1.3.2有理数的减法(第二课时)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.3.2 有理数的减法(第二课时)

教学目标

1.知识与技能

使学生理解加减法统一成加法的意义,能熟练地进行有理数加减法的混合运算.

2.过程与方法

通过加减法的相互转化,培养学生的应变能力,口头表达能力及计算能力.

3.情感、态度与价值观

敢于面对数学活动中的困难,并有独立克服困难和运用知识解决问题的成功体验.

教学重点难点

重点:把加减混合运算理解为加法算式.

难点:把省略括号的和的形式直接按有理数加法进行计算.

教与学互动设计

(一)创设情境,导入新课

竞赛活动 比一比,看谁算得快

(-20)+(+3)-(-5)-(+7)

(-7)+(+5)+(-4)-(-10)

(二)合作交流,解读探究

师:对比上式①,你首先想到将原式如何变形?

生:根据有理数的减法法则把减号统一成加号,即原式变为:

-20+(+3)+(+5)+(-7)

师:很好,可见在引入相反数后,加减混合运算可以统一为加法运算.用字母可表示成:

a+b-c=a+b+(-c ).

下面:请大家一起来练习计算以上两道题.

学生作业练习

师针对学生做的方法评析,作以下说明.

1.式③表示的是-20,+3,+5,-7的和,为了书写简单,可以省略式中的括号,•从而有-20+3+5-7. 大家要注意到,虽然加号和括号都省略了,但-20+3+5-7仍表示-20,+3,+5,-•7的和所以这个算式可以读作“负20,正3,正5,负7的和”.当然,•按运算意义也可读作“负20加3加5减7”. 学生尝试用两种读法读.同桌间互相出式,并读出两种读法.

2.刚才在大家练习的过程中,我们看到有两种典型的处理方法,•一是将原式按次序计算;二是将原式换成(-20-7)+(3+5).大家观察比较一下,•你看哪种方法更好,为什么?

生:第二种过程更简便、合理.因为它运用了有理数加法的交换律、结合律.

师:太棒了,在有理数的加法运算中,通常应用加法运算律,可使计算简化,根据刚才过程可见,在有理数加减混合运算统一成加法后,一般应注意运算的合理性,适当运用运算律.大家一起看下面问题:

(三)应用迁移,巩固提高

例1 把(+32)+(-54)-(+51)-(-3

1)-(+1)写成省略加号的和的形式,并计算. 解:(+32)+(-54)-(+51)-(-3

1)-(+1) =(+32)+(-54)-(-51)-(+3

1)-(+1) =32-54-51+3

1-1 =32+31-54-5

1-1 =1-1-1

=-1

说明:解题过程由学生口述、教师板演,同时提问每步的根据和目的,并强调书写的规范化. 师:纵观这道题的解答过程,你能总结得到什么?小组同学可作交流.

学生小组交流,并总结.

【总结】 有理数的加减混合运算的计算有如下几个步骤:

1.将减法转化成加法运算:

2.省略加号和括号;

3.运用加法交换律和结合律,将同号两数相加;

4.按有理数加法法则计算.

例2 比谁算得对,算得快

(1)(+

72)+(-94)-(+95)-(-57

)-(+1) (2)-7-(-8)-(-712)-(+9)+(-10)+1112 (3)-99+100-97+98-95+96+…+2

(4)-1-2-3-…-100

【点拨】 按照正确的运算法则进行运算.

【答案】 (1)-1,(2)1,(3)50,(4)-5050

例3 银行储蓄所办理了8件工作业务,取出950元,存进500元,取出800元,•存进1200元,存进了2500元,取出1025元,取出200元,存进400元,这时,银行现款是增加了,还是减少了?增加或减少了多少元?

【点拨】 根据题意把取出记为“-”,存进记为“+”,列出算式进行运算.

解:每次存款数记为-950,+500,-800,+1200,+2500,-1025,-200,+400.

则总额为:

-950+500+(-800)+1200+2500+(-1025)+(-200)+400

=1625(元)

答:增加了1625元.

备选例题 (2003·桂林)计算1-3+5-7+9-11+…+97-99

【点拨】 抓住算式的结构规律,可以考虑两两结合.

解:原式=(1-3)+(5-7)+(9-11)+…+(97-99)=-50

(五)总结反思,拓展升华

回顾一下本节课所学内容,你学会了什么?

说明:在学生思考回答的过程中将本节的重点知识纳入知识系统.

1.若x<0,则│x-(-x )│等于 (D )

A.-x

B.0

C.2x

D.-2x

2.“*”表示一种运算,规则是

3*6=3-4+5-6

0*6=0-1+2-3+4-5+6

-3*6=-3-(-2)+(-1)-0+1-2+3-4+5-6

3*(-6)=3-2+1-0+(-1)-(-2)+(-3)-(-4)+(-5)-(-6)

0*(-6)=0-(-1)+(-2)-(-3)+(-4)-(-5)+(-6)

(-3)*(-6)=(-3)-(-4)+(-5)-(-6)

(1)试根据以上的运算规则,填写下列各式的运算过程和结果:

①(-4)*4= -4-(-3)+(-2)-(-1)+0-1+2-3+4 = 0 ;

②1*10= 1-2+3-4+5-6+7-8+9-10 = -5 ;

③(-5)*(-11)= (-5)-(-6)+(-7)-(-8)+(-9)-(-10)+(-11)

= -8 ;

④0*(-4)= 0-(-1)+(-2)-(-3)+(-4) = -2 ;

⑤4*(-5)= 4-3+2-1+0-(-1)+(-2)-(-3)+(-4)-(-5) = 5 ;

(2)根据以上的运算规则,填写结果:

①1*100= -50 ;

②(-100)*(-1)= -50 ;

③若(-1)*n=2,则n 为 C ;(在下列答案中选:A.5 B.-4 C.-4或5 D.无法确定) ④若n*(-3)=-2,则n= -1或6 ;若n*(-1)=-2,则n= -3或-4 .

(六)课堂跟踪反馈

1.填空题

(1)式子-6-8+10+6-5读作 负6,负8,正10,正6与负5的和 ,或读作 负6•减8•加10加6减5 .

(2)把-a+(+b )-(-c )+(-d )写成省略加号的和的形式为 -a+b +c-d .

(3)若│x-1│+│y+1│=0,则x-y= 2 .

(4)运用交换律填空:-8+4-7+6= -8 – 7 + 4 + 6

2.选择题

(1)已知m 是6的相反数,n 比m 的相反数小2,则m+n 等于(D )

A .4

B .8

C .-10

D .-2

(2)使等式│-5-x │=│-5│+│x │成立的x 是(D )

A .任意一个数

B .任意一个正数

C .任意一个负数

D .任意一个非负数

相关文档
最新文档