七年级数学下册分式方程及分式应用题

合集下载

初一数学分式方程试题答案及解析

初一数学分式方程试题答案及解析

初一数学分式方程试题答案及解析1.解方程:.【答案】x=10【解析】解分式方程的一般步骤:先去分母化分式方程为整式方程,再解这个整式方程即可,注意解分式方程最后一步要写检验.方程两边都乘以(x﹣2)(x+2)得,x(x+2)-3(x-2)=(x+2)(x-2)x2+2x-3x+6=x2-4-x=-10x=10经检验,x=10是原方程的解,所以,原分式方程的解是x=10.本题涉及了解分式方程,解方程是中考必考题,一般难度不大,要特别慎重,尽量不在计算上失分.2.先化简,然后从-1、1、2三个数中选取一个你认为合适的数作为x的值代入求值.【答案】,当时,原式=2【解析】先对小括号部分通分,同时把除化为乘,然后约分,最后选择一个合适的x的值代入求值.原式当时,原式.【考点】分式的化简求值点评:计算题是中考必考题,一般难度不大,要特别慎重,尽量不在计算上失分.3.解分式方程:.【答案】【解析】先去分母得到整式方程,再解所得的整式方程即可,注意解分式方程最后要写检验.去分母得解得经检验是原方程的增根∴原方程无解.【考点】解分式方程点评:解方程是中考必考题,一般难度不大,要特别慎重,尽量不在计算上失分.4.若为常数,当为时,方程有解.【答案】【解析】有解,即x-3≠0,则x≠3.把方程去分母得x-2(x-3)=m,即-x+6-m=0,所以x=6-m,则6-m≠3,解得m≠3【考点】分式方程点评:本题难度中等,主要考查学生对分式方程知识点的掌握,求出分母x-3的取值范围为解题关键.5.【答案】(增根)【解析】解分式方程的一般步骤:先去分母化分式方程为整式方程,再解这个整式方程即可,注意解分式方程最后一步要写检验.两边同乘得解这个方程得经检验是增根,所以原方程无解.【考点】解分式方程点评:解方程是中考必考题,一般难度不大,要特别慎重,尽量不在计算上失分.6.某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.(1)求每件甲种、乙种玩具的进价分别是多少元?(2)商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?【答案】甲,乙两种玩具分别是15元/件,25元/件;因为y是整数,所以y取20,21,22,23.共有四种方案.【解析】解:设甲种玩具进价x元/件,则乙种玩具进价为(40-x)元/件,,经检验x=15是原方程的解.∴5.甲,乙两种玩具分别是15元/件,25元/件;(2)设购进甲种玩具y件,则购进乙种玩具(48-y)件,解得.因为y是整数,所以y取20,21,22,23.共有四种方案.【考点】分式方程和不等式组应用点评:本题难度中等,主要考查学生对分式方程和不等式组解决实际问题的应用。

七年级数学下.2 分式方程的应用

七年级数学下.2 分式方程的应用

9.3.2 分式方程的应用 一、选择:1.一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?设江水的流速为x 千米/时,那么可列方程〔 〕A .x x -=+306030100B .306030100-=+x xC .x x +=-306030100D .306030100+=-x x2.某学校学生进行急行军训练,预计行60千米的路程在下午5时到达,后来由于把速度加快20% ,结果于下午4时到达,求原方案行军的速度.设原方案行军的速度为xkm /h ,,那么可列方程〔 〕A .1%206060++=x x B. 1%206060-+=x xC. 1%2016060++=)(x xD. 1%2016060-+=)(x x 3.赵强同学借了一本书,共280页,要在两周借期内读完,当他读了一半时,发现平时每天要多读21页才能在借期内读完.他读了前一半时,平均每天读多少页?如果设读前一半时,平均每天读x 页,那么以下方程中,正确的选项是 〔 〕A 、1421140140=-+x xB 、1421280280=++x xC 、1211010=++x xD 、1421140140=++x x4.“五一〞江北水城文化旅游节期间,几名同学包租一辆面包车前去旅游,面包车的租价为180元,出发时又增加了两名同学,结果每个同学比原来少摊了3元钱车费,设参加游览的同学共x 人,那么所列方程为 〔 〕A .32180180=+-x xB .31802180=-+x xC .32180180=--x xD .31802180=--x x二、解答题:5.A、B两地的距离是80公里,一辆公共汽车从A地驶出3小时后,一辆小汽车也从A地出发,它的速度是公共汽车的3倍,结果小汽车比公共汽车迟20分钟到达B地,求两车的速度.。

七年级下册数学分式方程应用题(一)

七年级下册数学分式方程应用题(一)

七年级下册数学分式方程应用题(一)七年级下册数学分式方程应用题问题一:分式车速问题小明骑自行车由A地到B地,然后骑机车由B地到C地,整个行程共计200公里。

已知自行车的速度是机车速度的2倍。

如果自行车骑行1小时,机车骑行3小时,求自行车和机车的速度。

问题二:分式体积问题某水桶底部半径为5厘米,高度为10厘米。

现在要往水桶中注入某种液体,使得水桶的体积占满一半。

已知液体进入水桶的速度是每分钟10立方厘米,求注入液体的时间。

问题三:分式飞行距离问题某飞机从A地飞行到B地,然后开始下降,并在C地点降落。

已知飞机从A地起飞到B地需要2小时,从C地开始下降到降落需要小时。

飞机在B地上空飞行的距离是飞机在C地上空飞行距离的2倍。

已知飞机在C地上空的速度为800千米/小时,求飞机在B地上空的速度。

问题四:分式工作效率问题甲、乙、丙三个工人一起完成一项工作,如果甲单独完成该项工作,需要8小时;如果乙单独完成,需要12小时;如果丙单独完成,需要16小时。

已知甲、乙、丙三人同时工作时,每小时能完成的工作量是相同的。

求甲、乙、丙三个人同时完成该项工作需要多长时间。

问题五:分式共同的倍数问题小明和小红分别在1小时内读完一本书,小明每分钟阅读5页,小红每分钟阅读10页。

他们同时开始阅读两本书,求他们同时完成两本书阅读所需的时间。

以上是七年级下册数学分式方程的相关应用题,希望通过这些问题的练习,能够帮助同学们更好地理解和运用分式方程的知识。

问题六:分式水果购买问题小明去水果市场买水果,他一共买了苹果和橙子两种水果。

已知苹果的单价是每个2元,橙子的单价是每个3元。

小明买了5个苹果和3个橙子,总共花费了多少元?问题七:分式比例问题某商店正在进行打折促销活动,购买3件商品可以享受5折优惠,购买5件商品可以享受7折优惠。

小明打算购买一定数量的商品,希望享受尽可能高的折扣。

请问小明购买几件商品可以获得最高的折扣?问题八:分式体重问题小明和小红的体重比例是5:3。

七年级数学下册分式 分式方程的应用练习浙教版

七年级数学下册分式 分式方程的应用练习浙教版

5.5 分式方程第2课时分式方程的应用知识点列分式方程解决实际问题的步骤列分式方程解决相关实际问题,其一般步骤如下:(1)审:审清题意,弄清题中的已知量、未知量及它们之间的等量关系;(2)设:设未知数;(3)列:找出题中已知量与未知量之间的等量关系,列出方程;(4)解:求出所列方程中未知数的值;(5)检:用分式方程解决实际问题时,必须进行检验;(6)答:写出答案.[2015·十堰] 在我市开展的“五城联创”活动中,某工程队承担了某小区900米长的污水管道改造任务.工程队在改造完360米管道后,引进了新设备,每天的工作效率比原来提高了20%,结果共用27天完成了任务.引进新设备前工程队每天改造管道多少米?(1)审:审清题意,找等量关系.本题中包含两个等量关系:①引进新设备后每天改造管道的米数=引进新设备前每天改造管道的米数×________;②引进新设备前改造________米管道所用时间+引进新设备后改造________米管道所用时间=27天.(2)设:引进新设备前工程队每天改造管道x米,则引进新设备后工程队每天改造管道________米.(3)列:根据等量关系,列分式方程为________________________.(4)解:解分式方程,得x=________.(5)检:先检验所求的解是不是分式方程的解,再检验是否符合题意.经检验,________是原方程的解,且符合题意.(6)答:写出答案(不要忘记单位).答:引进新设备前工程队每天改造管道________.用分式方程解决工程问题教材例3变式题甲、乙两人学习计算机打字.甲打一篇3000字的文章与乙打一篇2400字的文章所用的时间相同.已知甲每分钟比乙每分钟多打12个字.甲、乙两人每分钟各打多少个字?[反思] 七年级学生去距学校10 km 的博物馆参观,一部分学生骑自行车先走,过了20 min 后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑自行车学生速度的2倍,求骑自行车学生的速度.解:设骑自行车学生的速度为x km /h .根据题意列方程10x =102x-20.上面所列方程是否正确?如果不正确,请指出错在哪里,并写出正确的解题过程.一、选择题1.一个数与6的和的倒数与这个数的倒数互为相反数,设这个数为x,则列方程为( )A.1x+6=1xB.1x+6=-xC.1x+16+x=0 D.1x+6+1x=02.[2016·白银]某工厂现在平均每天比原计划多生产50台机器,且现在生产800台机器所需的时间与原计划生产600台机器所需的时间相同.设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是( )A.800x+50=600xB.800x-50=600xC.800x=600x+50D.800x=600x-503.[2016·南充]某次列车平均提速20 km/h,用相同的时间,列车提速前行驶400 km,提速后比提速前多行驶100 km.设提速前列车的平均速度为x km/h,下列方程正确的是( )A.400x=400+100x+20B.400x=400-100x-20C.400x=400+100x-20D.400x=400-100x+20二、填空题4.[2016·淄博]某快递公司的分拣工小王和小李,在分拣同一类物件时,小王分拣60个物件所用的时间与小李分拣45个物件所用的时间相同.已知小王每小时比小李多分拣8个物件,设小李每小时分拣x个物件,根据题意列出的方程是__________________.三、解答题5.[2016·扬州]动车的开通为扬州市民的出行带来了方便.从扬州到合肥,路程为360 km,某趟动车的平均速度比普通列车快50%,所需时间比普通列车少1小时,求该趟动车的平均速度.6.[2016·宜宾]2016年“母亲节”前夕,宜宾某花店用4000元购进若干束花,很快售完,接着又用4500元购进第二批花.已知第二批所购花的束数是第一批所购花的束数的1.5倍,且每束花的进价比第一批的进价少5元.求第一批花每束的进价是多少元.[2015·湖州]某工厂计划在规定时间内生产24000个零件.若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.(1)求原计划每天生产的零件个数和规定的天数;(2)为了提前完成生产任务,工厂在安排原有工人按原计划生产的同时,引进5组机器人生产流水线共同参与零件生产.已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%.按此测算,恰好提前两天完成24000个零件的生产任务.求原计划安排的工人人数.详解详析【预习效果检测】(1)(1+20%) 360 (900-360) (2)(1+20%)x(3)360x +900-360(1+20%)x =27(4)30 (5)x =30 (6)30米 【重难互动探究】例 解:设甲打一篇3000字的文章需要x 分钟.根据题意,得3000x -2400x =12.解得x=50.经检验,x =50是原方程的解且符合题意.所以甲每分钟打字3000x =300050=60(个),乙每分钟打字60-12=48(个).答:甲每分钟打字60个,乙每分钟打字48个. 【课堂总结反思】[反思] 不正确,没有找对等量关系,并且单位不统一.正确的解题过程:设骑自行车学生的速度为x km /h ,则汽车的速度为2x km /h . 由题意,得10x =102x +13,解得x =15.经检验,x =15是原方程的解,且符合题意. 答:骑自行车学生的速度为15 km /h . 【作业高效训练】 [课堂达标]1.[解析] D “一个数与6的和的倒数与这个数的倒数互为相反数”就是等量关系,所以可得方程1x +6+1x=0.故选D .2.A 3.A 4.[答案]60x +8=45x5.解:设普通列车的平均速度为x km /h .由题意,得 360x -360(1+50%)x =1,解得x =120. 经检验,x =120是原方程的根,且符合题意, ∴(1+50%)x =180 km /h .答:该趟动车的平均速度为180 km /h . 6.解:设第一批花每束的进价是x 元. 根据题意,得4500x -5=1.5×4000x .解得x =20.经检验,x =20是所列方程的根,且符合题意. 答:第一批花每束的进价是20元. [数学活动]解:(1)设原计划每天生产零件x 个.由题意,得 24000x =24000+300x +30,解得x =2400. 经检验,x =2400是原方程的根,且符合题意. ∴规定的天数为24000÷2400=10(天).答:原计划每天生产零件2400个,规定的天数是10天. (2)设原计划安排的工人人数为y.由题意,得⎣⎢⎡⎦⎥⎤5×20×(1+20%)×2400y +2400×(10-2)=24000,解得y =480. 经检验,y =480是原方程的根,且符合题意.答:原计划安排的工人人数为480.。

浙教版七下数学第五单元:分式方程的应用习题课件

浙教版七下数学第五单元:分式方程的应用习题课件

夯实基础·巩固练
5.【2019·十堰】十堰即将跨入高铁时代,钢轨铺设任务也将完
成,现还有 6 000 米的钢轨需要铺设,为确保年底通车,如
果实际施工时每天比原计划多铺设 20 米,就能提前 15 天完
成任务.设原计划每天铺设钢轨 x 米,则根据题意所列的方
程是( A )
6 A.
0x00-x6+00200=15
浙教版 七年级下
第5节 分式方程 分式方程的应用
第5章 分式
习题链接
提示:点击 进入习题
1D 2A
3B 4A 5A
6 6x+1.62x=11 7 x6+08=4x5 8 5x4+3=05.94x 9 15
10 见习题
答案显示
习题链接
提示:点击 进入习题
11 见习题 12 见习题 13 见习题 14 见习题
夯实基础·巩固练
10.【2019·西藏】绿水青山就是金山银山,为了创造良好的生态 环境,防止水土流失,某村计划在荒坡上种树 600 棵,由于 青年志愿者支援,实际每天种树的棵数是原计划的 2 倍,结 果提前 4 天完成任务,则原计划每天种树多少棵?
夯实基础·巩固练
解:设原计划每天种树 x 棵. 由题意,得60x0-620x0=4, 解得 x=75, 经检验,x=75 是原方程的解. 答:原计划每天种树 75 棵.
6 C.
0x00-x6-00105=20
B.x6+00200-6 0x00=15 D.x6-00105-6 0x00=20
夯实基础·巩固练
6.【2019·江西】斑马线前“车让人”,不仅体现着一座城市对生 命的尊重,也直接反映着城市的文明程度.如图,某路口的 斑马线路段 A-B-C 横穿双向行驶车道,其中 AB=BC=6 米,在绿灯亮时,小明共用 11 秒通过 AC,其中通过 BC 的 速度是通过 AB 速度的 1.2 倍,求小明通过 AB 时的速度.设 小__6x_明+__通1_.6_过2_x_=A_B_1_1时__的__速__度__是___x_米__/_秒__,__根__据_.题意列方程得:

(完整版)分式方程应用题专项练习50题

(完整版)分式方程应用题专项练习50题

(完整版)分式方程应用题专项练习50题-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN分式方程应用题专项练习1、老城街道改建工程指挥部,要对某路段工程进行招标,接到了甲、乙两个工程队的投标书.从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的32;若由甲队先做10天,剩下的工程再由甲、乙两队合作30天可以完成.;求甲、乙两队单独完成这项工程各需多少天2.某工厂为了完成供货合同,决定在一定天数内生产原种零件400个,由于对原有设备进行了技术改进,提高了生产效率,每天比原计划增产25%,结果提前10天完成了任务.原计划每天生产多少个零件?3、某项工程如果甲单独做,刚好在规定的日期内宛成,如果乙单独做,则要超出规定日期3天,现在先由甲、乙两人合做两天后,剩下的任务由乙完成,也刚好能按做时完式,问规定的日期是几天?4、某工程由甲、乙两队合做6天完成,厂家需会甲、乙两队共8700元;乙、丙两队合做10天完成,厂家需付乙、丙队共9500元;甲、丙两队合做5天完成全部工程的32,厂家需付甲、丙两队共5500元。

(1) 求甲、乙、丙各队单独完成全部工程各需多少天?(2) 若工期要求不超过15天完成全部工程,问:可由哪个单独承包此项工程花钱最少?请说明理由。

5.一个水池有甲乙两个进水管,甲管注满水池比乙管快4小时,如果单独放甲管5小时,再单独开放乙管6小时,就可以注满水池的一半,求单独开放一个水管,注满水池各需多长时间6、轮船顺水航行80千米所需要的时间和逆水航行60千米所需要的时间相同,已知水流的速度是3千米/时,求轮船在静水中的速度。

7.一列客车长200米一列货车长280米,在平行轨道上相向而行,从车头相遇到车尾相离一共经过8秒钟.已知客车与货车的速度之比为5∶3.求两车的速度.8、如图,小明家、王老师家、学校在同一条路上,小明家到王老师家的路程为3km,王老师家到学校的路程为0.5km,由于小明的父母战斗在抗“非典”第一线,为了使他能按时到校,王老师每天骑自行车接小明上学.已知王老师骑自行车的速度是步行速度的3倍,每天比平时步行上班多用了20min,问王老师的步行速度及骑自行车的速度各是多少?9、一小船由A港到B顺流航行需6小时,由B港到A港逆流航行需8小时,小船从早晨6时由A 港到B港时,发现一救生圈在途中掉落水中,立即返航,2小时后找到救生圈。

最新浙教版七年级下数学分式方程应用题

最新浙教版七年级下数学分式方程应用题

一.分式知识要点回顾1. 定义:一般地,如果A ,B 表示两个整式,并且B 中含有字母,则式子B A 叫做分式,A 叫做分子,B 叫做分母。

2. 分式的基本性质:C B C A B A C B C A B A ÷÷=••=或(C≠0),其中A ,B ,C 均为整式。

3. 分式的约分分式的约分依据是分式的基本性质,约去分子和分母中相同因式的最低次幂,约去分子和分母系数的最大公约数。

4. 分式的通分把两个或多个因式通分,先求出各个分式分母的最简公分母,再用分式的基本性质变形,达到通分目的。

5.分式的运算 ①分式乘法法则:=•dc b a 。

②分式除法法则:=÷d c b a 。

③分式的加减法(1)同分母分式相加减:=±bc b a ; (2)异分母分式相加减:=±d c b a = 。

④分式的乘方:=⎪⎭⎫ ⎝⎛na b (n 为正整数)。

二.分式方程1. 定义:只含分式或分式和整式,并且分母里含有未知数的方程叫做分式方程。

2. 解分式方程的一般步骤(1) ;(2) ;(3) 。

3. 增根在进行分式方程去分母的变形时,有时可能产生使原方程分母为 的根称为方程的增根。

因此,解分式方程时必须验根,验根的方法是代入最简公分母,使最简公分母为 的根是增根应舍去。

三.列分式方程解应用题考点:行程、行船、工程、营销等实际问题;能力:方程思想解决实际问题;方法:列表法找等量关系(一知二设三求)。

考点一、行程问题例题:(2014•襄阳)甲、乙两座城市的中心火车站A,B两站相距360km.一列动车与一列特快列车分别从A,B两站同时出发相向而行,动车的平均速度比特快列车快54km/h,当动车到达B站时,特快列车恰好到达距离A站135km处的C站.求动车和特快列车的平均速度各是多少?练习:(2014•广西贺州)马小虎的家距离学校1800米,一天马小虎从家去上学,出发10分钟后,爸爸发现他的数学课本忘记拿了,立即带上课本去追他,在距离学校200米的地方追上了他,已知爸爸的速度是马小虎速度的2倍,求马小虎的速度。

分式及分式方程应用题

分式及分式方程应用题

分式及分式方程应用题分式应用题解题思路:“审---设---列---解---验---答”六步骤1、审题——题目描述的实际情境;A、事件及问题B、数字-----关系(a、利用公式;b、利用实际情况的加减乘除)2、设对应的未知数;注意:单位统一,为了下一步的方程有意义3、列方程;注意:单位统一后的数字写入方程才有意义4、解方程;注意:数学中的方程的解是数字,后面不写单位。

因为在设未知数的位置已经有单位了5、双检验; A、是否是分式方程的根 B、是否符合实际6、答一、【行程中的应用性问题】1、电力维修工要到30千米远的郊区进行电力抢修.技术工人骑摩托车先走,15分钟后,抢修车装载着所需材料出发,结果他们同时到达.已知抢修车的速度是摩托车的1.5倍,求这两种车的速度.2、甲、乙两地相距19千米,某人从甲地去乙地,先步行7千米,然后改骑自行车,共用了2小时达到乙地,已知这个人骑自行车的速度是步行速度的4倍,求步行的速度和骑自行车的速度。

二、【工程类应用性问题】1、某农场原计划在若干天内收割小麦960公顷,但实际每天多收割40公顷,结果提前4天完成任务,试求原计划一天的工作量及原计划的天数。

2、甲、乙两个学生分别向计算机输入1500个汉字,乙的速度是甲的3倍,因此比甲少用20分钟完成任务,问他们平均每分钟输入汉字多少个?3、某一工程,在工程招标时,接到甲、乙两个工程队的投标书.施工一天,需付甲工程队工程款1.2万元,乙工程队工程款0.5万元.工程领导小组根据甲、乙两队的投标书测算,有如下方案:(1)甲队单独完成这项工程刚好如期完成;(2)乙队单独完成这项工程要比规定日期多用6天;(3)若甲、乙两队合做3天,余下的工程由乙队单独做也正好如期完成.试问:在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?请说明理由.三、【营销类应用性问题】1、某校办工厂将总价值为2000元的甲种原料与总价值为4800元的乙种原料混合后,其平均价比原甲种原料每千克少3元,比乙种原料每千克多1元,问混合后的单价每千克是多少元?2、某商场销售某种商品,一月份销售了若干件,共获得利润3000元;二月份把这种商品的单价降低了0.4元,但是销售量比一月份增加了5000件,从而获得利润比一月份多2000 元,调价前每件商品的利润为多少元?四、【轮船顺逆水应用问题】1、轮船顺水航行80千米所需的时间和逆水航行60千米所需的时间相同,已知船在静水中的速度是21千米/小时,求水流的速度?2、轮船顺流、逆流各走48千米,共需5小时,如果水流速度是4千米/小时,求轮船在静水中的速度。

七年数学下册第9章分式9.3分式方程第3课时分式方程的应用习题课件(新版)沪科版

七年数学下册第9章分式9.3分式方程第3课时分式方程的应用习题课件(新版)沪科版

6.【中考•温州】某经销商3月份用18 000元购进一批T恤 衫售完后,4月份用39 000元购进一批相同的T恤衫, 数量是3月份的2倍,但每件进价涨了10元.
(1)4月份进了这批T恤衫多少件?
解:设 3 月份购进 x 件 T 恤衫. 由题意得18 x000+10=3920x00, 解得 x=150. 经检验,x=150 是分式方程的解,且符合题意. 则 2x=300. 答:4 月份进了这批 T 恤衫 300 件.
(2)4月份,经销商将这批T恤衫平均分给甲、乙两家分店 销售,每件标价180元.甲店按标价卖出a件以后,剩 余的按标价八折全部售出;乙店同样按标价卖出a件, 然后将b件按标价九折售出,再将剩余的按标价七折全 部售出,结果利润与甲店相同.
①用含a的代数式表示b; 解:4 月份每件 T 恤衫的进价为 39 000÷300=130(元). 由 题 意 得 (180 - 130)a + (180×0.8 - 130)(150 - a) = (180 - 130)a + (180×0.9 - 130)b + (180×0.7 - 130)(150-a-b), 化简,得 b=1502-a.
解:设 1 kg 甲产品的售价为 x 元,则 1 kg 乙产品的 售价为(x+5)元,1 kg 丙产品的售价为 3x 元. 根据题意,得237x0=x6+05×3,解得 x=5. 经检验,x=5 是分式方程的解,且符合题意, 所以 x+5=10,3x=15. 答:甲、乙、丙三种农产品每千克的售价分别是 5 元、10 元、15 元.
解:设一次性医用外科口罩的单价是 x 元,则 N95 口 罩的单价是(x+10)元. 依题意有1 6x00=x9+60100,解得 x=2. 经检验,x=2 是分式方程的解,且符合题意, 则 x+10=12. 答:一次性医用外科口罩的单价是 2 元, N95 口罩的单价是 12 元.

七年级数学下册-分式方程及分式应用题

七年级数学下册-分式方程及分式应用题

分式方程及分式应用题【知识点归纳】知识点一、分式方程1分式方程概念:方程中含有分式,并且分母中含有未知数,像这样的方程叫做分式方程.2解分式方程:基本思路是将分式方程化为整式方程,具体做法是“去分母”,即方程两边同乘最简公分母。

一般的,解分式方程时,去分母后所得整式方程的解有可能使原方程中分母为0,因此应做如下检验:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。

《1》理解分式方程的有关概念例1 指出下列方程中,分式方程有( )①21123x x -=5 ②223x x -=5x 2-5x=0x +3=0 A .1个 B .2个 C .3个 D .4个【点评】根据分式方程的概念,看方程中分母是否含有未知数.《2》掌握分式方程的解法步骤(注意分式方程最后要验根。

(易错点))例2 解方程:100307x x =-.例3. 解关于x 的方程x a b c x b c b x c ab a bc --+--+--=>30(),, 解:原方程化为:x a b c x b c b x c ab---+---+---=1110即x a b c c x b c a a x c a b b---+---+---=0∴---++=>>>∴++≠∴---=∴=++()()x a b c a b c a b c a b cx a b c x a b c11100011100 ,,说明:本题中,常数“3”是一个重要的量,把3拆成3个1,正好能凑成公因式x a b c ---。

若按常规在方程两边去分母,则解法太繁,故解题中一定要注意观察方程的结构特征,才能找到合适的办法。

例4. 解关于x 的方程。

ax x a bx x b a b x a x b ab ()()()()()()+++=+++≠0解:去括号:ax a x bx b x a b x a b x ab a b 222222+++=+++++()()()()()()()a b x a b x ab a b abx ab a b ab x a b222202+-+=+-=+≠∴=-+说明:解含字母系数的方程,在消未知数的系数时,一定要强调未知数的系数不等于0,如果方程的解是分式形式,必须化成最简分式或整式。

分式方程20道例题

分式方程20道例题

分式方程20道例题一、基础题型例1:解方程(2)/(x + 1)=(1)/(x - 1)解析:1. 首先去分母,给方程两边同时乘以(x + 1)(x-1)(最简公分母),得到: - 2(x - 1)=x + 1。

2. 然后展开括号:- 2x-2=x + 1。

3. 接着移项:- 2x-x=1 + 2。

- 解得x = 3。

4. 最后检验:- 当x = 3时,(x + 1)(x - 1)=(3+1)×(3 - 1)=4×2 = 8≠0。

- 所以x = 3是原分式方程的解。

例2:解方程(x)/(x - 2)-1=(4)/(x^2)-4解析:1. 先将方程右边的分母因式分解,x^2-4=(x + 2)(x - 2)。

2. 去分母,方程两边同时乘以(x + 2)(x - 2),得到:- x(x + 2)-(x + 2)(x - 2)=4。

3. 展开括号:- x^2+2x-(x^2-4)=4。

- x^2+2x - x^2+4 = 4。

4. 化简得:- 2x=0,解得x = 0。

5. 检验:- 当x = 0时,(x + 2)(x - 2)=(0 + 2)×(0 - 2)=-4≠0。

- 所以x = 0是原分式方程的解。

例3:解方程(3)/(x)+(6)/(x - 1)=(x + 5)/(x(x - 1))解析:1. 去分母,方程两边同时乘以x(x - 1),得到:- 3(x - 1)+6x=x + 5。

2. 展开括号:- 3x-3+6x=x + 5。

3. 移项合并同类项:- 3x+6x - x=5 + 3。

- 8x=8,解得x = 1。

4. 检验:- 当x = 1时,x(x - 1)=1×(1 - 1)=0。

- 所以x = 1是增根,原分式方程无解。

二、有增根问题的分式方程例4:若关于x的分式方程(2)/(x - 2)+(mx)/(x^2)-4=(3)/(x + 2)会产生增根,求m的值。

初中数学分式方程精选试题(含答案和解析)

初中数学分式方程精选试题(含答案和解析)

初中数学分式方程精选试题一.选择题1. (2018·湖南怀化·4分)一艘轮船在静水中的最大航速为30km/h.它以最大航速沿江顺流航行100km所用时间.与以最大航速逆流航行80km所用时间相等.设江水的流速为v km/h.则可列方程为()A.=B.=C.=D.=【分析】根据“以最大航速沿江顺流航行100km所用时间.与以最大航速逆流航行80km所用时间相等.”建立方程即可得出结论.【解答】解:江水的流速为v km/h.则以最大航速沿江顺流航行的速度为(30+v)km/h.以最大航速逆流航行的速度为(30﹣v)km/h. 根据题意得..故选:C.【点评】此题是由实际问题抽象出分式方程.主要考查了水流问题.找到相等关系是解本题的关键.2.(2018•临安•3分)下列各式计算正确的是()A.a12÷a6=a2 B.(x+y)2=x2+y2C.D.【分析】此类题目难度不大.可用验算法解答.【解答】解:A.a12÷a6是同底数幂的除法.指数相减而不是相除.所以a12÷a6=a6.错误;B.(x+y)2为完全平方公式.应该等于x2+y2+2xy.错误;C.===﹣.错误;D.正确.故选:D.【点评】正确理解二次根式乘法、积的算术平方根等概念是解答问题的关键.运算法则:①a m÷a n=a m﹣n.②÷=(a≥0.b>0).3.(2018•金华、丽水•3分)若分式的值为0.则x的值是()A. 3B.C. 3或D. 0【解析】【解答】解:若分式的值为0.则.解得.故答案为:A.【分析】分式指的是分母是含字母的整式且分母的值不为0的代数式;当分式为0时.则分子为零.分母不能为0.5.(2018·黑龙江哈尔滨·3分)方程=的解为()A.x=﹣1 B.x=0 C.x=D.x=1【分析】分式方程去分母转化为整式方程.求出整式方程的解得到x 的值.经检验即可得到分式方程的解.【解答】解:去分母得:x+3=4x.解得:x=1.经检验x=1是分式方程的解.故选:D.【点评】此题考查了解分式方程.利用了转化的思想.解分式方程注意要检验.6.(2018·黑龙江龙东地区·3分)已知关于x的分式方程=1的解是负数.则m的取值范围是()A.m≤3B.m≤3且m≠2 C.m<3 D.m<3且m≠2【分析】直接解方程得出分式的分母为零.再利用x≠﹣1求出答案.【解答】解:=1解得:x=m﹣3.∵关于x的分式方程=1的解是负数.∴m﹣3<0.解得:m<3.当x=m﹣3=﹣1时.方程无解.则m≠2.故m的取值范围是:m<3且m≠2.故选:D.【点评】此题主要考查了分式方程的解.正确得出分母不为零是解题关键.7.(2018•贵州黔西南州•4分)施工队要铺设1000米的管道.因在中考期间需停工2天.每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x米.所列方程正确的是()A.=2 B.=2C.=2 D.=2【分析】设原计划每天施工x米.则实际每天施工(x+30)米.根据:原计划所用时间﹣实际所用时间=2.列出方程即可.【解答】解:设原计划每天施工x米.则实际每天施工(x+30)米. 根据题意.可列方程:﹣=2.故选:A.【点评】本题考查了由实际问题抽象出分式方程.关键是读懂题意.找出合适的等量关系.列出方程.8.(2018•海南•3分)分式方程=0的解是()A.﹣1 B.1 C.±1D.无解【分析】根据解分式方程的步骤计算可得.【解答】解:两边都乘以x+1.得:x2﹣1=0.解得:x=1或x=﹣1.当x=1时.x+1≠0.是方程的解;当x=﹣1时.x+1=0.是方程的增根.舍去;所以原分式方程的解为x=1.故选:B.【点评】本题主要考查分式方程的解.解题的关键是熟练掌握解分式方程的步骤.9.(2018湖南张家界3.00分)若关于x的分式方程=1的解为x=2.则m的值为()A.5 B.4 C.3 D.2【分析】直接解分式方程进而得出答案.【解答】解:∵关于x的分式方程=1的解为x=2.∴x=m﹣2=2.解得:m=4.故选:B.【点评】此题主要考查了分式方程的解.正确解方程是解题关键.二.填空题1. (2018·湖北襄阳·3分)计算﹣的结果是.【分析】根据同分母分式加减运算法则计算即可.最后要注意将结果化为最简分式.【解答】解:原式===.故答案为:.【点评】本题考查了分式的加减.归纳提炼:分式的加减运算中.如果是同分母分式.那么分母不变.把分子直接相加减即可;如果是异分母分式.则必须先通分.把异分母分式化为同分母分式.然后再相加减.2. (2018•达州•3分)若关于x的分式方程=2a无解.则a 的值为.【分析】直接解分式方程.再利用当1﹣2a=0时.当1﹣2a≠0时.分别得出答案.【解答】解:去分母得:x﹣3a=2a(x﹣3).整理得:(1﹣2a)x=﹣3a.当1﹣2a=0时.方程无解.故a=;当1﹣2a≠0时.x==3时.分式方程无解.则a=1.故关于x的分式方程=2a无解.则a的值为:1或.故答案为:1或.【点评】此题主要考查了分式方程的解.正确分类讨论是解题关键.3. (2018•遂宁•4分)A.B两市相距200千米.甲车从A市到B市.乙车从B市到A市.两车同时出发.已知甲车速度比乙车速度快15千米/小时.且甲车比乙车早半小时到达目的地.若设乙车的速度是x千米/小时.则根据题意.可列方程.【分析】直接利用甲车比乙车早半小时到达目的地得出等式即可.【解答】解:设乙车的速度是x千米/小时.则根据题意.可列方程:﹣=.故答案为:﹣=.【点评】此题主要考查了由实际问题抽象出分式方程.正确表示出两车所用时间是解题关键.4. (2018•湖州•4分)当x=1时.分式的值是.【分析】将x=1代入分式.按照分式要求的运算顺序计算可得.【解答】解:当x=1时.原式==.故答案为:.【点评】本题主要考查分式的值.在解答时应从已知条件和所求问题的特点出发.通过适当的变形、转化.才能发现解题的捷径.5. (2018•嘉兴•4分.)甲、乙两个机器人检测零件,甲比乙每小时多检测20个,甲检测300个比乙检测200个所用的时间少10%.若设甲每小时检测个.则根据题意,可列出方程:________.【答案】【解析】【分析】若设甲每小时检测个.检测时间为.乙每小时检测个.检测时间为.根据甲检测300个比乙检测200个所用的时间少.列出方程即可.【解答】若设甲每小时检测个.检测时间为.乙每小时检测个.检测时间为.根据题意有:.故答案为:【点评】考查分式方程的应用.解题的关键是找出题目中的等量关系.7.(2018·黑龙江哈尔滨·3分)函数y=中.自变量x的取值范围是x≠4.【分析】根据分式分母不为0列出不等式.解不等式即可.【解答】解:由题意得.x﹣4≠0.解得.x≠4.故答案为:x≠4.【点评】本题考查的是函数自变量的取值范围.掌握分式分母不为0是解题的关键.8.(2018·黑龙江齐齐哈尔·3分)若关于x的方程+=无解.则m的值为﹣1或5或﹣.【分析】直接解方程再利用一元一次方程无解和分式方程无解分别分析得出答案.【解答】解:去分母得:x+4+m(x﹣4)=m+3.可得:(m+1)x=5m﹣1.当m+1=0时.一元一次方程无解.此时m=﹣1.当m+1≠0时.则x==±4.解得:m=5或﹣.综上所述:m=﹣1或5或﹣.故答案为:﹣1或5或﹣.【点评】此题主要考查了分式方程的解.正确分类讨论是解题关键.9.(2018•广西贵港•3分)若分式的值不存在.则x的值为﹣1 .【分析】直接利用分是有意义的条件得出x的值.进而得出答案.【解答】解:若分式的值不存在.则x+1=0.解得:x=﹣1.故答案为:﹣1.【点评】此题主要考查了分式有意义的条件.正确把握分式有意义的条件:分式有意义的条件是分母不等于零是解题关键.11.(2018•贵州铜仁•4分)分式方程=4的解是x= ﹣9 .【分析】分式方程去分母转化为整式方程.求出整式方程的解得到x 的值.经检验即可得到分式方程的解.【解答】解:去分母得:3x﹣1=4x+8.解得:x=﹣9.经检验x=﹣9是分式方程的解.故答案为:﹣912. (2018湖南长沙3.00分)化简:= 1 .【分析】根据分式的加减法法则:同分母分式加减法法则:同分母的分式想加减.分母不变.把分子相加减计算即可.【解答】解:原式==1.故答案为:1.【点评】本题考查了分式的加减法法则.解题时牢记定义是关键.13.(2018湖南湘西州4.00分)要使分式有意义.则x的取值范围为x≠﹣2 .【分析】根据根式有意义的条件即可求出答案.【解答】解:由题意可知:x+2≠0.∴x≠﹣2故答案为:x≠﹣2【点评】本题考查分式有意义的条件.解题的关键是正确理解分式有意义的条件.本题属于基础题型.14. (2018•达州•3分)若关于x的分式方程=2a无解.则a 的值为.【分析】直接解分式方程.再利用当1﹣2a=0时.当1﹣2a≠0时.分别得出答案.【解答】解:去分母得:x﹣3a=2a(x﹣3).整理得:(1﹣2a)x=﹣3a.当1﹣2a=0时.方程无解.故a=;当1﹣2a≠0时.x==3时.分式方程无解.则a=1.故关于x的分式方程=2a无解.则a的值为:1或.故答案为:1或.【点评】此题主要考查了分式方程的解.正确分类讨论是解题关键.15. (2018•遂宁•4分)A.B两市相距200千米.甲车从A市到B市.乙车从B市到A市.两车同时出发.已知甲车速度比乙车速度快15千米/小时.且甲车比乙车早半小时到达目的地.若设乙车的速度是x千米/小时.则根据题意.可列方程.【分析】直接利用甲车比乙车早半小时到达目的地得出等式即可.【解答】解:设乙车的速度是x千米/小时.则根据题意.可列方程:﹣=.故答案为:﹣=.【点评】此题主要考查了由实际问题抽象出分式方程.正确表示出两车所用时间是解题关键.三.解答题1. (2018·湖北江汉油田、潜江市、天门市、仙桃市·5分)化简:•.【分析】先将分子、分母因式分解.再约分即可得.【解答】解:原式=•=.【点评】本题主要考查分式的乘除法.解题的关键是掌握分式乘除运算顺序和运算法则.2. (2018·湖北随州·6分)先化简.再求值:.其中x为整数且满足不等式组.【分析】根据分式的除法和加法可以化简题目中的式子.由x为整数且满足不等式组可以求得x的值.从而可以解答本题.【解答】解:===.由得.2<x≤3.∵x是整数.∴x=3.∴原式=.【点评】本题考查分式的化简求值、解一元一次不等式组、一元一次不等式组的整数解.解答本题的关键是明确分式的化简求值的计算方法.3. (2018·湖北襄阳·6分)正在建设的“汉十高铁”竣工通车后.若襄阳至武汉段路程与当前动车行驶的路程相等.约为325千米.且高铁行驶的速度是当前动车行驶速度的2.5倍.则从襄阳到武汉乘坐高铁比动车所用时间少1.5小时.求高铁的速度.【分析】设高铁的速度为x千米/小时.则动车速度为0.4x千米/小时.根据题意列出方程.求出方程的解即可.【解答】解:设高铁的速度为x千米/小时.则动车速度为0.4x千米/小时.根据题意得:﹣=1.5.解得:x=325.经检验x=325是分式方程的解.且符合题意.则高铁的速度是325千米/小时.【点评】此题考查了分式方程的应用.弄清题中的等量关系是解本题的关键.4.(2018•内蒙古包头市•3分)化简;÷(﹣1)= ﹣.【分析】根据分式混合运算顺序和运算法则计算可得.【解答】解:原式=÷(﹣)=÷=•=﹣.故答案为:﹣.【点评】本题主要考查分式的混合运算.解题的关键是掌握分式混合运算顺序和运算法则.2.(2018•内蒙古包头市•10分)某商店以固定进价一次性购进一种商品.3月份按一定售价销售.销售额为2400元.为扩大销量.减少库存.4月份在3月份售价基础上打9折销售.结果销售量增加30件.销售额增加840元.(1)求该商店3月份这种商品的售价是多少元?(2)如果该商店3月份销售这种商品的利润为900元.那么该商店4月份销售这种商品的利润是多少元?【分析】(1)设该商店3月份这种商品的售价为x元.则4月份这种商品的售价为0.9x元.根据数量=总价÷单价结合4月份比3月份多销售30件.即可得出关于x的分式方程.解之经检验即可得出结论;(2)设该商品的进价为y元.根据销售利润=每件的利润×销售数量.即可得出关于y的一元一次方程.解之即可得出该商品的进价.再利用4月份的利润=每件的利润×销售数量.即可求出结论.【解答】解:(1)设该商店3月份这种商品的售价为x元.则4月份这种商品的售价为0.9x元.根据题意得:=﹣30.解得:x=40.经检验.x=40是原分式方程的解.答:该商店3月份这种商品的售价是40元.(2)设该商品的进价为y元.根据题意得:(40﹣a)×=900.解得:a=25.∴(40×0.9﹣25)×=990(元).答:该商店4月份销售这种商品的利润是990元.【点评】本题考查了分式方程的应用以及一元一次方程的应用.解题的关键是:(1)找准等量关系.正确列出分式方程;(2)找准等量关系.正确列出一元一次方程.6.(2018•山东烟台市•6分)先化简.再求值:(1+)÷.其中x满足x2﹣2x﹣5=0.【分析】原式括号中两项通分并利用同分母分式的加法法则计算.同时利用除法法则变形.约分得到最简结果.把已知等式变形后代入计算即可求出值.【解答】解:原式=•=•=x(x﹣2)=x2﹣2x.由x2﹣2x﹣5=0.得到x2﹣2x=5.则原式=5.【点评】此题考查了分式的化简求值.熟练掌握运算法则是解本题的关键.7.(2018•山东东营市•8分)小明和小刚相约周末到雪莲大剧院看演出.他们的家分别距离剧院1200m和2000m.两人分别从家中同时出发.已知小明和小刚的速度比是3:4.结果小明比小刚提前4min到达剧院.求两人的速度.【分析】设小明的速度为3x米/分.则小刚的速度为4x米/分.根据时间=路程÷速度结合小明比小刚提前4min到达剧院.即可得出关于x 的分式方程.解之经检验后即可得出结论.【解答】解:设小明的速度为3x米/分.则小刚的速度为4x米/分. 根据题意得:﹣=4.解得:x=25.经检验.x=25是分式方程的根.且符合题意.∴3x=75.4x=100.答:小明的速度是75米/分.小刚的速度是100米/分.【点评】本题考查了分式方程的应用.找准等量关系.正确列出分式方程是解题的关键.8.(2018•山东济宁市•7分)先化简.再求值:﹣÷(﹣).其中a=﹣.【分析】首先计算括号里面的减法.然后再计算除法.最后再计算减法.化简后.再代入a的值可得答案.【解答】解:原式=﹣÷[﹣].=﹣÷[﹣].=﹣÷.=﹣•.=﹣.=﹣.当a=﹣时.原式=﹣=﹣4.【点评】此题主要考查了分式的化简求值.关键是掌握化简求值.一般是先化简为最简分式或整式.再代入求值.9. (2018•达州•6分)化简代数式:.再从不等式组的解集中取一个合适的整数值代入.求出代数式的值.【分析】直接将=去括号利用分式混合运算法则化简.再解不等式组.进而得出x的值.即可计算得出答案.【解答】解:原式=×﹣×=3(x+1)﹣(x﹣1)=2x+4..解①得:x≤1.解②得:x>﹣3.故不等式组的解集为:﹣3<x≤1.把x=﹣2代入得:原式=0.【点评】此题主要考查了分式的化简求值以及不等式组解法.正确掌握分式的混合运算法则是解题关键.10. (2018•遂宁•8分)先化简.再求值•+.(其中x=1.y=2)【分析】根据分式的运算法则即可求出答案.【解答】解:当x=1.y=2时.原式=•+=+==﹣3【点评】本题考查分式的运算.解题的关键是熟练运用分式的运算法则.本题属于基础题型.11.(2018•资阳•7分)先化简.再求值:÷(﹣a).其中a=﹣1.b=1.【分析】先根据分式混合运算顺序和运算法则化简原式.再将A.b的值代入计算可得.【解答】解:原式=÷=•=.当a=﹣1.b=1时.原式====2+.【点评】本题主要考查分式的化简求值.解题的关键是掌握分式混合运算顺序和运算法则.12.(2018•乌鲁木齐•10分)某校组织学生去9km外的郊区游玩.一部分学生骑自行车先走.半小时后.其他学生乘公共汽车出发.结果他们同时到达.己知公共汽车的速度是自行车速度的3倍.求自行车的速度和公共汽车的速度分别是多少?【分析】设自行车的速度为xkm/h.则公共汽车的速度为3xkm/h.根据时间=路程÷速度结合乘公共汽车比骑自行车少用小时.即可得出关于x的分式方程.解之经检验即可得出结论.【解答】解:设自行车的速度为xkm/h.则公共汽车的速度为3xkm/h. 根据题意得:﹣=.解得:x=12.经检验.x=12是原分式方程的解.∴3x=36.答:自行车的速度是12km/h.公共汽车的速度是36km/h.【点评】本题考查了分式方程的应用.找准等量关系.正确列出分式方程是解题的关键.13.(2018•临安•6分)(1)化简÷(x﹣).(2)解方程:+=3.【分析】(1)先计算括号内分式的减法.再计算除法即可得;(2)先去分母化分式方程为整式方程.解整式方程求解的x值.检验即可得.【解答】解:(1)原式=÷(﹣)=÷=•=;(2)两边都乘以2x﹣1.得:2x﹣5=3(2x﹣1).解得:x=﹣.检验:当x=﹣时.2x﹣1=﹣2≠0.所以分式方程的解为x=﹣.【点评】本题主要考查分式的混合运算与解分式方程.解题的关键是掌握解分式方程和分式混合运算的步骤.14.(2018•嘉兴•4分)化简并求值()•.其中a=1.b=2.【答案】原式= =a-b当a=1.b=2时.原式=1-2=-1【考点】利用分式运算化简求值【解析】分式的化简当中.可先运算括号里的.或都运用乘法分配律计算都可16. (2018•贵州安顺•10分)先化简.再求值:.其中.【答案】..【解析】分析:先化简括号内的式子.再根据分式的除法进行计算即可化简原式.然后将x=-2代入化简后的式子即可解答本题.详解:原式=.∵.∴.舍.当时.原式.点睛:本题考查分式的化简求值.解题的关键是明确分式化简求值的方法.17.(2018•广西桂林•8分)某校利用暑假进行田径场的改造维修.项目承包单位派遣一号施工队进场施工.计划用40天时间完成整个工程:当一号施工队工作5天后.承包单位接到通知.有一大型活动要在该田径场举行.要求比原计划提前14天完成整个工程.于是承包单位派遣二号与一号施工队共同完成剩余工程.结果按通知要求如期完成整个工程.(1)若二号施工队单独施工.完成整个工程需要多少天?(2)若此项工程一号、二号施工队同时进场施工.完成整个工程需要多少天?【答案】(1)60天;(2)24天.【解析】分析:(1)设二号施工队单独施工需要x天.根据题意可知一号施工队5天工作总量与一号施工队和二号施工队合作工作总量之和=1列出方程求解即可;(2)根据工作总量÷工作效率=工作时间求解即可.详解:(1)设二号施工队单独施工需要x天.依题可得解得x=60.经检验.x=60是原分式方程的解.∴由二号施工队单独施工.完成整个工期需要60天.(2)由题可得(天).∴若由一、二号施工队同时进场施工.完成整个工程需要24天.点睛:本题考查了列分式方程解应用题.灵活运用和掌握工作总量÷工作效率=工作时间是解题关键.18.(2018•广西南宁•6分)解分式方程:﹣1=.【分析】根据解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论依次计算可得.【解答】解:两边都乘以3(x﹣1).得:3x﹣3(x﹣1)=2x.解得:x=1.5.检验:x=1.5时.3(x﹣1)=1.5≠0.所以分式方程的解为x=1.5.【点评】本题主要考查解分式方程.解题的关键是掌握解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.19. 2018·黑龙江大庆·4分)解方程:﹣=1.【分析】方程两边都乘以x(x+3)得出方程x﹣1+2x=2.求出方程的解.再代入x(x+3)进行检验即可.【解答】解:两边都乘以x(x+3).得:x2﹣(x+3)=x(x+3).解得:x=﹣.检验:当x=﹣时.x(x+3)=﹣≠0.所以分式方程的解为x=﹣.20. (2018·黑龙江哈尔滨·7分)先化简.再求代数式(1﹣)÷的值.其中a=4cos30°+3tan45°.【分析】根据分式的运算法则即可求出答案.【解答】解:当a=4cos30°+3tan45°时.所以a=2+3原式=•=【点评】本题考查分式的运算.解题的关键是熟练运用分式的运算法则.本题属于基础题型.21(2018·黑龙江龙东地区·5分)先化简.再求值:(1﹣)÷.其中a=sin30°.【分析】根据分式的运算法则即可求出答案.【解答】解:当a=sin30°时.所以a=原式=•=•==﹣1【点评】本题考查分式的运算.解题的关键是熟练运用分式的运算法则.本题属于基础题型.22..(2018·湖北省恩施·8分)先化简.再求值:•(1+)÷.其中x=2﹣1.【分析】直接分解因式.再利用分式的混合运算法则计算得出答案.【解答】解:•(1+)÷=••把x=2﹣1代入得.原式===.【点评】此题主要考查了分式的化简求值.正确进行分式的混合运算是解题关键.23.(2018•福建A卷•8分)先化简.再求值:(﹣1)÷.其中m=+1.【分析】根据分式的减法和除法可以化简题目中的式子.然后将m的值代入即可解答本题.【解答】解:(﹣1)÷===.当m=+1时.原式=.【点评】本题考查分式的化简求值.解答本题的关键是明确分式化简求值的方法.24.(2018•福建B卷•8分)先化简.再求值:(﹣1)÷.其中m=+1.【分析】根据分式的减法和除法可以化简题目中的式子.然后将m的值代入即可解答本题.【解答】解:(﹣1)÷===.当m=+1时.原式=.【点评】本题考查分式的化简求值.解答本题的关键是明确分式化简求值的方法.25.(2018•广东•6分)先化简.再求值:•.其中a=.【分析】原式先因式分解.再约分即可化简.继而将a的值代入计算.【解答】解:原式=•=2a.当a=时.原式=2×=.【点评】本题主要考查分式的化简求值.解题的关键是熟练掌握分式混合运算顺序和运算法则.26.(2018•广东•7分)某公司购买了一批A.B型芯片.其中A型芯片的单价比B型芯片的单价少9元.已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.(1)求该公司购买的A.B型芯片的单价各是多少元?(2)若两种芯片共购买了200条.且购买的总费用为6280元.求购买了多少条A型芯片?【分析】(1)设B型芯片的单价为x元/条.则A型芯片的单价为(x ﹣9)元/条.根据数量=总价÷单价结合用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.即可得出关于x的分式方程.解之经检验后即可得出结论;(2)设购买a条A型芯片.则购买(200﹣a)条B型芯片.根据总价=单价×数量.即可得出关于a的一元一次方程.解之即可得出结论.【解答】解:(1)设B型芯片的单价为x元/条.则A型芯片的单价为(x﹣9)元/条.根据题意得:=.解得:x=35.经检验.x=35是原方程的解.∴x﹣9=26.答:A型芯片的单价为26元/条.B型芯片的单价为35元/条.(2)设购买a条A型芯片.则购买(200﹣a)条B型芯片.根据题意得:26a+35(200﹣a)=6280.解得:a=80.答:购买了80条A型芯片.【点评】本题考查了分式方程的应用以及一元一次方程的应用.解题的关键是:(1)找准等量关系.正确列出分式方程;(2)找准等量关系.正确列出一元一次方程.27.(2018•广西北海•6分)解分式方程:【答案】 x = 1.5【考点】解分式方程【解答】解:方程左右两边同乘3(x -1).得3x - 3(x -1) = 2x3x - 3x + 3 = 2x2x = 3x = 1.5检验:当x = 1.5时 . 3(x -1) ≠ 0所以.原分式方程的解为 x = 1.5 .【点评】根据解分式的一般步骤进行去分母.然后解一元一次方程,最后记得检验即可.28.(2018•广西贵港•10分)(1)计算:|3﹣5|﹣(π﹣3.14)0+(﹣2)﹣1+sin30°;(2)解分式方程:+1=.【分析】(1)先计算绝对值、零指数幂、负整数指数幂、代入三角函数值.再计算加减可得;(2)分式方程去分母转化为整式方程.求出整式方程的解得到x的值.经检验即可得到分式方程的解.【解答】解:(1)原式=5﹣3﹣1﹣+=1;(2)方程两边都乘以(x+2)(x﹣2).得:4+(x+2)(x﹣2)=x+2. 整理.得:x2﹣x﹣2=0.解得:x1=﹣1.x2=2.检验:当x=﹣1时.(x+2)(x﹣2)=﹣3≠0.当x=2时.(x+2)(x﹣2)=0.所以分式方程的解为x=﹣1.【点评】此题考查了实数的运算与解分式方程.解分式方程的基本思想是“转化思想”.把分式方程转化为整式方程求解.解分式方程一定注意要验根.29.(2018•贵州黔西南州•12分)(2)先化简(1﹣)•.再在1.2.3中选取一个适当的数代入求值.【分析】(2)根据分式的减法和乘法可以化简题目中的式子.再从1.2.3中选取一个使得原分式有意义的值代入化简后的式子即可解答本题.【解答】解:(2)(1﹣)•===. 当x=2时.原式=.【点评】本题考查分式的化简求值.解答本题的关键是明确它们各自的计算方法.31.(2018年湖南省娄底市)先化简.再求值:( +)÷.其中x=.【分析】原式括号中两项通分并利用同分母分式的加法法则计算.同时利用除法法则变形.约分得到最简结果.把x的值代入计算即可求出值.【解答】解:原式=•=.当x=时.原式==3+2.【点评】此题考查了分式的化简求值.熟练掌握运算法则是解本题的关键.31.(2018湖南省邵阳市)(8分)某公司计划购买A.B两种型号的机器人搬运材料.已知A型机器人比B型机器人每小时多搬运30kg材料.且A型机器人搬运1000kg材料所用的时间与B型机器人搬运800kg材料所用的时间相同.(1)求A.B两种型号的机器人每小时分别搬运多少材料;(2)该公司计划采购A.B两种型号的机器人共20台.要求每小时搬运材料不得少于2800kg.则至少购进A型机器人多少台?【分析】(1)设B型机器人每小时搬运x千克材料.则A型机器人每小时搬运(x+30)千克材料.根据A型机器人搬运1000kg材料所用的时间与B型机器人搬运800kg材料所用的时间相同建立方程求出其解就可以得出结论.(2)设购进A型机器人a台.根据每小时搬运材料不得少于2800kg 列出不等式并解答.【解答】解:(1)设B型机器人每小时搬运x千克材料.则A型机器人每小时搬运(x+30)千克材料.根据题意.得=.解得x=120.经检验.x=120是所列方程的解.当x=120时.x+30=150.答:A型机器人每小时搬运150千克材料.B型机器人每小时搬运120千克材料;(2)设购进A型机器人a台.则购进B型机器人(20﹣a)台.根据题意.得150a+120(20﹣a)≥2800.解得a≥.∵a是整数.∴a≥14.答:至少购进A型机器人14台.【点评】本题考查了分式方程的运用.一元一次不等式的运用.解决问题的关键是读懂题意.找到关键描述语.进而找到所求的量的数量关。

浙教版七年级下册数学 5.5分式方程(实际应用篇) (含解析)

浙教版七年级下册数学 5.5分式方程(实际应用篇)  (含解析)

5.5分式方程(实际应用篇)一.选择题1.一项工程,甲单独完成比乙单独完成多用6天,若甲、乙合作3天后,乙需再用7天才能全部完成,若设甲单独完成此项工程需x天,则下列方程正确的是()A.+=1B.+=1C.+=1D.+=12.随着快递业务量的增加,某快递公司为快递品更换快捷的交通工具,公司投递快件的能力由每天300件提高到420件,平均每人每天比原来多投递8件.若快递公司的快递员人数不变,求原来平均每人每天投递快件多少件?设原来平均每人每天投递快件x件,根据题意课列方程为()A.B.C.D.3.某校初二年级的同学乘坐大巴车去北京展览馆参观“砥砺奋进的五年”大型成就展.北京展览馆距离该校12千米.1号车出发3分钟后,2号车才出发,结果两车同时到达.已知2号车的平均速度是1号车的平均速度的1.2倍,求2号车的平均速度,设1号车的平均速度为xkm/h,可列方程为()A.B.C.D.4.为了能让更多人接种,某药厂的新冠疫苗生产线开足马力,24小时运转,该条生产线计划加工320万支疫苗,前五天按原计划的速度生产,五天后以原来速度的1.25倍生产,结果比原计划提前3天完成任务,设原计划每天生产x万支疫苗,则可列方程为()A.B.C.D.5.2021年3月12日,为了配合创建文明,宜居的北京城市副中心,通州区某学校甲、乙两班学生参加城市公园的植树造林活动.已知甲班每小时比乙班少植2棵树,甲班植60棵树所用时间与乙班植70棵树所用时间相同.如果设甲班每小时植树x棵,那么根据题意列出方程正确的是()A.=B.=C.=D.=6.面对疫情,武汉疫情急需建造一座用于集中收治新型冠状病毒感染肺炎患者的专科医院﹣﹣火神山医院,这是一次与疫情竞速的建设.若该工程由甲队单独施工,则恰好在规定时间内完成,若由乙队单独施工,则要超过规定时间3天才能完成;现在甲、乙两队合做2天后,再由乙队单独做,也刚好在规定时间完成.设工程规定的天数为x天,则下列方程正确的是()A.B.C.D.7.为有效解决交通拥堵问题,营造路网微循环,某市决定对一条长860m的道路进行拓宽改造.为了减轻施工对城市交通造成的影响,实际施工时,每天改造道路的长度比原计划增加10%,结果提前6天完成任务.求实际每天改造道路的长度与实际施工天数.珍珍同学根据题意列出方程﹣=6;文文同学根据题意列出方程=×(1+10%).已知两人的答案均正确,则下列说法正确的是()A.x,y代表相同的含义B.x表示实际每天改造道路的长度C.y表示实际施工天数D.表示实际每天改造道路的长度8.网上购物已经成为人们常用的一种购物方式.购物方式的改变给快递行业带来了商机,也带来了挑战.为了提高效率,某快递公司研发了快递机器人专门负责分拣包裹,已知单个机器人比人工(一个人)每小时多分拣100个,单个机器人分拣9000个包裹和人工(一个人)分拣6000个包裹所用时间相同.设人工(一个人)每小时分拣x个包裹,则可列方程为()A.B.C.D.9.某商店计划今年的春节购进A、B两种纪念品若干件.若花费480元购进的A种纪念品的数量是花费480元购进B种纪念品的数量的,已知每件A种纪念品比每件B种纪念品多4元,设购买一件B种纪念品需x元,则下列所列方程正确的是()A.=×B.=×C.=×D.×=10.某工程队几名工人建造绿地,随着技术的提高,公司采用了新的快捷的建造工具,由每周建造3000平方米提高到4200平方米,而且平均每人每周比原来多建造80平方米,若公司的工作人员人数不变,求原来平均每人每周建造多少平方米?设原来平均每人每周建造x平方米,根据题意可列方程为()A.=B.+80=C.=﹣80D.=二.填空题11.为绿化环境某市计划植树3000棵,实际劳动中每天植树的数量比原计划多20%,结果提前5天完成任务.若设原计划每天植树x棵,则根据题意可列方程为.12.到2020年末,我国高铁运营里程约为3.8万公里,超过世界高铁总里程的60%,现有某高铁平均速度提升50km/h后,行驶700km用时和提速前行驶600km用时相同,求提速后该高铁的平均速度km/h.13.甲乙两人加工某种零件,若单独工作,则乙比甲多用12天才能完成.若两人合作,8天可以完成,设甲单独完成工作需要x天,则可得方程.14.某商场分别用2000元和2400元购进相同数量的甲、乙两种商品,已知乙种商品每件进价比甲种商品每件进价多8元,则甲种商品每件进价为元.15.某班在植树节时需完成一批植树任务,若由全班学生一起完成每人需植树8棵;若由女生单独完成每人需植树12棵,则由男生单独完成每人需植树棵.三.解答题16.某商店第一次用600元购进某种型号的水笔若干支,第二次又用600元购进该款水笔,但每支水笔的进价比第一次贵1元,所以购进数量比第一次少了30支.问第一次每支水笔的进价为多少元.17.某校九年级两个班在“慈善一日捐”活动中各捐款1800元.已知2班比1班人均捐款多4元,2班的人数比1班的人数少5人,请你根据上述信息提出一个用分式方程解决的问题,并写出解题过程.18.广州某公交线路日均运送乘客总量为15600人次,实施5G快速公交智能调度后,每趟车平均运送乘客量比智能调度前增加了20%.若日均运送乘客总量保持不变,则每日发车数量比智能调度前减少26趟.求实施智能调度前每趟车平均运送乘客量为多少人次.参考答案一.选择题1.解:设甲单独完成此项工程需x天,则乙单独完成此项工程需(x﹣6)天,依题意得:+=1,即+=1.故选:D.2.解:设原来平均每人每天投递快件x件,则更换快捷的交通工具后平均每人每天投递快件(x+8)件,依题意得:=.故选:D.3.解:设1号车的平均速度为xkm/h,则2号车的平均速度是1.2xkm/h,根据题意可得:,故选:A.4.解:∵原计划每天生产x万支疫苗,五天后以原来速度的1.25倍生产,∴五天后每天生产1.25x万支疫苗,依题意,得:.故选:D.5.解:设甲班每小时植树x棵,则乙班每小时植树(x+2)棵,依题意得:=.故选:B.6.解:设工程规定日期为x天,由题意得,2(+)+=1.故选:A.7.解:若设原计划每天改造道路x米,则实际每天改造道路(1+10%)x米,根据题意,可列方程﹣=6;若设实际施工天数为y天,则原计划施工的天数为(y+6)天,根据题意,可列方程=×(1+10%);所以x,y代表不同的含义,表示计划每天改造道路的长度.故选:C.8.解:由题意可得,,故选:A.9.解:设购买一件B种纪念品需x元,则设购买一件A种纪念品需(x+4)元,由题意得:,故选:C.10.解:设原来平均每人每周建造x平方米,则现在平均每人每周建造(x+80)平方米,依题意得:=.故选:D.二.填空题11.解:设原计划每天植树x棵,根据题意可列方程为:=+5.故答案为:=+5.12.解:设提速后该高铁的平均速度为xkm/h,则提速前的速度是(x﹣50)km/h,根据题意,得=.解得x=350.经检验,x=350是原方程的解,且符合题意.故答案是:350.13.解:设甲单独完成工作需要x天,则乙单独完成工作需要(x+12)天,依题意得:+=1.故答案为:+=1.14.解:设甲种商品每件进价为x元,则乙种商品每件进价为(x+8)元,依题意得:=,解得:x=40,经检验,x=40是原方程的解,且符合题意.故答案为:40.15.解:设单独由男生完成,每人应植树x棵.那么根据题意可得出方程:+=,解得:x=24.检验得x=24是方程的解.因此单独由男生完成,每人应植树24棵.故答案为:24.三.解答题16.解:设第一次每支水笔的进价为x元,则第二次每支水笔的进价为(x+1)元,依题意得:﹣=30,整理得:x2+x﹣20=0,解得:x1=4,x2=﹣5,经检验,x1=4,x2=﹣5是原方程的解,x1=4符合题意,x2=﹣5不符合题意,舍去.答:第一次每支水笔的进价为4元.17.问题:两班各有多少人?解:设2班有x人,则1班有(x+5)人,依题意得:﹣=4,依题意得:x2+5x﹣2250=0,解得:x1=45,x2=﹣50.经检验,x1=45,x2=﹣50是原方程的解,x1=45符合题意,x2=﹣50不符合题意,舍去,∴x+5=50(人).答:1班有50人,2班有45人.18.解:设限行期间这路公交车每天运行x车次,+26=,解得:x=100,经检验x=100是原分式方程的根,答:实施智能调度前每趟车平均运送乘客量为100人次.。

初中分式及分式方程100道计算题

初中分式及分式方程100道计算题

初中分式及分式方程100道计算题分式及分式方程计算题练1.分式计算:a) $\frac{3b^2c^2a}{2a^2-6a+9-aa^2} \div (-2) \div (1)$b) $\frac{(3-x)(x+1)}{(x-3)(3+x)} \cdot \frac{-(1-x)}{(1+x)^2}$c) $\frac{4-b^2}{2+b} \div \frac{3a-9}{16a^2bc^2a}$d) $\frac{2x^2-6x+1}{4-4x+x^2} \div (x+3) \cdot 6$e) $\frac{y+1}{y-2} \div \frac{y^2-4y+3}{y^2-6y+9} \cdot 6$f) $\frac{x-y}{x-3y} \div \frac{x^2-y^2}{x^2-6xy+9y^2}$g) $\frac{a^2-2a+1}{a-1} \cdot \frac{a-2}{-(a-1)}$h) $\frac{xy-x^2}{x-y} \div \frac{xy}{x^2}$i) $\frac{x}{x-2} - \frac{x}{x+2} \div 4x$j) $(x+y) \cdot \frac{x}{x-2}$k) $\frac{3b^2}{16a} \div \frac{bc^2a}{2a^2} \cdot (-\frac{b}{2a})$l) $\frac{a^2-6a+9}{3-a} \cdot \frac{x^2y}{yz-x}$m) $\frac{4-b^2}{2+b} \div \frac{3a-9}{a^2-6a+9}$n) $\frac{x^2y}{xz(-y)} \div \frac{-xy}{yz}$o) $\frac{a^2+3}{a^2-1} - \frac{a-1}{a+1} +\frac{2b^2}{16}$p) $\frac{a-b}{a+b} - \frac{a+b}{a-b}$q) $\frac{1}{1+3x} - \frac{1-x^2}{x+1}$r) $x(1-\frac{1}{x}) + \frac{x^2-1}{x+1}$s) $\frac{3-x}{x-2} \div \frac{x+2-5}{x-2}$t) $\frac{(3x-x^3)(x-2)}{x-2} \div (x+2)$u) $\frac{1}{x-y} + \frac{1}{xy} \cdot \frac{x+y}{x+y} \div (x^2-y^2)$v) $\frac{(x+1)}{2(x-2)} \cdot \frac{x-2}{x+2} \div (4x^2-x)$2.改写:a) $\frac{3b^2c^2a}{2a^2-6a+9-aa^2} \div (-2) \div (1) =\frac{-3b^2c^2a}{2a^2-6a+9-aa^2}$b) $\frac{(3-x)(x+1)}{(x-3)(3+x)} \cdot \frac{-(1-x)}{(1+x)^2} = \frac{(x-3)(x+1)(1-x)}{(3+x)(1+x)^2}$c) $\frac{4-b^2}{2+b} \div \frac{3a-9}{16a^2bc^2a} =\frac{-2b}{a(3a-9)}$d) $\frac{2x^2-6x+1}{4-4x+x^2} \div (x+3) \cdot 6 = \frac{-6x+18}{x-3}$e) $\frac{y+1}{y-2} \div \frac{y^2-4y+3}{y^2-6y+9} \cdot 6 = \frac{2(y+1)}{(y-3)(y-1)}$f) $\frac{x-y}{x-3y} \div \frac{x^2-y^2}{x^2-6xy+9y^2} = \frac{y}{x-3y}$g) $\frac{a^2-2a+1}{a-1} \cdot \frac{a-2}{-(a-1)} = -(a-2)$h) $\frac{xy-x^2}{x-y} \div \frac{xy}{x^2} = x$i) $\frac{x}{x-2} - \frac{x}{x+2} \div 4x = \frac{2x^2-8x+1}{x(x-2)(x+2)}$j) $(x+y) \cdot \frac{x}{x-2} = \frac{x(x+y)}{x-2}$k) $\frac{3b^2}{16a} \div \frac{bc^2a}{2a^2} \cdot (-\frac{b}{2a}) = -\frac{3b^3c^2}{32a^3}$l) $\frac{a^2-6a+9}{3-a} \cdot \frac{x^2y}{yz-x} = -\frac{a-3}{y-xz} \cdot x^2y$m) $\frac{4-b^2}{2+b} \div \frac{3a-9}{a^2-6a+9} = \frac{-2b(a-3)}{(2+b)(a-3)^2}$n) $\frac{x^2y}{xz(-y)} \div \frac{-xy}{yz} = -\frac{z}{x}$o) $\frac{a^2+3}{a^2-1} - \frac{a-1}{a+1} + \frac{2b^2}{16} = \frac{4a^2b^2+2a^2+2b^2-2a}{16(a^2-1)}$p) $\frac{a-b}{a+b} - \frac{a+b}{a-b} = -\frac{4ab}{a^2-b^2}$q) $\frac{1}{1+3x} - \frac{1-x^2}{x+1} = \frac{-2x^3-3x^2-3x}{(1+3x)(x+1)(x-1)}$r) $x(1-\frac{1}{x}) + \frac{x^2-1}{x+1} = x+1$s) $\frac{3-x}{x-2} \div \frac{x+2-5}{x-2} = \frac{3-x}{x-3}$t) $\frac{(3x-x^3)(x-2)}{x-2} \div (x+2) = -(x-1)(3x-x^2)$u) $\frac{1}{x-y} + \frac{1}{xy} \cdot \frac{x+y}{x+y} \div (x^2-y^2) = \frac{2xy}{(x+y)(y-x)(x+y)}$v) $\frac{(x+1)}{2(x-2)} \cdot \frac{x-2}{x+2} \div (4x^2-x) = \frac{1}{2x(x-2)}$2.解方程⑴ $\dfrac{3x-2}{5x}=\dfrac{6}{x+2}$化简得:$3x^2+4x-8=0$,解得:$x=1$ 或 $x=-\dfrac{4}{3}$⑵ $\dfrac{x}{x-5}=\dfrac{x-2}{x-6}$化简得:$x^2-8x+12=0$,解得:$x=2$ 或 $x=6$⑶ $\dfrac{2-x}{x+1}=-2$化简得:$x^2+3x+4=0$,无实数解⑷ $\dfrac{x-1}{x-2}+3=\dfrac{x-2}{x-2}$化简得:$x=3$⑸ $\dfrac{1}{x-2}+3=\dfrac{x-2}{x-2}$化简得:$x=3$ 或 $x=4$⑹ $\dfrac{2x-4}{x-8}+\dfrac{x-5}{x-9}=\dfrac{x-8}{x-6}+\dfrac{x-6}{x-2}$化简得:$x=10$⑺ $\dfrac{2x-3}{2x-4}-\dfrac{1}{x-1}=\dfrac{2x+3}{x-3}$化简得:$x=-\dfrac{3}{2}$ 或 $x=4$⑻ $\dfrac{x-7}{x-1}+\dfrac{1}{x-2}=\dfrac{x-6}{x-2}+\dfrac{1}{x-2}$化简得:$x=3$ 或 $x=8$⑼ $\dfrac{x-1}{x-2}+3=\dfrac{x-2}{x-2}$化简得:$x=3$⑽ $\dfrac{2x-4}{x-3}-\dfrac{x-2}{x-1}=1$化简得:$x=3$ 或 $x=\dfrac{7}{3}$⑾ $\dfrac{1}{x-3}-\dfrac{1}{x-2}+1=\dfrac{3}{2-x}$化简得:$x=1$ 或 $x=4$⑿ $\dfrac{2}{x-3}=\dfrac{1}{x}$化简得:$x=6$⒀ $\dfrac{1}{x+3}+\dfrac{1}{x-3}-\dfrac{2}{x}=1$化简得:$x=2$ 或 $x=4$⒁ $\dfrac{x-1}{x+1}-\dfrac{x+2}{x-1}=\dfrac{x+3}{x+4}-\dfrac{x+4}{x+3}$化简得:$x=-\dfrac{7}{2}$⒂ $\dfrac{3}{x+1}-\dfrac{5}{x+3}=\dfrac{1}{x+3}-\dfrac{1}{x+1}$化简得:$x=-\dfrac{1}{2}$ 或 $x=-\dfrac{7}{3}$3.已知 $x+y=-4$,$xy=-12$,求$\dfrac{y+1}{x+1}+\dfrac{x+1}{y+1}$ 的值。

初中数学:分式方程应用题专题练习附详解(精)

初中数学:分式方程应用题专题练习附详解(精)
5.随着人们对健康生活的追求,有机食品越来越受到人们的喜爱和追捧,某商家打算花费40000元购进一批有机绿色农产品存放于冷库.实际购买时供货商促销,可以在标价基础上打8折购进这批产品,结果实际比计划多购进400千克.
(1)实际购买时,该农产品多少元每千克?
(2)据预测,该农产品的市场价格在实际购买价的基础上每天每千克上涨0.5元,已知冷库存放这批农产品,每天需要支出各种费用合计为280元,同时,平均每天将有8千克损坏不能出售.则将这批农产品存放多少天后一次性全部出售,该公司可获得利润19600元?
(1)求每盒口罩和每盒水银体温计的价格各是多少元?
(2)如果给每位学生发放2只口罩和1支水银体温计,且口罩和水银体温计均整盒购买.设购买口罩m盒(m为正整数),则购买水银体温计多少盒能和口罩刚好配套?请用含m的代数式表示.
(3)在健康大药房累计购医用品超过1800元后,超出1800元的部分可享受8折优惠.该校按(2)中的配套方案购买,共支付w元,求w关于m的函数关系式.若该校九年级有1000名学生,需要购买口罩和水银体温计各多少盒?所需总费用为多少元?
经检验,x=40原方程的解,
∴x+8=48.
答:每件乙种商品的价格为40元,每件甲种商品的价格为48元.
(2)
解:设购买y件甲种商品,则购买(80-y)件乙种商品,
根据题意得:48y+40(80-y)≤3600,
解得:y≤50.
答:最多可购买50件甲种商品.
【点睛】
本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)根据数量=总价÷单价,列出关于x的分式方程;(2)根据总价=单价×购买数量,列出关于y的一元一次不等式.
3.第十一届江苏书展在苏州国际博览中心设有400个展台,并在全省多地线上、线下同步举行.本届书展设置了“读经典、学四史、童心向党和百年辉煌”等活动.为保障书展的准备工作比原计划提前2天完成,每天准备展台的个数需比原计划增加 .

初中分式及分式方程100道计算题

初中分式及分式方程100道计算题

初中分式及分式方程100道计算题分式及分式方程计算题练1.分式计算:a) $\frac{3b^2c^2a}{2a^2-6a+9-aa^2} ÷ \frac{-2}{16a^2ab}$b) $\frac{(x^2+2x-3)(9-x^2)}{(3-x)^2} \cdot \frac{-(1-x)^2}{x+2}$c) $\frac{1}{2x}-\frac{1}{x+y} \cdot \frac{x+y}{2x-x-y}$2.$\frac{4-b^2}{2+b^3a-9} \div \frac{4x-x^2+x}{x+3} \cdot \frac{-6}{3-x}$3.$\frac{y+1}{y-2} \div \frac{y^2-4y+3}{y-5}$4.$\frac{x-y}{x^2-y^2} \cdot \frac{1}{1-\frac{x-3y}{x^2-6xy+9y^2}}$5.$\frac{3b^2}{16a} \div \frac{bc}{2a^2} \cdot \frac{-2a}{b}$6.$\frac{x}{x-2} - \frac{x}{x+2} \div \frac{4x}{x+2}$7.$\frac{a^2-2a+1}{a-1} \cdot \frac{-a+2}{a+1}$8.$\frac{xy-x^2}{x-y} \div \frac{x}{y}$9.$\frac{10}{x-x^2} \cdot \frac{x+2}{2-x}$10.$\frac{x}{x-2} - \frac{x}{x+2} \div \frac{4x}{x+2}$11.$\frac{xy-x^2}{x-y} \cdot \frac{1}{xy}$12.$(x+y) \cdot \frac{x-1}{x+1}$13.$\frac{1}{x(1-\frac{1}{x})}+\frac{x^2-1}{x^2-1}$14.$\frac{a+3}{a-1} - \frac{a-3}{a+1} \cdot \frac{1}{a-1}$15.$\frac{2b}{a-b} \cdot \frac{a}{a-b} + \frac{a+b}{a-b}$16.$\frac{1}{2x-1} - \frac{1}{x-2} \cdot \frac{5}{x-2}$17.$\frac{x^2y}{324} \div \frac{-y(x-1)}{xz} \cdot \frac{-x}{yz}$18.$\frac{a+3}{a-1} - \frac{a-3}{a+1} \cdot \frac{1}{a-1}$19.$\frac{2b}{a-b} \cdot \frac{a}{a-b} + \frac{a+b}{a-b}$20.$\frac{1}{2x-1} - \frac{1}{x-2} \cdot \frac{5}{x-2}$21.$\frac{3b^2}{16a} \div \frac{bc}{2a^2} \cdot \frac{-2a}{b}$22.$\frac{4-b^2}{2+b^3a-9} \div \frac{4x-x^2+x}{x+3}\cdot \frac{-6}{3-x}$23.$\frac{y+1}{y-2} \div \frac{y^2-4y+3}{y-5}$24.$\frac{x-y}{x^2-y^2} \cdot \frac{1}{1-\frac{x-3y}{x^2-6xy+9y^2}}$25.$\frac{3b^2c^2a}{2a^2-6a+9-aa^2} ÷ \frac{-2}{16a^2ab}$26.$\frac{10}{x-x^2} \cdot \frac{x+2}{2-x}$27.$\frac{x}{x-3} \cdot \frac{x^2-4}{x^2} \div (1-\frac{1}{x} - \frac{1}{x-1})$28.$\frac{a+3}{a^2-1} - \frac{a-1}{a+1} + 1$29.$\frac{2b^2}{16a} \div \frac{bc}{2a^2} \cdot \frac{-2a}{b}$30.$\frac{a-b}{a+b}$31.$\frac{1}{1+x} - \frac{1-x^2}{x+1}$32.$\frac{3x}{x^3-2x} - \frac{x+2}{x^2-4}$33.$\frac{x(1-\frac{1}{x})}{x+1} + \frac{x^2-1}{x-1}$34.$\frac{3x}{x^2-4} - \frac{x+2}{x^2-4}$35.$\frac{3-x}{x-2} \div (\frac{x+2}{x-2}-\frac{5}{x-2})$36.$\frac{1}{x} + \frac{1}{y} \div \frac{x-y}{x^2-y^2}$37.$\frac{2(x+1)}{x^2-xx-2x+1} \cdot \frac{x-y}{2}$38.$\frac{1}{x} - \frac{1}{x^2-1} + \frac{1}{x^2-1} \cdot \frac{x}{x+1}$39.$\frac{1}{2x-1} - \frac{1}{x-2} \cdot \frac{5}{x-2}$2.解方程⑴ $\frac{3x-2}{5x}=\frac{4x-4}{x^2-2x}$将分式化简得到 $3(x-2)(x+1)=(4x-4)5$化简后得到 $3x^2-7x-6=0$,解得 $x=3$ 或 $x=-\frac{2}{3}$。

七年级下册数学分式方程应用题及答案

七年级下册数学分式方程应用题及答案

1、甲、乙两人准备整理一批新到的实验器材,甲单独整理需要40分完工;若甲、乙共同整理20分钟后,乙需要再单独整理20分才能完工。

问:乙单独整理需多少分钟完工?2、有两块面积相同的试验田,分别收获蔬菜900千克和1500千克,已知第一块试验田每亩收获蔬菜比第二块少300千克,求第一块试验田每亩收获蔬菜多少千克?3、甲、乙两地相距19千米,某人从甲地去乙地,先步行7千米,然后改骑自行车,共用了2小时到达乙地。

已知这个人骑自行车的速度是步行速度的4倍。

求步行的速度和骑自行车的速度。

4、小兰的妈妈在供销大厦用12.50元买了若干瓶酸奶,但她在百货商场食品自选室发现,同样的酸奶,这里要比供销大厦每瓶便宜0.2元,因此,当第二次买酸奶时,便到百货商场去买,结果用去18.40元钱,买的瓶数比第一次买的瓶数多53,问:她第一次在供销大厦买了几瓶酸奶?5、某商店经销一种纪念品,4月份的营业额为2000元,为扩大销售,5月份该商店对这种纪念品打九折销售,结果销售量增加20件,营业额增加700元。

⑴ 求这种纪念品4月份的销售价格。

⑵ 若4月份销售这种纪念品获利800元,问:5月份销售这种纪念品获利多少元?6、王明和李刚各自加工15个零件,王明每小时比李刚多加工1个,结果比李刚少用半小时完成任务,问:两人每小时各加工多少个零件?7、某一项工程在招标时,接到甲、乙两个工程队的投标书,施工一天,需付甲工程队款1.5万元,乙工程队款1.1万元,工程领导小组根据甲、乙两队的投标书测算,可有三种施工方案:方案一:甲队单独完成这项工程刚好如期完成;方案二:乙队单独完成这项工程要比规定日期多用5天;方案三:若甲、乙两队合做4天,余下的工程由乙队单独完成,也正好如期完成。

试问:在不耽误工期的情况下,你觉得哪一种施工方案最节省工程款?请说明理由。

8、一个分数的分母比分子大7,如果把此分数的分子加17,分母减4,所得新分数是原分数的倒数,求原分数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分式方程及分式应用题【知识点归纳】知识点一、分式方程1分式方程概念:方程中含有分式,并且分母中含有未知数,像这样的方程叫做分式方程.2解分式方程:基本思路是将分式方程化为整式方程,具体做法是“去分母”,即方程两边同乘最简公分母。

一般的,解分式方程时,去分母后所得整式方程的解有可能使原方程中分母为0,因此应做如下检验:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。

《1》理解分式方程的有关概念例1 指出下列方程中,分式方程有( )①21123x x -=5 ②223x x -=5x 2-5x=0x +3=0 A .1个 B .2个 C .3个 D .4个【点评】根据分式方程的概念,看方程中分母是否含有未知数.《2》掌握分式方程的解法步骤(注意分式方程最后要验根。

(易错点))例2 解方程:100307x x =-.例3. 解关于x 的方程x a b c x b c b x c ab a bc --+--+--=>30(),, 解:原方程化为:x a b c x b c b x c ab---+---+---=1110即x a b c c x b c a a x c a b b---+---+---=0∴---++=>>>∴++≠∴---=∴=++()()x a b c a b c a b c a b cx a b c x a b c11100011100Θ,,说明:本题中,常数“3”是一个重要的量,把3拆成3个1,正好能凑成公因式x a b c ---。

若按常规在方程两边去分母,则解法太繁,故解题中一定要注意观察方程的结构特征,才能找到合适的办法。

例4. 解关于x 的方程。

ax x a bx x b a b x a x b ab ()()()()()()+++=+++≠0解:去括号:ax a x bx b x a b x a b x ab a b 222222+++=+++++()()()()()()()a b x a b x ab a b abx ab a b ab x a b222202+-+=+-=+≠∴=-+Θ说明:解含字母系数的方程,在消未知数的系数时,一定要强调未知数的系数不等于0,如果方程的解是分式形式,必须化成最简分式或整式。

练习1. 解关于x 的方程x m n x n m-=-11,其中m n m n ≠≠≠00,,。

练习2. 解关于x 的方程()()a a x x a --+=-1422。

例5. (2011安徽芜湖,5,4分) 分式方程25322x x x-=--的解是( ). A .2x =-B .2x =C .1x =D .12x x ==或例 6. (2011湖北荆州,6,3分)对于非零的两个实数a 、b ,规定ab b a 11-=⊗,若1)1(1=+⊗x ,则x 的值为A .23B .31C . 21D . 21-例7. (2011四川成都,13,4分) 已知1=x 是分式方程xkx 311=+的根,则实数k =___________.《3》分式方程的增根问题例8. (2011黑龙江绥化,18,3分)分式方程()()2111+-=--x x m x x 有增根,则m 的值为( )A 、0和1B 、1C 、1和-2D 、3例9. (2011湖北襄阳,16,3分)关于x 的分式方程1131=-+-xx m 的解为正数,则m 的取值范围是 .练习 已知关于x 的方程x x mx --=-323有一个正整数解,求m 的取值范围。

知识点二、分式方程应用题分式方程应用题四步骤1,设未知数一般是问什么就设什么。

如果问题中有两个并列的,则一般设前面那个为x,把后面那个用x 来表示。

如果问题问的量设为x 之后题目中其他的量不容易用来表示,则设题目中容易表示其他量的量为x ,然后把其他的量用x 表示出来即可。

(如第13题要设衬衫的单价而不能设总盈利,设衬衫的单价为x 列出方程,求出x ,再用x 来求出总盈利) 2,找等量关系,从而列方程列方程最重要的是找到等量关系,找到什么等于什么之后,用x 来表示等号两边的量即可得到方程。

那找等量关系的关键在哪呢?如何一眼看出等量关系呢?其实,非常简单。

那就是找到这个题要达到的结果,那句话就是等量关系,所以找等量关系关键就是找到“题目要达到的那句话”。

这句话一般都就是问题的前面那句话,如果不是,再到其他位置找。

3,解分式方程第一步是去分母。

注意是去分母,而不是通分。

去分母的关键就是方程两边同时乘上所有的分母的最小公倍数。

这样可以直接去掉所有的分母。

第二步就是去括号了,利用乘法分配率化简。

第三步移项。

把所有含x 的项移到一边,不含x 的项移到另一边。

第四步合并同类项。

第五步把x 的系数化为1.第六步:检验。

检验结果是否让方程中的分母为零,为零则无意义。

解方程一定要严格按照以上步骤,每一步都达到每一步的结果。

基本所有的分式方程就用以上五步就可以解出。

不要把一步分成两步,去括号那一步就要去掉所有的括号,而不要分成两步来写,如果你认为要计算的太多一步得不到去括号的结果,那就在演草纸上算,把整个去括号的结果写上去即可。

4,当然,最后写上答案就完成了。

【精讲精练】例1、某超级市场销售一种计算器,每个售价48元.后来,计算器的进价降低了4%,但售价未变,从而使超市销售这种计算器的利润提高了5%.这种计算器原来每个进价是多少元?(利润=售价-进价,利润率100% =⨯利润进价)思路:第一步:设进价为x元,第二步,找等量关系。

这个题要的那句话就是“从而使超市销售这种计算器的利润提高了5%”。

可知等号的一边是原来的利润,另一边是后来的利润提高5%。

再利用利润的公式得出方程式。

第三步:解方程第四步:写答案解:设这种计算器原来每个的进价为x元,1分根据题意,得4848(14)1005100(14)x xx x---⨯+=⨯-%%%%%.5分解这个方程,得40x=.8分经检验,40x=是原方程的根.9分答:这种计算器原来每个的进价是40元.10分练习1、(2009,福州)整理一批图书,如果由一个人单独做要花60小时。

现先由一部分人用一小时整理,随后增加15人和他们一起又做了两小时,恰好完成整理工作。

假设每个人的工作效率相同,那么先安排整理的人员有多少人?例2、今年4月18日,我国铁路实现了第六次大提速,这给旅客的出行带来了更大的方便.例如,京沪线全长约1500公里,第六次提速后,特快列车运行全程所用时间比第五次提速后少用718小时.已知第六次提速后比第五次提速后的平均时速快了40公里,求第五次提速后和第六次提速后的平均时速各是多少?练习2、(2009,新疆)甲、乙两同学学习计算机打字,甲打一篇3000字的文章与乙打一篇2400字的文章所用的时间相同.已知甲每分钟比乙每分钟多打12个字,问甲、乙两人每分钟各打多少个字?例3、甲、乙两火车站相距1280千米,采用“和谐”号动车组提速后,列车行驶速度是原来速度的3.2倍,从甲站到乙站的时间缩短了11小时,求列车提速后的速度.练习3、(2009,达州)某学生食堂存煤45吨,用了5天后,由于改进设备,平均每天耗煤量降低为原来的一半,结果多烧了10天.求改进设备后平均每天耗煤多少吨?例4、A、B两地相距18公里,甲工程队要在A、B两地间铺设一条输送天然气管道,乙工程队要在A、B两地间铺设一条输油管道.已知甲工程队每周比乙工程队少铺设1公里,甲工程队提前3周开工,结果两队同时完成任务,求甲、乙两工程队每周各铺设多少公里管道?练习4、(2009南充)在达成铁路复线工程中,某路段需要铺轨.先由甲工程队独做2天后,再由乙工程队独做3天刚好完成这项任务.已知乙工程队单独完成这项任务比甲工程队单独完成这项任务多用2天,求甲、乙工程队单独完成这项任务各需要多少天?【课后训练】1. 解下列分式方程:2. a 为何值时,关于x 的方程x x a a +-=-+12235的解等于零?3. 如果a 、b 为定值,关于x 的一次方程3326kx a x bk+=+-,无论取何值,它的根总是1,求a 、b 的值。

4、(2010广东河池非课改,8分)某商店在“端午节”到来之际,以2400元购进一批盒装粽子,节日期间每盒按进价增加20%作为售价,售出了50盒;节日过后每盒以低于进价5元作为售价,售完余下的粽子,整个买卖过程共盈利350元,求每盒粽子的进价. 5、(2010辽宁沈阳课改,10分)甲、乙两个施工队共同完成某居民小区绿化改造工程,乙队先单独做2天后,再由两队合作10天就能完成全部工程.已知乙队单独完成此项工程所需天数是甲队单独完成此项工程所需天数的45,求甲、乙两个施工队单独完成此项工程各需多少天?。

相关文档
最新文档