物理学3章习题解答

合集下载

大学物理第三章-部分课后习题答案

大学物理第三章-部分课后习题答案

大学物理第三章 课后习题答案3-1 半径为R 、质量为M 的均匀薄圆盘上,挖去一个直径为R 的圆孔,孔的中心在12R 处,求所剩部分对通过原圆盘中心且与板面垂直的轴的转动惯量。

分析:用补偿法〔负质量法〕求解,由平行轴定理求其挖去部分的转动惯量,用原圆盘转动惯量减去挖去部分的转动惯量即得。

注意对同一轴而言。

解:没挖去前大圆对通过原圆盘中心且与板面垂直的轴的转动惯量为:2112J MR =① 由平行轴定理得被挖去部分对通过原圆盘中心且与板面垂直的轴的转动惯量为:2222213()()2424232c M R M R J J md MR =+=⨯⨯+⨯= ②由①②式得所剩部分对通过原圆盘中心且与板面垂直的轴的转动惯量为:2121332J J J MR =-=3-2 如题图3-2所示,一根均匀细铁丝,质量为M ,长度为L ,在其中点O 处弯成120θ=︒角,放在xOy 平面内,求铁丝对Ox 轴、Oy 轴、Oz 轴的转动惯量。

分析:取微元,由转动惯量的定义求积分可得 解:〔1〕对x 轴的转动惯量为:2022201(sin 60)32Lx M J r dm l dl ML L ===⎰⎰ 〔2〕对y 轴的转动惯量为:20222015()(sin 30)32296Ly M L M J l dl ML L =⨯⨯+=⎰〔3〕对Z 轴的转动惯量为:22112()32212z M L J ML =⨯⨯⨯=3-3 电风扇开启电源后经过5s 到达额定转速,此时角速度为每秒5转,关闭电源后经过16s 风扇停止转动,已知风扇转动惯量为20.5kg m ⋅,且摩擦力矩f M 和电磁力矩M 均为常量,求电机的电磁力矩M 。

分析:f M ,M 为常量,开启电源5s 内是匀加速转动,关闭电源16s 内是匀减速转动,可得相应加速度,由转动定律求得电磁力矩M 。

解:由定轴转动定律得:1f M M J β-=,即11252520.50.5 4.12516f M J M J J N m ππβββ⨯⨯=+=+=⨯+⨯=⋅ 3-4 飞轮的质量为60kg ,直径为0.5m ,转速为1000/min r ,现要求在5s 内使其制动,求制动力F ,假定闸瓦与飞轮之间的摩擦系数0.4μ=,飞轮的质量全部分布在轮的外周上,尺寸如题图3-4所示。

大学物理第三章课后习题答案

大学物理第三章课后习题答案

r3
, k 为常量。试求两粒子相距为 r 时的势能,设力为零的
r = a cos ωt i + b sin ωt j , r 式中 a , b , ω 是正值常数,且 a ≻ b 。
(1)说明这质点沿一椭圆运动,方程为

x2 y 2 + = 1; a2 b2
(2)求质点在 A 点 (a ,0) 时和 B 点 (0, b ) 时的动能; (3)当质点从 A 点到 B 点,求力 F 所做的功,并求 F 的分力 Fx i 和 Fy j 所做的 功; (4) F 力是不是保守力? 12 . 如果物体从髙为 h 处静止下落,试求(1)时间为自变量; 12. (2)高度为自变量, 画出它的动能和势能图线,并证明两曲线中动能和势能之和相等。 . 一质量为 m 的地球卫星,沿半径为 3R e 的轨道运动, R e 为地球的半径,已知 13 13. 地球的质量为 M e ,求(1)卫星的动能; (2)卫星的引力势能; (3)卫星的机械 能。 . 如图所示, 14 14. 小球在外力作用下, 由静止开始从 A 点出发做匀加速运动,到达 B 点时撤消外力,小球 无摩擦的冲上竖直的半径为 R 的半圆环, 到达最高 点 C 时,恰能维持在圆环上做圆周运动,并以此速 度抛出而刚好落回到原来的出发点 A 处, 如图试求 小球在 AB 段运动的加速度为多大? . 如图所示,有一自动卸货矿车,满载时的质量 15 15. 为 M ,从与水平倾角 α = 30° 斜面上的点 A 由静 止下滑。设斜面对车的阻力为车重的 0.25 倍, 矿 车下滑距离 l 时,矿车与缓冲弹簧一道沿斜面运 动。当矿车使弹簧产生最大压缩形变时,矿车自 动卸货, 然后矿车借助弹簧的弹性力作用, 使之返回原位置 A 在装货。试问要完成这 一过程,空载时车的质量与满载时车的质 量之比应为多大? . 半径为 R 的光滑半球状圆塔的顶点 A 16 16. 上,有一木块 m ,今使木块获得水平速度

物理学第3版习题解答_第3章热力学

物理学第3版习题解答_第3章热力学
3.14 对一定质量的气体加热,向它传递了 836J 热量,它受热膨胀时对外做功 500J, 求气体内能的增量。 解:Q=836J,W=500J 由热力学第一定律:Q= U W 得: U =Q-W=836-500=336J 3.15 如图所示, 一定量的空气, 开始时在状态 A, 其压强为 2.0 大气压, 体积为 2L, 沿直线 AB 变化到状态 B 后,压强变为 1.0 大 P(atm) 气压,体积变为 3L,求在此过程中气体所做的 功。 3 解: W= A 2 5 5 3

RT 0.91 10 5 pa
V2
M
(2)压强保持不变,热量转变为内能和对外做的功
Q
M

.C P (T2 T1 )

(C P R)(T2 T1 )
5 2 1 8.31 (T2 273) 2 T2 281.6 K 由状态方程:PV nRT 得:V2 46.2 L
N AP 2.4 * 10 25 (个) RT
M P 1.28kg / m 3 V RT 3 2
3〉每个分子的平均动能
kt kT 6.21 *10 21 J
3.6 2.0×10-3kg 氢气装在 2.0×10-2 m3 的容器内, 当容器内的压强为 4.0×105Pa 时, 氢 气分子的平均平动动能为多大? 解由理想气体状态方程 pV nRT T
P1V1 nRT1 P2V2 nRT2
① ②
1 V2 V1 2
①/②
T1 300 K 2 P1 2 3 P2 P2 3P1
T2 450 K
P 变化为原来的 3 倍。 2〉
kr kT
i 2
kr T1 2 kr T2 3

大学物理学(第3版.修订版)北京邮电大学出版社上册第三章知识题3答案解析

大学物理学(第3版.修订版)北京邮电大学出版社上册第三章知识题3答案解析

习题33.1选择题(1) 有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动,转动惯量为J ,开始时转台以匀角速度ω0转动,此时有一质量为m 的人站在转台中心,随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为 (A)2ωmR J J+ (B) 02)(ωR m J J + (C)02ωmR J(D) 0ω [答案: (A)](2) 如题3.1(2)图所示,一光滑的内表面半径为10cm 的半球形碗,以匀角速度ω绕其对称轴OC 旋转,已知放在碗内表面上的一个小球P 相对于碗静止,其位置高于碗底4cm ,则由此可推知碗旋转的角速度约为 (A)13rad/s (B)17rad/s (C)10rad/s (D)18rad/s(a) (b)题3.1(2)图[答案: (A)](3)如3.1(3)图所示,有一小块物体,置于光滑的水平桌面上,有一绳其一端连结此物体,;另一端穿过桌面的小孔,该物体原以角速度 在距孔为R的圆周上转动,今将绳从小孔缓慢往下拉,则物体(A)动能不变,动量改变。

(B)动量不变,动能改变。

(C)角动量不变,动量不变。

(D)角动量改变,动量改变。

(E)角动量不变,动能、动量都改变。

[答案:(E)]3.2填空题(1) 半径为30cm的飞轮,从静止开始以0.5rad·s-2的匀角加速转动,则飞轮边缘上一点在飞轮转过240˚时的切向加速度aτ= ,法向加速度a n= 。

[答案:0.15; 1.256](2) 如题3.2(2)图所示,一匀质木球固结在一细棒下端,且可绕水平光滑固定轴O转动,今有一子弹沿着与水平面成一角度的方向击中木球而嵌于其中,则在此击中过程中,木球、子弹、细棒系统的守恒,原因是。

木球被击中后棒和球升高的过程中,对木球、子弹、细棒、地球系统的守恒。

题3.2(2)图[答案:对o轴的角动量守恒,因为在子弹击中木球过程中系统所受外力对o 轴的合外力矩为零,机械能守恒](3) 两个质量分布均匀的圆盘A和B的密度分别为ρA和ρB (ρA>ρB),且两圆盘的总质量和厚度均相同。

大学物理第三章-动量守恒定律和能量守恒定律-习题及答案

大学物理第三章-动量守恒定律和能量守恒定律-习题及答案
t1
即:作用在两质点组成的系统的合外力的冲量等于系统内两质点动量之和的增 量,即系统动量的增量。 2.推广:n 个质点的情况
t2 t2 n n n n F d t + F d t m v mi vi 0 i外 i内 i i i 1 i 1 i 1 i 1 t1 t1
yv 2
同乘以 ydy,得
y 2 gdty y
积分 得
y
0
y
gdty
yvdt( yv)
0
1 3 1 gy ( yv) 2 3 2
因而链条下落的速度和落下的距离的关系为
2 v gy 3
1/ 2
7
第4讲
动量和冲量
考虑到内力总是成对出现的,且大小相等,方向相反,故其矢量和必为零, 即
F
i 0
n

i内
0

设作用在系统上的合外力用 F外力 表示,且系统的初动量和末动量分别用
5
第4讲
动量和冲量
P0 和 P 表示,则
t2 n n F d t m v mi vi 0 i i 外力 t1
F外 dt=dPFra bibliotek力的效果 关系 适用对象 适用范围 解题分析
*动量定理与牛顿定律的关系 牛顿定律 动量定理 力的瞬时效果 力对时间的积累效果 牛顿定律是动量定理的 动量定理是牛顿定律的 微分形式 积分形式 质点 质点、质点系 惯性系 惯性系 必须研究质点在每时刻 只需研究质点(系)始末 的运动情况 两状态的变化
1
第4讲
动量和冲量
§3-1 质点和质点系的动量定理
实际上,力对物体的作用总要延续一段时间,在这段时间内,力的作用将 积累起来产生一个总效果。下面我们从力对时间的累积效应出发,介绍冲量、 动量的概念以及有关的规律,即动量守恒定律。 一、冲量 质点的动量定理 1.动量:Momentum——表示运动状态的物理量 1)引入:质量相同的物体,速度不同,速度大难停下来,速度小容易停下;速 度相同的物体,质量不同,质量大难停下来,质量小容易停下。 2)定义:物体的质量 m 与速度 v 的乘积叫做物体的动量,用 P 来表示 P=mv 3)说明:动量是矢量,大小为 mv,方向就是速度的方向;动量表征了物体的 运动状态 -1 4)单位:kg.m.s 5)牛顿第二定律的另外一种表示方法 F=dP/dt 2.冲量:Impulse 1)引入:使具有一定动量 P 的物体停下,所用的时间Δt 与所加的外力有关, 外力大,Δt 小;反之外力小,Δt 大。 2)定义: 作用在物体外力与力作用的时间Δt 的乘积叫做力对物体的冲量, 用 I 来表 示 I= FΔt 在一般情况下,冲量定义为

大学物理第3章-刚体力学习题解答

大学物理第3章-刚体力学习题解答

大学物理第3章-刚体力学习题解答第3章 刚体力学习题解答3.13 某发动机飞轮在时间间隔t 内的角位移为):,:(43s t rad ct bt at θθ-+=。

求t 时刻的角速度和角加速度。

解:23212643ct bt ct bt a dt d dtd -==-+==ωθβω3.14桑塔纳汽车时速为166km/h ,车轮滚动半径为0.26m ,发动机转速与驱动轮转速比为0.909, 问发动机转速为每分多少转?解:设车轮半径为R=0.26m ,发动机转速为n 1, 驱动轮转速为n 2, 汽车速度为v=166km/h 。

显然,汽车前进的速度就是驱动轮边缘的线速度,909.0/2212Rn Rn v ππ==,所以:min/1054.1/1024.93426.014.3210166909.02909.013rev h rev n R v ⨯=⨯===⨯⨯⨯⨯π3.15 如题3-15图所示,质量为m 的空心圆柱体,质量均匀分布,其内外半径为r 1和r 2,求对通过其中心轴的转动惯量。

解:设圆柱体长为h ,则半径为r ,厚为dr 的薄圆筒的质量dm 为:2..dm h r dr ρπ=对其轴线的转动惯量dI z 为232..z dI r dm h r dr ρπ==212222112..()2r z r I h r r dr m r r ρπ==-⎰ 3.17 如题3-17图所示,一半圆形细杆,半径为,质量为,求对过细杆二端轴的转动惯量。

解:如图所示,圆形细杆对过O 轴且垂直于圆形细杆所在平面的轴的转动惯量为mR 2,根据垂直轴定理z x y I I I =+和问题的对称性知:圆形细杆对过轴的转动惯量为12mR 2,由转动惯量的可加性可求得:半圆形细杆对过细杆二端轴的转动惯量为:214AA I mR '=3.18 在质量为M ,半径为R 的匀质圆盘上挖出半径为r 的两个圆孔,圆孔中心在半径R 的中点,求剩余部分对过大圆盘中心且与盘面垂直的轴线的转动惯量。

大学物理习题解答3第三章热力学

大学物理习题解答3第三章热力学

第三章热力学本章提要1.准静态过程系统连续经过的每个中间态都无限接近平衡态的一种理想过程。

准静态过程可以用状态图上的曲线表示。

2.内能系统内所有分子热运动动能和分子之间相互作用势能的和,其数学关系式为(,)E E V T=内能是态函数。

3.功功是过程量。

微分形式:VpA dd=积分形式:⎰=21dV VV pA4.热量两个物体之间或物体内各局部之间由于温度不同而交换的热运动能量。

热量也是过程量。

5.热力学第一定律热力学第一定律的数学表达式:Q E A=∆+热力学第一定律的微分表达式:d d dQ E A=+由热力学第一定律可知,第一类永动机是不可能造成的。

6.理想气体的热功转换〔1〕等体过程:d 0A = 热量增量为m m (d )d d V V MQ E C T μ,,==或m 21m 21V ,V ,MQ E E C (T T )μ=-=-〔2〕等压过程: 热量增量为(d )d d d d p Q E A E p V =+=+因m 21()V ME C T T μ∆,-=212121()()V V MA p V p V V R T T μd ==-=-⎰那么)()(21212T T R MT T R i M Q P -+-=μμ 〔3〕等温过程:d 0E =热量增量为(d )d d V Q A p V ==因2121d ln V T V V MV MA RT RT V V μμ==⎰那么2112lnln T T V pMM Q A RT RT V p μμ=== 〔4〕绝热过程:d 0Q = 根据热力学第一定路可得d d 0E A +=那么m d d d d V ,MA p V E C Tμ==-=-或221121m ()d d V V V ,V V MA E E p V C T μ=--==-⎰⎰)(112211V p V p A --=γ 在绝热过程中理想气体的p 、V 、T 三个状态参量之间满足如下关系:常量=γpV常量=-1γTV 常量=--γγT p 17.热容量等体摩尔热容量:m (d )d d d V V Q EC T T,== 等压摩尔热容量:m (d )d d d d d p p Q E VC p TT T,==+ 对于理想气体,假设分子自由度为i ,那么m 2V ,i C R = m 22P,i C R +=迈耶公式:m m p,V ,C C R =+比热容比:m m22p,V ,C i C γ+==8.焓在等压过程中,由热力学第一定律可得2121()()P Q E p V E E V V =∆+∆=-+-由于12P P P ==,上式可写为222111()()P Q E p V E pV =+-+ 如果令H E pV =+21P Q H H H =-=∆焓是一个态函数。

普通物理学第二版第三章课后习题答案

普通物理学第二版第三章课后习题答案

第三章 动量定理及动量守恒定律(习题)3.5.1质量为2kg 的质点的运动学方程为 j ˆ)1t 3t 3(i ˆ)1t 6(r 22+++-=(t 为时间,单位为s ;长度单位为m).求证质点受恒力而运动,并求力的方向大小。

解,j ˆ)3t 6(i ˆt 12v ++= j ˆ6i ˆ12a +=jˆ12i ˆ24a m F +==(恒量)012257.262412tg )N (83.261224F ==θ=+=-3.5.2质量为m 的质点在oxy 平面内运动,质点的运动学方程为ωω+ω=b,a, ,j ˆt sin b i ˆt cos a r为正常数,证明作用于质点的合力总指向原点。

解, ,j ˆt cos b i ˆt sin a v ωω+ωω-= r,j ˆt sin b i ˆt cos a a 22 ω-=ωω-ωω-= r m a m F ω-==3.5.3在脱粒机中往往装有振动鱼鳞筛,一方面由筛孔漏出谷粒,一方面逐出秸杆,筛面微微倾斜,是为了从较底的一边将秸杆逐出,因角度很小,可近似看作水平,筛面与谷粒发生相对运动才可能将谷粒筛出,若谷粒与筛面静摩擦系数为0.4,问筛沿水平方向的加速度至少多大才能使谷物和筛面发生相对运动。

解答,以谷筛为参照系,发生相对运动的条件是,g a ,mg f a m 000μ≥'μ=≥'a ' 最小值为)s /m (92.38.94.0g a 20=⨯=μ='以地面为参照系:解答,静摩擦力使谷粒产生最大加速度为,mg ma 0max μ= ,g a 0max μ=发生相对运动的条件是筛的加速度g a a0max μ=≥',a '最小值为)s /m (92.38.94.0g a20=⨯=μ='3.5.4桌面上叠放着两块木板,质量各为,m ,m 21如图所示。

2m 和桌面间的摩擦系数为2μ,1m 和2m 间的静摩擦系数为1μ。

普通物理学第五版第3章守恒定律答案

普通物理学第五版第3章守恒定律答案

12kxC2
解得: vc2= 0.8gR
an =
vc2 R
=
0.8g
an = 0.8×9.8=7.84m/s2
N ´=N
=
m
vc2 R
= 0.8mg
N
目录 结束
3-4 一根特殊弹簧,在伸长x m时,沿它 伸长的反方向的作用力为(52.8x +38.4x2)N。
(1)试求把弹簧从x=0.50拉长到 x =1.00 时,外力克服弹簧力所作的功。
C
A Ba
目录 结束
解:设碎片C与水平方向成θ角 y
vB = vC = v
爆炸前后系统的动量守恒,得: C
m v cosa m v cosq =0
AB
m v sina +m v sinq = 3m v ty
解得: cosa = cosq
a =q
v
=
3v ty
2sina
v ty = v0 g t 代入上式,得:
轴作用于质点上,式中A、B 为常量,x 以m
计,F 以 N计。 (1)取 x =0 时EP = 0,试计算与此力相
应的势能; (2)求质点从x = 2m运动到 x =3m时势
能的变化。
目录 结束
(1) ΔE P =
x
0
F
dx
=
x(
0
A x +B x 2) dx
=
A 2
x
2
B 3
x
3
(2)
ΔE P =
N =mg cos2q 0.6mg cosq
N = 0.28mg 0.48 mg = 0.2mg
N ´= N = 0.2mg N

原子物理学第三章习题解答

原子物理学第三章习题解答

第三章习题解答3-1 电子的能量分别为10eV 、100eV 和1 000eV 时,试计算其相应的德布罗意波长。

解:根据公式hp λ==10eV 、100eV 、1 000eV得1240eV λ=⋅因此有:(1)当110,0.39K E eV nm λ===时 (2)当1100,0.123K E eV nm λ===时 (3)当11000,0.039K E eV nm λ===时3-2设光子和电子的波长均为0.4nm ,试问(1)光子的动量与电子的动量之比是多少?(2)光子的动能与电子的动能之比是多少?解:由题意知Q 光子的动量h p λ= , 光子的能量cE h hνλ==电子的动量 h p λ= , 电子的能量2e E m c =∴(1)121p p = (2)126212400.0610.40.40.40.51110e e E h hc eV nm E m c m c eV nm⋅====⨯⨯⋅ 3-3若一个电子的动能等于它的静止能量,试求:(1)该电子的速度为多大?(2)其相应的德布罗意波长是多少?解:(1)相对论给出运动物体的动能为:20()k E m m c =-,而现在题设条件给出20k E m c =故有2200()m c m m c ∴=-由此推得02m m ===2230.8664v v c c ∴=⇒==(2)0hp c λ==Q0.0014nm λ∴===3-4把热中子窄束射到晶体上,由布喇格衍射图样可以求得热中子的能量。

若晶体的两相邻布喇格面间距为0.18,一级布喇格掠射角(入射束与布喇格面之间的夹角)为30度,试求这些热中子的能量。

解:根据布喇格晶体散射公式: 2sin 20.18sin300.18d nm λθ==⨯⨯=o 而热中子的能量较低,其德布罗意波长可用下式表示:h p λ==()222220.02522k hc h E eV m mc λλ=== 3-5电子显微镜中所用加速电压一般都很高,电子被加速后的速度很大,因而必须考虑相对论修正。

物理光学第三章习题解答

物理光学第三章习题解答

多少?
解:S1和S2的像的强度分布式
I
I0
2
J1(Z Z
)
2
*
S1的像的中央对应于 Z 0
S2的像的第一强度零点对应于 Z 1.22 3.833rad
两像之间中点对应于 Z 1.22 0.61 1.9rad
2 将Z值代入*式,得中间点单独强度 I1 I0 因此,中间点合强度与像中央强度之比
解:加玻璃片后,双缝至P点程差为
d sin (n 1)h d sin (1.5 1) 0.001 m
又 a sin n(n=0对应衍射极大,n=±1,±2…为极小)
d m 0.0005 1 (m 1) 又 d 3 m 3n 1处缺级
a
n
n
a
故未加时,dsinθ=0为中央零级,m=3n处缺级
t1[
(
f
f0) (
f
f0 )]
1 2
i
t1e
2
[
(
f
f0) (
f
f0 )]
因此,有三个衍射斑(第一项为0级)
由于 f0 处各有相差
i
e2
的两
项,其合成振幅应为
2 2
t1
2
I f0
I0
2 2
t1
t0
2
1 2
t1 t0
11. 在不透明细丝的夫琅和费衍射图样中,测得暗条纹 间距为1.5mm,所用透镜的焦距为30mm,光波波长为 632.8nm。问细丝直径是多少?
加玻璃后,dsinθ=0.0005为零级,m=(3n+1)处缺级
即整体条纹平移一级
28. 设光栅的振幅透射系数为
t(x)
t0

物理学简明教程(马文蔚等著)第三章课后练习试题答案详解

物理学简明教程(马文蔚等著)第三章课后练习试题答案详解

物理学简明教程(马文蔚等著)第三章课后练习题答案详解3-1有两个力作用在一个有固定转轴的刚体上:(1)这两个力都平行于轴作用时,它们对轴的合力矩一定是零;(2)这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;(3)当这两个力的合力为零时,它们对轴的合力矩也一定是零;(4)当这两个力对轴的合力矩为零时,它们的合力也一定是零.对上述说法下述判断正确的是( )(A)只有(1)是正确的(B)(1)、(2)正确,(3)、(4)错误(C) (1)、(2)、(3)都正确,(4)错误 (D)(1)、(2)、(3)、(4)都正确分析与解力对轴之力矩通常有三种情况:其中两种情况下力矩为零:一是力的作用线通过转轴,二是力平行于转轴(例如门的重力并不能使门转).不满足上述情况下的作用力(含题述作用力垂直于转轴的情况)对轴之矩不为零,但同时有两个力作用时,只要满足两力矩大小相等,方向相反,两力矩对同一轴的合外力矩也可以为零,由以上规则可知(1)(2)说法是正确.对于(3)(4)两种说法,如作用于刚体上的两个力为共点力,当合力为零时,它们对同一轴的合外力矩也一定为零,反之亦然.但如这两个力为非共点力,则以上结论不成立,故(3)(4)说法不完全正确.综上所述,应选(B).3-2关于力矩有以下几种说法:(1)对某个定轴转动刚体而言,内力矩不会改变刚体的角加速度;(2)一对作用力和反作用力对同一轴的力矩之和必为零;(3)质量相等,形状和大小不同的两个刚体,在相同力矩的作用下,它们的运动状态一定相同.对上述说法下述判断正确的是( )(A)只有(2)是正确的 (B)(1)、(2)是正确的(C)(2)、(3)是正确的 (D)(1)、(2)、(3)都是正确的分析与解刚体中相邻质元之间的一对内力属于作用力与反作用力,且作用点相同,故对同一轴的力矩之和必为零,因此可推知刚体中所有内力矩之和为零,因而不会影响刚体的角加速度或角动量等,故(1)(2)说法正确.对说法(3)来说,题述情况中两个刚体对同一轴的转动惯量因形状、大小不同有可能不同,因而在相同力矩作用下,产生的角加速度不一定相同,因而运动状态未必相同,由此可见应选(B).3-3均匀细棒OA可绕通过其一端O而与棒垂直的水平固定光滑轴转动,如图所示,今使棒从水平位置由静止开始自由下落,在棒摆到竖直位置的过程中,下述说法正确的是( )(A)角速度从小到大,角加速度不变(B)角速度从小到大,角加速度从小到大(C)角速度从小到大,角加速度从大到小(D)角速度不变,角加速度为零分析与解如图所示,在棒下落过程中,重力对轴之矩是变化的,其大小与棒和水平面的夹角有关.当棒处于水平位置,重力矩最大,当棒处于竖直位置时,重力矩为零.因此在棒在下落过程中重力矩由大到小,由转动定律知,棒的角加速亦由大到小,而棒的角速度却由小到大(由机械能守恒亦可判断角速度变化情况),应选(C).3-4 一汽车发动机曲轴的转速在12 s 内由1.2×103r·min-1均匀的增加到2.7×103r·min-1.(1)求曲轴转动的角加速度;(2)在此时间内,曲轴转了多少转?分析这是刚体的运动学问题.刚体定轴转动的运动学规律与质点的运动学规律有类似的关系,本题为匀变速转动.解 (1)由于角速度ω=2πn (n 为单位时间内的转数),根据角加速度的定义tωαd d =,在匀变速转动中角加速度为 ()200s r a d 1.13π2-⋅=-=-=tn n t ωωα (2)发动机曲轴转过的角度为()0020π221n n t ωωt αt ωθ-=-=+= 在12 s 内曲轴转过的圈数为3902π20=+==t n n θN 圈3-5 一飞轮由一直径为30㎝,厚度为2.0㎝的圆盘和两个直径为10㎝,长为8.0㎝的共轴圆柱体组成,设飞轮的密度为7.8×103kg·m -3,求飞轮对轴的转动惯量.分析 根据转动惯量的可叠加性,飞轮对轴的转动惯量可视为圆盘与两圆柱体对同轴的转动惯量之和;而匀质圆盘、圆柱体对轴的转动惯量的计算可查书中公式,或根据转动惯量的定义,用简单的积分计算得到.解 根据转动惯量的叠加性,由匀质圆盘、圆柱体对轴的转动惯量公式可得2424122221121m kg 136.021π161 2212212⋅=⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛⨯=+=ad ld ρd m d m J J J3-6 一燃气轮机在试车时,燃气作用在涡轮上的力矩为2.03×03N·m ,涡轮的转动惯量为25.0kg·m 2.当轮的转速由2.80×103r·min -1增大到1.12×104r·min -1时,所经历的时间t 为多少?分析 由于作用在飞轮上的力矩是恒力矩,因此,根据转动定律可知,飞轮的角加速度是一恒量;又由匀变速转动中角加速度与时间的关系,可解出飞轮所经历的时间.该题还可应用角动量定理直接求解.解1 在匀变速转动中,角加速度tωωα0-=,由转动定律αJ M =,可得飞轮所经历的时间()s 8.10200=-=-=n n MJ πJ M ωωt 解2 飞轮在恒外力矩作用下,根据角动量定理,有()00d ωωJ t M t -=⎰则 ()s 8.10π200=-=-=n n MJ J M ωωt3-7 电风扇接通电源后一般经5s 后到达额定转速10min r 300-⋅=n ,而关闭电源后经16 s 后风扇停止转动,已知电风扇的转动惯量为2m kg 5.0⋅,设启动时电磁力矩M 和转动时的阻力矩f M 均为常数,求启动时的电磁力矩M .分析 由题意知M 和f M 均为常数,故启动时电风扇在M 和f M 共同作用下,作匀加速转动,直至到达额定转速,关闭电源后,电风扇仅在f M 的作用下作匀减速转动.运用匀变速转动的运动学规律和转动定律既可求解.解 设启动时和关闭电源后,电风扇转动时的角加速度分别为1α和2α,则启动过程 αJ M M =-f110t αω=关闭电源后 2f αJ M =-0220=+t αω 联解以上各式并将60200n πω=以及0n 、1t 、2t 、J 值代入,得 m N 12.4⋅=M3-8 一质量为m′、半径为R 的均匀圆盘,通过其中心且与盘面垂直的水平轴以角速度ω转动,若在某时刻,一质量为m 的小碎块从盘边缘裂开,且恰好沿垂直方向上抛,问它可能达到的高度是多少?破裂后圆盘的角动量为多大?分析 盘边缘裂开时,小碎块以原有的切向速度作上抛运动,由质点运动学规律可求得上抛的最大高度.此外,在碎块与盘分离的过程中,满足角动量守恒条件,由角动量守恒定律可计算破裂后盘的角动量.解 (1)碎块抛出时的初速度为R ω=0v由于碎块竖直上抛运动,它所能到达的高度为g R ωg h 222220==v(2)圆盘在裂开的过程中,其角动量守恒,故有L L L '-=0 式中ωR m L 221'=为圆盘未碎时的角动量;ωmR L 2='为碎块被视为质点时,碎块对轴的角动量;L 为破裂后盘的角动量.则ωR m m L 221⎪⎭⎫ ⎝⎛-'=3-9 一位溜冰者伸开双臂来以1.01s r -⋅绕身体中心轴转动,此时的转动惯量为1.33 2m kg ⋅,她收起双臂来增加转速,如收起双臂后的转动惯量变为0.48 2m kg ⋅.求(1)她收起双臂后的转速;(2)她收起双臂前后绕身体中心轴的转动动能各为多少?分析 各种物体(含刚体和变形体)在运动过程中,只要对空间某定点或定轴的外力矩之和为零,则物体对同一点或轴的角动量就守恒,在本题中当溜冰者绕身体中心轴转动时,人体重力和地面支持力均与该轴重合,故无外力矩作用,满足角动量守恒.此时改变身体形状(即改变对轴的转动惯量)就可改变转速,这是在体育运动中经常要利用的物理规律.解 (1)由分析知,有ωωJ J =00则 1-00s r 77.2⋅==ωωJJ (2)收起双臂前 J 26.2212001k ==ωJ E收起双臂后 J 72.6212k2==ωJ E 此时由于人体内力做功,有 1k 2k E E >端点,开始时棒自由悬挂.以100N 的力打击它的下端点,打击时间为0.02s .(1)若打击前棒是静止的,求打击时其角动量的变化;(2)棒的最大偏转角.分析 该题属于常见的刚体转动问题,可分为两个过程来讨论:(1)瞬间的打击过程.在瞬间外力的打击下,棒受到外力矩的角冲量,根据角动量定理,棒的角动量将发生变化,则获得一定的角速度.(2)棒的转动过程.由于棒和地球所组成的系统,除重力(保守内力)外无其他外力做功,因此系统的机械能守恒,根据机械能守恒定律,可求得棒的偏转角度.解 (1)由刚体的角动量定理得120s m kg 0.2d -⋅⋅====⎰t ΔFl t M ωJ L Δ(2)取棒和地球为一系统,并选O 处为重力势能零点.在转动过程中,系统的机械能守恒,即()θmgl ωJ cos 1212120-= 由式(1)、(2)可得棒的偏转角度为8388Δ31arccos o 222'=⎪⎪⎭⎫ ⎝⎛-=gl m t F θ一端的水平轴转动.如将此棒放在水平位置,然后任其落下,求:(1)当棒转过60°时的角加速度和角速度;(2)下落到竖直位置时的动能;(3)下落到竖直位置时的角速度.分析 转动定律M =Jα是一瞬时关系式,为求棒在不同位置的角加速度,只需确定棒所在位置的力矩就可求得.由于重力矩()θl mg θM cos 2=是变力矩,角加速度也是变化的,因此,在求角速度时,就必须根据角加速度用积分的方法来计算(也可根据转动中的动能定理,通过计算变力矩的功来求).至于棒下落到竖直位置时的动能和角速度,可采用系统的机械能守恒定律来解,这是因为棒与地球所组成的系统中,只有重力作功(转轴处的支持力不作功),因此,系统的机械能守恒.解 (1)棒绕端点的转动惯量231ml J=由转动定律M =Jα可得棒在θ位置时的角加速度为()l θg J θM α2cos 3==当θ=60°时,棒转动的角加速度2s 418-=.α 由于θωωt ωαd d d d ==,根据初始条件对式(1)积分,有⎰⎰=o 6000d d θαωωω 则角速度为1600s 98.7sin 3o-==lθg ω(2)根据机械能守恒,棒下落至竖直位置时的动能为J 98.021==mgl E K(3)由于该动能也就是转动动能,即221ωJ E K =,所以,棒落至竖直位置时的角速度为1s 57.832-==='l gJ E ωK。

大学物理(华中科技版)第3章习题答案

大学物理(华中科技版)第3章习题答案

习题答案3-1 运动员手持铁饼转动1.25圈后松手,此刻铁饼的速度值达到v=25m/s 。

设转动时铁饼沿半径为R=1.0m 的圆周运动并且均匀加速。

求: (1)铁饼离手时的角速度; (2)铁饼的角加速度;(3)铁饼在手中加速的时间(视铁饼为质点).解:(1)铁饼离手时的角速度为s rad R v /250.1/25/===ω(2)铁饼的角加速度为222/8.3925.122252s rad =⨯⨯==πθωα (3)铁饼在手中加速的时间为s t 628.02525.1222=⨯⨯==πωθ3-2 汽车发动机的转速在7.0s 内由2000r/min 均匀增加到3000r/min 。

求 (1)角加速度;(2)这段时间转过的角度;(3)发动机轴上半径为0.2m 的飞轮边缘上的一点在第 7.0s 末的加速度。

解:(1)初角速度为s rad /20960/20020=⨯=πω 末角速度为s rad /31460/30002=⨯=πω 角加速度为20/150.7209314s rad t=-=-=ωωβ (2)转过的角度为rad t 301083.1723142092⨯=⨯+=+=ωωθ (3)切向加速度为2/32.015s m R a t =⨯==α 法向加速度为2422/1097.12.0314s m R a n ⨯=⨯==ω总加速度为2422/1097.1s m a a a nt ⨯=+= 总加速度与切向的夹角为998931097.1arctan arctan 4'=⨯==︒t n a a θ3-3 一飞轮以等角加速度2 rad /s 2转动,在某时刻以后的5s 内飞轮转过了100 rad .若此飞轮是由静止开始转动的,问在上述的某时刻以前飞轮转动了多少时间?解:设某时刻后的角速度为1ω,某时刻前飞轮转动了t 秒。

t t 21==βω某时刻后't s 内飞轮转过θ∆。

则有10025105221522122''1=+=⨯⨯+⨯=+=∆t t t t βωθ s t 5.7=∴3-4 一个哑铃由两个质量为m ,半径为R 的铁球和中间一根长为l 连杆组成,如图所示。

大学物理课后习题详解(第三章)中国石油大学

大学物理课后习题详解(第三章)中国石油大学

3-1 以速度0v 前进的炮车,向后发射一炮弹,已知炮车的仰角为θ,炮弹和炮车的质习题3-1图量分别为m 和M ,炮弹相对炮车的出口速率为v ,如图所示。

求炮车的反冲速率是多大?[解] 以大地为参照系,取炮弹与炮弹组成的系统为研究对象,系统水平方向的动量守恒。

由图可知炮弹相对于地面的速度的水平分量为v v '-θcos ,根据动量守恒定律()()v M v v m v m M '-'-=+-θcos 0所以 ()mM mv v m M v +++='θcos 0此即为炮车的反冲速率。

3-2 质量为M 的平板车,在水平地面上无摩擦地运动。

若有N 个人,质量均为m ,站在车上。

开始时车以速度0v 向右运动,后来人相对于车以速度u 向左快跑。

试证明:(1)N 个人一同跳离车以后,车速为NmM Nmuv v ++=0(2)车上N 个人均以相对于车的速度u 向左相继跳离,N 个人均跳离后,车速为()mM mum N M mu Nm M mu v v +++-++++=' 10[证明] (1) 取车和人组成的系统为研究对象,以地面为参照系,系统的水平方向的动量守恒。

人相对于地面的速度为u v -,则()()Mv u v Nm v Nm M +-=+0所以 NmM Nmuv v ++=0(2) 设第1-x 个人跳离车后,车的速度为1-x v ,第x 个人跳离车后,车的速度为x v ,根据动量守恒定律得()[]()()[]x x 1x 1v m x N M u v m v m x N M -++-=+-+-所以 ()Mm x N muv v ++-+=-11x x此即车速的递推关系式,取N x ,,2,1 =得Mm muv v ++=-1N NMm muv v ++=--22N 1N……………………()M m N muv v +-+=112 MNm muv v ++=01将上面所有的式子相加得()Mm muM m mu M m N mu M Nm mu v v ++++++-+++=210N 此即为第N 个人跳离车后的速度,即()mM mum N M mu Nm M mu v v +++-++++=' 103-3 质量为m =0.002kg 的弹丸,其出口速率为300m ,设弹丸在枪筒中前进所受到的合力800400x F -=。

大学物理第三章 习题解答

大学物理第三章  习题解答

第三章 习题解答(仅供参考)3.2 一根直杆在S 系中观察,其静止长度为l ,与x 轴的夹角为θ,S`系沿S 系的x 轴正向以速度v 运动,问S`系中观察到杆子与x `轴的夹角若何?[解答]直杆在S 系中的长度是本征长度,两个方向上的长度分别为l x = l cos θ和l y = l sin θ.在S`系中观察直杆在y 方向上的长度不变,即l`y = l y ;在x 方向上的长度是运动长度,根据尺缩效应得`x l l =因此``tan `yx l l θ==,可得夹角为 21/2`a r c t a n {[1(/)]t a n }v c θθ-=-3.3 在惯性系S 中同一地点发生的两事件A 和B ,B 晚于A 4s ;在另一惯性系S`中观察,B 晚于A 5s 发生,求S`系中A 和B 两事件的空间距离?[解答]在S 系中的两事件A 和B 在同一地点发生,时间差Δt = 4s 是本征时,而S`系中观察A 和B 两事件肯定不在同一地点,Δt ` = 5s 是运动时,根据时间膨胀公式`t ∆=, 即5=, 可以求两系统的相对速度为 v = 3c /5.在S`系中A 和B 两事件的空间距离为 Δl = v Δt ` = 3c = 9×108(m).3.5 S 系中观察到两事件同时发生在x 轴上,其间距为1m ,S`系中观察到这两个事件间距离是2m ,求在S`系中这两个事件的时间间隔.[解答]根据洛仑兹变换,得两个事件的空间和时间间隔公式`x ∆=2`t ∆= (1) 由题意得:Δt = 0,Δx = 1m ,Δx` = 2m .因此`x ∆=,2`t ∆=.(2)由(2)之上式得它们的相对速度为v = (3)将(2)之下式除以(2)之上式得 2``t v x c∆=-∆, 所以`t ∆==10-8(s).[注意]在S `系中观察到两事件不是同时发生的,所以间隔Δx` = 2m 可以大于间隔Δx = 1m .如果在S `系中观察到两事件也是同时发生的,那么Δx`就表示运动长度,就不可能大于本征长度Δx ,这时可以用长度收缩公式`x ∆=∆3.6 一短跑运动员,在地球上以10s 的时间跑完了100m 的距离,在对地飞行速度为0.8c 的飞船上观察,结果如何?[解答]以地球为S 系,则Δt = 10s ,Δx = 100m .根据洛仑兹坐标和时间变换公式`x =2`t =,飞船上观察运动员的运动距离为`x ∆=10=-4×109(m). 运动员运动的时间为 2`t ∆=100.8100/0.6c -⨯=≈16.67(s). 在飞船上看,地球以0.8c 的速度后退,后退时间约为16.67s ;运动员的速度远小于地球后退的速度,所以运动员跑步的距离约为地球后退的距离,即4×109m .3.8 已知S`系以0.8c 的速度沿S 系x 轴正向运动,在S 系中测得两事件的时空坐标为x 1 = 20m ,x 2 = 40m ,t 1 = 4s ,t 2 = 8s .求S`系中测得的这两件事的时间和空间间隔.[解答]根据洛仑兹变换可得S`系的时间间隔为2``21t t -=840.8(4020)/0.6c ---=≈6.67(s). 空间间隔为``21x x -=40200.8(84)0.6c --⨯-=≈-1.6×109(m).3.11 一粒子动能等于其非相对论动能二倍时,其速度为多少?其动量是按非相对论算得的二倍时,其速度是多少?[解答](1)粒子的非相对论动能为 E k = m 0v 2/2,相对论动能为 E`k = mc 2 – m 0c 2, 其中m 为运动质量m =.根据题意得22200m c m v =, 设x = (v/c )2,方程可简化为1x =+, 或1(1x =+ 平方得 1 = (1 – x 2)(1 - x ),化简得 x (x 2 – x -1) = 0.由于x 不等于0,所以 x 2 – x -1 = 0.解得x =, 取正根得速率为v == 0.786c . (2)粒子的非相对论动量为 p = m 0v , 相对论动量为`p mv ==根据题意得方程02m v =.很容易解得速率为2v c == 0.866c .3.12.某快速运动的粒子,其动能为4.8×10-16J ,该粒子静止时的总能量为1.6×10-17J ,若该粒子的固有寿命为2.6×10-6s ,求其能通过的距离.[解答]在相对论能量关系中E = E 0 + E k ,静止能量E 0已知,且E 0 = m 0c 2,总能量为22E mc ===,所以00k E E E +=, 由此得粒子的运动时为0`k E E t t E +∆==∆. 还可得00kE E E =+, 解得速率为v =∆=∆=∆粒子能够通过的距离为l v t c t8=⨯⨯⨯.310 2.610-3.14静止质子和中子的质量分别为m p = 1.67285×10-27kg,m n = 1.67495×10-27kg,质子和中子结合变成氘核,其静止质量为m0 = 3.34365×10-27kg,求结合过程中所释放出的能量.[解答]在结合过程中,质量亏损为Δm = m p + m n - m0 = 3.94988×10-30(kg),取c = 3×108(m·s-1),可得释放出的能量为ΔE = Δmc2 =3.554893×10-13(J).如果取c = 2.997925×108(m·s-1),可得释放出的能量为ΔE = 3.549977×10-13(J).。

大学物理课后习题答案第三章

大学物理课后习题答案第三章

第3章 力学基本定律与守恒律 习题及答案1.作用在质量为10 kg 的物体上的力为i t F)210(+=N ,式中t 的单位是s ,(1)求4s 后,这物体的动量和速度的变化.(2)为了使这力的冲量为200 N ·s ,该力应在这物体上作用多久,试就一原来静止的物体和一个具有初速度j6-m ·s -1的物体,回答这两个问题. 解: (1)若物体原来静止,则i t i t t F p t 1401s m kg 56d )210(d -⋅⋅=+==∆⎰⎰,沿x 轴正向,ip I imp v111111s m kg 56s m 6.5--⋅⋅=∆=⋅=∆=∆ 若物体原来具有6-1s m -⋅初速,则⎰⎰+-=+-=-=t tt F v m t m F v m p v m p 000000d )d (,于是⎰∆==-=∆t p t F p p p 0102d,同理, 12v v ∆=∆,12I I=这说明,只要力函数不变,作用时间相同,则不管物体有无初动量,也不管初动量有多大,那么物体获得的动量的增量(亦即冲量)就一定相同,这就是动量定理. (2)同上理,两种情况中的作用时间相同,即⎰+=+=tt t t t I 0210d )210(亦即 0200102=-+t t 解得s 10=t ,(s 20='t 舍去)2.一颗子弹由枪口射出时速率为10s m -⋅v ,当子弹在枪筒内被加速时,它所受的合力为 F =(bt a -)N(b a ,为常数),其中t 以秒为单位:(1)假设子弹运行到枪口处合力刚好为零,试计算子弹走完枪筒全长所需时间;(2)求子弹所受的冲量.(3)求子弹的质量. 解: (1)由题意,子弹到枪口时,有0)(=-=bt a F ,得ba t =(2)子弹所受的冲量⎰-=-=tbt at t bt a I 0221d )(将bat =代入,得 ba I 22= (3)由动量定理可求得子弹的质量202bv a v I m == 3.如图所示,一质量为m 的球,在质量为M 半径为R 的1/4圆弧形滑槽中从静止滑下。

原子物理学三章课后习题答案

原子物理学三章课后习题答案

第一章.原子的基本状况1. 若卢瑟福散射用的α粒子是放射性物质镭C'放射的,其动能为7.68×106电子伏特.散射物质是原子序数Z=79的金箔.试问散射角θ=1500所对应的瞄准距离b 多大?解:根据卢瑟福散射公式:222cot42Mv b Zeθπε= 而动能212k E mv =则20222cot442k E Mv b b Ze Zeθπεπε== 由此,瞄准距离为20cot 24kZe b E θπε=其中:79Z =12-1-108.854210A s V m ε-=⨯⋅⋅⋅191.6021910e C -=⨯0150θ=, 0cotcot 750.26802θ==3.14159π=6197.687.6810 1.6021910k E MeV J -==⨯⨯⨯得到:219215022126190cot 79(1.6021910)cot 4(4 3.141598.854210)(7.6810 1.6021910)k Ze b m E οθπε---⨯⨯==⨯⨯⨯⨯⨯⨯⨯153.969710m -=⨯2.已知散射角为θ的α粒子与散射核的最短距离为2202121()(1)4sin mZe r Mv θπε=+,试问上题α粒子与散射的金原子核之间的最短距离m r 多大?解:2min202121()(1)4sin Ze r Mv θπε=+ 2min0211()(1)4sin k Ze r E θπε=+ 其中,0150θ=, 0sinsin 750.965932θ==把上题各参数代入,得到192min12619179(1.6021910)1(1)4 3.141598.8542107.6810 1.60219100.96593r m ---⨯⨯=⨯⨯+⨯⨯⨯⨯⨯⨯143.014710m -=⨯4. 钋放射的一种α粒子的速度为71.59710⨯米/秒,正面垂直入射于厚度为710-米、密度为41.93210⨯3/公斤米的金箔。

大学物理第3章习题解答1..

大学物理第3章习题解答1..

3-9 高空作业时系安全带是非常必要的。假如一质量为51.0kg 的人,在操作时不慎从高空竖直跌落下来,由于安全带的保护, 最终使他被悬挂起来。已知此时人离原处的距离为2.0m,安全 带弹性缓冲作用时间为0.50s。求安全带对人的平均冲力。 解1:以人为研究对象,按两个阶段进行讨论。 在自由落体运动过程中,人跌落至2m处时的速度为:
3-3 对功的概念有以下几种说法: (1)保守力作正功时,系统内相应的势能增加; (2)质点运动经一闭合路径,保守力对质点作的功为零; (3)作用力和反作用力大小相等、方向相反,所以两者所 作功的代数和必为零。 下列对上述说法判断正确的( C ) (A) (1)、(2) 是正确的 (B) (2)、(3) 是正确的
2 m v 5 gl m
(C) 只有 (2) 是正确的
(D) 只有 (3) 是正确的
3-4 如图所示,质量分别为M1和M2的物体A和B,置于光滑桌 面上,A和B之间连有一轻弹簧。另有质量为m1和m2的物体C 和D分别置于物体A和B之上,且物体A和C、B和D之间的摩擦 系数均不为零。首先用外力沿水平方向相向推压A和B,使弹 簧被压缩,然后撤掉外力,则在A和B弹开的过程中,对A、B、 C、D以及弹簧组成的系统,有( ) D (A) 动量守恒,机械能守恒 (B) 动量不守恒,机械能守恒 (C) 动量不守恒,机械能不守恒 (D) 动量守恒,机械能不一定守恒 C A D B
vB 。传递重物 解:设A、B两船原有速度分别为: v A , v v m 表示。 后船的速度分别为: , 。被搬运重物的质量以 A B
分别对系统I、II应用动量守恒定律,则有:
mA mvA mvB [(mA m) m]vA mB mvB mvA [(mB m) m]vB

大学物理第3章刚体的定轴转动习题解答

大学物理第3章刚体的定轴转动习题解答

习题3-1 一汽车发动机曲轴的转速在12s 内由每分钟1200转匀加速地增加到每分钟2700转,求:(1)角加速度;(2)在此时间内,曲轴转了多少转?解:(1))/(401s rad πω= )/(902s rad πω=)/(1.13)/(6251240902212s rad s rad t≈=-=∆-=πππωωβ匀变速转动(2))(78022122rad πβωωθ=-= )(3902圈==πθn 3-2 一飞轮的转动惯量为J ,在0=t 时角速度为0ω,此后飞轮经历制动过程。

阻力矩M 的大小与角速度ω的平方成正比,比例系数0>K 。

求:(1)当30ωω=时,飞轮的角加速度;(2)从开始制动到30ωω=所需要的时间。

解:(1)依题意 2ωβK J M -== )/(92202s rad JK J K ωωβ-=-= (2)由J K dt d 2ωωβ-== 得 ⎰⎰-=32000ωωωωK Jd dt t ωK Jt 2=3-3 如图所示, 发电机的轮A 由蒸汽机的轮B 通过皮带带动。

两轮半径A R =30cm ,=B R 75cm 。

当蒸汽机开动后,其角加速度π8.0=B βrad/s 2,设轮与皮带之间没有滑动。

求(1)经过多少秒后发电机的转速达到A n =600rev/min ?(2)蒸汽机停止工作后一分钟内发电机转速降到300rev/min ,求其角加速度。

解:(1)t A A βω= t B B βω=因为轮和皮带之间没有滑动,所以A 、B 两轮边缘的线速度相同,即B B A A R R ωω=又)/(20606002s rad A ππω=⨯=联立得)(10s R R t B B A A ==βω(2))/(10603002s rad A ππω=⨯=)/(62s rad t A A A πωωβ=-'= 3-4 一个半径为=R 1.0m 的圆盘,可以绕过其盘心且垂直于盘面的转轴转动。

大学物理学(课后答案)第3章

大学物理学(课后答案)第3章

第3章动量守恒定律和能量守恒定律习题一选择题3-1 以下说法正确的是[ ](A)大力的冲量一定比小力的冲量大(B)小力的冲量有可能比大力的冲量大(C)速度大的物体动量一定大(D)质量大的物体动量一定大解析:物体的质量与速度的乘积为动量,描述力的时间累积作用的物理量是冲量,因此答案A、C、D均不正确,选B。

3-2 质量为m的铁锤铅直向下打在桩上而静止,设打击时间为t∆,打击前锤的速率为v,则打击时铁捶受到的合力大小应为[ ](A)mvmgt+∆(B)mg(C)mvmgt-∆(D)mvt∆解析:由动量定理可知,F t p mv∆=∆=,所以mvFt=∆,选D。

3-3 作匀速圆周运动的物体运动一周后回到原处,这一周期内物体[ ] (A)动量守恒,合外力为零(B)动量守恒,合外力不为零(C)动量变化为零,合外力不为零, 合外力的冲量为零(D)动量变化为零,合外力为零解析:作匀速圆周运动的物体运动一周过程中,速度的方向始终在改变,因此动量并不守恒,只是在这一过程的始末动量变化为零,合外力的冲量为零。

由于作匀速圆周运动,因此合外力不为零。

答案选C。

3-4 如图3-4所示,14圆弧轨道(质量为M)与水平面光滑接触,一物体(质量为m)自轨道顶端滑下,M与m间有摩擦,则[ ](A )M 与m 组成系统的总动量及水平方向动量都守恒,M 、m 与地组成的系统机械能守恒(B )M 与m 组成的系统动量不守恒, 水平方向动量守恒,M 、m 与地组成的系统机械能不守恒(C )M 与m 组成的系统动量不守恒, 水平方向动量不守恒,M 、m 与地组成的系统机械能守恒(D )M 与m 组成系统的总动量及水平方向动量都守恒,M 、m 与地组成的系统机械能不守恒解析:M 与m 组成的系统在水平方向上不受外力,在竖直方向上有外力作用,因此系统水平方向动量守恒,总动量不守恒,。

由于M 与m 间有摩擦,m 自轨道顶端滑下过程中摩擦力做功,机械能转化成其它形式的能量,系统机械能不守恒。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

[物理学3章习题解答]
3-1用榔头击钉子,如果榔头的质量为500 g,击钉子时的速率为8.0 m⋅s-1,作用时间为2.0⨯10-3 s,求钉子所受的冲量和榔头对钉子的平均打击力。

解对于榔头:
,
式中i
1是榔头所受的冲量,
是榔头所受钉子的平均打击力;
对于钉子:
,
式中i
2是钉子受到的冲量,
是钉子所受的平均打击力,显然= -。

题目所要求的是i
2和

,
i2的方向与榔头运动方向一致。

,
的方向与榔头运动方向一致。

3-2 质量为10 g的子弹以500 m⋅s-1 的速度沿与板面垂直的方向射向木板,穿过木板,速度降为400 m⋅s-1 。

如果子弹穿过木板所需时间为1.00⨯10-5 s,试分别利用动能定理和动量定理求木板对子弹的平均阻力。


(1)用动能定理求解:
, (1)
其中是木板对子弹的平均阻力,d为穿过木板的厚度,它可用下面的关系求得:
, (2)
. (3)
由式(2)和式(3)联立所求得的木板厚度为
&nb .
根据式(1),木板对子弹的平均阻力为
.
(2)用动量定理求解:
,
.
与上面的结果一致。

由求解过程可见,利用动量定理求解要简便得多。

3-4 质量为m的小球与桌面相碰撞,碰撞前、后小球的速率都是v,入射方向和出射方向与桌面法线的夹角都是α,如图3-3所示。

若小球与桌面作用的时间为δt,求小球对桌面的平均冲力。

解 设桌面对小球的平均冲力为f ,并建立如图所示的坐标系,根据动量定
理,对于小球可列出
,
.
由第一个方程式可以求得
,
由第二个方程式可以求得
.
根据牛顿第三定律,小球对桌面的平均冲力为
,
负号表示小球对桌面的平均冲力沿y 轴的负方向。

3-5 如图3-4
所示,一个质量为m 的刚性小球在光滑的水平桌面上以速度v 1

动,v 1
与x 轴的负方向成α角。

当小球运动到o 点时,受到一个沿y 方向的冲力作用,使小球运动速度的大小和方向都发生了变化。

已知变化后速度的方向与x 轴成β角。

如果冲力与小球作用的时间为δt ,求小球所受的平均冲力和运动速率。

解 设小球受到的平均冲力为f ,根据题意,它是沿y 方向的,小球受到撞击后,
运动速率为v 2。

根据动量定理,在y 方向上可以列出下面的方程式
,
由此得到
图3-3
图3-4
. (1)
小球在x 轴方向上不受力的作用,动量是守恒的。

故有
,
由此求得小球受到撞击后的运动速率为
. (2)
将式(2)代入式(1),即可求得小球所受的平均冲力
.
3-7 求一个半径为r
的半圆形均匀薄板的质心。

解 将坐标原点取在半圆形薄板的圆心上,并建立如图3-5所示的坐标系。

在这种情况下,质心c 必定处于y 轴上,即
,
.
质量元是取在y 处的长条,如图所示。

长条的宽度为d y ,长度为2x 。

根据圆方程
,
故有
.
如果薄板的质量密度为 ,则有
图3-5
.

, 则
,对上式作变量变换,并积分,得
.
3-8 有一厚度和密度都均匀的扇形薄板,其半径为r,顶角为2α,求质心的位置。

解以扇形的圆心为坐标原点、以顶角的平分线为y轴,建立如图3-6所示的坐标系。

在这种情况下,质心c必定处于y轴上,即
,
.
质量元可表示为
,
式中σ为扇形薄板的质量密度,d s为图中黑色方块所示的扇形薄板面元。

整个扇形薄板的质量为
,
于是
.

代入上式,得
. 图3-6
3-9 一个水银球竖直地落在水平桌面上,并分成三个质量相等的小水银球。

其中两个以30 cm ⋅s
-
1
的速率沿相互垂直的方向运动,如图3-7
中的1、2两球。

求第三个小水银球的速率和运动方向 (
即与1球运动方向的夹角α )。

解 建立如图3-8所示的坐标系。

在水平方向上,水银求不受力的作用,所以动量守恒,故可列出下面的两个方程式
,
.
式中v 是1、2两球的运动速率,v 3是第三个水银小球的运动速率。

由上两方程式可解的
,
.
3-10 如图3-9
所示,一个质量为1.240 kg 的木块与一个处于平衡位置
的轻弹簧的一端相接触,它们静止地处于光滑的水平桌面上。

一个质量为10.0 g
的子弹
沿水平方向飞行并射进木块,受到子弹撞击的木块将弹
簧压缩了2.0 cm 。

如果轻弹簧的劲度系数为2000 n ⋅m -
1
,求子弹撞
击木块的速率。

解 设木块的质量为m ;子弹的质量为m ,速度为v ;碰撞后的共同速度为v 。

此类问题一般分两步处理:第一步是子弹与木块作完
全非弹性碰撞,第二步是子弹在木块内以共同的速度压缩弹簧。

第一步遵从动量守恒,故有
. (1)
图3-8
图3-7
图3-9
第二步是动能与弹力势能之间的转换,遵从机械能守恒,于是有
. (2)
有式(2)解得
.
将v值代入式(1),就可求得子弹撞击木块的速率,为
.
3-11 质量为5.0 g的子弹以500 m⋅s-1 的速率沿水平方向射入静止放置在水平桌面上的质量为1245 g 的木块内。

木块受冲击后沿桌面滑动了510 cm。

求木块与桌面之间的摩擦系数。

解这个问题也应分两步处理:第一步是子弹与木块作完全非弹性碰撞过程,第二步是子弹处于木块内一起滑动而克服桌面的摩擦力作功的过程。

第一步遵从动量守恒,有
.
式中v是木块受冲击后沿桌面滑动的速度。

第二步遵从功能原理,可列出下面的方程式
.
由以上两式可解得
3-12一个中子撞击一个静止的碳原子核,如果碰撞是完全弹性正碰,求碰撞后中子动能减少的百分数。

已知中子与碳原子核的质量之比为1:12。

解设中子的质量为m,与碳核碰撞前、后的速度分别为v
和v2;碳核的质量为m,碰撞前、后的速度分别为0和
1
v。

因为是正碰,所以v1、v2和v必定处于同一条直线上。

完全弹性碰撞,动量守恒,故有
, (1)
总动能不变,即
(2)
以上两式可分别化为
,(3)
. (4)
式(4)除以式(3),得
. (5)
由式(1)和式(5)解得
.
于是,可以算得中子动能的减少
,
因为m = 12m,所以
.
3-13 质量为m1的中子分别与质量为m2的铅原子核(质量m2 = 206 m1 )和质量为m3的氢原子核(质量m3 = m1 )发生完全弹性正
碰。

分别求出中子在碰撞后动能减少的百分数,并说明其物理意义。

解 求解此题可以利用上题的结果:
.
对于中子与铅核作完全弹性正碰的情形:
.
铅核的质量比中子的质量大得多,当它们发生完全弹性正碰时,铅核几乎保持静止,而中子则以与碰前相近的速率被反弹回去,所以动能损失极少。

对于中子与氢核作完全弹性正碰的情形:
.
氢核就是质子,与中子质量相等,当它们发生完全弹性正碰时,将交换速度,所以碰撞后,中子静止不动了,而将自身的全部动能交给了氢核。

3-14 如图3-10
所示,用长度为l 的细线将一个质量为m 的小球悬挂于o 点。

手拿小球将细线拉到水平位置,然后释放。

当小球摆动到细
线竖直的位置时,正好与一个静止放置在水平桌面上的质量为m
的物体作完全弹性碰撞。

求碰撞后小球达到的最高位置所对应
的细线张角 。

解 小球与物体相碰撞的速度v 1
可由下式求得
. (1)
小球与物体相碰撞,在水平方向上满足动量守恒,碰撞后
小球的速度变为v 2,物体的速度为v ,在水平方向上应有
. (2)
图3-10
完全弹性碰撞,动能不变,即
. (3)
碰撞后,小球在到达张角 的位置的过程中满足机械能守恒,应有
. (4)
由以上四式可解得
.
将上式代入式(4),得
,
.。

相关文档
最新文档