长方体和正方体典型题和答案

合集下载

长方体和正方体知识点+例题+习题

长方体和正方体知识点+例题+习题

第1节长方体和正方体的认识典型例题例1.一个长方体长8厘米,宽6厘米,高4厘米,它的棱长总和是多少厘米?分析:根据长方体的特征,它相对的棱(3组,每组4条)的长度相等,那么长方体的棱长和等于长、宽、高的4倍.解:(8+6+4)×4=18×4=72(厘米)答:它的棱长总和是72厘米.例2.用一根48厘米的铁丝焊接成一个最大的正方体框架,这个框架的每条边应该是多少厘米?分析:根据正方体的特征,它的12条棱长都相等,把48厘米平均分成12份,每份就是一条棱的长度.解:48÷12=4(厘米)答:这个框架的每条边应该是4厘米.例3.用棱长1厘米的小正方体摆成稍大一些的正方体,至少需要多少个小正方体?分析:题目要求至少要多少个棱长为1厘米的小正方体,那么拼成的棱长应尽量小,所以应该考虑棱长为2的立方体,体积是8立方厘米,所以要8个.解:2×2×2=8(个)答:至少需要8个小正方体.例4.将下面的硬纸板按照虚线折成一个立方体,哪个面与哪个面相对?分析:通过实验可以看到带有标号的面7与10,面8与11,面9与12是相对的面.例5.一个正方体的六个面上,分别写着“1”“2”“3”“4”“5”“6”.根据下面摆放的三种情况,判断出每个对面上的数字是几?分析:正方体有6个面,每一个面有一个相对的面,而与其余四个面相邻.解题时我们如果抓住这一特征,确定某一个面与哪四个面相邻,于是就不难判断出这一面相对的面上的数字是几了.即排除包括自己在内的五个数字,剩下的就是与某一面相对的面上数字了.先以“3”为例:从上面左图可以看出,“3”面与“2”面、“1”面相邻;从中图可以看出.“3”面又与“4”面、“5”面相邻.这就是说,“3”面与“1”面、“2”面、“4”面和“5”面这四个面相邻.那么,就可以很快知道,“3”面与“6”面相对.再来看“1”面:从上面左图可看出,“1”面与“2”面“3”面相邻;从右图可看出,“1”面又与“6”面“4”面相邻,这就是说,与“1”相邻的四个面,是“2”面、“3”面、“4”面和“6”面,那么,与“1”面相对的面就只能是“5”面了.最后看“4”面:从上面中图可以看出,“4”面与“3”面、“5”面相邻;从右图可以看出,“4”面又与“1”面“6”面相邻.这就是说,与“4”面相邻的四个面,是“1”面、“3”面、“5”面和“6”面,于是可知,与“4”面相对是面是“2”面.所以题目的结论是:这个正方体上相对的面,分别是“1”面和“5”面、“2”面和“4”面、“3”面和“6”面.解:这个正方体上相对的面,分别是“1”面和“5”面、“2”面和“4”面、“3”面和“6”面.习题精选一、填空.1.长方体有()个面,它们一般都是()形,也可能有()个面是正方形.2.长方体的上面和下面、前面和后面、左面和右面都叫做(),它们的面积().3.长方体的12条棱,每相对的()条棱算作一组,12条棱可以分成()组.4.正方体有()个面,每个面都是()形,面积都().5.一个正方体的棱长是6厘米,它的棱长总和是().6.一个长方体的长是1.5分米,宽是1.2分米,高是1分米,它的棱长和是()分米.7.一个长方体的棱长总和是80厘米,其中长是10厘米,宽是7厘米,高是()厘米.8.把两个棱长1厘米的正方体拼成一个长方体,这个长方体的棱长总和是()厘米.二、判断题.1.长方体和正方体都有6个面,12条棱,8个顶点.()2.长方体的6个面不可能有正方形.()3.长方体的12条棱中,长、宽、高各有4条.()4.正方体不仅相对的面的面积相等,而且所有相邻的面的面积也都相等.()5.长方体(不包括正方体)除了相对的面相等,也可能有两个相邻的面相等.()6.一个长方体长12厘米,宽8厘米,高7厘米,把它切成一个尽可能大的正方体,这个正方体的棱长是8厘米.()三、选择题.1.下列物体中,形状不是长方体的是()①火柴盒②红砖③茶杯④木箱2.长方体的12条棱中,高有()条.①4②6③8④123.下列三个图形中,能拼成正方体的是()4.把一个棱长3分米的正方体切成两个相等的长方体,增加的两个面的总面积是()平方分米.①18②9③36④以上答案都不对参考答案一、填空.1.6 长方形 22.相对面相等3.4 34.6 正方形相等5.72厘米6.14.87.38.16二、判断题.1.√ 2.× 3.√4.√ 5.√ 6.×三、选择题.1.③2.①3.①和③4.①2例1.一种有盖的长方体铁皮盒,长8厘米,宽5厘米,高3厘米.做25个这样的盒子至少需要多少平方米铁皮?(不计接口面积)分析:根据长方体表面积的计算方法,先求出一个盒子需要的铁皮数量,然后就可以求出25个这样的盒子需要的铁皮数量.解:(8×5+8×3+5×3)×2×25=158×25=3950(平方厘米)=0.395(平方米)答:至少需要0.395平方米的铁皮.例2.一个长方体,表面积是456平方厘米,它的底面是一个边长为4厘米的正方形,它的高是多少厘米?分析:题目中给出这个长方体底面是一个边长为4厘米的正方形,说明这个长方体是有两个相对的面是正方形的,其余4个面是面积相等的长方形,只要我们求出一个长方形面的面积,再用面积除以底面的边长,就算出了长方体的高了.这也是利用长方体的特征,逆解题目.解:456-4×4×2=424(平方厘米)424÷4=106(平方厘米)106÷4=26.5(厘米)答:它的高是26.5厘米.例3.一个教室长8米,宽6米,高3.5米,要粉刷教室的墙壁和天花板.门窗和黑板的面积是22平方米,平均每平方米用涂料0.25千克,粉刷这个教室共需要涂料多少千克?分析:求需要涂料多少千克,必须先求出实际粉刷的面积.长方体的表面积去掉门窗、黑板和地面的面积就是实际粉刷的面积.解:(1)粉刷的面积为:(8×6+8×3.5+6×3.5)×2-8×6-22=(48+28+21)×2-48-22=97×2-48-22=194-48-22=124(平方米)(2)需要涂料的重量为:0.25×124=31(千克)答:粉刷这个教室共需要涂料31千克.例4.将一个长12厘米,宽9厘米,高5厘米的长方体,切成两个长方体,两个长方体表面积的总和最多是多少平方厘米?最少是多少平方厘米?分析:切割长方体一次,原来的表面积增加两个面的面积,要使切开后的两个长方体表面积的总和最多(少),必须使横截面的面积最大(小).解:(12×9+12×5+9×5)×2+12×9×2=(108+60+45)×2+216=213×2+216=642(平方厘米)(12×9+12×5+9×5)×2+9×5×2=(108+60+45)×2+90=213×2+90=516(平方厘米)答:两个长方体表面积的总和最多是642平方厘米,最少是516平方厘米.例5.一个正方体,棱长的总和是96厘米.这个正方体的表面积是多少?分析:因为正方体的12根棱长都相等,所以可知,这个正方体的棱长是96÷12=8(厘米).又由于正方体有相等的6个面,每个都是正方形.解:8×8×6=384(平方厘米)答:这个正方体的表面积是384平方厘米.例6.做两个同样的正方体纸盒,一个有盖一个无盖,有盖纸盒用的纸板是无盖纸盒的多少倍?分析:有盖纸盒的表面积是它的一个面面积的6倍,无盖纸盒的表面积是它的一个面面积的5倍,而两个同样的正方体纸盒的面的面积是相等的,所以有盖纸盒用的纸板是无盖纸盒的6÷5=1.2倍.解:6÷5=1.2答:有盖纸盒用的纸板是无盖纸盒的1.2倍.习题精选一、填空题1.(1)下图上、下每个面的长()厘米,宽()厘米,面积是();(2)前、后每个面的长是()厘米,宽是()厘米,面积是();(3)左、右每个面的长是()厘米,宽是()厘米,面积是().(4)它的表面积是().2.(1)下图中上面的面积是(),前面的面积是(),右面的面积是();(2)计算它的表面积的算式是().二、计算题求下面各长方体的表面积:1.长6米,宽3米,高2米.2.长8分米,宽4.5分米,高2分米.3.长和宽都是6厘米,高3.4厘米.三、应用题1.做一个长方体的纸箱,长0.8米,宽0.6米,高0.4米.做这个纸箱至少需要纸板多少平方米?2.一个正方体的木箱,棱长5分米,在它的表面涂漆,涂漆的面积是多少?如果每平方分米用漆8克,涂这个木箱要用漆多少克?合多少千克?3.一个长方体的铁皮盒,长25厘米,宽20厘米,高8厘米.做这个铁皮盒至少要用多少平方厘米铁皮?参考答案一、1.(1)下图上、下每个面的长( 9 )厘米,宽( 3 )厘米,面积是(27平方厘米);(2)前、后每个面的长是( 9 )厘米,宽是( 4 )厘米,面积是(36平方厘米);(3)左、右每个面的长是( 4 )厘米,宽是( 3 )厘米,面积是(12平方厘米).(4)它的表面积是:9×3+9×4+4×3)×2=150(平方厘米).2.(1)下图中上面的面积是(36平方分米),前面的面积是(48平方分米),右面的面积是(48平方分米);(2)计算它的表面积的算式是:6×6×2+6×8×4=264(平方分米).二、1.(6×3+6×2+3×2)×2=72(平方米)2.(8×4.5+8×2+4.5×2)×2=122(平方分米)3.6×6×2+6×3.4×4=153.6(平方厘米)三、1.(0.8×0.6+0.8×0.4+0.6×0.4)×2=2.08(平方米)答:至少需要纸板2.08平方米.2.5×5×6=150(平方分米)答:涂漆的面积是150平方分米.8×150=1200(克)=1.2(千克)答:要用漆1200克,合1.2千克.3.(25×20+25×8+20×8)×2=1720(平方厘米)答:至少要用1720平方厘米铁皮.3典型例题例1.把一个棱长6分米的正方体钢坯,锻造成一个宽3分米,高2分米的长方体钢件,这个钢件长多少分米?分析:把正方体钢坯锻造成长方体钢件,形状改变了,但是体积没有改变,即正方体的体积和长方体的体积相等.已知长方体的宽和高,用体积除以宽,要再除以高,就可以求出长.解:6×6×6÷3÷2=216÷3÷2=36(分米)答:这个钢件的长是36分米.例2.一个正方体的铁皮油箱,从里面量得棱长为6分米,里面装满汽油.如果把这箱汽油全部倒入一个长10分米、宽8分米、高5分米的长方体铁皮油箱中,那么,油面离箱口还有多少分米?分析:根据题意,可先求得正方体铁皮油箱的汽油体积为:6×6×6=216(立方分米)而长方体油箱底面积是10×8=80(平方分米),所以,汽油在长方体铁皮油箱里的高度是216÷80=2.7(分米).因此,油面离油箱口的高度就是:5-2.7=2.3(分米)答:油面离油箱口还有2.3分米.例3.一段方钢长3米,横截面是一个边长为0.4分米的正方形.如果1立方分米的钢重7.8千克,那么这段方钢有多重?分析:题目中的长度单位不统一,为计算的方便,可都化成以分米为单位来进行计算.解:3米=30分米0.4×0.4×30=4.8(立方分米)7.8×4.8=37.44(千克)答:这段方钢的重量是37.44千克.例4.有沙土12立方米,要铺在长5米,宽4米的房间里,可以铺多厚?分析:此题要把12立方米的沙土铺在房间里,也就是铺成一个长5米、宽4米、厚米的长方体,我们就可以用方程法求出所求问题了.这题是一道利用体积计算公式逆解的题.遇到此类题用方程法解即可.解:设可铺米厚.4×5×=12=0.6答:可以铺0.6米厚.例5.一个长方体的底面长6厘米,长是宽的1.2倍,宽比高少0.5厘米,这个长方体的体积是多少立方厘米?分析:这道题要求的是长方体的体积,求体积就必须知道长方形的长、宽、高.此题只直接给出了长,宽和高是间接给出的,因此应先用求一倍量的方法求出宽,再根据“求比一个数多几的数是多少”的题型算出高,最后用公式V=abh算出体积就可以了.解:6÷1.2=5(厘米)5+0.5=5.5(厘米)6×5×5.5=165(平方厘米)答:这个长方体的体积是165平方厘米.例6.在长为12厘米、宽为10厘米、8厘米深的玻璃缸中放入一石块并没入水中,这时水面上升2厘米.石块的体积是多少?分析:把石块浸没在装水的长方体玻璃缸中,石块占有一定的空间,从而使水的体积增大,它的具体表现就是水面上升,不管石块的形状如何,只要求出增加的体积就可以了(即石块的体积).解:12×10×2=240(立方厘米)答:石块的体积是240立方厘米.例7.把棱长6厘米的正方体铁块锻造成宽和高都是4厘米的长方体铁条,能锻造出多长?分析:我们不难看出,棱长6厘米的正方体和要锻造的长方体的体积相等,只不过形状不一样,这类题叫等积变形题.只要求出正方体的体积就是长方体的体积了.解:6×6×6÷4÷4=13.5(厘米)答:能锻造13.5厘米长.习题精选一、填空题1.物体所占空间的大小叫做物体的().2.计量体积要用()单位,常用的体积单位有()()和().3.棱长1厘米的正方体体积是(),棱长1分米的正方体体积是(),棱长1米的正方体体积是().4.长方体的体积=(),正方体的体积=().5.在括号里填上合适的计量单位.(1)一本数学解题题典封面的周长是80(),面积是375(),体积是1125().(2)一块橡皮的体积是6(),一只卫生保健箱的体积是30(),一堆钢材的体积是4().二、判断题1.一块长方体木料,长6分米,宽4分米,厚3分米.容积是72升.()2.一个游泳池的容积是1000毫升.()3.一个正方体的棱长扩大2倍,体积就扩大8倍.()4.一个长方体的木箱,它的体积和容积一样大.()5.一只杯子能装水1升,杯子的容积就是1立方分米.()三、计算题看图计算下面长方体和正方体的体积.1.2.3.四、应用题1.一个长方体木箱,长7分米,宽4分米,高3.5分米.这个木箱的体积是多少?2.一块方砖的厚是5厘米,长和宽都是30厘米.求这块方砖的体积.3.一块正方体石料,棱长是0.8米.这块石料的体积是多少立方分米?五、提高题1.下图是由棱长为1厘米的小正方体拼摆而成的.这个拼摆而成的形体的表面积是多少平方厘米?体积是多少立方厘米?至少再摆上几个小正方体后就可以拼摆成一个正方体?2.一个长方体玻璃容器,长5分米,宽4分米,高6分米,向容器中倒入30升水,再把一块石头放入水中,这时量得容器内的水深20厘米,石头的体积是多少立方分米?参考答案一、1.物体所占空间的大小叫做物体的(体积).2.计量体积要用(体积)单位,常用的体积单位有(立方厘米)(立方分米)和(立方米).3.棱长1厘米的正方体体积是(1立方厘米),棱长1分米的正方体体积是(1立方分米),棱长1米的正方体体积是(1立方米).4.长方体的体积=(长×宽×高),正方体的体积=(棱长×棱长×棱长).5.在括号里填上合适的计量单位.(1)一本数学解题题典封面的周长是80(厘米),面积是375(平方厘米),体积是1125(立方厘米).(2)一块橡皮的体积是6(立方厘米),一只卫生保健箱的体积是30(立方分米),一堆钢材的体积是4(立方米).二、1.一块长方体木料,长6分米,宽4分米,厚3分米.容积是72升.(× )2.一个游泳池的容积是1000毫升.(× )3.一个正方体的棱长扩大2倍,体积就扩大8倍.(√ )4.一个长方体的木箱,它的体积和容积一样大.(× )5.一只杯子能装水1升,杯子的容积就是1立方分米.(√ )三、1.48×5=240(立方厘米)2.0.36×0.6=0.216(立方米)3.9×8=72(立方分米)四、1.7×4×3.8=98(立方分米)答:这个木箱的体积是98立方分米.2.30×30×5=4500(立方厘米)答:这块方砖的体积是4500立方厘米.3.0.8×0.8×0.8=0.512(立方米)答:这块石料的体积是512立方分米.五、1.(1×1)×48=48(平方厘米)(1×1×1)×18=18(立方厘米)3×3=9(个)答:表面积是48平方厘米,体积是18立方厘米,至少再摆上9个小正方体就可以拼成一个正方体.2.5×4×[2-30÷(5×4)] =10(立方分米)或5×4×2-30=10(立方分米)答:石头的体积是10立方分米.2-3长方体和正方体的体积(二)典型例题例1.一个长方体沙坑的长是8米,宽是4.2米,深是0.6米,每立方米沙土重1.75吨,填平这个沙坑共要用沙土多少吨?分析:已知每立方米沙土重1.75吨,求共要用沙土多少吨,必须先求出共要沙土多少立方米,即先求出沙坑的容积.解: 1.75×(8×4.2×0.6)=1.75×20.16=35.28(吨)答:共要沙土35.28吨.例2.长方体货仓1个,长50米,宽30米,高5米,这个货仓可以容纳8立方米的正方体货箱多少个?分析:已知正方体货箱的体积是8立方米,可以知道正方体货箱的棱长为2米.货仓的长是50米,所以一排可以摆放50÷2=25个,宽是30米,可以摆放30÷2=15排,高是5米,可以摆放5÷2=2层 (1)米,所以一共可以摆放25×15×2=750个.(如图)解:50÷2=25(个)30÷2=15(排)5÷2=2层……1米25×15×2=750(个)答:可以容纳8立方米的正方体货箱750个.说明:如果此题先计算长方体货仓的体积(50×30×5=7500立方米),然后再除以立方体的体积8立方米(7500÷8=937.5个)是不对的.因为货仓的高是5米,立方体的棱长2米,只能摆放2层,上面的1米实际上是空的,没有摆放货箱.例3.一只底面是正方形的长方体铁箱,如果把它的侧面展开,正好得到一个边长是60厘米的正方形.(1)这只铁箱的容积是多少升?(2)如果铁箱内装半箱水,求与水接触的面的面积.分析:(1)根据侧面展开后是一个边长为60厘米的正方形,可以得出长方形的底面(正方形)的周长是60厘米,高也是60厘米.由底面(正方形)的周长可以求出底面的面积.从而求出容积.(2)与水接触的面的面积是原长方体的侧面积的一半加上一个底面积.而侧面积是边长60厘米的正方形的面积,底面积上面已经求出.解:(1)×60=225×60=13500(立方厘米)=13.5(升)(2)60×60÷2+=1800+225=2025(平方厘米)答:这只铁箱的容积是13.5升,如果装半箱水,与水接触的面积是2.25平方厘米.例4.有一个空的长方体容器和一个水深24厘米的长方体容器,将容器的水倒一部分到,使两容器水的高度相同,这时两容器相同的水深为几厘米?分析1:容器的底面积是40×30,容器的底面积是30×20,40×30÷(30×20)=2,即的底面积是的底面积的2倍,中的水倒一部分到使、两容器水的高度相同,所以这个水深为24÷(2+1)=8厘米.解法1:24÷[40×30÷(30×20)+1 ]=24÷3=8(厘米)分析2:设这个相同的水深为厘米,则中倒出的水深为(24-)厘米,倒出的水为30×20×(24-)立方厘米,这些水就全部在中,中的水有40×30×立方厘米,故可得方程.解法2:设这个相同的水深为厘米.40×30×=30×20×(24-)24-=40×30×÷(30×20)24-=23=24=8答:这个相同的水深是8厘米.例5.一个正方体木头,棱长是6厘米,在6个面的中央各挖一个长、宽、高都是2厘米的洞孔,这时它的表面积、体积各是多少?分析:表面积等于正方体表面积加上6个洞孔的4个面的面积;体积等于正方体的体积减去6个洞孔的体积.解:表面积为:6×6×6+2×2×4×6=216+96=312(平方厘米)体积为:6×6×6-2×2×2×6=216-48=168(立方厘米)答:表面积为312平方厘米,体积为168立方厘米.例6.有一块宽为22厘米的长方形铁皮,在四角上剪去边长为5厘米的正方形后(如图一),将它焊成一个无盖的长方体盒子(如图二),已知这个盒子的体积是2160立方厘米,求原来这块铁皮的面积是多少平方厘米?分析:已知盒子的体积是2160立方厘米,高为5厘米,这个盒子的底面积就可以求出,而这个盒子的底面长方形的宽为22-5×2=12(厘米),所以这底面长方形的长也可以求出.解:长方体盒子的长为:2160÷5÷(22-5×2)=432÷12=36(厘米)铁皮的面积为:(36+5×2)×22=46×22=1012(平方厘米)答:原来这块铁皮的面积是1012平方厘米.习题精选一一、填空.1、40立方米=()立方分米4立方分米5立方厘米=()立方分米30立方分米=()立方米0.85升=()毫升2100毫升=()立方厘米=()立方分米0.3升=()毫升=()立方厘米2、一个正方体的棱长和是12分米,它的体积是()立方分米.3、一个长方体的体积是30立方厘米,长是5厘米,高是3厘米,宽是()厘米.4、一个长方体的底面积是0.2平方米,高是8分米,它的体积是()立方分米.5、表面积是54平方厘米的正方体,它的体积是()立方厘米.6、正方体的棱长缩小3倍,它的体积就缩小()倍.7、一个长方体框架长8厘米,宽6厘米,高4厘米,做这个框架共要()厘米铁丝,是求长方体(),在表面贴上塑料板,共要()塑料板是求(),在里面能盛()升水是求(),这个盒子有()立方米是求().8、长方体的长是6厘米,宽是4厘米,高是2厘米,它的棱长总和是()厘米,六个面种最大的面积是()平方厘米,表面积是()平方厘米,体积是()立方厘米.二、判断.1、体积单位比面积单位大,面积单位比长度单位大.()2、正方体和长方体的体积都可以用底面积乘高来进行计算.()3、表面积相等的两个长方体,它们的体积一定相等.()4、长方体的体积就是长方体的容积.()5、如果一个长方体能锯成四个完全一样的正方体,那么长方体前面的面积是底面积的4倍.()三、选择.1、正方体的棱长扩大2倍,则体积扩大()倍.①2 ②4 ③6 ④82、一根长方体木料,长1.5米,宽和厚都是2分米,把它锯成4段,表面积最少增加()平方分米.①8 ②16 ③24 ④323、一个长方体的长、宽、高都扩大2倍,它的体积扩大()倍.①2 ②4 ③6 ④84、表面积相等的长方体和正方体的体积相比,().①正方体体积大②长方体体积大③相等5、将一个正方体钢坯锻造成长方体,正方体和长方体().①体积相等,表面积不相等②体积和表面积都不相等.③表面积相等,体积不相等.6、一个菜窖能容纳6立方米白菜,这个菜窖的()是6立方米.①体积②容积③表面积参考答案一、填空.1、40000; 4.005; 850; 2100、2.1; 300、3002、13、24、16005、276、277、72、棱长和、208、表面积、0.192、容积、0.192、体积8、48、24、88、48二、判断.1、×2、√3、×4、×5、×三、选择.1、④2、③3、④4、①5、①6、②二一、填表.二、计算下图的体积(单位:分米).三、应用题.1、一块水泥砖长8厘米,宽6厘米,厚4厘米,它的体积是多少立方厘米?2、一个正方体木块,棱长6分米,已知每立方分米木重0.4千克,这个木块重多少千克?3、把一块棱长是20厘米的正方体钢坯,锻造成底面积是16平方厘米的长方体钢材,长方体钢材长多少厘米?参考答案一、填表.二、计算下图的体积.(单位:分米)1、8×4×5=160(立方分米)2、3×3×7=63(立方分米)3、2.5×2.5×2.5=15.625(立方分米)三、应用题.1、8×6×4=192(立方厘米)答:它的体积是192立方厘米.2、6×6×6=216(立方分米)0.4×216=86.4(千克)答:这个木块重86.4千克.3、20×20×20÷16=8000÷16=500(厘米)答:钢材长500厘米.。

五年级数学长方体和正方体试题

五年级数学长方体和正方体试题

五年级数学长方体和正方体试题1.两块同样的肥皂用三种包装,第()种包装更省包装纸。

B. C.【答案】A【解析】根据把两个相同的长方体拼成一个大长方体,表面积都减少两个面,求哪种包装最省包装纸,只要减少两个最大的面(两个最大的面重合)即可。

2.沿虚线把长为15cm的长方体分成2段,表面积增加了160cm2,求原来长方体的体积是多少?【答案】1200立方厘米【解析】【考点】简单的立方体切拼问题;长方体和正方体的体积。

分析:观察图形可知,增加的表面积是这个长方体的2个侧面的面积,据此可以求出侧面的面积是160÷2=80平方厘米,据此再乘长方体的长,即可求出它的体积。

解答:160÷2×15=80×15=1200(立方厘米)3.一个长方体的长、宽、高分别是7厘米、6厘米和5厘米,它的棱长总和是厘米。

做这样一个无盖的长方体盒子,需要平方厘米材料。

【答案】72,172【解析】【考点】长方体的特征;长方体和正方体的表面积。

分析:根据长方体的特征,12条棱分为互相平行的3组,每组4条棱的长度相等,6个面都是长方形(特殊情况有两个相对的面是正方形),相对的面的面积相等。

长方体的棱长总和=(长+宽+高)×4,由于盒子无盖,所以只求5个面的面积,根据长方体的表面积公式解答。

解答:解:(7+6+5)×4,=18×4,=72(厘米);7×6+(7×5+6×5)×2,=42+(35+30)×2,=42+65×2,=42+130,=172(平方厘米);答:它的棱长总和是72厘米,需要172平方厘米的材料。

4.把一个1立方分米的正方体切成每个是1立方厘米的小正方体,然后排成一排,共米长.【答案】10【解析】1立方分米=1000立方厘米,由此可以得出能够分成1000个1立方厘米的小正方体;1立方厘米的小正方体的棱长是1厘米,把这些小正方体排成一排,总长度是1×1000=1000厘米=10米.解答:解:1立方分米=1000立方厘米,所以:1000÷1=1000(个),1立方厘米的小正方体的棱长是1厘米;则总长度是1×1000=1000(厘米)1000厘米=10米,答:把这些小正方体排成一排,一共长10米.故答案为:10.点评:利用大正方体的体积除以小正方体的体积即可求出切割出的小正方体的总个数,即可解决问题.5.一块长方形铁皮(如图),从四个角各切掉一个边长为5cm的正方形,然后做成盒子,这个盒子用了多少铁皮?【答案】这个盒子用了1100cm2的铁皮.【解析】根据长方形的面积公式S=ab和正方形的面积公式S=a2求出长方形和正方形的面积,这个盒子用的铁皮的面积是这个长方形的面积减去4个边长为5厘米的小正方形的面积,据此即可解答.解答:解:40×30﹣5×5×4=1200﹣100=1100(cm2);答:这个盒子用了1100cm2的铁皮.点评:本考查了长方形和正方形面积公式的灵活应用.6.一个长方体纸箱有个面.一次最多可以看到个面,最少可以看到个面.【答案】6;3;1.【解析】根据观察的范围随观察点、观察角度的变化而改变,从一个角度去观察长方体,最多可以看到3个面,最少可以看到 1个面,据此解答即可.解答:解:由题意知,一个长方体纸箱有 6个面.一次最多可以看到 3个面,最少可以看到 1个面.故答案为:6;3;1.点评:此题考查的目的是:感受观察的范围随观察点、观察角度的变化而改变,并能利用所学的知识解释生活中的一些现象.7.将下图图形的表面都涂上颜色,那么,只有3个面涂上颜色的正方体有个,只有4个面涂上颜色的正方体有个.【答案】6,4.【解析】根据图可知,在这个长方体四个角上的四个小正方体的四个面是涂色的,在每个边上且去掉角上的小正方体是三面涂色,据此解答.解答:解:因这个长方体是由一层小正方体排列而成,所以它的四个角上的4个小正方体是四面涂色.三面涂色中在边上且去掉角上的小正方体:(5﹣2)×2=3×2=6(个),答:3个面有颜色的正方体有 6个,4个面有颜色的正方体有 4个.故答案为:6,4.点评:本题的关键是单层排列,有四面涂色(在四个顶点处)和三面涂色(在里面)的小正方体.锻炼了学生的空间想象力和几何直观.8.一个正方体鱼缸,棱长4分米.如果把满缸水倒入一个里面长8分米,宽5分米的长方体空水槽里,这时水槽里的水有多少深?【答案】这时水槽里的水有1.6分米深.【解析】首先根据正方体的体积公式:v=a3,求出正方体鱼缸内水的体积,再根据长方体的体积公式:v=sh,用水的体积除以长方体水槽的底面积即可.解答:解:4×4×4÷(8×5)=64÷40=1.6(分米),答:这时水槽里的水有1.6分米深.点评:此题主要考查正方体、长方体的体积公式的灵活运用,关键是熟记公式.9.在一条长5千米,宽8米的公路上辅上一层厚5厘米的沙土,需要多少沙土?【答案】需要2000立方米沙土.【解析】根据长方体的体积公式:v=abh,把数据代入公式解答即可.解答:解:5千米=5000米,5厘米=0.05米,5000×8×0.05=40000×0.05=2000(立方米),答:需要2000立方米沙土.点评:此题主要考查长方体的体积公式的灵活运用,关键是熟记公式.注意:长度单位相邻单位之间的进率及换算.10.一块长方形铁皮,长30cm,宽25厘米,四角分别切掉边长是5cm的正方形,然后做成无盖的盒子,这个无盖盒子的容积是多少?【答案】这个盒子的容积有1500立方厘米.【解析】如图所示,做成的盒子的长是(30﹣5×2)厘米,宽是(25﹣5×2)厘米,高是5厘米,利用长方体的体积=abh即可求出这个盒子的容积.解答:解:因为做成的盒子的长是30﹣5×2=20(厘米),宽是25﹣5×2=15(厘米),高是5厘米,所以盒子的容积是:20×15×5=300×5=1500(立方厘米)答:这个盒子的容积有1500立方厘米.点评:此题主要考查长方体的体积的计算方法,关键是先求出长方体的长、宽、高,利用直观画图,比较容易得解.11.一个棱长为30厘米的正方体水箱里盛有25厘米深的水,现把水箱中的水倒一部分到长40厘米,宽40厘米,高30厘米的长方体空水箱中,使得两个水箱里的水的深度相同,这时水箱中水的高度是多少?【答案】这时水箱中水的高度是9厘米.【解析】根据长方体的容积(体积)公式:v=abh,先求出正方体水箱中有水多少立方厘米,要求现在两个水箱中水的高度,用水的体积除以两个水箱的底面积之和即可.由此解答.解答:解:30×30×25÷(30×30+40×40)=22500÷2500=9(厘米)答;这时水箱中水的高度是9厘米.点评:此题主要考查长方体的体积的计算方法,关键是掌握长方体、正方体的体积计算公式.12.(2015秋•龙海市期末)2340cm3= L; 6.15小时= 小时分.【答案】2.34;6,9.【解析】(1)1升=1立方分米=1000立方厘米,把2340cm3换算成升数,用2340cm3除以进率1000;(2)把6.15小时分成两部分:6小时和0.15小时,只要把0.15小时乘进率60换算成分钟数即可.解答:解:(1)2340÷1000=2.34所以:2340cm3=2.34L;(2)0.15×60=9所以:6.15小时=6小时 9分.故答案为:2.34;6,9.点评:此题考查名数的换算,把高级单位的名数换算成低级单位的名数,就乘单位间的进率,反之,则除以单位间的进率.13.(2015秋•龙海市期末)把一个棱长1m的正方体切成棱长1cm的小正方体,可以切成块,如果把这些小正方体排成一行,一共长 m.【答案】1000000,10000.【解析】(1)1立方米=1000000立方厘米,由此可以得出能够分成1000000个1立方厘米的小正方体;(2)1立方厘米的小正方体的棱长是1厘米,把这些小正方体排成一排,总长度是1×1000000=1000000厘米=10000米.解答:解:1立方米=1000000立方厘米,所以:1000000÷1=1000000(个),1立方厘米的小正方体的棱长是1厘米;则总长度是1×1000000=1000000(厘米)=10000(米),答:1立方米的1个正方体可以分成1000000个1立方厘米的小正方体,把这些小正方体排成一排,一共长10000米.故答案为:1000000,10000.点评:(1)利用大正方体的体积除以小正方体的体积即可求出切割出的小正方体的总个数;(2)先求出小正方体的棱长,再乘小正方体的总个数即可解决问题.14.(2015秋•龙海市期末)一个长方体棱长总和是36cm,相交与一个顶点的所有棱长之和是()cm.A.9 B.12 C.18【答案】A【解析】根据长方体的特征,12条棱分为互相平行的3组,每组4条棱的长度相等.长方体的棱长总和=(长+宽+高)×4,相交于一个顶点的所有棱长之和也就是长、宽、高的和,用棱长总和除以4就是长、宽、高的和,由此列式解答.解答:解:36÷4=9(分米),答:相交于一个顶点的所有棱长之和是9分米.故选:A.点评:此题主要根据长方体的棱的特征和棱长总和的计算方法解决问题.15.做一个长方体水桶需要多少铁皮,是求这个水桶的()A.表面积B.体积C.容积D.不能确定【答案】A【解析】解:求做一只长方体水桶需要多少铁皮,是求这只水桶的表面积.故选:A.【点评】此题主要考查长方体的表面积、容积的定义.16. 0.3立方米= 立方厘米.【答案】300000.【解析】高级单位立方米化低级单位立方厘米乘进率1000000.解:0.3立方米=300000立方厘米.故答案为:300000.【点评】立方米、立方分米(升)、立方厘米(毫升)相邻之间的进率是1000,由高级单位化低级单位乘进率,反之除以进率.17.正方体的棱长扩大3倍,体积扩大()A.3倍B.9倍C.18D.27倍【答案】D【解析】设原正方体的棱长为a,则扩大3倍后的棱长为3a,分别求出扩大前后的体积,用扩大后的体积除以原来的体积,就是体积扩大的倍数.解:设原正方体的棱长为a,则扩大3倍后的棱长为3a,原正方体的体积:a×a×a=a3;扩大后的正方体的体积:3a×3a×3a=27a3,体积扩大:27a3÷a3=27倍;答:体积扩大27倍.故选:D.【点评】此题主要考查正方体体积公式的灵活应用.18.9000立方厘米= 立方分米9.08升= 毫升4.7立方米= 立方分米3.2立方米= 立方分米.【答案】9,9080,4700,3200.【解析】(1)低级单位立方厘米化高级单位立方分米除以进率1000.(2)高级单位升化低级单位毫升乘进率1000.(3、(4))高级单位立方米化低级单位立方分米乘进率1000.解:(1)9000立方厘米=9立方分米;(2)9.08升=9080毫升;(3)4.7立方米=4700立方分米;(4)3.2立方米=3200立方分米.故答案为:9,9080,4700,3200.【点评】立方米、立方分米(升)、立方厘米(毫升)相邻之间的进率是1000,由高级单位化低级单位乘进率,反之除以进率.19.做一个长方体的玻璃缸(无盖),长8dm、宽4dm、高6dm,至少需要多少平方分米的玻璃?如果每平方米的玻璃4元钱,至少需要多少钱买玻璃?【答案】176平方分米;704元【解析】由于玻璃缸无盖,所以只求它的5个面的总面积,根据长方体的表面积的计算方法即可求出需要玻璃的面积,然后根据单价×数量=总价,即可求出至少需要多少钱买玻璃,列式解答即可.解:8×4+8×6×2+4×6×2=32+96+48=176(平方分米)4×176=704(元)答:至少需要176平方分米的玻璃,至少需要多704元钱买玻璃.【点评】此题主要考查长方体的表面积公式在实际生活中的应用,以及单价、数量、总价的三者之间关系的应用.20.有一个正方体水箱,从里面量棱长是5dm,如果把这一满水箱的水倒入一个长8dm、宽7dm、深2.5dm的长方体水池内,是否可以装下?【答案】能装下.【解析】根据正方体的容积公式:v=a3,长方体的容积公式:v=abh,把数据分别代入公式求出它们的容积,然后进行比较解:5×5×5=125(立方分米),8×7×2.5=140(立方分米),125立方分米<140立方分米,答:这个水池能装下.【点评】此题主要考查正方体、长方体的容积公式的灵活运用.关键是熟记公式.21.一个正方体的棱长是4米,它的表面积是平方米,体积是立方米.【答案】96,64.【解析】关键正方体的表面积公式:s=6a2,体积公式:v=a3,把数据分别代入公式解答.解:4×4×6=96(平方米),4×4×4=64(立方米),答:它的表面积是96平方米,体积是64立方米.故答案为:96,64.【点评】此题主要考查正方体的表面积公式、体积公式的灵活运用,关键是熟记公式.22.正方体的棱长扩大2倍,体积扩大了()倍.A.2 B.4 C.8【答案】C【解析】根据正方体的体积=棱长×棱长×棱长,所以棱长扩大2倍,体积就会扩大2×2×2=8倍.解:2×2×2=8;故选:C.【点评】此题主要考查正方体的体积随着棱长扩大或缩小的规律.23.求下列图形的表面积和体积(单位:厘米).【答案】长方体的表面积是236平方厘米,体积是240立方厘米.正方体的表面积是150平方厘米,体积是125立方厘米.【解析】根据长方体的表面积公式:s=(ab+ah+bh)×2,体积公式:v=abh,正方体的表面积公式:s=6a2,体积公式:v=a3,把数据分别代入公式解答即可.解:(1)(8×6+8×5+6×5)×2=(48+40+30)×2=118×2=236(平方厘米);8×6×5=240(立方厘米);答:这个长方体的表面积是236平方厘米,体积是240立方厘米.(2)5×5×6=150(平方厘米);5×5×5=125(立方厘米);答:这个正方体的表面积是150平方厘米,体积是125立方厘米.【点评】此题主要考查长方体、正方体的表面积公式、体积公式的灵活运用,关键是熟记公式.24.如图都是用边长为12厘米的正方形硬纸,剪掉四个角上的小正方形,然后折成无盖的长方体或正方体纸盒,哪种折法做出的纸盒容积最大?最大是多少?【答案】第二种;最大是128立方厘米.【解析】(1)折成的长方体的长是12﹣3﹣3=6厘米,宽也是6厘米,高是3厘米,利用长方体的体积公式计算即可,(2)折成的长方体的长是12﹣2﹣2=8厘米,宽也是8厘米,高是2厘米,利用长方体的体积公式计算即可,算出体积进行比较.解:(1)12﹣3﹣3=69厘米),6×6×3=36×3=108(立方厘米)(2)12﹣2﹣2=8(厘米)8×8×2=64×2=128(立方厘米)128>108答:第二种折法做出的纸盒容积最大,最大是128立方厘米.【点评】解答本题的关键是找出长方体的长、宽、高各是多少,再利用长方体的体积公式计算.25.一个正方体棱长3dm,这个正方体棱长之和是 dm,它的表面积是 dm2,它的体积是 dm3.【答案】36;54;27.【解析】根据正方体的特征:12条棱的长度都相等,6个面的面积都相等(1)正方体有12条棱,棱长之和=一条棱的长度×12;(2)正方体有6个面,表面积=棱长×棱长×6;(3)正方体体积=棱长×棱长×棱长.解:(1)正方体棱长之和是:12×3=36(分米);(2)它的表面积是:3×3×6=54(平方分米);(3)它的体积是:3×3×3=27(立方分米).答:正方体棱长之和是36分米,表面积是54平方分米,体积是27立方分米.故答案为:36;54;27.【点评】此题主要考查正方体的表面积和体积的计算方法,关键是明白:正方体共有12条棱长,且每条棱长都相等.26.正方体的棱长扩大到原来的3倍,则体积扩大到原来的()A.6倍 B.9倍 C.27倍【答案】C【解析】根据正方体的体积公式:v=a3,再根据因数与积的变化规律,积扩大是倍数等于因数扩大倍数的乘积.据此解答.解:正方体的棱长扩大到原来的3倍,则体积扩大到原来的3×3×3=27倍.故选:C.【点评】此题考查的目的是理解掌握正方体的体积公式、积的变化规律.27.8分米= 米19分= 小时260秒= 分37平方厘米= 平方分米7时= 日.【答案】0.8,,4,0.37,.【解析】把8分米化成米数,用8除以进率10;把19分化成时数,用19除以进率60;把260秒化成分钟数,用260除以进率60;把37平方厘米化成平方分米数,用37除以进率100;把7时化成日数,用7除以进率24;即可得解.解:8分米=0.8米19分=小时260秒=4分37平方厘米=0.37平方分米7时=日故答案为:0.8,,4,0.37,.【点评】此题考查名数的换算,把高级单位的名数换算成低级单位的名数,就乘单位间的进率,把低级单位的名数换算成高级单位的名数,就除以单位间的进率.28.一个棱长为6厘米的正方体,它的表面积是.体积是.【答案】216平方厘米、216立方厘米.【解析】已知正方体的棱长,只要代入正方体的表面积和体积公式就可以求解了.解:表面积=6×626×36=216(平方厘米);体积=63=216(立方厘米);故填:216平方厘米、216立方厘米.【点评】此题考查了已知正方体的棱长,求正方体的表面积和体积.29.一个长方体中,最多有8条棱完全相等、6个面完全相同..(判断对错)【答案】×【解析】根据长方体的特征,12条棱分为互相平行的(相对的)3组,每组4条棱的长度相等,6个面都是长方形(特殊情况有两个相对的面是正方形),相对的面的面积相等.由此解答.解:一般情况,长方体最多有两个面完全相同,最多4条棱长度相等;特殊情况,如果有两个相对的面是正方形时,最多有4个面是完全相同,最多8条棱长度相等.故答案为:×.【点评】此题考查的目的是使学生理解掌握长方体的特征.30.一个长方体铁盒长18厘米,宽15厘米,高12厘米,做成这个铁盒至少用多少平方分米的铁皮?【答案】13.32平方分米【解析】本题是求长方体的表面积,把数据代入表面积公式求解即可.解:18×15×2+18×12×2+15×12×2=540+432+360=1332(平方厘米);1332平方厘米=13.32平方分米答:做成这个铁盒至少用13.32平方分米的铁皮.【点评】解答有关长方体计算的实际问题,一定要搞清所求的是什么(体积、表面积还是几个面的面积),再进一步选择合理的计算方法进行计算解答问题.31.用96厘米的一根铁丝焊成一个正方体框架,这个框架的每条棱长多少厘米?【答案】8厘米【解析】根据正方体的特征,12条棱的长度都相等,用棱长总和除以12即可.解:96÷12=8(厘米),答:这个框架的棱长是8厘米.【点评】此题考查的目的是理解掌握正方体的特征,以及棱长总和公式的灵活运用.32.在横线里填上适当的体积单位或容积单位.VCD机的体积约是4 小矿泉水的容积约是1500小矿泉水的容积约是1500 车厢的体积约是15【答案】立方分米,毫升,升,立方米.【解析】根据生活经验、对质量单位和数据大小的认识,可知计量VCD机的体积约是4应用“立方分米“做单位,计量小矿泉水的容积约是1500用“毫升”作单位,计量车厢的体积约是15用立方米做单位,据此解答.解:VCD机的体积约是4 立方分米小矿泉水的容积约是1500 毫升小矿泉水的容积约是1500升车厢的体积约是15 立方米故答案为:立方分米,毫升,升,立方米.【点评】此题考查根据情景选择合适的计量单位,要注意联系生活实际、计量单位和数据的大小,灵活的选择.33.正方体的棱长扩大3倍,它的表面积就扩大到原来的27倍..(判断对错)【答案】×【解析】根据正方体的表面积公式s=6a2,再根据积的变化规律,积扩大的倍数等于因数扩大倍数的乘积,由此解答.解:根据正方体的表面积公式s=6a2,一个正方体的棱长扩大到原来的3倍,表面积扩大到原来的3×3=9倍;答:它的表面积扩大到原来的9倍.故答案为:×.【点评】此题主要根据正方体的表面积的计算方法和积的变化规律解决问题.34.一个长方体的所有棱长的总和是80厘米,它的长是7厘米,宽是3厘米。

五年级数学长方体和正方体试题答案及解析

五年级数学长方体和正方体试题答案及解析

五年级数学长方体和正方体试题答案及解析1.一个长方体长12厘米,宽8厘米,高5厘米,这个长方体六个面中最大的面面积是平方厘米,最小的面面积是平方厘米,它的表面积是平方厘米。

【答案】96,40,392【解析】分析:由题意可知:最大的面,即上面(或下面),用12×8进行解答即可;最小的面,即侧面:用5×8计算即可;再据长方体的表面积公式即可求出其表面积。

解答:解:最大:12×8=96(平方厘米);最小:5×8=40(平方厘米);表面积:(12×8+12×5+8×5)×2,=(96+60+40)×2,=196×2,=392(平方厘米);【考点】长方体和正方体的表面积。

2.用4个相同的正方体可以摆出一个稍大一些的正方体..(判断对错)【答案】×.【解析】将若干个小正方体,摆成一个大正方体,那么这个正方体的每个棱长上至少有2个小正方体,由此即可计算得出小正方体的总个数.解答:解:根据小正方体拼组大正方体的特点可知:将若干个小正方形,摆成一个大正方体,那么这个正方体的每个棱长上至少有2个小正方体,所以组成的这个大正方体中,小正方体的个数至少有2×2×2=8(个).至少要用8个小正方体才能摆一个稍大一些的正方体.所以原题的说法错误.故答案为:×.点评:此题考查了小正方体拼组大正方体的方法的灵活应用:大正方体的每个棱长上小正方体的个数的三次方,就是组成这个大正方体的小正方体的个数总和.3.画一画.在方格纸里分别画出从正面、左面和上面看到的图形.【答案】【解析】从正面看到的有三层,最下面一层是3个正方形,第二层和第三层靠左侧分别是1个正方形:从左面看到有三层,最下面一层有2个正方形,第二层和第三层靠左侧分别是1个正方形:从上面看到的有两层,上面一层有4个正方形,下面靠左侧一个正方形:,由此即可解答.解答:解:答案如图,点评:此题考查了从不同的方向观察到的几何体的形状,做此类题时,应认真审题,根据看到的形状画出即可.4.加工一个长方体油箱要用多少铁皮,是求这个油箱的()A.表面积 B.体积 C.容积【答案】A【解析】根据油箱的特点,加工一个长方体油箱要用多少铁皮,是求这个长方体的表面积.解:根据题干可得,要求油箱要用多少铁皮,是求这个长方体的表面积.故选:A.【点评】此题考查了长方体表面积的实际应用.5.一个长方体长5dm、宽4dm、高2dm,它的表面积是,体积是.【答案】76平方分米、40立方分米.【解析】根据长方体的表面积公式:S=(ab+ah+bh)×2,体积公式V=abh,代入数据解答即可.解:表面积:(5×4+5×2+4×2)×2=(20+10+8)×2=38×2=76(平方分米)体积:5×4×2=40(立方分米)答:这个长方体的表面积是76平方分米,体积是40立方分米.故答案为:76平方分米、40立方分米.【点评】此题主要考查长方体的表面积和体积的计算方法.6.1dm3的正方体可以分成个1cm3的小正方体.如果把这些小正方体排成一行,一共长.【答案】1000,1000厘米.【解析】(1)1立方分米=1000立方厘米,由此可以得出能够分成1000个1立方厘米的小正方体;(2)1立方厘米的小正方体的棱长是1厘米,把这些小正方体排成一排,总长度是1×1000=1000厘米.解:1立方分米=1000立方厘米,所以:1000÷1=1000(个),1立方厘米的小正方体的棱长是1厘米;则总长度是1×1000=1000(厘米),答:1立方分米的1个正方体可以分成1000个1立方厘米的小正方体,把这些小正方体排成一排,一共长1000厘米;故答案为:1000,1000厘米.【点评】(1)利用大正方体的体积除以小正方体的体积即可求出切割出的小正方体的总个数;(2)先求出小正方体的棱长,再乘以小正方体的总个数即可解决问题.7.焊接一个长7cm、宽2cm、高1cm的长方体框架,至少要用 cm的铁丝.【答案】40【解析】需要铁丝的长度等于这个长方体的棱长总和,长方体的棱长总和=(长+宽+高)×4,把数据代入公式解答.解:(7+2+1)×4,=10×4,=40(厘米),答:至少要用40厘米铁丝.故答案为:40.【点评】此题主要考查长方体的棱长总和公式的灵活运用.8.一个正方体木箱的表面积是72dm2,这个木箱占地面积是 dm2.【答案】12.【解析】根据正方体的特征:6个面是完全相同的正方形,正方体的表面积是指6个面的总面积.已知正方体的表面积是72平方分米,这个正方体木箱的占地面积就是它的底面积,用表面积除以6问题即可得到解决.解:72÷6=12(平方分米),答:这个木箱的占地面积是12平方分米.故答案为:12.【点评】此题考查的目的是使学生掌握正方体的特征,理解表面积的意义,根据正方体的表面积的计算方法解答问题.9.如图是由两个棱长都是2cm的正方体拼成的一个长方体,这个长方体的表面积是;体积是.【答案】40平方厘米,16立方厘米.【解析】根据题意“两个棱长都是2厘米的正方体拼成的一个长方体”,有两个面重合,这个长方体的表面积可以用两个正方体的表面积的和,减去重合的两个面的面积,这个长方体的体积等于两个正方体的体积之和.由此解答即可.解:长方体的表面积:2×2×6×2﹣2×2×2,=48﹣8,=40(平方厘米);也可以这样求:2×2×10=40(平方厘米);长方体的体积:23×2=8×2=16(立方厘米);故答案为:40平方厘米,16立方厘米.【点评】此题的解答关键是:弄清两个棱长都是2厘米的正方体拼成的一个长方体,这个长方体的表面积不等于两个正方体的表面积之和,因为有两个重合在一起,再根据公式解答即可.10.一个正方体的棱长总和是60厘米,它的表面积是()A.21600平方厘米B.150平方厘米C.125立方厘米【答案】B【解析】根据一个正方体的棱长总和是60厘米,可求出棱长的长度,进一步用棱长乘棱长乘6求得表面积.解:棱长:60÷12=5(厘米),表面积是:5×5×6=150(平方厘米);答:它的表面积是150平方厘米.故选:B.【点评】此题考查正方体表面积的计算方法.11.两个长方体的体积相等,它们的长、宽、高也一定相等..(判断对错)×【答案】×【解析】长方体的体积V=abh,可以假设出长方体的体积,进而就能确定出长、宽、高的值,是就可以进行判断.解:假设长方体的体积为24立方厘米,因为4×2×3=24,2×2×6=24,所以长方体的长、宽、高可以为4厘米、2厘米和3厘米,也可以为2厘米、2厘米、6厘米,所以两个长方体的体积相等,它们的长、宽、高不一定相等.故答案为:×.【点评】此题主要考查长方体的体积的计算方法,举实例证明,即可推翻题干的结论.12.用铁丝焊接成一个长14厘米,宽8厘米,高6厘米的长方体的框架,至少需要铁丝()厘米。

长方体正方体练习题一含答案

长方体正方体练习题一含答案

长方体正方体练习题一1、长、宽、高分别为30cm、30cm、20cm的小纸箱,在所有的棱上粘上一圈胶带,至少需要多长的胶带?(30+30+20)×4=320(cm)答:至少需要320厘米的胶带。

2、五一劳动节,工人叔叔要在工人俱乐部的四周装上彩灯(地面的四边不装),已知工人俱乐部长90m,宽55m,高22m,工人叔叔至少需要多长的彩灯线?(90+55)×2+20×4=370(m)3、要做一个长2.2m、宽40cm、高80cm的玻璃柜台,现在要在柜台各边都安上角铁,至少需要多少米的角铁?40厘米=0.4米,80厘米=0.8米,(2.2+0.4+0.8)×4=13.6(米)答:至少需要13.6米的角铁。

4、一个长方体的饼干盒,长10cm,宽6cm,高12cm,如果围着它贴一圈商标纸(上、下面不贴),这张商标纸的面积至少有多少平方厘米?(10×12+6×12)×2=384(平方厘米)答:这张商标纸的面积至少有384平方厘米。

5、把一个棱长46cm的正方体纸箱的各面都贴上红纸,将它作为给希望小学捐款的“爱心箱”。

(1)他们至少需要多少平方厘米的红纸?(2)如果只在棱上粘贴胶带纸,一卷长4.5m的胶带纸够用吗?(1)46×46×6=12696(平方厘米)答:他们至少需要12696平方厘米的红纸。

(2)46cm=0.46m0.46×12=5.52(m)5.52>4.5答:一卷长4.5m的胶带纸不够用。

6、玻璃鱼缸的形状是正方体,棱长3dm,制作这个鱼缸时至少需要玻璃多少平方分米?(上面没有盖)3×3×5=45(平方分米)答:制作这个鱼缸时至少需要玻璃45平方分米。

7、一个长方体礼品盒,棱长 1.5dm,如果包装这个礼品盒的用纸是其表面积的1.5倍,至少需要多少平方分米的包装纸?6×1.22×1.5=12.96(平方分米)答:至少要用12.96平方分米的包装纸。

真题精选:长方体和正方体

真题精选:长方体和正方体

《长方体和正方体》真题精选1.(20111宁波市海曙区小学毕业卷)用5个大小相同的正方体搭成下面三个立体图形。

从()看这三个立体图形,所看到的形状是相同的。

A.上面B.左面C.正面D.右面2.(2012·杭州市西湖区小学毕业卷)图()是左下方这个正方体图形的展开图。

A.B.C.D .3.(2012·宁波市镇海区小学毕业卷)一个正方体的棱长为a ,如果这个正方体的底面不变,高增加h ,那 增加后的长方体的表面积是( )。

A .()242a h a ++ B .()2a a h +C .254a ah +D .264a ah +4.(2011·长沙市岳麓区小学毕业卷)一个棱长总和是84厘米的正方体,它的表面积是( )平方厘米。

A .(84÷8)×(84÷8)×6B .(84÷4)×(84÷4)×6C .(84÷12)×(84÷12)×6D .84×84×845.(2013·武汉市青山区小学毕业卷)由棱长是1厘米的正方体搭成下图,图中共有( )个正方其中从上面所看到的平面图形的面积是( )平方厘米。

6.(2012·合肥市包河区小学毕业卷)两个完全相同的长方体可以拼成一个大正方体,也可以拼成一个大长方体。

那么拼成的正方体表面积比大长方体的表面积(),正方体的体积与大长方体的体积()。

7.(2011·福州市鼓楼区小学毕业卷)小卖部要在一个长220厘米、宽40厘米、高80厘米的玻璃柜台各边都安上角铁,这个柜台需要()米角铁。

8.(2012·郑州市二七区小学毕业卷)一个长方体的棱长总和是192厘米,长、宽、高的比是5:4:3,这个长方体的表面积是()平方厘米,体积是()立方厘米。

9.(2012·武汉市黄陂区小学毕业卷)用8个棱长1厘米的正方体拼成一个长方体或正方体(全部用完),要使棱长之和最小,应拼成(),它的棱长和是()厘米;要使棱长之和最大,应拼成(),它的棱长之和是()厘米。

五下数学 长方体与正方体 应用题训练 30题 后面带详细答案

五下数学 长方体与正方体 应用题训练  30题 后面带详细答案

长方体与正方体应用题训练30题1、一块正方体的方钢,棱长是20厘米,把它锻造成一个高80厘米的长方体磨具,这个长方体磨具的底面积是多少平方厘米?2、一个长方体的水箱,从里面量长是1.5米,宽是5分米,高是4分米,这个水箱的容积是多少升?3、将一段长3.6米的长方体木料平均分成6段,表面积比原来增加了2平方米,这段木料的体积是多少立方米?4、下图是一个长方体木块,从上面截去5厘米后便成为一个正方体,这时表面积减少了160平方厘米,原来长方体的体积是多少立方厘米?5、一个长方体的高减少5厘米,就变成了正方体,正方体的表面积比原长方体的表面积减少了60平方厘米,原长方体的体积是多少立方厘米?6、一个长方体的高如果增加2厘米,就成为一个正方体,这时的表面积比原来增加了48平方厘米,原来长方体的体积是多少?7、爸爸将4.5升水倒入长30厘米,宽20厘米,高16厘米的长方体鱼缸内,水面距离缸口还有多少厘米?8、从一个棱长为10厘米的正方体的上面竖直向下挖一个长方体的洞,洞的底面为边长是5厘米的正方形,求这个空心正方体的表面积和体积。

9、一块正方体的方钢,棱长是20厘米,把它锻造成一个高80厘米的长方体磨具,这个长方体磨具的底面积是多少平方厘米?10、有一块长是80厘米,宽是40厘米,高是30厘米的正方体的铁块,现在要把它熔铸造成一个横截面积是160平方厘米的长方体,这个长方体的高是多少厘米?11、一块26厘米长的长方形铁皮,四个角各剪去一个边长4厘米的正方形,然后做成一个无盖铁盒,这个铁盒的容积是792立方厘米.原来这块铁皮的面积是多少平方厘米?12、有三个正方体块,他们的表面积分别是24平方厘米,54平方厘米和294平方厘米,现在将三个铁块熔铸成一个大正方体,求大正方体的体积是多少?13、一辆大客车的邮箱从里面量长80厘米,宽60厘米,高40厘米,它的容积是多少升?如果每升汽油能够行驶25千米,加满汽油出发,并且在不加油的情况下保证能够返回原处,那么大卡车最多跑车多少千米就要返回?14、将30个棱长为1厘米的小正方体堆成如图所示的形状,求它的表面积和体积。

五年级数学长方体 正方体试题

五年级数学长方体 正方体试题

五年级数学长方体正方体试题1.一个长方体的金鱼缸,长是8分米,宽是5分米,高是6分米,不小心前面的玻璃被打坏了,修理时配上的玻璃的面积是平方分米.【答案】48.【解析】前面的面积是长乘高,求出这个面的面积即可.解:8×6=48(平方分米);答:修理时配上的玻璃的面积是48平方分米.故答案为:48.【点评】解答此类题目要先看是求长方体的体积还是表面积,是求几个面的面积.2.把一个长10厘米的长方体沿横截面切成3段,表面积增加12平方厘米,原来长方体的体积是()立方厘米.A.60B.50C.40D.30【答案】D【解析】由题意可知:把长方体沿横截面切成3段,需要切2次,每切一次增加两个切面,切2次增加了4个底面,再据“表面积增加12平方厘米”即可求出底面积,从而利用长方体的体积公式即可求出它的体积.解:12÷4=3(平方厘米),3×10=30(立方厘米),答:原来的体积是30立方厘米.故选:D.【点评】解答此题的关键是明白:把长方体沿横截面切成3段,增加了4个底面,从而可以求出1个底面的面积,进而求出长方体的体积.3.两个表面积都是6平方分米的正方体拼成一个长方体,它的表面积是,体积是.【答案】10平方分米,2立方分米.【解析】根据正方体有6个面,都相等,求出一个面的面积,进而求出棱长,把两个棱长1分米的正方体拼成一个长方体,长方体的表面积就比原来两个正方体的表面积减少了两个面,相当于10个面的面积;长方体的体积就等于两个正方体的体积之和,由此列式计算即可.解:6÷6=1(平方分米)1=1×1也就是正方体的棱长是1分米1×(6×2﹣2)=1×10=10(平方分米)1×1×1×2=1×2=2(立方分米)答:它的表面积是10平方分米,体积是2立方分米.故答案为:10平方分米,2立方分米.【点评】解答此类题的思路是:把两个正方体拼成一个长方体,长方体的表面积就比原来两个正方体的表面积之和减少了两个面,即等于正方体10个面的面积,也可根据长方体的长、宽、高求得长方体的表面积;长方体的体积即两个正方体的体积之和.4.一个油桶可以装180升汽油,它的()是180升.A.体积 B.容积 C.质量【答案】B【解析】根据容积的意义,某容器所能容纳的别的物体的体积,叫做容器的容积.据此解答.解:一个油桶最多可以装180升汽油,这个油桶的容积是180升.故选:B.【点评】此题考查的目的是理解容积、体积的意义,掌握容积与体积的区别.5.如图所示,把这块长方体木块锯成4小块,表面积会增加多少平方厘米?【答案】216平方厘米【解析】观察图形可知,把这个长方体木块锯成4块,需要锯3次,每锯一次增加2个面,所以增加了6个4.5×8面的面积,据此根据长方形的面积公式即可解答.解:4.5×8×6=36×6=216(平方厘米);答:表面积会增加了216平方厘米.【点评】解答此题的关键是明确切割后是增加了哪几个面的面积.6.两根同样长的铁丝,一根做成长方体框架,长8厘米,宽6厘米,高4厘米;另一根做成正方体框架,棱长是多少厘米?【答案】6厘米【解析】首先根据长方体的棱长总和=(长+宽+高)×4,求出这个长方体的棱长总和,再根据正方体的棱长总和=棱长×12,用棱长总和除以12即可求出正方体的棱长.解:(8+6+4)×4÷12=18×4÷12=6(厘米)答:做成的正方体框架棱长是6厘米.【点评】此题考查的目的是掌握长方体、正方体的特征以及它们的棱长总和公式.7.两个体积一样的大盒子,它们的容积一定同样大.(判断对错)【答案】×【解析】容积是指物体所容纳物体的体积,两个体积一样大的盒子,盒皮的厚度不一样,所容纳物体的体积就不一样,盒皮的厚的容纳的体积少些,盒皮的薄的容纳的体积多些,如果厚度一样,容积就一样大,据此解答即可.解:两个体积一样大的盒子,它们的容积相比可能相等.故答案为:×.【点评】此题考查容积的意义,解决此题的关键是容积的定义,注重盒皮的厚度.8.一个长方体木箱,长、宽、高分别是40厘米、30厘米、50厘米.这个木箱的表面积是()A.60平方分米 B.94平方分米 C.94立方厘米【答案】B【解析】根据长方体的表面积公式:s=(ab+ah+bh)×2,把数据代入公式解答即可.解:(40×30+40×50+30×50)×2=(1200+2000+1500)×2=4700×2=9400(平方厘米),9400平方厘米=94平方分米,答:这个木箱的表面积是94平方分米.故选:B.【点评】此题主要考查长方体的表面积公式的灵活运用,关键是熟记公式.9.正方体有两条对称轴..(判断对错)【答案】×【解析】依据轴对称图形的意义,即在同一个平面内,一个图形沿某条直线对折,对折后的两部分都能完全重合,则这个图形就是轴对称图形,这条直线就是其对称轴,从而可以画出它们的对称轴.解:正方体是立体图形没有对称轴,正方形有4条对称轴;故答案为:×.【点评】此题主要考查如何确定轴对称图形的对称轴条数及位置.10.一个游泳池,长是50米,宽是30米,水深是1.8米.这个游泳池的水有多少立方米?【答案】2700立方米.【解析】根据长方体的容积(体积)公式:v=sh,把数据代入公式解答即可.解:50×30×1.8=1500×1.8=2700(立方米),答:这个游泳池的水有2700立方米.【点评】此题主要考查长方体的容积(体积)公式的灵活运用,关键是熟记公式.11.用玻璃做一个长方体的金鱼缸(无盖),长是0.8米,宽是0.5米,高是0.6米.如果每平方米玻璃要用80元,做这个鱼缸至少需要多少钱?【答案】156.8元【解析】这道题先求长方体的表面积,这个长方体的表面由五个长方形组成,没有上面;根据长方体的表面积公式求出下面、前后面、左右面的面积和,再用算出的表面积乘单价即可解答.解:0.8×0.5+0.8×0.6×2+0.6×0.5×2=0.4+0.96+0.6=1.96平方分米);1.96×80=156.8(元)答:做这个鱼缸至少需要156.8元.【点评】这是一道长方体表面积的实际应用,在计算时要分清需要计算哪几个长方形面的面积,缺少的是哪一个面的面积,从而列式解答即可.12.学校要砌一道长20米,厚0.25米,高3米的砖墙,如果每立方米用砖510块.一共需要多少块砖?【答案】7650块【解析】这道砖墙砌成后是一个长方体,根据长方体的体积计算公式求出它的体积,再用乘法求出一共需要多少块砖.由此列式解答.解:20×0.25×3=15(立方米);510×15=7650(块);答:一共需要7650块砖.【点评】此题主要考查长方体的体积计算,根据公式v=abh,求出体积,再用乘法求出需要砖的数量.13.一个长方体水池,长6米,宽3米,深3米,占地面积是,它的容积是.【答案】18平方米,54立方米【解析】首先明确求水池的占地面积就是求长方体的底面积,求它的容积根据长方体的体积(容积)公式解答即可.解:6×3=18(平方米);6×3×3=54(立方米);答:占地面积是18平方米,它的容积是54立方米.故答案为:18平方米,54立方米.【点评】此题属于利用长方体的体积(容积)的计算方法解决实际问题,关键是理解求占地面积是只求它的底面积,根据公式解答即可.14.长方体和正方体都有个面,条棱,个顶点.【答案】6,12,8.【解析】根据长方体和正方体的特征即可解决.解:根据长方体和正方体的特征可得;长方体和正方体都有6个面,12条棱,8个顶点,故答案为:6,12,8.【点评】此题考查了长方体和正方体的特征.15.把一根长2米的方木(底面是正方形)锯成三段,表面积增加5.76平方分米,原来这根方木的体积是多少立方分米?【答案】28.8立方分米.【解析】把一根长2米的方木(底面是正方形)锯成三段,则表面积比原来增加了5.76平方分米是增加的4个横截面的面积,由此求出这根方木的横截面面积是:5.76÷4=1.44平方分米,再根据横截面面积×方木的长=这根方木的体积解答即可.解:2米=20分米,5.76÷4×20=1.44×20=28.8(立方分米),答:原来这根方木的体积是28.8立方分米.【点评】根据切割后增加的表面积求出这根方木的横截面的面积是解决此类问题的关键,注意单位之间的换算.16.用一根长()厘米的铁丝正好围成长6厘米、宽5厘米、高2厘米的长方体框架.A.26B.117C.52D.60【答案】C【解析】根据题意可知,需要多长的铁丝围成一个长方体框架,也就是求长方体的棱长总和.长方体的棱长总和=(长+宽+高)×4,把数据代入公式解答即可.解:(6+5+2)×4,=13×4,=52(厘米),答:需要一根长52厘米的铁丝.故选:C.【点评】此题主要考查长方体棱长总和的计算,直接把数据代入棱长总和公式进行解答.17.棱长1m的正方体可以切成()个棱长为1cm的正方体.A.100B.1000C.100000D.1000000【答案】D【解析】棱长1米的正方体的体积是1立方米,棱长1厘米的正方体的体积是1立方厘米,1立方米=1000000立方厘米,由此可以得出能够分成1000000个1立方厘米的小正方体.解:1立方米=1000000立方厘米所以:1000000÷1=1000000(个)答:切成1000000个棱长为1cm的正方体.故选:D.【点评】利用大正方体的体积除以小正方体的体积即可求出切割出的小正方体的总个数.18.一个棱长是5分米的正方体鱼缸,里面装满水,把水倒入一个底面积50平方分米的长方体鱼缸里,长方体鱼缸里的水有多深?【答案】2.5分【解析】根据题意可知,把正方体鱼缸里面装满水,倒入长方体鱼缸里,水的体积不变,根据正方体的体积公式v=a3,求出水的体积,再除以长方体的底面积就求出长方体鱼缸里的水有多深;由此列式解答.解:5×5×5÷50=125÷50,=2.5(分米);答:长方体鱼缸里的水有2.5分米深.【点评】此题主要考查正方体的体积(容积)的计算,以及已知长方体的体积和底面积求高的方法.19.一个正方体的棱长扩大2倍,它的体积扩大4倍。

小学数学五年级下长方体与正方体训练附参考答案

小学数学五年级下长方体与正方体训练附参考答案

小学数学五年级下长方体与正方体训练附参考答案一、单选题(共 13 小题)1、一个长方体(正方体除外)最多有()棱相等.A、4B、8C、122、下面的图□不能围成长方体或正方体。

□内应填( )A、B、C、3、选项中有3个立方体,其中不是用左边图形折成的是( )A、B、C、4、把下边的正方体的表面展开,可能得到的展开图是( )A、B、C、D、C、4条D、5条6、图中有()个面中露在外面。

A、14B、15C、167、下面哪个不是正方体的展开图( )A、B、C、8、用一根长铁丝正好可以做一个长7厘米、宽4厘米、高5厘米的长方体框架,则这根铁丝长( )A、16厘米B、126平方厘米C、64厘米9、选项中哪个正方体展开后可以得到下面的展开图( )A、B、C、D、10、如图,有一个无盖的正方体纸盒,下底标有字母“M”,沿图中粗线将其剪开展成平面图形想想会是( )A、B、C、11、下面第哪个图形不能折成正方体?( )A、B、C、12、下列图形中,是正方体的表面展开图的是( )A、B、C、13、一个立方体木块,6个面都涂上红色,然后把它切成大小相等的27个小立方体,其中有三个面是红色的小立方体有( )A、4B、12C、6D、8二、多选题(共 1 小题)1、把下边图中的五个小方格折起来,可以是一个无盖的纸盒的是( )A、B、C、三、判断题(共 1 小题)1、一个长方体,如果有两个相邻的面是正方形,这个长方体就是正方体.______.四、填空题(共 16 小题)1、如图中,棱AE与平面DCGH的关系是______.2、如图中,与平面BCGF垂直的平面有______个.3、长方体和正方体都有______个面,______条棱,______个顶点.4、长方体有8个顶点,______条棱,______个面.5、用一根144厘米长的铁丝,围成一个正方体框架,它的棱长是______厘米;如果用它围成一个长方体的框架,长20厘米、宽10厘米、高______厘米.6、小丽为奶奶选了一份生日礼物.(如图)用彩带捆扎,至少需要______cm彩带.(打结处用了30cm)7、在长方体ABCD-EFGH中,与棱EF和棱EH都异面的棱是______.8、如图在长方体ABCD-EFGH中,与棱EF垂直的棱是______.(写出符合题意的所有棱)9、右面的正方体,按图中所示切去一角,剩下的图形有______个面,______条棱,______个顶点.10、如图,长方体ABCD-A1B1C1D1中,与平面ADD1A1平行的棱是______.11、如图是长方体的展开图,与1号面相对的面是( )号面。

长方体、正方体纯应用题练习(有答案)

长方体、正方体纯应用题练习(有答案)

长方体和正方体应用题1、加工一个长方体铁皮烟囱,长2。

5dm,宽1。

6dm,高2m,至少要用多少平方分米铁皮?解:2米=20分米(2。

5*20+1.6*20)*2=1642、学校要挖一个长方形状沙坑,长4m,宽2m,深0.4m,需要多少立方米的黄沙才能填满沙坑?解:4×2×0.4=3.2吨3、把一块棱长8cm的正方体钢坯,锻造成长16cm,宽5cm的长方体钢板,这钢板有多厚?(损耗不计)解:厚度=8×8×8÷16÷5=6.4厘米4、一个长方体机油桶,长8dm,宽2dm,高6dm.如果每升机油重0。

72千克,可装机油多少千克?解:8*2*6*0.72=69.125、一个长12cm,宽4cm,高5cm的长方体纸盒,最多能容纳几个棱长2cm的小立方体?解:12*4*5=240立方厘米2*2*2=8立方厘米240*8=306、一个正方体的水箱,每边长4dm,把一箱水倒入另一只长8dm,宽2.5dm的长方体水箱中,水深是多少?解:(4×4×4)÷(8×2.5)=3。

27、一个底面是正方形的长方体,底面周长是24cm,高是10cm,求它的体积. 解:底面边长=24*4=6厘米底面积=6*6=36平方厘米体积=36*10=360立方厘米8、把240立方米的土铺在长60m,宽40m的平地上,可以铺多厚?解:长方体体积=长×宽×高,240=60×40×高高=1m 所以厚1m9、一个长方体玻璃鱼缸,长12dm,宽5dm,高6dm。

①制作这个玻璃鱼缸至少需要多少平方分米的玻璃?②在里面放水,使水面离鱼缸口1dm,需放水多少千克?(1立方分米的重1千克)解:12*5+(12*6+5*6)*2=264平方分米12*5*5=300立方分米=300千克10、一个正方体纸盒的表面积是5.4平方分米,它的占地面积是多少平方分米?解:5.4/6=0.9平方分米11、一个正方体的棱长和48cm,求正方体的底面积和表面积。

六年级数学长方体和正方体试题答案及解析

六年级数学长方体和正方体试题答案及解析

六年级数学长方体和正方体试题答案及解析1.右图中的⑴⑵⑶⑷是同样的小等边三角形,⑸⑹也是等边三角形且边长为⑴的2倍,⑺⑻⑼⑽是同样的等腰直角三角形,⑾是正方形.那么,以⑸⑹⑺⑻⑼⑽⑾为平面展开图的立体图形的体积是以⑴⑵⑶⑷为平面展开图的立体图形体积的多少倍.【答案】16【解析】本题中的两个图都是立体图形的平面展开图,将它们还原成立体图形,可得到如下两图:其中左图是以⑴⑵⑶⑷为平面展开图的立体图形,是一个四个面都是正三角形的正四面体,右图以⑸⑹⑺⑻⑼⑽⑾为平面展开图的立体图形,是一个不规则图形,底面是⑾,四个侧面是⑺⑻⑼⑽,两个斜面是⑸⑹.对于这两个立体图形的体积,可以采用套模法来求,也就是对于这种我们不熟悉的立体图形,用一些我们熟悉的基本立体图形来套,看看它们与基本立体图形相比,缺少了哪些部分.由于左图四个面都是正三角形,右图底面是正方形,侧面是等腰直角三角形,想到都用正方体来套.对于左图来说,相当于由一个正方体切去4个角后得到(如下左图,切去、、、);而对于右图来说,相当于由一个正方体切去2个角后得到(如下右图,切去、).假设左图中的立方体的棱长为,右图中的立方体的棱长为,则以⑴⑵⑶⑷为平面展开图的立体图形的体积为:,以⑸⑹⑺⑻⑼⑽⑾为平面展开图的立体图形的体积为.由于右图中的立方体的棱长即是题中正方形⑾的边长,而左图中的立方体的每一个面的对角线恰好是正三角形⑴的边长,通过将等腰直角三角形⑺分成4个相同的小等腰直角三角形可以得到右图中的立方体的棱长是左图中的立方体的棱长的2倍,即.那么以⑴⑵⑶⑷为平面展开图的立体图形的体积与以⑸⑹⑺⑻⑼⑽⑾为平面展开图的立体图形的体积的比为:,也就是说以⑸⑹⑺⑻⑼⑽⑾为平面展开图的立体图形的体积是以⑴⑵⑶⑷为平面展开图的立体图形体积的16倍.2.(西城区)一个长方体水槽,从里面量长2.5分米,宽1.8分米,高1.5分米,这个水槽的容积是多少立方分米?【答案】这个水槽的容积是6.75立方分米【解析】分析:已知长方体的长、宽、高,根据长方体的体积=长×宽×高,即可求得体积.解答:解:2.5×1.8×1.5,=4.5×1.5,=6.75(立方分米);答:这个水槽的容积是6.75立方分米.点评:此题考查了长方体的体积计算,可根据已知直接运用公式计算.3.(2012•桐庐县)如图的立体图形是用边长为1厘米的小正方体积木叠成的.这个立体图形的表面积是平方厘米,体积是立方厘米.【答案】72,30【解析】(1)这个几何体的表面积就是露出小正方体的面的面积之和,从上面看有16个面;从下面看有16个面;从前面看有10个面;从后面看有10个面;从左面看有10个面;从右面看有10个面.由此即可解决问题;(2)根据题干,这个几何体的体积就是这些小正方体的体积之和,棱长1厘米的正方体的体积是1立方厘米,由此只要数出有几个小正方体就能求得这个几何体的体积.解答:解:(1)图中几何体露出的面有:10×4+16×2=72(个),所以这个几何体的表面积是:1×1×72=72(平方厘米);(2)这个几何体共有4层组成,所以共有小正方体的个数为:1+4+9+16=30(个),所以这个几何体的体积为:1×1×1×30=30(立方厘米);答:这个图形的表面积是72平方厘米,体积是30立方厘米.故答案为:72,30.点评:此题考查了观察几何体的方法的灵活应用;抓住这个几何体的体积等于这些小正方体的体积之和;几何体的表面积是露出的小正方体的面的面积之和是解决此类问题的关键.4.一块长方形铁皮,长20厘米,宽16厘米,在它的四个角分别减去边长4厘米的正方形,然后焊成一个无盖的铁盒子,它的容积是多少?焊这个盒子至少用多少铁皮?【答案】铁盒的容积是384立方厘米,做这样一个盒子至少需要256平方厘米铁皮.【解析】计算铁盒的容积,需要求出盒子的长、宽,长方形铁皮的长、宽都要减去两个4厘米即是盒子的长、宽,高是4厘米.根据长方体的容积公式解答即可;求做这样一个盒子至少需要多少铁皮,用长方形铁皮的面积减去四个边长4厘米的正方形的面积.解答:解;(20﹣4﹣4)×(16﹣4﹣4)×4=12×8×4=384(立方厘米);20×16﹣4×4×4=320﹣64=256(平方厘米);答:铁盒的容积是384立方厘米,做这样一个盒子至少需要256平方厘米铁皮.点评:此题这样考查长方体的表面积和体积的计算,在计算长方体的表面积的时候,一定要分清求几个面的面积,根据公式解答即可.5.用铁丝做棱长8厘米的正方体模型一个,至少用铁丝厘米.【答案】96【解析】根据正方体的特征,12条棱的长度都相等,正方体的棱长总和=棱长×12.把数据代入棱长总和公式解答即可.解答:解:8×12=96(厘米)答:至少需要铁丝96厘米.故答案为:96.点评:此题主要考查正方体的特征及棱长总和的计算方法.6.一个长方体铁皮桶,底面是一个周长为1209厘米的正方形,高30厘米,这个桶最多可装水多少升?(保留整升数)【答案】这个桶最多可装水2741升【解析】先计算出油桶的底面积,再依据长方体的体积公式即可求出油的体积即可.解答:解:(1)1209÷4=302.25(厘米)302.25×302.25×30=2740651.875(立方厘米)≈2741(升)答:这个桶最多可装水2741升.点评:此题主要考查的是长方体表面积和长方体体积公式的灵活应用.7.1时25分=时;3千克80克=克;2立方米10立方分米=立方米;2平方千米=平方米.【答案】1,3080,2.01,2000000.【解析】分析:把1时25分化成时数,用25除以进率60,然后再加上1;把3千克80克化成克数,用3乘进率1000,然后再加上80;把2立方米10立方分米化成立方米数,用10除以进率1000,然后再加上2;把2平方千米化成平方米数,用2乘进率1000000;即可得解.解答:解:1时25分=1时;3千克80克=3080克;2立方米10立方分米=2.01立方米;2平方千米=2000000平方米;故答案为:1,3080,2.01,2000000.点评:此题考查名数的换算,把高级单位的名数换算成低级单位的名数,就乘单位间的进率,把低级单位的名数换算成高级单位的名数,就除以单位间的进率.8.一个长9厘米、宽6厘米、高3厘米的长方体,切割成3个体积相等的长方体,表面积最大可增加()A.36平方厘米B.72平方厘米C.108平方厘米D.216平方厘米【答案】D【解析】根据长方体切割小长方体的特点可得:要使切割后表面积增加的最大,可以平行于原长方体的最大面,即9×6面,进行切割,这样表面积就会增加4个原长方体的最大面;据此解答.解答:解:9×6×4=216(平方厘米),答:表面积最大可增加216平方厘米.故选:D9.两个棱长5厘米的正方体拼成一个长方体,这个长方体的棱长总和是120厘米..(判断对错)【答案】错误.【解析】根据题意,这个长方体的长变为10厘米,但是宽和高没变还是5厘米,由此即可判断.解:(10+5+5)×4=80厘米,所以原题说法错误.10.把你的拳头伸进装满水的容器中,溢出来的水约()A.1.3立方米B.13立方分米C.130立方厘米D.1300毫升【答案】C【解析】一只拳头伸进装满水的脸盆中,溢出来的水的体积就是拳头的体积,根据生活经验可以知道,人的拳头的体积可能是130立方厘米;由此解答即可.解答:解:把你的拳头伸进装满水的容器中,溢出来的水约130立方厘米;故选:C.点评:此题考查数的估算,根据生活经验和所学知识求解.11.把32厘米的钢筋折成一个最大的正方形,它的面积是平方厘米,如果折成一个最大正方体,它的体积是立方厘米.【答案】64,.【解析】把32厘米的钢筋折成一个最大的正方形,它的边长是32÷4=8厘米,根据正方形的面积=边长×边长可求出它的面积,如果折成一个最大的正方体,它的棱长是32÷12=厘米,根据正方体的体积=棱长×棱长×棱长可求出它的体积,据此解答.解答:解:32÷4=8(厘米)8×8=64(平方厘米)32÷12=(厘米)××=(立方厘米)答:它的面积是64平方厘米,如果折成一个最大正方体,它的体积是立方厘米.故答案为:64,.点评:本题的重点是求出围成的正方形的边长和正方体的棱长,再根据正方形的面积公式和正方体的体积公式进行解答.12.一个长方体长是5厘米,宽是4厘米,高是3厘米.它的棱长总和是厘米,表面积是平方厘米,体积是立方厘米.【答案】48;94;60.【解析】长方体的12条棱分为互相平行的3组,每组4条棱的长度相等,相对的面的面积相等,长方体的棱长总和=(a+b+h)×4;表面积公式是s=(ab+ah+bh)×2;体积公式是v=abh;分别代入数据计算即可.解答:解:棱长之和:(5+4+3)×4=12×4,=48(厘米);表面积:(5×4+5×3+4×3)×2=(20+15+12)×2,=47×2,=94(平方厘米);体积:5×4×3=60(立方厘米);答:它的棱长总和是48厘米,表面积是94平方厘米,体积是60立方厘米.故答案为:48;94;60.点评:此题考查长了方体的特征以及棱长总和、表面积、体积的计算,直接根据它们的公式计算即可.13.一个长方体正好可以切成3个一样的正方体,切开后每个正方体的表面积是12平方厘米,那么原来这个长方体的表面积是()平方厘米.A.36B.30C.28D.24【答案】C【解析】解:12×3﹣(12÷6)×4,=36﹣8,=28(平方厘米);答:原来这个长方体的表面积是28平方厘米;故选:C.14.一个棱长是4分米的正方体,棱长总和是()分米.A.16B.24C.32D.48【答案】D【解析】一个正方体有12条棱,棱长总和为12条棱的长度和.解:4×12=48(分米).故选:D.【点评】此题考查计算正方体的棱长总和的方法,即用棱长乘12即可.15.一块正方体的石头,棱长是5分米,每立方分米的石头大约重2.7千克,这块石头重有多少千克?【答案】337.5千克【解析】根据正方体的体积计算公式求出它的体积,再求它的质量即可.解:5×5×5=125(立方分米);2.7×125=337.5(千克);答:这块石头重有337.5千克.【点评】此题主要考查正方体的体积计算方法,能够利用正方体的体积计算方法解决有关的实际问题.16.有一块棱长是8厘米的正方体的铁皮,现在要把它熔铸成一个横截面积是20平方厘米的长方体,这个长方体的长是多少厘米?【答案】25.6厘米【解析】先利用正方体的体积V=a3,求出这块铁块的体积,因为这块铁块的体积是不变的,于是可以利用长方体的体积V=Sh求出溶铸成的长方体的长.解:8×8×8÷20=512÷20=25.6(厘米)答:这个长方体的长是25.6厘米.【点评】此题主要考查正方体和长方体的体积的计算方法在实际中的应用,关键是明白:这块铁块的体积是不变的.17.从一个体积是30立方厘米的长方体木块中,挖掉一小块后(如图),它的表面积()A.和原来同样大B.比原来小C.比原来大D.无法判断【答案】A【解析】从这一个体积是30立方厘米的长方体木块中,挖掉一小块后,对于这个图形是在长方体的顶点上挖掉的,减少的面与增加的面个数是相等的都是3个面.所以长方体的表面积没发生变化.解:因为挖掉一小块后,对于这个图形是在长方体的顶点上挖掉的,减少的面与增加的面个数是相等的都是3个,所以长方体的表面积没发生变化.故选:A.【点评】本题考查了关于长方体的表面积的问题,考查了学生观察,分析,解决问题的能力.18.如图是长方体展开图,测量需要的数据,并计算出长方体体积.长方体的长是厘米,宽是厘米,高是厘米.【答案】2.5、1.8、0.9.【解析】首先测量出这个长方体的长、宽、高,再根据长方体的体积公式:v=abh,把数据代入公式解答.解:如图:2.5×1.8×0.9=4.05(立方厘米),答:这个长方体的体积是4.05立方厘米.故答案为:2.5、1.8、0.9.【点评】此题考查的目的是理解掌握长方体展开图的特征,以及长方体的体积公式的灵活运用.19.把一个大正方体切割成27个同样大小的小正方体后,3面涂色的有个.1面涂色的有________ 个.【答案】8,6.【解析】根据只有一面涂色的小正方体在每个正方体的面上,只有2面涂色的小正方体在长方体的棱长上(不包括8个顶点处的小正方体)3面三面涂色的小正方体都在顶点处,即可解答问题.解:3×3×3=27,一个大正方体切割成27个同样大小的小正方体,则每条棱上有3个小正方体,大正方体8个顶点上各有1个3面涂色的小正方体,因此三面涂色的小正方体一共有8个;每个面的正中间的一个只有一面涂色,故只有一面涂色的正方体有6个;故答案为:8,6.【点评】抓住表面涂色的正方体切割小正方体的特点:1面涂色的在面上,2面涂色的在棱长上,3面涂色的在顶点处,没有涂色的在内部,由此即可解决此类问题.20.至少8个小正方体才能拼成一个大一些的正方体..【答案】√【解析】要使所用的小正方体最少,那么大正方体的棱长最少可以由2个小正方体的棱长组成,由此即可求得小正方体的个数.解:要使所用的小正方体最少,那么大正方体的棱长最少可以由2个小正方体的棱长组成,所以使用的小正方体个数最少是:2×2×2=8(个).故答案为:√.【点评】此题考查了小正方体拼组大正方体的特点的灵活应用.21.有一个长方体,长是a米,宽是b米,高是h米,若把它的高增加5米,则这个长方体的体积增加()A.abh+5B.ab(h+5)C.5ab D.以上都不是【答案】C【解析】此题可直接考虑,长方体的高增加5米,而长和宽不变增加的部分仍是一个长方体,由长方体的体积计算公式直接得到结果.解:高增加5米,而长和宽不变,增加的部分是一个长是a米,宽是b米,高是5米的长方体,所以它的体积V=5ab;故选C.【点评】此题主要考查长方体的体积计算公式:长方体的体积=长×宽×高.22. 85000毫升= 升= 立方米.【答案】85,0.085.【解析】低级单位毫升化高级单位升除以进率1000;化高级单位立方米除以进率1000000.解:85000毫升=85升=0.085立方米.故答案为:85,0.085.【点评】立方米、立方分米(升)、立方厘米(毫升)相邻之间的进率是1000,由高级单位化低级单位乘进率,反之除以进率.23.一个油桶可装200L汽油,它的()是200L.A.体积B.容积C.表面积D.重量【答案】B【解析】根据容积的意义,某容器所能容纳别的物体的体积叫做这个容器的容积.据此解答.解:一个油桶可装200L汽油,它的容积是200L.故选:B.【点评】此题考查的目的是理解掌握容积的意义及应用.24.用一根铁丝焊接成一个长6厘米,宽5厘米,高4厘米的长方体框架,至少需要铁丝厘米,如果将这根铁丝改围成一个正方体框架,这个正方体的体积是立方厘米.【答案】60,125.【解析】根据长方体的棱长总和=(长+宽+高)×4,把数据代入公式即可求出这根铁丝的长度,再根据正方体的特征,正方体的12条棱的长度都相等,因此,用这根铁丝的长度除以12求出正方体的棱长,再根据正方体的体积公式:v=a3,把数据代入公式解答.解:(6+5+4)×4=15×4=60(厘米),60÷12=5(厘米),5×5×5=125(立方厘米),答:至少需要铁丝60厘米,这根正方体的体积是125立方厘米.故答案为:60,125.【点评】此题主要考查长方体、正方体的棱长总和公式、以及正方体的体积公式的灵活运用,关键是熟记公式.25.如图,正方体木块的表面积是96平方厘米。

长方体与正方体必须掌握的九种题型练习及解析

长方体与正方体必须掌握的九种题型练习及解析

长方体与正方体必须掌握的九种题型练习及解析一、长方体与正方体必须掌握的几种题型1 --高的变化引起表面积的变化1、一个长方体,如果高增加2厘米就成了正方体,而且表面积要增加56平方厘米,原来这个长方体的体积是多少立方厘米?2、一个长方体,如果高减少2厘米就成了正方体,而且表面积要减少56平方厘米,原来这个长方体的体积是多少立方厘米?3、一个长方体,长a分米,宽b分米,高h分米,如果高减少3分米,这个长方体表面积比原来减少()平方分米?体积比原来减少()立方分米二、长方体与正方体必须掌握的几种题型2 --段的变化1、一个长方体长2米,截面是边长3厘米的正方形,将这个长方体木料锯成五段后,表面积一共增加了多少平方厘米2、将一个长3米的长方体木料平均截成3段,表面积一共增加了0.36平方分米,这根木料的体积是多少立方分米3、一段长2m的长方体木料,将它截成5段后,表面积增加了40平方分米,这根木料的体积是多少立方分米?4、把一根长3米的长方体木料据成3段后,表面积增加18平方分米这根木料原来的体积是多少立方米1、一个正方体的表面积是48平方厘米,将它平均分成两个小长方体,每个小长方体的表面积是多少2、一个正方体的表面积是96平方厘米,将它平均分成两个小长方体,每个小长方体的体积是多少立方厘米3、一个正方体的体积是125立方厘米,它的表面积是多少平方厘米4、一个正方体切成两个小长方体后,表面积增加18平方厘米。

两个小长方体表面积的和是多少?四、长方体与正方体必须掌握的几种题型4 --拼的变化1、用8个棱长都是2厘米的正方体拼成一个长方体,拼成的长方体的表面积最多是多少平方厘米最少是多少平方厘米?2、用12个棱长都是2厘米的正方体拼成一个长方体,一共有多少种拼法,每种拼法拼成的长方体的表面分别是多少?3、用四个棱长都是3厘米的正方体拼成一个长方体,拼成的长方体的表面积可能是多少4、用6个棱长是1厘米的正方体,拼成一个表面积是最小的长方体,这个长方体的表面积是多少?倍数1、一个正方体棱长扩大2倍,表面积扩大()倍,体积扩大()倍,表面积增加()倍,体积增加()倍。

五年级数学长方体和正方体试题

五年级数学长方体和正方体试题

五年级数学长方体和正方体试题1.一个棱长10cm的正方体切成两个完全一样的长方体,一个长方体的体积是,表面积是。

【答案】500立方厘米,400平方厘米。

【解析】分析:(1)这两个长方体的体积之和就是这个正方体的体积,利用正方体的体积除以2即可计算。

(2)把一个棱长为10cm的正方体切成两个完全一样的长方体,表面积是增加了2个原正方体的面的面积,用原来的表面积加上两个增加的面积,再除以2,由此可以求出长方体的表面积。

解答:(1)10×10×10÷2=1000÷2=500(立方厘米)(2)(10×10×6+10×10×2)÷2=800÷2=400(平方厘米)答:一个长方体的体积是 500立方厘米,表面积是 400平方厘米。

【考点】长方体和正方体的体积;长方体和正方体的表面积。

2.一个长方体油箱,从里面量,它的长是15分米,宽8分米.已知它的容积是480立方分米,它的高是分米.【答案】4【解析】根据长方体体积公式v=abh,求出油桶的高,即h=v÷(ab).解答:解:480÷(15×8)=480÷120=4(分米);答:高为4分米.故答案为:4.点评:此题考查了学生对长方体体积公式的运用情况.长方体体积:v=abh.3.一个长方体水池占地6平方米,他深1.5米,池内最多能容水升.【答案】9000.【解析】占地面积就是这个水池的底面积,要求最多能蓄水多少立方米,就是求这个水池的容积,利用长方体的容积=底面积×高即可解得.解答:解:6×1.5=9(立方米)=9000(升),答:池内最多能容水9000升.故答案为:9000.点评:此题考查了长方体的容积公式的计算应用.4.一个长方体和一个正方体的体积相等,那么它们的表面积也相等(判断对错)【答案】×.【解析】长方体的体积=abh,正方体的体积=a3,长方体表面积公式:S=2ab+2ah+2bh,正方体表面积公式:S=6a2,此题可以采用举例说明的方法进行判断.解答:解:一个长方体和正方体的体积相等,都是8,所以正方体的棱长是2,表面积是2×2×6=24;长方体的长宽高可以分别是:1、2、4,表面积是:1×2×2+1×4×2+2×4×2=4+8+16=28,所以“一个长方形和一个正方形的体积相等,那么它们的表面积也相等”说法错误.故答案为:×.点评:此题考查长方体、正方体的体积和表面积公式的灵活应用,采用举实例的方法进行解答即可.5.用16个棱长是1厘米的小正方体,可拼成一个大正方体,它的体积是16立方厘米.(判断对错)【答案】√.【解析】用16个棱长是1厘米的小正方体,可拼成一个大正方体,拼成后大正方形的体积是小正方体体积的和,据此解答.解答:解:一个小正方体的体积:1×1×1=1(立方厘米)拼成后大正方体的体积是:1×16=16(立方厘米)答:拼成后大正方体的体积是16立方厘米.故答案为:√.点评:本题的重点是让学生理解拼成后大正方体的体积等于原小正方体体积的和.6.一个正方体鱼缸,棱长4分米.如果把满缸水倒入一个里面长8分米,宽5分米的长方体空水槽里,这时水槽里的水有多少深?【答案】这时水槽里的水有1.6分米深.【解析】首先根据正方体的体积公式:v=a3,求出正方体鱼缸内水的体积,再根据长方体的体积公式:v=sh,用水的体积除以长方体水槽的底面积即可.解答:解:4×4×4÷(8×5)=64÷40=1.6(分米),答:这时水槽里的水有1.6分米深.点评:此题主要考查正方体、长方体的体积公式的灵活运用,关键是熟记公式.7.在一条长5千米,宽8米的公路上辅上一层厚5厘米的沙土,需要多少沙土?【答案】需要2000立方米沙土.【解析】根据长方体的体积公式:v=abh,把数据代入公式解答即可.解答:解:5千米=5000米,5厘米=0.05米,5000×8×0.05=40000×0.05=2000(立方米),答:需要2000立方米沙土.点评:此题主要考查长方体的体积公式的灵活运用,关键是熟记公式.注意:长度单位相邻单位之间的进率及换算.8.长方体棱长之和是6米,长8分米,宽5分米,这个长方体的体积是多少?【答案】长方体的体积是80立方分米.【解析】根据长方体的棱长总和公式,先用棱长总和6米,也就是60分米除以4,求出一组长宽高的和是60÷4=15分米,再减去长和宽,即可求出高的长度,据此再利用长方体的体积=长×宽×高计算即可解答.解答:解:6米=60分米60÷4=15(分米)15﹣8﹣5=2(分米)8×5×2=80(立方分米)答:长方体的体积是80立方分米.点评:此题考查了长方体的棱长总和、体积公式的计算应用,熟记公式即可解答.9.一个正方体木块棱长8厘米,在每个面的中央各挖掉一个洞,洞口是边长3厘米的正方形,洞深3厘米.挖好后的木块表面积是多少?【答案】挖洞后木块的表面积是600平方厘米.【解析】根据题意可知:这个挖洞后木块的表面积等于大正方体的表面积,加上6个棱长为1厘米的小正方体的4个侧面的面积.解答:解:8×8×6+3×3×4×6=384+216=600(平方厘米)答:挖洞后木块的表面积是600平方厘米.点评:此题考查不规则立体图形的表面积的计算方法,解决此题的关键是弄清楚挖好后的木块表面积有哪些面组成.10.一个棱长为30厘米的正方体水箱里盛有25厘米深的水,现把水箱中的水倒一部分到长40厘米,宽40厘米,高30厘米的长方体空水箱中,使得两个水箱里的水的深度相同,这时水箱中水的高度是多少?【答案】这时水箱中水的高度是9厘米.【解析】根据长方体的容积(体积)公式:v=abh,先求出正方体水箱中有水多少立方厘米,要求现在两个水箱中水的高度,用水的体积除以两个水箱的底面积之和即可.由此解答.解答:解:30×30×25÷(30×30+40×40)=22500÷2500=9(厘米)答;这时水箱中水的高度是9厘米.点评:此题主要考查长方体的体积的计算方法,关键是掌握长方体、正方体的体积计算公式.11.东东早上喝了一杯约260()牛奶.A.立方分米B.升C.毫升D.立方米【答案】C【解析】解:东东早上喝了一杯约260毫升的牛奶.故选:C.【点评】此题考查根据情景选择合适的计量单位,要注意联系生活实际、计量单位和数据的大小,灵活的选择.12.长方体的体积等于或.【答案】长×宽×高,底面积×高.【解析】长方体的体积等于长宽高的乘积,或等于底面积乘以高,用字母表示是:v=abh=sh,解答即可.解:长方体的体积=长×宽×高,或长方体的体积=底面积×高,用字母表示是:v=abh=sh.故答案为:长×宽×高,底面积×高.【点评】此题考查的目的是理解掌握长方体的体积公式,并会用字母表示.13.因为棱长相等的正方体木块和铁块体积相等,所以它们的重量也相等..(判断对错)【答案】×【解析】根据正方体的体积=棱长3,可知棱长相等的正方体的木块和铁块.它们的体积一样大;但是铁块单位体积的质量要大于木块,所以重量相比,还是铁块重得多,解答即可.解:根据正方体的体积=棱长3,可知棱长相等的正方体的木块和铁块,所以它们的体积相比一样大因为铁块单位体积的质量要大于木块,所以重量相比,是铁块重.故“因为棱长相等的正方体木块和铁块体积相等,所以它们的重量也相等”的说法是错误的.故答案为:×.【点评】此题考查正方体体积公式V=a3的运用,关键是理解单位体积的质量铁块大于木块,即可确定相同的体积铁块要重.14.常用的体积单位有、、.【答案】立方米、立方分米、立方厘米.【解析】解:常用的体积单位有:立方米、立方分米、立方厘米.故答案为:立方米、立方分米、立方厘米.15.如果把长方体的长、宽、高都扩大3倍,那么它的体积扩大()倍.A.3B.9C.27D.10【答案】C【解析】解:V=abc;1长、宽、高都扩大3倍,=(a×3)×(b×3)×(c×3)=27abc,V2即体积扩大了27倍.故选:C.16.一个长方体的长是8厘米,宽是5厘米,高是4厘米.它的表面积是,体积是.【答案】184平方厘米,160立方厘米.【解析】把数据代入长方体的表面积公式和体积公式直接计算即可.解:表面积:8×5×2+5×4×2+8×4×2=80+40+64,=184(平方厘米);体积:8×5×4=40×4=160(立方厘米).答:它的表面积是184平方厘米;体积是160立方厘米.故答案为:184平方厘米,160立方厘米.【点评】此题主要考查长方体的表面积和体积计算公式:长方体的表面积=长×宽×2+高×宽×2+长×高×2;长方体的体积=长×宽×高.17.边长是6cm的正方体,它的表面积和体积相等..(判断对错)【答案】×【解析】正方体的表面积是指它的6个面的总面积;正方体的体积是指它所占空间的大小;它们单位不同,根本不能进行比较.解:表面积和体积单位不同,不能进行比较,所以边长是6cm的正方体,它的表面积和体积相等,这种说法是错误的.故答案为:×.【点评】此题的解答关键是理解表面积和体积的意义.18.一只长方体的玻璃缸,长8dm,宽6dm,高4dm,水深3dm,如果投入一块棱长为4dm的正方体铁块,缸里的水溢出多少升?【答案】16升.【解析】先根据长方体的体积=长×宽×高,分别计算出水的体积、长方体容器的体积,正方体铁块放玻璃缸中的体积,水的体积+正方体的铁块在水中的体积﹣长方体容器的容积=溢出的水的体积,注意正方体铁块不是全部浸没在水中,它在容器中的高最大是4分米.据此解答即可.解:4×4×4+8×6×3﹣8×6×4=64+144﹣192=16(立方分米)=16(升)答:缸里的水溢出16升.【点评】本题主要考查了学生水的体积+正方体的铁块在水中的体积﹣长方体容器的容积=溢出的水的体积,这一数量关系的掌握情况,注意正方体铁块不是全部浸没在水中,它在容器中的高最大是4分米.19.9000立方厘米= 立方分米9.08升= 毫升4.7立方米= 立方分米3.2立方米= 立方分米.【答案】9,9080,4700,3200.【解析】(1)低级单位立方厘米化高级单位立方分米除以进率1000.(2)高级单位升化低级单位毫升乘进率1000.(3、(4))高级单位立方米化低级单位立方分米乘进率1000.解:(1)9000立方厘米=9立方分米;(2)9.08升=9080毫升;(3)4.7立方米=4700立方分米;(4)3.2立方米=3200立方分米.故答案为:9,9080,4700,3200.【点评】立方米、立方分米(升)、立方厘米(毫升)相邻之间的进率是1000,由高级单位化低级单位乘进率,反之除以进率.20.一个长方体的水池,长50米,宽30米,深2米,如果每分钟可以放进5立方米的水,要放满这一池水需要多少小时?【答案】10小时【解析】首先根据长方体的容积公式:v=abh,求出水池的容积,然后用水池的容积除以每分钟放进水的数量,再化成小时数即可.解:50×30×2÷5=3000÷5=600(分钟)=10(小时)答:要放满这一池水需要10小时.【点评】解答有关长方体计算的实际问题,一定要搞清所求的是什么,再进一步选择合理的计算方法进行计算解答问题.21.一间教室长12米,宽8米,高4米,教室占地面积多少平方米?现在要用涂料粉刷它的四周和顶面,扣除门窗和黑板的面积32平方米,粉刷涂料的面积有多大?【答案】96平方米;224平方米.【解析】(1)要求教室占地面积,用长乘宽即可.(2)求出教室的四周和顶面的面积,然后减去门窗和黑板的面积32平方米,解决问题.解:(1)12×8=96(平方米)答:教室占地面积96平方米.(2)(8×4+12×4)×2+12×8﹣32=80×2+96﹣32=160+96﹣32=224(平方米)答:粉刷涂料的面积有224平方米.【点评】此题考查了长方形的面积以及长方体的表面积公式的实际运用.22.如图的机器零件是由4个棱长是3cm的小正方体组成的,现在要在其表面全部涂上防锈漆,涂油漆的面积是多少?【答案】162平方厘米.【解析】由题意可知:三个小正方体是一样的,则每个面的面积是相等的,观察发现,需要涂油漆的面积由小正方体的18个面组成,从而利用长方形的面积公式即可求解.解:(5+3+5+5)×(3×3)=18×9=162(平方厘米)答:涂油漆的面积是162平方厘米.【点评】解答此题的关键是:弄清楚涂刷油漆的部分由三个正方体的哪些面组成.23.填空0.9立方米= 立方分米 0.064立方分米= 立方厘米0.072立方分米= 立方厘米 4308000立方厘米= 立方米9.43升= 立方分米 543毫升= 升130毫升= 立方厘米 0.05升= 立方厘米208毫升= 升 4.6立方米= 方【答案】900,64,72,4.308,9.43,130,50,0.208,4.6.【解析】(1)高级单位立方米化低级单位立方分米乘进率1000.(2)、(3)高级单位立方分米化低级单位立方厘米乘进率1000.(4)低级单位立方厘米化高级单位立方米除以进率1000000.(5)立方分米与升是等量关系二者互化数值不变.(6)、(9)低级单位毫升化高级单位升除以进率1000.(7)立方厘米与毫升是等量关系二者互化数值不变.(8)高级单位位升化低级单位立方厘米乘进率1000.(10)方是立方米的简称,4.6立方米=4.6方.解:(1)0.9立方米=900立方分米;(2)0.064立方分米=64立方厘米;(3)0.072立方分米=72立方厘米;(4)4308000立方厘米=4.308立方米;(5)9.43升=9.43立方分米;(6)543毫升=0.543升;(7)130毫升=130立方厘米;(8)0.05升=50立方厘米;(9)208毫升=0.208升;(10)4.6立方米=4.6方.故答案为:900,64,72,4.308,9.43,130,50,0.208,4.6.【点评】立方米(也简称方)、立方分米(升)、立方厘米(毫升)相邻之间的进率是1000,由高级单位化低级单位乘进率,反之除以进率.24.学校要粉刷新教室.已知教室长8米,宽6米,高3米,扣除门窗的面积是11.4m2.如果每平方米需要花4元涂料费,粉刷这个教室需要花费多少元?【答案】482.4元.【解析】由题意可知:需要粉刷的面积为教室四面墙壁和天花板的面积,利用长方体的表面积减去地面的面积和门窗面积即可;需要粉刷的面积乘每平方米花的钱数,就是粉刷这个教室需要的花费.解:6×8+6×3×2+8×3×2﹣11.4=48+36+48﹣11.4=120.6(平方米)120.6×4=482.4(元)答:粉刷这个教室需要花费482.4元.【点评】此题主要考查长方体的表面积的计算方法的实际应用,关键是弄清楚:需要粉刷的面积由哪几部分组成.25.至少需要个大小相同的小正方体才能拼成一个大的正方体.【答案】8【解析】根据正方体的特征即可知道至少用8个相同的正方体才能拼成一个较大的正方体.解:由正方体的特征即可知道至少用8个相同的正方体才能拼成一个较大的正方体.如:棱长为2米的正方体是由8个棱长为1米的小正方体拼成.故答案为:8.【点评】本题考查了正方体的认识,8个相同的较小的正方体才能拼成一个较大的正方体.26.一个长方体的体积是96cm3,底面积是16cm2,它的高是 cm.【答案】6.【解析】根据长方体的体积公式:v=sh,那么h=v÷s,把数据代入公式解答即可.解:96÷16=6(厘米),答:它的高是6厘米.故答案为:6.【点评】此题主要考查长方体的体积公式的灵活运用,关键是熟记公式.27.一个长方体玻璃缸,从里面量长40厘米,宽25厘米,缸内水深10厘米.把一块石头浸入水中后,水面升到12厘米,求石块的体积.【答案】2000立方厘米【解析】升高的这部分水的体积就是这个石块的体积,这个水槽的底面积乘上升的高度即可.解:40×25×(12﹣10),=40×25×2,=1000×2,=2000(立方厘米);答:石块的体积是2000立方厘米.【点评】本题考查了用排水法来测量不规则物体的体积的方法,上升的水的体积就等于这个物体的体积.28.一个正方体的棱长从4.5cm增加到6cm,那么表面积增加了()A.27cm2B.94.5cm2C.216cm2D.124.875cm2【答案】B【解析】正方体的表面积S=6a2,据此代入数据分别求出现在和原来的表面积,再据减法的意义即可得解.解:6×6×6﹣4.5×4.5×6=216﹣121.5=94.5(平方厘米)故选:B.【点评】此题主要考查正方体的表面积的计算方法的灵活应用.29.棱长1m的正方体可以切成()个棱长为1cm的正方体.A.100B.1000C.100000D.1000000【答案】D【解析】棱长1米的正方体的体积是1立方米,棱长1厘米的正方体的体积是1立方厘米,1立方米=1000000立方厘米,由此可以得出能够分成1000000个1立方厘米的小正方体.解:1立方米=1000000立方厘米所以:1000000÷1=1000000(个)答:切成1000000个棱长为1cm的正方体.故选:D.【点评】利用大正方体的体积除以小正方体的体积即可求出切割出的小正方体的总个数.30.计算图形的表面积和体积(单位:厘米)【答案】长方体的表面积:52平方厘米;体积:24立方厘米;正方体的表面积:54平方厘米;体积:27立方厘米【解析】根据长方体、正方体的表面积和体积公式,列式计算即可.解:长方体的表面积:(4×2+4×3+2×3)×2=(8+12+6)×2=26×2=52(平方厘米);体积:4×2×3=24(立方厘米);正方体的表面积:3×3×6=54(平方厘米);体积:3×3×3=27(立方厘米).【点评】此题主要考查长方体、正方体的表面积和体积公式及其计算.31.一个长方体机油桶,长8分米,宽2分米,高6分米.如果每升机油重0.72千克,可装机油多少千克?【答案】69.12千克【解析】根据长方体的体积(容积)的计算方法,先求出长方体油桶的容积是多少立方分米,(换算成升),再求可装机油多少千克.解:8×2×6=96(立方分米);96立方分米=96升;96×0.72=69.12(千克);答:可装机油69.12千克.【点评】此题主要考查长方体的体积(容积)的计算,直接利用体积公式解答即可.32.在一个长20米,宽8米,深1.5米的长方体蓄水池里面贴瓷砖,瓷砖是边长为0.2米的正方形,贴完共需瓷砖多少块?【答案】6100块.【解析】首先分析在蓄水池里面贴瓷砖,因为蓄水池是没有盖的,也就是贴一个底面和四周的4个面,利用长方体的表面积公式求出这5个面的面积和,除以每块瓷砖的面积.由此解答.解:(20×8+20×1.5×2+8×1.5×2)÷(0.2×0.2)=(160+60+24)÷0.04=244÷0.04=6100(块);答:贴完共需瓷砖6100块.【点评】此题考查的目的是:根据长方体的表面积的计算方法解决有关的实际问题,解答关键是弄清贴瓷砖的面是几个.33.计算下面图形的表面积.【答案】长方体的表面积是122平方厘米,正方体的表面积是150平方厘米.【解析】根据长方体的表面积公式:s=(ab+ah+bh)×2,正方体的表面积公式:s=6a2,把数据代入公式解答.解:(7×3+7×4+3×4)×2=(21+28+12)×2=61×2=122(平方厘米);5×5×6=150(平方厘米);答:长方体的表面积是122平方厘米,正方体的表面积是150平方厘米.【点评】此题考查的目的是使学生理解掌握长方体和正方体的表面积的计算公式,直接把数据代入表面积公式进行解答.34.用96厘米的一根铁丝焊成一个正方体框架,这个框架的每条棱长多少厘米?【答案】8厘米【解析】根据正方体的特征,12条棱的长度都相等,用棱长总和除以12即可.解:96÷12=8(厘米),答:这个框架的棱长是8厘米.【点评】此题考查的目的是理解掌握正方体的特征,以及棱长总和公式的灵活运用.35.长方体每个面一般都是形,也可能有两个相对的面是形,的面的面积相等,的棱的长度相等.【答案】长方,正方,相对,相对.【解析】根据长方体的特征:有6个面,12条棱,8个顶点;长方体相对的面的面积相等,长方体的6个面都是长方形,相对的棱的长度相等.解:长方体每个面一般都是长方形,也可能有两个相对的面是正方形,相对的面的面积相等,相对的棱的长度相等.故答案为:长方,正方,相对,相对.【点评】此题考查的目的是理解掌握长方体的特征.36. 2个棱长1cm的正方体拼成一个长方体,长方体的表面积是12cm2..(判断对错)【答案】×【解析】2个棱长1cm的正方体拼成一个长方体后,表面积减少了2个小正方体的面的面积,则拼组后的长方体的表面积就是12﹣2=10个小正方体的面的面积,由此计算出长方体的表面积即可判断.解:(6×2﹣2)×1×1,=10×1,=10(平方厘米);答长方体的表面积是10平方厘米,所以原题说法错误.故答案为:×.【点评】抓住拼组方法,得出表面积减少情况,计算出拼组后的表面积即可判断正误.37.升和毫升都是计量()的单位.A.长度 B.面积 C.容积【答案】C【解析】常用的容积的单位有升和毫升,据此解答即可。

(完整版)“长方体和正方体”练习题及答案

(完整版)“长方体和正方体”练习题及答案

六年级第一学期“长方体和正方体”练习题姓名成绩一、填空题。

(每空1分,共24分)1、在括号里填上合适的单位名称。

⑴一小瓶红墨水是60()⑵一台电冰箱的体积约是240()⑶一种油箱的容积是0.6()⑷一只火柴盒的体积约是9.6()⑸一种水箱可容水约24()2、一个长方体长5厘米,宽5厘米,高4厘米,这个长方体有2个面是()形,还有()个面的面积相等,长方体的表面积是()。

3、一个长方体的体积是162立方厘米,它的底面积是32.4平方厘米,底面长8.1厘米,这个长方体的高是( )厘米,宽是( )厘米。

4、一个长方体的体积是240立方厘米,长是8厘米,宽是6厘米,高是()厘米。

5、 6.4立方米=( )立方分米 4500毫升=( )升80立方厘米=()立方分米 3.8升 = ( )毫升7.05立方分米=( )升 50平方厘米=()平方分米6、右图是由棱长1厘米的小正方体拼成的,它的体积是()立方厘米,至少再加上()个小正方体,就能成为一个较大的正方体。

7、一个长方体,长、宽、高分别为a米、b米、c米,如果高增加4米,新的长方体比原来长方体增加了()立方米。

8、一个长方体的表面积是90平方分米,把它平均分开正好成两个相等的正方体,每个正方体的表面积是()平方分米。

9、用3个棱长4厘米的正方体粘合成一个长方体,长方体的表面积比3个正方体的表面积少()平方厘米。

10、一个长方体相邻三个面的面积分别为10平方厘米、15平方厘米和6平方厘米,这个长方体的体积为()。

11、一个长方体的宽和高都是5厘米,把它从长的中点截成两个相同的长方体后,得到其中一个长方体的表面积比原来大长方体的表面积减少120平方厘米。

原来长方体的体积是()立方厘米。

二、判断题。

(每题2分,共12分)1、正方体棱长扩大到原来的2倍,体积扩大到原来的8倍。

……………()2、a3=3a。

……………………………………………………………………()3、一个长方体茶叶罐,体积和容积相等。

六年级数学长方体和正方体试题答案及解析

六年级数学长方体和正方体试题答案及解析

六年级数学长方体和正方体试题答案及解析1.(1分)(2014•黄岩区)一个长方体,棱长之和是72厘米;长是10厘米,宽是5厘米,高是厘米.【答案】3.【解析】根据长方体的特征,12条棱分为互相平行的3组,每组4条棱的长度相等.长方体的棱长总和=(长+宽+高)×4,高=棱长总和÷4﹣(长+宽),由此列式解答.解:72÷4﹣(10+5),=18﹣15,=3(厘米);答:高是3厘米.故答案为:3.点评:解答此题首先掌握长方体的特征,再根据棱长总和的计算方法得出:高=棱长总和÷4﹣(长+宽),由此解决问题.2.1000000立方厘米= 立方分米= 立方米;1升= 立方分米= 毫升。

【答案】1000,1,1,1000【解析】(1)由低级单位立方厘米化高级单位立方分米,除以进率1000;再化成高级单位立方米,再除以进率1000。

(2)升与立方分米是等量关系,1升=1立方分米,由高级单位立方分米(升)化低级单位毫升,乘进率1000。

【考点】体积单位的进率和换算。

总结:观察题目,看清是那两个单位之间的换算。

3.与“1cm3”相等的是()。

A.0.01cm3B.dm3C.1L D.1cm2【答案】C【解析】0.01cm3与1cm3单位一样,数字不一样,所以不相等;排除A;1dm3=1000cm3,所以1cm3=dm3,选B;1cm3 =1mL;排除C;cm2和cm3是两个不同的单位,排除D。

【考点】体积单位的进率和换算。

总结:观察题目,看清是那两个单位之间的换算,这种类型选择题,可以用排除法。

4.先计算下面长方体和正方体的底面积,再计算它们的体积。

【答案】320平方米,2560立方米;324平方厘米,5832立方厘米【解析】解:长方体的底面积:20×16=320(平方米),长方体的体积:320×8=2560(立方米)答:这个长方体的底面积是320平方米,体积是2560立方米。

五年级下册数学试题 第三章《长方体和正方体》(含答案)(人教版)

五年级下册数学试题  第三章《长方体和正方体》(含答案)(人教版)

第三章《长方体和正方体》一.选择题1.(2020秋•新沂市期中)4瓶250毫升的饮料正好是()升.A.1 B.100 C.10002.(2020秋•洪洞县期中)如果两个不同容器的容积相等,它们的体积()A.相等B.不相等C.无法判断3.(2020春•和平区期末)小明用同一块橡皮泥先捏成一个正方体,又捏成一个球,体积()A.变大B.变小C.不变4.(2019•永州模拟)一个圆柱形粮仓,要求能放进多少粮食,是求这个粮仓的()A.体积B.容积C.表面积D.底面积5.(2019春•兴县期末)长方体的6个面展开后()A.都是长方形B.至少有2个面是长方形C.至少有4个面是长方形6.(2019•长沙)一个长方体的底是面积为3平方米的正方形,它的侧面展开图正好是一个正方形,这个长方体的侧面积是()平方米.A.18 B.48 C.54二.填空题7.(2019•株洲模拟)公顷=平方米2.04升=毫升3.25小时=小时分2吨50千克=吨8.(2019春•高密市期末)用一根长36厘米的铁丝做一个正方体模型,这个正方体模型的表面积是平方厘米.9.(2018春•乌鲁木齐期末)750毫升=升7.65立方米=立方分米.10.(2018秋•盐城月考)计量比较少的液体,通常用作单位,可以用字母表示.11.(2018•延平区)如图,一个长方体是由三个同样大小的正方体拼成的,如果去掉一个正方体,表面积就比原来减少30cm2.原来长方体的表面积是cm2.三.判断题13.(2020春•扶风县期末)物体所占空间越大,表示它的体积越大..(判断对错)14.(2020春•芦溪县期末)一个长方体棱的总长为60厘米,相交于一个顶点的三条棱的长度和是15厘米..(判断对错)15.(2019春•昌乐县期末)物体的容积就是这个物体的体积..(判断对错)16.(2019春•禅城区期末)相邻两个面是正方形的长方体一定是正方体..(判断对错)17.(2016春•托里县校级期中)正方体的棱长扩大2倍,则正方体的表面积就扩大4倍.(判断对错)18.(2014春•楚雄市期中)一个火柴盒的容积大约是8立方米..(判断对错)四.计算题19.(2014春•海口校级月考)一个长方体从正面看如图(1)所示,从上面看如图(2)所示.求该长方体的表面积.五.应用题20.两根同样长的铁丝,一根正好围成一个长9cm、宽4cm、高2cm的长方体框架,另一根正好围成一个正方体框架,这个正方体的棱长是多少厘米?(接头忽略不计)21.一个长方体的饼干盒,长18cm,宽12cm,高20cm,现在要围着它贴一圈商标纸(上下两个面不贴),如果商标纸的接头处是3cm,那么这张商标纸的面积是多少平方厘米?六.解答题22.(2007•江阴市)有一个立方体,每个面上分别写着数字1、2、3、4、5、6,有三个人从不同角度观察的结果如图所示,那么这个立方体1的对面是,3的对面是,4的对面23.王老师请工人给他做一个棱长为60cm的玻璃鱼缸,至少需要多大面积的玻璃?24.一个木箱的形状是正方体,棱长为0.8m,制作这个木箱至少需要木板多少平方米?(木箱的上面没有盖)25.(2019春•长清区期末)科技小组用60厘米的铁丝做个长方体模型,这个长方体的长是6厘米,宽是5厘米,高是多少厘米?26.(2019春•长清区期末)亮亮家要给一个长0.75m,宽0.5m,高1.6m的简易衣柜换布罩(没有底面).至少需要用布多少平方米?27.(2017春•裕安区期末)一个长方体无盖的玻璃鱼缸,长2米,宽0.5米,高1米,做这样的一个鱼缸,需玻璃多少平方米?28.把12个棱长都是5厘米的小正方体纸盒用包装纸包装成长方体,至少需要多少平方厘米的包装纸?(包装时重叠部分多用120平方厘米的包装纸.)29.(2019•上街区)用橡皮泥做一个圆柱体学具,做出的圆柱底面直径4厘米,高6厘米.如果再做一个长方体纸盒,使橡皮泥圆柱正好装进去,至少需要多少平方厘米硬纸?30.(2015•深圳)如图是一个棱长4厘米的正方体,在正方体上面正中向下挖一个棱长是2厘米的正方体小洞,接着在小洞的底面正中再向下挖一个棱长是1厘米正方体小洞,最后得到的立方体图形的表面积是多少平方厘米?参考答案与试题解析一.选择题1.【分析】首先求4个250是多少用乘法,得到1000毫升,然后把1000毫升化成升数,用1000除以进率1000;即可得解.【解答】解:250×4=1000(毫升)答:4瓶250毫升的饮料正好是1升.故选:A.【点评】此题考查名数的换算,把高级单位的名数换算成低级单位的名数,就乘单位间的进率,把低级单位的名数换算成高级单位的名数,就除以单位间的进率.2.【分析】容积是指容器所能容纳物体体积的大小,体积是指这个物体所占空间的大小,容积的计算方法和体积的计算方法相同,但是两个不同意义的概念,所以无法判断.【解答】解:容积和体积不完全相同,所以如果两个不同容器的容积相等,它们的体积的大小无法判断.故选:C.【点评】正确掌握容积和体积的概念是解决此题的关键.3.【分析】同一块橡皮泥捏成不同的形状,只是形状和表面积的变化,所占空间的大小不变,即体积不变.【解答】解:小明用同一块橡皮泥先捏成一个正方体,又捏成一个球,体积不变;故选:C.【点评】解答本题的关键是,正方体或球的体积就是橡皮泥的体积,不论形状是否改变,橡皮泥的体积不会发生改变.4.【分析】此题考查了体积、容积、表面积和底面积的概念问题,要求粮仓能放进多少粮食,就是球的粮仓的容积.【解答】解:一个圆柱形粮仓,要求能放进多少粮食,是求这个粮仓的容积;故选:B。

长方体和正方体测试卷1(含答案)

长方体和正方体测试卷1(含答案)

长方体和正方体测试卷1(含答案)-CAL-FENGHAI.-(YICAI)-Company One1长方体和正方体测试卷一、填空不困难,全对不简单。

(30分)1.下面的图形中,()是长方体,()是正方体。

2. 长方体和正方体都有()个面,()条棱,()个顶点。

长方体相对的面大小(),相对的棱长度()。

3.把两个同质量的实心铁块分别放入盛满水的甲、乙两个水杯里,如果甲杯溢出的水比乙杯溢出的水多,说明甲杯的容积比乙杯()。

4.如图:(1)前后两个面是完全相同的(),面积都是()。

(2)上下左右四面是完全相同的(),它们的面积之和是()。

(3)这个长方体的表面积是(),体积是()。

5.一个正方体的棱长是2厘米,这个正方体的底面积是(),表面积是(),体积是()。

6.把棱长20分米的正方体切成棱长5分米的小正方体,可以切成()块。

7. 0.1升=()立方分米=()毫升;7立方米=()立方分米=()升5040毫升=()立方厘米=()立方分米8.用“﹥”把下面各量排列起来。

3.3毫升 0.033升0.033立方米 3.3立方分米 330立方厘米()﹥()﹥()﹥()﹥()9、把一根方钢切割成3段、表面积增加了96平方分米,已知钢材长3米,原来这根方钢的体积是()。

二、我是小法官,对错我会判。

(5分)1. 表面积相等的长方体,体积也一定相等。

()2.一个水杯最多能装400毫升的水,说明这个水杯的容积是400毫升。

()3.面积单位比体积单位小。

()4.长方体的长扩大3倍,宽缩小3倍,高不变,则体积不变。

()5.棱长为1厘米的正方体,它的表面积和体积是一样大的。

()三、脑筋转转转,答案全发现。

(5分)1.把一个长方体的长、宽、高都扩大2倍,则它的体积扩大()倍。

A、2B、4C、8D、122.把一个大正方体切割成27个小正方体后,3面涂色的有()个。

A、4B、8C、3D、163.一个棱长为3分米的正方体所占空间为()立方分米。

(典型题)小学数学五年级下册第三单元长方体和正方体测试(含答案解析)

(典型题)小学数学五年级下册第三单元长方体和正方体测试(含答案解析)

(典型题)小学数学五年级下册第三单元长方体和正方体测试(含答案解析)一、选择题1.下面()不是正方体的展开图。

A. B. C.2.一个长6cm、宽4cm、高5cm的长方体盒子,最多能放()个棱长为2cm的正方体木块。

A. 14B. 13C. 123.两个正方体的表面积都是24cm2,用这两个正方体拼成一个长方体后,长方体的表面积是()cm2。

A. 20B. 40C. 164.一个正方体的棱长之和是36dm,这个正方体的表面积是()dm2。

A. 27B. 54C. 81D. 2165.如图,把这张硬纸片沿虚线折叠起来拼成一正方体,和3号相对的面是()号。

A. 2B. 4C. 5D. 66.下面的图形中,()能折成一个正方体。

A. B. C.7.3个棱长都是10cm的正方体拼成一个长方体,这个长方体的体积是()立方厘米.A. 1800 B. 1400 C. 30008.下面图形()沿虚线不能折成正方体.A. B. C.9.一个长方体的集装箱,从里面测量长12m、宽4m、高3m,如果要装一批棱长2m的正方体货箱,最多能装()个.A. 12B. 18C. 3610.要用()个棱长是1cm的小正方体才可以拼成一个棱长是3cm的大正方体.A. 9B. 18C. 27D. 54 11.一个长方体水箱,从里面量长5dm,宽和高都是2dm,现在往这个水箱早倒入20L 水,水箱()。

A. 刚好满了B. 还没倒满C. 溢出水了12.用一根长()的铁丝正好可以做一个长6cm、宽5cm、高3cm的长方体框架。

A. 28cmB. 48cmC. 56cm二、填空题13.在括号里填上合适的单位。

①一个苹果的体积约为130________。

②一个水杯的容积约是280________。

14.一个正方体所有棱长的和是36dm,这个正方体的表面积是________dm2,体积是________dm3。

15.一个长方体的无盖铁皮水桶,长和宽都是2.5dm,深6dm。

五年级数学长方体和正方体试题

五年级数学长方体和正方体试题

五年级数学长方体和正方体试题1.一块长方体钢板,高3m,底面是边长为5cm的正方形.已知1cm3钢板的质量是7.8g,这块长方体钢板重多少吨?【答案】解:3米=300厘米5×5×300×7.8=7500×7.8=58500(克)=0.0585(吨)答:这块长方体钢板重0.0585吨。

【解析】先利用长方体的体积公式求出钢板的体积再乘每立方米的钢板的重量,问题即可得解。

2.有一段长8分米,横截面是一个边长6分米的正方形的长方体铁块,已知每立方分米铁重7.8千克,这块铁重多少千克?【答案】解:8×6×6×7.8=288×7.8=2246.4(千克)答:这个铁块重2246.4千克。

【解析】根据长方体的体积的计算方法v=abh,求出铁块的体积,再乘7.8就是铁块的重量.据此解答。

3.一个长方体的棱长之和是180厘米,相交于一个顶点的三条棱的长度和是()。

A.45厘米 B.30厘米 C.90厘米【答案】A【解析】分析:根据长方体的特征,长方体的12条棱中互相平行的一组4条棱的长度相等,长方体的棱长总和=(长+宽+高)×4;由此解答。

解答:180÷4=45(厘米);答:相交于一个顶点的三条棱的长度和是45厘米。

【考点】长方体的特征。

4. m3=18dm3= cm3;4.5L= dm3= m3。

28m2= dm2;0.2m= cm。

【答案】0.018,18000,4.5,0.0045,2800,20【解析】分析:把18立方分米化成立方米数,用18除以进率1000,化成立方厘米数,用18乘进率1000;把4.5升化成立方分米数,数字不变,化成立方米数,用4.5除以进率1000;把28平方米化成平方分米数,用28除以进率100;把0.2米化成厘米数,用0.2乘进率100;即可得解。

解答:0.018m3=18dm3=18000cm3;4.5L=4.5dm3=0.0045m3。

长方体与正方体 题目加答案

长方体与正方体 题目加答案

一、填空1.一个长方体的长、宽、高分别为米、米、米。

如果高增加2米,新的长方体体积比原来增加()立方米,表面积增加()平方米。

考查目的:计算长方体的表面积和体积。

答案:,。

解析:因为长方体的底面大小不变(长、宽不变),高增加2米,新的长方体体积比原来增加的体积,即为同样底面积且高为2米的长方体的体积,根据“长方体的体积=长×宽×高”可求得新长方体体积比原来增加的体积。

表面积增加的部分是高为2米的新长方体4个侧面的面积,即。

2.棱长1厘米的小正方体至少需要()个可拼成一个较大的正方体。

需要()个这样的小正方体可拼成一个棱长为1分米的大正方体,如果把这些小正方体依次排成一排,可以排成()米。

考查目的:长方体和正方体的特征,体积单位和长度单位之间的进率。

答案:8,1000,10。

解析:每个小正方体的棱长都是1厘米,则其体积是1立方厘米,可以用它组成棱长是2厘米的正方体,这样就需要2×2×2=8(个)小正方体。

棱长1分米的大正方体体积是1立方分米,需要1 000个棱长1厘米的小正方体拼成,将这些小正方体依次排成一排,长度就是1 000个棱长1厘米的小正方体的边长之和。

3.一块长方形铁皮如图所示,剪掉四个角上所有阴影部分的正方形(每个正方形都相同)后,沿虚线折起来,做成没有盖子的长方体铁盒,该铁盒的长是()cm,宽是()cm,高是()cm,表面积是()cm2,容积是()cm3。

(铁皮厚度不计)考查目的:计算长方体的表面积和体积。

答案:30,10,5,700,1 500。

解析:结合题意观察图形可知,这个铁盒的长、宽、高分别是(40-5×2)厘米、(20-5×2)厘米、5厘米,再利用长方体的表面积公式和长方体的体积公式分别计算即可。

在计算表面积时应注意是5个面的面积。

4.用12个棱长1厘米的小正方体拼成一个长3厘米、宽与高都是2厘米的大长方体,再将它去掉一个小正方体(如图所示),现在它的表面积是()平方厘米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

长方体和正方体典型题
一、填空
1.把一块棱长是0.6米的正方体钢坯锻造成横截面是0.09平方米的长方体钢坯,锻造成的钢坯长(24)分米。

2.正方体的棱长扩大3倍,它的表面积扩大(9)倍,体积扩大(27)倍。

3.用3个棱长是2分米的正方体粘合成一个长方体,长方体比3个正方体少(4)个面,表面积减少(16 )平方分米。

4、人民剧场大门前有10级台阶,每级台阶长5米,宽0.4米,高0.2米,这10级台阶一共占地( 20 )平方米,如果用地砖铺这10级台阶,至少需要( 30 )平方米的地砖。

5、一根长0.5米的长方体木料横截面是正方形,把它平均锯成两段,表面积比原来增加
了30平方厘米。

原来这根长方体木料的体积是( 750 )立方厘米。

6、右图是用棱长1厘米的小正方体拼成的,右图中物体表面积是(40 )平方厘米,体
积是( 13 )立方厘米。

7. 5平方米=( 500)平方分米 360立方厘米=(0.36)立方分米=(360)毫升
2060立方分米=( 2.06 )立方米 0.298平方分米=(298)平方厘米
5升80毫升=(5)立方分米(80)立方厘米=( 5.08)立方分米
8. 在下面的括号里填上适当的单位名称。

一本书的封面大小为2.8(平方分米),一瓶墨水的容积大约是60(毫升);
一台电脑的体积是42(立方分米),一个冰箱的体积是0.3(立方米)。

9.把一根长6分米的铁丝,做成一个长6厘米,宽5厘米,高2厘米的长方体后,还剩(8 )厘米。

10. 小明用一张长方形纸正好可以画上一个棱长为3厘米的无盖的正方体的表面展开图,这张长方形纸的面积最小是(72)平方厘米。

11.用6个棱长为2分米的正方体粘合成一个长方体,表面积最多减少(56 )平方分米。

12. 商店营业员用一根塑料带为顾客捆扎两个食品盒,每个食品盒的长、宽、高分别是17
厘米、11厘米、4厘米,如右图那样捆扎一道并留下18厘米长为手提环,这样一共需要
(180)厘米长的塑料带。

13.用3个完全一样的小正方体拼成一个长方体,表面积减少36平方厘米,拼成的表面积是( 126)平方厘米。

14.将一个表面涂有红色的长方体分割成若干个体积为1立方厘米的小正方体,其中一点红色都没有的小正方体只有3块,原来长方体的体积是(45 )立方厘米。

15.把一个长方体木块的表面全部涂成红色,然后锯成同样大小的小正方体若干个(没有剩余),锯开后发现,
没有涂色的小正方体有4个,那么两个面涂红色的小正方体有(24)个或(20)个。

16.用27个棱长是2厘米的小正方体木块,拼成一个较大的正方体,这个正方体的表面积是(216平方厘米),体积是(27立方厘米)。

17.如图,是一个正方体展开图,当把它重新折叠成一个正方体时,
6
2
单位:厘米
8 1与( 2、6 )重合。

二、选择题。

1、一个汽油桶可装35升汽油,汽油桶的( B )是35升。

A 、体积
B 、容积
C 、表面积
2.一个长方体的长、宽、高分别是a 厘米、b 厘米、h 厘米,如果长增加3厘米,它的体积增加( C )平方厘米。

A 、3abh
B 、 (a+3)bh
C 、3bh
D 、3ah
3.一个长方体的底面是面积是9平方分米的正方形,它的侧面展开图正好是一个正方形,这个长方体的表面积是( C )平方分米。

A 、90
B 、144
C 、162
D 、216
4.把自己的一个拳头伸进装满水的面盆后,溢出来的水的体积( A )。

A 、大于1毫升,小于1升
B 、大于1升,小于1立方米
C 、大于1立方米,小于1升
D 、小于1毫升,大于1升 5、 一个游泳池大约可蓄水4000( A )。

A 、立方米
B 、立方分米
C 、升
D 、毫升
6、右图是几个相同小正方体拼成的大正方体,由AB 向C 点
斜切,没被切到的小正方体有( B )个。

A 、3个
B 、4个
C 、 5个
D 、 6个
7、把一个长60厘米、宽40厘米、高30厘米的长方体蛋糕切成两个长方体,表面积和
不可能增加( D )平方厘米。

A 、4800
B 、2400
C 、3600
D 、1200 8、一个长方体长、宽、高都为素数,相邻两个面的面积和是91平方厘米,最短的棱长一定是( B )厘米。

A 、2
B 、7
C 、13
D 、5
9、如右图是一个长3厘米、宽与高都是2厘米的长方体。

将它挖掉一个棱长1厘
米的小正方体,它的表面积( A )。

A 、比原来大
B 、比原来小
C 、不变
三、操作题
1.小芳用如下图的一张硬纸折成一个无盖的长方体纸盒,折成的长方体纸盒的容积是多少立方厘米?(纸的厚度忽略不计) 48
2.下图是一个长方体部分展开图。

请你把它补充完整,再计算它的表面积和体积。

(阴影部分是下底)(单位:厘米)
54平方厘米、18立方分米
3.如图,一根方钢的表面积是80平方分米,它的横截面是边长1分米的正方形,工人师傅每次都割下一个棱长1分米的小正方体钢块。

(第1题3分,其余每题2分,计9分)
⑴填表。

⑵当割下8个小方钢时,剩下方钢的表面积是( 48 )平方分米。

⑶当剩下方钢的表面积是20平方分米时,共割下( 14 )个小方钢。

⑷当割下n 个小方钢时,剩下方钢的表面积是( 80-4n )平方分米。

3、如右图,是一个长方体纸箱的的展开图。

做这样的一个纸箱
至少需用多少平方厘米的硬纸板?(4分)312
4.有6个棱长是1厘米的正方体木块,请你把它们拼成一个长方体,画出示意图表示,哪个表面积最小,并求出来。

22
5.同学们都玩过橡皮泥吧,先把橡皮泥捏成长5厘米,宽3厘米、高1厘米的长方体,再从这个长方体上截下一个最大的正方体,剩下部分表面积是多少平方厘米?你能想到几种不同的情况? 46、48、50
四、应用题
1.大厅内有八根长方体柱子,高6米,底面是边长0.5米的正方形,如果给这些柱子的四周涂油漆,(1)每平方米需要油漆5
千克,至少需要多少油漆?(2)每千克油漆可涂5平方米,至少需要多少千克油漆? 480、19.2
2.一个长方体,如果沿底面平行截取高为3
厘米的长方体,则原长方体变成正方体,原来长方体的表面积减
少60平方厘米,原长方体的体积是多少? 200
3、一节长50分米,宽4分米,高3米的通风管,把它外面涂上油漆,如果每平方分米用油漆100
克,共需
1分米
8cm
多少油漆?
324000
4.装修一间居室,居室的长和宽都是3.6米,高是2.5米,门窗面积与居室地面面积相等。

(1)在居室的地面铺上边长是40厘米的正方形地砖,至少需要这样的地砖多少块?
81
(2)如果在居室的四壁和顶面都贴上壁纸,至少需要壁纸多少平方米?
36
5. 有一个花坛,高0.8米,底面是边长1.3米的正方形。

四周用砖砌成,厚度是0.3米,中间填满泥土。

花坛里大约有多少立方米泥土?
0.392
6. 一个长方体的高减少2厘米后正好成为一个正方体,正方体的表面积比原来长方体的表面积减少了64平方厘米,求原来长方体的表面积是多少?
448
7、甲、乙两个长方体水箱的底面积分别是200平方厘米和100平方厘米,甲水箱中有4800毫升水,乙水箱是空的。

现将甲水箱中的一部分水倒入乙水箱,使两个水箱的水面高度相等。

问:这时水面高多少厘米?
16
8. 一个长方体,如果长减少3厘米,体积就减少60立方厘米;如果宽减少2厘米,体积就减少48立方厘米。

已知高是5厘米,那么它的体积是多少立方厘米?
2400。

相关文档
最新文档