的l 圈400米.所以甲从出发到甲追上乙时,共跑了600+400=1000米.12.如图3-3,一个长方形的房屋长13米,宽8米.甲、乙两人分别从房屋的两个墙角出发,甲每秒钟行3米,乙每秒钟行2米.问:经过多长时间甲第一次看见乙?【分析与解】 开始时,甲在顺时针方向距乙8+13+8=29米.因为一边最长为 13、所以最少要追至只相差13,即至少要追上29-13=16米. 甲追上乙16米所需时间为16÷(3-2)=16秒,此时甲行了3×16=48米,乙行了2×16=32米.甲、乙的位置如右图所示:显然甲还是看不见乙,但是因为甲的速度比乙快,所以甲能在乙离开上面 的那条边之前到达上面的边,从而看见乙.而甲要到达上面的边,需再跑2米,所需时间为2÷3=23秒. 所以经过16+23=1623秒后甲第一次看见乙.13.如图3-4,学校操场的400米跑道中套着300米小跑道,大跑道与小跑道有200米路程相重.甲以每秒6米的速度沿大跑道逆时针方向跑,乙以每秒4米的速度沿小跑道顺时针方向跑,两人同时从两跑道的交点A 处出发,当他们第二次在跑道上相遇时,甲共跑了多少米?【分析与解】 如下图,甲、乙只可能在大跑道上相遇.并且只能在AB 顺时针的半跑道上.易知小跑道AB 逆时针路程为100,顺时针路程为200,大跑道上AB 的顺、逆时针路程均是200米.我们将甲、乙的行程状况分析清楚.当甲第一次到达B 时,乙还没有到达B 点,所以第一次相遇一定在逆时针的BA 某处.而当乙第一次到达B 点时,所需时间为200÷4=50秒,此时甲跑了50×6=300米,在B 点300-200=100米处.乙跑出小跑道到达A 需100÷4=25秒,则甲又跑了25×6=150米,在A 点左边(100+150)-200=50米处.所以当甲到达B 处时,乙还未到B 处,那么甲必定能在B 点右边某处与乙第二次相遇. 从乙再次到达A 处开始计算,还需(400-50)÷(6+4)=35秒,甲、乙第二次相遇,此时甲共跑了50+25+35=110秒.所以,从开始到甲、乙第二次相遇甲共跑了110×6=660米.14.如图3-5,正方形ABCD 是一条环形公路.已知汽车在AB 上时速是90千米,在BC 上的时速是120千米,在CD 上的时速是60千米,在DA 上的时速是80千米.从CD 上一点P,同时反向各发出一辆汽车,它们将在AB 中点相遇.如果从PC 的中点M,同时反向各发出一辆汽车,它们将在AB 上一点N 相遇.问A 至N 的距离除以N 至B 的距离所得到的商是多少?【分析与解】 如下图,设甲始终顺时针运动,乙始终逆时针运动,并设正方形ABCD 的边长为单位“1”.有甲从P 到达AB 中点O 所需时间为608090PD DA AO ++10.5608090PD =++. 乙从P 到达AB 中点O 所需时间为6012090PC BC BO ++10.56012090PD =++. 有甲、乙同时从P 点出发,则在AB 的中点O 相遇,所以有:16080PD +=160120PC +且有PD=DC-PC=1-PC,代入有116080PC -+160120PC =+,解得PC=58. 所以PM=MC=516,DP=38.现在甲、乙同时从PC 的中点出发,相遇在N 点,设AN 的距离为x .有甲从M 到达N 点所需时间为608090MD DA AN ++351816608090x+=++; 乙从M 到达N 点所需时间为6012090MC CB BN ++511166012090x-=++. 有351816608090x +++511166012090x -=++,解得132x =.即AN=132. 所以AN ÷BN 1313232=÷131=15.如图3-6,8时10分,有甲、乙两人以相同的速度分别从相距60米的A ,B 两地顺时针方向沿长方形ABCD 的边走向D 点.甲8时20分到D 点后,丙、丁两人立即以相同速度从D 点出发.丙由D 向A 走去,8时24分与乙在E 点相遇;丁由D 向C 走去,8时30分在F 点被乙追上.问三角形BEF 的面积为多少平方米?【分析与解】 如下图,标出部分时刻甲、乙、丙、丁的位置.先分析甲的情况,甲10分钟,行走了AD 的路程;再看乙的情况,乙的速度等于甲的速度,乙14分钟行走了60+AE 的路程,乙20分钟走了60+AD+DF 的路程.所以乙10分钟走了(60+AD+DF)-(AD)=60+DF 的路程.有601014AD AE +=6010DF +=,有()()607560AD DFAE ED AE =+⎧⎪⎨-=+⎪⎩然后分析丙的情况,丙4分钟,行了走ED 的路程,再看丁的情况,丁的速度等于丙的速度,丁10分钟行走了DF 的距离.。

小学五年级奥数讲义(教师版)30讲全

小学五年级奥数讲义(教师版)30讲全

小学奥数基础教程(五年级)第1讲数字迷(一)第16讲巧算24第2讲数字谜(二) 第17讲位置原则第3讲定义新运算(一) 第18讲最大最小第4讲定义新运算(二) 第19讲图形的分割与拼接第5讲数的整除性(一) 第20讲多边形的面积第6讲数的整除性(二) 第21讲用等量代换求面积第7讲奇偶性(一)第22讲用割补法求面积第8讲奇偶性(二)第23讲列方程解应用题第9讲奇偶性(三)第24讲行程问题(一)第10讲质数与合数第25讲行程问题(二)第11讲分解质因数第26讲行程问题(三)第12讲最大公约数与最小公倍数(一)第27讲逻辑问题(一)第13讲最大公约数与最小公倍数(二)第28讲逻辑问题(二)第14讲余数问题第29讲抽屉原理(一)第15讲孙子问题与逐步约束法第30讲抽屉原理(二)第1讲数字谜(一)数字谜的内容在三年级和四年级都讲过,同学们已经掌握了不少方法。

例如用猜想、拼凑、排除、枚举等方法解题。

数字谜涉及的知识多,思考性强,所以很能锻炼我们的思维。

这两讲除了复习巩固学过的知识外,还要讲述数字谜的代数解法及小数的除法竖式问题。

例1 把+,-,×,÷四个运算符号,分别填入下面等式的○内,使等式成立(每个运算符号只准使用一次):(5○13○7)○(17○9)=12。

分析与解:因为运算结果是整数,在四则运算中只有除法运算可能出现分数,所以应首先确定“÷”的位置。

当“÷”在第一个○内时,因为除数是13,要想得到整数,只有第二个括号内是13的倍数,此时只有下面一种填法,不合题意。

(5÷13-7)×(17+9)。

当“÷”在第二或第四个○内时,运算结果不可能是整数。

当“÷”在第三个○内时,可得下面的填法:(5+13×7)÷(17-9)=12。

例2 将1~9这九个数字分别填入下式中的□中,使等式成立:□□□×□□=□□×□□=5568。

小学三年级奥数讲义全集

小学三年级奥数讲义全集

--小学三年级奥数讲义全集专题一数图形专题简析:先确定起始点或起始边,数出图形的数量,再依次以后一个点(或边)数出图形的数量。

最后求出它们的和。

例1、数出下面图中有多少条线段?思路:以A点为左端点的线段有:AB、AC、AD共3条;以B点为左端点的线段有:BC、BD共2条;以C点为左端点的线段有:CD共1条。

所以图中共有线段3+2+1=6条。

试一试1:数出下图中有( )条线段。

例2、数出下图中有几个角?思路:以AO为一边的角有:∠AOB、∠AOC、∠AOD三个;以BO为一边的角有:∠BOC、∠BOD 两个;以CO为一边的角有:∠COD一个。

所以图中共有3+2+1=6个角。

试一试2:数出下图中有()个角。

例3数出下面图中共有多少个三角形。

思路:数三角形的个数与数线段、数角的方法相同:以AB为边的三角形有:△ABC、△ABD、△AB E三个;以AC为边的三角形有:△ACD、△ACE 二个;以AD为边的三角形有:△ADE一个。

所以图中共有三角形3+2+1=6个。

试一试3:数出下面图中共有( )个三角形。

专题二:找规律专题简析:按照一定次序排列起来的一列数,叫做数列。

寻找数列的排列规律,除了从相邻两数的和、差考虑,有时还要从积、商考虑。

例1 在括号内填上合适的数。

(1):3、6、9、12、()、()(2):1、2、4、7、11、( )、( )(3): 2,6,18,54,( ),( )思路:第(1)小题:前一个数加上3就等于后一个数,相邻两个数的差都是3。

所以()里分别填15和18;(2)第(2)小题:相邻两个数的差依次是1,2,3,4……这样下一个数应为11增加5,所以应填16;再下一个数应比16大6,填22。

(3)第(3)小题:后一个数是前一个数的3倍,所以()里应分别填162和486。

试一试1:先找规律再填数。

(1)2,4,6,8,10,(),();(2)1,2,5,10,17,( ),( );(3)1,5,25,125,( ),( );例2先找出规律,再在括号里填上合适的数。

六年级奥数教材(博识教育)

六年级奥数教材(博识教育)

目录第一讲百分数及其应用 (2)第二讲圆柱和圆锥 (7)第三讲比例 (12)第四讲正比例和反比例 (16)第五讲解决问题的策略及统计 (22)第六讲期中复习 (27)第七讲升中总复习专题一---数的认识 (32)第八讲升中总复习专题二---数的运算 (36)第九讲升中总复习专题三---式与方程 (40)第十讲升中总复习专题四---应用题(一) (44)第十一讲升中总复习专题五---应用题(二) (48)第十二讲升中总复习专题六---几何初步 (52)第十三讲升中综合训练(一) (56)第十四讲升中综合训练(二) (60)第十五讲升中综合训练(三) (65)第十六讲升中模拟考试………………………………………………………另附第一讲百分数及其应用【复习巩固】【整理与反思】怎样求一个数比另一个数多(或少)百分之几? 5比4多_______%你存过钱吗?什么是利息税?利息=_______×________什么是折扣和成数?原价打五折=原价×_______,原价的8成=原价×_______例1:求未知数xx-65%x=70练习:49+40%x=89例2:小强的妈妈在银行存了5000元,定期两年,年利率是2.70%,到期时,她可得税前利息多少钱?练习:陈老师出版了一本《小学数学解答100问》,获得稿费5000元,按规定,超出800元的部分应缴纳14%的个人所得税。

陈老师应交税多少钱?【基础训练】一、填空:1. 30平方米比24平方米多()% 比8千克多0.4千克是()千克 140千克比( )千克多40% 5千克减少20%后是()千克2. 某厂有男职工285人,女职工215人,男职工占全厂职工总人数的()%,在一次职工技能测试中,成绩优秀的有387人,优秀率()%。

3.王叔叔看中一套运动装,标价200元,经过还价,打八五折买到,王叔叔实际付了()元买了这套运动装。

4.动物园里有斑马x只,猴子的数量是斑马的6倍,动物园有猴子()只,猴子比斑马多()只。

(完整版)小学奥数教程(最完美)

(完整版)小学奥数教程(最完美)

目录第一讲奇妙的幻方 (3)练习卷 (9)第二讲可能性的大小(游戏与对策) (10)练习卷 (12)第三讲图形的面积(一) (13)第四讲认识分数 (17)练习卷 (21)第五讲行程中的相遇(相遇问题) (22)练习卷 (26)第六讲公因数与公倍数 (27)综合演练 (31)第一讲幻方(第一课时)【知识概述】在一个n×n的正方形方格中,填入一些连续的数字,使得所有的横、竖、斜列所加之和都相等,这样的正方形方格叫做幻方。

幻方一般分为奇数幻方和偶数幻方。

(n 是几就表示为几阶幻方)。

本讲,我们将来学习这方面的知识。

例题讲学例1在一个3×3的表格内,填入1-9九个数,(不能重复,不能遗漏),使得3个横列、3个竖列和2个斜列所加之和都相等。

可以怎样填?【和为15】【思路分析】这样的3×3幻方,在填写时有一定的规律和口诀:二、四为肩,六、八为足,左七右三,戴九履一,五为中央。

【注:戴指头,履指脚。

】试试填一填吧!幻方 (第二课时)知识概述:上一讲中,我们讲述了如何填写3×3的幻方,其实在幻方的知识世界里,像3×3、5×5、7×7……像这样幻方,称之为奇数幻方,这一讲我们将来学习如何填写五阶幻方。

例题:在一个5×5的方格中,填入1-25这25个数字,使5个横列、5个竖列、2个斜列所加之和都相等。

先试试看!看 样 子 ,要 想 顺 利 填 写 好 这 么 多 的 表格,还真 的 不容易,没有 口诀 真 的 不行,下 面这 个 口诀 要 记 牢:一居首行正中央,依次斜向右上方,右出框时左边写,上出框时下边放,双出占位写下方。

你能按顺序继续写下去吗?试试看吧!幻方(第三课时)根据上讲中的方法,把口诀运用到所有的奇数幻方中,可以继续填写七阶幻方、九阶幻方、十一阶幻方……,本讲,我们继续试着填写七阶幻方和九阶幻方。

【思路点拨】再来重温一下口诀吧!一居首行正中央,依次斜向右上方,右出框时左边写,上出框时下边放,双出占位写下方。

(完整word版)小学五年级奥数讲义(教师版)30讲全

(完整word版)小学五年级奥数讲义(教师版)30讲全

小学奥数基础教程(五年级)第1讲数字迷(一)第16讲巧算24第2讲数字谜(二) 第17讲位置原则第3讲定义新运算(一) 第18讲最大最小第4讲定义新运算(二) 第19讲图形的分割与拼接第5讲数的整除性(一) 第20讲多边形的面积第6讲数的整除性(二) 第21讲用等量代换求面积第7讲奇偶性(一)第22讲用割补法求面积第8讲奇偶性(二)第23讲列方程解应用题第9讲奇偶性(三)第24讲行程问题(一)第10讲质数与合数第25讲行程问题(二)第11讲分解质因数第26讲行程问题(三)第12讲最大公约数与最小公倍数(一)第27讲逻辑问题(一)第13讲最大公约数与最小公倍数(二)第28讲逻辑问题(二)第14讲余数问题第29讲抽屉原理(一)第15讲孙子问题与逐步约束法第30讲抽屉原理(二)第1讲数字谜(一)数字谜的内容在三年级和四年级都讲过,同学们已经掌握了不少方法。

例如用猜想、拼凑、排除、枚举等方法解题。

数字谜涉及的知识多,思考性强,所以很能锻炼我们的思维。

这两讲除了复习巩固学过的知识外,还要讲述数字谜的代数解法及小数的除法竖式问题。

例1 把+,-,×,÷四个运算符号,分别填入下面等式的○内,使等式成立(每个运算符号只准使用一次):(5○13○7)○(17○9)=12。

分析与解:因为运算结果是整数,在四则运算中只有除法运算可能出现分数,所以应首先确定“÷”的位置。

当“÷”在第一个○内时,因为除数是13,要想得到整数,只有第二个括号内是13的倍数,此时只有下面一种填法,不合题意。

(5÷13-7)×(17+9)。

当“÷”在第二或第四个○内时,运算结果不可能是整数。

当“÷”在第三个○内时,可得下面的填法:(5+13×7)÷(17-9)=12。

例2 将1~9这九个数字分别填入下式中的□中,使等式成立:□□□×□□=□□×□□=5568。

四年级奥数全套奥数讲义

四年级奥数全套奥数讲义

四年级奥数全套奥数讲义目录第1讲巧找规律填数 (1)第2讲巧解数字谜 (7)第3讲巧算与速算(一) (16)第4讲巧算与速算(二) (23)第5讲巧添运算符号 (32)第6讲巧解新运算 (39)第7讲巧解年龄问题 (46)第8讲巧用消去法解题 (52)第9讲巧解智巧问题 (61)第10讲巧用列举法解题 (68)第11讲巧用数字问题(一) (76)第12讲巧解图形拼割问题 (83)第13讲巧算面积 (93)第14讲巧解逻辑推理 (100)第15讲巧解格点与面积 (108)第16讲巧解还原问题 (116)第17讲巧求平均问题 (123)第18讲巧解数字问题(二) (130)第19讲巧求讲数问题 (136)第20讲巧解相遇问题 (145)第21讲巧解追及问题 (154)第22讲巧解盈亏问题 (161)第23讲巧解鸡兔同笼问题 (168)第24讲巧解一元一次方程 (174)第25讲巧解行船问题 (182)第26讲巧用对应与分组解题 (189)第27讲巧做游戏与对策 (195)巧找规律填数巧点晴——方法和技巧一、求两数的和、差、积、商[例1]根据下图前两个图中各数之间的关系,想一想第三个图中的括号里应填什么数。

做一做1 根据前两个图中各数之间的关系,想一想第三个图中的括号里填什么数。

(1)(2) (3)[例2]找规律计算。

(1)81-18=(8-1)×9=7×9=63 (2)72-27=(7-2)×9=5×9=45 (3)63-36=(□-□)×9=□×9=□做一做2 找规律计算。

(1)62+26=(6+2)×11=8×11=88(2)87+78=(8+7)×11=15×11=165(3)54+45=(□+□)×11=□×11=□[例3]观察下列算式的规律,在()中填上符合同样规律的数。

小学数学奥数方法讲义40讲大全集(附解题思路和).doc

小学数学奥数方法讲义40讲大全集(附解题思路和).doc

第一讲观察法在解答数学题时,第一步是观察。

观察是基础,是发现问题、解决问题的首要步骤。

小学数学教材,特别重视培养观察力,把培养观察力作为开发与培养学生智力的第一步。

观察法,是通过观察题目中数字的变化规律及位置特点,条件与结论之间的关系,题目的结构特点及图形的特征,从而发现题目中的数量关系,把题目解答出来的一种解题方法。

观察要有次序,要看得仔细、看得真切,在观察中要动脑,要想出道理、找出规律。

*例1(适于一年级程度)此题是九年义务教育六年制小学教科书数学第二册,第11页中的一道思考题。

书中除图1-1的图形外没有文字说明。

这道题旨在引导儿童观察、思考,初步培养他们的观察能力。

这时儿童已经学过20以内的加减法,基于他们已有的知识,能够判断本题的意思是:在右边大正方形内的小方格中填入数字后,使大正方形中的每一横行,每一竖列,以及两条对角线上三个数字的和,都等于左边小正方形中的数字18。

实质上,这是一种幻方,或者说是一种方阵。

解:现在通过观察、思考,看小方格中应填入什么数字。

从横中行10+6+□=18会想到,18-10-6=2,在横中行右面的小方格中应填入2(图1-2)。

从竖右列7+2+□=18(图1-2)会想到,18-7-2=9,在竖右列下面的小方格中应填入9(图1-3)。

从正方形对角线上的9+6+□=18(图1-3)会想到,18-9-6=3,在大正方形左上角的小方格中应填入3(图1-4)。

从正方形对角线上的7+6+□=18(图1-3)会想到,18-7-6=5,在大正方形左下角的小方格中应填入5(图1-4)。

从横上行3+□+7=18(图1-4)会想到,18-3-7=8,在横上行中间的小方格中应填入8(图1-5)。

又从横下行5+□+9=18(图1-4)会想到,18-5-9=4,在横下行中间的小方格中应填入4(图1-5)。

图1-5是填完数字后的幻方。

例2看每一行的前三个数,想一想接下去应该填什么数。

(适于二年级程度)6、16、26、____、____、____、____。

小学数学奥数基础教程(六年级)目30讲全

小学数学奥数基础教程(六年级)目30讲全

小学数学奥数基础教程(六年级)目30讲全小学奥数基础教程(六年级) - 1 - 小学奥数基础教程(六年级)第1讲比较分数的大小第2讲巧求分数第3讲分数运算的技巧第4讲循环小数与分数第5讲工程问题(一) 第6讲工程问题(二) 第7讲巧用单位“1” 第8讲比和比例第9讲百分数第10讲商业中的数学第11讲圆与扇形第12讲圆柱与圆锥第13讲立体图形(一) 第14讲立体图形(二) 第15讲棋盘的覆盖第16讲找规律第17讲操作问题第18讲取整计算第19讲近似值与估算第20讲数值代入法第21讲枚举法第22讲列表法第23讲图解法第24讲时钟问题第25讲时间问题第26讲牛吃草问题第27讲运筹学初步(一)第28讲运筹学初步(二)第29讲运筹学初步(三)第30讲趣题巧解第一讲比较分数的大小同学们从一开始接触数学,就有比较数的大小问题。

比较整数、小数的大小的方法比较简单,而比较分数的大小就不那么简单了,因此也就产生了多种多样的方法。

对于两个不同的分数,有分母相同,分子相同以及分子、分母都不相同三种情况,其中前两种情况判别大小的方法是:分母相同的两个分数,分子大的那个分数比较大;分子相同的两个分数,分母大的那个分数比较小。

第三种情况,即分子、分母都不同的两个分数,通常是采用通分的方法,使它们的分母相同,化为第一种情况,再比较大小。

由于要比较的分数千差万别,所以通分的方法不一定是最简捷的。

下面我们介绍另外几种方法。

1.“通分子”。

当两个已知分数的分母的最小公倍数比较大,而分子的最小公倍数比较小时,可以把它们化成同分子的分数,再比较大小,这种方法比通分的方法简便。

小学奥数基础教程(六年级) - 2 - 如果我们把课本里的通分称为“通分母”,那么这里讲的方法可以称为“通分子”。

2.化为小数。

这种方法对任意的分数都适用,因此也叫万能方法。

但在比较大小时是否简便,就要看具体情况了。

3.先约分,后比较。

有时已知分数不是最简分数,可以先约分。

小学奥数系统讲义完整版

小学奥数系统讲义完整版

小学奥数系统复习讲义(完整版)小学奥数大约80个知识点,可分成5大类,数论和行程是重点也是难点第一部分计算能力万丈高楼平地起,计算能力任何时候都是学好数学的根基,必须高度重视! 基本公式1 .运算顺序第一级:括号:()T T{ }第二级:X+:同一级别可以交换运算次序第三级:+ —: 同一级别可以交换运算次序2. 去括号①a+(b+ c)=a + b + c a+ (b —c)=a + b— c②a—(b+ c)=a — b — c a— (b —c)=a—b+ c③a>(b疋)=a花比a>(b -c)=a以弋④a—b >0)=a —a—b 弋)=a —xc3 .分配律/结合律乘法:a (b + c) = a b+ a>ca>b+ a>c = a (b + c)除法:(a+ b) —= a —+ b—ca—:+ b—c = (a + b)—4 .两个必须掌握的性质两个数的和一定,则两数越相近,积越大5 .几个计算公式__ 2 2 2完全平方和(差)公式:( a±b) = a ±ab+b2 2平方差公式: a -b = (a+b)(a-b)求和公式一:1+2+3+ ....... +n =两个数的积一定,则两数越分散,和越大求和公式二:1 +1 22 +3 2+……n =3 3 3 3求和公式三:1 +2 +3 +……n = __________________________6. 速算巧算基本方法凑整法、改变运算次序法、连续数求和、基准法、分组法、拆分法7. 等差数列,等比数列,【拆分与裂项】,【换元法】,【错位相消法】,【构造法】等较难的计算方法。

拆分裂项公式:等差数列公式:简单等比公式:例题分析1. 393+404+397+398+405+401+400+399+391+4022. 比较下面A,B 两数的大小:A=2009X 2009,B=2008X 20103. 99讣9创x 99 —99 4 199—99结果末尾有多少个零?訐胆,.p “站-1 ?4. 100 + 99+ 98 —97 —96 —95+ ……+ 10+ 9 + 8—7 —6—5+ 4 + 3+ 2 —1巩固练习5. 376 + 385 + 391 + 380 + 377 + 389 + 383 + 374 + 366 + 3786. 1 —50+2 —50+3 —50+50 - 50 2010二二呦10第二部分基础知识基础知识点列表7. 9999999 >2009 7777 >333 出1118. 99*.**.+ 9 乂gg.*・*.*9 + -99*—..* 9 =99Ti9. 比较下面A,B两数的大小:归一问题A =987654321 >23456789;B =987654322 >2345678810. 1996 + 1994 —1992 —1990 + 1988 + 1986 —1984 —1982 + 1980 + 1978—1976 —1974 + 1972 + 1970…… + 4 + 2【含义】在解题时,先求岀一份是多少(即单一量),然后以单一量为标准,求岀所要求的数量。

小学奥数学习资料[完整讲义]

小学奥数学习资料[完整讲义]

第一讲观察法————————————————姚老师数学乐园广安岳池姚文国在解答数学题时,第一步是观察。

观察是基础,是发现问题、解决问题的首要步骤。

小学数学教材,特别重视培养观察力,把培养观察力作为开发与培养学生智力的第一步。

观察法,是通过观察题目中数字的变化规律及位置特点,条件与结论之间的关系,题目的结构特点及图形的特征,从而发现题目中的数量关系,把题目解答出来的一种解题方法。

观察要有次序,要看得仔细、看得真切,在观察中要动脑,要想出道理、找出规律。

*例1(适于一年级程度)此题是九年义务教育六年制小学教科书数学第二册,第11页中的一道思考题。

书中除图1-1的图形外没有文字说明。

这道题旨在引导儿童观察、思考,初步培养他们的观察能力。

这时儿童已经学过20以内的加减法,基于他们已有的知识,能够判断本题的意思是:在右边大正方形内的小方格中填入数字后,使大正方形中的每一横行,每一竖列,以及两条对角线上三个数字的和,都等于左边小正方形中的数字18。

实质上,这是一种幻方,或者说是一种方阵。

解:现在通过观察、思考,看小方格中应填入什么数字。

从横中行10+6+□=18会想到,18-10-6=2,在横中行右面的小方格中应填入2(图1-2)。

从竖右列7+2+□=18(图1-2)会想到,18-7-2=9,在竖右列下面的小方格中应填入9(图1-3)。

从正方形对角线上的9+6+□=18(图1-3)会想到,18-9-6=3,在大正方形左上角的小方格中应填入3(图1-4)。

从正方形对角线上的7+6+□=18(图1-3)会想到,18-7-6=5,在大正方形左下角的小方格中应填入5(图1-4)。

从横上行3+□+7=18(图1-4)会想到,18-3-7=8,在横上行中间的小方格中应填入8(图1-5)。

又从横下行5+□+9=18(图1-4)会想到,18-5-9=4,在横下行中间的小方格中应填入4(图1-5)。

图1-5是填完数字后的幻方。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1讲图形计数1.图中有多少个小正方体?2.这堆木方块共有多少块?你能用几种不同的方法数出来和算出来吗?3.这堆木方块共有多少块?(中间打阴影部分是空心)4. 用不同的方法数这两个图形各有多少个方块?5.将8个小立方块组成“丁”字型,再将表面都涂成红色,然后就把小立方块分开,(1)3面被涂成红色的小立方块有多少个?(2)4面被涂成红色的小立方块有多少个?(3)5面被涂成红色的小立方块有多少个?第1讲我会比一比1、下面每题的口里能填哪些数?(1)374 > 3□7 (2)374 < 3□7(3)□16 < 609 (4)□28 > 3902、在()里填上“>”“<”或“=”。

(1)a-3=b-7 a()b (2)a+2=b-6 a()b(3)a+1=b+6 a()b (4)a-3()a-73、仔细观察,不用计算,按照每张卡片上三个数相加的和从大到小排列。

4、比较a+3 、a-1 、a-7、a+5的大小,把它们按从小到大的顺序表示。

5、白猫和黑猫跑得一样快,谁先捉到老鼠?6、杯子中有1,2,3三块石头,要使水面下降的尽量少,应该把其中哪一块拿出来?要使水面下降的尽量多,应该把其中哪一块拿出来?7、把两块同样大小的橡皮泥捏成不同的形状后,放在天平的两边。

天平会是下列哪种情况?8、小鹿、小松鼠、小猴、熊猫在玩翘翘板,你能说出它们的轻重顺序?9、把2克糖放进3毫升的水中,把5克糖放进10毫升的水中,哪个更甜。

第1讲找方法算得快1.计算下面各题.(1)18+26+24+32 (2)4+4+4+4+6+6(3)94-8+8-9+9 (4)53+14+37-14(5)61+6-12+12-7 (6)66-22-262. 下面的题怎样算比较简便呢?(1)73-32-18 (2)87-15-4-1(3)76-(32+16) (4)85-(15+23)3. 比一比看谁算得快!(1)10+11+13+15+16 (2)18+19+20+21+22(3)103+102+101+99+98+97 (4)20-19+18-17+16-15+14-13+12-11 (5)36+45-16-25 (6)37-12+62-17第2讲有序的思考问题1、数一数,下图中有多少条线段?2、数一数,下图中有多少个点?3、数一数,下图中有多少个立方体?4、数一数,下图中有多少个长方形?5、数一数,下图中有多少个三角形?6、数一数下图中有多少个正方形?7、有一把尺子,因磨损只能看清“0”“2”“5”“8”“9”,你能用这把尺子准确画出多少条不同长度的线段?8、数一数,下图中共有多少条线段?第2讲应用题1. 一节地铁车厢里有50位乘客,到王府井站有30人下车,又上来18人,现在车上和原来比,人多了还是少了,多(或少)几个人?2. 商店里每天卖出电脑10台,卖出的彩电比电脑少5台,一个星期商店卖出电脑和彩电一共多少台?3. 菜场原来青菜比萝卜多7筐,现在又运来14筐萝卜和11筐青菜.现在是青菜多还是萝卜多?多几筐?4. 小东有12张生日贺卡,小平和小东有同样多的贺卡,小云的生日贺卡比小平少3张,三人一共有多少张生日贺卡?5. 小红到商店去买铅笔,她的钱若买3枝还剩1角;若买4枝,就差4角.小红一共有多少钱?6. 三棵树上共有27只鸟,从第一棵飞到第二棵2只,从第二棵飞到第三棵3只,从第三棵飞到第一棵4只,这时,三棵树上的鸟同样多.原来每棵树上各有几只鸟?第2讲我会数图形1.数一数.()条线段()个锐角2.数一数,图中有多少个三角形?()个()个()个()个3.图中有多少个正方形?()个()个4.数一数,图形中有几个长方形?5.数一数,图中共有几个三角形?几个正方形?()个三角形()个()个()个正方形第3讲看谁算的好1、计算:(1)7+7+7+7+7+7+12 (2)5+5+5+5+5+32、计算:(1)19+43+72+11+28 (2)5+33+81+35+273、计算:(1)84+23-14 (2)34+17+22-24-12 (3)74-17-23 (4)87-(21+17)4、计算下列各题。

(1)56+38 (2)39+85 (3)154+78+39(4)98+197+96+8 (5)34+35+37+38+40 (6)67+69+70+71+745、计算下列各题。

(1)1+2+3+…+98+99+10 (2)21+22+23+24+25+26+27+28+29+30 (3)9+11+13+15+17+19+21+23 (4)1+4+7+10+13+16+19(5)2+3+4+5+6+5+4+3+2+1 (6)1+2+3+…+49+50+49+…+3+2+16、计算下列各题。

(1)10﹣20+30﹣40+50﹣60+70﹣80+90(2)(12+14+16+18+20)-(11+13+15+17+19)第3讲移多补少1.甲笼里有28只兔,乙笼里有6只,怎样调整才能使两笼兔子的只数同样多?(兔子总数不变)2.有两盘桃,从第一盘里拿3个放入第二盘后,两盘桃就同样多.已知第二盘原来有8个桃,第一盘原来有几个桃?3. 两层书架上共有56本书,从下层取20本放到上层后,两层书架上的书同样多.原来上层有几本书?4.学校有甲、乙两个鸽棚,甲鸽棚里的鸽子比乙鸽棚多21只,从甲鸽棚里捉几只鸽子放入乙鸽棚后,甲鸽棚就比乙鸽棚多3只鸽子?5.二年级两个班各有48人,从二(1)班调了几个女生到二(2)班后,二(1)班就比二(2)班少了12人.现在二(2)班有学生多少人?6.甲筐里有15个瓜,乙筐里有27个瓜,爷爷又摘回20个瓜放进这两个筐,怎样放才能使两筐瓜的个数同样多?第3讲植树问题1、把一根粗细均匀的木头锯成6段,每锯一次需要3分钟,一共需要多少分钟?2、把一根粗细均匀的木头锯成5段需要20分钟,每锯一次要用多少分钟?3、一根木料长10米,要把它锯成一些2米长的小段,每锯一次要用4分钟,共要用多少分钟?4、公园的一条林荫大道长300米,在它的一侧每隔30米放一个垃圾桶,需多少个垃圾桶?5、学校有一条长60米的走道,计划在道路两旁栽树。

每隔3米栽一棵,(两端都栽),共需多少棵树苗?6、测量人员测量一条路的长度。

先立了一个标杆,然后每隔5米立一根标杆。

当立杆第10根时,第1根与第10根相距多少米?7、一个圆形池塘,它的周长是27米,每隔3米栽种一棵树.问:共需树苗多少株?8、有一正方形操场,每边都栽种5棵树,四个角各种1棵,共种树多少棵?9、小叮当家有个老式的钟,每敲响一下延时3秒,间隔1秒后再敲第二下。

他每天就听着这个钟起床,假如从第一下钟声响起,小叮当就醒了,那么到小叮当确切判断出已是清晨6点,前后共经过了几秒钟?10、有9棵树,要求栽成8行,每行3棵,应该怎样栽?第4讲有趣的自然数串1、找规律填空。

(1)102、98、94、90、()、82 …(2)1、3、9、27、()…(3)1、3、4、7、1、8、9、7、()、3、9、…(4)1、7、7、9、3、()、1、7、…(5)2、4、6、10、16、()、42、…(6)1、2、5、10、17、()、37、…(7)56、1、54、4、52、9、()、()、…(8)100、84、70、58、()、40 、…2、如右图,(1)根据规律,找出(1)中第14行,从右往左第2个数;(2)根据规律,找出(2)中第14行,从右往左第2个数。

3、除0外的全体自然数如右表排列,请问:(1)数51在哪个字母下面?(2)数68在哪个字母下面? (3)数82在哪个字母下面?4、小明从1写到120,他共写了多少个数字“1”?5、下列奇数列有多少个数:3、5、7、…、35、37 ?6、1,2,3,4,5,……98,99,100这100个数,从左往右依次排列起来,那么你知道“68”中的“6”是这个数的第几个数字么?7、一只老猫捉了16只老鼠,其中有一只小白鼠。

老猫自言自语地说:“吃以前叫它们如右图站成一个圆圈,我按逆时针方向,从1号开始吃,隔一个吃掉一个,但把最后剩下的一个放了。

”这话被聪明的小白鼠听见了,于是它站在了某个号的位置上,最后没有被吃掉。

小朋友,你知道小白鼠站的是第几号位置吗?第4讲余数的妙用1.(1)○□□△○□□△○□□△……第22个图形是().(2)○◎□○◎□○◎□○……第20个图形是().2.一串珠子,按下图这样排列,那么第32颗是什么颜色,第44颗呢?3. 电视塔上有一串彩灯,按“红、黄、绿、白”的顺序排列起来,请你算一算,第14盏彩灯是什么颜色?第27盏、第36盏彩灯又是什么颜色?4.一列数按“1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2,8, 5,7…”排列,问第50个数字是几?第96个数字是几?5.2007年5月1日是星期三,再过20天是星期几?6.王老师把1~64号拼音卡片依次发给甲、乙、丙、丁四个小朋友,第59号卡片应发给谁?第4讲智力趣题1.妹妹今年6岁,哥哥今年11岁,当哥哥16岁时,妹妹几岁?2.小明从学校步行到少年宫要25分钟,如果每人的步行速度相同,那么小明、小丽、小刚、小红4个人一起从学校步行到少年宫,需要多少分钟?3.一张长方形彩纸有四个角,沿直线剪去一个角后,还剩几个角?(画图表示)4.有16个小朋友在操场上玩捉迷藏游戏,已经捉住了9人,藏着的还有几人?5.教室里有8盏灯,全部亮着,现在关掉了4盏,教室里还剩几盏灯?6.19名战士要过一条河,只有一条小船,船上每次只能坐4名战士,至少要渡几次,才能使全体战士过河?7.布袋里有两只红袜子和两只黑袜子,至少拿出几只,才能保证配成一双同样颜色的袜子?8.布袋里有形状大小完全一样的篮球和黄球各4个,要保证一次拿出两种颜色不相同的球,至少必须摸出几个球?9.跷跷板的两边各有四个铁球,这时跷跷板保持平衡。

如果拿掉一个铁球,跷跷板上还有几个铁球?10.一根电线,对折再对折,最后从中间剪开,剪开的电线一共有几段?11.一位厨师用西红柿、青椒、土豆、云豆、茄子中的任意两种蔬菜炒一盘菜,而且搭配不同,算一算他做多能炒几盘菜?12.六名选手参加乒乓球比赛,每两人都要赛一场,他们一共要赛几场?13.如果“△⑩口”表示△乘以△,再乘以口,那么“4⑩3”所得结果的数是几?第5讲考虑所有可能情况1.用分别写着5、4.、3三张纸片,可以组成多少个不同的三位数?2.把4个苹果放到同样的2个抽屉里,有多少种不同的放法?3. 问:整数4有多少种不同的分拆方式?(0除外)4.邮局门前共有4级台阶.若规定一步只能登上一级或两级,问上这个台阶共有多少种不同的上法?5.见下式,满足下式的两个二位数,共有多少对?6.像下图竖式那样十位数字和个位数字顺序相颠倒的一对二位数相加之和是99,问:这样的两位数共有多少对?7.将无法区分的7个苹果放在三个同样的盘子里,允许有的盘子空着不放。

相关文档
最新文档