半导体物理第1章 半导体中的电子状态

合集下载

半导体物理

半导体物理

半导体物理思考题第一章半导体中的电子状态1、为什么内壳层电子能带窄,外层电子能带宽?答:内层电子处于低能态,外层电子处于高能态,所以外层电子的共有化运动能力强,因此能带宽。

(原子的内层电子受到原子核的束缚较大,与外层电子相比,它们的势垒强度较大。

)2、为什么点阵间隔越小,能带越宽?答:点阵间隔越小,电子共有化运动能力越强,能带也就越宽。

3、简述半导体的导电机构答:导带中的电子和价带中的空穴都参与导电。

4、什么是本征半导体、n 型半导体、p 型半导体?答:纯净晶体结构的半导体称为本征半导体;自由电子浓度远大于空穴浓度的杂质半导体称为n 型半导体;空穴浓度远大于自由电子浓度的杂质半导体称为p 型半导体。

5、什么是空穴?电子和空穴的异同之处是什么?答:(1)在电子脱离价键的束缚而成为自由电子后,价键中所留下的空位叫空穴。

(2)相同点:在真实空间的位置不确定;运动速度一样;数量一致(成对出现)。

不同点:有效质量互为相反数;能量符号相反;电子带负电,空穴带正电。

6、为什么发光器件多半采用直接带隙半导体来制作?答:直接带隙半导体中载流子的寿命很短,同时,电子和空穴只要一相遇就会发生复合,这种直接复合可以把能量几乎全部以光的形式放出,因此发光效率高。

7、半导体的五大基本特性答:(1)负电阻温度效应:温度升高,电阻减小。

(2)光电导效应:由辐射引起的被照射材料的电导率改变的现象。

(3) 整流效应:加正向电压时,导通;加反向电压时,不导通。

(4) 光生伏特效应:半导体和金属接触时,在光照射下产生电动势。

(5) 霍尔效应:通有电流的导体在磁场中受力的作用,在垂直于电流和磁场的方向产生电动势的现象。

第二章半导体中杂质和缺陷能级1、简述实际半导体中杂质与缺陷来源。

答:①原材料纯度不够;②制造过程中引入;③人为控制掺杂。

2、什么是点缺陷、线缺陷、面缺陷?答:( 1)点缺陷:三维尺寸都很小,不超过几个原子直径的缺陷; (2)线缺陷:三维空间中在二维方向上尺寸较小,在另一维方向上尺寸较大的缺陷;(3)面缺陷:二维尺寸很大而第三维尺寸很小的缺陷。

半导体物理

半导体物理

半导体物理思考题第一章半导体中的电子状态1、为什么内壳层电子能带窄,外层电子能带宽?答:内层电子处于低能态,外层电子处于高能态,所以外层电子的共有化运动能力强,因此能带宽。

(原子的内层电子受到原子核的束缚较大,与外层电子相比,它们的势垒强度较大。

)2、为什么点阵间隔越小,能带越宽?答:点阵间隔越小,电子共有化运动能力越强,能带也就越宽。

3、简述半导体的导电机构答:导带中的电子和价带中的空穴都参与导电。

4、什么是本征半导体、n型半导体、p型半导体?答:纯净晶体结构的半导体称为本征半导体;自由电子浓度远大于空穴浓度的杂质半导体称为n型半导体;空穴浓度远大于自由电子浓度的杂质半导体称为p型半导体。

5、什么是空穴?电子和空穴的异同之处是什么?答:(1)在电子脱离价键的束缚而成为自由电子后,价键中所留下的空位叫空穴。

(2)相同点:在真实空间的位置不确定;运动速度一样;数量一致(成对出现)。

不同点:有效质量互为相反数;能量符号相反;电子带负电,空穴带正电。

6、为什么发光器件多半采用直接带隙半导体来制作?答:直接带隙半导体中载流子的寿命很短,同时,电子和空穴只要一相遇就会发生复合,这种直接复合可以把能量几乎全部以光的形式放出,因此发光效率高。

7、半导体的五大基本特性答:(1)负电阻温度效应:温度升高,电阻减小。

(2)光电导效应:由辐射引起的被照射材料的电导率改变的现象。

(3)整流效应:加正向电压时,导通;加反向电压时,不导通。

(4)光生伏特效应:半导体和金属接触时,在光照射下产生电动势。

(5)霍尔效应:通有电流的导体在磁场中受力的作用,在垂直于电流和磁场的方向产生电动势的现象。

第二章半导体中杂质和缺陷能级1、简述实际半导体中杂质与缺陷来源。

答:①原材料纯度不够;②制造过程中引入;③人为控制掺杂。

2、什么是点缺陷、线缺陷、面缺陷?答:(1)点缺陷:三维尺寸都很小,不超过几个原子直径的缺陷;(2)线缺陷:三维空间中在二维方向上尺寸较小,在另一维方向上尺寸较大的缺陷;(3)面缺陷:二维尺寸很大而第三维尺寸很小的缺陷。

1.半导体物理:半导体中的电子状态

1.半导体物理:半导体中的电子状态

纤锌矿型结构
由两类原子各自组成的六方排列的双原子层 堆积而成,它的(001) 面规则地按ABABA… 顺序堆积
纤维锌矿结构: ZnO、GaN、AlN、ZnS、ZnTe、CdS、CdTe…
4. 氯化钠型结构
特点: ①两个面心立方(不同的离子构成)沿棱方向平
移1/2周期套构而成。 ②离子性强。
③硫化铅、硒化铅、碲化铅等。
十四种布喇菲格子
三斜:简单 单斜:简单,底心 正交:简单,体心,面心,底心 四方:简单,体心 六角:简单 三角:简单 立方:简单,体心,面心
14 Bravais Lattices
❖ Triclinic:simple ❖ Monoclinic:simple,side-centered ❖ Orthorhombic:simple,body-centered,face-
centered,side-centered ❖ Tetragonal:simple,body-centered ❖Hexagonal :simple ❖Trigonal :simple ❖ Cubic:simple(sc),body-centered(bcc),face-
centered(fcc)
石墨烯(Graphene)是一种由碳原子构成的单层片状结 构的新材料。是一种由碳原子以sp2杂化轨道组成六角型 呈蜂巢晶格的平面薄膜,只有一个碳原子厚度的二维材料。 是世上最薄、最坚硬、电阻率最小的纳米材料。 石墨烯有望取代硅,制作纳米级高速晶体管等电子器件。
1. 金刚石型结构和共价键
许多材料的晶格结构与金刚石相同, 故称为金刚石结构
特点: ① 两个面心立方晶胞沿立方体的空间对角线平移1/4空间对
角线套构而成。 ② sp3杂化轨道为基础形成正四面体结构,夹角109º28´。 ③ 固体物理学原胞(包含两个原子)和面心立方晶格(包

大连理工大学《半导体物理》考研重点

大连理工大学《半导体物理》考研重点

大工《半导体物理》考研重点第一章、半导体中的电子状态●了解半导体的三种常见晶体结构即金刚石型、闪锌矿和纤锌矿型结构;以及两种化合键形式即共价键和离子键在不同结构中的特点。

●了解电子的共有化运动;●理解能带不同形式导带、价带、禁带的形成;导体、半导体、绝缘体的能带与导电性能的差异;●掌握本征激发的概念。

●理解半导体中电子的平均速度和加速度;●掌握半导体有效质量的概念、意义和计算。

●理解本征半导体的导电机构;●掌握半导体空穴的概念及其特点。

●理解典型半导体材料锗、硅、砷化镓和锗硅的能带结构。

重要术语:1.允带2.电子的有效质量3.禁带4.本征半导体5.本征激发6.空穴7.空穴的有效质量知识点:学完本章后,学生应具备以下能力:1.对单晶中的允带和禁带的概念进行定性的讨论。

2.讨论硅中能带的分裂。

3.根据K-k关系曲线论述有效质量的定义,并讨论它对于晶体中粒子运动的意义。

4.本征半导体与本征激发的概念。

5.讨论空穴的概念。

6.定性地讨论金属、绝缘体和半导体在能带方面的差异。

第二章、半导体中的杂质和缺陷能级●掌握锗、硅晶体中的浅能级形成原因,多子和少子的概念;●了解浅能级杂质电离能的计算;●了解杂质补偿作用及其产生的原因;。

●了解锗、硅晶体中深能级杂质的特点和作用;●理解错误!未找到引用源。

-错误!未找到引用源。

族化合物中的杂质能级的形成及特点;●了解等电子陷阱、等电子络合物以及两性杂质的概念;●了解缺陷(主要是两类点缺陷弗仑克耳缺陷和肖脱基缺陷)、位错(一种线缺陷)施主或受主能级的形成。

重要术语1.受主原子2.载流子电荷3.补偿半导体4.完全电离5.施主原子6.非本征半导体7.束缚态知识点:学完本章后,学生应具备如下能力:1.描述半导体内掺人施主与受主杂质后的影响。

2.理解完全电离的概念。

第三章热平衡时半导体中载流子的统计分布●掌握状态密度,费米能级的概念;●掌握载流子的费米统计分布和波尔兹曼统计分布;●掌握本征半导体的载流子浓度和费米能级公式推导和计算;●掌握非简并半导体载流子浓度和费米能级公式推导和计算、杂质半导体的载流子浓度以及费米能级随掺杂浓度以及温度变化的规律;●了解简并半导体及其简并化条件。

半导体物理-第1章-半导体中的电子态

半导体物理-第1章-半导体中的电子态
4. (111)面的堆积与面心立方的密堆积类 似,但其正四面体的中心有一个原子,面 心立方的中心没有原子。
金刚石结构的(111) 面层包含了套构的原 子,形成了双原子层 的A层。以双原子层的 形式按ABCABC层排 列
金刚石结构的[100]面的投 影。0和1/2表示面心立方 晶格上的原子,1/4,3/4 表示沿晶体对角线位移1/4 的另一个面心立方晶格上的 原子。
2.每个原子最外层价电子为一个s态电子和三个p态电 子。在与相邻四个原子结合时,四个共用的电子对完全 等价,难以区分出s与p态电子,因而人们提出了“杂 化轨道”的概念:一个s和三个p轨道形成了能量相同 的sp3杂化轨道。之间的夹角均为109°28 ’。
3. 结晶学元胞为立方对 称的晶胞,可看作是两 个面心立方晶胞沿立方 体的空间对角线互相位 移了1/4对角线长度套 构而成。
Ψ(r,t) = Aexp[i2π(k ·r – v t)]
(3)
其中k 为波矢,大小等于波长倒数1/λ ,方
向与波面法线平行,即波的传播方向。得
能量:E = hν
动量:p = hk
(4) (5)
对自由电子,势能为零,故薛定谔方程为:
2
2m0
d 2 (x)
dx2
E (x)
(6)
由于无边界条件限制,故k取值可连续变化。即:与经 典物理(粒子性)得出相同结论。
能带形成的另一种情况
硅、锗外壳层有4个价电子,形成晶体时,产生SP杂化 轨道。原子间可能先进行轨道杂化(形成成键态和反键 态),再分裂成能带。
原子能级
反成键态
成键态
半导体(硅、锗)能带的特点
存在轨道杂化,失去能带与孤立原子能级的对应关系。 杂化后能带重新分开为上能带和下能带,上能带称为导 带,下能带称为价带。

半导体物理习题答案(1-3章)

半导体物理习题答案(1-3章)

第1章 半导体中的电子状态1. 设晶格常数为a 的一维晶格,导带极小值附近能量()c E k 和价带极大值附近能量()v E k 分别为2222100()()3c h k k h k E k m m -=+,22221003()6v h k h k E k m m =-0m 为电子惯性质量,112k a =, 0.314a =nm 。

试求:1) 禁带宽度;2) 导带底电子有效质量; 3) 价带顶电子有效质量;4) 价带顶电子跃迁到导带底时准动量的变化。

解:1) 禁带宽度g E ,根据22100()2()202c dE k h k k h k dk m m -=+=,可求出对应导带能量极小值min E 的k 值:min 134k k =, 由题目中()c E k 式可得:min 12min 3104()4c k k k h E E k k m ====; 根据20()60v dE k h k dk m =-=,可以看出,对应价带能量极大值max E 的k 值为:k max = 0;可得max 221max 00()6v k k h k E E k m ====,所以2221min max 2001248g h k h E E E m m a=-== 2) 导带底电子有效质量m n由于2222200022833c d E h h h dk m m m =+=,所以202238nc m h md E dk== 3) 价带顶电子有效质量vn m由于22206v d E h dk m =-,所以20226v nv m h m d E dk ==- 4) 准动量的改变量min max 133()48hh k h k k hk a∆=-==2. 晶格常数为0.25 nm 的一维晶格,当外加102 V/m 、107 V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。

解:设电场强度为E ,电子受到的力f 为dkf hqE dt==(E 取绝对值),可得h dt dk qE =, 所以12012ta h h t dt dk qE qE a===⎰⎰,代入数据得: 34619106.62108.310()1.6102(2.510)t s E E----⨯⨯==⨯⨯⨯⨯⨯ 当E = 102 V/m 时,88.310t s -=⨯;当E = 107 V/m 时,138.310t s -=⨯。

半导体物理复习资料

半导体物理复习资料

第一章 半导体中的电子状态1.导体、半导体、绝缘体的划分:Ⅰ导体内部存在部分充满的能带,在电场作用下形成电流;Ⅱ绝缘体内部不存在部分充满的能带,在电场作用下无电流产生; Ⅲ半导体的价带是完全充满的,但与之上面靠近的能带间的能隙很小,电子易被激发到上面的能带,使这两个能带都变成部分充满,使固体导电。

2.电子的有效质量是*n m ,空穴的有效质量是*p m ;**np m m -=,电量等值反号,波矢k 与电子相同 能带底电子的有效质量是正值,能带顶电子的有效质量是负值。

能带底空穴的有效质量是负值,能带顶空穴的有效质量是正值。

3.半导体中电子所受的外力dtdkh f ⋅=的计算。

4.引进有效质量的意义:概括了半导体内部势场的作用,使得在解决半导体中电子在外力作用下的运动规律时,可以不涉及半导体内部势场的作用。

第二章 半导体中杂质和缺陷能级1.施主能级:被施主杂质束缚的电子的能量状态称为施主能级E D ;施主能级很接近于导带底;受主能级:被受主杂质束缚的空穴的能量状态称为受主能级E A ;受主能级很接近于价带顶。

施主能级图 受主能级图2.浅能级杂质:杂质的电离能远小于本征半导体禁带宽度的杂质,电离后向相应的能带提供电子或空穴。

深能级杂质:能级位于禁带中央位置附近,距离相应允带差值较大。

深能级杂质起复合中心、陷阱作用;浅能级杂质起施主、受主作用。

3.杂质的补偿作用:半导体中同时含有施主和受主杂质,施主和受主先相互抵消,剩余的杂质发生电离。

在Ⅲ-Ⅴ族半导体中(Ga-As )掺入Ⅳ族杂质原子(Si ),Si 为两性杂质,既可作施主,亦可作受主。

设315100.1-⨯=cm N A ,316101.1-⨯=cm N D ;则316100.1-⨯=-=cm N N n A D 由p n n i ⋅=2,可得p 值;①p n ≈时,近似认为本征半导体,i F E E =;②p n μμ=时,本征电导p n σσ=; p n >>时,杂质能级靠近导带底;第三章 半导体中载流子的统计分布1.费米分布函数(简并半导体)⎪⎪⎭⎫ ⎝⎛⋅-+=Tk E E E f F 0exp 11)((本征);⎪⎪⎭⎫ ⎝⎛⋅-+=T k E E E f F 0exp 2111)((杂质);玻尔兹曼分布函数(非简并半导体) ⎪⎪⎭⎫ ⎝⎛⋅-=T k E A E f B0exp )(;2.费米能级:TF N F E ⎪⎭⎫⎝⎛∂∂==μ;系统处于热平衡状态,也不对外界做功的情况下,系统中增加一个电子所引起系统自由能的变化,等于系统的化学势,也就是等于系统的费米能级。

半导体物理学 第一章__半导体中的电子状态

半导体物理学 第一章__半导体中的电子状态

The End of Preface
第一章 半导体中的电子状态
主要内容:
1.1 半导体的晶格结构和结合性质 1.2半导体中电子状态和能带 1.3半导体中电子运动--有效质量 1.4 本征半导体的导电机构--空穴 1.5 常见半导体的能带结构 (共计八学时)
本章重点:
*重 点 之 一:Ge、Si 和GaAs的晶体结构
晶体结构周期性的函数 uk (x) 的乘积。
分布几率是晶格的周期函数,但对每个原胞的
相应位置,电子的分布几率一样的。 波矢k描述晶体中电子的共有化运动状态。
它是按照晶格的周期 a 调幅的行波。
这在物理上反映了晶体中的电子既有共有化的 倾向,又有受到周期地排列的离子的束缚的特点。
只有在 uk (x) 等于常数时,在周期场中运动的 电子的波函数才完全变为自由电子的波函数。
硅基应变异质结构材料一维量子线零维量子点基于量子尺寸效应量子干涉效应量子隧穿效应以及非线性光学效应等的低维半导体材料是一种人工构造通过能带工程实施的新型半导体材料是新一代量子器件的基宽带隙半导体材料宽带隙半导体材料主要指的是金刚石iii族氮化物碳化硅立方氮化硼以及iivi族硫锡碲化物氧化物zno等及固溶体等特别是sicgan和金刚石薄膜等材料因具有高热导率高电子饱和漂移速度和大临界击穿电压等特点成为研制高频大功率耐高温抗辐射半导体微电子器件和电路的理想材料在通信汽车航空航天石油开采以及国防等方面有着广泛的应用前景
(1)元素半导体晶体
Si、Ge、Se 等元素
(2)化合物半导体及固溶体半导体
SiC
AsSe3、AsTe3、 AsS3、SbS3
Ⅳ-Ⅳ族
Ⅴ-Ⅵ族
化合物 半导体
InP、GaN、 GaAs、InSb、

半导体物理课件:第一章 半导体中的电子状态

半导体物理课件:第一章  半导体中的电子状态

14
1.1 半导体的晶格结构和结合性质
4. 闪锌矿结构和混合键
与金刚石结构的区别
▪ 共价键具有一定的极性 (两类原子的电负性不 同),因此晶体不同晶面 的性质不同。
▪ 不同双原子复式晶格。
常见闪锌矿结构半导体材料 ▪ Ⅲ-Ⅴ族化合物 ▪ 部分Ⅱ-Ⅵ族化合物,如硒化汞,碲化汞等半金属材料。
2024/1/4
量子力学认为微观粒子(如电子)的运动须用波 函数来描述,经典意义上的轨道实质上是电子出 现几率最大的地方。电子的状态可用四个量子数 表示。 (主量子数、角量子数、磁量子数、自旋量子数)
▪ 能级存在简并
2024/1/4
19
1.2 半导体中的电子状态和能带
▪ 电子共有化运动
原子中的电子在原子核的势场和其它电子的作用 下,分列在不同的能级上,形成所谓电子壳层 不同支壳层的电子分别用 1s;2s,2p;3s,3p,3d;4s…等符号表示,每一壳层对 应于确定的能量。
29
1.2 半导体中的电子状态和能带
▪ 金刚石结构的第一布里渊区是一个十四面体。
2024/1/4
30
1.2 半导体中的电子状态和能带
3. 导体、半导体、绝缘体的能带
能带产生的原因:
▪ 定性理论(物理概念):晶体中原子之间的相 互作用,使能级分裂形成能带。
▪ 定量理论(量子力学计算):电子在周期场中 运动,其能量不连续形成能带。
•结果每个二度简并的能级都分裂为二个彼此相距 很近的能级;两个原子靠得越近,分裂得越厉害。
2024/1/4
22
1.2 半导体中的电子状态和能带
▪ 内壳层的电子,轨道交叠少,共有化运动弱,可忽略 ▪ 外层的价电子,轨道交叠多,共有化运动强,能级分

第1章半导体物理半导体中的电子状态2

第1章半导体物理半导体中的电子状态2

硅和锗在布里渊区中导带等能面示意图
2.硅和锗的价带结构
价带顶位于k=0,即在布里渊区的中心,能带是简并的。计入自旋,价带为六度 简并。如果考虑自旋-轨道耦合,可以取消部分简并,得到一组四度简并的状态 和另一组二度简并的状态,分为两支。
四度简并的能量表示式
E(k)
2 2m0
A
k
2
B2
k
4
C
2
(
2E
k
2 y
)
k
0
1 mz

1
2
(
2E
k
2 z
)
k
0
上式可改写为
式中Ec表示E(k0) 上式为一椭球方程,表明这种情况下的等能面是环绕 k0的一系列椭球面。
2.回旋共振
(1)等能面是球面
f q B 力的大小f qB sin qB, sin '' cos
电子在恒定磁场中的运动
2(k
x
2
k
y
2
k
y
2
k
z
2
k
z
2
k
x2)
..
1 2
二度简并的能量表示式为
E(k
)
2 2m0
A
k
2
式中△是自旋-轨道耦合的分裂能量,常数A、B、C由计算不能准确求出,
需借助于回旋共振试验定出。
对于式1,同一个k,E(k)可以有两个值,在k=0处,能量相重合,这表 明硅、锗有两种有效质量不同的空穴。
qB mz
v
' y
icvz'
0
要使 vx' , v'y , vz' 有非零解的条件是其系数行列式

半导体物理学复习提纲(重点)

半导体物理学复习提纲(重点)

第一章 半导体中的电子状态§1.1 锗和硅的晶体结构特征 金刚石结构的基本特征§1.2 半导体中的电子状态和能带 电子共有化运动概念绝缘体、半导体和导体的能带特征。

几种常用半导体的禁带宽度; 本征激发的概念§1。

3 半导体中电子的运动 有效质量导带底和价带顶附近的E(k )~k 关系()()2*2nk E k E m 2h -0=; 半导体中电子的平均速度dEv hdk=; 有效质量的公式:222*11dk Ed h m n =。

§1。

4本征半导体的导电机构 空穴空穴的特征:带正电;p n m m **=-;n p E E =-;p n k k =-§1。

5 回旋共振§1.6 硅和锗的能带结构 导带底的位置、个数; 重空穴带、轻空穴第二章 半导体中杂质和缺陷能级§2。

1 硅、锗晶体中的杂质能级基本概念:施主杂质,受主杂质,杂质的电离能,杂质的补偿作用。

§2。

2 Ⅲ—Ⅴ族化合物中的杂质能级 杂质的双性行为第三章 半导体中载流子的统计分布热平衡载流子概念§3。

1状态密度定义式:()/g E dz dE =;导带底附近的状态密度:()()3/2*1/232()4ncc m g E VE E h π=-;价带顶附近的状态密度:()()3/2*1/232()4p v Vm g E V E E hπ=-§3.2 费米能级和载流子的浓度统计分布 Fermi 分布函数:()01()1exp /F f E E E k T =+-⎡⎤⎣⎦;Fermi 能级的意义:它和温度、半导体材料的导电类型、杂质的含量以及能量零点的选取有关.1)将半导体中大量的电子看成一个热力学系统,费米能级F E 是系统的化学势;2)F E 可看成量子态是否被电子占据的一个界限。

3)F E 的位置比较直观地标志了电子占据量子态的情况,通常就说费米能级标志了电子填充能级的水平。

半导体物理

半导体物理

半导体物理考点归纳第一章 半导体中的电子状态一.名词解释1.电子的共有化运动:(P10)原子组成晶体后,由于电子壳的交叠,电子不再局限于某一个原子上,可以由一个原子转移到相邻的原子上去。

因而,电子可以在整个晶体中运动。

这种运动称为电子的共有化运动。

2.单电子近似:(P11)单电子近似方法认为,晶体中德电子是在周期性排列且固定不动的原子核势场,以及其他大量电子的平均势场中运动,这个势场是周期性变化的,且其周期与晶格周期相同。

3.有效质量:(P19)有效质量2*22n h m d Edk =,它直接把外力f 和电子的加速度联系起来,而内部势场的作用则由有效质量加以概括。

二.判断题1.金刚石和闪锌矿结构的结晶学原胞都是双原子复式格子,而纤锌矿结构与闪锌矿结构型类似,以立方对称的正四面体结构为基础。

(X )金刚石型结构为单原子复式格子,纤锌矿型是六方对称的。

2.硅晶体属于金刚石结构。

(√)3.Ge 的晶格是单式格子。

(X ) (复式)4.有效质量都是正的。

(X ) (有正有负)5.能带越窄,有效质量越小。

(X )(2*22n h m d Edk =,能带越窄,二次微商越小,有效质量越大) 6.硅锗都是直接带隙半导体。

(X ) (间接)7.Ge 和Si 的价带极大值均位于布里渊区的中心,价带中空穴主要分布在极大值附近,对应同一个k 值,()E k 可以有两个值。

8.实际晶体的每个能带都同孤立原子的某个能级相当,实际晶体的能带完全对应于孤立原子的能带。

(X ) (不相当,不完全对应)三.填空题1.晶格可以分为7大晶系,14种布拉菲格子,按照每个格子所包含的各点数,可分为原始格子,体心,面心,底心。

2.如今热门的发光材料LED 是直接带隙半导体,该种材料的能带结构特点是当k=0时的能谷的极值小。

3.Ge 、Si 是间接带隙半导体,InSb 、GaAs 是直接带隙半导体。

4.回旋共振实验中能测出明显的共振吸收峰,就要求样品纯度高,而且要在低温下进行。

半导体物理第一章

半导体物理第一章


2、闪锌矿结构和混合键

III-V族化合物半导体绝大 多数具有闪锌矿型结构。闪 锌矿结构由两类原子各自组 成的面心立方晶胞沿立方体 的空间对角线滑移了1/4空 间对角线长度套构成的。每 个原子被四个异族原子包围。 例: GaAs、GaP、ZnO

2、闪锌矿结构和混合键

两类原子间除了依靠共价键结合外,还有一定 的离子键成分,但共价键结合占优势。 以离子为结合单元,由正、负离子组成的、靠 库仑力而形成的晶体。此种结合力称为离子键。 由碱金属元素与卤族元素所组成的化合物晶体 是典型的离子晶体,如NaCl、CsCl等。II-VI族 化合物晶体也可以看成是离子晶体,如CdS、 ZnS等。

⑴ 每一个BZ 内包含了所有能带中的全部电子状态。或者说,每一个区 域所包含的波矢数(即 k 的取值个数)等于晶体所包含的原胞数( N)。 因此,电子的运动状态可以在一个 BZ内进行讨论,注意,在同一个BZ内, 电子的能量是准连续的。
布里渊区有如下若干主要特点:
布里渊区与能带:

求解一维条件下晶体中电子的薛定谔方程,可以得到如图所 示的晶体中电子的E(k)~k关系,虚线是自由电子 E(k)~k关 系。
1.自由电子的运动状态
(1)孤立原子中的电子是在该原子的核和其它电子的势场中 运动 (2)自由电子是在恒定势场中运动 (3)晶体中的电子是在严格周期性重复排列的原子间运动
单电子近似——晶体中的某一个电子是在周期性排列且固 定不动的原子核的势场以及其它大量电子的平均势场中运 动,这个势场也是周期性变化的,而且它的周期与晶格周 期相同。

原子间通过共价键结合。
共价键的特点:饱和性、方向性。

⑴ 饱和性:共价键的饱和性是指,一个原子只能形成一定数目的共价 键。由于共价键是两个原子通过共用各自未配对的电子而形成的,而原 子的电子结构是确定的,某一原子在与其它原子化合时,能够形成共价 键的数目就完全取决于原子外层电子中未配对的电子数。此乃饱和性的 实质。 ⑵ 方向性:共价键的方向性是指,原子只能在某些特定的方向上形成 共价键。按量子理论,共价键实际上是由于相邻原子的电子云交叠而形 成的,电子云交叠程度的大小决定了共价键的强弱。因此,原子形成共 价键时,总是取电子云密度最大的方向。这就是方向性的根源。

半导体物理 第1章 半导体中的电子态

半导体物理 第1章 半导体中的电子态

常用参数
• 晶格常数:硅 0.543nm, 锗 0.566nm
• 密度: Si : 5.00*1022cm-3,

Ge: 4.42*1022cm-3
• 共价键半径: Si : 0.117nm,

Ge: 0.122nm.
2.闪锌矿型结构和混合键
在金刚石结构中,若由两 类原子组成,分别占据两 套面心立方,则称为闪锌 矿结构。
堆积方式:III、V族原子构成双原子层堆积,每 一个原子层都是一个[111]面, III、V族化合物具 有离子性,因而构成一个电偶极层。
IIIV:[111]方向,III族原子层为[111]面。
与金刚石结构一样,闪锌矿结构的III-V化合物都由 两个面心立方结构套构而成。称这种晶格为双原子 复式晶格。晶格的周期性原胞中含有两个原子:一 个是III原子,另一个是V族原子。
结果:
n个靠得很近的能级 “准连续”带, 即形成了能带.
允带:能级分裂形成的每一个能带。
禁带:能级间没有能带的区域。
能带的特点: 1、在原有的能级基础上发生 分裂(分裂后的能级数与原子数有关),不 会大幅度改变原有的能级结构
★半导体中的能级分裂情况
原子能级 能带
能级电子的“座位” 能带总的座位集合 电子只能在这些位置上 作“跳跃”运动,能量 是突变、非连续变化的。 实际是准连续变化。
a.晶体中电子的波函数与自由电子的波函数形
式相似。反映出了晶体中电子的波函数实 际上相当于一被调幅的自由电子波。
且uk(x)= uk(x+a)
b.在空间某点找到电子的概率与波函数的强 度成比例。在晶体中找到电子的概率是周期 性变化的。反映出电子共有化运动的特征。
|Ψ|2=ΨkΨk* =uk(x)uk* (x) c. 与自由电子中的波函数一样,波矢k描述晶体中电 子的共有化运动状态。注意: 晶体中电子波函数K 取值非连续. 只要晶体边界确定,电子波函数的k值 即可被确定,与其它参量无关。

湖南大学半导体物理考试重点(全)

湖南大学半导体物理考试重点(全)

半导体物理第一章半导体中的电子状态单电子近似:即假设每个电子是在周期性排列且固定不动的原子核势场及其他电子的平均势场中运动。

该势场是具有与晶格同周期的周期性势场。

1.1半导体的晶格结构和结合性质1.大量的硅、锗原子组合成晶体靠的是共价键结合,他们的晶体结构与碳原子组成的一种金刚石晶格都属于金刚石型结构。

2.闪锌矿型结构(见课本8页)1.2半导体中电子的状态和能带1.Φ(r,t)=Ae i(k.r−wt) k为平面波的波数2.k=|k|=2л/λ波的传播方向为与波面法线平行3.在晶体中波函数的强度也随晶格周期性变化,所以在晶格中各点找到该电子的概率也具有周期性变化的性质。

这反映了电子不再完全局限在某一个原子上,而是可以从晶胞中某一点自由运动到其他晶胞内的对应点,因而电子可以在整个晶体中运动,这种运动称为电子在晶体内的公有化运动。

1.3半导体中的电子的运动有效质量1.导带低电子的有效能量1h2(d2Edk2)k=0=1m n∗2.引进有效质量的意义在于它概括了半导体内部势场的作用,使得在解决半导体中的电子外力作用下的运动规律时,可以不涉及半导体内部势场的作用。

3.能量带越窄二次微商越小,有效质量越大。

内层电子的能量带越窄,有效质量大;外层电子的能量带宽,有效质量小。

1.4本征半导体的到点机构空穴1.可以认为这个空状态带有正电。

2.正电荷为空状态所有,它带的电荷是+q。

3.空穴:通常把价带中空着的状态看成是带正电的粒子,称为空穴。

.空穴不仅带有正电荷+q,而且还具有正的有效质量。

4引进空穴概念后,就可以把价带中大量电子对电流的贡献用少量的空穴表达出来。

半导体中除了导电带上电子导体作用外,价带中还有空穴的导电作用,这就是本征半导体的导电机构。

1.6 硅和锗的能带结构硅和锗的禁带宽度是随温度变化的,在T=0K时,硅和锗的禁带宽度E g分别趋近于1.70eV和0.7437eV.随着温度的升高,E g按如下规律减小E g(T)=E g(0)- -aT2T+β,式中E g(T)和E g(0)分别表示温度为T和0K时的禁带宽度,a,β为温度系数。

半导体物理学刘恩科第一章p

半导体物理学刘恩科第一章p

2p
2p
2p
2s
2s
2s
• 电子受到另一原子的作用 能级分裂 • 两个原子越靠近,能级分裂越厉害!
1s 原子间距
➢ 晶体中原子周期性紧密排列 电子共有化运动:
• 电子只能在相似壳层中转移
• 只有最外层电子的共有化运动才显著!(交叠程度)
电子只能在相似壳层中转移 能级分裂成N个:一般N 很大
3. 具有波粒二象性的微观粒子,其运动不能再 用经典力学来描述,粒子状态用波函数表示, 而决定其状态变化的方程是薛定谔方程,而 不再是牛顿运动方程
➢自由电子的波函数和能量
自由电子:在恒定势场中运动,即处处不受力 U (r) U0
先看最简单情形:一维,质量 m0,且取 U0 0
故自由电子的波函数为:
化学键: 共价键+离子键 (离子键占优势)
(001)面是两类原子各自 组成的六方排列的双原子 层按ABABA…顺序堆积
➢纤锌矿型结构和混合键
– Ⅱ-Ⅵ族二元化合物半导体也可为纤锌矿型结构:
➢基础结构仍为
正四面体结构
➢具有六方对称性
晶格常数 a、c
➢复式晶格
c
a
• 纤锌矿型结构和混合键
– 注意几点:
2. 三维情形: 沿 k方向传播的平面波
(r,
t
)

(r)
f
(t)

Aexp[i(k
r t )]
3. 自由电子波函数的强度| (r, t) |2 A2,说明任意时刻
在空间中任意一点找到自由电子的几率相等,这符合
其“自由”之意
➢自由电子的波函数和能量
– 注意几点:
4. 自由电子能量、动量、速度与波矢之间的关系为:

《半导体物理学》刘恩科课后答案

《半导体物理学》刘恩科课后答案

代入数据得:
t=
6.62 ×10-34
= 8.3 ×10−6 (s)
2 ×1.6 ×10−19 × 2.5 ×10−10 × E
E
当 E=102 V/m 时,t=8.3×10-8(s);E=107V/m 时,t=8.3×10-13(s)。
3. 如果 n 型半导体导带峰值在[110]轴上及相应对称方向上,回旋共振实验结果应 如何? [解] 根据立方对称性,应有下列 12 个方向上的旋转椭球面:
(6.625
×
10
−34
)
2
( 5.7
×
1018
)
2 3
=
2 2 × 3.14 ×1.38 ×10−23 × 300
= 3.39173 ×10−31 Kg
﹟求 77k 时的 Nc 和 Nv:
3
2(2π ⋅ mn*k0T ') 2
N
' c
=
h3
Nc
3
2(2π ⋅ mn*k 0T ) 2
=
(
T' T
)
3 2
d 2 EC dk 2
= 2h2 3m0
+ 2h2 m0
= 8h2 3m0
;∴
mn=
h2
/
d 2 EC dk 2
=
3 8
m0
③价带顶电子有效质量 m’
d 2 EV dk 2
=
− 6h2 m0
,∴ mn'
=
h2Leabharlann /d 2 EV dk 2
=

1 6
m0
④准动量的改变量
h △k= h (kmin-kmax)=

半导体物理学(第一章)

半导体物理学(第一章)

n=1 2个电子
15
Si 半导体物理学 黄整
第一章 半导体中的电子状态
原子的能级的分裂 4个原子能级的分裂 个原子能级的分裂
孤立原子的能级
16
半导体物理学 黄整
第一章 半导体中的电子状态
大量原子的能级分裂为能带
17
半导体物理学 黄整
第一章 半导体中的电子状态
Si的能带(价带、导带和带隙) 的能带(价带、导带和带隙)
37
k = kx + k y + kz
2 2 2
2
半导体物理学 黄整
第一章 半导体中的电子状态
具有确定能量E的全部 点 具有确定能量 的全部k点 的全部
r r r r k = kx + k y + kz
构成一个封闭的曲面, 构成一个封闭的曲面,称为等能面 理想的等能面为k空间的一个球面 理想的等能面为 空间的一个球面
4、无论是自由电子还是晶体材料中的电子,他们 、无论是自由电子还是晶体材料中的电子, 在某处出现的几率是恒定不变的。 在某处出现的几率是恒定不变的。 ( ) 5、分别叙述半导体与金属和绝缘体在导电过程中 、 的差别。 的差别。
30
半导体物理学 黄整
第一章 半导体中的电子状态
与波矢k的关系 三、半导体中能量E与波矢 的关系 半导体中能量 与波矢
gap gap
3
半导体物理学 黄整
第一章 半导体中的电子状态
硼 铝 锌 镓 镉 铟
碳 硅 锗 锡
氮 氧 磷 硫 砷 硒 锑 碲
4
半导体物理学 黄整
第一章 半导体中的电子状态
运动的描述
Minkowski空间:
x,y,z,ict px,py,pz,iE/c
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
作用很强,在晶体中电子在理想的周期势场内 作共有化运动 。
能带成因
当N个原子彼此靠近时,根据不相容原理 ,原来分属于N个原子的相同的价电子能 级必然分裂成属于整个晶体的N个能量稍 有差别的能带。
S i1 4 :1 s 2 2 s 2 2 p 6 3 s 2 3 p 2
能带特点
分裂的每一个能带称为允带,允带间的能量范 围称为禁带
一.能带论的定性叙述 1.孤立原子中的电子状态
主量子数n:1,2,3,…… 角量子数 l:0,1,2,…(n-1)
s, p, d, ... 磁量子数 ml:0,±1,±2,…±l 自旋量子数ms:±1/2
n1
主量子数n确定后:n= 2(2l 1) 2n2 0
能带模型:
孤立原子、电子有确定的能级结构。 在固体中则不同,由于原子之间距离很近,相互
Ⅲ-Ⅴ族化合物,如 G a A S , I n P 等 部分Ⅱ-Ⅵ族化合物,如硒化汞,碲化汞
等半金属材料。
1.1.3 纤锌矿型结构
与闪锌矿型结构相比 相同点 以正四面体结构为基础构成 区别 具有六方对称性,而非立方对称性 共价键的离子性更强
1.2半导体中的电子状态和能带
1.2.1原子的能级和晶体的能带
1.3半导体中电子的运动——有效质量
1.3.1半导体中的E(k)与k的关系 设能带底位于波数k,将E(k)在k=0处按
泰勒级数展开,取至k2项,可得
E (k)E (0 )(d d E k)k 0k1 2(d d k 2E 2)k 0k2
由于k=0时能量极小,所以一阶导数为0,有
E(k)E(0)1 2(d d2E 2k)k0k2
1.1.2 闪锌矿型结构和混合键
Ⅲ-Ⅴ族化合物半导体材料 结晶学原胞结构特点 两类原子各自组成的面心立方晶格,沿
空间对角线方向彼此位移四分之一空间 对角线长度套构而成。
与金刚石结构的区别
共价键具有一定的极性(两类原子的电 负性不同),因此晶体不同晶面的性质 不同。
不同双原子复式晶格。
常见闪锌矿结构半导体材料
速度联系起来,而内部的势场作用由有效质量概括。
(5)解决晶体中电子在外力作用下,不涉及内部势场 的作用,使问题简化。
(6)有效质量可以直接测定。
有效质量的特点
有效质量的正负与位置有关。
能带顶部附近,有效质量为负; 能带底部附近,有效质量为正。
有效质量的大小由共有化运动的强弱有关。
能带越窄,二次微商越小,有效质量越大(内层电子的 有效质量大); 能带越宽,二次微商越大;有效质量越小(外层电子的 有效质量小)。
利用电子有效质量定义
m
* n
h2 d 2E
dk 2
可得
a f
m
* n
上式与牛顿第二定律类似
1.3.4 有效质量的意义
(1)晶体中的电子一方面受到外力的作用,另一方面 ,受到内部原子及其他电子的势场作用。
(2)电子的加速度应是所有场的综合效果。 (3)内部电场计算困难。 (4)引入有效质量可使问题简单化,直接把外力和加
不同点: 该波的振幅随x作周期性变化,其变化周期与 晶格周期相同----- 一个调幅的平面波。
对于自由电子在空间各点找到电子的几率相同; 而晶体中各点找到电子的几率具有周期性的变化规律,即
描述了晶体电子围绕原子核的运动。 电子不再完全局限在某个原子上,而是可以从晶胞中的
某一点自由的运动到其他晶胞内的对应点。这种运动就 是电子在晶体内的共有化运动。 外层电子共有化运动强,成为准自由电子。 布洛赫波函数中的波矢k与自由电子波函数中的一样,描 述晶体中电子的共有化运动状态。
2.布里渊区与能带
求解晶体中电子的薛定谔方程,可得如图110(a)所示的E(k)~k关系。
K = n/2a (n = 0, ±1, ±2, …)时能量出现不连 续,形成一系列的允带和禁带。
能带(energy band)包括允带和禁带。 允带(allowed band):允许电子能量存在的
能量范围。 禁带(forbidden band):不允许电子存在的
半导体物理第1章 半导体中的电子状态
第1章 半导体中的电子状态
本章重点 半导体材料中的电子状态及其运动规律 领会“结构决定性质”处理方法 单电子近似——能带论
单电子近似
假设每个电子是在周期性排列且固定不动的原 子核势场及其它电子的平均势场中运动。
该势场具有与晶格同周期的周期性势场。
1.1 半导体的晶格结构和结合性质
固体材料:超导体: 大于106(cm)-1 导 体: 106~104(cm)-1 半导体: 104~10-10(cm)-1 绝缘体: 小于10-10(cm)-1
三者的主要区别: 禁带宽度和导带填充程度
金属导带半满 半导体禁带宽度在1eV左右 绝缘体禁带宽且导带空
半导体和绝缘体
▪ 半导体和绝缘体的能带类似,价带被电子占满, 中间为禁带,导带是空带。因此,在外电场作 用下并不导电。
群速为:
V d dk
根据波粒二象性,频率为 的波,其粒
子的能量为E h , 所以速度
V 1 dE h dk

E(k)
E(0)
h2k2 2mn*
代入上式,可得
V
hk
m
* n
由于不同位置有效质量正负的不同,速 度的方向也不同
1.3.3半导体中电子的加速度
当外加电场时,半导体中电子的运动规律。
内层原子受到的束缚强,共有化运动弱,能级 分裂小,能带窄;
外层原子受束缚弱,共有化运动强,能级分裂 明显,能带宽。
1.2.2 半导体中的电子状态和能带
自由电子运动规律
基本方程
phkm0V
E p2 h2k2
2m0
m0
(x)Aei2kx
2 d2(x) E(x)
2m0 x2
(动量方程) (能量方程) (波方程)
V hk m0
E= h 2k 2
2m 0
0
根据上述方程可以看出:对于自由电子能量和运
动状态之间呈抛物线变化关系;即自由电子的 能量可以是0至无限大间的任何值。
1.晶体中的薛定谔方程及其解的形式
描述微观粒子运动的方程------薛定谔方程 晶体中电子遵守的薛定谔方程
V(x)V(xna)
布洛赫定理及布洛赫波
dV f q E a
dt m0 m0
若令
m*p mn*
价带顶附近空穴有效质量为正
则空穴的加速度可表示为
f qE
a
mp
mp
引入空穴的意义
通常把价带中空着的状态看成是带正电的粒子 ,称为空穴。
引进这样一个假象的粒子――空穴后,便可以 很简便地描述价带的电流。
把价带中大量电子对电流的贡献用少量的空穴 表达出来。
E(0)为导带底能量
对于给定半导体,二阶导数为恒定值,令
1 h2
(ddk2E2 )k0
1 mn*
所以有
E(k)
E(0)
h2k2 2mn*
式中的 m
* n
称为能带底电子有效质量,为
正值;
若能带顶也位于k=0处,则按照与上述相
同的方法可得能带顶电子有效质量,m
* n
为负值。
1.3.2半导体中电子的平均速度
布洛赫定理:
在周期性势场中运动的电子,满足薛定谔 方程的波函数一定具有如下形式:
k(x)=uk(x)ei2k·x 布洛赫波函数 uk(x)= uk(x+na)
V(x)V(xna) 晶格常数
与自由电子的波函数比较
相同点: 晶体中电子运动的波函数与自由电子的波函数 形式相似,代表一个波长为1/k,而在k方向上 传播的平面波;
当有强度为|E|的外电场时,电子受力 f=-q |E|
外力对电子做功
dEfdsfVdt
由于 V 1 d E
h dk
所以 dE f dE dt dk
而上式左端 dE dEdk
dk
代入上式,可得
f h dk dt
在外力作用下,波矢变化与外力成正比。
电子的加速度
ad d v t1 hd d(d d t )E k 1 hd d 2E 2k d d k th f2d d 2E 2k
半导体中有电子和空穴两种载流子,而金属中 只有电子一种载流子。
能量范围。
对于有限的晶体,根据周期性边界条件 ,波矢k只能取分立数值。
对于边长为L的立方晶体
kx = nx/L (nx = 0, ±1, ±2, …) ky = ny/L (ny = 0, ±1, ±2, …) kz = nz/L (nz = 0, ±1, ±2, …)
1.2.3导体、半导体、绝缘体的能带
1.1.1 金刚石型结构和共价键
硅、锗:共价半导体 硅、锗晶体结构:金刚石结构
Ge
+32 2 8 18 4
G e 3 2 : 1 s 2 2 s 2 2 p 6 3 s 2 3 p 6 3 d 1 0 4 s 2 4 p 2
Si
+14 2 8 4
S i1 4 :1 s22 s22 p 63 s23 p 2
两个面心立方沿立方体空间对角线互相位移了 四分之一的空间对角线长度套构而成。
金刚石结构固体物理学原胞
中心有原子的正四面体结构
金刚石结构原子在晶胞内的排列情况 顶角八个,贡献1个原子; 面心六个,贡献3个原子; 晶胞内部4个; 共计8个原子。
硅、锗基本物理参数
一、晶格常数 硅:0.543089nm 锗:0.565754nm 二、原子密度(个/cm3) 硅:5.00×1022 锗:4.42×1022 三、共价半径 硅:0.117nm 锗:0.122nm
1
k 为波矢,大小等于波长倒数 方向与波面法线平行,即波的传播方向。
相关文档
最新文档