运筹学 第三章 运输问题

合集下载

运筹学--第三章运输问题

运筹学--第三章运输问题
并设Xij----第i个盐产地运往第j个盐销地的运量。 目标函数为:
minS=3 x11 3 x12 4 x13 5 x14 6 x21 ...... 2x34
运出量等于产量:
x11+x12+x13+x14=70 x21+x22+x23+x24=80 x31+x32+x33+x34=100
P13 e1 e6 P14 e1 e7 P21 e2 e4 P23 e2 e6 P32 e3 e5 P34 e3 e7
后面 有理 论探 讨。
即不存在一组不全为零的数 k1 , k2 ,..., k6使得:
k1 P13 k2 P14 ... k6 P34 0成立
u1 u2 u3 v1 v2 v3 v4
x11 1
x12 1
x13 1
x14 1
1
0 1
0 1
0
x21 0 1 0 1
x22 0 1 0 0 1
x23 0 1 0 0 1
x24 0 1 0 0
x31 0 0 1 1
x32 0 0 1 0 1
x33 0 0 1 0 0 1
1
1
x34 0 0 1 0 0 0 1
3 2 2
1 4 5
销地 产地 A1 A2 A3 销量
3 4
B1 x11 x21 x31 3
B2 x12 x22 x32 6
B3 x13 x23 x33 5
B4 x14 x24 x34 6
产量 7 4 9 20
回顾
min z cij xij
i 1 j 1
如何求初始可行解?
约束方程 m n 7个, 模型中有变量 m n 12个,

运筹学第3章:运输问题-数学模型及其解法

运筹学第3章:运输问题-数学模型及其解法

整数规划模型
01
整数规划模型是线性规划模型 的扩展,它要求所有变量都是 整数。
02
整数规划模型适用于解决离散 变量问题,例如车辆路径问题 、排班问题等。
03
在运输问题中,整数规划模型 可以用于解决车辆调度、装载 等问题,以确保运输过程中的 成本和时间效益达到最优。
混合整数规划模型
混合整数规划模型是整数规划和线性规划的结合,它同时包含整数变量和 连续变量。
运筹学第3章:运输问题-数学模 型及其解法
目录
• 引言 • 运输问题的数学模型 • 运输问题的解法 • 运输问题的应用案例 • 结论
01 引言
运输问题的定义与重要性
定义
运输问题是一种线性规划问题,主要 解决如何将一定数量的资源(如货物 、人员等)从起始地点运送到目标地 点,以最小化总运输成本。
总结词
资源分配优化是运输问题在资源管理 领域的应用,主要解决如何将有限的 资源合理地分配到各个部门或项目, 以最大化整体效益。
详细描述
资源分配优化需要考虑资源的数量、 质量、成本等多个因素,通过建立运 输问题的数学模型,可以找到最优的 资源分配方案,提高资源利用效率, 最大化整体效益。
05 结论
运输问题的发展趋势与挑战
生产计划优化
总结词
生产计划优化是运输问题在生产领域的应用,主要解决如何合理安排生产计划, 满足市场需求的同时降低生产成本。
详细描述
生产计划优化需要考虑原材料的采购、产品的生产、成品的销售等多个环节,通 过建立运输问题的数学模型,可以找到最优的生产计划和调度方案,提高生产效 率,降低生产成本。
资源分配优化
发展趋势
随着物流行业的快速发展,运输问题变得越来越复杂,需要更高级的数学模型和算法来 解决。同时,随着大数据和人工智能技术的应用,运输问题的解决方案将更加智能化和

广工管理运筹学第三章运输问题

广工管理运筹学第三章运输问题

闭合回路法的优点是能够找到全局最 优解,适用于大型复杂运输问题。但 该方法的计算复杂度较高,需要较长 的计算时间。
商位法
01
商位法是一种基于商位划分的优化算法,用于解决运输问题。该方法通过将供 应点和需求点划分为不同的商位,并最小化总运输成本。
02
商位法的计算步骤包括:根据地理位置和货物需求量,将供应点和需求点划分 为不同的商位;根据商位的地理位置和货物需求量,计算总运输成本;通过比 较不同商位的总运输成本,确定最优的配送路线。
80%
线性规划法
通过建立线性规划模型,利用数 学软件求解最优解,得到最小化 总成本的运输方案。
100%
启发式算法
采用启发式规则逐步逼近最优解 ,常用的算法包括节约算法、扫 描算法等。
80%
遗传算法
基于生物进化原理的优化算法, 通过模拟自然选择和遗传机制来 寻找最优解。
02
运输问题的数学模型
变量与参数
约束条件
供需平衡
每个供应点的供应量等于对应 需求点的需求量,这是运输问 题的基本约束条件。
非负约束
运输量不能为负数,即每个供 应点对每个需求点的运输量都 应大于等于零。
其他约束条件
根据实际情况,可能还有其他 约束条件,如运输能力的限制 、运输路线的限制等。
03
运输问题的求解算法
表上作业法
总结词
直到达到最优解。这两种方法都可以通过构建线性规划模型来求解最优解。
04
运输问题的优化策略
节约法
节约法是一种基于节约里程的优化算法,用于解决 运输问题。该方法通过比较不同配送路线的距离和 货物需求量,以最小化总运输距离为目标,确定最 优的配送路线。
节约法的计算步骤包括:计算各供应点到需求点的 距离,找出最短路径;根据最短路径和货物需求量 ,计算节约里程;按照节约里程排序,确定最优配 送路线。

运筹学教学课件 第三章 运输问题

运筹学教学课件 第三章 运输问题

7 4 9 3 6 5 6
2.1 确定初始基可行解
• 这与一般线性规划问题不同,产 销平衡的运输问题总是存在可行解。 因有
b a
i 1 j i 1
m
m
i
d
必存在 0≤ xij,i=1,…,m,j=1,…,n 是可行解。又因 0≤xij≤min(a1,bj) • 故运输问题的可行解和最优解必存在。 • 确定初始可行解的方法有很多,一般 希望的方法即简便又尽可能接近最优解。 下面介绍两种方法:最小元素法和伏格 尔(Vogel)法。(其它如西北角法等)
例1
• 某公司经销甲产品,它下设三个加工厂。每 日的产量分别为: • A1——7吨,A2——4吨,A3——9吨。该公 司把这些产品分别运往四个销售点。各销售 点每日的销量为:B1——3吨,B2——6吨, • B3——5吨,B4——6吨。已知从各工厂到各 销售点的单位产品的运价为表3-3所示,问该 公司应如何调运产品,在满足各销点的需要 量的前提下,使总运费为最少。
运价表与行差和 列差的计算
表3-10 伏格尔法
伏格尔法基可行解, 总运费为85,恰好得 到最优解
销地 B1 B2 B3 B4 行 产 差 量 产地
销地 B1 B2 B3 B4 产地 A1 A2
A1
A2 A3
3
1 7
11 3
9 4 5 6 2 1 5
10 0
8 3 6 1 1
7
4 9
10 5
列差 2 销量 3
A3
表3-13
B1 销地 加工厂 A1 A2 A3 销量 ห้องสมุดไป่ตู้2 B3 B4 产量
5 3 6 3 6 5
2 1 3 6
7 4 9

运筹学-3运输问题

运筹学-3运输问题
产销平衡问题 产销不平衡问题
产大于销 销大于供
当产销平衡时,其模型如下:
当产大于销时,其模型是:
mn
min Z
cij xij
i1 j1
xij ai xij bj
xij
0
( ai bj)
当销大于产时,其模型是:
min Z
cij xij
xij ai xij bj
可行解的方法
Review
二、表上作业法的步骤
Step1.找出初始基本可行解(在m*n产销平衡 表上寻找初始调运方案,一般m+n-1个数字 格),用最小元素法、西北角法、伏格尔法;
Step2.求出各非基变量的检验数,判别是否达 到最优解。如果是停止计算,否则转入下一步, 用闭回路或位势法计算;
Step3.改进当前的基本可行解(确定换入、 换出变量),用闭合回路法调整; Step4.重复2. 3,直到找到最优解为止。
(3)运输问题的解
定义1. 闭回路
x x x x x x 闭回路是能折成 i1 j1, i1 j2 , i2 j2 , i2 j3 ,..., isjs , isj1
形式的变量组集合。其中 i1 , i2 , …, is 互不相同,j1 , j2 , …, js 互不相 同。每个变量称为闭回路的顶点,连接闭回路相邻两顶点的直线段叫做闭
统计学院
运筹学-第三章 运输问题
张红历
本章内容
1.运输问题及其数学模型 2.表上作业法 3.运输问题的进一步讨论
4.应用问题举例
第一节 运输问题及其数学模型
一、运输问题的提出
例:某运输问题的资料如下:
单位 销地 运价
产地
A1 A2 A3
销量

运筹学第三章 运输问题

运筹学第三章 运输问题

销地 产地 A1
A2
B1
B2
B3
B4
产量
6
5 3
3 1
4
4
2
A3
销量 2
4 7
1 3
4
4 6
3
7 5
3
5
6
8
4 3 13
σ11=-3, σ12=-2,σ23=-4, σ31=-1,σ33=1, σ34=-1
销地 产地 A1
A2
B1
B2
B3
B4
产量
6
5 0
3 4
4
4
2
A3
销量 2
4 7
4
4 6
3
4 3
5
3
4
3
4 7
1
5
4 6
A3 销量 2
7
0
4
6
3
5
3
4
8
3 13
x11检验数为 6-4+8-6+4-4=4
销地 产地 A1
A2
B1
B2
B3
B4
产量
6 4 2 4
5
3
4
3
4 7
1
5
4 6
A3 销量 2
7
0
4
6
3
5
3
4
8
3 13
x12检验数为 5-4+8-6=3
销地 产地 A1
A2
B1
B2
B3
B4
产量
2、位势法 当运输问题变量的格数较多时,用闭 回路法计算检验数比较麻烦,而位势法比 较简便。 对于运输问题 minf=CX AX=b X≥0 设B为其一个可行基,则xij的检验数为 σ ij=CBB-1Pij-Cij

运筹学 第3章运输问题

运筹学 第3章运输问题

检 验 数 表
最 优 方 案 判 别 准 则
B1 3 A1 A2 7 A3 vj
B2 11
B3 3 2
B4 10 8
ui
1
1Байду номын сангаас
2
9
0
1
4 10
-1
5
-1 -5
10
2 9
12
3 10
24=-1<0,当前方案 不是最优方案。
26
2.3
闭回路调整法改进方案
min ij 0 pq
xpq 为换入变量
min
z cij xij
i 1 j 1
s.t.
n xij ai 1 jm xij b j i 1 xij 0
i 1,, m j 1,, n
4
运输问题的约束方程组系数矩阵及特征
x11 x12 .... x1n 1 1.......1 A 1 1 1 x21 x22 .... x2 n ...... xm1 xm 2 .... xmn 1 1.......1 ......... 1 1.......1 1 1 1 .......... 1 1 1
10
1. 最小元素法 (思想:就近供应) 不 能 同 时 划 去 行 和 列
销 产 A1 1 A2 A3 销量 3 9 B1 3 B2 11 B3 3 B4
表3-4
产量 10 7 8 5
4
2
3
3
7 4
1
10
6
6 5
3
6
保证填 4 有运量 的格子 9 为m+n1
该方案总运费: Z=4×3+3×10+3×1+1×2+6×4+3×5=86

《运筹学》第三章:运输问题培训课件

《运筹学》第三章:运输问题培训课件

确定初始可行解方法一:西北角 法
门市部 工厂
1
2
3
4 供应总计
9
12
9
6
1
50
7
3
7
7
2
60
6
5
9
11
3
50
需求总计 40 40 60 20
确定初始可行解方法一:西北角 法
门市部 工厂
1
2
3
4 供应总计
9
12
9
6
1
50
40 10
7
3
7
7
2
30 30
60
6
5
9
11
3
30 20
50
需求总计 40 40 60 20
2
34
9 12 9 6
1
40
10
U1
7
3
7
7
2

40
20
U2
3
6
5
9
11
40
10
U3
V1 V2 V3 V4
21 (7 6 9) (9 11 7) 5
继续求检验数
门市部
工厂
1
2
3
4
供应总 计
9 12 9 6
1
40 (12) (5)
10
50
7
3
7
7
2
(-5) 40
20 (-2) 60
3
6
计算检验数方法一:闭合回 路法
门市部 工厂
1
9 1
40
7 2
6 3
需求总计 40
2
3

运筹学 第三章 运输问题

运筹学 第三章 运输问题
(或者在同时划去Ai行与Bj列时,在该行或该列的任意空格处填加一 个0。)
这样可以保证填过数或零的格为m+n-1个,即保证基变量的个数为 m+n-1个。
2021/3/14
14
2.Vogel法
Vogel法的思想是:一地的产品如果不能按照最小运
费就近供应,就考虑次小运费,这就有差额,差额越大, 说明不能按最小运费调运时,运费增加得越多。因而差 额越大处,就应当采用最小运费调运。
同理可以求得 v4=10,u2= -1,等等见上表。
检验数的求法,即用公式 ijciju,i vj
如 1 1 c 1 1 u 1 v 1 3 0 2 1 。
2021/3/14
23
位势法计算检验数:
检验数: ijcijCBB1Pij
cijYiP jcij(u1,..u.m , ,v1,.v.n.)Pij
3
B4
ui
3 10
0
-1 8
-1
35
-5
10
B1
3
31
7
2
B2
11 9
64
9
B3
4(+1) 3 1 (-1) 2
10
3
B4
ui
3(-1) 10
0
+1 8
-1
35
-5
10
2021/3/14
26
调整运量后的新方案:
销地
产地
B1
A1
A2
3
A3
B2
B3
5
6
销量
3
6
5
B4
产量
2
7
1
4
3
9

运筹学 第三章 运输问题

运筹学 第三章  运输问题
• 设xij表示产地 i 运往销地 j 的物资量, cij表示对应的单位运费, 则我们有运输问题的数学模型如下:
mn
Min Z = cij xij i1 j1 m xij =ai (i=1, ..., m)产量约束 i 1 n xij =bj(j=1, ..., n)销量约束 j1
xij ≥ 0(i=1, ..., m;j=1, ..., n)
15
2. 伏格尔法(Vogel)
例5
销地 产地
A1
B1 3

B2
B3
11
3

B4
ai
10 7 0 0 0 0
1
A2

9
2③ 8 4 1 1 1 1
A3
7
4

10

5 9 12 - -
bj
3
6
5
6 20
2513
2 - 13
2 - 12
2-1-
Z=2×3 +1×1+6×4+5×3+3×8+3×5=85 16
0
2.决策变量xij的系数列向量为:
1
i位 置
aij
1
m
j位 置
3. 线性无关的行数为m+n-1.
0
5
四、闭回路
1. 概念
例3
销地 产地
A1
A2
A3 bj
B1
B2
B3
B4
ai
3
11 ④
3 ③
10 7
1 ③
9
2

84
7
4

10 ③
59
3
6
5
6 20
1) 数字格 2) 空格

《运筹学》第三章 运输问题

《运筹学》第三章 运输问题

二、表上作业法
计算步骤:
(1) 找出初始调运方案。即在(m×n)产销平衡表 上给出m+n-1个数字格。(最小元素法、西北角法 或伏格尔法) 确定m+n-1个基变量 (2) 求检验数。(闭回路法或位势法) 判别是 否达到最优解。如已是最优解,则停止计算,否 则转到下一步。 空格 (3)对方案进行改善,找出新的调运方案。 (表上闭回路法调整) (4) 重复(2)、(3),直到求得最优调运方案。
B1 A1 A2 A3 销量 3 1
B2 2
B3 4
B4 3
产量 7 4
3
6 6
1
3 5 6
9
B1 A1 A2 A3 销量 3 1
B2 2
B3 4
B4 3
产量 7 4 9
3
6 6
1
-1
3
5
6
B1 A1 A2 A3 销量 3 1 3
B2 2 1 6 6
B3 4 1
B4 3 -1 3
产量 7 4 9
(ui+vj)
- B2 9 8 4 B3 3 2 -2 B4 10 9 5
A3 -3
σij
B1 = A1 A2 A3 1 0 10 B2 2 1 0 B3 B4 0 0 0 -1 12 0
表中还有负数,说明 还未得到最优解,应 继续调整。 用位势法与用闭回路法 算出的检验数? 相同
3、解的改进
——闭合回路调整法(原理同单纯形法一样) 上例: min( σ ij 0 ) pq
m
n
系数列向量的结构: A ij ( 0, 0, 0 ,, 0, 0 ) 1, 0 1,
第 i个
第 ( m j )个

运筹学第三章 运输问题

运筹学第三章 运输问题
则称该运输问题为产销平衡问题;否则,称 产销不平衡。首先讨论产销平衡问题。
8
1.运输问题模型及有关概念
表4-3 运输问题数据表
销地
产地
A1 A2

Am
销量
B1 B2 … Bn
c11
c12 … c1n
c21
c22 … c2n
┇ ┇ ┇┇
cm1
cm2 … cmn
b1
b2 … bn
产量
a1 a2

am
设 xij 为从产地 Ai 运往销地 Bj 的运
式(4-8)中的变量称为这个闭回路的顶点。
22
1.运输问题模型及有关概念
例如,x13, x16, x36, x34, x24, x23 ; x23, x53, x55, x45, x41, x21 ; x11, x14, x34, x31等都是闭回路。
若把闭回路的各变量格看作节点, 在表中可以画出如下形式的闭回路:
得到下列运输量表:
4
1.运输问题模型及有关概念
Min Z s.t.
= 6x11+4x12+6x13+6x21+5x22+5x23 x11+ x12 + x13 = 200
x21 + x22+ x23 = 300
x11 + x21 = 150
x12 + x22 = 150
x13 + x23 = 200
2.每列只有两个 1,其余为 0,分别 表示只有一个产地和一个销地被使用。
7
1.运输问题模型及有关概念
一般运输问题的线性规划模型及求解思路
一般运输问题的提法:
假设 A1, A2,…,Am 表示某物资的m个 产地;B1,B2,…,Bn 表示某物资的n个销地; ai表示产地 Ai 的产量;bj 表示销地 Bj 的 销量;cij 表示把物资从产地 Ai 运往销地 Bj 的单位运价(表4-3)。如果 a1 + a2 + … + am = b1 + b2 + … + bn

《运筹学》第三章 运输问题

《运筹学》第三章 运输问题

销量 3 6 5 6
A1 A2 A3
销量
B1 B1 B3 B4
2 1
6
5
3 3
3656
产量
7 4 9
精品课件
24
例:
B1 B2 B3 B4 产量
A1 (1) (2) 4 2 6 A2 3 (1) 2 (-1) 5 A3 (10) 6 (12) 3 9 销量 3 6 6 5
B1 B2 B3 B4 产量
(3) 在进行调运方案改进时,若沿闭合回路出现多个可作为 调出变量的数字格(即闭回路上的数字格最小值有多 个),此时,任选一个为调出变量,其余的填0,保证调 整后的调运方案中仍有m+n-1个数字格。
精品课件
23
例:
B1 B1 B3 B4 产量
A1 (0) (2) 5 2 7 A2 3 (2) (1) 1 4 A3 (9) 6 (12) 3 9
产 销 平 衡 表
单 位 运 价 表
精品课件
7
一般模 型表示 (ai=bj)
精品课件
8
三、模型的特点
1.变量数:mn个 2.约束方程数:m+n个
最大独立方程数:m+n-1 3.系数列向量结构:
0
Pij= 1 ——第i个分量
1 ——第m+j个分量 0
…… …
精品课件
9
······
······
x11 x12 ······ x1n x21 x22 ······ x2n ,············, xm1 xm2 ······ xmn
第3章 运输问题
精品课件
1
3.1 运输问题的典例和数学模型 3.2 运输问题的求解方法:表上作业 法 3.3 几类特殊的运输问题

苏州大学运筹学课件第三章运输问题ppt-第三章运输问题

苏州大学运筹学课件第三章运输问题ppt-第三章运输问题

12
13
z31-c31=(c21-c23+ c33)-c31=(8-2+10)-5=+11
第三章 运输问题
闭回路法(6)
1
2
3
6
7
5
1
14
-5
-5
8
4
2
2
8
13
6
5
9
10
3
+11
+3
6
22
13
12
z32-c32=(c22-c23+ c33)-c32=(4-2+10)-9=+3
第三章 运输问题
4
3
-7 14
34
利用西北角法给出初始解
1
2
3
4
8
5
6
0
1
15
10
5
-2
-5
7
10
9
0
2
+6
25
5
10
10
10
10
10
10
第三章 运输问题
35
X21进基,x22离基
1
2
3
4
8
5
6
0
1
15
5
10
+4
+1
7
10
9
0
2
5
25
-6
10
10
10
10
10
10
第三章 运输问题
36
X13进基,x11离基
1
2
3
4
8
1
-4
5
6

运筹学(胡运权第三版)第三章 运输问题

运筹学(胡运权第三版)第三章 运输问题

§1 运 输 问 题 及 其 数 学 模 型
二、运输问题数学模型的特点:
1. 运输问题一定有最优解;基变量的个数 =m+n-1
2. 运输问题约束条件的系数矩阵:
x11 x12
1 1 1


x1m x21 x22
1 1 1


x2m
1
… xm1
1
解 的 最 优 性 检 验
1.闭回路法 闭回路:从空格出发,遇到数 字格可以旋转90度,最后回到空 格所构成的回路; 原理:利用检验数的经济含义; 检验数:非基变量增加一个单 位引起的成本变化量。 当所有非基变量的检验数均大 于或等于零时,现行的调运方案 就是最优方案,因为此时对现行 方案作任何调整都将导致总的运 输费用增加。 闭回路法的主要缺点是:当变 量个数较多时,寻找闭回路以及 计算两方面都会产生困难。
B4
11
-1
产量
16
10 22 48
ui
A1 A2
A3 销量 vj
2
10
1 10
9 6
1 0
-4
8 14
5 12
8
14
2
检验数σ
9
3
10
13=8-(-4)-2=10;
2.对偶变量法(位势法)
解 的 最 优 性 检 验
m in Z = c 1 1 x 1 1 + c 1 2 x 1 2 + ... + c 1 n x 1 n + ... + c m 1 x m 1 + c m 2 x m 2 + ... + c m n x m n

运筹学第三版之第三章运输问题

运筹学第三版之第三章运输问题
运输问题(Transportation Problem)是一类特殊的线性 规划问题.最早研究这类问题的是美国学者希奇柯克 (Hitchcock),后来由柯普曼(Koopman)详细加以讨论。
在第一章线性规划模型的应用中,我们介绍了运输问 题,建立了其数学模型,这类问题属线性规划问题, 当然可以使用单纯形法进行求解,但是,由于运输问 题的约束系数矩阵有其特殊的结构和性质,因而有比 单纯形法更有效的方法来求解。
此法是纯粹的人为的规定,没有理论依据和实际背 景,但它易操作,特别适合在计算机上编程计算,因 而备受欢迎。
1、求初始调运方案:
例1 设有某物资共有3个产地A1,A2,A3,其产量分别为 9,5,7个单位,另有4个销地B1,B2,B3,B4,其销量分别为 3,8,4,6,已知由产地Ai运往销地Bj的单位运价见下表, 问应如何调运,才能使总运费最省?
集合,若用一条封闭折线将它们连接起来形成的图形称 为一个闭回路,其中诸变量称为闭回路的顶点,连接相 邻两个顶点及最后一个顶点与第一个顶点的线段称为闭 回路的边。 x11 , x14 , x44 , x45 , x35 , x32 , x22 , x21
B1 B2 B3 B4 B5
A1 x11
A2 x21
i 1
j1
当产大于销时,其模型是:
mn
min Z cij xij i1 j1
n
j1
xij
ai
, i
1,2,...,m
s
.t
.
m
xij
bj
,
j
1,2,...,n
i1
xij 0 i 1,...,m , j 1,...,n
(3.2)
m
n
ai bj

运筹学 第3章 运输问题

运筹学 第3章 运输问题

第三章运输问题在生产实际中,经常需要将某种物资从一些产地运往一些销地,因而存在如何调运使总的运费最小的问题。

这类问题一般可用线性规划模型来描述,当然可以用单纯形法求解。

但由于其模型结构特殊,学者们提供了更为简便和直观的解法—-表上作业法。

此外,有些线性规划问题从实际意义上看,并非运输问题,但其模型结构类似运输问题,也可以化作运输问题进行求解。

第一节运输问题及其数学模型首先来分析下面的问题。

例3。

1农产品经销公司有三个棉花收购站,向三个纺织厂供应棉花。

三个收购站A1、A2、A3的供应量分别为50kt、45kt和65kt,三个纺织厂B1、B2、B3的需求量分别为20kt、70kt和70kt。

已知各收购站到各纺织厂的单位运价如表3-1所示(单位:千元/kt),问如何安排运输方案,使得经销公司的总运费最少?设x ij表示从A i运往B j的棉花数量,则其运输量表如下表所示。

表3—2由于总供应量等于总需求量,因此,一方面从某收购站运往各纺织厂的总棉花数量等该收购站的供应量,即x11+x12+x13 = 50x21+x22+x23 = 45x31+x32+x33 = 65另一方面从各收购站运往某纺织厂的总棉花数量等该纺织厂的需要量,即x 11+x 21+x 31 = 20 x 12+x 22+x 32 = 70 x 13+x 23+x 33 = 70因此有该问题的数学模型为min f= 4x 11+8x 12+5x 13+6x 21+3x 22+6x 23+2x 31+5x 32+7x 33x 11+x 12+x 13 = 50 x 21+x 22+x 23 = 45 x 31+x 32+x 33 = 65 x 11+x 21+x 31 = 20 x 12+x 22+x 32 = 70 x 13+x 23+x 33 = 70x ij ≥0,i=1,2,3;j=1,2,3 生产实际中的一般的运输问题可用以下数学语言描述。

运筹学 第三章 运输问题

运筹学  第三章  运输问题
判别的方法是计算空格(非基变量)的检 验数,若所有的检验数都大于等于0,为最优 解。
1)闭环回路法: 在给出的初始调运方案表上,从每一空格 出发找一条闭环回路,它是以某空格为起点 ,用水平或垂直线向前划,每碰到一数字格 转90°后(回路的转角点必须是一个基变量 ) ,继续前进,直到回到起始空格为止。 从每一空格出发一定存在且只有唯一的闭 环回路。 从空格开始加减闭环各个顶点的运输单价 ,可得每个空格对应的检验数。
《运筹学》
第三章 运输问题
Slide 16
销地
B1
产地
A1
A2
3
A3
销量 3
B2 B3
4 1 6
65
B4 产量
37
4
39
6
销地
产地
B1 B2 B3 B4
A1
3 11 3 10
A2
19 2 8
A3
7 4 10 5
空格 (11) (12) (22) (24) (31) (33)
闭环回路 (11)-(21)-(23)-(13)-(11) (12)-(32)-(34)-(14)-(12) (22)-(32)-(34)-(14)-(13) -(23)-(22) (24)-(14)-(13)-(23)-(24) (31)-(34)-(14)-(13)-(23) -(21)-(31) (33)-(34)-(14)-(13)-(33)
基变量:
X13 U1+V3=C13=3
X14 U1+V4=C14=10
X21 U2+V1=C21=1
1
3 10 U1=0
2
U2=-1
X23 U2+V3=C23=2
4

《运筹学》第三章运输问题

《运筹学》第三章运输问题

Vogel近似法
考虑运输成本差异, 进行逼近最优解。
运输问题的扩展和变体
1
生产产能约束
考虑生产能力限制,同时优化货物的运输方案。
2
供需不平衡
存在供需不平衡时如何有效分配货物,避免浪费和延误。
3
多目标运输问题
同时考虑多个目标,如最小化成本和最大化利润。
运输问题的应用实例和案例分析
物流领域的应用
通过运输问题的优化,提升物流效率,降低成本。
运输问题的基本模型
运输方案的表示
常用的表示方法包括运输矩阵和网络图。
目标函数和约束条件
目标函数通常是最小化运输成本,约束条件包 括供需平衡和容量限制。
运输问题的解决方法
最小成本法
逐步分配货物,直至 达到最小总成本。
北北角法
按照最小单位运输成 本进行分配,直至l's Approximation Method)法为基础, 逐步分配货物。
《运筹学》第三章运输问 题
运输问题是运筹学中重要的问题之一,涉及到各种场景下的货物运输优化。 本章将介绍运输问题的定义、基本模型、解决方法,以及其在物流和生产调 度中的应用实例。
运输问题的概念和应用领域
• 运输问题是一种优化问题,旨在找到使运输成本最小的货物运输方案。 • 运输问题广泛应用于物流管理、供应链优化以及交通规划等领域。
生产调度中的应用
合理安排生产计划,提高生产线的利用率。
总结和展望
运输问题是优化领域的重要研究方向,未来随着物流技术的发展将有更多的应用场景和解决方法出现。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x31
x32
x33
x34
于是可建立如下的数学模型:
2020/6/20
--
4
目标函数: M i nZ3x1111x123x1310x14
x219x222x238x24
7x314x3210x335x34
约束条件: x11 x12 x13 x14 7
20
产量约束
x21 x22 x23 x24 4
4、重复第二、第三步,直至得到最优解。
2020/6/20
--
10
一、确定初始基本可行解:
对于有m个产地n个销地的产销平衡问题,有m个关于产量 的约束方程和n个关于销量的约束方程。表面上,共有m+n个 约束方程。
但由于产销平衡,其模型最多只有m+n-1个独立的约束方 程,所以运输问题实际上有m+n-1个基变量。在m×n的产销 平衡表上给出m+n-1个数字格,其相对应的调运量的值即为 基变量的值。
n 个销地,分别是 B1,B2,..B ..n ;
从产地 A i 运往销地 B j 的单位运价是 c ij ,运量 x ij
s i 是产地A i 的产量;d j 是销地B j 的销量。
则该运输问题的模型如下:
2020/6/20
--
6
m
n
Min f
c ij x ij
i1 j1
m
s .t
x ij d j
(或者在同时划去Ai行与Bj列时,在该行或该列的任意空格处填加一 个0。)
这样可以保证填过数或零的格为m+n-1个,即保证基变量的个数为 m+n-1个。
2020/6/20
--
15
2.Vogel法
Vogel法的思想是:一地的产品如果不能按照最小运
费就近供应,就考虑次小运费,这就有差额,差额越大, 说明不能按最小运费调运时,运费增加得越多。因而差 额越大处,就应当采用最小运费调运。
表上作业法适用于求解产销平衡的运输问题。(产销不平 衡的问题可转化为平衡问题)
2020/6/20
--
9
表上作业法 一般步骤:
1、找出初始基本可行解;
2、检查各非基变量的检验数,是否达到最优性条件,若达到,则得最优 解;否则 转第三步;
3、确定出基变量、进基变量,用闭回路方法进行调整,得到新的基可 行解;
j 1 ,..., n
i1
n
x ij s i j 1
i 1 ,... m
x ij 0 ,
i 1 ,... m ,
说明:当
m
n
si d j
i1
j 1
j 1 ,..., n
时,称其为产销平衡的运输问题,
否则产销不平衡。
2020/6/20
--
7
说明:从上述模型可以看出:
(1)这是一个线性规划的模型; (2)变量有m×n个; (3)约束条件有 m+n 个; (4)系数矩阵非常稀疏;系数矩阵的秩一般为(m+n-1),
x31 x32 x33 x34 9
x11 x21 x31 3
销量约束
x12 x22 x32 6
20
x13 x23 x33 5
x14 x24 x34 6
xij 0, i 1,2,3; j 1,2,3,4
2020/6/20
--
5
二、一般运输问题数学模型
设有m个产地,分别为 A1, A2,...A .m;
2020/6/20
--
13
3
11
3
10
1
9
2
8
7
4
10
5
--
表中填有数字的格对应于基变量(取值即为格中数字),而空格对应 的是非基变量(取值为零).
在求初始基本可行解时要注意的一个问题: 当我们取定xij的值之后,会出现Ai的产量与Bj的销量都改为零的情 况,这时只能划去Ai行或Bj列,但不能同时划去Ai行与Bj列。
运筹学
OPERATIONS RESEARCH
2020/6/20
--
1
第三章 运输问题
运输问题的数学模型 表上作业法 产销不平衡的运输问题及应用
2020/6/20
--
2
§1 运输问题的典例及数学模型
一、 引例
某公司从三个产地 A,1 A,2 将A 3 产品运往四个销地 ,B 1 B 2
B,3 B,4 各产地的产量,各销地的销量,及各产地往各销
而非m+n 。
若直接用单纯形法求解,显然单纯形表比较庞大,于是在 单纯形法的基础上创建了表上作业法求解运输问题这一特 殊的线性规划问题
2020/6/20
--
8
§2 运输问题的表上作业法
从第一节的运输问题的数学模型可知,运输问题实际上 也属于线性规划,但由于运输问题的特殊性(变量个数较多, 系数矩阵的特点),如果用单纯形表格方法迭代,计算量很 大。今天介绍的 “表上作业法”,是针对运输问题的特殊求解 方法,实质还是单纯形法,但减少了计算量。
2020/6/20
--
16
3
11
3
10
1
9
2
8
7
4
10
5
2020/6/20
--
17
二、最优解的判别
判别解的最优性需要:计算检验数。方法有两种
1.闭回路法
闭回路:是在已给出的调运方案的运输表上从一个代表 非基变量的空格出发,沿水平或垂直方向前进,遇到代表基 变量的填入数字的格可转90度(当然也可以不改变方向) 继续前进,这样继续下去,直至回到出发的那个空格,由此 形成的封闭折线叫做闭回路。一个空格存在唯一的闭回路。
地的运费单价如表所示。应如何调运可使运费最小?
2020/6/20
--
3
解:从表中可知:总产量 = 总销量。这是一个产销平衡的
运输问题。假设 表x i示j 从产地 运往i销地 的产j
品数量, i1 ,2 ,3 ; 建j 立1 ,2 如,3x14
x21
x22
x23
x24
因为任意非基向量均可表示为基向量的唯一线性组 合,因此对于任意空格都能够找到、并且只能找到 唯一的一条闭回路。
2020/6/20
--
18
3
11
1
9
7
4
3
10
2
8
10
5
3
11
1
9
7
4
3
10
2
8
10
5
--
3
11
1
9
7
4
3
10
2
8
10
5
从非基变量 x11出发,找到一个闭回路如上表所示。回路有四个 顶点,除 外x1,1 其余都为基变量。 调整调运量:x11 ,1运费增加了3元; x,13 运1费减少3元
2020/6/20
--
11
那么在该例中,应有 3+4-1=6个基变量。
2020/6/20
--
12
1.最小元素法
最小元素法的思想是就近供应,即对单位运价最小 的变量分配运输量。
在表上找到单位运价最小的x21,并使x21取尽可能大 的并值,即x21=3,把A1的产量改为1,B1的销量改为0, 把B1列划去。在剩下的3×3矩阵中再找最小运价,同 理可得其他的基本可行解。
相关文档
最新文档