3,二项式定理

合集下载

2020高中数学第十章 3《二项式定理》复习学案+检测

2020高中数学第十章 3《二项式定理》复习学案+检测

2020高中数学复习学案第10章 计数原理、概率、随机变量及其分布3 二项式定理【要点梳理·夯实知识基础】1.二项式定理(a +b )n =C 0n a n +C 1n a n -1b 1+…+C r n an -r b r +…+C n n b n(n ∈N +). 这个公式所表示的规律叫做二项式定理,等式右边的多项式叫做(a +b )n 的二项展开式,其中的系数C r n (r =0,1,2,…,n )叫做 二项式系数 .式中的 C r n an -rb r 叫做二项展开式的 通项 ,用T r +1表示,通项是展开式的第 r +1 项,即T r +1=C r n an -r b r (其中0≤r ≤n ,r ∈N ,n ∈N +). 2.二项展开式形式上的特点 (1)项数为 n +1 .(2)各项的次数都等于二项式的幂指数n ,即a 与b 的指数的和为 n . (3)字母a 按 降幂 排列,从第一项开始,次数由n 逐项减1直到零;字母b 按 升幂 排列,从第一项起,次数由零逐项增1直到n .(4)二项式的系数从C 0n ,C 1n ,一直到 C n -1n ,C nn .3.二项式系数的性质(1)对称性:与首末两端“ 等距离 ”的两个二项式系数相等,即C m n =C n -m n .(2)增减性与最大值:二项式系数C r n,当r <n +12时,二项式系数是递增的;当r >n +12时,二项式系数是递减的.当n 是偶数时,那么其展开式中间两项T n2+1的二项式系数最大. 当n 是奇数时,那么其展开式中间两项T n +12和T n +12+1的二项式系数相等且最大.(3)各二项式系数的和(a +b )n 的展开式的各个二项式系数的和等于2n ,即C 0n +C 1n +C 2n +…+C r n +…+C n n =2n.二项展开式中,偶数项的二项式系数的和等于奇数项的二项式系数的和,即C 1n +C 3n +C 5n +…=C 0n +C 2n +C 4n +…=2n -1 . 【学练结合】[思考辨析]判断下列说法是否正确,正确的在它后面的括号里打“√”,错误的打“×”.(1)C k n an -k b k是(a +b )n 的展开式中的第k 项.( ) (2)二项展开式中,系数最大的项为中间一项或中间两项.( ) (3)(a +b )n 的展开式中某一项的二项式系数与a ,b 无关.( )(4)若(3x -1)7=a 7x 7+a 6x 6+…+a 1x +a 0,则a 7+a 6+…+a 1的值为128.( )答案:(1)× (2)× (3)√ (4)× [小题查验]1.若(x -1)4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4,则a 0+a 2+a 4的值为( ) A .9 B .8 C .7D .6解析:B [令x =1,则a 0+a 1+a 2+a 3+a 4=0,令x =-1,则a 0-a 1+a 2-a 3+a 4=16,两式相加得a 0+a 2+a 4=8.]2.(教材改编)若⎝ ⎛⎭⎪⎫x +1x n 展开式的二项式系数之和为64,则展开式的常数项为( )A .10B .20C .30D .120解析:B [二项式系数之和2n =64,所以n =6,T k +1=C k 6·x 6-k ·⎝ ⎛⎭⎪⎫1x k =C k 6x 6-2k,当6-2k =0,即当k =3时为常数项,T 4=C 36=20.]3.(2018·全国Ⅲ卷)⎝ ⎛⎭⎪⎫x 2+2x 5的展开式中x 4的系数为( )A .10B .20C .40D .80解析:C [T r +1=C r 5(x 2)5-r ⎝ ⎛⎭⎪⎫2x r =C r 52r x 10-3r ,由10-3r =4,得r =2,所以x 4的系数为C 25×22=40.]4.若⎝ ⎛⎭⎪⎫x 2-1x n 展开式的二项式系数之和为128,则展开式中x 2的系数为( )A .-21B .-35C .35D .21解析:C [由已知得2n =128,n =7,所以T r +1=C r 7x 2(7-r )·⎝ ⎛⎭⎪⎫-1x r =C r 7(-1)r x 14-3r,令14-3r =2,得r =4,所以展开式中x 2的系数为C 47(-1)4=35.故选C.]5.⎝ ⎛⎭⎪⎫1x +x n 的展开式中,第3项与第7项的二项式系数相等,则展开式中的第4项为 ________ .解析:由题意得C 2n =C 6n ,所以n =8.所以⎝ ⎛⎭⎪⎫1x +x 8展开式的第4项为T 4=C 38⎝ ⎛⎭⎪⎫1x 3x 5=56x 2. 答案:56x 2【考点探究·突破重点难点】考点一 二项展开式的特定项或系数问题(多维探究)[命题角度1] 求展开式中的某一项1.⎝ ⎛⎭⎪⎫x 3-2x 4+⎝ ⎛⎭⎪⎫x +1x 8的展开式中x 4的常数项为( ) A .32 B .34 C .36D .38解析:D [⎝ ⎛⎭⎪⎫x 3-2x 4的展开式的通项为T k +1=C k 4·(x 3)4-k ·⎝ ⎛⎭⎪⎫-2x k =C k 4(-2)k x 12-4k,令12-4k =0,解得k =3, ⎝ ⎛⎭⎪⎫x +1x 8的展开式的通项为 T r +1=C r 8·x 8-r ·⎝ ⎛⎭⎪⎫1x r =C r 8·x 8-2r , 令8-2r =0,得r =4,所以所求常数项为C 34(-2)3+C 48=38.][命题角度2] 求展开式中的系数或二项式系数2.(1+x )(1-x )5的展开式中x 4的系数是( ) A .-35 B .-5 C .5D .35解析:B [(1-x )5展开式的通项是T r +1=C r 5(-x )r =(-1)r C r 5x r ,所以(1-x )5展开式中x 4的系数是(-1)4C 45=5,x 3项的系数是(-1)3C 35=-10,所以(1+x )(1-x )5的展开式中x 4项的系数是1×5+1×(-10)=-5,故选B.][命题角度3] 由已知条件求n 的值或参数的值3.若⎝⎛⎭⎪⎫ax 2+1x 5的展开式中x 5的系数是-80,则实数a = ________ .解析:⎝⎛⎭⎪⎫ax 2+1x 5的展开式的通项T r +1=C r 5(ax 2)5-r ·x -r 2=C r 5a 5-r ·x 10-5r 2,令10-52r =5,得r =2,所以C 25a 3=-80,解得a =-2.答案:-2 【解题规律方法】与二项展开式有关问题的解题策略(1)求展开式中的第n 项,可依据二项式的通项直接求出第n 项.(2)求展开式中的特定项,可依据条件写出第r +1项,再由特定项的特点求出r 值即可.(3)已知展开式的某项,求特定项的系数,可由某项得出参数项,再由通项写出第r +1项,由特定项得出r 值,最后求出其参数.[跟踪训练](1)(x +y )(2x -y )5的展开式中x 3y 3的系数为( ) A .-80 B .-40 C .40D .80解析:C [因为x 3y 3=x ·(x 2y 3),其系数为-C 35·22=-40,x 3y 3=y ·(x 3y 2),其系数为C 25·23=80.所以x 3y 3的系数为80-40=40.故选C.] (2)若⎝ ⎛⎭⎪⎪⎫x -23x n (n ∈N +)展开式的二项式系数和为32,则其展开式的常数项为( )A .80B .-80C .160D .-160解析:B [根据二项式系数和的性质,可知2n =32,解得n =5,所以⎝⎛⎭⎪⎪⎫x -23x n的展开式的通项为T r +1=C r 5·(x )5-r⎝⎛⎭⎪⎪⎫-23x r =(-2)r C r 5x 5-r 2-r 3,令5-r 2-r 3=0,解得r =3,所以其展开式的常数项为(-2)3C 35=-80,故选B.]考点二 二项式系数的性质或各项系数的和(师生共研)[典例] (1)在二项式⎝ ⎛⎭⎪⎫x 2-1x 11的展开式中,系数最大的项为第 ________项.(2)若(x +2+m )9=a 0+a 1(x +1)+a 2(x +1)2+…+a 9(x +1)9,且(a 0+a 2+…+a 8)2-(a 1+a 3+…+a 9)2=39,则实数m 的值为 ________ .[解析] (1)依题意可知T r +1=C r 11(-1)r x 22-3r,0≤r ≤11,r ∈Z ,二项式系数最大的是C 511与C 611.当r =6时,T 7=C 611x 4,故系数最大的项是第七项.(2)令x =0,得到a 0+a 1+a 2+…+a 9=(2+m )9,令x =-2,得到a 0-a 1+a 2-a 3+…-a 9=m 9,所以有(2+m )9m 9=39,即m 2+2m =3,解得m =1或-3.[答案] (1)七 (2)1或-3 [互动探究]本例(2)变为:若(x +2+m )9=a 0+a 1(x -1)+a 2(x -1)2+…+a 9(x -1)9,且(a 0+a 2+…+a 8)2-(a 1+a 3+…+a 9)2=39,则实数m 的值为 ________ .解析:令x =2,得到a 0+a 1+a 2+…+a 9=(4+m )9,令x =0,得到a 0-a 1+a 2-a 3+…-a 9=(m +2)9,所以有(4+m )9(m +2)9=39,即m 2+6m +5=0,解得m =-1或-5.答案:-1或-5 【解题方法指导】(1)“赋值法”普遍适用于恒等式,对形如(ax +b )n ,(ax 2+bx +c )m (a ,b ,c ∈R )的式子求其展开式的各项系数之和,常用赋值法.(2)若f (x )=a 0+a 1x +a 2x 2+…+a n x n ,则f (x )展开式中各项系数之和为f (1),奇数项系数之和为a 0+a 2+a 4+…=f (1)+f (-1)2,偶数项系数之和为a 1+a 3+a 5+…=f (1)-f (-1)2.[跟踪训练](1)已知(2x -1)10=a 0+a 1x +a 2x 2+…+a 9x 9+a 10x 10,则a 2+a 3+…+a 9+a 10的值为( )A .-20B .0C .1D .20解析:D [令x =1,得a 0+a 1+a 2+…+a 9+a 10=1,再令x =0,得a 0=1,所以a 1+a 2+…+a 9+a 10=0,又易知a 1=C 910×21×(-1)9=-20,所以a 2+a 3+…+a 9+a 10=20.](2)在二项式⎝ ⎛⎭⎪⎫x +3x n 的展开式中,各项系数之和为A ,各项二项式系数之和为B ,且A +B =72,则展开式中常数项的值为 ________ .解析:令x =1,得各项系数的和为4n ,而各项的二项式系数的和等于2n ,根据已知,得方程4n +2n =72,解得n =3.所以二项展开式的通项T r +1=C r 3(x )3-r⎝ ⎛⎭⎪⎫3x r =3r C r 3x 32-32r ,显然当r =1时,T r +1是常数项,值为3C 13=9. 答案:92020高中数学复习学案第10章 计数原理、概率、随机变量及其分布3 二项式定理检测一、选择题1.C 1n +2C 2n +4C 3n +…+2n -1C n n 等于( D ) A .3n B .2·3n C.3n2-1D.3n -12解析:因为C 0n +2(C 1n +2C 2n +4C 3n +…+2n -1C n n )=(1+2)n ,所以C 1n +2C 2n +4C 3n +…+2n -1C n n =3n -12.2.在⎝ ⎛⎭⎪⎫x 2+1x 5的展开式中x 的系数为( B )A .5B .10C .20D .40解析:∵T r +1=C r 5(x 2)5-r ⎝ ⎛⎭⎪⎫1x r=C r 5x 10-3r,令10-3r =1,得r =3,∴x 的系数为C 35=10.3.已知⎝ ⎛⎭⎪⎫x 3+2x n的展开式的各项系数和为243,则展开式中x 7的系数为( B )A .5B .40C .20D .10解析:由题意,二项式⎝ ⎛⎭⎪⎫x 3+2x n 的展开式中各项的系数和为243,令x =1,则3n=243,解得n =5,所以二项式⎝ ⎛⎭⎪⎫x 3+2x 5的展开式的通项公式为T r +1=C r 5(x 3)5-r⎝ ⎛⎭⎪⎫2x r =2r C r 5x 15-4r ,令15-4r =7,得r =2,则T 3=22C 25x 15-4×2=40x 7,即x 7的系数为40,故选B.4.1+(1+x )+(1+x )2+…+(1+x )n 的展开式的各项系数之和为( C )A .2n -1B .2n -1C .2n +1-1D .2n解析:令x =1,得1+2+22+ (2)=1×(2n +1-1)2-1=2n +1-1.5.(3-2x -x 4)(2x -1)6的展开式中,含x 3项的系数为( C )A .600B .360C .-600D .-360解析:由二项展开式的通项公式可知,展开式中含x 3项的系数为3×C 3623(-1)3-2×C 2622(-1)4=-600.6.已知(2x -1)5=a 5x 5+a 4x 4+a 3x 3+a 2x 2+a 1x +a 0,则|a 0|+|a 1|+…+|a 5|=( B )A .1B .243C .121D .122解析:令x =1,得a 5+a 4+a 3+a 2+a 1+a 0=1,① 令x =-1,得-a 5+a 4-a 3+a 2-a 1+a 0=-243,② ①+②,得2(a 4+a 2+a 0)=-242, 即a 4+a 2+a 0=-121.①-②,得2(a 5+a 3+a 1)=244, 即a 5+a 3+a 1=122.所以|a 0|+|a 1|+…+|a 5|=122+121=243.故选B. 7.在⎝ ⎛⎭⎪⎫1+x +1x 2 01510的展开式中,x 2的系数为( C )A .10B .30C .45D .120解析:因为⎝ ⎛⎭⎪⎫1+x +1x 2 01510=⎣⎢⎡⎦⎥⎤(1+x )+1x 2 01510=(1+x )10+C 110(1+x )91x 2 015+…+C 1010⎝ ⎛⎭⎪⎫1x2 01510,所以x 2只出现在(1+x )10的展开式中,所以含x 2的项为C 210x 2,系数为C 210=45.故选C. 二、填空题8.(x 2-1x )8的展开式中x 7的系数为-56.(用数字作答)解析:二项展开式的通项T r +1=C r 8(x 2)8-r ·(-1x )r =(-1)r C r 8x 16-3r,令16-3r =7,得r =3,故x 7的系数为-C 38=-56. 9.若二项式(x -23x)n 的展开式中仅有第6项的二项式系数最大,则其常数项是13_440.解析:∵二项式(x -23x)n 的展开式中仅有第6项的二项式系数最大,∴n=10,∴T r +1=C r 10(x )10-r(-23x )r =(-2)r C r 10·x 30-5r6 ,令30-5r 6=0,解得r =6,∴常数项是(-2)6C 610=13 440.10.若(x +a )(1+2x )5的展开式中x 3的系数为20,则a =-14.解析:(x +a )(1+2x )5的展开式中x 3的系数为C 25·22+a ·C 35·23=20,∴40+80a =20,解得a =-14.11.在(x +4x -4)5的展开式中,x 3的系数是180.解析:(x +4x -4)5=(-4+x +4x )5的展开式的通项T r +1=C r 5(-4)5-r·(x +4x )r ,r =0,1,2,3,4,5,(x +4x )r 的展开式的通项T k +1=C k r x r -k (4x )k =4k C k r xr -2k ,k =0,1,…,r .令r -2k =3,当k =0时,r =3;当k =1时,r =5.∴x 3的系数为40×C 03×(-4)5-3×C 35+4×C 15×(-4)0×C 55=180.12.在(x +x )6⎝ ⎛⎭⎪⎫1+1y 5的展开式中,x 4y 2项的系数为( C )A .200B .180C .150D .120解析:(x +x )6展开式的通项公式为T r +1=C r 6(x )6-r x r=C r 6,令6+r2=4,得r =2,则T 3=C 26=15x 4.⎝ ⎛⎭⎪⎫1+1y 5展开式的通项公式为T r +1=C r 5⎝ ⎛⎭⎪⎫1y r =C r 5y -r ,令r =2可得T 3=C 25y -2=10y -2.故x 4y 2项的系数为15×10=150.13.已知(2x -1)4=a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+a 4(x -1)4,则a 2=( B )A .18B .24C .36D .56解析:∵(2x -1)4=[(2x -2)+1]4=[1+(2x -2)]4=a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+a 4(x -1)4,∴a 2=C 24·22=24,故选B.14.⎝ ⎛⎭⎪⎫x -a x ⎝ ⎛⎭⎪⎫2x -1x 5的展开式中各项系数的和为2,则该展开式中含x 4项的系数为-48.解析:令x =1,可得⎝ ⎛⎭⎪⎫x -a x ⎝ ⎛⎭⎪⎫2x -1x 5的展开式中各项系数的和为1-a =2,得a =-1,则⎝ ⎛⎭⎪⎫x +1x ⎝ ⎛⎭⎪⎫2x -1x 5展开式中x 4项的系数即是⎝ ⎛⎭⎪⎫2x -1x 5展开式中的x 3项与x 5项系数的和.又⎝ ⎛⎭⎪⎫2x -1x 5展开式的通项为T r +1=C r 5(-1)r ·25-r ·x 5-2r,令5-2r =3,得r =1,令5-2r =5,得r =0,将r =1与r =0分别代入通项,可得x 3项与x 5项的系数分别为-80与32,故原展开式中x 4项的系数为-80+32=-48.尖子生小题库——供重点班学生使用,普通班学生慎用15.已知(1+ax +by )5(a ,b 为常数,a ∈N *,b ∈N *)的展开式中不含字母x 的项的系数和为243,则函数f (x )=sin2x +b 2sin (x +π4),x ∈[0,π2]的最小值为2.解析:令x =0,y =1,得(1+b )5=243,解得b =2.因为x ∈[0,π2],所以x+π4∈[π4,3π4],则sin x +cos x =2sin(x +π4)∈[1,2],所以f (x )=sin2x +b 2sin (x +π4)=sin2x +2sin x +cos x =2sin x ·cos x +2sin x +cos x=sin x+cos x+1sin x +cos x≥2(sin x +cos x )·1sin x +cos x=2,当且仅当sin x +cos x =1时取“=”,所以f (x )的最小值为2.。

高中数学必背公式大全

高中数学必背公式大全

高中数学必背公式大全一、代数部分。

1. 二项式定理。

(a+b)ⁿ = Cⁿ₀aⁿb⁰ + Cⁿ₁aⁿ⁻¹b¹ + ... + Cⁿᵢaⁿ⁻ⁱbⁱ + ... + Cⁿₙa⁰bⁿ。

2. 一元二次方程求根公式。

ax²+bx+c=0的解为x= (-b±√(b²-4ac))/2a。

3. 等差数列通项公式。

an = a₁ + (n-1)d。

4. 等比数列通项公式。

an = a₁ q^(n-1)。

5. 两点间距离公式。

两点A(x₁, y₁)和B(x₂, y₂)间的距离为√((x₂-x₁)² + (y₂-y₁)²)。

6. 直线斜率公式。

直线y=kx+b的斜率为k。

7. 二次函数顶点坐标。

二次函数y=ax²+bx+c的顶点坐标为(-b/2a, c-b²/4a)。

二、几何部分。

1. 直角三角形勾股定理。

a² + b² = c²。

2. 直角三角形中正弦、余弦、正切公式。

sinA = a/c, cosA = b/c, tanA = a/b。

3. 三角形面积公式。

三角形面积S=√(p(p-a)(p-b)(p-c)),其中p为半周长。

4. 圆周长和面积公式。

圆周长C=2πr, 圆面积S=πr²。

5. 正多边形内角和公式。

正n边形内角和为(n-2) 180°。

6. 圆锥、圆柱、球体积公式。

圆锥体积V=1/3πr²h, 圆柱体积V=πr²h, 球体积V=4/3πr³。

三、概率与统计部分。

1. 随机事件概率公式。

P(A) = n(A)/n(S)。

2. 期望公式。

E(X) = x₁p₁ + x₂p₂ + ... + xᵢpᵢ。

3. 正态分布概率公式。

P(a < X < b) = ∫(a, b) 1/√(2πσ²) e^(-(x-μ)²/2σ²) dx。

次方的简便运算公式

次方的简便运算公式

次方的简便运算公式次方运算是数学中常见的一种运算方式,用于表示数字的幂次。

在进行次方运算时,我们可以使用一些简便的公式来简化计算,提高效率。

一、指数法则1.乘法法则:a的m次方乘以a的n次方等于a的m+n次方。

即,a^m*a^n=a^(m+n)例如,2^3*2^4=2^(3+4)=2^72.除法法则:a的m次方除以a的n次方等于a的m-n次方。

即,a^m÷a^n=a^(m-n)例如,2^7÷2^4=2^(7-4)=2^33.幂法则:a的m次方的n次方等于a的m乘以n次方。

即,(a^m)^n=a^(m*n)例如,(2^3)^4=2^(3*4)=2^12二、乘方运算1.平方公式:一个数的平方等于这个数乘以自己。

即,a^2=a*a2.立方公式:一个数的立方等于这个数乘以自己两次。

即,a^3=a*a*a3.幂为零:任何数的零次方等于1即,a^0=1三、特殊运算1.a的负n次方等于1除以a的正n次方。

即,a^(-n)=1/a^n例如,2^(-3)=1/2^3=1/82.负数的次方:负数的次方可以通过首先计算正数的次方,然后再取倒数来进行简化。

即例如,(-2)^3=(-1)^3*2^3=-2^3=-8四、乘方的应用乘方运算在数学中有广泛的应用,例如:1.指标函数:指标函数在离散数学和计算机科学中有重要应用,指标函数的定义是a的n次方,记作:a^n。

2.幂函数:幂函数是数学中常见的一种函数类型,可以表示为y=a^x。

幂函数在数学、物理、经济等领域中具有重要的应用。

3.二项式定理:二项式定理是计算(a+b)^n的公式,其中n是正整数,a和b是任意实数。

在使用次方运算的过程中,我们可以根据需要选择合适的公式来简化计算,提高效率。

以上介绍的简便运算公式可以帮助我们更方便地进行次方运算,提高计算效率。

人教版高中数学选择性必修3《二项式定理》第1课时课件

人教版高中数学选择性必修3《二项式定理》第1课时课件

(a b)(a b)(a b)(a b)
b4 (a b)(a b)(a b)(a b)
探 探究3 仿照上述过程,推导 (a b)4 的展开式.
究 (a b)4 (a b)(a b)(a b)(a b)
归 ① 项: a4 a3b a2b2 ab3 b4 a4-kbk (k=0,1,2,3,4)
猜想:
(a b)n C0nan C1na b n1 1 Cnk ankbk Cnnbn (n N ).
探 究
探究4 分析 (a b)n的展开过程,证明猜想.
(a b)n (a b)(a b)(a b) (a b)
归 纳
n个
① 项: an a b n1 1 ankbk bn an-kbk (k=0,1,2,…,n)
分析 a2b (a b)(a b)(a b)
(a b)(a b)(a b) C13 (a b)(a b)(a b)
探 探究2 推导 (a b)3的展开式.
究 (a b)3 (a b)(a b)(a b)
归 ① 项: a3 a2b ab2 b3 纳 ② 系数:1 C13 C32
纳 ② 系数:1
C13
C32
C
3 3
a3-kbk ,其中k=0,1,2,3
探 探究2 推导 (a b)3的展开式. 究 (a b)3 (a b)(a b)(a b)
归 ① 项: a3 a2b ab2 b3
纳 ② 系数:C130 C13
C32
C
3 3
a3-kbk ,其中k=0,1,2,3 C3k ,其中k=0,1,2,3
探 究
探究3 仿照上述过程,推导 (a b)4 的展开式.
(a b)4 (a b)(a b)(a b)(a b)

3-二项式定理

3-二项式定理

2 =2
50
2+3×16
16 16 r 16 16 = 4 ⋅ 8 = 4(1 + 7) = 41 + ∑ r 7 r =1
显然再过 10 是星期二.
100
2.4 牛顿二项式定理
定理 令 α 是一个实数。则对于所有满足 0 ≤ x < y 的x和y 其中
n
再令 x = 1, 即得结论.
2.2 若干等式及其组合意义
n k = n(n + 1)2n−2. 10 设 n为自然数,则有 ∑ k k=1 n n k−1 n−1 证明: 在n(1 + x) = ∑k x 两端乘 x ,得 k=1 k
n 2
(x
1
+ x2 + L+ xt ) = ∑
n
t i i =1
n n n x1 x2 Lxtn n n Ln t ∑n =n 1 2
1 2
t
定理: 定理 ( x1 + x2 + L+ xt )n 展开式的项数等于
n + t −1 ,而这些项系数之和为 t n . n
即(x+y)n=

n n -k k x y k k=0
n
其组合意义是:将n个相异的球放入两个不同的盒子中, 其中要求x盒放入n-k个求,y盒放入k个球,且同盒的球 不分次序,其方案数为:
n! k!(n − k)!
2.1 二项式定理
二项式定理的几个其它形式: 二项式定理的几个其它形式 (1) (x+y)n=

2.4 牛顿二项式定理

高中数学选修2-3二项式定理讲义含答案

高中数学选修2-3二项式定理讲义含答案

二项式定理公式(a+b)n=C0n a n+C1n a n-1b+C2n a n-2b2+…+C r n a n-r b r所表示的规律叫做二项式定理.2、相关概念(1)公式右边的多项式叫做(a+b)n的二项展开式.(2)各项的系数C r n(r=0,1,2,…,n)叫做展开式的二项式系数.(3)展开式中的C r n a n-r b r叫做二项展开式的通项,记作:T r+1,它表示展开式的第r+1项.(4)在二项式定理中,如果设a=1,b=x,则得到公式(1+x)n=C0n+C1n x+C2n x2+…+C r n x r+…+C n n x n3、展开式具有以下特点(1)项数:共有n+1项;(2)二项式系数:依次为C0n,C1n,C2n,…,C r n,…,C n n;(3)每一项的次数是一样的,即为n次,展开式依a的降幂、b的升幂排列展开;(4)通项是第r+1项.[例1](1)用二项式定理展开(2x-32x2)5.(2)化简:C0n(x+1)n-C1n(x+1)n-1+C2n(x+1)n-2-…+(-1)r C r n(x+1)n-r+…+(-1)n C n n.[思路点拨](1)二项式的指数为5,可直接按二项式定理展开;(2)可先把x+1看成一个整体,分析结构形式,逆用二项式定理求解.[答案](1)(2x-32x2)5=C05(2x)5+C15(2x)4·(-32x2)+…+C55(-32x2)5=32x5-120x2+180x-135x4+4058x7-24332x10.(2)原式=C0n(x+1)n+C1n(x+1)n-1(-1)+C2n(x+1)n-2(-1)2+…+C r n(x+1)n-r(-1)r+…+C n n(-1)n=[(x +1)+(-1)]n=x n.1.求(3x+1x)4的展开式.解:法一:(3x+1x)4=C04(3x)4+C14(3x)3·1x+C24(3x)2·(1x)2+C34(3x)(1x)3+C44(1x)4=81x2+108x+54+12x+1x2.法二:(3x +1x)4=(3x +1)4x 2=1x 2(81x 4+108x 3+54x 2+12x +1)=81x 2+108x +54+12x +1x 2. 2.求C 26+9C 36+92C 46+93C 56+94C 66的值.解:原式=192(92C 26+93C 36+94C 46+95C 56+96C 66) =192(C 06+91C 16+92C 26+93C 36+94C 46+95C 56+96C 66)-192(C 06+91C 16) =192(1+9)6-192(1+6×9)=192(106-55)=12 345. [例2] (1)(x +12 x)8的展开式中常数项为( ) A.3516 B.358 C.354D .105(2)设二项式(x -a x)6(a >0)的展开式中x 3的系数为A ,常数项为B .若B =4A ,则a 的值是________. [答案] (1)二项展开式的通项为 T r +1=C r 8(x )8-r (12 x)r =C r 8(12)r x 4-r. 当4-r =0时,r =4,所以展开式中的常数项为 C 48(12)4=358.故选B. (2)由题意得T r +1=C r 6x6-r (-a x)r =(-a )r C r 6x 36-2r, ∴A =(-a )2C 26,B =(-a )4C 46.又∵B =4A ,∴(-a )4C 46=4(-a )2C 26,解之得a 2=4.又∵a >0,∴a =2. 3.在(2x 2-1x )5的二项展开式中,x 的系数为( )4.A .10B .-10C .40D .-40解析:二项式(2x 2-1x )5的展开式的第r +1项为T r +1=C r 5(2x 2)5-r (-1x)r =C r 5·25-r ×(-1)r x 10-3r .当r =3时含有x ,其系数为C 35·22×(-1)3=-40.4.(1+3x )n (其中n ∈N 且n ≥6)的展开式中,若x 5与x 6的系数相等,则n = ( )A .6B .7C .8D .9解析:二项式(1+3x )n 的展开式的通项是T r +1=C r n 1n -r ·(3x )r =C r n ·3r ·x r.依题意得C 5n ·35=C 6n·36,即n (n -1)(n -2)(n -3)(n -4)5! =3×n (n -1)(n -2)(n -3)(n -4)(n -5)6!(n ≥6),解得n =7.5.在(32x -12)20的展开式中,系数是有理数的项共有( )A .4项B .5项C .6项D .7项解析:T r +1=C r 20(32x )20-r (-12)r =(-22)r ·(32)20-r C r 20·x 20-r . ∵系数为有理数,∴(2)r与20r 32-均为有理数,∴r 能被2整除,且20-r 能被3整除. 故r 为偶数,20-r 是3的倍数,0≤r ≤20, ∴r =2,8,14,20.引入:nb)+(a 的展开式的二次项系数,当n 取正整数时可以表示成如下形式:二项式系数的性质(1)每一行的两端都是1,其余每个数都等于它“肩上”两个数的和.即C 0n =C n n =1,C m n +1=C m -1n +C m n . (2)每一行中,与首末两端“等距离”的两个数相等,即C m n =C n -mn.(3)如果二项式的幂指数n 是偶数,那么其展开式中间一项12+n T 的二项式系数最大;如果n 是奇数,那么其展开式中间两项12121++++n n T T 的二项式系数相等且最大.(4)二项展开式的各二项式系数的和等于2n .即C 0n +C 1n +C 2n +…+C n n =2n .且C 0n +C 2n +C 4n +…=C 1n +C 3n +C 5n +…=2n -1.[例1] 如图,在“杨辉三角”中,斜线AB 的上方,从1开始箭头所示的数组成一个锯齿形数列:1,2,3,3,6,4,10,5,….记其前n 项和为Sn ,求S19的值.[思路点拨] 由图知,数列中的首项是C 22,第2项是C 12,第3项是C 23,第4项是C 13,…,第17项是C 210,第18项是C 110,第19项是C 211.[答案] S 19=(C 22+C 12)+(C 23+C 13)+(C 24+C 14)+…+(C 210+C 110)+C 211=(C 12+C 13+C 14+…+C 110)+(C 22+C 23+…+C 210+C 211)=(2+3+4+…+10)+C 312=(2+10)×92+220=274.n 行的首尾两个数均为________.解析:由1,3,5,7,9,…可知它们成等差数列,所以an =2n -1.答案:2n -12.如图,由二项式系数构成的杨辉三角中,第________行从左到右第14个数与第15个数之比为2∶3.解析:设第n 行从左至右第14与第15个数之比为2∶3,则3C 13n =2C 14n ,即3n !13!(n -13)!=2n !14!(n -14)!.解得n =34. [例2] 设)(2x )-(12012201222102012R x x a x a x a a ∈++++=(1)求2012210a a a a ++++ 的值. (2)求2011531a a a a ++++ 的值. (3)求||||||||2012210a a a a ++++ 的值.[思路点拨] 先观察所要求的式子与展开式各项的特点,用赋值法求解.[答案] (1)令x =1,得a 0+a 1+a 2+…+a 2 012=(-1)2 012=1.①(2)令x =-1,得a 0-a 1+a 2-…+a 2 012=32 012.② ①-②得2(a 1+a 3+…+a 2 011)=1-32 012, ∴a 1+a 3+a 5+…+a 2 011=1-32 0122.(3)∵T r +1=C r 2 012(-2x )r =(-1)r ·C r 2 012·(2x )r,∴a 2k -1<0(k ∈N +),a 2k >0(k ∈N). ∴|a 0|+|a 1|+|a 2|+|a 3|+…+|a 2 012| =a 0-a 1+a 2-a 3+…+a 2 012 =32 012.[总结] 赋值法是解决二项展开式中项的系数问题的常用方法.根据题目要求,灵活赋给字母不同值是解题的关键.一般地,要使展开式中项的关系变为系数的关系,令x =0可得常数项,令x =1可得所有项的和,令x =-1可得偶次项系数之和与奇次项系数之和的差.3.()()()nx x x ++++++1112的展开式中各项系数的和为( )A .12+n B .12-n C .121-+nD .221-+n解析:令x =1,则222222132-=+++++n n答案:D4.已知14141313221072)21x a x a x a x a a x x +++++=-+ a14x14.(1)求1413210a a a a a +++++ (2)求13531a a a a +++ 解:(1)令x =1,则1413210a a a a a +++++ =72=128. ①(2)令x =-1,则14133210a a a a a a +-+-+- =7)2(-=-128.②①-②得2(13531a a a a ++++ )=256,∴13531a a a a ++++ =128.[例3] (10分)已知(23x+3x 2)n 的展开式中,各项系数和与它的二项式系数和的比为32.(1)求展开式中二项式系数最大的项; (2)求展开式中系数最大的项.[思路点拨] 根据已知条件求出n ,再根据n 为奇数或偶数确定二项式系数最大的项和系数最大的项.[答案] 令x =1,则展开式中各项系数和为(1+3)n =22n .(1分)又展开式中二项式系数和为2n , ∴22n 2n =2n=32,n =5. (2分)(1)∵n =5,展开式共6项,∴二项式系数最大的项为第三、四两项, (3分) ∴T 3=C 25(23x)3(3x 2)2=90x 6,(4分) T 4=C 35(23x)2(3x 2)3=270223x.(5分)(2)设展开式中第k +1项的系数最大, 则由T k +1=C k 5(23x)5-k (3x 2)k =3k C k51043k x+,(6分)得⎩⎪⎨⎪⎧3k C k 5≥3k -1C k -15,3k C k 5≥3k +1C k +15,,∴72≤k ≤92,∴k =4, (8分)即展开式中系数最大的项为T 5=C 45(23x)(3x 2)4=405263x.(10分)[总结] (1)求二项式系数最大的项,根据二项式系数的性质,当n 为奇数时,中间两项的二项式系数最大;当n 为偶数时,中间一项的二项式系数最大.(2)求展开式中系数最大项与二项式系数最大项是不同的,需根据各项系数的正、负变化情况,一般采用列不等式组、解不等式的方法求得.变式训练5.若(x 3+1x 2)n 的展开式中第6项系数最大,则不含x 的项是( )A .210B .120C .461D .416解析:由题意知展开式中第6项二项式系数最大, n2+1=6,∴n =10, T r +1=C r 10x3(10-r )(1x2)r =C r 10x 30-5r . ∴30-5r =0.∴r =6.常数项为C 610=210. 答案:A 5.已知()nx 31+的展开式中,末三项的二项式系数的和等于121,求展开式中二项式系数最大的项.解:由题意知C n n +C n -1n +C n -2n =121, 即C 0n +C 1n +C 2n =121,∴1+n+n(n-1)2=121,即n2+n-240=0,解得n=15或-16(舍).∴在(1+3x)15的展开式中二项式系数最大的项是第八、九两项,且T8=C715(3x)7=C71537x7,T9=C815(3x)8=C81538x8.1.二项式展开式中的常数项是()A.180B.90C.45D.3602.二项式的展开式中x3 的系数是()A.84B. -84C.126D. -1263.设,则=()A.﹣2014B.2014C.﹣2015D.20154.的展开式中含有常数项为第( )项A.4B.5C.6D.75.若对于任意的实数x ,有x3=a0+a1(x-2)+a2(x-2)2+a3(x-2)3,则a2的值为()A.3B.6C.9D.126.在二项式的展开式中,含x4 的项的系数是()A.﹣10B.10C.﹣5D.57.展开式中不含x4项的系数的和为( )A.-1B.0C.1D.28.812014 除以100的余数是()A.1B.79C.21D.819.除以9的余数为( )A.8B.7C.6D.510.二项式展开式中的常数项是()A.第7项B.第8项C.第9项D.第10项11.在二项式的展开式中,前三项的系数成等差数列,则该二项式展开式中x-2项的系数为()A.1B.4C.8D.1612.将二项式的展开式按x的降幂排列,若前三项系数成等差数列,则该展开式中x的指数是整数的项共有()个A.3B.4C.5D.613.已知展开式中,各项系数的和与其各项二项式系数的和之比为64,则n等于()A.4B.5C.6D.714.展开式中x3的系数为10,则实数a等于()A. -1B.C.1D.215.在的二项式展开式中,只有第5项的二项式系数最大,则n= ()A.6B.7C.8D.9二、填空题16.设的展开式的各项系数之和为M ,二项式系数之和为N ,若M-N=240 ,则n =________.17.的展开式中各项系数的和为2,则该展开式中常数项为________.18.(a+2x+3x2)(1+x)5的展开式中一次项的系数为-3 ,则x5的系数为________19.已知的展开式中的常数项为T ,f(x) 是以T 为周期的偶函数,且当时,f(x)=x ,若在区间[-1,3] 内,函数g(x)=f(x)-kx-k有4个零点,则实数k 的取值范围是________20.对任意实数x ,有,则a3 的值为________.三、解答题21.求的二项展开式中的第5项的二项式系数和系数.22.在二项式的展开式中:(1)求展开式中含x3项的系数;(2)如果第3k项和第k+2项的二项式系数相等,试求k的值.23.已知(+3x2)n的展开式中,各项系数和比它的二项式系数和大992,求:(1)展开式中二项式系数最大的项;(2)展开式中系数最大的项.24.已知,且.(1)求n的值;(2)求的值25.已知的展开式的二项式系数之和为32,且展开式中含x3项的系数为80.(1)求m和n的值;(2)求展开式中含x2项的系数.课堂运用答案解析一、选择题1.【答案】A【考点】二项式定理【解析】【解答】二项式展开式的通项为令得r=2所以二项式展开式中的常数项是.故选A.【分析】本题主要考查了二项式定理,解决问题的关键是根据二项式通项计算即可.2.【答案】B【考点】二项式系数的性质【解析】【解答】由于二项式的通项公式为,令9-2r=3,解得r=3,∴展开式中x3的系数是(−1)3• ,故答案为B.【分析】本题主要考查了二项式系数的性质,解决问题的关键是根据二项式系数的性质计算即可.3.【答案】D【考点】二项式定理的应用【解析】【解答】由题意可得即为展开式第2015项的系数,再根据通项公式可得第2015项的系数为:,故选D.【分析】本题主要考查了二项式定理的应用,解决问题的关键是根据二项式定理的性质分析计算即可.4.【答案】B【考点】二项式定理【解析】【解答】由二项展开式公式:,当8-2r=0,即r=4时,T5为常数项,所以常数项为第5项.故选B【分析】本题主要考查了二项式定理,解决问题的关键是根据二项式计算即可.5.【答案】B【考点】二项式定理的应用【解析】【解答】因为,所以,故选择B.【分析】本题主要考查了二项式定理的应用,解决问题的关键是根据二项式的性质计算即可.6.【答案】B【考点】二项式系数的性质【解析】【解答】由二项式定理知,二项式的展开式通项为:,令,得,则的项的系数为:.【分析】本题主要考查了二项式系数的性质,解决问题的关键是根据二项式定理的性质计算即可.7.【答案】B【考点】二项式系数的性质【解析】【解答】由二项式定理知,展开式中最后一项含x4,其系数为1,令x=1得,此二项展开式的各项系数和为,故不含x4项的系数和为1-1=0,故选B.【分析】本题主要考查了二项式系数的性质,解决问题的关键是根据二项式的特征计算即可.8.【答案】C【考点】二项式定理的应用【解析】【解答】== 4,即除以100的余数为21.【分析】本题主要考查了二项式定理的应用,解决问题的关键是根据二项式性质分析计算即可.9.【答案】B【考点】二项式定理的应用【解析】【解答】依题意S=++…+=227-1=89-1=(9-1)9-1=×99-×98+…+×9--1=9( ×98-×97+…+)-2.∴ ×98-×97+…+是正整数,∴S被9除的余数为7.选B.【分析】本题主要考查了二项式定理的应用,解决问题的关键是根据二项式展开性质计算即可.10.【答案】C【考点】二项式定理【解析】【解答】根据二项式定理可得的第项展开式为,要使得为常数项,要求,所以常数项为第9项.【分析】本题主要考查了二项式定理,解决问题的关键是根据二项式定理的性质分析计算即可.11.【答案】A【考点】二项式系数的性质【解析】【解答】由题意可得,成等差数列,∴ ,解得n=8.故展开式的通项公式为,令,求得r=8,故该二项式展开式中项的系数为,故选:A.【分析】本题主要考查了二项式系数的性质,解决问题的关键是二项式性质计算即可.12.【答案】A【考点】二项式系数的性质【解析】【解答】展开式的通项为∴前三项的系数分别是,∴前三项系数成等差数列∴∴∴当时,∴,展开式中x 的指数是整数,故共有3个,答案为A.【分析】本题主要考查了二项式系数的性质,解决问题的关键是根据实际问题结合二项式系数的性质计算即可.13.【答案】C【考点】二项式系数的性质【解析】【解答】展开式中各项系数和为x取时式子的值,所以各项系数和为,而二项式系数和为,因此,所以,答案选C.【分析】本题主要考查了二项式系数的性质,解决问题的关键是根据二项式系数的性质分析计算即可. 14.【答案】D【考点】二项式定理【解析】【解答】二项式的展开式的通项,当5-2r=3 时,r=1,系数,解得a=2,答案选D.【分析】本题主要考查了二项式定理,解决问题的关键是根据二项式定理分析其通项计算即可.15.【答案】C【考点】二项式系数的性质【解析】【解答】因为在的二项式展开式中,只有第5项的二项式系数最大所以由此可得:,即所以即.【分析】本题主要考查了二项式系数的性质,解决问题的关键是根据二项式系数的单调性计算即可.二、填空题16.【答案】4【考点】二项式系数的性质【解析】【解答】由题设知:,解得:,所以答案应填:4.【分析】本题主要考查了二项式系数的性质,解决问题的关键是根据二项式系数的性质计算即可.17.【答案】40【考点】二项式系数的性质【解析】【解答】由题意,,解得:,所以的展开式中常数项为:所以答案应填:40.【分析】本题主要考查了二项式系数的性质,解决问题的关键是二项式系数的性质计算即可.18.【答案】39【考点】二项式系数的性质【解析】【解答】由题意:,解得:,所以,展开式中的系数为,所以答案应填:39【分析】本题主要考查了二项式系数的性质,解决问题的关键是根据二项式性质计算即可.19.【答案】""【解析】【解答】∴ 的常数项为∴f(x)是以2为周期的偶函数∴区间[-1,3]是两个周期∴区间[-1,3]内,函数有4个零点可转化为f(x)与有四个交点当k=0时,两函数图象只有两个交点,不合题意,当k≠0时,∴ ,两函数图象有四个交点,必有解得,故填:.【分析】本题主要考查了二项式定理的应用,解决问题的关键是根据二项式定理的性质结合函数性质计算即可.20.【答案】8【考点】二项式系数的性质【解析】【解答】,所以.【分析】本题主要考查了二项式系数的性质,解决问题的关键是要配成指定形式,再展开三、解答题21.【答案】【解答】解:,所以二项式系数为,系数为.【考点】二项式系数的性质【解析】【分析】本题主要考查了二项式系数的性质,解决问题的关键是利用二项式定理的通项公式写出,再求出二项式系数与系数.22.【答案】(1)【解答】解:展开式第r+1项:令,解得r=2,∴展开式中含x3项的系数为(2)【解答】解:∴第3k项的二项式系数为,第k+2项的二项式系数∴故3k-1=k+1或3k-1+k+1=12 解得k=1或k=3【解析】【分析】本题主要考查了二项式系数的性质,解决问题的关键是(1)写出二项式的展开式的特征项,当x的指数是3时,把3代入整理出k 的值,就得到这一项的系数的值.(2)根据上一问写出的特征项和第3k项和第k+2项的二项式系数相等,表示出一个关于k的方程,解方程即可.23.【答案】(1)解:令x=1,则展开式中各项系数和为(1+3)n=22n.又展开式中二项式系数和为2n,∴22n-2n=992,n=5∴n=5,展开式共6项,二项式系数最大的项为第3、4两项,∴T3=C52 ( )3(3x2)2=90x6,T4=C53 ( )2(3x2)3=(2)解:设展开式中第r+1项系数最大,则T r+1=C5r ( )5-r(3x2)r=3r C5r,∴ ,则,∴r=4,即展开式中第5项系数最大,T5=C54 ( )(3x2)4=405.【考点】二项式系数的性质【解析】【分析】本题主要考查了二项式系数的性质,解决问题的关键是(1)利用赋值法求出各项系数和,与二项式系数和求出值,利用二项式系数的性质求展开式中二项式系数最大的项;(2)设出展开式中系数最大的项,利用进行求解即可.24.【答案】(1)【解答】解:由已知得:,由于, 所以(2)【解答】解:当x=1时,当x=0时,所以,【考点】二项式系数的性质,二项式定理的应用【解析】【分析】本题主要考查了二项式系数的性质;二项式定理的应用,解决问题的关键是:(1)首先注意等式中n的取值应满足:且n为正整数,其次是公式和的准确使用,将已知等式转化为n的方程,解此方程即得;(2)应用赋值法:注意观察已知二项式及右边展开式,由于要求,所以首先令x=1,得;然后就只要求出a0的值来即可,因此需令x=0,得,从而得结果25.【答案】(1)【解答】解:由题意,,则n=5,由通项公式,则r=3,所以,所以m=2(2)【解答】解:=,所以展开式中含x2项的系数为.【考点】二项式系数的性质,二项式定理的应用【解析】【分析】本题主要考查了二项式系数的性质;二项式定理的应用,解决问题的关键是(1)二项式系数之和为:,令易求得n,其次利用二项展开式的通项公式中令r=3,易求得m;(2)在前小题已求得的m,n的基础上,要求展开式中求特定项(含x2项)的系数,只需把两个二项式展开,对于展开式中的常数项与展开式中的x2项的系数乘,一次项系数与其一次项系数乘,二次项系数与其常数项乘,再把所得值相加即为所求.一、选择题1.二项式展开式中的系数为()A.5B.16C.80D.2.在的展开式中,含的项的系数是()A.60B.160C.180D.2403.展开式的各项系数之和大于8,小于32,则展开式中系数最大的项是()A. B. C. D.或4.设,那么的值为()A. B. C. D.5.的展开式中含项的系数为()A. B. C. D.6.的展开式中,的系数为()A.15B.C.60D.7.的展开式中常数项为()A. B. C. D.8.的展开式中,各项系数之和为,各项的二项式系数之和为,且,则展开式中常数项为()A.6B.9C.12D.18二、填空题9.若的展开式中第三项与第五项的系数之比为,则展开式中常数项是________.10.在的展开式中,项的系数为________.(结果用数值表示)11.二项式的展开式中,前三项的系数依次成等差数列,则此展开式中有理项有________项.三、解答题12.已知在的展开式中,第6项为常数项.(1)求;(2)求含项的系数;(3)求展开式中所有的有理项.13.已知二项式.(1)若它的二项式系数之和为.①求展开式中二项式系数最大的项;②求展开式中系数最大的项;(2)若,求二项式的值被除的余数.14.已知在的展开式中,第5项的系数与第3项的系数之比是14∴1.(1)求展开式中的系数;(2)求展开式中系数绝对值最大的项;(3)求的值.课后作业答案解析1.【答案】C【考点】二项式定理,二项式系数的性质【解析】【解答】二项展开式的通项公式为,则当时,其展开式中的的系数为.故答案为:C.【分析】先求出二项的展开式的通项,然后令x的指数为1,求出r,从而可求出x的系数.2.【答案】D【考点】二项式定理的应用【解析】【解答】展开式的通项为,令,则,则含的项的系数为.故答案为:D.【分析】利用二项展开式的通项公式求出第r+1项,令x的指数为7得含x7项的系数.3.【答案】A【考点】二项式定理的应用【解析】【解答】令,可得各项系数的之和为,则,解得,中间一项的系数最大,则,故答案为:A.【分析】令x=1,可求出展开式中的各项系数之和,通过各项系数之和大于8,小于32由已知求出n,即可求解中间项系数最大.4.【答案】B【考点】二项式系数的性质【解析】【解答】时,;时,,∴ ,,∴ ,故答案为:B.【分析】利用展开式,分别令x=1与-1,两式相加或相减可得结论.5.【答案】A【考点】二项式定理的应用【解析】【解答】∴ ,故展开式中含项的系数为.故答案为:A.【分析】把(1+x)5 按照二项式定理展开,可得展开式中含x3项的系数.6.【答案】C【考点】二项式系数的性质【解析】【解答】,系数为.故答案为:C.【分析】根据二项式展开式的通项公式,利用展开式中x4y2,即可求出对应的系数.7.【答案】B【考点】二项式系数的性质,二项式定理的应用【解析】【解答】因为,常数项为,中常数项为,故展开式中常数项为,故答案为:B.【分析】把所给的三项式变为二项式,利用二项式展开式的通项公式,求得展开式中常数项.8.【答案】B【考点】二项式系数的性质【解析】【解答】由二项展开式的性质,可得,所以,所以.展开式的通项为,令可得,常数项为,故答案为:B.【分析】通过给x 赋值1得各项系数和,据二项式系数和公式求出B,列出方程求出n,利用二项展开式的通项公式求出第r+1项,令x的指数为0得常数项.9.【答案】【考点】二项式定理的应用【解析】【解答】的展开式中第三项的系数为,第五项的系数为,由题意有,解得. 的展开式的通项为,由得,所以展开式的常数项为.【分析】利用二项展开式的通项公式求出展开式中第三项与第五项的系数,列出方程求出n;利用二项展开式的通项公式求出第r+1项,令x的指数为0求出常数项.10.【答案】【考点】二项式定理的应用【解析】【解答】,令,得,,的展开式的通项为,则项的系数为.【分析】先把三项式写成二项式,求得二项式展开式的通项公式,再求一次二项式的展开式的通项公式,令x的幂指数等于4,求得r、m的值,即可求得x4项的系数.11.【答案】3【考点】二项式系数的性质,二项式定理的应用【解析】【解答】由题意可得成等差数列,即,化简可得,解得n=8,或n=1(舍去).二项式的展开式的通项公式为,为整数,可得r=0,4,8,故此展开式中有理项的项数是3.【分析】利用二项展开式的通项公式求出展开式的通项,求出前三项的系数,利用等差数列得到关于n的等式,求出n的值,将n的值代入通项,令x的指数为整数,得到r的值,得到展开式中有理项的项数.12.【答案】(1)解:的展开式的通项为= ,又第6项为常数项,则当r=5时,,即=0,可得n=10.(2)解:由(1)可得,,令,可得r=2,所以含x2项的系数为(3)解:由(1)可得,,若T r+1为有理项,则,且0≤r≤10,所以r=2,5,8,则展开式中的有理项分别为,,【考点】二项式系数的性质【解析】【分析】(1)利用通项公式即可得出.(2)根据通项公式,由题意得x的指数是整数,通过取值即可得出.13.【答案】(1)解:,通项为.①二项式系数最大的项为第项,.② ,则展开式中系数最大的项为第项,(2)解:,转化为被除的余数,,即余数为【考点】二项式系数的性质,二项式定理的应用【解析】【分析】(1)根据二项式系数之和为2n=128 求得n的值,可得二项式系数最大的项为第四项和第五项,利用二项展开式的通项公式求出这2项.(2)假设第r+1项的系数最大,列出不等式组求得r的值,可得结论.14.【答案】(1)解:由题意得,解得.通项为,令,得,于是系数为(2)解:设第项系数的绝对值最大,则解得,于是只能为6,所以系数绝对值最大的项为(3)解:原式【考点】二项式系数的性质,二项式定理的应用【解析】【分析】(1)利用二项展开式的通项公式求出展开式的通项,求出展开式中第3项与第5项的系数列出方程求出n的值.(2)设出第r+1项为系数的绝对值最大的项,即可列出关于r的不等式,解得即可,(3)利用二项式定理求得结果.。

计数原理:第3讲二项式定理

计数原理:第3讲二项式定理

二项式定理1.二项式定理n*(a + b) = _______________________________ (k , n € N ),这个公式所表示的规律叫做二项式定理.(a + b)n 的二项展开式共有 _______________ 项,其中各项的系数 ______________ (k € {0 , 1, 2,…,n})叫 做二项式系数,式中的 _____________ 叫做二项展开式的通项,用 T k +1表示,即 ____________________ •通项为展开式的第 ___________ 项.2.二项式系数的性质 (1) 对称性在二项展开式中,与首末两端等距离”的两个二项式系数相等,即 C n = C n , C n = C n , C n =,…,C n = C 0.(2) 增减性与最大值二项式系数c n ,当 _______________ 时,二项式系数是递增的;当 ______________ 时,二项式系数是递减 的.当n 是偶数时,中间的一项 _____________ 取得最大值.当n 是奇数时,中间的两项 _____________ 和 _____________ 相等,且同时取得最大值. ⑶各二项式系数的和(a + b)n 的展开式的各个二项式系数的和等于 ____________ ,即C 0 + C 1+ U+…+ ◎+••• + C ;; = _________ 二项展开式中,偶数项的二项式系数的和等于奇数项的二项式系数的和,即 c 1+ C 3+ ◎+•••=氏+ U+C 4+ …= __________ .【答案】1.++...+...+w+iCj C 制Ti 二C 紗乍护七+12.【基础自测】1在2x 2— 1 5的二项展开式中,x 的系数为( )A . 10B . — 10C . 40D .— 40解:二项展开式的通项为 T r +1= C 5(2x 2)5 'J — X / = C 525 r x 10 3r (一 1)r ,令 10— 3r = 1,解得 r = 3,所以w+_l 7T 4= C;22X (— 1)3=— 40x ,所以 x 的系数为一40•故选 D.2n *2 (1 + X ) (n € N )的展开式中,系数最大的项是 ( )A •第n + 1项B •第n 项C .第n + 1项D .第n 项与第n + 1项解:展开式共有2n + 1项,且各项系数与相应的二项式系数相同•故选 C.3使?x + 总](n € N *)的展开式中含有常数项的最小的 n 为( )A . 4B . 5C . 6D . 74 设(X — 1)21 = a °+ a 1x + a 2X 2+…+ 玄2低21,贝V a® + a^= ________________ .解:T r + 1 = C 21X^ r (一 1),,…a 10= C 21(一 1)" , a 11= C 21 ( 一 1)勺° •- a 10 + a 11 = 0.故填 0. 5 设「2+ X )10= a °+a 1x + a 2X 2+…+ a 10x 10,贝V (a °+ a 2 + a 4+…+ ag)2—⑻十 a 3 + a 5+…+ a g )2的值为解:设 f(x)=(”』2 + X )10,则(a °+ a ?+ a °+…+ ag)2—⑻十 a 3 + a §+…+ a g )2= [(a °+ a ?+ a °+…+ aw)+ ⑻ + a 3 + a 5+ …+ a 9)][( a o + a 2 + a 4 + …+ ag)—(a 1 + a 3 + a 5 + …+ a ?)] = f(1)f( — 1)=(岑2 + 1)10(p2 — 1)10 = 1.故填 1.【典例】 类型一求特定项例一 (1) x + a 2X — 1 5的展开式中各项系数的和为 2,则该展开式中的常数项为 ( )A . — 40B . — 20C . 20D . 40解:令"1,可得卄1=2, 口f的展幵式中+项的系数为C 辺(―卩工项的系数为€?2\.■.«+典肚一打的展开式中常数顷为C?2:. - 1 ]十匚工:=40一故选D.【评析】①令工=1可得所有项的系数和,②在求出口的值后,再分析常数项的构成,便可解得常数 项.广 1 帯(2)已知在 饭一 丁 '的展开式中,第6项为常数项,求含 X 2项的系数及展开式中所有的有理项.< 2钱丿 n —5 1 丨 r / 1 r n —2r解:通项 T r +1= C fi x 3 一 2 X 3= C n 一 2 X 3,•••第6项为常数项,••• r = 5时,有上器=0,得n = 10.令芝芦=2,得r = 2,二含x 2项的系数为C ?。

二项式定理 二项展开式3赋值求某些项系数的和与差

二项式定理 二项展开式3赋值求某些项系数的和与差

1.二项式定理⑴二项式定理()()011222...nn n n n n n n n n a b C a C a b C a b C b n --*+=++++∈N这个公式表示的定理叫做二项式定理. ⑵二项式系数、二项式的通项011222...n n n n nn n n n C a C a b C a b C b --++++叫做()na b +的二项展开式,其中的系数()0,1,2,...,r n C r n =叫做二项式系数,式中的r n r r n C a b -叫做二项展开式的通项,用1r T +表示,即通项为展开式的第1r +项:1r n r rr nT C a b -+=. ⑶二项式展开式的各项幂指数二项式()na b +的展开式项数为1n +项,各项的幂指数状况是 ①各项的次数都等于二项式的幂指数n .②字母a 的按降幂排列,从第一项开始,次数由n 逐项减1直到零,字母b 按升幂排列,从第一项起,次数由零逐项增1直到n . ⑷几点注意①通项1r n r rr nT C a b -+=是()n a b +的展开式的第1r +项,这里0,1,2,...,r n =. ②二项式()n a b +的1r +项和()nb a +的展开式的第1r +项r n r rn C b a -是有区别的,应用二项式定理时,其中的a 和b 是不能随便交换的.知识内容赋值求某些项系数的和与差③注意二项式系数(rn C )与展开式中对应项的系数不一定相等,二项式系数一定为正,而项的系数有时可为负.④通项公式是()na b +这个标准形式下而言的,如()na b -的二项展开式的通项公式是()11rr n r r r n T C a b -+=-(只须把b -看成b 代入二项式定理)这与1r n r r r n T C a b -+=是不同的,在这里对应项的二项式系数是相等的都是r n C ,但项的系数一个是()1rr n C -,一个是r n C ,可看出,二项式系数与项的系数是不同的概念.⑤设1,a b x ==,则得公式:()12211......nr rn nn n x C x C x C x x +=++++++. ⑥通项是1r T +=r n r rnC a b -()0,1,2,...,r n =中含有1,,,,r T a b n r +五个元素, 只要知道其中四个即可求第五个元素.⑦当n 不是很大,x 比较小时可以用展开式的前几项求(1)n x +的近似值.2.二项式系数的性质⑴杨辉三角形:对于n 是较小的正整数时,可以直接写出各项系数而不去套用二项式定理,二项式系数也可以直接用杨辉三角计算.杨辉三角有如下规律:“左、右两边斜行各数都是1.其余各数都等于它肩上两个数字的和.” ⑵二项式系数的性质:()na b +展开式的二项式系数是:012,,,...,n n n n n C C C C ,从函数的角度看rn C 可以看成是r 为自变量的函数()f r ,其定义域是:{}0,1,2,3,...,n . 当6n =时,()f r 的图象为下图:这样我们利用“杨辉三角”和6n =时()f r 的图象的直观来帮助我们研究二项式系数的性质. ①对称性:与首末两端“等距离”的两个二项式系数相等.事实上,这一性质可直接由公式m n mn n C C -=得到.②增减性与最大值如果二项式的幂指数是偶数,中间一项的二项式系数最大; 如果二项式的幂指数是奇数,中间两项的二项式系数相等并且最大. 由于展开式各项的二项式系数顺次是()01211,,112n n n n n n C C C -===⋅, ()()312123n n n n C --=⋅⋅,..., ()()()()112...2123....1k n n n n n k C k ----+=⋅⋅⋅⋅-,()()()()()12...21123...1kn n n n n k n k C k k---+-+=⋅⋅⋅-,...,1n n C =.其中,后一个二项式系数的分子是前一个二项式系数的分子乘以逐次减小1的数(如,1,2,...n n n --),分母是乘以逐次增大的数(如1,2,3,…).因为,一个自然数乘以一个大于1的数则变大,而乘以一个小于1的数则变小,从而当k 依次取1,2,3,…等值时,r n C 的值转化为不递增而递减了.又因为与首末两端“等距离”的两项的式系数相等,所以二项式系数增大到某一项时就逐渐减小,且二项式系数最大的项必在中间. 当n 是偶数时,1n +是奇数,展开式共有1n +项,所以展开式有中间一项,并且这一项的二项式系数最大,最大为2nnC .当n 是奇数时,1n +是偶数,展开式共有1n +项,所以有中间两项. 这两项的二项式系数相等并且最大,最大为1122n n nnCC-+=.③二项式系数的和为2n ,即012......2r n n nn n n n C C C C C ++++++=. ④奇数项的二项式系数的和等于偶数项的二项式系数的和,即0241351......2n n n n n n n C C C C C C -+++=+++=.常见题型有:求展开式的某些特定项、项数、系数,二项式定理的逆用,赋值用,简单的组合数式问题.二项展开式3赋值求某些项系数的和与差【例1】 5231x x ⎛⎫+ ⎪⎝⎭的展开式中常数项为______;各项系数之和为______.(用数字作答)【例2】 若1()nx x+展开式的二项式系数之和为64,则展开式的常数项为_______(用数字作答).【例3】 (82x 展开式中不含4x 的项的系数和为A .1-B .92C .102D .152典例分析【例4】 若231nx x ⎛⎫+ ⎪⎝⎭展开式的各项系数之和为32,则n =_____,其展开式中的常数项为______.(用数字作答)【例5】 6260126(1)x a a x a x a x -=++++,则0a +126a a a +++=______.【例6】 在二项式412nx x ⎛+ ⎪⎝⎭的展开式中,前三项的系数成等差数列,求展开式中所有有理项.【例7】 522x x ⎛⎫+ ⎪⎝⎭的展开式中2x 的系数是________;其展开式中各项系数之和为_______.(用数字作答)【例8】 若423401234(2x a a x a x a x a x =++++,则2202413()()a a a a a ++-+的值为_____(用数字作答).【例9】 设(5nx -的展开式的各项系数之和为M , 二项式系数之和为N ,若240M N -=, 则展开式中3x 的系数为( )A .150-B .150C .500-D .500【例10】 若n x )2(+展开式的二项式系数之和等于64,则第三项是 .【例11】 若1nx x ⎛⎫+ ⎪⎝⎭展开式的二项式系数之和为64,则展开式的常数项为 .【例12】 在二项式n的展开式中,前三项系数的绝对值成等差数列.⑴求展开式的第四项;⑵求展开式的常数项;⑶求展开式的各项系数的和.【例13】 若()1002310001231002a a x a x a x a x =+++++,求()()22024********a a a a a a a a ++++-++++的值.【例14】 若201(1)(1)(1)(1)(1)n n n x x x a a x a x ++++++=+-+-,则01n a a a ++= .【例15】 若423401234(2x a a x a x a x a x =++++,则2202413()()a a a a a ++-+的值为_____(用数字作答).【例16】 若52345012345(2)x a a x a x a x a x a x -=+++++,则12345a a a a a ++++=_____.【例17】 已知7270127(12)x a a x a x a x -=++++,求017||||||a a a +++.【例18】 若()72345670123456712x a a a x a x a x a x a x a x +=+++++++,求0246a a a a +++的值.【例19】 若423401234(2x a a x a x a x a x +=++++,则2202413()()a a a a a ++-+的值为( ).A .1B .1-C .0D .2【例20】 若1002100012100(12)(1)(1)(1)x a a x a x a x +=+-+-++-,则13599a a a a ++++=( )A .1001(31)2-B .1001(31)2+C .1001(51)2-D .1001(51)2+【例21】 已知()77012712x a a x a x a x -=++++,求:⑴ 1237a a a a ++++;⑵ 1357a a a a +++; ⑶ 0246a a a a +++.【例22】 若()1002310001231002a a x a x a x a x -=+++++,求()()22024********a a a a a a a a ++++-++++的值.【例23】 若55432543210(2)x a x a x a x a x a x a -=+++++,则12345a a a a a ++++=________.(用数字作答)【例24】 若201(1)(1)(1)(1)(1)n n n x x x a a x a x ++++++=+-+-,则01n a a a ++= .【例25】 若()2009200901200912x a a x a x -=+++,则20091222009222a a a +++的值为( ) A .0B .2C .1-D .2-【例26】 已知23*0123(1)(1)(1)(1)(1)(2,)n n n x a a x a x a x a x n n +=+-+-+-++-∈N ≥.⑴当5n =时,求012345a a a a a a +++++的值; ⑵设22343,2n n n n a b T b b b b -==++++.试用数学归纳法证明:当2n ≥时,(1)(1)3n n n n T +-=.【例27】 请先阅读:在等式2cos 22cos 1()x x x =-∈R 的两边求导得2(cos 2)(2cos 1)x x ''=-,由求导法则得(sin 2)24cos (sin )x x x -⋅=⋅-,化简得sin 22sin cos x x x =. ⑴利用上述想法(或其他方法),结合等式012211(1)C C C C C n n n n nn n n n n x x x xx --+=+++⋅⋅⋅++(x ∈R ,整数2n ≥),证明:112[(1)1]C nn k k n k n x k x--=+-=∑; ⑵对于整数3n ≥,求证:1(1)C 0nk kn k k =-=∑.⑶对于整数3n ≥,求证①21(1)C 0nkknk k =-=∑;②10121C 11n nkn k k n +=-=++∑.【例28】 证明:220C (1)2nk n n k k n n -==+∑.【例29】 证明:n nkn k n k k n n +=--=++++∑20123C (1)(2)(1)(2).【例30】 求证:121C 2C C 2nn n n n n n -+++=⋅【例31】 求51x x ⎛⎫+ ⎪⎝⎭的二项展开式.【例32】 设5432()5101051f x x x x x x =-+-++,则1()f x -等于( )A . 1+B .1C .1+D .1【例33】 设2a i =+,求11212121212121A C a C a C a =-+-+【例34】 已知数列0123a a a a ,,,,(00≠a )满足:112(123)i i i a a a i -++==,,, 求证:对于任意正整数n,01111011()(1)(1)(1)C C C C n n n n n nn n n n n n f x a x a x x a x x a x ----=-+-++-+是一次多项式或零次多项式.【例35】 若0()C ni in i f m m ==∑,则22log (3)log (1)f f 等于( )A .2B .12C .1D .3。

多组组合公式

多组组合公式

多组组合公式问题:请提供多组组合公式,并用易于理解的术语解释它们。

回答:1. 排列组合公式:排列组合公式是用来计算从n个元素中选择r个元素并按照一定顺序排列的方式的数量。

排列组合公式分为两种情况:- 排列公式:用于计算从n个元素中选择r个元素并按照一定顺序排列的数量。

排列公式表示为P(n, r),计算公式为P(n, r) = n! / (n-r)!,其中n!表示n的阶乘。

- 组合公式:用于计算从n个元素中选择r个元素并不考虑顺序的数量。

组合公式表示为C(n, r),计算公式为C(n, r) = n! / (r! * (n-r)!)。

2. 二项式定理:二项式定理是用来展开二项式的公式,其中二项式是指两个数相加的形式。

二项式定理表示为(a+b)^n = C(n, 0) * a^n * b^0 + C(n, 1) * a^(n-1) * b^1 + ... + C(n, n) * a^0 * b^n。

该公式可以用于计算展开任意幂次的二项式。

3. 二项式系数公式:二项式系数公式用于计算二项式定理中的各项系数。

二项式系数公式表示为C(n,r) = n! / (r! * (n-r)!),其中n为二项式的幂次,r为展开后的项次。

4. 排列公式的应用:排列公式可以应用于计算某一序列的不同排列方式的数量。

例如,从10个不同的元素中选择3个元素进行排列,可以使用排列公式P(10, 3) = 10! / (10-3)! = 10 * 9 * 8 = 720,得到720种不同的排列方式。

5. 组合公式的应用:组合公式可以应用于计算某一序列的不同组合方式的数量。

例如,从10个不同的元素中选择3个元素进行组合,可以使用组合公式C(10, 3) = 10! / (3! * (10-3)!) = 10 * 9 * 8 / (3 * 2 * 1) = 120,得到120种不同的组合方式。

总结:排列组合公式包括排列公式和组合公式,用于计算从n个元素中选择r个元素的不同排列方式和组合方式的数量。

第三节 二项式定理

第三节 二项式定理

结合二项展开式系数所具有的性质,若
x3+
1 x
n的展开式
的所有二项式系数之和为128,能否确定n的值?
解:由题意可得2n=128,解得n=7.
考点一 求展开式中的特定项或特定系数(基础之翼练牢固)
[题组练通]
1.(2018·全国卷Ⅲ)x2+2x5的展开式中x4的系数为
A.10
B.20
()
C.40
[解题方略] 求展开式系数最大项
如求(a+bx)n(a,b∈R)的展开式系数最大的项,一般是采 用待定系数法,设展开式各项系数分别为A1,A2,…,An+1, 且第k项系数最大,应用AAkk≥ ≥AAkk- +11, 从而解出k来即得.
[过关集训]
1.若
x+ 1 3 x
n的展开式中各项系数之和大于8,但小于32,
82 020-a0=82 020-1,故选B.
[答案] (1)B (2)B
[解题方略] 求二项式系数和的常用方法是赋值法
(1)“赋值法”普遍适用于恒等式,对形如(ax+b)n,(ax2+ bx+c)m(a,b∈R)的式子,求其展开式的各项系数之和,常用赋 值法,只需令x=1即可;对形如(ax+by)n(a,b∈R)的式子,求 其展开式的各项系数之和,只需令x=y=1即可.
=2r·C1r0·x10-2 5r.令10-2 5r=0,得r=2,故展开式中的常数项是 22·C210=180.
(2)∵展开式中只有第11项的二项式系数最大,
∴n=20,∴Tr+1=Cr20·( 3x)20-r31xr=Cr203202-r·x20-43r.
由题得20-43r为整数,则r是3的倍数,
∴r可取0,3,6,9,12,15,18,∴x的指数是整数的项共7项.

二项展开公式

二项展开公式

二项展开公式摘要:1.二项式定理的定义2.二项展开公式的推导3.二项展开公式的应用4.结论正文:一、二项式定理的定义二项式定理,又称二项式定理公式,是组合数学中的一种重要公式。

它表示了在给定的二项式中,每一项的系数与项数之间的关系。

二项式定理的表达式为:(a + b)^n = C(n, 0)a^n + C(n, 1)a^(n-1)b + C(n, 2)a^(n-2)b^2 +...+ C(n, n)b^n其中,a 和b 是任意实数或复数,n 是非负整数,C(n, k) 表示组合数,即从n 个元素中取k 个元素的组合数。

二、二项展开公式的推导二项式定理的推导过程比较简单,主要是通过数学归纳法来证明。

当n=0 时,等式左边为1,右边为C(0, 0)a^0 = 1,等式成立。

假设当n=k 时等式成立,即:(a + b)^k = C(k, 0)a^k + C(k, 1)a^(k-1)b + C(k, 2)a^(k-2)b^2 +...+ C(k, k)b^k当n=k+1 时,等式左边为:(a + b)^(k+1) = (a + b)^k * (a + b)根据假设,(a + b)^k 的每一项都可以表示为C(k, i)a^(k-i)b^i,将其乘以(a + b),得到:(a + b)^(k+1) = C(k, 0)a^(k+1) + C(k, 1)a^kb + C(k, 2)a^(k-1)b^2 +...+ C(k, k)ab^k + C(k, 0)a^kb + C(k, 1)a^(k-1)b^2 +...+ C(k, k)b^k 可以看到,每一项的系数都是C(k, i) 与C(k, k-i) 的和,即C(k+1, i)。

因此,当n=k+1 时,等式也成立。

根据数学归纳法,二项式定理对所有的非负整数n 都成立。

三、二项展开公式的应用二项式定理在组合数学、概率论、统计学等领域都有广泛的应用。

下面举一个简单的例子:假设有一个袋子里有3 个红球,2 个绿球,现在从袋子里随机取2 个球,求取到的球都是红球的概率。

二项式定理ppt课件

二项式定理ppt课件
二项式定理
汇报人:
2023-11-28
目录
• 二项式定理的背景和定义 • 二项式定理的公式和证明 • 二项式定理的应用 • 二项式定理的扩展和推广 • 二项式定理的意义和影响 • 二项式定理的实例和分析
01
二项式定理的背景和定义
背景介绍
二项式定理在数学中有着悠久的历史,它起源于17世纪,是组合数学中的一种基本理论。
03
二项式定理的应用
组合数学中的应用
排列数公式
二项式定理可以用于计算排列数公式,即从n个不同的元素中取出m个元素的所有排列的个数。
组合数公式
二项式定理可以用于计算组合数公式,即从n个不同的元素中取出m个元素的所有组合的个数。
插入与删除操作
二项式定理可以用于计算在n个元素中进行插入或删除操作的总次数,以及进行特定次数的插入或删除操 作的所有可能方式的个数。
概率论中的应用
概率分布
二项式定理可以用于计算二项分布的概率分布,即某个事 件在n次独立试验中发生的次数的概率分布。
01
组合概率
二项式定理可以用于计算多个事件同时 发生的概率,即组合事件发生的概率。
02
03
事件的独立性
二项式定理可以用于判断两个事件是 否独立,即一个事件的发生是否会影 响另一个事件发生的概率。
组合数性质:在二项式定理中,我们 使用了组合数的性质。组合数 $C(n,k)$ 等于 $C(n-1,k-1) + C(n1,k)$,这是组合数的一个重要性质。 这个性质可以帮助我们在二项式定理 的证明过程中进行简化。
指数性质:在证明二项式定理的过程 中,我们还使用了指数的性质。例如 ,当 $n$ 为偶数时,$(a+b)^n = (a+b)^{n/2} \times (a+b)^{n/2}$ ;当 $n$ 为奇数时,$(a+b)^n = (a+b)^{n/2} \times (a+b)^{n/2-1} \times b$。这些指数性质可以帮助 我们在计算过程中进行简化。

教案教学设计中职数学拓展模块314二项式定理

教案教学设计中职数学拓展模块314二项式定理

教案教学设计中职数学拓展模块314二项式定理教学目标:1.理解二项式定理的概念和意义;2.掌握二项式定理的公式和性质;3.能够运用二项式定理解决实际问题。

教学重点:1.二项式定理的概念和公式;2.二项式定理的运用。

教学难点:1.二项式定理的证明;2.二项式定理的应用。

教学流程:Step 1: 引入新知识通过一个实际问题引入二项式定理的概念和意义,例如:小明班里有10名男生和15名女生,他们要组队参加篮球比赛。

我们想知道,小明的一位队友是男生还是女生的概率是多少?Step 2: 导入二项式定理的概念引导学生设想,如果有两个事件A和B,事件A发生的概率是p,事件B发生的概率是q,我们想知道这两个事件中有多少种可能的组合方式。

Step 3: 掌握二项式定理的公式和性质介绍二项式定理的公式:$(a+b)^n=\sum_{k=0}^{n}(C_n^k a^{n-k}b^k)$,并解释公式中各项的含义。

例如,$(a+b)^3=C_3^0 a^3b^0+C_3^1 a^2 b^1+C_3^2 a^1 b^2+C_3^3 a^0 b^3$。

Step 4: 让学生发现二项式定理的性质让学生观察并发现二项式定理中系数的规律,例如:$(a+b)^4=C_4^0a^4b^0+C_4^1a^3b^1+C_4^2a^2b^2+C_4^3a^1b^3+C_4^4a^0b^4$,让学生发现二项式定理中系数的对称性和规律性。

Step 5: 二项式定理的证明给出二项式定理的证明,让学生通过观察和推理理解证明过程。

例如,通过展开$(a+b)^n$和展开$(a+b)^{n-1}(a+b)$,然后对比得出结论。

Step 6: 运用二项式定理解决实际问题让学生通过实际问题的解决来应用二项式定理,例如:计算$(a+b)^5$的展开式的其中一项的系数,或者求$(1+x)^6$的展开式中$x^3$的系数是多少。

Step 7: 小结对本节课所学内容进行小结回顾,并让学生总结二项式定理的概念、公式和性质。

3 第3讲 二项式定理

3 第3讲 二项式定理

第3讲 二项式定理1.二项式定理 (1)定理:(a +b )n =C 0n a n +C 1n a n -1b +…+C k n a n -k b k +…+C n n b n (n ∈N *).(2)通项:第k +1项为T k +1=C k n an -k b k . (3)二项式系数:二项展开式中各项的二项式系数为:C k n (k =0,1,2,…,n ). 2.二项式系数的性质判断正误(正确的打“√”,错误的打“×”)(1)(a +b )n 的展开式中的第r 项是C r n an -r b r .( ) (2)在二项展开式中,系数最大的项为中间一项或中间两项.( ) (3)在(a +b )n 的展开式中,每一项的二项式系数与a ,b 无关.( )(4)通项T r +1=C r n an -r b r 中的a 和b 不能互换.( ) (5)(a +b )n 展开式中某项的系数与该项的二项式系数相同.( ) 答案:(1)× (2)× (3)√ (4)√ (5)×(教材习题改编)二项式⎝⎛⎭⎫2x +1x 26的展开式中,常数项的值是( ) A .240 B .60 C .192D .180解析:选A.二项式⎝⎛⎭⎫2x +1x 26展开式的通项为T r +1=C r 6(2x )6-r ⎝⎛⎭⎫1x 2r=26-r C r 6x 6-3r,令6-3r =0,得r =2,所以常数项为26-2C 26=16×6×52×1=240.(2017·高考全国卷Ⅲ)(x +y )(2x -y )5的展开式中x 3y 3的系数为( )A .-80B .-40C .40D .80解析:选C.当第一个括号内取x 时,第二个括号内要取含x 2y 3的项,即C 35(2x )2(-y )3,当第一个括号内取y 时,第二个括号内要取含x 3y 2的项,即C 25(2x )3(-y )2,所以x 3y 3的系数为C 25×23-C 35×22=10×(8-4)=40.⎝⎛⎭⎫1x +x n的展开式中,第3项与第7项的二项式系数相等,则展开式中的第4项为________.解析:由题意得C 2n =C 6n ,所以n =8.所以⎝⎛⎭⎫1x +x 8展开式的第4项为T 4=C 38⎝⎛⎭⎫1x 3x 5=56x 2. 答案:56x 2在二项式⎝⎛⎭⎫x 2-ax 5的展开式中,x 的系数是-10,则实数a 的值为________. 解析:T r +1=C r 5(x 2)5-r⎝⎛⎭⎫-a x r=(-a )r C r5x 10-3r . 当10-3r =1时,r =3,于是x 的系数为(-a )3C 35=-10a 3=-10,a =1.答案:1二项展开式中的特定项或特定项的系数(高频考点)二项式定理是高中数学中的一个重要知识点,也是高考命题的热点,多以选择题、填空题的形式呈现,试题多为容易题或中档题.高考对二项式定理的考查主要有以下三个命题角度:(1)求展开式中的某一项;(2)求展开式中的项的系数或二项式系数; (3)由已知条件求n 的值或参数的值.[典例引领]角度一 求展开式中的某一项⎝⎛⎭⎫x 3-2x 4+⎝⎛⎭⎫x +1x 8的展开式中的常数项为( ) A .32 B .34 C .36D .38【解析】 ⎝⎛⎭⎫x 3-2x 4的展开式的通项为T k +1=C k 4(x 3)4-k·⎝⎛⎭⎫-2x k=C k4(-2)k x 12-4k , 令12-4k =0,解得k =3,⎝⎛⎭⎫x +1x 8的展开式的通项为 T r +1=C r 8·x8-r·⎝⎛⎭⎫1x r=C r8·x 8-2r , 令8-2r =0,得r =4,所以所求常数项为C 34(-2)3+C 48=38.【答案】 D角度二 求展开式中的项的系数或二项式系数(2017·高考全国卷Ⅰ)⎝⎛⎭⎫1+1x 2(1+x )6展开式中x 2的系数为( ) A .15 B .20 C .30D .35【解析】 (1+x )6展开式的通项T r +1=C r 6x r ,所以⎝⎛⎭⎫1+1x 2(1+x )6的展开式中x 2的系数为1×C 26+1×C 46=30,故选C.【答案】 C角度三 由已知条件求n 的值或参数的值(2016·高考山东卷)若(ax 2+1x)5的展开式中x 5的系数是-80,则实数a =________.【解析】 (ax 2+1x)5的展开式的通项T r +1=C r 5(ax 2)5-r ·x -r 2=C r 5a 5-r·x 10-5r 2,令10-52r =5,得r =2,所以C 25a 3=-80,解得a =-2. 【答案】 -2与二项展开式有关问题的解题策略(1)求展开式中的第n 项,可依据二项式的通项直接求出第n 项.(2)求展开式中的特定项,可依据条件写出第r +1项,再由特定项的特点求出r 值即可. (3)已知展开式的某项,求特定项的系数,可由某项得出参数项,再由通项写出第r +1项,由特定项得出r 值,最后求出其参数.[通关练习]1.若⎝⎛⎭⎫x 6+1x x n的展开式中含有常数项,则正整数n 的最小值等于( )A .3B .4C .5D .6解析:选C.T r +1=C r n (x 6)n -r⎝⎛⎭⎫1x x r=C r n x 6n -152r ,当T r +1是常数项时,6n -152r =0,即n=54r ,又n ∈N *,故n 的最小值为5,故选C. 2.(x 2-x +1)10的展开式中x 3项的系数为( ) A .-210 B .210 C .30D .-30解析:选A.(x 2-x +1)10=[x 2-(x -1)]10=C 010(x 2)10-C 110(x 2)9(x -1)+…-C 910x 2(x -1)9+C 1010(x -1)10,所以含x 3项的系数为:-C 910C 89+C 1010(-C 710)=-210.3.(2018·贵州省适应性考试)(x +1)(x +a )4的展开式中含x 4项的系数为9,则实数a 的值为________.解析:(x +1)(x +a )4=x (x +a )4+(x +a )4,对于x (x +a )4,T 2=x ×C 14x 3a ,对于(x +a )4,T 0=C 04x 4a 0,所以4a +1=9,解得a =2.答案:2二项式系数的性质或各项系数和[典例引领](1)在二项式⎝⎛⎭⎫x 2-1x 11的展开式中,系数最大的项为第________项. (2)(2018·安徽省“江南十校”联考)若(x +2+m )9=a 0+a 1(x +1)+a 2(x +1)2+…+a 9(x +1)9,且(a 0+a 2+…+a 8)2-(a 1+a 3+…+a 9)2=39,则实数m 的值为________.【解析】 (1)依题意可知T r +1=C r 11(-1)r x22-3r,0≤r ≤11,r ∈Z ,二项式系数最大的是C 511与C 611.当r =6时,T 7=C 611x 4,故系数最大的项是第七项.(2)令x =0,得到a 0+a 1+a 2+…+a 9=(2+m )9,令x =-2,得到a 0-a 1+a 2-a 3+…-a 9=m 9,所以有(2+m )9m 9=39,即m 2+2m =3,解得m =1或-3.【答案】 (1)七 (2)1或-3本例(2)变为:若(x +2+m )9=a 0+a 1(x -1)+a 2(x -1)2+…+a 9(x -1)9,且(a 0+a 2+…+a 8)2-(a 1+a 3+…+a 9)2=39,则实数m 的值为________.解析:令x =2,得到a 0+a 1+a 2+…+a 9=(4+m )9,令x =0,得到a 0-a 1+a 2-a 3+…-a 9=(m +2)9,所以有(4+m )9(m +2)9=39,即m 2+6m +5=0,解得m =-1或-5.答案:-1或-5赋值法的应用(1)形如(ax +b )n ,(ax 2+bx +c )m (a ,b ,c ∈R )的式子求其展开式的各项系数之和,常用赋值法,只需令x =1即可.(2)对形如(ax +by )n (a ,b ∈R )的式子求其展开式各项系数之和,只需令x =y =1即可. (3)若f (x )=a 0+a 1x +a 2x 2+…+a n x n ,则f (x )展开式中各项系数之和为f (1),奇数项系数之和为a 0+a 2+a 4+…=f (1)+f (-1)2,偶数项系数之和为a 1+a 3+a 5+…=f (1)-f (-1)2.[通关练习]1.在⎝⎛⎭⎫x 2+1x n的展开式中,只有第4项的二项式系数最大,则展开式中常数项是( ) A .15 B .20 C .30D .120解析:选A.因为二项展开式中中间项的二项式系数最大,又二项式系数最大的项只有第4项,所以展开式中共有7项, 所以n =6, 展开式的通项为T r +1=C r 6(x 2)6-r⎝⎛⎭⎫1x r=C r6x 12-3r , 令12-3r =0,则r =4,故展开式中的常数项为T 5=C 46=15.2.(2017·高考浙江卷)已知多项式(x +1)3(x +2)2=x 5+a 1x 4+a 2x 3+a 3x 2+a 4x +a 5,则a 4=________,a 5=________.解析:由题意知a 4为含x 的项的系数,根据二项式定理得a 4=C 23×12×C 22×22+C 33×13×C 12×2=16,a 5是常数项,所以a 5=C 33×13×C 22×22=4.答案:16 4二项式定理的应用[典例引领]设a ∈Z ,且0≤a <13,若512 018+a 能被13整除,则a =( ) A .0 B .1 C .11D .12【解析】 512 018+a =(52-1)2 018+a =C 02 018522 018-C 12 018522 017+…+C 2 0172 018×52×(-1)2 017+C 2 0182 018×(-1)2 018+a .因为52能被13整除,所以只需C 2 0182 018×(-1)2 018+a 能被13整除,即a +1能被13整除,所以a =12.【答案】 D(1)利用二项式定理解决整除问题时,关键是进行合理地变形构造二项式,应注意:要证明一个式子能被另一个式子整除,只要证明这个式子按二项式定理展开后的各项均能被另一个式子整除即可.(2)求余数问题时,应明确被除式f (x )与除式g (x )(g (x )≠0),商式q (x )与余式的关系及余式的范围.求证:3n >(n +2)·2n -1(n ∈N *,n >2).证明:因为n ∈N *,且n >2, 所以3n =(2+1)n 展开后至少有4项.(2+1)n =2n +C 1n ·2n -1+…+C n -1n ·2+1≥2n+n ·2n -1+2n +1>2n +n ·2n -1=(n +2)·2n -1, 故3n >(n +2)·2n -1(n ∈N *,n >2).二项展开式中系数最大项的求法如求(a +bx )n (a ,b ∈R )的展开式系数最大的项,一般是采用待定系数法,设展开式各项系数分别为A 1,A 2,…,A n +1,且第k 项系数最大,应用⎩⎪⎨⎪⎧A k ≥A k -1,A k ≥A k +1,从而解出k 来,即得.易错防范(1)通项T k +1=C k n an -k b k是展开式的第k +1项,不是第k 项. (2)(a +b )n 与(b +a )n 虽然相同,但具体到它们展开式的某一项时是不相同的,所以公式中的第一个量a 与第二个量b 的位置不能颠倒.(3)易混淆二项式中的“项”“项的系数”“项的二项式系数”等概念,注意项的系数是指非字母因数所有部分,包含符号,二项式系数仅指C k n (k =0,1,…,n ).1.(2018·广东测试)⎝⎛⎭⎫x 2-12x 6的展开式中,常数项是( ) A .-54B.54 C .-1516D.1516解析:选D.T r +1=C r 6(x 2)6-r⎝⎛⎭⎫-12x r =⎝⎛⎭⎫-12rC r6x 12-3r ,令12-3r =0,解得r =4.所以常数项为⎝⎛⎭⎫-124C 46=1516.故选D.2.(1+x )5+(1+x )6+(1+x )7的展开式中x 4的系数为( ) A .50 B .55 C .45D .60解析:选B.(1+x )5+(1+x )6+(1+x )7的展开式中x 4的系数是C 45+C 46+C 47=55.故选B.3.设复数x =2i 1-i (i 是虚数单位),则C 12 017x +C 22 017x 2+C 32 017x 3+…+C 2 0172 017x 2 017=( ) A .i B .-i C .-1+iD .-1-i解析:选C.x =2i 1-i =-1+i ,C 12 107x +C 22 017x 2+C 32 017x 3+…+C 2 0172 017x 2 017=(1+x )2 017-1=i 2 017-1=-1+i.4.(2018·昆明市教学质量检测)(1+2x )3(2-x )4的展开式中x 的系数是( ) A .96 B .64 C .32D .16解析:选B.(1+2x )3的展开式的通项公式为T r +1=C r 3(2x )r =2r C r 3x r ,(2-x )4的展开式的通项公式为T k +1=C k 424-k (-x )k =(-1)k 24-k C k 4x k ,所以(1+2x )3(2-x )4的展开式中x 的系数为20C 03·(-1)·23C 14+2C 13·(-1)0·24C 04=64,故选B.5.设n 为正整数,⎝⎛⎭⎫x -1x x 2n展开式中存在常数项,则n 的一个可能取值为( )A .16B .10C .4D .2解析:选B.⎝⎛⎭⎫x -1x x 2n展开式的通项公式为T k +1=C k 2n x 2n -k ⎝⎛⎭⎫-1x x k=C k 2n (-1)kx 4n -5k 2.令4n -5k 2=0,得k =4n5,又k 为正整数,所以n 可取10. 6.⎝⎛⎭⎫x +2x n的展开式的二项式系数之和为8,则展开式的常数项等于( ) A .4 B .6 C .8D .10解析:选B.因为⎝⎛⎭⎫x +2x n的展开式的各个二项式系数之和为8,所以2n =8,解得n =3, 所以展开式的通项为T r +1=C r 3(x )3-r⎝⎛⎭⎫2x r=2r C r3x 3-3r2,令3-3r 2=0,则r =1,所以常数项为6.7.设m 为正整数,(x +y )2m 展开式的二项式系数的最大值为a ,(x +y )2m+1展开式的二项式系数的最大值为b .若13a =7b ,则m =( )A .5B .6C .7D .8解析:选B.(x +y )2m 展开式中二项式系数的最大值为C m 2m ,所以a =C m2m . 同理,b =C m +12m +1.因为13a =7b ,所以13·C m 2m =7·C m +12m +1.所以13·(2m )!m !m !=7·(2m +1)!(m +1)!m !.所以m =6.8.若(1+x +x 2)n =a 0+a 1x +a 2x 2+…+a 2n x 2n ,则a 0+a 2+a 4+…+a 2n 等于( ) A .2nB.3n -12C .2n +1D.3n +12解析:选D.设f (x )=(1+x +x 2)n , 则f (1)=3n =a 0+a 1+a 2+…+a 2n ,① f (-1)=1=a 0-a 1+a 2-a 3+…+a 2n ,②由①+②得2(a 0+a 2+a 4+…+a 2n )=f (1)+f (-1), 所以a 0+a 2+a 4+…+a 2n =f (1)+f (-1)2=3n +12.9.C 22n +C 42n +…+C 2k 2n +…+C 2n 2n (n ∈N *)的值为( )A .2nB .22n -1C .2n -1D .22n -1-1解析:选D.(1+x )2n =C 02n +C 12n x +C 22n x 2+C 32n x 3+…+C 2n 2n x 2n . 令x =1,得C 02n +C 12n +C 22n +…+C 2n -12n +C 2n 2n =22n ;再令x =-1,得C 02n -C 12n +C 22n -…+(-1)r C r 2n +…-C 2n -12n +C 2n 2n =0.两式相加,可得C 22n +C 42n +…+C 2n 2n =22n2-1=22n -1-1.10.(2018·湖北枣阳第一中学模拟)(x 2+x +y )5的展开式中x 5y 2的系数为( ) A .10 B .20 C .30D .60解析:选C.(x 2+x +y )5的展开式的通项为T r +1=C r 5(x 2+x )5-r ·y r ,令r =2,则T 3=C 25(x 2+x )3y 2,又(x 2+x )3的展开式的通项为C k 3(x 2)3-k ·x k =C k 3x6-k,令6-k =5,则k =1,所以(x 2+x +y )5的展开式中,x 5y 2的系数为C 25C 13=30,故选C.11.设(2-x )5=a 0+a 1x +a 2x 2+…+a 5x 5,那么a 0+a 2+a 4a 1+a 3+a 5的值为( )A .-122121B .-6160C .-244241D .-1解析:选A.令x =1,可得a 0+a 1+a 2+a 3+a 4+a 5=1,① 再令x =-1,可得a 0-a 1+a 2-a 3+a 4-a 5=35.②①+②2,得a 0+a 2+a 4=122,①-②2,可得a 1+a 3+a 5=-121, 故a 0+a 2+a 4a 1+a 3+a 5=-122121.12.(2018·石家庄教学质量检测(二))若a =2⎠⎛-33(x +|x |)d x ,则在⎝⎛⎭⎪⎫x -13x a的展开式中,x 的幂指数不是整数的项共有( )A .13项B .14项C .15项D .16项解析:选C.因为a =2⎠⎛-33(x +|x |)d x =2[⎠⎛03(x +x )d x +⎠⎛-30(x -x )d x ]=2x 2|30=18,所以该二项展开式的通项T r +1=C r 18(x )18-r⎝⎛⎭⎪⎫-13x r=(-1)r C r 18x 9-5r 6(0≤r ≤18,且r ∈N ),当r =0,6,12,18时,展开式中x 的幂指数为整数,所以该二项展开式中x 的幂指数不是整数的项有19-4=15项,故选C.13.(2018·广东省五校协作体联考)⎝⎛⎭⎫xy -1x 6展开式中不含x 的项的系数为________. 解析:⎝⎛⎭⎫xy -1x 6展开式中不含x 的项为C 36(xy )3·⎝⎛⎭⎫-1x 3=-20y 3,故不含x 的项的系数为-20.答案:-2014.已知⎝⎛⎭⎫1-1x (1+x )5的展开式中x r (r ∈Z 且-1≤r ≤5)的系数为0,则r =________. 解析:依题意,(1+x )5的展开式的通项公式为T r +1=C r 5x r ,故展开式为⎝⎛⎭⎫1-1x (x 5+5x 4+10x 3+10x 2+5x +1),故可知展开式中x 2的系数为0,故r =2.答案:215.(2018·江西赣州十四县联考)若⎝⎛⎭⎫x +13x n的展开式中前三项的系数分别为A ,B ,C ,且满足4A =9(C -B ),则展开式为x 2的系数为________.解析:易得A =1,B =n 3,C =C 2n 9=n (n -1)18,所以有4=9⎝⎛⎭⎫n 2-n 18-n 3,即n 2-7n -8=0,解得n =8或n =-1(舍).在⎝⎛⎭⎫x +13x 8中,因为通项T r +1=C r 8x 8-r ⎝⎛⎭⎫13x r=C r83r ·x 8-2r ,令8-2r =2,得r =3,所以展开式中x 2的系数为5627.答案:562716.(2018·安徽“江南十校”联考)若(x +y -1)3(2x -y +a )5的展开式中各项系数的和为32,则该展开式中只含字母x 且x 的次数为1的项的系数为________.解析:令x =y =1⇒(a +1)5=32⇒a =1,故原式=(x +y -1)3(2x -y +1)5=[x +(y -1)]3[2x+(1-y )]5,可知展开式中x 的系数为C 13+C 33(-1)3C 15·2=-7.答案:-71.487被7除的余数为a (0≤a <7),则⎝⎛⎭⎫x -ax 26展开式中x -3的系数为( ) A .4 320 B .-4 320 C .20D .-20解析:选B.487=(49-1)7=C 07·497-C 17·496+…+C 67·49-1,因为487被7除的余数为a (0≤a <7), 所以a =6,所以⎝⎛⎭⎫x -6x 26展开式的通项为T r +1=C r 6·(-6)r ·x 6-3r, 令6-3r =-3,可得r =3,所以⎝⎛⎭⎫x -6x 26展开式中x -3的系数为C 36·(-6)3=-4 320. 2.(x +2y )7的展开式中,系数最大的项是( ) A .68y 7 B .112x 3y 4 C .672x 2y 5 D .1 344x 2y 5解析:选C.设第r +1项系数最大,则有⎩⎪⎨⎪⎧C r 7·2r ≥C r -17·2r -1,C r 7·2r ≥C r +17·2r +1, 即⎩⎪⎨⎪⎧7!r !(7-r )!·2r ≥7!(r -1)!(7-r +1)!·2r -1,7!r !(7-r )!·2r≥7!(r +1)!(7-r -1)!·2r +1,即⎩⎨⎧2r ≥18-r ,17-r ≥2r +1解得⎩⎨⎧r ≤163,r ≥133.又因为r ∈Z ,所以r =5.所以系数最大的项为T 6=C 57x 2·25y 5=672x 2y 5.故选C.3.(2018·张掖市第一次诊断考试)设f (x )是⎝⎛⎭⎫x 2+12x 6展开式中的中间项,若f (x )≤mx 在区间⎣⎡⎦⎤22,2上恒成立,则实数m 的取值范围是________.解析:⎝⎛⎭⎫x 2+12x 6的展开式中的中间项为第四项,即f (x )=C 36(x 2)3⎝⎛⎭⎫12x 3=52x 3,因为f (x )≤mx 在区间⎣⎡⎦⎤22,2上恒成立,所以m ≥52x 2在⎣⎡⎦⎤22,2上恒成立,所以m ≥⎝⎛⎭⎫52x 2max =5,所以实数m 的取值范围是[5,+∞).答案:[5,+∞)4.(2018·山西太原模拟)⎝⎛⎭⎫2x +1x -15的展开式中常数项是________. 解析:⎝⎛⎭⎫2x +1x -15表示五个⎝⎛⎭⎫2x +1x -1相乘,则展开式中的常数项由三种情况产生,第一种是从五个⎝⎛⎭⎫2x +1x -1中分别抽取2x ,2x ,1x ,1x,-1,则此时的常数项为C 25·C 23·22·(-1)=-120;第二种情况是从五个⎝⎛⎭⎫2x +1x -1中都抽取-1,则此时的常数项为(-1)5=-1;第三种情况是从五个⎝⎛⎭⎫2x +1x -1中分别抽取2x ,1x,-1,-1,-1,则此时的常数项为C 15·C 14·21·(-1)3=-40,则展开式中常数项为-120-1-40=-161. 答案:-1615.已知在⎝ ⎛⎭⎪⎪⎫3x -123x n 的展开式中,第6项为常数项. (1)求n ;(2)求含x 2的项的系数;(3)求展开式中所有的有理项.解:(1)通项公式为T k +1=C k n x n -k3⎝⎛⎭⎫-12k x -k 3=C k n ⎝⎛⎭⎫-12k x n -2k 3.因为第6项为常数项,所以k =5时,n -2×53=0, 即n =10.(2)令10-2k 3=2,得k =2, 故含x 2的项的系数是C 210⎝⎛⎭⎫-122=454. (3)根据通项公式,由题意得⎩⎪⎨⎪⎧10-2k 3∈Z ,0≤k ≤10,k ∈N ,令10-2k 3=r (r ∈Z ), 则10-2k =3r ,k =5-32r , 因为k ∈N ,所以r 应为偶数,所以r 可取2,0,-2,即k 可取2,5,8, 所以第3项,第6项与第9项为有理项, 它们分别为C 210⎝⎛⎭⎫-122x 2,C 510⎝⎛⎭⎫-125,C 810⎝⎛⎭⎫-128x -2. 6.已知(1-2x )7=a 0+a 1x +a 2x 2+…+a 7x 7,求:(1)a 1+a 2+…+a 7;(2)a 1+a 3+a 5+a 7;(3)|a 0|+|a 1|+|a 2|+…+|a 7|.解:令x =1,则a 0+a 1+a 2+a 3+a 4+a 5+a 6+a 7=-1.① 令x =-1,则a 0-a 1+a 2-a 3+a 4-a 5+a 6-a 7=37.②(1)因为a 0=C 07=1,所以a 1+a 2+a 3+…+a 7=-2.(2)(①-②)÷2,得a 1+a 3+a 5+a 7=-1-372=-1 094. (3)因为(1-2x )7展开式中a 0,a 2,a 4,a 6大于零,而a 1,a 3,a 5,a 7小于零, 所以|a 0|+|a 1|+|a 2|+…+|a 7|=(a 0+a 2+a 4+a 6)-(a 1+a 3+a 5+a 7)=1 093-(-1 094)=2 187.。

第10章 第3节 二项式定理

第10章 第3节 二项式定理
[基本能力自测] 1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)Cknan-kbk 是(a+b)n 的展开式中的第 k 项.( ) (2)二项展开式中,系数最大的项为中间一项或中间两项.( ) (3)(a+b)n 的展开式中某一项的二项式系数与 a,b 无关.( ) (4) 若 (3x - 1)7 = a7x7 + a6x6 + … + a1x + a0 , 则 a7 + a6 + … + a1 的 值 为 128.( )
大各二项式系数和 (1)(a+b)n 展开式的各二项式系数和:C0n+C1n+C2n+…+Cnn= 2n . (2)偶数项的二项式系数的和等于奇数项的二项式系数的和,即 C0n+C2n+C4n +…=C1n+C3n+C5n+…= 2n-1 .
返回导航
2019版高三一轮
返回导航
2019版高三一轮
-5 [由题知,二项式展开式为 C04x-1x4·(-1)0+C14x-1x3·(-1)+ C24x-1x2·(-1)2+C34x-1x·(-1)3+C44x-1x0·(-1)4,则常数项为 C04·C24-C24·C12+ C44=6-12+1=-5.]
返回导航
2019版高三一轮
10 243 [x2的系数为 C15×2=10;令 x=1,得各项系数之和为(1+2)5=243.]
返回导航
(对应学生用书第 173 页) 二项展开式中的特定项或特定项的系数
2019版高三一轮
◎角度 1 求展开式中的某一项 (2018·合肥二测)在x-1x-14的展开式中,常数项为________.
◎角度 2 求展开式中的项的系数或二项式系数
(2017·全国卷Ⅰ)1+x12(1+x)6 展开式中 x2 的系数为(

常用的级数展开公式

常用的级数展开公式

常用的级数展开公式级数展开公式是一种将一个函数表达为无限级数的方法,它在数学和物理学中起着重要的作用。

以下是一些常用的级数展开公式。

1.幂级数展开幂级数展开是将一个函数表示为幂函数的级数形式。

一个函数f(x)在x=a处展开为幂级数的展开式为:f(x)=f(a)+f'(a)(x-a)+f''(a)(x-a)^2/2!+f'''(a)(x-a)^3/3!+...2.泰勒级数展开泰勒级数展开是幂级数展开的一种特例,它以x=a处的函数值和各阶导数来表示函数的展开式。

泰勒级数展开的展开式为:f(x)=f(a)+f'(a)(x-a)+f''(a)(x-a)^2/2!+f'''(a)(x-a)^3/3!+...3.麦克劳林级数展开麦克劳林级数展开是泰勒级数展开的一种特殊情况,即以x=0处的函数值和各阶导数来表示函数的展开式。

麦克劳林级数展开的展开式为:f(x)=f(0)+f'(0)x+f''(0)x^2/2!+f'''(0)x^3/3!+...4.三角函数级数展开三角函数的级数展开是将三角函数表达为正弦和余弦函数的级数形式。

例如,正弦函数的展开式为:sin(x) = x - x^3/3! + x^5/5! - x^7/7! + ...5.指数函数级数展开指数函数的级数展开是将指数函数表达为幂函数的级数形式。

例如,指数函数的展开式为:e^x=1+x+x^2/2!+x^3/3!+...6.对数函数级数展开对数函数的级数展开是将对数函数表达为幂函数的级数形式。

ln(1+x) = x - x^2/2 + x^3/3 - x^4/4 + ...7.二项式定理二项式定理是将一个二项式表达式展开为幂函数的级数形式。

二项式定理的展开式为:(x+y)^n=C(n,0)x^n+C(n,1)x^(n-1)y+C(n,2)x^(n-2)y^2+...+C(n,n)y^n这些是常见的级数展开公式,展开式可根据需要进行截断或适当的近似处理。

3.二项式定理

3.二项式定理

例讲三:多项式的展开式问题
1.在(1+x)+(1+x)2+(1+x)3+…+(1+x)11 的展开式中,x2 项的系数是 2.(1+2x2)(1+x)4 的展开式中 x3 的系数为 3.已知(x-1)(ax+1)6 的展开式中含 x2 项的系数为 0,则正实数 a=________. 4.(x2-x+1)10 的展开式中 x3 项的系数为 5.(x2+x+y)5 的展开式中 x5y2 的系数为
二项式定理
一.二项式定理及性质
1.定理:(a+b)n=C 0n an+C 1nan -1b+…+C knan-k bk+…+C nn bn(n ∈N*).
2.通项:第 k+1 项为 Tk+1=Cknan-kbk. 3.二项式系数:二项展开式中各项的二项式系数为:Ckn (k=0,1,2,…,n).
64∶1,则
x3
的系数为
2.若(1-x)9=a0+a1x+a2x2+…+a9x9,则|a1|+|a2|+|a3|+…+|a9|=
【解析】 (1)由题意知42nn=64,得 n=6,展开式的通项为 Tr+1=Cr6x6-r 3xr=3rCr6x6-32r, 令 6-32r=3,得 r=2,则 x3 的系数为 32C26=135.故选 C. (2)令 x=0,得 a0=1,令 x=-1,得|a1|+|a2|+|a3|+…+|a9|=[1-(-1)]9-1=29-1= 511.
2.若
x+1 x
n展开式的二项式系数之和为
64,则展开式的常数项为_系数为 C25-122=52.
(2)ax2+
1x5的展开式的通项
Tr+1=C5r (ax2)5-r×
1xr=Cr5a5-rx10-52r,令
10-52r=0,得
r=4,所以 C45a5-4=-10,解得 a=-2.

人教版高中数学选修2-3《二项式定理》

人教版高中数学选修2-3《二项式定理》
二项式定理
定理背景
1.什么是二项式?
对于a+b,(a+b)2,(a+b)3等代数式,数学上统称为二项式,其一般形式为(a+b)n (n∈N*)
2.什么是二项式定理?
二项式定理即(a+b)n的展开式
3.二项式定理的作用?
牛顿以二项式定理作为基石发明出了微积分。其在初等数学中应用主要在于一些 粗略的分析和估计以及证明恒等式等。
探究发现
从组合的角度看待的(a+b)4展开式。
(a+b)4 = C40 a4 +C41 a3b + C42 a2b2 + C43 ab3 + C44 b4
发现定理
从组合的角度看待的(a+b)n展开式。
0 n 1 n 1 2 n 2 2 (a b )n C n a Cn a b Cn a b
探究发现
(a+b)2=a2+2ab+b2
(a+b)3=a3+3a2b+3ab2+b3 (a+ b)4 =
……
(a+ b)n =
探究发现
从组合的角度看待的(a+b)2展开式。
(a+b)2 = C20 a2 + C21 ab+ C22 b2
探究发现
从组合的角度看待(a+b)3的展开式。
(a+b)3= C30a3 +C31a2b+C32ab2 +C33 b3
例2.
(x 1 9 ) x
的展开式中x3的系数.
归纳小结
1.注意二项式定理 中二项展开式的特征 2.区别二项式系数,项的系数及项; 3.掌握用通项公式求二项式系数,项的系数及项。
课后作业
课本31页练习及本节教辅
课后思考
在(x2 + 3x + 2)5 的展开式中,x的系数为多少?

考研数学三公式大全

考研数学三公式大全

考研数学三公式大全1.二项式定理二项式定理是数学中常用的公式之一,它表达了两个数之和的n次幂的展开式。

二项式定理的公式如下:(a+b)^n=C(n,0)*a^n+C(n,1)*a^(n-1)*b+C(n,2)*a^(n-2)*b^2+...+C(n,n)*b^n其中C(n,k)表示组合数,可以通过以下公式计算:C(n,k)=n!/(k!*(n-k)!)2.三角函数的和差公式三角函数的和差公式是在三角函数的加减情况下,将两个三角函数用一个三角函数表示的公式。

常用的三角函数的和差公式如下:sin(A±B) = sinA*cosB ± cosA*sinBcos(A±B) = cosA*cosB ∓ sinA*sinBtan(A±B) = (tanA ± tanB) / (1 ∓ tanA*tanB)3.倍角公式和半角公式倍角公式和半角公式是将一个角的倍数或一半角表示为其他角的公式。

常用的倍角公式和半角公式如下:sin2A = 2*sinA*cosAcos2A = cos^2A - sin^2A = 2*cos^2A - 1 = 1 - 2*sin^2Atan2A = (2*tanA) / (1 - tan^2A)sin^2(A/2) = (1 - cosA) / 2cos^2(A/2) = (1 + cosA) / 24.位移公式位移公式是描述一个物体运动过程中的位移与时间、初速度、加速度之间的关系公式。

常用的位移公式如下:s = vt + (1/2)*a*t^2v=u+a*tv^2=u^2+2*a*s其中s表示位移,v表示末速度,u表示初速度,t表示时间,a表示加速度。

5.高中几何常用公式高中几何常用公式是在解决几何题目时经常用到的公式,包括三角形的面积公式、直角三角形的勾股定理等。

常用的高中几何常用公式如下:三角形面积公式:S = (1/2)*a*b*sinC直角三角形勾股定理:a^2+b^2=c^2正弦定理:a/sinA = b/sinB = c/sinC余弦定理:a^2 = b^2 + c^2 - 2bc*cosA6.概率公式概率公式用于计算事件发生的可能性。

第三节 二项式定理

第三节 二项式定理

第三节二项式定理高考概览:1.能用计数原理证明二项式定理;2.会用二项式定理解决与二项展开式有关的简单问题.[知识梳理]1.二项式定理(1)展开式(a+b)n=C0n a n b0+C1n a n-1b1+…+C k n a n-k b k+…+C n n a0b n所表示的定理叫做二项式定理.右边的多项式叫(a+b)n的展开式.(2)通项:T k+1=C k n a n-k b k为第k+1项.2.二项式系数(1)定义:式子C k n叫做二项式系数.__.(2)对称性:C k n=C n-kn(3)二项式系数的最值(4)(a+b)n展开式中各二项式系数的和:C0n+C1n+C2n+…+C n n=2n.[辨识巧记]1.一对易混概念二项展开式中第r+1项的(1)二项式系数是C r n.(2)项的系数是该项的数字因数.2.两个常用公式(1)C0n+C1n+C2n+…+C n n=2n.(2)C0n+C2n+C4n+…=C1n+C3n+C5n+…=2n-1.[双基自测]1.判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)C k n an -k b k是二项展开式的第k 项.( ) (2)二项展开式中,系数最大的项为中间一项或中间两项.( ) (3)(a +b )n 的展开式中某一项的二项式系数与a ,b 无关.( ) (4)(a +b )n 某项的系数是该项中非字母因数部分,包括符号等,与该项的二项式系数不同.( )[答案] (1)× (2)× (3)√ (4)√2.⎝ ⎛⎭⎪⎫x 2-2x 35展开式中的常数项为( ) A .80 B .-80 C .40 D .-40[解析] T r +1=C r 5·(x 2)5-r ·⎝⎛⎭⎪⎫-2x3r=C r 5·(-2)r ·x 10-5r ,令10-5r =0,得r =2,故常数项为C 25×(-2)2=40.[答案] C3.在1x -x 10的二项展开式中,二项式系数最大的项的项数是( )A .5B .6C .7D .5或7[解析] 在1x -x 10的二项展开式中,第6项的二项式系数最大. [答案] B4.(x +y )(2x -y )5的展开式中x 3y 3的系数为( ) A .-80 B .-40 C .40 D .80[解析] 当第一个括号内取x 时,第二个括号内要取含x 2y 3的项,即C 35(2x )2(-y )3,当第一个括号内取y 时,第二个括号内要取含x 3y 2的项,即C 25(2x )3(-y )2,所以x 3y 3的系数为C 25×23-C 35×22=10×(8-4)=40.[答案] C5.(选修2-3P 35练习T 1(2)改编)化简:C 12n +C 32n +…+C 2n -12n =________.[解析] 二项展开式中,奇数项的二项式系数和与偶数项的二项式系数和相等,所以C 12n +C 32n +…+C 2n -12n=22n2=22n -1.[答案] 22n -1考点一 求展开式中的特定项或系数【例1】 (1)(2019·河北保定期末)⎝ ⎛⎭⎪⎫3x -1x 6的展开式中,有理项共有( )A .1项B .2项C .3项D .4项(2)(2018·山东枣庄二模)若(x 2-a )⎝⎛⎭⎪⎫x +1x 10的展开式中x 6的系数为30,则a 等于( )A.13B.12 C .1 D .2(3)(2019·山西太原期末)⎝ ⎛⎭⎪⎫x +1x +15展开式中的常数项为________.[思路引导] 写出展开式的通项公式→转化条件求解[解析] (1)⎝⎛⎭⎪⎫3x -1x 6的展开式的通项公式为T r +1=C r 6·(-1)r ·36-r·x 6- 32r,令6-32r 为整数,求得r =0,2,4,6,共计4项.(2)⎝ ⎛⎭⎪⎫x +1x 10的展开式的通项公式为 T r +1=C r 10·x 10-r ·⎝ ⎛⎭⎪⎫1x r=C r 10·x 10-2r ,令10-2r =4,解得r =3,所以x 4项的系数为C 310. 令10-2r =6,解得r =2,所以x 6项的系数为C 210.所以(x 2-a )⎝⎛⎭⎪⎫x +1x 10的展开式中x 6的系数为C 310-a C 210=30,解得a =2.故选D.(3)⎝ ⎛⎭⎪⎫x +1x +15展开式的通项公式为T r +1=C r5⎝ ⎛⎭⎪⎫x +1x 5-r .令r =5,得常数项为C 55=1,令r =3,得常数项为C 35·2=20, 令r =1,得常数项为C 15·C 24=30, 所以展开式中的常数项为1+20+30=51. [答案] (1)D (2)D (3)51与二项展开式有关问题的解题策略(1)求展开式中的特定项,可依据条件写出第r +1项,再由特定项的特点求出r 值即可.(2)已知展开式的某项,求特定项的系数,可由某项得出参数项,再由通项写出第r +1项,由特定项得出r 值,最后求出其参数.(3)对于三项式问题,一般是通过合并、拆分或进行因式分解,转化成二项式定理的形式去求解.或看成几个因式的乘积,再利用组合数公式求解.[对点训练]1.(2019·重庆巴蜀中学二诊)二项式⎝ ⎛⎭⎪⎫1x -x 210的展开式中的常数项是( )A .-45B .-10C .45D .65 [解析] 由二项式定理得T r +1=C r 10⎝⎛⎭⎪⎫1x 10-r (-x 2)r =C r 10(-1)r x 5r 2-5,令5r 2-5=0得r =2,所以常数项为C 210(-1)2=45,故选C.[答案] C2.若二项式⎝ ⎛⎭⎪⎫2x +a x 7的展开式中1x 3的系数是84,则实数a =( )A .2 B.54 C .1 D.24[解析] 展开式中含1x 3的项是T 6=C 57(2x )2⎝ ⎛⎭⎪⎫a x 5=C 5722a 5x -3,故有C 5722a 5=84,解得a =1.[答案] C3.(x 2-x +1)10展开式中x 3项的系数为( ) A .-210 B .210 C .30 D .-30[解析] (x 2-x +1)10=[x 2-(x -1)]10=C 010(x 2)10-C 110(x 2)9(x -1)+…-C 910x 2·(x -1)9+C 1010(x -1)10,所以含x 3项的系数为:-C 910C 89+C 1010(-C 710)=-210, 故选A.[答案] A考点二 二项式系数的性质【例2】 已知⎝ ⎛⎭⎪⎪⎫x +124x n的展开式中前三项的系数为等差数列.(1)求二项式系数最大项; (2)求展开式中系数最大的项. [解](1)∵C 0n =1,C 1n12=n 2,C 2n ⎝ ⎛⎭⎪⎫122=18n (n -1),由题设可知2·n 2=1+18n (n -1),n 2-9n +8=0, 解得n =8或n =1(舍去).所以二项式系数的最大项为C 48⎝ ⎛⎭⎪⎪⎫x ×124x 4=358x . (2)设第r +1项的系数T r +1最大, 显然T r +1>0,故有T r +1T r≥1且T r +2T r +1≤1,∵T r +1T r=C r 8·2-rC r -18·2-r +1=9-r 2r ,由9-r2r ≥1,得r ≤3.又∵T r +2T r +1=C r +18·2-(r +1)C r 8·2-r=8-r 2(r +1), 由8-r 2(r +1)≤1,得r ≥2. ∴r =2或r =3,所求项为T 3=7x 52或T 4=7x 74.(1)(a +b )n 中当n 为偶数时,中间一项的二项式系数取最大值;当n 为奇数时,中间的两项的二项式系数值相等,且同时取得最大值.(2)求项的系数最大值,在系数均为正值前提下,解不等式⎩⎪⎨⎪⎧a k ≥a k -1,a k ≥a k +1确定k 的范围,利用k ∈N *,确定其值. [对点训练]1.(2019·浙江金丽衢十二校二联)在二项式⎝ ⎛⎭⎪⎫x 2-1x 11的展开式中,系数最大的项为( )A .第五项B .第六项C .第七项D .第六和第七项[解析] 依题意可知T r +1=C r 11(-1)r x 22-3r,0≤r ≤11,r ∈Z ,二项式系数最大的是C 511与C 611,所以系数最大的是T 7=C 611,即第七项.[答案] C2.在(1+x )n (n ∈N *)的二项展开式中,若只有x 5的系数最大,则n =( )A .8B .9C .10D .11[解析] 含x 5的项是第6项,它是中间项.∴n =10.选C.[答案] C考点三 二项式系数的和【例3】 (1)⎝⎛⎭⎪⎫x +a x ⎝⎛⎭⎪⎫2x -1x 5的展开式中各项系数的和为2,则该展开式中常数项为( )A .-40B .-20C .20D .40(2)若(1-2x )4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4,则a 1+a 2+a 3+a 4=__________.[思路引导] 转化形式→合理赋值→求解结果 [解析] (1)令x =1,得1+a =2,∴a =1. ⎝ ⎛⎭⎪⎫2x -1x 5的通项T r +1=C r 5·(2x )5-r ·⎝ ⎛⎭⎪⎫-1x r =(-1)r ·25-r C r 5·x 5-2r . 令5-2r =-1,得r =3,∴x -1的系数为(-1)3·22·C 35=-40. 令5-2r =1,得r =2,∴x 的系数为(-1)2·23·C 25=80.故展开式中常数项为-40+80=40.(2)令x =1可得a 0+a 1+a 2+a 3+a 4=1;令x =0,可得a 0=1,所以a 1+a 2+a 3+a 4=0.[答案] (1)D (2)0[拓展探究] (1)若本例(2)中条件不变,问题变为“求a 0+a 2+a 4的值”,则结果如何?(2)将本例(2)变为“若(1-2x )2018=a 0+a 1x +a 2x 2+…+a 2018x 2018,则a 12+a 222+…+a 2018a 2018”的结果是多少?[解] (1)在(1-2x )4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4中,令x =1可得a 0+a 1+a 2+a 3+a 4=1,①令x =-1可得a 0-a 1+a 2-a 3+a 4=81,② ①+②得,a 0+a 2+a 4=41.(2)当x =0时,左边=1,右边=a 0,∴a 0=1.当x =12时,左边=0,右边=a 0+a 12+a 222+…+a 201822018, ∴0=1+a 12+a 222+…+a 201822018. 即a 12+a 222+…+a 201822018=-1.赋值法求各项系数和的技巧(1)形如(ax +b )n ,(ax 2+bx +c )m (a ,b ,c ∈R )的式子求其展开式的各项系数之和,常用赋值法,只需令x =1即可.(2)对形如(ax +by )n (a ,b ∈R )的式子求其展开式各项系数之和,只需令x =y =1即可.(3)若f (x )=a 0+a 1x +a 2x 2+…+a n x n ,则f (x )展开式中各项系数之和为f (1).[对点训练]1.(2019·吉林延边州模拟)在二项式⎝ ⎛⎭⎪⎫3x 2-1x n的展开式中,所有二项式系数的和是32,则展开式中各项系数的和为( )A .-32B .0C .32D .1[解析] 二项式⎝ ⎛⎭⎪⎫3x 2-1x n的展开式中,所有二项式系数的和是32,即2n =32,解得n =5.令x =1,可得展开式中各项系数的和为⎝⎛⎭⎪⎫3×12-115=32.故选C.[答案] C2.若(1+x +x 2)6=a 0+a 1x +a 2x 2+…+a 12x 12,则a 2+a 4+…+a 12=__________.[解析] 令x =1,则a 0+a 1+a 2+…+a 12=36;令x =-1,则a 0-a 1+a 2-…+a 12=1,∴a 0+a 2+a 4+…+a 12=36+12.令x =0,则a 0=1,∴a2+a4+…+a12=36+12-1=364.[答案]364考点四二项式定理的应用【例4】(1)设a∈Z,且0≤a<13,若512018+a能被13整除,则a=()A.0 B.1 C.11 D.12(2)计算1.028的近似值为__________(精确到小数点后三位).[思路引导](1)512018=(52-1)2018→求展开式→观察每一项除以13的余数(2)1.028=(1+0.02)8→求展开式→求结果[解析](1)∵52能被13整除,∴512018可化为(52-1)2018,其二项式系数为T r+1=C r2018522018-r·(-1)r.故(52-1)2018被13除余数为C20182018·(-1)2018=1,则当a=12时,512018+12被13整除.(2)1.028=(1+0.02)8≈C08+C18·0.02+C28·0.022+C38·0.023≈1.172.[答案](1)D(2)1.172(1)在证明整除问题或求余数问题时要进行合理的变形,使被除式(数)展开后的每一项都含有除式的因式.(2)二项式定理的一个重要用途是做近似计算:当n不很大,|x|比较小时,(1+x)n≈1+nx.[对点训练]1.1-90C110+902C210-903C310+…+9010C1010除以88的余数是()A.-1 B.-87 C.1 D.87[解析] 1-90C 110+902C 210-903C 310+…+9010·C 1010=(1-90)10=8910=(88+1)10=C 0108810+C 110889+…+C 91088+C 1010=88k +1(k 为正整数),所以可知余数为1.[答案] C2.n ∈N 且n ≥3时,2n -1与n +1的大小关系为________.[解析] n ≥3时,2n =(1+1)n =1+n +C 2n +…+n +1≥2+2n ,∴2n -1≥n +1.[答案] 2n -1≥n +1课后跟踪训练(七十二)基础巩固练一、选择题1.(2018·全国卷Ⅲ)⎝ ⎛⎭⎪⎫x 2+2x 5的展开式中x 4的系数为( )A .10B .20C .40D .80[解析] 由二项式定理,得⎝⎛⎭⎪⎫x 2+2x 5的第r +1项为T r +1=C r 5(x 2)5-r·⎝ ⎛⎭⎪⎫2x r=2r C r 5·x 10-3r ,由10-3r =4,得r =2,所以x 4的系数为22C 25=40.[答案] C2.(2019·安徽合肥模拟)二项式⎝ ⎛⎭⎪⎪⎫x2-13x 8的展开式中常数项是( )A .28B .-7C .7D .-28[解析] 展开式的通项公式为T r +1=C r 8⎝ ⎛⎭⎪⎫x 28-r ⎝⎛⎭⎪⎪⎫-13x r =C r 8·⎝ ⎛⎭⎪⎫128-r (-1)rx 8- 43r,令8-4r3=0,得r =6,所以常数项为T 7=7.[答案] C3.(2019·武汉市高三二调)在x +1x -16的展开式中,含x 5项的系数为( )A .6B .-6C .24D .-24[解析] 由x +1x -16=C 06x +1x 6-C 16x +1x 5+C 26x +1x 4+…-C 56x +1x+C 66,可知只有-C 16x +1x 5的展开式中含有x 5,所以x +1x -16的展开式中含x 5项的系数为-C 05C 16=-6,故选B.[答案] B4.(2018·福建省高三质检)已知(x +2)(2x -1)5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5+a 6x 6,则a 0+a 2+a 4=( )A .123B .91C .-120D .-152[解析] 解法一:因为(2x -1)5的展开式的通项T r +1=C r5(2x )5-r·(-1)r (r =0,1,2,3,4,5),所以a 0+a 2+a 4=2×C 55×20×(-1)5+[1×C 45×21×(-1)4+2×C 35×22×(-1)3]+[1×C 25×23×(-1)2+2×C 15×24×(-1)1]=-2-70-80=-152,故选D.解法二:令x =1,得a 0+a 1+a 2+a 3+a 4+a 5+a 6=3 ①;令x =-1,得a 0-a 1+a 2-a 3+a 4-a 5+a 6=-243 ②.①+②,得a 0+a 2+a 4+a 6=-120.又a 6=1×25=32,所以a 0+a 2+a 4=-152,故选D.[答案] D5.(2019·淮南模拟)在二项式⎝ ⎛⎭⎪⎫x +3x n 的展开式中,各项系数之和为A ,各项二项式系数之和为B ,且A +B =72,则展开式中常数项的值为( )A .6B .9C .12D .18[解析] 在二项式⎝ ⎛⎭⎪⎫x +3x n 的展开式中,令x =1得各项系数之和为4n ,∴A =4n ;二项展开式的二项式系数和为2n ,∴B =2n ,∴4n +2n =72,解得n =3.∴⎝⎛⎭⎪⎫x +3x n =⎝ ⎛⎭⎪⎫x +3x 3的展开式的通项为T r +1=C r 3(x )3-r ⎝ ⎛⎭⎪⎫3x r =3r C r 3x 3-3r2,令3-3r 2=0,得r =1,故展开式的常数项为T 2=3C 13=9.故选B.[答案] B 二、填空题6.在1-55ax 5(a >0)的展开式中,若第3项的系数等于二项式系数之和,则a =________.[解析] 依题意,得C 25⎝ ⎛⎭⎪⎫-55a 2=25,解得a =4. [答案] 47.若x 9=a 0+a 1(x -1)+a 2(x -1)2+…+a 9(x -1)9,则a 1+a 3+a 5+a 7+a 9a 7的值为________. [解析] 令x =2,则29=a 0+a 1+a 2+…+a 8+a 9, 令x =0,则0=a 0-a 1+a 2-…+a 8-a 9,因而a 1+a 3+a 5+a 7+a 9=a 0+a 2+a 4+a 6+a 8=28,而x 9=[1+(x -1)]9,其中T 8=C 79(x -1)7,因而a 7=C 79=36,则a 1+a 3+a 5+a 7+a 9a 7=25636=649. [答案] 649 8.若二项式x -23xn的展开式中仅有第6项的二项式系数最大,则其常数项是________.[解析] ∵二项式x -23xn的展开式中仅有第6项的二项式系数最大,∴n =10,∴T r +1=C r 10(x )10-r-23xr =(-2)r C r10·x 30-5r6 ,令30-5r 6=0,解得r =6,∴常数项是(-2)6C 610=13440.[答案] 13440 三、解答题9.已知在⎝ ⎛⎭⎪⎫3x -123x n的展开式中,第6项为常数项.(1)求n ;(2)求含x 2的项的系数; (3)求展开式中所有的有理项.[解] (1)通项公式为T k +1=C kn xnk3·⎝ ⎛⎭⎪⎫-12k x -k 3=C k n ⎝ ⎛⎭⎪⎫-12k x n-2k3.因为第6项为常数项所以k =5时,n -2×53=0,即n =10. (2)令10-2k3=2,得k =2, 故含x 2的项的系数是C 210⎝⎛⎭⎪⎫-122=454.(3)根据通项公式,由题意⎩⎪⎨⎪⎧10-2k3∈Z ,0≤k ≤10,k ∈N ,令10-2k 3=r (r ∈Z ),则10-2k =3r ,k =5-32r ,∵k ∈N ,∴r 应为偶数,∴r 可取2,0,-2,即k 可取2,5,8,∴第3项,第6项与第9项为有理项, 它们分别为C 210⎝⎛⎭⎪⎫-122x 2,C 510⎝⎛⎭⎪⎫-125,C 810⎝ ⎛⎭⎪⎫-128x -2.10.已知(1-2x )7=a 0+a 1x +a 2x 2+…+a 7x 7,求:(1)a 1+a 2+…+a 7; (2)a 1+a 3+a 5+a 7; (3)a 0+a 2+a 4+a 6;(4)|a 0|+|a 1|+|a 2|+|a 3|+|a 4|+…+|a 7|. [解] 令x =1,则a 0+a 1+a 2+a 3+a 4+a 5+a 6+a 7=-1.① 令x =-1,令a 0-a 1+a 2-a 3+a 4-a 5+a 6-a 7=37.②(1)∵a 0=C 07=1,∴a 1+a 2+a 3+…+a 7=-2.(2)(①-②)÷2,得a 1+a 3+a 5+a 7=-1-372=-1094. (3)(①+②)÷2,得a 0+a 2+a 4+a 6=-1+372=1093.(4)∵(1-2x )7展开式中a 0,a 2,a 4,a 6大于零,而a 1,a 3,a 5,a 7小于零,∴|a 0|+|a 1|+|a 2|+…+|a 7|=(a 0+a 2+a 4+a 6)-(a 1+a 3+a 5+a 7) =1093-(-1094)=2187.能力提升练11.(2019·成都一中模拟)设(x 2+1)(2x +1)9=a 0+a 1(x +2)+a 2(x +2)2+…+a 11(x +2)11,则a 0+a 1+a 2+…+a 11的值为( )A .-2B .-1C .1D .2[解析] 令等式中x =-1可得a 0+a 1+a 2+…+a 11=(1+1)(-1)9=-2,故选A.[答案] A12.(2019·广东茂名联考)在(x +x )6⎝⎛⎭⎪⎫1+1y 5的展开式中,x 4y 2项的系数为( )A .200B .180C .150D .120[解析] (x +x )6展开式的通项公式为T r +1= C r 6(x )6-r x r =C r6x 6+r2 ,令6+r 2=4,得r =2,则T 3=C 26x 6+22 =15x 4.⎝ ⎛⎭⎪⎫1+1y 5展开式的通项公式为T r +1=C r 5⎝ ⎛⎭⎪⎫1y r=C r 5y -r ,令r =2可得T 3=C 25y -2=10y -2.故x4y2项的系数为15×10=150. [答案] C13.若⎝ ⎛⎭⎪⎫x -3x n 展开式的各项系数的绝对值之和为1024,则展开式中x 的一次项的系数为________.[解析] T r +1=C rn (x )n -r ⎝⎛⎭⎪⎫-3x r =(-3)r ·C r n x n-3r2 ,因为展开式的各项系数绝对值之和为C 0n +|(-3)1C 1n |+(-3)2C 2n +|(-3)3C 3n |+…+|(-3)n C nn |=1024,所以(1+3)n=1024,解得n =5,令5-3r2=1,解得r =1,所以展开式中x 的一次项的系数为(-3)1C 15=-15. [答案] -1514.已知⎝ ⎛⎭⎪⎫12+2x n .(1)若展开式中第5项,第6项与第7项的二项式系数成等差数列,求展开式中二项式系数最大的项的系数;(2)若展开式前三项的二项式系数和等于79,求展开式中系数最大的项.[解] (1)∵C 4n +C 6n =2C 5n ,∴n 2-21n +98=0. ∴n =7或n =14,当n =7时,展开式中二项式系数最大的项是T 4和T 5. ∴T 4的系数为C 37⎝⎛⎭⎪⎫124·23=352,T 5的系数为C 47⎝ ⎛⎭⎪⎫123·24=70, 当n =14时,展开式中二项式系数最大的项是T 8.∴T 8的系数为C 714⎝ ⎛⎭⎪⎫127·27=3432.(2)∵C 0n +C 1n +C 2n =79,∴n 2+n -156=0.∴n =12或n =-13(舍去).设第r +1项的系数最大,∵⎝ ⎛⎭⎪⎫12+2x 12=⎝ ⎛⎭⎪⎫1212(1+4x )12, ∴⎩⎪⎨⎪⎧C r 124r ≥C r -1124r -1,C r 124r ≥C r +1124r +1.∴9.4≤r ≤10.4, 又r ∈N *,r =10.∴展开式中系数最大的项为第11项,T 11=C 1012·⎝ ⎛⎭⎪⎫122·210·x 10=16896x 10.拓展延伸练15.(2019·银川质检)若(2x +1)11=a 0+a 1(x +1)+a 2(x +1)2+…+a 11(x +1)11,则a 0+a 12+a 23+…+a 1112=( )A .0B .1 C.124 D .12[解析] 令t =x +1,则x =t -1,从而(2t -1)11=a 0+a 1t +a 2t 2+…+a 11t 11,而⎣⎢⎡⎦⎥⎤(2t -1)1224′=⎝ ⎛⎭⎪⎫a 0t +a 12t 2+a 23t 3+…+a 1112t 12+c ′,即(2t -1)1224=a 0t +a 12t 2+a 23t 3+…+a 1112t 12+c ,令t =0,得c =124,令t =1,得a 0+a 12+a 33+…+a 1112=0.[答案] A16.(2019·安徽省“江南十校”联考)若(x +2+m )9=a 0+a 1(x +1)+a 2(x +1)2+…+a 9(x +1)9,且(a 0+a 2+…+a 8)2-(a 1+a 3+…+a 9)2=39,则实数m的值为________.[解析]令x=0,得到a0+a1+a2+…+a9=(2+m)9,令x=-2,得到a0-a1+a2-a3+…-a9=m9,所以有(2+m)9m9=39,即m2+2m =3,解得m=1或-3.[答案]1或-3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.⎝⎛⎭⎫x2-2x35展开式中的常数项为()A.80 B.-80 C.40 D.-404.(1+2x)5的展开式的第3项的系数为________,第三项的二项式系数为________.二项式定理的应用[典例](1)求⎝⎛⎭⎫3x+1x4的展开式;(2)化简:(x-1)5+5(x-1)4+10(x-1)3+10(x-1)2+5(x-1).运用二项式定理的解题策略(1)正用:求形式简单的二项展开式时可直接由二项式定理展开,展开时注意二项展开式的特点:前一个字母是降幂,后一个字母是升幂.形如(a-b)n的展开式中会出现正负间隔的情况.对较繁杂的式子,先化简再用二项式定理展开.(2)逆用:逆用二项式定理可将多项式化简,对于这类问题的求解,要熟悉公式的特点、项数、各项幂指数的规律以及各项的系数.[活学活用]1.化简(x+1)4-4(x+1)3+6(x+1)2-4(x+1)+1的结果为()A.x4B.(x-1)4 C.(x+1)4D.x4-1.2.设n为自然数,化简C0n·2n-C1n·2n-1+…+(-1)k·C k n·2n-k+…+(-1)n·C n n=________.[典例](1)求二项式⎝⎛⎭⎫2x-1x6的展开式中第6项的二项式系数和第6项的系数;(2)求⎝⎛⎭⎫x-1x9的展开式中x3的系数.求某项的二项式系数或展开式中含x r的项的系数,主要是利用通项公式求出相应的项,特别要注意某项二项式系数与系数两者的区别.与展开式中的特定项有关的问题题点一:求展开式中的特定项1.(四川高考)设i为虚数单位,则(x+i)6的展开式中含x4的项为()A .-15x 4B .15x 4C .-20i x 4D .20i x 4 2.(1+2x )3(1-3x )5的展开式中x 的系数是________. 题点二:由二项展开式某项的系数求参数问题3.(山东高考)若⎝⎛⎭⎫ax 2+1x 5的展开式中x 5的系数是-80,则实数a =________.求展开式中特定项的方法求展开式特定项的关键是抓住其通项公式, 求解时先准确写出通项, 再把系数和字母分离, 根据题目中所指定的字母的指数所具有的特征, 列出方程或不等式即可求解.有理项问题的解法,要保证字母的指数一定为整数.层级一 学业水平达标1.(x +2)n 的展开式共有12项,则n 等于( ) A .9 B .10 C .11D .82.(1-i)10(i 为虚数单位)的二项展开式中第七项为( ) A .-210 B .210 C .-120i D .-210i 3.已知⎝⎛⎭⎫x -1x 7的展开式的第4项等于5,则x 等于( ) A .17 B .-17C .7D .-74.若二项式⎝⎛⎭⎫x -2x n 的展开式中第5项是常数项,则自然数n 的值可能为( ) A .6 B .10 C .12 D .155.(湖南高考)⎝⎛⎭⎫12x -2y 5的展开式中x 2y 3的系数是( ) A .-20 B .-5 C .5D .206.(全国卷Ⅰ)(2x +x )5的展开式中,x 3的系数是______.(用数字填写答案) 7.若(1+2x )6的展开式中的第2项大于它的相邻两项,则x 的取值范围是________. 8.若(x +a )10的展开式中,x 7的系数为15,则a =______.(用数字填写答案)9.若二项式⎝⎛⎭⎫x -a x 6(a >0)的展开式中x 3的系数为A ,常数项为B ,且B =4A ,求a 的值.10.已知m ,n ∈N *,f (x )=(1+x )m +(1+x )n 展开式中x 的系数为19,求x 2的系数的最小值及此时展开式中x 7的系数.层级二 应试能力达标1.在(1-x 3)(1+x )10的展开式中x 5的系数是( ) A .-297 B .-252 C .297D .2072.使⎝⎛⎭⎫3x +1x x n (n ∈N *)的展开式中含有常数项的最小的n 为( ) A .4 B .5 C .6D .73.(1+3x )n (其中n ∈N 且n ≥6)的展开式中,若x 5与x 6的系数相等,则n =( ) A .6 B .7 C .8D .94.在⎝⎛⎭⎫x 2-1x n 的展开式中,常数项为15,则n 的一个值可以是( ) A .3 B .4 C .5D .65.x ⎝⎛⎭⎫x -2x 7的展开式中,x 4的系数是________.(用数字作答) 6.在⎝ ⎛⎭⎪⎫32x -1220的展开式中,系数是有理数的项数为________.7.记⎝⎛⎭⎫2x +1x n 的展开式中第m 项的系数为b m . (1)求b m 的表达式;(2)若n =6,求展开式中的常数项; (3)若b 3=2b 4,求n .8.求证:1+2+22+…+25n -1(n ∈N *)能被31整除.1.3.2 “杨辉三角”与二项式系数的性质 1.杨辉三角具有哪些特点? 2.二项式系数的性质有哪些?[新知初探]1.杨辉三角的特点(1)在同一行中,每行两端都是1,与这两个1等距离的项的系数相等.(2)在相邻的两行中,除1以外的每一个数都等于它“肩上”两个数的和,即C r n +1=C r -1n +C rn .2.二项式系数的性质(1)对称性:与首末两端“等距离”的两个二项式系数相等(即C m n =C n -mn).(2)增减性与最大值:当k <n +12时,二项式系数逐渐增大.由对称性知它的后半部分是逐渐减小的,且在中间取得最大值;当n 是偶数时,中间一项C n2n 取得最大值;当n 是奇数时,中间两项C n -12n ,C n +12n 相等,同时取得最大值. (3)各二项式系数的和:①C 0n +C 1n +C 2n +…+C n n =2n ,②C 0n +C 2n +C 4n +…=C 1n +C 3n +C 5n +…=2n -1.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”) (1)杨辉三角的每一斜行数字的差成一个等差数列.( )(2)二项式展开式的二项式系数和为C 1n +C 2n +…+C n n .( )(3)二项式展开式中系数最大项与二项式系数最大项相同.( ) 2.已知(ax +1)n 的展开式中,二项式系数和为32,则n 等于( ) A .5 B .6 C .7D .83.(1+x )2n (n ∈N *)的展开式中,系数最大的项是( ) A .第n2+1项 B .第n 项 C .第n +1项D .第n 项与第n +1项4.在(a +b )n 的展开式中,第2项与第6项的二项式系数相等,则n =( ) A .6 B .7 C .8 D .9与杨辉三角有关的问题[典例] (1)杨辉三角如图所示,杨辉三角中的第5行除去两端数字1以外,均能被5整除,则具有类似性质的行是( )A.第6行B.第7行C.第8行D.第9行(2)如图,在杨辉三角中,斜线AB上方箭头所示的数组成一个锯齿形的数列:1,2,3,3,6,4,10,…,记这个数列的前n项和为S(n),则S(16)等于()A.144 B.146 C.164 D.461解决与杨辉三角有关的问题的一般思路(1)观察:对题目进行多角度观察,找出每一行的数与数之间,行与行之间的数的规律.(2)表达:将发现的规律用数学式子表达.(3)结论:由数学表达式得出结论.[活学活用]如图,在由二项式系数所构成的杨辉三角中,第_____行中从左到右第14与第15个数的比为2∶3.[典例]设(1-2x)2 016=a0+a1x+a2x2+…+a2 016·x2 016(x∈R).(1)求a0+a1+a2+…+a2 016的值.(2)求a1+a3+a5+…+a2 015的值.(3)求|a0|+|a1|+|a2|+…+|a2 016|的值.二项展开式中系数和的求法(1)对形如(ax+b)n, (ax2+bx+c)m(a,b,c∈R,m,n∈N*)的式子求其展开式的各项系数之和,常用赋值法,只需令x =1即可;对(ax +by )n (a ,b ∈R ,n ∈N *)的式子求其展开式各项系数之和,只需令x =y =1即可. (2)一般地,若f (x )=a 0+a 1x +a 2x 2+…+a n x n ,则f (x )展开式中各项系数之和为f (1),奇数项系数之和为a 0+a 2+a 4+…=f (1)+f (-1)2,偶数项系数之和为a 1+a 3+a 5+…=f (1)-f (-1)2.[活学活用]已知(1-2x )7=a 0+a 1x +a 2x 2+…+a 7x 7,求:(1)a 1+a 2+…+a 7;(2)a 1+a 3+a 5+a 7,a 0+a 2+a 4+a 6.求展开式中系数或二项式系数的最大项 [典例] 在⎝⎛⎭⎫x -2x 28的展开式中, (1)求二项式系数最大的项;(2)系数的绝对值最大的项是第几项? ,.二项式系数的最大项的求法求二项式系数的最大项,根据二项式系数的性质对(a +b )n 中的n 进行讨论.(1)当n 为奇数时,中间两项的二项式系数最大.(2)当n 为偶数时,中间一项的二项式系数最大.层级一 学业水平达标1.关于(a -b )10的说法,错误的是( )A .展开式中的二项式系数之和为1 024B .展开式中第6项的二项式系数最大C .展开式中第5项或第7项的二项式系数最大D .展开式中第6项的系数最小 2.已知(a +b )n 展开式中只有第5项的二项式系数最大,则n 等于( ) A .11 B .10 C .9D .83.设(1+x )+(1+x )2+(1+x )3+…+(1+x )n =a 0+a 1x +a 2x 2+…+a n x n ,当a 0+a 1+a 2+…+a n =254时,n 等于( )A .5 B .6 C .7 D .84.若对于任意实数x ,有x 3=a 0+a 1(x -2)+a 2(x -2)2+a 3(x -2)3,则a 2的值为( ) A .3 B .6 C .9 D .125.已知C 0n +2C 1n +22C 2n +…+2n C n n =729,则C 1n +C 3n +C 5n的值等于( ) A .64 B .32 C .63 D .316.若(x +3y )n 的展开式中各项系数的和等于(7a +b )10的展开式中二项式系数的和,则n 的值为________. 7.(2x -1)10展开式中x 的奇次幂项的系数之和为________.8.(1+x )n 展开式中的各项系数的和大于8而小于32,则系数最大的项是________. 9.若(x 2-3x +2)5=a 0+a 1x +a 2x 2+…+a 10x 10. (1)求a 1+a 2+…+a 10;(2)求(a 0+a 2+a 4+a 6+a 8+a 10)2-(a 1+a 3+a 5+a 7+a 9)2.10.已知⎝⎛⎭⎫12+2x n,若展开式中第5项、第6项与第7项的二项式系数成等差数列,求展开式中二项式系数最大的项的系数.层级二 应试能力达标1.1+(1+x )+(1+x )2+…+(1+x )n 的展开式的各项系数之和为( ) A .2n -1 B .2n -1C .2n +1-1D .2n2.在(1+x )n (n 为正整数)的二项展开式中奇数项的和为A ,偶数项的和为B ,则(1-x 2)n 的值为( ) A .0 B .AB C .A 2-B 2 D .A 2+B 23.若(1-2x )2 016=a0+a 1x +…+a 2 016x 2 016(x ∈R),则a 12+a 222+…+a 2 01622 016的值为( )A .2B .0C .-1D .-24.若(x +y )9按x 的降幂排列的展开式中,第二项不大于第三项,且x +y =1,xy <0,则x 的取值范围是( ) A .⎝⎛⎭⎫-∞,15 B .⎣⎡⎭⎫45,+∞ C .⎝⎛⎦⎤-∞,-45 D .(1,+∞)5.若⎝⎛⎭⎫x +1x n 展开式的二项式系数之和为64,则展开式的常数项为________. 6.若⎝⎛⎭⎫x 2-1x n 的展开式中含有x 的项为第6项,若(1-3x )n =a 0+a 1x +a 2x 2+…+a n x n ,则a 1+a 2+…+a n 的值为________.7.已知⎝⎛⎭⎪⎫x +13x n的展开式中偶数项的二项式系数和比(a +b )2n的展开式中奇数项的二项式系数和小于120,求第一个展开式中的第3项.8.在二项式(ax m +bx n )12(a >0,b >0,m ,n ≠0)中有2m +n =0,如果它的展开式中系数最大的项恰是常数项.(1)求系数最大的项是第几项? (2)求ab 的范围.,。

相关文档
最新文档