通用版高考理科数学培优专题二解三角形

合集下载

培优专题02 与三角形有关的线段和角的问题-解析版

培优专题02 与三角形有关的线段和角的问题-解析版

培优专题02 与三角形有关的线段和角的问题1.(2022·全国·八年级专题练习)如图,在ABC V 中,20AB =,18AC =,AD 为中线.则ABD △与ACD △的周长之差为( )A .1B .2C .3D .4【答案】B 【分析】利用三角形中线的定义、三角形的周长公式进行计算即可得出结果.【详解】Q 在ABC V 中,AD 为中线,BD CD \=.ABD C AB BD AD =++Q △,ACD C AC CD AD =++△,20182ABD ACD C C AB AC \-=-=-=V V .故选:B .【点睛】本题考查三角形的中线的理解与运用能力.三角形中,连接一个顶点和它所对边的中点的线段叫做三角形的中线.明确三角形的中线的定义,运用两个三角形的周长的差等于两边的差是解本题的关键.2.(2022·全国·八年级专题练习)如图,ABC V 的面积是2,AD 是ABC V 的中线,13AF AD =,12CE EF =,则CDE △的面积为( )A .29B .16C .23D .49【答案】A【分析】根据中线的性质即可求出S △ACD ,然后根据等高时,面积之比等于底之比,即可依此求出3.(2022·四川成都·七年级期中)如图,ABC V 中,12Ð=Ð,G 为AD 中点,延长BG 交AC 于E ,F 为AB 上一点,且CF AD ^于H ,下列判断,其中正确的个数是( )①BG 是ABD V 中边AD 上的中线;②AD 既是ABC V 中BAC Ð的角平分线,也是ABE V 中BAE Ð的角平分线;③CH 既是ACD V 中AD 边上的高线,也是ACH V 中AH 边上的高线.A .0B .1C .2D .3【答案】C【分析】根据三角形的高,中线,角平分线的定义可知.【详解】解:①G 为AD 中点,所以BG 是ABD △边AD 上的中线,故正确;②因为12Ð=Ð,所以AD 是ABC V 中BAC Ð的角平分线,AG 是ABE △中BAE Ð的角平分线,故错误;③因为CF AD ^于H ,所以CH 既是ACD △中AD 边上的高线,也是ACH V 中AH 边上的高线,故正确.故选:C .【点睛】熟记三角形的高,中线,角平分线是解决此类问题的关键.4.(2018·江苏省江阴市第一中学七年级期中)如图,在长方形网格中,每个小长方形的长为2,宽为1,A 、B 两点在网格格点上,若点C 也在网格格点上,以A 、B 、C 为顶点的三角形面积为1,则满足条件的点C 个数是( )A .5B .6C .7D .8【答案】B 【分析】据三角形ABC 的面积为1,可知三角形的底边长为2,高为1,或者底边为1,高为2,可通过在正方形网格中画图得出结果.【详解】解:C 点所有的情况如图所示:由图可得共有6个,故选:B .【点睛】本题考查了三角形的面积的求法,此类题应选取分类的标准,才能做到不遗不漏,难度适中.5.(2022·江苏·七年级专题练习)如图, D 、E 分别在∆ABC 的边 BC 、AC 上,13CD BC =,13CE AC =,CD = 1 ,CE = 1 ,AC , AD 与 BE 交于点O ,已知∆ABC 的面积为 12,则∆ABO 的面积为()A .4B .5C .6D .76.(2019·天津市静海区第二中学八年级期中)如图,在△ABC 中,∠B=70°,∠C=40°,AD 是BC 边上的高,AE 是∠BAC 的平分线,则∠DAE 的度数是()A .15°B .16°C .70°D .18°7.(2021·安徽·中考真题)两个直角三角板如图摆放,其中90BAC EDF Ð=Ð=°,45E Ð=°,30C Ð=°,AB 与DF 交于点M .若//BC EF ,则BMD Ð的大小为( )A .60°B .67.5°C .75°D .82.5°【答案】C 【分析】根据//BC EF ,可得45FDB F Ð=Ð=°,再根据三角形内角和即可得出答案.【详解】由图可得6045B F Ð=°Ð=°,,∵//BC EF ,∴45FDB F Ð=Ð=°,∴180180456075BMD FDB B Ð=°-Ð-Ð=°-°-°=°,故选:C .【点睛】本题考查了平行线的性质和三角形的内角和,掌握平行线的性质和三角形的内角和是解题的关键.8.(2022·广西贵港·七年级期末)如图7,AB ⊥BC ,AE 平分∠BAD 交BC 于E ,AE ⊥DE ,∠1+∠2=90°,M ,N 分别是BA ,CD 延长线上的点,∠EAM 和∠EDN 的平分线交于点F .下列结论:①AB ∥CD ;②∠AEB +∠ADC =180°;③DE 平分∠ADC ;④∠F =135°,其中正确的有( )A .1个B .2个C .3个D .4个【答案】C 【分析】先根据AB ⊥BC ,AE 平分∠BAD 交BC 于点E ,AE ⊥DE ,∠1+∠2=90°,∠EAM 和∠EDN 的平分线交于点F ,由三角形内角和定理以及平行线的性质即可得出结论.【详解】解:标注角度如图所示:∵AB ⊥BC ,AE ⊥DE ,∴∠1+∠AEB =90°,∠DEC +∠AEB =90°,∴∠1=∠DEC ,又∵∠1+∠2=90°,∴∠DEC +∠2=90°,∴∠C =90°,∴∠B +∠C =180°,9.(2022·全国·八年级课时练习)如图,将ABC V 沿DH HG EF 、、翻折,三个顶点恰好落在点O 处.若140Ð=°,则2Ð的度数为( )A .12B .60°C .90°D .140°【答案】D【分析】根据翻折变换前后对应角不变,故∠B =∠EOF ,∠A =∠DOH ,∠C =∠HOG ,∠1+∠2+∠HOD +∠EOF +∠HOG =360°,进而求出∠1+∠2的度数.【详解】解:∵将△ABC 三个角分别沿DE 、HG 、EF 翻折,三个顶点均落在点O 处,∴∠B =∠EOF ,∠A =∠DOH ,∠C =∠HOG ,∠1+∠2+∠HOD +∠EOF +∠HOG =360°,∵∠HOD +∠EOF +∠HOG =∠A +∠B +∠C =180°,∴∠1+∠2=360°-180°=180°,∵∠1=40°,∴∠2=140°,故选:D .【点睛】此题主要考查了翻折变换的性质和三角形的内角和定理,根据已知得出∠HOD +∠EOF +∠HOG =∠A +∠B +∠C =180°是解题关键.10.(2022·全国·八年级专题练习)如图,a b ∥,一块含45°的直角三角板的一个顶点落在直线b 上,若15854¢Ð=°,则∠2的度数为( )A .1036¢°B .1046¢°C .10354¢°D .10454¢°【答案】C 【分析】设∠2的同位角为∠3,∠3的邻补角为∠5,三角板的一个锐角为∠4,根据等腰三角板的特点可求出∠4,根据三角形内角和即可求出∠5,再根据平角的性质即可求出∠3,进而根据两直线平行同位角相等即可求出∠2.【详解】设∠2的同位角为∠3,∠3的邻补角为∠5,三角板的一个锐角为∠4,如图,∵直角三角板含一个45°的锐角,∴该三角板为等腰三角形,∴∠4=45°,∵∠1=58°54′,又∵在三角形中有∠1+∠4+∠5=180°,∴∠5=180°-(∠1+∠4)=180°-(58°54′+45°)=180°-103°54′=76°6′,∵∠3+∠5=180°,∴∠3=180°-∠5=180°-76°6′=103°54′,∵a b ∥,∴∠2=∠3,∴∠2=103°54′,故选:C .【点睛】本题主要考查了平行线的性质以及三角形的内角和等知识,掌握两直线平行同位角相等是解答本题的关键.11.(2022·江苏·盐城市初级中学七年级期中)如图,AD 是ABC V 的高,45BAD Ð=°,65C =°∠,则BAC Ð=________.【答案】70°【分析】先由直角三角形的性质求得∠DAC ,然后再根据线段的和差求解即可.【详解】解:AD Q 是ABC V 的高,90ADC °\Ð=,∵65C =°∠=9025DAC C °\Ð-Ð=o ,254570BAC DAC BAD °°°\Ð=Ð+Ð=+=.故答案为:70°.【点睛】本题主要考查了角的和差、直角三角形的性质、三角形高的性质等知识点,掌握直角三角形两锐角互余是解答本题的关键.12.(2022·江苏·扬州中学教育集团树人学校七年级期中)如图,在△ABC 中,点D 在BC 上,点E 、F 在AB 上,点G 在DF 的延长线上,且∠B =∠DFB ,∠G =∠DEG ,若29BEG Ð=°,则∠BDE 的度数为_____.【答案】58°【分析】设BED x Ð=,则29G DEG x Ð=Ð=+°,再根据三角形的内角和定理可得1222EDG x Ð=°-,根据三角形的外角性质可得122B DFB x Ð=Ð=°-,然后在BDE V 中,根据三角形的内角和定理即可得.【详解】解:设BED x Ð=,29BEG Ð=°Q ,29BED G DEG BEG x Ð=Ð=Ð=++\а,1801222EDG G DEG x \Ð=°-Ð-Ð=°-,122BED B DFB EDG x \Ð=Ð=Ð=а-+,()()180********BED BDE B x x Ð+=\Ð=°-а-°-=+°,故答案为:58°.【点睛】本题考查了三角形的内角和定理、三角形的外角性质,熟练掌握三角形的内角和定理是解题关键.13.(2022·江苏·扬州市江都区第三中学七年级阶段练习)如图,∠A =45°,∠BCD =135°,∠AEB 与∠AFD 的平分线交于点P .下列结论:①EP ⊥FP ;②∠AEB +∠AFD =∠P ;③∠A =∠PEB +∠PFD .其中正确的结论是______.∵∠AEB与∠AFD的平分线交于点∴12BEPAEP AEB=Ð=ÐÐ∵∠BCD=135°,∴∠BCF=180°-∠BCD=45°14.(2022·全国·八年级专题练习)如图,在△ABC中,AM是△ABC的角平分线,AD是△ABC的高线.猜想∠MAD、∠B、∠C之间的数量关系,并说明理由.15.(2022·全国·八年级单元测试)在△ABC中,BC=8,AB=1;(1)若AC是整数,求AC的长;(2)已知BD是△ABC的中线,若△ABD的周长为10,求△BCD的周长.【答案】(1)8(2)17【分析】(1)根据三角形三边关系“两边之和大于第三边,两边之差小于第三边”得7<AC<9,根据AC是整数得AC=8;(2)根据BD是△ABC的中线得AD=CD,根据△ABD的周长为17和AB=1得AD+BD=9,即可求解.(1)由题意得:BC﹣AB<AC<BC+AB,∴7<AC<9,∵AC是整数,∴AC=8;(2)如图所示:∵BD是△ABC的中线,∴AD=CD,∵△ABD的周长为10,∴AB+AD+BD=10,∵AB=1,∴AD+BD=9,∴△BCD的周长=BC+BD+CD=BC+AD+CD=8+9=17.【点睛】本题考查的是三角形的三边关系、三角形的中线的定义,掌握三角形两边之和大于第三边、两边之差小于第三边是解题的关键.16.(2022·河南周口·七年级期末)如图.AD为△ABC的中线,BE为△ABD的中线,EF⊥BC于点F.(1)在△BEF中,请指出边EF上的高;(2)若BD=5,EF=2,求△ACD的面积;(3)若AB=m,AC=n,若△ACD的周长为a,请用含m,n,a的式子表示△ABD的周长.【答案】(1)边EF上的高是BF;(2)S△ACD=10;(3)△ABD的周长为m+a-n.【分析】(1)根据三角形高的定义即可得出边EF上的高是BF;(2)先求得△BDE的面积,然后根据三角形的中线将三角形分成两个三角形得到S△ABE=S△BDE=5,进一步得到S△ACD=S△ABD=10;(3)利用三角形周长公式即可求得.(1)解:∵EF⊥BC于点F,17.(2022·陕西渭南·七年级期末)如图,点A 在CB 的延长线上,点F 在DE 的延长线上,连接AF ,分别与BD 、CE 交于点G 、H .已知∠1=52°,∠2=128°.(1)探索BD 与CE 的位置关系,并说明理由;(2)若∠C =78°,求∠A 的度数.【答案】(1)BD CE ∥,理由见解析(2)50°【分析】(1)由152DGF Ð=Ð=°,∠2=128°,得到∠DGF +∠2=180°,利用“同旁内角互补,两直线平行”可证出BD CE ∥;(2)由BD CE ∥得到78ABD C Ð=Ð=°,由三角形内角和定理求解即可.(1)BD CE ∥,理由:∵152DGF Ð=Ð=°,∠2=128°,∴252128180DGF Ð+Ð=°+°=°,∴BD CE ∥.(2)∵BD CE ∥,∵78ABD C Ð=Ð=°,∴1801180785250A ABD Ð=°-Ð-Ð=°-°-°=°.【点睛】本题考查了平行线的判定与性质、三角形内角和定理,解题的关键是熟练掌握相关性质和定理.18.(2022·江苏·兴化市乐吾实验学校七年级阶段练习)(1)【问题背景】如图1的图形我们把它称为“8字形”,请说明A B C D Ð+Ð=Ð+Ð;(2)【简单应用】如图2,AP 、CP 分别平分BAD Ð、BCD Ð,若35ABC Ð=°,15ADC Ð=°,求P Ð的度数;(3)【问题探究】如图3,直线AP 平分BAD Ð的外角FAD Ð,CP 平分BCD Ð的外角BCE Ð,若35ABC Ð=°,29ADC Ð=°,请猜想P Ð的度数,并说明理由;(4)【拓展延伸】在图4中,若设C a Ð=,B b Ð=,13CAP CAB Ð=Ð,13CDP CDB Ð=Ð,试问P Ð与C Ð、B Ð之间的数量关系为:___.(用a 、b 表示P Ð,不必说明理由)【答案】(1)见解析(2)25P Ð=°(3)32P Ð=°;理由见解析。

高中数学培优——解三角形

高中数学培优——解三角形

解三角形课 题:正弦定理(两课时) 教学目的:⑴使学生掌握正弦定理⑵能应用解斜三角形,解决实际问题。

教学过程: 一、引言:在直角三角形中,由三角形内角和定理、勾股定理、锐角三角函数,可以由已知的边和角求出未知的边和角。

那么斜三角形怎么办?(创设情景)早在1671年,两个法国天文学家就测出了地球与月亮之间的距离大约是385400公里,你能设计一种近似的测量方法吗?——提出课题:正弦定理二、讲解新课:正弦定理:在任一个三角形中,各边和它所对角的正弦比相等, 即A a sin =B b sin =Ccsin =2R (R 为△ABC 外接圆半径) 1.直角三角形中:sinA=c a ,sinB=cb, sinC=1 即 c=A a sin , c=B b sin , c=Ccsin . ∴A a sin =B b sin =Cc sin 2.斜三角形中证明一:(等积法)在任意斜△ABC 当中 S △ABC =A bcB acC ab sin 21sin 21sin 21== 两边同除以abc 21即得:A a sin =B b sin =Ccsin证明二:(外接圆法) 如图所示,∠A=∠D∴R CD Da A a 2sin sin === 同理B b sin =2R ,Ccsin =2R 证明三:(向量法)过A 作单位向量垂直于由 AC +CB =AB两边同乘以单位向量 得 •(AC +CB )=•AB 则j •AC +j •CB =j •AB∴||•||cos90︒+||•||cos(90︒-C)=||•||cos(90︒-A) ∴A c C a sin sin = ∴A a sin =Ccsin 同理,若过C 作垂直于得:C c sin =B b sin ∴A a sin =B b sin =Ccsin 正弦定理的应用 从理论上正弦定理可解决两类问题: 1.两角和任意一边,求其它两边和一角;2.两边和其中一边对角,求另一边的对角,进而可求其它的边和角。

新广东高考数学理科步步高二轮复习热点突破3.2三角变换与解三角形(含答案解析)

新广东高考数学理科步步高二轮复习热点突破3.2三角变换与解三角形(含答案解析)

第2讲 三角变换与解三角形热点一 三角变换例1 (1)已知sin(α+π3)+sin α=-435,-π2<α<0,则cos(α+2π3)等于( )A .-45B .-35C.45D.35(2)(2014·课标全国Ⅰ)设α∈(0,π2),β∈(0,π2),且tan α=1+sin βcos β,则( )A .3α-β=π2B .2α-β=π2C .3α+β=π2D .2α+β=π2思维启迪 (1)利用和角公式化简已知式子,和cos(α+23π)进行比较.(2)先对已知式子进行变形,得三角函数值的式子,再利用范围探求角的关系. 答案 (1)C (2)B解析 (1)∵sin(α+π3)+sin α=-435,-π2<α<0,∴32sin α+32cos α=-435, ∴32sin α+12cos α=-45, ∴cos(α+2π3)=cos αcos 2π3-sin αsin 2π3=-12cos α-32sin α=45.(2)由tan α=1+sin βcos β得sin αcos α=1+sin βcos β,即sin αcos β=cos α+cos αsin β, ∴sin(α-β)=cos α=sin(π2-α).∵α∈(0,π2),β∈(0,π2),∴α-β∈(-π2,π2),π2-α∈(0,π2),∴由sin(α-β)=sin(π2-α),得α-β=π2-α,∴2α-β=π2.思维升华 (1)三角变换的关键在于对两角和与差的正弦、余弦、正切公式,二倍角公式,三角恒等变换公式的熟记和灵活应用,要善于观察各个角之间的联系,发现题目所给条件与恒等变换公式的联系,公式的使用过程要注意正确性,要特别注意公式中的符号和函数名的变换,防止出现张冠李戴的情况.(2)求角问题要注意角的范围,要根据已知条件将所求角的范围尽量缩小,避免产生增解.设函数f (x )=cos(2x +π3)+sin 2x .(1)求函数f (x )的最小正周期和最大值;(2)若θ是第二象限角,且f (θ2)=0,求cos 2θ1+cos 2θ-sin 2θ的值.解 (1)f (x )=cos(2x +π3)+sin 2x =cos 2x cos π3-sin 2x sin π3+1-cos 2x 2=12-32sin 2x .所以f (x )的最小正周期为T =2π2=π,最大值为1+32.(2)因为f (θ2)=0,所以12-32sin θ=0,即sin θ=33,又θ是第二象限角, 所以cos θ=-1-sin 2θ=-63. 所以cos 2θ1+cos 2θ-sin 2θ=cos 2θ-sin 2θ2cos 2θ-2sin θcos θ=θ+sin θθ-sin θ2cos θθ-sin θ=cos θ+sin θ2cos θ=-63+33-63=6-326=2-24.热点二 解三角形例2 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,满足a =2sin A ,cos B cos C +2a c +bc =0.(1)求边c 的大小;(2)求△ABC 面积的最大值.思维启迪 (1)将cos B cos C +2a c +bc =0中的边化成角,然后利用和差公式求cos C ,进而求c .(2)只需求ab 的最大值,可利用cos C =a 2+b 2-c 22ab 和基本不等式求解.解 (1)∵cos B cos C +2a c +bc=0, ∴c cos B +2a cos C +b cos C =0,∴sin C cos B +sin B cos C +2sin A cos C =0, ∴sin A +2sin A cos C =0, ∵sin A ≠0,∴cos C =-12,∵C ∈(0,π)∴C =2π3,∴c =a sin A·sin C = 3.(2)∵cos C =-12=a 2+b 2-32ab,∴a 2+b 2+ab =3,∴3ab ≤3,即ab ≤1. ∴S △ABC =12ab sin C ≤34.∴△ABC 的面积最大值为34. 思维升华 三角形问题的求解一般是从两个角度,即从“角”或从“边”进行转化突破,实现“边”或“角”的统一,问题便可突破. 几种常见变形:(1)a ∶b ∶c =sin A ∶sin B ∶sin C ;(2)a =2R sin A ,b =2R sin B ,c =2R sin C ,其中R 为△ABC 外接圆的半径; (3)sin(A +B )=sin C ,cos(A +B )=-cos C .(1)(2014·广东)在△ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,已知b cos C+c cos B =2b ,则ab=________.(2)(2014·江西)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若c 2=(a -b )2+6,C =π3,则△ABC 的面积是( ) A .3 B.932C.332 D .3 3答案 (1)2 (2)C解析 (1)方法一 (1)因为b cos C +c cos B =2b ,所以b ·a 2+b 2-c 22ab +c ·a 2+c 2-b 22ac =2b ,化简可得ab=2.方法二 因为b cos C +c cos B =2b , 所以sin B cos C +sin C cos B =2sin B , 故sin(B +C )=2sin B ,故sin A =2sin B ,则a =2b ,即ab=2.(2)∵c 2=(a -b )2+6,∴c 2=a 2+b 2-2ab +6.① ∵C =π3,∴c 2=a 2+b 2-2ab cos π3=a 2+b 2-ab .②由①②得ab =6.∴S △ABC =12ab sin C =12×6×32=332.热点三 正、余弦定理的实际应用例3 (2013·江苏)如图,游客从某旅游景区的景点A 处下山至C 处有两种路径.一种是从A 沿直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到C .现有甲、乙两位游客从A 处下山,甲沿AC 匀速步行,速度为50 m/min.在甲出发2 min 后,乙从A 乘缆车到B ,在B 处停留1 min 后,再从B 匀速步行到C .假设缆车匀速直线运动的速度为130 m/min ,山路AC 长为1 260 m ,经测量cos A =1213,cos C =35.(1)求索道AB 的长;(2)问:乙出发多少分钟后,乙在缆车上与甲的距离最短?(3)为使两位游客在C 处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内? 思维启迪 (1)直接求sin B ,利用正弦定理求AB .(2)利用余弦定理和函数思想,将甲乙距离表示为乙出发后时间t 的函数.解 (1)在△ABC 中,因为cos A =1213,cos C =35,所以sin A =513,sin C =45.从而sin B =sin[π-(A +C )]=sin(A +C ) =sin A cos C +cos A sin C=513×35+1213×45=6365.由正弦定理AB sin C =ACsin B ,得 AB =AC sin B ×sin C =1 2606365×45=1 040(m).所以索道AB 的长为1 040 m.(2)假设乙出发t 分钟后,甲、乙两游客距离为d ,此时,甲行走了(100+50t )m ,乙距离A 处130t m , 所以由余弦定理得d 2=(100+50t )2+(130t )2-2×130t ×(100+50t )×1213=200(37t 2-70t +50),由于0≤t ≤1 040130,即0≤t ≤8,故当t =3537 min 时,甲、乙两游客距离最短.(3)由正弦定理BC sin A =ACsin B,得BC =AC sin B ×sin A =1 2606365×513=500(m).乙从B 出发时,甲已走了50×(2+8+1)=550(m),还需走710 m 才能到达C . 设乙步行的速度为v m/min ,由题意得-3≤500v -71050≤3,解得1 25043≤v ≤62514,所以为使两位游客在C 处互相等待的时间不超过3 min ,乙步行的速度应控制在⎣⎡⎦⎤1 25043,62514(单位:m/min)范围内.思维升华 求解三角形的实际问题,首先要准确理解题意,分清已知与所求,关注应用题中的有关专业名词、术语,如方位角、俯角等;其次根据题意画出其示意图,示意图起着关键的作用;再次将要求解的问题归结到一个或几个三角形中,通过合理运用正、余弦定理等有关知识建立数学模型,从而正确求解,演算过程要简练,计算要准确;最后作答.如图,中国渔民在中国南海黄岩岛附近捕鱼作业,中国海监船在A 地侦察发现,在南偏东60°方向的B 地,有一艘某国军舰正以每小时13海里的速度向正西方向的C 地行驶,企图抓捕正在C 地捕鱼的中国渔民.此时,C 地位于中国海监船的南偏东45°方向的10海里处,中国海监船以每小时30海里的速度赶往C 地救援我国渔民,能不能及时赶到?(2≈1.41,3≈1.73,6≈2.45)解 过点A 作AD ⊥BC ,交BC 的延长线于点D .因为∠CAD =45°,AC =10海里, 所以△ACD 是等腰直角三角形.所以AD =CD =22AC =22×10=52(海里). 在Rt △ABD 中,因为∠DAB =60°,所以BD =AD ×tan 60°=52×3=56(海里). 所以BC =BD -CD =(56-52)(海里).因为中国海监船以每小时30海里的速度航行,某国军舰正以每小时13海里的速度航行, 所以中国海监船到达C 点所用的时间t 1=AC 30=1030=13(小时),某国军舰到达C 点所用的时间t 2=BC 13=6-213≈-13=0.4(小时).因为13<0.4,所以中国海监船能及时赶到.1.求解恒等变换问题的基本思路一角二名三结构,即用化归转化思想“去异求同”的过程,具体分析如下:(1)首先观察角与角之间的关系,注意角的一些常用变换形式,角的变换是三角函数变换的核心.(2)其次看函数名称之间的关系,通常“切化弦”. (3)再次观察代数式的结构特点. 2.解三角形的两个关键点(1)正、余弦定理是实现三角形中边角互化的依据,注意定理的灵活变形,如a =2R sin A ,sin A =a2R (其中2R 为三角形外接圆的直径),a 2+b 2-c 2=2ab cos C 等,灵活根据条件求解三角形中的边与角.(2)三角形的有关性质在解三角形问题中起着重要的作用,如利用“三角形的内角和等于π”和诱导公式可得到sin(A +B )=sin C ,sin A +B 2=cos C2等,利用“大边对大角”可以解决解三角形中的增解问题等.3.利用正弦定理、余弦定理解决实际问题的关键是如何将实际问题转化为数学问题,抽象出三角形模型.。

2020年高考理科数学 《解三角形》题型归纳与训练及答案解析

2020年高考理科数学 《解三角形》题型归纳与训练及答案解析

2020年高考理科数学 《解三角形》题型归纳与训练【题型归纳】题型一 正弦定理、余弦定理的直接应用例1ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知2sin()8sin2BA C +=. (1)求cos B(2)若6a c +=,ABC ∆面积为2,求b . 【答案】(1)15cos 17B =(2)2b =. 【解析】由题设及A B C π++=得2sin 8sin2BB =,故sin 4(1cos )B B =-. 上式两边平方,整理得217cos 32cos 150B B -+=, 解得cos 1B =(舍去),15cos 17B =.(2)由15cos 17B =得8sin 17B =,故14sin 217ABC S ac B ac ∆==. 又2ABC S ∆=,则172ac =. 由余弦定理及6a c +=得22222cos ()2(1cos )b a c ac B a c ac B =+-=+-+1715362(1)4217=-⨯⨯+=. 所以2b =.【易错点】二倍角公式的应用不熟练,正余弦定理不确定何时运用 【思维点拨】利用正弦定理列出等式直接求出例2 ABC △的内角,,A B C 的对边分别为,,a b c ,若2cos cos cos b B a C c A =+,则B = . 【答案】π3【解析】1π2sin cos sin cos sin cos sin()sin cos 23B B AC C A A C B B B =+=+=⇒=⇒=.【易错点】不会把边角互换,尤其三角恒等变化时,注意符号。

【思维点拨】边角互换时,一般遵循求角时,把边换成角;求边时,把角转换成边。

例3在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若b =1,c =3,C =23π,则S △ABC =________.【答案】34【解析】因为c >b ,所以B <C ,所以由正弦定理得b sin B =c sin C ,即1sin B =3sin 2π3=2,即sin B =12,所以B=π6,所以A =π-π6-2π3=π6.所以S △ABC =12bc sin A =12×3×12=34. 【易错点】大边对大角,应注意角的取值范围【思维点拨】求面积选取公式时注意,一般选取已知角的公式,然后再求取边长。

高三理科数学培优专题——三角函数(含答案)

高三理科数学培优专题——三角函数(含答案)

三角函数专题一、方法总结:1.三角函数恒等变形的基本策略。

(1)注意隐含条件的应用:1=cos 2x +sin 2x 。

(2)角的配凑。

α=(α+β)-β,β=2βα+-2βα-等。

(3)升幂与降幂:主要用2倍角的余弦公式。

(4)化弦(切)法,用正弦定理或余弦定理。

(5)引入辅助角。

asinθ+bcosθ=22b a +sin (θ+ϕ),这里辅助角ϕ所在象限由a 、b 的符号确定,ϕ角的值由tan ϕ=ab确定。

2.解答三角高考题的策略。

(1)发现差异:观察角、函数运算间的差异,即进行所谓的“差异分析”。

(2)寻找联系:运用相关公式,找出差异之间的内在联系。

(3)合理转化:选择恰当的公式,促使差异的转化。

二、例题集锦: 考点一:三角函数的概念1.(2011年东城区示范校考试15)设A 是单位圆和x 轴正半轴的交点,Q P 、是单位圆上的两点,O 是坐标原点,6π=∠AOP ,[)παα,0,∈=∠AOQ .(1)若34(,)55Q ,求⎪⎭⎫ ⎝⎛-6cos πα的值; (2)设函数()f OP OQ α=⋅u u u r u u u r ,求()αf 的值域.考点二:三角函数的图象和性质2.(2014年课标I ,7)在函数①cos 2y x =,②cos y x =,③cos(2)6y x π=+,④tan 24y x π⎛⎫=- ⎪⎝⎭中,最小正周期为π的所有函数为 ( )A.①②③B. ②③④C. ②④D. ①③3.(2012年课标全国,9)已知0ω>,函数()sin()4f x x πω=+在(,)2ππ上单调递减,则ω的取值范围是( )A.15[,]24B.13[,]24C.10,2⎛⎤ ⎥⎝⎦D.()0,24.(2011年课标全国,11)设函数()sin()cos()(0,)2f x x x πωϕωϕωϕ=+++><的最小正周期为π,且()()f x f x -=,则( )A. ()f x 在0,2π⎛⎫ ⎪⎝⎭单调递减B. ()f x 在3,44ππ⎛⎫⎪⎝⎭单调递减 C. ()f x 在0,2π⎛⎫ ⎪⎝⎭单调递增 D. ()f x 在3,44ππ⎛⎫⎪⎝⎭单调递增5.将函数()()sin 22f x x πϕϕ⎛⎫=+<⎪⎝⎭的图象向左平移6π个单位长度后,所得函数()g x 的图象关于原点对称,则函数()f x 在0,2π⎡⎤⎢⎥⎣⎦的最小值为 A .12- B .12C.6.(2011年东城区期末15)函数()sin()(0,0,||)2f x A x A ωφωφπ=+>><部分图象如图所示.(Ⅰ)求()f x 的最小正周期及解析式;(Ⅱ)设()()cos 2g x f x x =-,求函数()g x 在区间[0,]2x π∈上的最大值和最小值.考点三、四、五:同角三角函数的关系、 诱导公式、三角恒等变换7.已知函数2()2sin cos 2cos f x x x x ωωω=-(0x ω∈>R ,),相邻两条对称轴之间的距离等于2π. (Ⅰ)求()4f π的值; (Ⅱ)当02x π⎡⎤∈⎢⎥⎣⎦,时,求函数)(x f 的最大值和最小值及相应的x 值.8.已知向量(cos ,sin ),a x x =r 向量(cos ,sin ),()b x x f x a b =-=⋅r r r(1)求函数()()sin 2g x f x x =+的最小正周期和对称轴方程; (2)若x 是第一象限角且'3()2()f x f x =-,求tan()4x π+的值.考点六:解三角形9.ABC ∆中,角,,A B C成等差数列是sin sin )cos C A A B =+成立的 ( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件10.已知函数()cos f x x =,,,a b c 分别为ABC ∆的内角,,A B C 所对的边,且22233a b c +-4ab =,则下列不等式一定成立的是A .()()sin cos f A fB ≤ B .()()sin cos f A f B ≥C .()()sin sin f A f B ≥D .()()cos cos f A f B ≤ 11.(2014年课标I ,16)已知,,a b c 分别为ABC ∆三个内角,,A B C 的对边,2a =,且(2)(sin sin )()sin b A B c b C +-=-,则ABC ∆面积的最大值为 .12.(2014年河南焦作联考)在ABC ∆中,已知sin sin cos sin sin cos sin sin cos A B C A C B B C A =+,若,,a b c 分别是角,,A B C 所对的边,则2abc 的最大值为 . 13.(2015河北秦皇岛一模,17,12分)在ABC ∆中,角A B C ,,所对的边分别为,,a b c ,满足()222.AB AC a b c ⋅=-+u u u r u u u r(1)求角A 的大小; (2)求24sin()23C B π--的最大值,并求取得最大值时角,B C 的大小.14.(2009全国II , 17,10分) 设ABC ∆的内角A B C ,,的对边分别为,,a b c ,3cos()cos 2A CB +=-,2b ac =.求B ∠的大小.14.(2015课标II ,17,12分)△ABC 中,D 是BC 上的点,AD 平分BAC ∠,ABD ∆的面积是ADC ∆面积的2倍. (1)求sin sin BC∠∠;(2)若1,2AD DC ==,求BD 和AC 的长.15、(2011东城一模15)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c 分,且满足2cos cos c b Ba A-=. (Ⅰ)求角A 的大小;(Ⅱ)若a =ABC 面积的最大值.例题集锦答案:1.(2011年东城区示范校考试理15)如图,设A 是单位圆和x 轴正半轴的交点,Q P 、是 单位圆上的两点,O 是坐标原点,6π=∠AOP ,[)παα,0,∈=∠AOQ .(1)若34(,)55Q ,求⎪⎭⎫ ⎝⎛-6cos πα的值;(2)设函数()f OP OQ α=⋅u u u r u u u r ,求()αf 的值域.★★单位圆中的三角函数定义解:(Ⅰ)由已知可得54sin ,53cos ==αα……………2分6sin sin 6cos cos 6cos παπαπα+=⎪⎭⎫⎝⎛-∴………3分1043321542353+=⨯+⨯=…………4分(Ⅱ)()f OP OQ α=⋅u u u r u u u r ()cos ,sin cos ,sin 66ππαα⎛⎫=⋅ ⎪⎝⎭………6分ααsin 21cos 23+=………………7分 sin 3πα⎛⎫=+⎪⎝⎭………………8分[0,)απ∈Q 4[,)333πππα∴+∈………9分 sin 123πα⎛⎫-<+≤ ⎪⎝⎭ (12)分()αf ∴的值域是⎛⎤ ⎥ ⎝⎦ (13)分2.(2011年西城期末理15)已知函数2()22sin f x x x =-.(Ⅰ)若点(1,P在角α的终边上,求()f α的值; (Ⅱ)若[,]63x ππ∈-,求()f x 的值域.★★三角函数一般定义解:(Ⅰ)因为点(1,P 在角α的终边上,所以sin α=,1cos 2α=, ………………2分 所以22()22sin cos 2sin f αααααα=-=-………………4分21(2(32=⨯-⨯=-. ………………5分 (Ⅱ)2()22sin f x x x =-cos 21x x =+- ………………6分2sin(2)16x π=+-, ………………8分因为[,]63x ππ∈-,所以65626πππ≤+≤-x , ………………10分所以1sin(2)126x π-≤+≤, ………………11分所以()f x 的值域是[2,1]-. ………………13分 3.(2011年东城区期末理15)函数()sin()(0,0,||)2f x A x A ωφωφπ=+>><部分图象如图所示.(Ⅰ)求()f x 的最小正周期及解析式;(Ⅱ)设()()cos 2g x f x x =-,求函数()g x 在区间[0,]2x π∈上的最大值和最小值.解:(Ⅰ)由图可得1A =,22362T πππ=-=,所以T =π. ……2分 所以2ω=.当6x π=时,()1f x =,可得 sin(2)16ϕπ⋅+=, 因为||2ϕπ<,所以6ϕπ=. ……5分 所以()f x 的解析式为()sin(2)6f x x π=+. ………6分 (Ⅱ)()()cos 2sin(2)cos 26g x f x x x x π=-=+-sin 2cos cos 2sin cos 266xx x ππ=+- 12cos 22x x =- sin(2)6x π=-. ……10分 因为02x π≤≤,所以52666x πππ-≤-≤. 当262x ππ-=,即3x π=时,()g x 有最大值,最大值为1;当266x ππ-=-,即0x =时,()g x 有最小值,最小值为12-.……13分2T =相邻平衡点(最值点)横坐标的差等;2||T =πω ;()max min 12y y A =- ;φ----代点法 4.(2010年海淀期中文16)已知函数x x x f 2cos )62sin()(+-=π.(1)若1)(=θf ,求θθcos sin ⋅的值;(2)求函数)(x f 的单调增区间.(3)求函数的对称轴方程和对称中心 解:(1)22cos 16sin2cos 6cos2sin )(xx x x f ++-=ππ...3分(只写对一个公式给2分) 212sin 23+=x ....5分 由1)(=θf ,可得332sin =θ ......7分 所以θθθ2sin 21cos sin =⋅ ......8分 63= .......9分 (2)当Z k k x k ∈+≤≤+-,22222ππππ,换元法 ..11即Z k k k x ∈++-∈],4,4[ππππ时,)(x f 单调递增.所以,函数)(x f 的单调增区间是Z k k k ∈++-],4,4[ππππ... 13分5.(2011年丰台区期末理15)已知函数2()2sin cos 2cos f x x x x ωωω=- (0x ω∈>R ,),相邻两条对称轴之间的距离等于2π.(Ⅰ)求()4f π的值;(Ⅱ)当02x π⎡⎤∈⎢⎥⎣⎦,时,求函数)(x f 的最大值和最小值及相应的x 值.解:(Ⅰ)()sin 2cos 212sin(2)14f x x x x π=--=--ωωω. ω意义 ……4分因为 22T π=,所以 T =π,1ω=. ……6分所以 ()2sin(2)14f x x π=--.所以 ()04f π= ………7分(Ⅱ)()2sin(2)14f x x π=--当 0,2x π⎡⎤∈⎢⎥⎣⎦时, 32444x πππ-≤-≤, 无范围讨论扣分所以 当242x ππ-=,即8x 3π=时,max ()21f x =-, …10分当244x ππ-=-,即0x =时,min ()2f x =-. ………13分6、(2011朝阳二模理15)已知函数2()2sin sin()2sin 12f x x x x π=⋅+-+ ()x ∈R .(Ⅰ)求函数()f x 的最小正周期及函数()f x 的单调递增区间;(Ⅱ)若02()23x f =,0ππ(, )44x ∈-,求0cos 2x 的值. 解: 2()2sin cos 2sin 1=⋅-+f x x x x ……………………………………1分 sin 2cos2=+x x ……………………………………2分π2sin(2)4x =+. 和差角公式逆用 ………………3分 (Ⅰ)函数()f x 的最小正周期2ππ2T ==. ……………………………………5分 令πππ2π22π242k x k -++≤≤()k ∈Z , ……………………………………6分所以3ππ2π22π44k x k -+≤≤. 即3ππππ88k x k -+≤≤.所以,函数()f x 的单调递增区间为3ππ[π, π]88k k -+ ()k ∈Z . ……………8分(Ⅱ)解法一:由已知得0002()sin cos 23x f x x =+=, …………………9分 两边平方,得021sin 29x += 同角关系式 所以 07sin 29x =-…………11分 因为0ππ(, )44x ∈-,所以0π2(, )22x π∈-. 所以20742cos 21()99x =--=. ……………………………………13分 解法二:因为0ππ(, )44x ∈-,所以0ππ(0, )42x +∈. …………………………9分 又因为000ππ2()2)2)2244x x f x =⋅+=+=,得 0π1sin()43x +=. ……………………………………10分 所以20π122cos()1()43x +=-=……………………………………11分 所以,00000πππcos 2sin(2)sin[2()]2sin()cos()2444x x x x x π=+=+=++ 122422339=⋅⋅=. 诱导公式的运用7、(2011东城二模理15)(本小题共13分)已知πsin()410A+=,ππ(,)42A∈.(Ⅰ)求cos A的值;(Ⅱ)求函数5()cos2sin sin2f x x A x=+的值域.解:(Ⅰ)因为ππ42A<<,且πsin()410A+=,πcos()410A+=-.ππππcos()cossin()sin4444A A+++31021025=-⋅+=.所以3cos5A=.………6分(Ⅱ)由(Ⅰ)可得4sin5A=.212sin2sinx x=-+2132(sin)22x=--+,x∈R.因为sin[1,1]x∈-,所以,当1sin2x=时,()f x取最大值32;当sin1x=-时,()f x取最小值3-.所以函数()f x的值域为3[3,]2-.8.(2011年朝阳期末理15)已知△ABC中,2sin cos sin cos cos sinA B C B C B=+.(Ⅰ)求角B的大小;(Ⅱ)设向量(cos,cos2)A A=m,12(, 1)5=-n,求当⋅m n取最小值时,)4tan(π-A值.解:和差角公式逆用所以2sin cos sin()sin()sinA B B C A A=+=π-=. ……… 3分因为0A p<<,所以sin0A¹.所以1cos2B=. ……… 5分3Bπ=. …………7分(Ⅱ)因为12cos cos25A A⋅=-+m n,………………… 8分所以2212343cos2cos12(cos)5525A A A⋅=-+-=--m n. …10分所以当3cos5A=时,⋅m n取得最小值.同角关系或三角函数定义……12分所以tan11tan()4tan17AAAπ--==+. …………… 13分9.(2011年石景山期末理15)已知函数23cossinsin3)(2-+=xxxxf()Rx∈.(Ⅰ)求)4(πf的值;(Ⅱ)若)2,0(π∈x,求)(xf的最大值;(Ⅲ)在ABC∆中,若BA<,21)()(==BfAf,求ABBC的值.解:(Ⅰ)234cos4sin4sin3)4(2-+=ππππf21=. 4分(Ⅱ)2)2cos1(3)(xxf-=+232sin21-xxx2cos232sin21-=)32sin(π-=x.…6分2π<<xΘ,32323πππ<-<-∴x.∴当232xππ-=时,即125π=x时,)(xf的最大值为1.…8分(Ⅲ)Θ)32sin()(π-=xxf,若x是三角形的内角,则π<<x令21)(=xf,得解得4π=x或127π=x.……10分由已知,BA,是△ABC的内角,BA<且21)()(==BfAf,∴4π=A,127π=B,∴6π=--π=BAC.…11分又由正弦定理,得221226sin 4sinsin sin ==ππ==C A AB BC . ……13分 10、(2011东城一模理15)(本小题共13分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c 分,且满足2cos cos c b Ba A-=. (Ⅰ)求角A 的大小;(Ⅱ)若a =ABC 面积的最大值. 解:(Ⅰ)因为2cos cos c b Ba A-=, 所以(2)cos cos c b A a B -⋅=⋅由正弦定理,得(2sin sin )cos sin cos C B A A B -⋅=⋅.边化角 整理得2sin cos sin cos sin cos C A B A A B ⋅-⋅=⋅. 所以2sin cos sin()sin C A A B C ⋅=+=. 在△ABC所以1cos 2A =,3A π∠=.(Ⅱ)由余弦定理2221cos 22b c a A bc +-==,a = 所以2220220b cbc bc +-=≥- 均值定理在三角中的应用 所以20bc ≤,当且仅当b c=时取“=” . 取等条件别忘 所以三角形的面积1sin 2S bc A =≤. 所以三角形面积的最大值为 ……………………13分11、(2011丰台一模理15). 在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且b 2+c 2-a 2=bc .(Ⅰ)求角A 的大小;(Ⅱ)设函数2cos 2cos 2sin 3)(2x x x x f +=,当)(B f 取最大值23时,判断△ABC的形状.解:(Ⅰ)在△ABC 中,因为b2+c 2-a 2=bc 可得cos A =12.(余弦定理或公式必须有一个,否则扣1分) ……3分 ∵, (或写成A 是三角形内角) ……………………4分 ∴3A π=.……………………5分 (Ⅱ)2cos2cos 2sin 3)(2x x x x f +=11cos 222x x =++ …7分 1sin()62x π=++, ……9分∵3A π=∴2(0,)3B π∈(没讨论,扣1分)…10分 ∴当62B ππ+=,即3B π=时,()f B 有最大值是23. …11分 又∵3A π=, ∴3C π= ∴△ABC 为等边三角形. ……13分12、(2011海淀一模理15). (本小题共13分)在ABC ∆中,内角A 、B 、C 所对的边分别为,,a b c ,已知1tan 2B =,1tan 3C =,且1c =. (Ⅰ)求tan A ; (Ⅱ)求ABC ∆的面积. 解:(I )因为1tan 2B =,1tan 3C =,tan tan tan()1tan tan B C B C B C ++=-, …………………1分代入得到,1123tan()111123B C ++==-⨯ . …………………3分 因为180A B C =--o , …………………4分角关系 ………5分 (II )因为0180A <<o o ,由(I )结论可得:135A =o . …………………7分因为11tan tan 023BC =>=>,所以090C B <<<o o . …………8分所以sin B =sin C =. …………9分 由sin sin a cA C=得a = …………………11分 所以ABC ∆的面积为:11sin 22ac B =. ………………13分 13、(2011石景山一模理15).在ABC ∆中,角A ,B ,C 所对应的边分别为a ,b ,c ,且274sin cos222A B C +-=. (Ⅰ)求角C 的大小;(Ⅱ)求sin sin A B +的最大值.解:(Ⅰ)∵ A 、B 、C 为三角形的内角, ∴ π=++C B A .∵ 三角形中角的大小关系∴ …………2分 ∴ 27)1cos 2(2cos 142=--+⋅C C .即 021cos 2cos 22=+-C C . ……4分∴ 21cos =C . 又∵ π<<C 0 , ∴ 3π=C . …7分(Ⅱ)由(Ⅰ)得 32π=+B A .∴ A A A sin 32cos cos 32sinsin ⋅-⋅+=ππ)6sin(3cos 23sin 23π+=+=A A A .…10分 ∵ 320π<<A ,∴ 6566πππ<+<A .∴ 当26ππ=+A ,即 3π=A 时,B A sin sin +取得最大值为3.…………13分。

22版:高考专题突破二 高考中的解三角形问题(步步高)

22版:高考专题突破二 高考中的解三角形问题(步步高)

高考专题突破二 高考中的解三角形问题题型一 利用正、余弦定理解三角形例1 (10分)(2020·新高考全国Ⅰ)在①ac =3,②c sin A =3,③c =3b 这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c 的值;若问题中的三角形不存在,说明理由.问题:是否存在△ABC ,它的内角A ,B ,C 的对边分别为a ,b ,c ,且sin A =3sin B ,C =π6,________? 注:如果选择多个条件分别解答,按第一个解答计分.规范解答解 方案一:选条件①.由C =π6和余弦定理得a 2+b 2-c 22ab =32.[2分] 由sin A =3sin B 及正弦定理得a =3b . 于是3b 2+b 2-c 223b 2=32,[6分] 由此可得b =c .[7分]由①ac =3,解得a =3,b =c =1.[9分]因此,选条件①时问题中的三角形存在,此时c =1.[10分]方案二:选条件②.由C =π6和余弦定理得a 2+b 2-c 22ab =32.[2分] 由sin A =3sin B 及正弦定理得a =3b . 于是3b 2+b 2-c 223b 2=32,[6分] 由此可得b =c ,B =C =π6,A =2π3.[7分] 由②c sin A =3,得c =b =23,a =6.[9分]因此,选条件②时问题中的三角形存在,此时c =2 3.[10分]方案三:选条件③.由C =π6和余弦定理得a 2+b 2-c 22ab =32.[2分]由sin A =3sin B 及正弦定理得a =3b .于是3b 2+b 2-c 223b 2=32,[6分] 由此可得b =c .[7分]由于③c =3b ,与b =c 矛盾.[9分]因此,选条件③时问题中的三角形不存在.[10分]第一步:根据C =π6及余弦定理得出a ,b ,c 的关系; 第二步:根据条件sin A =3sin B 得出a ,b 的关系,从而得出b ,c 的关系;第三步:结合自然条件即可求出各边长;第四步:下结论,判断三角形解的情况.[高考改编题] 在①cos 2B -3sin B +2=0;②2b cos C =2a -c ;③b a =cos B +13sin A三个条件中任选一个,补充在下面问题中,并加以解答.已知△ABC 的内角A ,B ,C 所对的边分别是a ,b ,c ,若________,且a ,b ,c 成等差数列,则△ABC 是否为等边三角形?若是,写出证明;若不是,说明理由.注:如果选择多个条件分别解答,按第一个解答计分.解 选条件①.因为cos 2B =1-2sin 2B ,所以2sin 2B +3sin B -3=0,即(2sin B -3)(sin B +3)=0,解得sin B =-3(舍去)或sin B =32. 因为0<B <π,所以B =π3或2π3. 又因为a ,b ,c 成等差数列,所以2b =a +c ,所以b 不是三角形中最大的边,即B =π3. 由b 2=a 2+c 2-2ac cos B ,得a 2+c 2-2ac =0,即a =c ,从而a =b =c ,故△ABC 是等边三角形.选条件②.由正弦定理可得2sin B cos C =2sin A -sin C ,故2sin B cos C =2sin(B +C )-sin C ,整理得2cos B sin C -sin C =0.因为0<C <π,所以sin C >0,即cos B =12. 因为0<B <π,所以B =π3. 又因为a ,b ,c 成等差数列,所以2b =a +c .由余弦定理b 2=a 2+c 2-2ac cos B ,可得a 2+c 2-2ac =0,即a =c .故△ABC 是等边三角形.选条件③.由正弦定理得sin B sin A =cos B +13sin A. 因为sin A ≠0,所以3sin B -cos B =1,即sin ⎝⎛⎭⎫B -π6=12. 因为0<B <π,所以-π6<B -π6<5π6, 即B -π6=π6,可得B =π3. 又因为a ,b ,c 成等差数列,所以2b =a +c ,由余弦定理b 2=a 2+c 2-2ac cos B ,可得a 2+c 2-2ac =0,即a =c .故△ABC 是等边三角形.跟踪训练1 (2019·全国Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,设(sin B -sin C )2=sin 2A -sin B sin C .(1)求A ;(2)若2a +b =2c ,求sin C .解 (1)由已知得sin 2B +sin 2C -sin 2A =sin B sin C ,故由正弦定理得b 2+c 2-a 2=bc ,由余弦定理得cos A =b 2+c 2-a 22bc =12, 因为0°<A <180°,所以A =60°.(2)由(1)知B =120°-C ,由题设及正弦定理得2sin A +sin(120°-C )=2sin C ,即62+32cos C +12sin C =2sinC , 可得cos(C +60°)=-22. 由于0°<C <120°,所以sin(C +60°)=22, 故sin C =sin(C +60°-60°)=sin(C +60°)cos 60°-cos(C +60°)sin 60° =6+24. 题型二 平面几何中的解三角形问题例2 (八省联考)在四边形ABCD 中,AB ∥CD ,AD =BD =CD =1.(1)若AB =32,求BC ; (2)若AB =2BC ,求cos ∠BDC .解 (1)在△ABD 中,cos ∠ABD =12+⎝⎛⎭⎫322-122×1×32=34, 因为AB ∥CD ,所以∠CDB =∠ABD , 所以cos ∠CDB =34, 在△BDC 中,BC 2=DC 2+DB 2-2CD ·DB cos ∠CDB =12+12-2×34=12,所以BC =22. (2)设BC =x ,则AB =2x ,所以cos ∠ABD =12+(2x )2-124x=x , cos ∠CDB =12+12-x 22=1-12x 2, 因为AB ∥CD ,所以∠CDB =∠ABD , 故x =1-12x 2,x 2+2x =2, 又x >0,所以x =3-1,所以cos ∠BDC =cos ∠ABD =3-1.思维升华 平面几何中解三角形问题的求解思路(1)把所提供的平面图形拆分成若干个三角形,然后在各个三角形内利用正弦、余弦定理求解.(2)寻找各个三角形之间的联系,交叉使用公共条件,求出结果.跟踪训练2 (2020·河南、河北重点中学联考)如图,在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知c =4,b =2,2c cos C =b ,D ,E 均为线段BC 上的点,且BD =CD ,∠BAE =∠CAE .(1)求线段AD 的长;(2)求△ADE 的面积.解 (1)因为c =4,b =2,2c cos C =b ,所以cos C =b 2c =14. 由余弦定理得cos C =a 2+b 2-c 22ab =a 2+4-164a =14, 所以a =4,即BC =4.在△ACD 中,CD =2,AC =2,所以AD 2=AC 2+CD 2-2AC ·CD ·cos C =6,所以AD = 6.(2)因为AE 是∠BAC 的平分线,所以S △ABE S △ACE =12AB ·AE ·sin ∠BAE 12AC ·AE ·sin ∠CAE =AB AC =2, 又S △ABE S △ACE =BE EC,所以BE EC =2, 所以CE =13BC =43,DE =DC -EC =2-43=23. 又因为cos C =14,所以sin C =1-cos 2C =154. 所以S △ADE =S △ACD -S △ACE =12AC ·CD sin C -12AC ·EC sin C =12AC ·(CD -EC )sin C =12DE ·AC sin C =156.即△ADE 的面积为156. 题型三 解三角形中的最值与范围问题例3 (2021·湖北七市联考)在锐角三角形ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且cos A a +cos B b =23sin C 3a. (1)求角B 的大小;(2)若b =23,求a +c 的取值范围.解 (1)由已知条件,得b cos A +a cos B =233b sin C . 由正弦定理,得sin B cos A +cos B sin A =233sin B sin C , 即sin(A +B )=233sin B sin C . 又在△ABC 中,sin(A +B )=sin C ≠0, 所以sin B =32.因为B 是锐角,所以B =π3. (2)由正弦定理,得a sin A =c sin C =b sin B =2332=4, 则a =4sin A ,c =4sin C .所以a +c =4sin A +4sin C =4sin A +4sin ⎝⎛⎭⎫2π3-A =6sin A +23cos A =43sin ⎝⎛⎭⎫A +π6. 由0<A <π2,0<2π3-A <π2,得π6<A <π2, 所以π3<A +π6<2π3,所以32<sin ⎝⎛⎭⎫A +π6≤1, 所以6<a +c ≤4 3.故a +c 的取值范围为(6,43].思维升华 本题涉及求边的取值范围,一般思路是(1)利用正弦定理把边转化为角,利用三角函数的性质求出范围或最值.(2)利用正、余弦定理把角转化为边,利用不等式求出范围或最值.跟踪训练3 给出两个条件:①2c -3b =2a cos B ;②(2b -3c )cos A =3a cos C ,从中选出一个条件补充在下面的问题中,并以此为依据求解问题.(选出一种可行的条件解答,若两个都选,则按第一个解答计分)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边. (1)求A ;(2)若a =3-1,求△ABC 面积的最大值.解 (1)选①2c -3b =2a cos B ,由正弦定理可得,2sin C -3sin B =2sin A cos B ,即2sin ()A +B -3sin B =2sin A cos B ,∴2cos A sin B =3sin B ,∵B ∈()0,π,∴sin B ≠0,∴2cos A =3,即cos A =32, 又A ∈()0,π,∴A =π6. 选②()2b -3c cos A =3a cos C ,由正弦定理可得,()2sin B -3sin C cos A =3sin A cos C , ∴2sin B cos A =3sin ()A +C =3sin B ,∵B ∈()0,π,∴sin B ≠0,∴cos A =32, 又A ∈()0,π,∴A =π6. (2)由余弦定理得,a 2=b 2+c 2-2bc cos A =b 2+c 2-3bc , 又b 2+c 2≥2bc ,当且仅当“b =c ”时取“=”,∴a 2≥()2-3bc ,即()3-12≥()2-3bc ,∴bc ≤2,∴S △ABC =12bc sin A =14bc ≤12, ∴△ABC 的面积的最大值为12.。

解三角形题型培优(学生版)

解三角形题型培优(学生版)

5.解三角形1.解三角形6大常考题型【知识必备】1、正弦定理、余弦定理在△ABC中,若角A,B,C所对的边分别是a,b,c,R为△ABC外接圆半径,则定理正弦定理余弦定理内容asin A=bsin B=csin C=2Ra2=b2+c2-2bc cos A;b2=c2+a2-2ca cos B;c2=a2+b2-2ab cos C变形(1)a=2R sin A,b=2R sin B,c=2R sin C;(2)sin A=a2R,sin B=b2R,sin C=c2R;(3)a∶b∶c=sin A∶sin B∶sin C;(4)a sin B=b sin A,b sin C=c sin B,a sin C=c sin Acos A=b2+c2-a22bc;cos B=c2+a2-b22ac;cos C=a2+b2-c22ab2、三角形面积公式:S△ABC=12ah(h表示边a上的高);S△ABC=12ab sin C=12bc sin A=12ac sin B;3、解三角形多解情况在△ABC中,已知a,b和A时,解的情况如下:A为锐角A为钝角或直角图形a =b sin A b sin A <a <b a ≥关系式b a >b a ≤b解的个数一解两解一解一解无解4、实际应用(1)仰角和俯角在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角(如图①).(2)方位角从指北方向顺时针转到目标方向线的水平角,如B 点的方位角为α(如图②).(3)方向角:相对于某一正方向的水平角.(1)北偏东α,即由指北方向顺时针旋转α到达目标方向(如图③).(2)北偏西α,即由指北方向逆时针旋转α到达目标方向.(3)南偏西等其他方向角类似.(4)坡角与坡度(1)坡角:坡面与水平面所成的二面角的度数(如图④,角θ为坡角).(2)坡度:坡面的铅直高度与水平长度之比(如图④,5、相关应用(1)正弦定理的应用①边化角,角化边⇔a :b :c =sin A :sin B :sin C②大边对大角大角对大边a >b ⇔A >B ⇔sin A >sin B ⇔cos A <cos i 为坡度).坡度又称为坡比.Ba +b +c③合分比:sin A +sin B +sin Ca +b =sin A +sin B b +c =sin B +sin C a +c =sin A +sin C a =sin A b =sin B c =sin C=2R (2)△ABC 内角和定理:A +B +C =π①sin C =sin (A +B )=sin A cos B +cos A sin B ⇔c =a cos B +b cos A 同理有:a =b cos C +c cos B ,b =c cos A +a cos C .②-cos C =cos (A +B )=cos A cos B -sin A sin B ;A +tan ③斜三角形中,-tan C =tan (A +B )=1Btan -tan ⋅A tan B⇔tan A +tan B +tan C =tan A ⋅tan B ⋅tan C④sin A +2B =cos C 2;cos A +2B=sin C 2⑤在ΔABC 中,内角A ,B ,C 成等差数列⇔B =π3,A +C =2π3.Z 【题型精讲】题型一:【已知边角元素解三角形】必备技巧已知边角元素解三角形技巧正弦定理、余弦定理的作用是在已知三角形部分元素的情况下求解其余元素,基本思想是方程思想,即根据正弦定理、余弦定理列出关于未知元素的方程,通过解方程求得未知元素.1.1(多选)(山东济南一模)在ΔABC中,角A,B,C所对的边分别为a,b,c,下列结论正确的是()A.a2=b2+c2-2bc cos AB.a sin B=b sin AC.a=b cos C+c cos BD.a cos B+b cos A=sin C1.2(多选)(重庆市高三二模)已知在△ABC中,角A,B,C所对的边分别为a,b,c,且A=60°,b=2,c=3+1,则下列说法正确的是A.C=75°或C=105°B.B=45°C.a=6D.该三角形的面积为3+1 21.3在△ABC中,角A,B,C所对的边分别为a,b,c若sin A=35,A=2B,角C为钝角,b=5.(1)求sin(A-B)的值;(2)求边c的长.Z【跟踪精练】1.3.1在△ABC中,角A,B,C所对的边分别为a,b,c,若(a+b)2-c2=ab,则C=()A.π6 B.π3或2π3 C.2π3 D.π6或5π61.3.2在△ABC中,内角A,B,C所对的边分别是a,b,c.若A=π3,a=23,b=22,则B=()A.π4 B.π3 C.π4或3π4 D.π3或2π31.3.3△ABC的内角A、B、C的对边分别为a、b、c,若a=4,b=3,c=2,则中线AD的长为()A.5B.10C.52 D.102题型二:【已知边角关系解三角形】必备技巧已知边角关系解三角形正弦定理、余弦定理的另一个作用是实现三角形边角关系的互化,解题时可以把已知条件化为角的三角函数关系,也可以把已知条件化为三角形边的关系.1.1在△ABC中,内角A,B,C的对边分别为a,b,c,已知2cos C a cos B+b cos A=c.(1)若cos A=64,求sin2A+C的值;(2)若c=7,△ABC的面积为332,求边a,b的值.21a △ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 1.2的面积为2-b 2sin C .(1)证明:sin A =2sin B ;(2)若a cos C =32b ,求cos A .Z 【跟踪精练】ΔABC 的内角A ,B ,C 的对边分别为a ,b ,c .设(sin B -sin C )2=sin 2A 1.2.1-sin B sin C .(1)求A ;(2)若2a +b =2c ,求sin C .在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,b tan A +b tan B 1.2.2=3ccos A.(1)求角B ;(2)D 是AC 边上的点,若CD =1,AD =BD =3,求sin A 的值.题型三:【判断三角形形状】必备技巧判断三角形形状的方法(1)化边:通过因式分解、配方等得出边的相应关系.(2)化角:通过三角恒等变换,得出内角的关系,此时要注意应用A +B +C =π这个结论.在△ABC 中,已知a 2+b 2-c 2=ab ,且2cos A sin B =sin C 1.1,则该三角形的形状是()A.直角三角形B.等腰三角形C.等边三角形D.钝角三角形在△ABC 中,已知(b +c -a )(b +c +a )=3bc ,且2cos B sin C =sin A ,则△ABC 1.2的形状为()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形Z 【跟踪精练】对于△ABC ,有如下四个命题1.2.1:①若sin2A =sin2B ,则△ABC 为等腰三角形,②若sin B =cos A ,则△ABC 是直角三角形③若sin 2A +sin 2B <sin 2C ,则△ABC 是钝角三角形④若acos 2A =b cos 2B =cC cos 2,则△ABC 是等边三角形.其中正确的命题序号是1.2.2a在△ABC 中,已知a +b =tan Ab +tan B ,则△ABC 的形状一定是()A.等腰三角形B.直角三角形C.等边三角形D.等腰或直角三角形题型四:【三角形解的个数问题】1.1已知在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,则根据条件解三角形时恰有一解的一组条件是()A.a =3,b =4,A =π6 B.a =4,b =3,A =π3C.a =1,b =2,A =π4D.a =2,b =3,A =2π31.2△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,A =30°,a =3,若这个三角形有两解,则b 的取值范围是()A.3<b ≤6B.3<b <6C.b <6D.b ≤6Z 【跟踪精练】1.2.1在△ABC 中,根据下列条件解三角形,则其中有两个解的是()A.b =10,A =45°,C =70°B.a =60,c =48,B =60°C.a =5,b =7,c =8D.a =14,b =16,A =45°1.2.2在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若,满足条件a =3,A =60°的三角形有两个,则b 的取值范围是()A.2,3B.3,33C.3,23D.22,23题型五:【解三角形中的最值范围问题】方法技巧解三角形中最值范围问题基本处理方法1、用余弦定理结合基本不等式求解,2、要求的量转化为某角的三角函数,求函数的最值或值域。

高考数学第05周解三角形周末培优试题理新人教A版(2021学年)

高考数学第05周解三角形周末培优试题理新人教A版(2021学年)

2017-2018学年高考数学第05周解三角形周末培优试题理新人教A 版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017-2018学年高考数学第05周解三角形周末培优试题理新人教A版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017-2018学年高考数学第05周解三角形周末培优试题理新人教A版的全部内容。

第05周 解三角形(测试时间:60分钟,总分:90分)班级:____________ 姓名:____________ 座号:____________ 得分:____________一、选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在ABC △中,角,,A B C 的对边分别为,,a b c ,30,则B =A .60或120 ﻩﻩ B.60C.120 ﻩ ﻩﻩﻩﻩﻩD .30或150 【答案】A∵b a >,∴60B =︒或120,故本题选A。

2.在ABC △中,角,,A B C 的对边分别为,,a b c ,若2c =,221a b =+,则cos a B =ﻩﻩﻩ ﻩﻩ C ﻩ ﻩﻩ D.5【答案】B【解析】由余弦定理得,2222212cos 154cos a b a c ac B a a B=+=+-+=+-554cos 0cos 4a B a B ⇒-=⇒=,故选B.3.若ABC △的内角,,A B C 所对的边分别为,,a b c ,已知2sin23sin b A a B =,且2c b =,A ﻩﻩ ﻩ BC ﻩﻩﻩ ﻩﻩ【答案】B【解析】2sin 23sin b A a B =4sin cos 3sin 4sin sin cos 3sin sin b A A a B B A A A B ⇒=⇒=2224cos 343,2b c a A bc+-⇒=⇒⋅=22c b a b =∴=,,选B。

21版:高考专题突破二 高考中的三角函数与解三角形问题(步步高)

21版:高考专题突破二 高考中的三角函数与解三角形问题(步步高)

思维升华
SI WEI SHENG HUA
三角函数和解三角形的综合问题要利用正弦定理、余弦定理进行转化, 结合三角函数的性质,要注意角的范围对变形过程的影响.
跟踪训练 3 已知函数 f(x)=4sin x·cosx+π3+ 3,x∈0,π6. (1)求函数f(x)的值域;

f (x)=4sin
x12cos
12345
(2)若f (x)<3,求x的取值范围.
解 6sin2x-π6<3,即 sin2x-6π<12,
在一个周期-32π,π2中,要使 sin2x-π6<12,则-76π<2x-π6<π6,
∴-76π+2kπ<2x-π6<π6+2kπ,k∈Z,
解得 kπ-π2<x<kπ+π6,k∈Z.
∴x 的取值范围为xkπ-π2<x<kπ+6π,k∈Z
12345
2.设函数 f(x)=2tan 4x·cos24x-2cos2x4+1π2+1. (1)求f (x)的定义域及最小正周期;

f
(x)=2sin
x 4cos
4x-cosx2+π6
=sin
2x-cosx2+6π=sin
2x-
3 2 cos
2x+21sin
x 2

3sinx2-π6.
由4x≠π2+kπ(k∈Z),得f (x)的定义域为{x|x≠2π+4kπ(k∈Z)},
5.已知函数f(x)=cos 2ωx+ 3 sin 2ωx+t(ω>0),若f(x)的图象上相邻两条对称 轴的距离为 π,图象过点(0,0).
4 (1)求f (x)的表达式和f (x)的单调递增区间;
(2)设D为BC边上一点,且AD⊥AC,求△ABD的面积.

培优专题2_勾股定理及应用(含解答)-[1]

培优专题2_勾股定理及应用(含解答)-[1]

第17章 勾股定理点击一:勾股定理勾股定理:如果直角三角形两直角边分别为a ,b ,斜边为c ,那么a 2+b 2= c 2. 即直角三角形两直角的平方和等于斜边的平方.因此,在运用勾股定理计算三角形的边长时,要注意如下三点:(1)注意勾股定理的使用条件:只对直角三角形适用,而不适用于锐角三角形和钝角三角形; (2)注意分清斜边和直角边,避免盲目代入公式致错;(3)注意勾股定理公式的变形:在直角三角形中,已知任意两边,可求第三边长. 即c 2= a 2+b 2,a 2= c 2-b 2,b 2= c 2-a 2.点击二:学会用拼图法验证勾股定理拼图法验证勾股定理的基本思想是:借助于图形的面积来验证,依据是对图形经过割补、拼接后面积不变的原理. 如,利用四个如图1所示的直角三角形三角形,拼出如图2所示的三个图形. 请读者证明.如上图示,在图(1)中,利用图1边长为a ,b ,c 的四个直角三角形拼成的一个以c 为边长的正方形,则图2(1)中的小正方形的边长为(b -a ),面积为(b -a )2,四个直角三角形的面积为4×21ab = 2ab .由图(1)可知,大正方形的面积 =四个直角三角形的面积+小正方形的的面积,即c 2=(b -a )2+2ab ,则a 2+b 2 = c 2问题得证.请同学们自己证明图(2)、(3).(图1)(2)(3)ABC点击三:在数轴上表示无理数将在数轴上表示无理数的问题转化为化长为无理数的线段长问题.第一步:利用勾股定理拆分出哪两条线段长的平方和等于所画线段(斜边)长的平方,注意一般其中一条线段的长是整数;第二步:以数轴原点为直角三角形斜边的顶点,构造直角三角形;第三步:以数轴原点圆心,以斜边长为半径画弧,即可在数轴上找到表示该无理数的点. 点击四:直角三角形边与面积的关系及应用直角三角形有许多属性,除边与边、边与角、角与角的关系外,边与面积也有内的联系.设a 、b 为直角三角形的两条直角边,c 为斜边,S ∆为面积,于是有:222()2a b a ab b +=++,222a b c +=,12442ab ab S ∆=⨯=,所以22()4a b c S ∆+=+.即221[()]4S a b c ∆=+-.也就是说,直角三角形的面积等于两直角边和的平方与斜边平方差的四分之一.利用该公式来计算直角三角形的有关面积、周长、斜边上的高等问题,显得十分简便. 点击五:熟练掌握勾股定理的各种表达形式.如图2,在Rt ABC ∆中,90=∠C 0,∠A 、∠B 、∠C 的对边分别为a 、b 、c,则c 2=a 2+b 2, a 2=c 2-b 2 ,b 2=c 2-a 2,点击六:勾股定理的应用(1)已知直角三角形的两条边,求第三边; (2)已知直角三角形的一边,求另两条边的关系; (3)用于推导线段平方关系的问题等.(4)用勾股定理,在数轴上作出表示2、3、5的点,即作出长为n 的线段. 针对练习:1.下列说法正确的是( )A .若 a 、b 、c 是△ABC 的三边,则a 2+b 2=c 2B .若 a 、b 、c 是Rt △ABC 的三边,则a 2+b 2=c 2C .若 a 、b 、c 是Rt △ABC 的三边, 90=∠A ,则a 2+b 2=c 2D .若 a 、b 、c 是Rt △ABC 的三边, 90=∠C ,则a 2+b 2=c 22.一个直角三角形中,两直角边长分别为3和4,下列说法正确的是( ) A .斜边长为25 B .三角形周长为25C .斜边长为5D .三角形面积为203.如图,正方形网格中,每个小正方形的边长为1,则网格上的三角形ABC 中,边长为无理数的边数是( )A . 0B . 1C . 2D . 34.如图,数轴上的点A 所表示的数为x,则x 2—10的立方根为( )A ..2 D .-25.把直角三角形的两条直角边同时扩大到原来的2倍,则斜边扩大到原来的( ) A . 2倍B . 4倍C . 6倍D . 8倍6.小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多1 m ,当它把绳子的下端拉开5 m 后,发现下端刚好接触地面,则旗杆的高为 ( ) A .8cm B .10cm C .12cm D .14cm7.△ABC 中,AB =15,AC =13,高AD =12,则△ABC 的周长为( ) A .42 B .32 C .42 或 32 D .37 或 33 8.如图,直线l 上有三个正方形a b c ,,,若a c ,的面积分别为5和11,则b的面积为( ) (A)4(B)6(C)16(D)559.已知直角三角形的周长为21,求它的面积.10.直角三角形的面积为120,斜边长为26,求它的周长.11.如图,在Rt △ABC 中,∠ACB=90°,CD ⊥AB 于D ,AB=13cm ,AC 于BC 之和等于17cm ,求CD 的长.l类型之一:勾股定理例1:如果直角三角形的斜边与一条直角边的长分别是13cm 和5cm ,那么这个直角三角形的面积是 cm 2. 解析:欲求直角三角形的面积,已知一直角三角形的斜边与一条直角边的长,则求得另一直角边的长即可. 根据勾股定理公式的变形,可求得.解:由勾股定理,得132-52=144,所以另一条直角边的长为12. 所以这个直角三角形的面积是21×12×5 = 30(cm 2).例2: 如图3(1),一只蚂蚁沿棱长为a 的正方体表面从顶点A 爬到 顶点B,则它走过的最短路程为( ) A .a 3 B .a )21(+C .3aD .a 5解析:本题显然与例2属同种类型,思路相同.但正方体的 各棱长相等,因此只有一种展开图.解:将正方体侧面展开得,如图3⑵. 由图知AC=2a,BC=a . 根据勾股定理得.a 5a5a)a 2(AB 222==+=故选D .类型之二:在数轴上表示无理数例3解析:根据在数轴上表示无理数的方法,需先把在数轴上作出.解:以3和1,所以需在数轴上找出两段分别长为3和1的线段,如下面的问题是关于数学大会会标设计与勾股定理知识的综合运用∙ ∙ ABC图3⑵∙ A B图3⑴例5:阅读材料,第七届国际数学教育大会的会徽.它的主题图案是由一连串如图所示的直角三角形演化而成的.设其中的第一个直角三角形OA1A2是等腰三角形,且OA1=A1A2=A2A3=A3A4=……=A8A9=1,请你先把图中其它8条线段的长计算出来,填在下面的表格中,然后再计算这8条线段的长的乘积.解:2;3;2;5;6;7;22;3;这8条线段的长的乘积是7072例6:2002年8月在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的较短直角边为a,较长直角边为b,那么()2ba+的值为()(A)13 (B)19 (C)25 (D)169解析:由勾股定理,结合题意得a2+b2=13 ①.由题意,得 (b-a)2=1 ②.由②,得 a2+b2-2ab =1 ③.把①代入③,得 13-2ab=1∴ 2ab=12.∴ (a+b)2 = a2+b2+2ab =13+12=25.因此,选C.说明:2002年8月20日~28日,我国在首都北京成功举办了第24届国际数学家大会. 这是在发展中国家举行的第一次国际数学家大会,也是多年来在我国举行的最重要的一次国际会议. 它标志着我国数学已度过了六百多年的低谷,进入了数学大国的行列,并向着新世纪成为数学强国迈开了步伐. 这次大会的会标如下图所示:它取材于我国三国时期(公元3世纪)赵爽所著的《勾股圆方图注》.类型之四:勾股定理的应用(一)求边长例1:已知:如图,在△ABC中,∠ACB=90º,AB=5cm,BC=3cm,CD⊥AB于D,求CD的长..(二)求面积例2:(1)观察图形思考并回答问题(图中每个小方格代表一个单位面积)①观察图1-1.正方形A中含有__________个小方格,即A的面积是__________个单位面积;正方形B中含有__________个小方格,即B的面积是__________个单位面积;正方形C中含有__________个小方格,即C的面积是__________个单位面积.②在图1-2中,正方形A,B,C中各含有多少个小方格?它们的面积各是多少?③你能发现图1-1中三个正方形A,B,C的面积之间有什么关系吗?图1-2中的呢?(2)做一做:①观察图1-3、图1-4,并填写下表:②三个正方形A,B,C的面积之间有什么关系?(3)议一议:①你能用三角形的边长表示正方形的面积吗?②你能发现直角三角形三边长度之间存在什么关系吗?③分别以5厘米、12厘米为直角边作出一个直角三角形,并测量斜边的长度,②中的规律对这个三角形仍然成立吗?解析:注意到图中每个小方格代表一个单位面积,通过观察图形不能得到答案:①99 9 9 18 18;②A中含4个,B中含4个,C中含8个,面积分别为4,4,8;③A与B的面积之和等于C,图1-2中也是A与B的面积之和等于C.(2)①答案:②答案:.(3)答案:①设直角三角形三边长分别为a,b,c(如图);②,.③成立.(三)作线段例3 作长为、、的线段.解析:作法:1.作直角边长为1(单位长)的等腰直角三角形ACB(如图);2.以斜边AB为一直角边,作另一直角边长为1的直角三角形ABB1;3.顺次这样作下去,最后作到直角三角形AB2B3,这时斜边AB、AB1、AB2、AB3的长度就是、、、.证明:根据勾股定理,在Rt△ACB中,∵AB>0,∴AB=.其他同理可证.点评由勾股定理,直角边长为1的等腰直角三角形,斜边长就等于,直角边长为边长就是.类似地也可作出(四)证明平方关系例4:已知:如图,在ABC∆中,=∠E222BEAEAC-=.解析:根据勾股定理,在ACDRt∆中,2AC在ADERt∆中,222DEAEAD+=,在Rt∆222BEBDDE-=,∴222222BDAECDDEAEAC-+=-+=又∵CDBD=,∴222BEAEAC-=.点评三角形,以便为运用勾股定理创造必要的条件.(五)实际应用例5: 台风是一种自然灾害,它以台风中心为圆心在周围数十千米范围内形成气旋风暴,有极强的破坏力,如图,据气象观测,距沿海某城市A 的正南方向220千米B 处有一台风中心,其中心最大风力为12级,每远离台风中心20千米,风力就会减弱一级,该台风中心现正以15千米/时的速度沿北偏东30º方向往C 移动,且台风中心风力不变,若城市所受风力达到或走过四级,则称为受台风影响.(1)该城市是否会受到这交台风的影响?请说明理由.(2)若会受到台风影响,那么台风影响该城市持续时间有多少?(3)该城市受到台风影响的最大风力为几级?解析 (1)由点A 作AD⊥BC 于D ,则AD 就为城市A 距台风中心的最短距离在Rt△ABD 中,∠B=30º,AB =220,∴AD=21AB=110.由题意知,当A 点距台风(12-4)20=160(千米)时,将会受到台风影响.故该城市会受到这次台风的影响.(2)由题意知,当A 点距台风中心不超过60千米时,将会受到台风的影响,则AE =AF =160.当台风中心从E 到F 处时,该城市都会受到这次台风的影响.由勾股定理得∴EF=2DE =6015.因为这次台风中心以15千米/时的速度移动,所以这次台风影响该城市的持续时间为154151560 小时.(3)当台风中心位于D 处时,A 城市所受这次台风的风力最大,其最大风力为12-20110=6.5级.一、选择题1、有六根细木棒,它们的长度分别是2、4、6、8、10、12(单位:cm ),从中取出三根首尾顺次连结搭成一个直角三角形,则这三根细木棒的长度分别为( )(A )2、4、8 (B )4、8、10 (C )6、8、10 (D )8、10、122、木工师傅想利用木条制作一个直角三角形的工具,那么他要选择的三根木条的长度应符合下列哪一组数据?( )A.25,48,80 B .15,17,62 C .25,59,74 D .32,60,68 3、如果直角三角形的三条边2,4,a ,那么a 的取值可以有( ) (A )0个 (B )1个 (C )2个 (D )3个4、已知直角三角形中30°角所对的直角边长是2厘米,则斜边的长是( ) (A )2厘米(B )4厘米(C )6厘米(D )8厘米5、如图,直角三角形三边上的半圆的面积依次从小到大记作S 1、S 2、S 3,则S 1、S 2、S 3之间的关系是( )(A )S 1+S 2>S 3 (B )S 1+S 2<S 3 (C )S 1+S 2=S 3 (D )S 12+S 22=S 32二、填空题1、若直角三角形斜边长为6,则这个三角形斜边上的中线长为______.2、如果直角三角形的两条直角边的长分别是5cm 和12cm ,那么这个直角三角形斜边上的中线长等于 cm .3、如图,CD 是Rt ⊿ABC 斜边AB 上的中线,若CD=4,则AB= .4、在△ABC 中,∠A :∠B :∠C =1:2:3.已知BC =3cm ,则AB = cm .5、如图,是一个外轮廓为矩形的机器零件平面示意图,根据图中标出尺寸(单位:mm )计算两圆孔中心A 和B 的距离为 .6、如图:有两棵树,一棵高8米,另一棵高2米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞了 米.7、如图,为了求出湖两岸A 、B 两点之间的距离,观测者从测点A 、B 分别测得∠BAC =90°,∠ABC =30°,又量得BC =160 m ,则A 、B 两点之间的距离为 m (结果保留根号)8、利用四个全等的直角三角形可以拼成如图所示的图形,这个图形被称为弦图.从图中可以看到:大正方形面积=小正方形面积+四个直角三角形面积.因而c 2= + .化简后即为c 2= .第6题图第5题图abc9、如图,是2002年8月北京第24届国际数学家大会会标,由4个全等的直角三角形拼合而成,若图中大小正方形的面积分别为52和4,则直角三角形的两条直角边的长分别为 .10、2002年8月20~28日在北京召开了第24届国际数学家大会.大会会标如图所示,它是由四个相同的直角三角形拼成的(直角边长分别为2和3),则大正方形的面积是 .11、已知第一个等腰直角三角形的面积为1,以第一个等腰直角三角形的斜边为直角边画第二个等腰直角三角形,又以第二个等腰直角三角形的斜边为直角边画第三个等腰直角三角形,以此类推,第13个等腰直角三角形的面积是 . 12、如图,梯子AB 靠在墙上,梯子的底端A 到墙根O 的距离为2米,梯子的顶端B 到地面的距离为7米.现将梯子的底端A 向外移动到A′,使梯子的底端A′ 到墙根O 的距离等于3米,同时梯子的顶端B 下降至B′,那么BB′等于1米;②大于1米;③小于1米.其中正确结论的序号是________________.13、观察下面各组数:(3,4,5)、(5,12,13)、(7,24,25)、(9,40,41)、…,可发现:4=2132-,12=2152-,24=2172-,…,若设某组数的第一个数为k ,则这组数为(k , , ). 三、解答题1、张老师在一次“探究性学习”课中,设计了如下数表:(1) 分别观察a 、b 、c 与n 之间的关系,并用含自然数n (n>1)的代数式表示:a = ,b = ,c =(2)猜想:以a 、b 、c 为边的三角形是否为直角三角形?并证明你的猜想.2、若正整数a 、b 、c 满足方程a 2+b 2=c 2 ,则称这一组正整数(a 、b 、c )为“商高数”,下面列举五组“商高数”:(3,4,5),(5,12,13),(6,8,10),(7,24,25),(12,16,20),注意这五组“商高数”的结构有如下规律:根据以上规律,回答以下问题:(1) 商高数的三个数中,有几个偶数,几个奇数? (2) 写出各数都大于30的两组商高数.(3) 用两个正整数m 、n (m >n )表示一组商高数,并证明你的结论. 3、阅读并填空: 寻求某些勾股数的规律:⑴对于任何一组已知的勾股数都扩大相同的正整数倍后,就得到了一组新的勾股数.例如:222543=+,我们把它扩大2倍、3倍,就分别得到2221086=+和22215129=+,……若把它扩大11倍,就得到 ,若把它扩大倍,就得到 .⑵对于任意一个大于1的奇数,存在着下列勾股数: 若勾股数为3,4,5,因为222453-=,则有5432+=; 若勾股数为5,12,13,则有131252+=; 若勾股数为7,24,25,则有 ;……若勾股数为m (m 为奇数),n , ,则有=2m ,用m 来表示n = ; 当17=m 时,则n = ,此时勾股数为 . ⑶对于大于4的偶数:若勾股数为6,8,10,因为2228106-=,则有……请找出这些勾股数之间的关系,并用适当的字母表示出它的规律来,并求当偶数为24的勾股数.4、一个直立的火柴盒在桌面上倒下,启迪人们发现了勾股定理的一种新的证明方法.如图,火柴盒的一个侧面A B C D 倒下到A B C D '''的位置,连结C C ',设,,AB a BC b AC c ===,请利用四边形B C C D ''的面积证明勾股定理:222a b c +=.aD 'B 'DC ' A BCb c 第4题图5、如图是2002年8月在北京召开的第24届国际数学家大会会标中的图案,其中四边形ABCD 和EF 都是正方形. 证:△ABF ≌△DAE6、仔细观察图形,认真分析各式,然后解答问题.;23,4)3(;22,31)2(;21,21)1(322212==+==+==+S S S(1)请用含有n (n 是正整数)的等式表示上述变化规律; (2)推算出OA 10的长;(3)求出210232221S S S S ++++ 的值.一、选择题1、 如图,字母A 所代表的的正方形的面积为(数字表示该正方形的面积)( ) A 、13B 、85C 、8D 、都不对2、 在Rt△ABC 中,有两边的长分别为3和4,则第三边的长( ) A 、5B 、7C 、5或7D 、5或113、 等腰三角形底边上的高是8,周长是32,则三角形的面积是( ) A 、56B 、48C 、40D 、32214、 若线段a 、b 、c 能构成直角三角形,则它们的比为( ) A 、2:3:4B 、3:4:6C 、5:12:13D 、4:6:75、 一个长方形的长是宽的2倍,其对角线的长是5cm ,则长方形的面积( ) A 、25cmB 、225cmC 、210cmD 、275cm6、 一个三角形三个内角之比为1:2:1,其相对应三边之比为( ) A 、1:2:1B 、1:2:1C 、1:4:1D 、12:1:27、 斜边长25,一条直角边长为7的直角三角形面积为( ) A 、81B 、82C 、83D 、848、若直角三角形中,有一个锐角为 30,且斜边与较短直角边之和为18,则斜边长为( ) A 、4cmB 、6cmC 、8cmD 、12cm9、如图△ABC 中,∠C =90°,AD 平分∠BAC ,DE ⊥AB 于E ,下面等式错误的是( ) A 、AC 2+DC 2=AD 2B 、AD 2-DE 2=AE 2C 、AD 2=DE 2+AC 2D 、BD 2-BE 2=41BC 210.图是2002年8 月北京第24届国际数学家大会会标,由4 个全等的直角三角形拼合而成.若图中大小正方形面积分别是6221和4,则直角三角形的两条直角边长分别为( )A 、6,4B 、6221,4 C 、6221,421 D 、6, 421二、填空:1、在△ABC 中, ∠C =90°,a ,b ,c 分别为∠A ∠B ∠C 的对边 (1)若a=6,c=10则b= (2)若a=12,b=5 则c= (3)若c=25,b=15则a= (4)若a =16,b=34则b=2、三边长分别为1,1,1的三角形是角三角形.3、在△ABC中,AB=10,AC=8,BC=6,则△ABC的面积是4、如图要修一个育苗棚,棚宽a=3m,高b=4m,底d=10m,覆盖顶上的塑料薄膜的面积为2m5、如图点C是以为AB直径的半圆上的一点,4∠BCACACB则图中阴影部分的面积︒=,,390==是6、在Rt△ABC中,3︒=ABC且BC=136则AC=∠AC90=:5:,7、直角三角形的一直角边为8cm,斜边为10cm,则这个直角三角形的面积是斜边上的高为8、△ABC中,︒,C则a:b:c=90a∠30==∠︒9、三角形三个内角之比为1:2:3,它的最长边为a,那么以其余两边为边所作的正方形面积分别为10、有两根木条,长分别为60cm和80cm,现再截一根木条做一个钝角三角形,则第三根木条x长度的取值范围三解答题1、如如图要建一个苗圃,它的宽是a=4.8厘米,高b=3.6米.苗圃总长是10米(1)求苗圃的占地面积(2)覆盖在顶上的塑料薄膜需要多少平方米?2、如图在四边形ABCD中,12=︒∠∠BCABBAD求正方形DCEF的面积CBDAD=,,4,3︒90,==90=3、如图在锐角△ABC中,高AD=12,AC=13,BC=14求AB的长4、八年级学生准备测量校园人工湖的深度,他们把一根竹竿插到离湖边1米的水底,只见竹竿高出水面1尺,把竹竿的顶端拉向湖边(底端不变)竿顶和湖沿的水面刚好平齐,求湖水的深度和竹竿的长.5、如图己知在△ABC中,DE︒∠∠垂直平分AB,E为垂足交BC于D,BD=16cm,求AC长.==90︒C,B15,6、某校要把一块形状是直角三角形的废地开发为生物园,如图80∠ACACB米,BC=60米,若线段CD为一=,︒90=条水渠,且D在边AB上,己知水渠的造价是10元/米,则点D在距A点多远,水渠的造价最低,最低价是多少?勾股定理及应用勾股定理是数学史上一颗璀璨的明珠,在西方数学史上称之为“毕达哥拉斯定理”. 例1 已知一直角三角形的斜边长是2,周长是,求这个三角形的面积.分析 由斜边长是2,周长是4,列关于两直角边的方程,只需求出两直角边长的积,即可求得三角形的面积.本题中用到数学解题中常用的“设而不求”的技巧,要熟练掌握.解:设直角三角形的两直角边为a 、b ,根据题意列方程得:2222,22a b a b ⎧+=⎪⎨++=+⎪⎩即224,a b a b ⎧+=⎪⎨+=⎪⎩ ②式两边同时平方再减去①式得: 2ab=2, ∴12ab=12.∴S=12.因此,这个三角形的面积为12.练习11.已知:如图2-1,AD=4,CD=3,∠ADC=90°,AB=13,∠ACB=90°,•求图形中阴影部分的面积.2-12.已知:长方形ABCD,AB∥CD,AD∥BC,AB=2,AD≠DC,长方形ABCD的面积为S,沿长方形的对称轴折叠一次得到一个新长方形,求这个新长方形的对角线的长.3.若线段a、b、c能组成直角三角形,则它们的比值可以是()A.1:2:4 B.1:3:5 C.3:4:7 D.5:12:13例2 如图2-2,把一张长方形纸片ABCD折叠起来,使其对角顶点A、C重合,•若其长BC为a,宽AB为b,则折叠后不重合部分的面积是多少?分析图形沿EF折叠后A、C重合,可知四边形AFED′与四边形CFED全等,则对应边、角相等,∴AF=FC,且FC=AE,则△ABF≌△AD′E,•由三角形面积公式不难求出不重合部分的面积.解:∵图形沿EF折叠后A、C重合,∴四边形AFED′与CFED关于EF对称,则四边形AFED′≌四边形CFED.∴∠AFE=∠CFE.∴AF=FC,∠D′=∠D=∠B=90°AB=CD=AD′.∵AD∥BC,∴∠AEF=∠EFC.∴∠AEF=∠AFE.则AE=AF.∴Rt△ABF≌Rt△AD′E.在Rt△ABF中,∵∠B=90°,∴AB2+BF2=AF2.设BF=x,b2+x2=(a-x)2,∴x=222a ba-.∴S=2S△ABF =2×12bx=2×12·b·222a ba-=22()2b a ba-.练习22-21.如图2-3,把矩形ABCD沿直线BD向上折叠,使点C落在C′的位置上,已知AB=•3,BC=7,重合部分△EBD的面积为________.2.如图2-4,一架长2.5m的梯子,斜放在墙上,梯子的底部B•离墙脚O•的距离是0.7m,当梯子的顶部A向下滑0.4m到A′时,梯子的底部向外移动多少米?2-43.如图2-5,长方形ABCD中,AB=3,BC=4,若将该矩形折叠,使C点与A点重合,•则折叠后痕迹EF的长为()A.3.74 B.3.75 C.3.76 D.3.772-5例3 试判断,三边长分别为2n2+2n,2n+1,2n2+2n+1(n为正整数)•的三角形是否是直角三角形?分析先确定最大边,•再利用勾股定理的判定定理判断是否为直角三角形.解:∵n为正整数,∴(2n2+2n+1)-(2n2+2n)=2n2+2n+1-2n2-2n=1>0,(2n2+2n+1)-(2n+1)=2n2+2n+1-2n-1=2n2>0.∴2n2+2n+1为三角形中的最大边.又(2n2+2n+1)2=4n4+8n3+8n2+4n+1,(2n2+2n)2+(2n+1)2=4n4+8n3+8n2+4n+1.∴(2n2+2n+1)2=(2n2+2n)2+(2n+1)2.∴这个三角形是直角三角形.练习31.若△ABC的三边a、b、c满足a2+b2+c2+50=6a+8b+10c,则△ABC是()A.等腰三角形 B.直角三角形 C.锐角三角形 D.钝角三角形2.如图2-6,在正方形ABCD中,F为DC的中点,E为BC上一点,且EC=14BC,猜想AF•与EF的位置关系,并说明理由.2-63.△ABC中的三边分别是m2-1,2m,m2+1(m>1),那么()A.△ABC是直角三角形,且斜边长为m2+1.B.△ABC是直角三角形,且斜边长为2m.C.△ABC是直角三角形,但斜边长由m的大小而定.D.△ABC不是直角三角形.例4 已知:如图2-7所示,△ABC中,D是AB的中点,若AC=12,BC=5,CD=6.5.求证:△ABC是直角三角形.分析欲证△ABC是直角三角形,在已知两边AC、BC的情况下求边AB的长,比较困难;但注意到CD是边AB的中线,我们延长CD到E,使DE=CD,•从而有△BDE•≌△ADC,这样AC、BC、2CD就作为△BCE的三边,再用勾股定理的逆定理去判定.证明:延长CD到E,使DE=CD,连结BE.∵AD=BD,CD=ED,∠ADC=∠BDE.∴△ADC≌△BDE(SAS).∴BE=AC=12.∴∠A=∠DBE.∴AC∥BE.在△BCE中,∵BC2+BE2=52+122=169.CE2=(2CD)2=(2×6.5)2=169.∴BC2+BE2=CE2.∴∠EBC=90°.又∵AC∥BE,∴∠ACB=180°-∠EBC=90°.∴△ABC是直角三角形.练习41.已知a、b、c为△ABC的三边,且满足a2c2-b2c2=a2-b2,试判断△ABC的形状.先阅读下列解题过程:解:∵a2c2-b2c2=a4-b4,①∴c2(a2-b2)=(a2+b2)(a2-b2).②∴c2=a2+b2.③∴△ABC为直角三角形.④问:(1)上述推理过程,出现错误的一步是________;(2)本题的正确结论是________.2.如图2-8,△ABC的三边分别为AC=5,BC=12,AB=13,将△ABC沿AD折叠,使AC落在AB上,求折痕AD的长.3.如图2-9,△ABC中,∠ACB=90°,AC=BC,P是△ABC内一点,满足PA=3,PB=1,•PC=2,求∠BPC的度数.例5 如图2-10,△ABC中,AB=AC=20,BC=32,D是BC上一点,且AD⊥AC,求BD的长.分析若作AE⊥BC于E,如图2-11,利用勾股定理可求出AE=12,AD是Rt•△ADC的直角边.∴AD=CD-AC ,若设DE=x ,借助于AD 这个“桥”可以列出方程. 解:作AE ⊥BC 于E . ∵AB=AC ,AE ⊥BC , ∴BE=EC=12BC=12×32=16.在Rt △AEC 中,AE 2=AC 2-CE 2=202-162=144, ∴AE=12. 设DE=x ,则在Rt △ADE 中,AD 2=AE 2+DE 2=144+x 2, 在Rt △ACD 中,AD 2=CD 2-AC 2=(16+x )2-202. ∴144+x 2=(16+x )2-202 解得x=9.∴BD=BE-DE=16-9=7. 练习51.如图2-12,△ABC 中,∠C=90°,M 是BC 的中点,MD ⊥AB 于D .求证:AD 2=AC 2+BD 2.2-122.如图2-13,AB ⊥AD ,AB=3,BC=12,CD=13,AD=4,求四边形ABCD 的面积.2-133.如图2-14.长方体的高为3cm ,底面是正方形,边长为2cm ,现有绳子从A 出发,沿长方形表面到达C 处,问绳子最短是多少厘米?2-102-112-14勾股定理及应用 答案: 练习11.24(提示:利用勾股定理即可求出) 2.长方形的对称轴有2条,要分别讨论: (1)以A 、B 为对称点(如图) ∵S=AB ×BC ,AB=2, ∴BC=AD=2S .根据对称性得DF=12AB=1.由于∠D=90°,据勾股定理得:AF==12(2)以A 、D 为对称点(如图) ∴BF=12BC=4S .由∠B=90°,据勾股定理得:AF==3.D练习2 1.214(提示:利用Rt △ABE 的勾股定理即可求出) 2.0.8m 3.B练习31.B 2.AF ⊥EF (提示:连结AE ,设正方形的边长为a ,则DF=FC=2a ,EC=4a ,在Rt △ADF 中,由勾股定理得:AF 2=AD 2+DF 2=a 2+(2a )2=54a 2.同理:在Rt△ECF 中,EF 2=(2a )2+(4a )2=516a 2,在Rt△ABE 中,BE=34a ,则AE 2=a 2+916a 2=2516a 2.∵54a 2+516a 2=2516a 2,∴AF 2+EF 2=AE 2. ∴∠AFE=90°. ∴AF ⊥EF .3.A (点拨:利用勾股定理的逆定理来判定) 练习41.(1)③、④(2)△ABC 为直角三角形或等腰三角形. 2.∵AC 2+BC 2=52+122=132=AB 2, ∴∠C=90°.将△ABC 沿AD 折叠,使AC 落在AB 上,C 的对称点为E (如图) ∴CD=DE , AC=AE=5. 则△ACD ≌△AED . 又BE=AB-AE=8.设CD 为x ,则x 2+82=(12-x )2. 解之得x=103. ∴AD 2=52+(103)2. ∴3.3.过点C 作CE ⊥CP ,并截CE=CP=2,连结PE ,BE .(如图) ∵∠ACB=∠PCE=90°, ∴∠ACB-∠PCB=∠PCE-∠PCB . 即∠ACP=∠BCE .∴△PCA ≌△ECB (SAS ). ∴BE=AP=3. 在Rt △PCE 中, PE 2=PC 2+CE 2=8. 又∵BP 2=1,BE 2=9,∴BE 2=BP 2+PE 2.∴△PBE 是直角三角形,其中∠BPE=90° 在Rt △PCE 中,PC=CE , ∴∠CPE=∠CEP=45°.∴∠BPC=∠CPE+∠BPE=45°+90°=135°. 练习5 1.连结AM . ∵M 为CB 的中点, ∴CM=MB .又∵AC 2=AM 2-CM 2,BD 2=BM 2-MD 2, ∴AC 2+BD 2=AM 2-MD 2. 又∵AD 2=AM 2-DM 2, ∴AD 2=AC 2+BD 2.2.36(提示:连结BD ,利用勾股定理及逆定理即可求出).3.5cm (提示:将该长方体的右面翻折,使它与前面在同一平面, 连结AC (如图),此时线段AC 的长度即为最短距离. ∴(cm ).勾股定理的逆定理1班级 姓名 号次一.选择题(本题有10小题,每题3分,共30分)1.在△ABC 中,,,A B C ∠∠∠的对边分别为,,a b c ,且ab c b a 2)(22+=+,则( )A.A ∠为直角B.B ∠为直角C.C ∠为直角D.不能确定 2.如图,下列三角形中是直角三角形的是( )51213 C467 B7 58 A73 53.下列各命题的逆命题不成立的是( )A.两直线平行,内错角相等B.若b a =,则b a =C.对顶角相等D.如果a =b ,那么a 2=b 24.下面四组数中,其中有一组与其他三组规律不同,这一组是( )A. 4,5,6B. 6,8,10C. 8,15,17D. 9,40,415.如图有五根小木棒,其长度分别为7、15、20、24、25,现想把它们摆成两个直角三角形,则摆放正确的是( )715242520715202425157252024257202415(A)(B)(C)(D)A B C D6.放学后,斌斌先去同学小华家玩了一回,再回到家里。

高中数学 培优二轮 含答案 解析 专题三 第二讲 三角变换与解三角形

高中数学 培优二轮  含答案 解析 专题三 第二讲 三角变换与解三角形

高中数学专题培优二轮复习两角和与差的正弦、余弦、正切公式β)=sin αcos β±cos αsin β.1. (星课堂·浙江)已知α∈R ,sin α+2cos α=102,则tan 2α等于( ) A.43B.34C .-34D .-43答案 C解析 ∵sin α+2cos α=102, ∴sin 2α+4sin α·cos α+4cos 2α=52.用降幂公式化简得:4sin 2α=-3cos 2α,∴tan 2α=sin 2αcos 2α=-34.故选C.2. (星课堂·辽宁)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若a sin B cos C +c sin B cos A =12b ,且a >b ,则B 的大小为 ( )A.π6B.π3C.2π3D.5π6答案 A解析 由条件得a b sin B cos C +c b sin B cos A =12,由正弦定理,得sin A cos C +sin C cos A =12,∴sin(A +C )=12,从而sin B =12,又a >b ,且B ∈(0,π),因此B =π6.3. (星课堂·陕西)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定 答案 B解析 由b cos C +c cos B =a sin A ,得sin B cos C +sin C cos B =sin 2A ,即sin(B +C )=sin 2A ,所以sin A =1,由0<A <π,得A =π2,所以△ABC 为直角三角形.4. (星课堂·广东)在△ABC 中,若∠A =60°,∠B =45°,BC =32,则AC 等于 ( )A .4 3B .2 3 C. 3 D.32答案 B解析 利用正弦定理解三角形.在△ABC 中,AC sin B =BCsin A,∴AC =BC ·sin Bsin A =32×2232=2 3.5. (星课堂·安徽)设△ABC 的内角A ,B ,C 所对边的长分别为a ,b ,c .若b +c =2a,3sin A=5sin B ,则角C =________.答案 2π3解析 由已知条件和正弦定理得:3a =5b ,且b +c =2a ,则a =5b 3,c =2a -b =7b 3cos C =a 2+b 2-c 22ab =-12,又0<C <π,因此角C =2π3.题型一 三角恒等变换例1 (1)若α∈⎝⎛⎭⎫0,π2,且sin 2α+cos 2α=14,则tan α的值等于( )A.22B.33C. 2D. 3(2)已知α,β ∈⎝⎛⎭⎫3π4,π,sin(α+β)=-35,sin ⎝⎛⎭⎫β-π4=1213,则cos ⎝⎛⎭⎫α+π4=________. 审题破题 (1)利用同角三角函数关系式先求sin α或cos α,再求tan α;(2)注意角之间的关系⎝⎛⎭⎫α+π4=(α+β)-⎝⎛⎭⎫β-π4. 答案 (1)D (2)-5665解析 (1)∵α∈⎝⎛⎭⎫0,π2,且sin 2α+cos 2α=14,∴sin 2α+cos 2α-sin 2α=14,∴cos 2α=14,∴cos α=12或-12(舍去),∴α=π3,∴tan α= 3.(2)因为α,β∈⎝⎛⎭⎫3π4,π,所以α+β=⎝⎛⎭⎫3π2,2π,所以cos(α+β)>0.易得cos(α+β)=45. 又π2<β-π4<3π4,所以cos ⎝⎛⎭⎫β-π4<0, 易得cos ⎝⎛⎭⎫β-π4=-513. 故cos ⎝⎛⎭⎫α+π4=cos[(α+β)-(β-π4)] =cos(α+β)cos ⎝⎛⎭⎫β-π4+sin(α+β)sin ⎝⎛⎭⎫β-π4 =45×⎝⎛⎫-513+⎝⎛⎭⎫-35×1213=-5665.反思归纳 (1)公式应用技巧:①直接应用公式,包括公式的正用、逆用和变形用;②常用切化弦、异名化同名、异角化同角等.(2)化简常用技巧:①注意特殊角的三角函数与特殊值的互化;②注意利用角与角之间的隐含关系,如2α=(α+β)+(α-β),θ=(θ-φ)+φ等;③注意利用“1”的恒等变形,如tan 45°=1,sin 2α+cos 2α=1等.变式训练1 (1)若0<α<π2,-π2<β<0,cos ⎝⎛⎭⎫π4+α=13,cos ⎝⎛⎭⎫π4-β2=33,则cos ⎝⎛⎭⎫α+β2等于( ) A.33 B .-33 C.539 D .-69答案 C解析 ∵cos ⎝⎛⎭⎫π4+α=13,0<α<π2, ∴sin ⎝⎛⎭⎫π4+α=223.又∵cos ⎝⎛⎭⎫π4-β2=33,-π2<β<0, ∴sin ⎝⎛⎭⎫π4-β2=63, ∴cos ⎝⎛⎭⎫α+β2=cos ⎣⎡⎦⎤⎝⎛⎭⎫π4+α-⎝⎛⎭⎫π4-β2 =cos ⎝⎛⎭⎫π4+αcos ⎝⎛⎭⎫π4-β2+sin ⎝⎛⎭⎫π4+αsin ⎝⎛⎭⎫π4-β2 =13×33+223×63=539. (2)已知sin α=12+cos α,且α∈⎝⎛⎭⎫0,π2,则cos 2αsin ⎝⎛⎭⎫α-π4的值为________. 答案 -142解析 cos 2αsin ⎝⎛⎭⎫α-π4=cos 2α-sin 2α22(sin α-cos α)=(cos α+sin α)(cos α-sin α)22(sin α-cos α)=-2(cos α+sin α).∵sin α=12+cos α,∴cos α-sin α=-12,两边平方得1-2sin αcos α=14,∴2sin αcos α=34.∵α∈⎝⎛⎭⎫0,π2, ∴cos α+sin α=(cos α+sin α)2= 1+34=72,∴cos 2αsin ⎝⎛⎭⎫α-π4=-142.题型二 解三角形例2 △ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A =2a .(1)求b a;(2)若c 2=b 2+3a 2,求B .审题破题 (1)利用正弦定理,化去角B 的三角函数,再化简求值;(2)由条件结构特征,联想到余弦定理,求cos B 的值,进而求出角B . 解 (1)由正弦定理,得a sin B =b sin A , 又a sin A sin B +b cos 2A =2a ,所以b sin 2A +b cos 2A =2a ,即b =2a .所以ba = 2.(2)由余弦定理和c 2=b 2+3a 2,又0°<B <180°,得cos B =(1+3)a2c.由(1)知b 2=2a 2,故c 2=(2+3)a 2.可得cos 2B =12.又cos B >0,故cos B =22,又0°<B <180°,所以B =45°.反思归纳 关于解三角形问题,一般要用到三角形的内角和定理,正、余弦定理及有关三角形的性质,常见的三角变换方法和原则都适用,同时要注意“三统一”,即“统一角、统一函数、统一结构”,这是使问题获得解决的突破口.变式训练2 (星课堂·山东)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且a +c =6,b =2,cos B =79.(1)求a ,c 的值; (2)求sin(A -B )的值.解 (1)由余弦定理得:cos B =a 2+c 2-b 22ac =a 2+c 2-42ac =79,即a 2+c 2-4=149ac .∴(a +c )2-2ac -4=149ac ,∴ac =9.由⎩⎪⎨⎪⎧a +c =6,ac =9得a =c =3. (2)在△ABC 中,cos B =79,∴sin B =1-cos 2B = 1-⎝⎛⎭⎫792=429.由正弦定理得:a sin A =bsin B,∴sin A =a sin B b =3×4292=223.又A =C ,∴0<A <π2,∴cos A =1-sin 2A =13,∴sin (A -B )=sin A cos B -cos A sin B =223×79-13×429=10227.题型三 解三角形的实际应用例3 某城市有一块不规则的绿地如图所示,城建部门欲在该地上建造一个底座为三角形的环境标志,小李、小王设计的底座形状分别为△ABC 、△ABD ,经测量AD =BD =14,BC =10,AC =16,∠C =∠D .(1)求AB 的长度;(2)若建造环境标志的费用与用地面积成正比,不考虑其他因素,小李、小王谁的设计使建造费用较低,请说明理由.审题破题 首先借助余弦定理列式,通过等量关系求出角C 的大小,进而求AB 的长度;然后借助正弦定理比较三角形的面积大小,并作出判断. 解 (1)在△ABC 中,由余弦定理得, AB 2=AC 2+BC 2-2AC ·BC cos C =162+102-2×16×10cos C .①在△ABD 中,由余弦定理及∠C =∠D 整理得, AB 2=AD 2+BD 2-2AD ·BD cos D =142+142-2×142cos C .② 由①②得:142+142-2×142cos C =162+102-2×16×10cos C ,整理可得cos C =12,又∠C 为三角形的内角,所以∠C =60°.又∠C =∠D ,AD =BD ,所以△ABD 是等边三角形, 即AB 的长度是14.(2)小李的设计符合要求.理由如下:S △ABD =12AD ·BD sin D ,S △ABC =12AC ·BC sin C ,因为AD ·BD >AC ·BC ,∠C =∠D ,所以S △ABD >S △ABC .又已知建造费用与用地面积成正比,故选择△ABC 建造环境标志费用较低. 即小李的设计使建造费用较低.反思归纳 应用解三角形知识解决实际问题需要下列四步:(1)分析题意,准确理解题意,分清已知与所求,尤其要理解题中的有关名词、术语,如坡度、仰角、俯角、视角、方位角等;(2)根据题意画出示意图,并将已知条件在图形中标出;(3)将所求问题归结到一个或几个三角形中,通过合理运用正、余弦定理等有关知识正确求解;(4)检验解出的结果是否具有实际意义,对结果进行取舍,得出正确答案.变式训练3 (星课堂·江苏)如图,游客从某旅游景区的景点A 处下山至C 处有两种路径.一种是从A 沿直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到C .现有甲、乙两位游客从A 处下山,甲沿AC 匀速步行,速度为50 m /min.在甲出发2 min 后,乙从A 乘缆车到B ,在B 处停留1 min 后,再从B 匀速步行到C .假设缆车匀速直线运动的速度为130 m/min ,山路AC 长为1 260 m ,经测量cos A =1213,cos C =35.(1)求索道AB 的长;(2)问:乙出发多少分钟后,乙在缆车上与甲的距离最短?(3)为使两位游客在C 处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?解 (1)在△ABC 中,因为cos A =1213,cos C =35,所以sin A =513,sin C =45.从而sin B =sin [π-(A +C )]=sin(A +C ) =sin A cos C +cos A sin C=513×35+1213×45=6365. 由正弦定理AB sin C =ACsin B ,得AB =AC sin B ×sin C =1 2606365×45=1 040(m).所以索道AB 的长为1 040 m.(2)假设乙出发t 分钟后,甲、乙两游客距离为d ,此时,甲行走了(100+50t )m ,乙距离A 处130t m , 所以由余弦定理得d 2=(100+50t )2+(130t )2-2×130t ×(100+50t )×1213=200(37t 2-70t +50),由于0≤t ≤1 040130,即0≤t ≤8,故当t =3537min 时,甲、乙两游客距离最短.(3)由正弦定理BC sin A =ACsin B ,得BC =AC sin B ×sin A =1 2606365×513=500(m).乙从B 出发时,甲已走了50×(2+8+1)=550(m),还需走710 m 才能到达C .设乙步行的速度为v m/min ,由题意得-3≤500v -71050≤3,解得1 25043≤v ≤62514,所以为使两位游客在C 处互相等待的时间不超过 3 min ,乙步行的速度应控制在⎣⎡⎦⎤1 25043,62514(单位:m/min)范围内.典例 (12分)已知向量a =(cos ωx ,sin ωx ),b =(cos ωx ,3cos ωx ),其中0<ω<2.函数f (x )=a ·b -12,其图象的一条对称轴为x =π6.(1)求函数f (x )的表达式及单调递增区间;(2)在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,S 为其面积,若f ⎝⎛⎭⎫A 2=1,b =1,S △ABC=3,求a 的值. 规范解答解 (1)f (x )=a ·b -12=cos 2ωx +3sin ωx cos ωx -12=1+cos 2ωx 2+32sin 2ωx -12=sin ⎝⎛⎭⎫2ωx +π6.[3分] 当x =π6时,sin ⎝⎛⎭⎫ωπ3+π6=±1, 即ωπ3+π6=k π+π2,k ∈Z . ∵0<ω<2,∴ω=1.[5分]∴f (x )=sin ⎝⎛⎭⎫2x +π6. 令-π2+2k π≤2x +π6≤π2+2k π,k ∈Z ,∴k π-π3≤x ≤k π+π6,k ∈Z ,∴函数f (x )的单调递增区间为[k π-π3,k π+π6],k ∈Z .[7分](2)f ⎝⎛⎭⎫A 2=sin ⎝⎛⎭⎫A +π6=1, 在△ABC 中,0<A <π,π6<A +π6<76π,∴A +π6=π2,A =π3.由S △ABC =12bc sin A =3,b =1,得c =4.[9分]由余弦定理得a 2=42+12-2×4×1×cos π3=13,故a =13.[12分]评分细则 (1)f (x )没有化成sin ⎝⎛⎭⎫2ωx +π6的得1分;(2)k ∈Z 没写的扣1分;(3)得出A =π3的给1分.阅卷老师提醒 (1)三角形和三角函数的结合是高考命题的热点,灵活考查分析、解决问题的能力.(2)此类问题的一般解法是先将三角函数化成y =A sin(ωx +φ)的形式,利用三角函数求值确定三角形的一个角,然后和正、余弦定理相结合解题. (3)解题中要充分注意在三角形中这个条件,重视角的范围.1. 已知cos (π-2α)sin (α-π4)=-22,则sin α+cos α等于( )A .-72 B.72 C.12D .-12答案 D解析 cos (π-2α)sin (α-π4)=-cos 2αsin (α-π4)=sin (2α-π2)sin (α-π4)=2cos(α-π4)=2cos α+2sin α=-22,∴sin α+cos α=-12,故选D.2. (星课堂·江西)已知f (x )=sin 2⎝⎛⎭⎫x +π4,若a =f (lg 5),b =f ⎝⎛⎭⎫lg 15,则( ) A .a +b =0 B .a -b =0 C .a +b =1D .a -b =1答案 C解析 将函数整理,利用奇函数性质求解.由题意知f (x )=sin 2⎝⎛⎫x +π4=1-cos ⎝⎛⎭⎫2x +π22=1+sin 2x 2, 令g (x )=12sin 2x ,则g (x )为奇函数,且f (x )=g (x )+12,a =f (lg 5)=g (lg 5)+12,b =f ⎝⎛⎭⎫lg 15=g ⎝⎛⎭⎫lg 15+12, 则a +b =g (lg 5)+g ⎝⎛⎭⎫lg 15+1=g (lg 5)+g (-lg 5)+1=1,故a +b =1. 3. (星课堂·天津)在△ABC 中,∠ABC =π4,AB =2,BC =3,则sin ∠BAC 等于 ( )A.1010B.105C.31010D.55答案 C解析 在△ABC 中,由余弦定理得AC 2=BA 2+BC 2-2BA ·BC cos ∠ABC =(2)2+32-2×2×3cos π4=5.∴AC =5,由正弦定理BC sin ∠BAC =ACsin ∠ABC得sin ∠BAC =BC ·sin ∠ABCAC =3×sin π45=3×225=31010.4. 设α、β均为锐角,且cos(α+β)=sin(α-β),则tan α的值为( )A .2 B. 3 C .1 D.33答案 C解析 由已知得cos αcos β-sin αsin β=sin αcos β-cos αsin β,即cos α(cos β+sin β)=sin α(sin β+cos β),∵β为锐角,∴cos β+sin β≠0,因此有cos α=sin α, 从而tan α=1.5. 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若(a 2+c 2-b 2)tan B =3ac ,则角B的值为( )A.π6 B.π3C.π6或5π6D.π3或2π3答案 D解析 由(a 2+c 2-b 2)tan B =3ac , 得a 2+c 2-b 22ac =32·cos B sin B ,即cos B =32·cos B sin B,∴sin B =32.又∵0<B <π,∴角B 为π3或2π3.故选D.6. 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c 且满足c sin A =a cos C .当3sin A -cos ⎝⎛⎭⎫B +π4取最大值时,A 的大小为 ( ) A.π3 B.π4 C.π6 D.2π3答案 A解析 由正弦定理得sin C sin A =sin A cos C .因为0<A <π,所以sin A >0,从而sin C =cos C .又cos C ≠0,所以tan C =1,则C =π4,所以B =3π4-A .于是3sin A -cos ⎝⎛⎭⎫B +π4=3sin A -cos(π-A ) =3sin A +cos A =2sin ⎝⎛⎭⎫A +π6. ∵0<A <3π4,∴π6<A +π6<11π12,从而当A +π6=π2,即A =π3时,2sin ⎝⎛⎭⎫A +π6取最大值2.故选A. 专题限时规范训练一、选择题1. 已知cos ⎝⎛⎭⎫α-π6+sin α=435,则sin ⎝⎛⎭⎫α+7π6的值是( )A .-235 B.235C .-45 D.45答案 C解析 cos ⎝⎛⎭⎫α-π6+sin α=435⇒32sin α+32cos α=435⇒sin ⎝⎛⎭⎫α+π6=45, 所以sin ⎝⎛⎭⎫α+7π6=-sin ⎝⎛⎭⎫α+π6=-45. 2. (星课堂·四川改编)设sin 2α=-sin α,α∈⎝⎛⎭⎫π2,π,则tan 2α的值是( ) A. 3B .2 3C.32D.12 答案 A解析 ∵sin 2α=-sin α,∴sin α(2cos α+1)=0,又α∈⎝⎛⎭⎫π2,π,∴sin α≠0,2cos α+1=0即cos α=-12,sin α=32,tan α=-3,∴tan 2α=2tan α1-tan 2α=-231-(-3)2= 3. 3. 已知锐角△ABC 的面积为33,BC =4,CA =3,则角C 的大小为( )A .75°B .60°C .45°D .30°答案 B解析 由题意知,12×4×3×sin C =33,∴sin C =32.又0°<C <90°,∴C =60°.4. 在△ABC 中,若0<tan A ·tan B <1,那么△ABC 一定是( )A .锐角三角形B .钝角三角形C .直角三角形D .形状不确定答案 B解析 由0<tan A ·tan B <1,可知tan A >0,tan B >0,即A ,B 为锐角,tan(A +B )=tan A +tan B1-tan A tan B>0,即tan(π-C )=-tan C >0,所以tan C <0,所以C 为钝角,所以△ABC为钝角三角形,选B.5. 已知tan ⎝⎛⎭⎫α+π4=12,且-π2<α<0,则2sin 2α+sin 2αcos ⎝⎛⎭⎫α-π4等于 ( )A .-255B .-3510C .-31010D .255答案 A解析 由tan ⎝⎛⎭⎫α+π4=tan α+11-tan α=12, 得tan α=-13. 又-π2<α<0,可得sin α=-1010.故2sin 2α+sin 2αcos ⎝⎛⎭⎫α-π4=2sin α(sin α+cos α)22(sin α+cos α)=22sin α=-255.6. 在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知C =2A ,cos A =34,b =5,则△ABC 的面积为( )A.1574B.1572C.574D.572答案 A解析 cos A =34,cos C =2cos 2A -1=18,sin C =378,tan C =37,如图,设AD =3x ,AB =4x ,CD =5-3x ,BD =7x .在Rt △DBC 中,tan C =BD CD =7x5-3x =37,解之得:BD =7x =327,S △ABC =12BD ·AC =1574.7. 函数f (x )=sin 2x -4sin 3x cos x (x ∈R )的最小正周期为( )A.π8B.π4C.π2D .π答案 C解析 f (x )=sin 2x -2sin 2x sin 2x =sin 2x (1-2sin 2x )=sin 2x cos 2x =12sin 4x ,所以函数的周期为T =2πω=2π4=π2,选C.8. 在△ABC 中,AC =7,BC =2,B =60°,则BC 边上的高等于( )A.32B.332C.3+62D.3+394答案 B解析 设AB =a ,则由AC 2=AB 2+BC 2-2AB ·BC cos B 知7=a 2+4-2a ,即a 2-2a -3=0,∴a =3(负值舍去).∴BC 边上的高为AB ·sin B =3×32=332. 二、填空题9. 在锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若b =2,B =π3且sin 2A +sin(A-C )=sin B ,则△ABC 的面积为________. 答案3解析 ∵sin 2A =sin B -sin(A -C ), ∴2sin A cos A =sin(A +C )-sin(A -C ), ∴2sin A cos A =2cos A sin C .∵△ABC 是锐角三角形,∴cos A ≠0,∴sin A =sin C ,即A =C =B =π3,∴S △ABC =12×2×2×32= 3.10.设π3<α<3π4,sin ⎝⎛⎭⎫α-π4=35,则sin α-cos 2α+1tan α的值为________. 答案 14+5250解析 方法一 由π3<α<3π4,得π12<α-π4<π2,又sin ⎝⎛⎭⎫α-π4=35, 所以cos ⎝⎛⎭⎫α-π4=45. 所以cos α=cos[(α-π4)+π4]=cos ⎝⎛⎭⎫α-π4cos π4-sin ⎝⎛⎭⎫α-π4sin π4=210, 所以sin α=7210.故原式=sin α+2sin 2αsin αcos α=cos α(1+2sin α)=14+5250.方法二 由sin ⎝⎛⎭⎫α-π4=35,得sin α-cos α=325, 两边平方,得1-2sin αcos α=1825,即2sin αcos α=725>0.由于π3<α<3π4,故π3<α<π2.因为(sin α+cos α)2=1+2sin αcos α=3225,故sin α+cos α=425,解得sin α=7210,cos α=210.故原式=sin α+2sin 2αsin αcos α=cos α(1+2sin α)=14+5250.11.(星课堂·湖北)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .若(a +b -c )(a +b +c )=ab ,则角C =________.答案 2π3解析 应用余弦定理求角.由(a +b -c )(a +b +c )=ab ,得a 2+b 2-c 2=-ab ,则cos C =a 2+b 2-c 22ab =-12.又因为角C 为△ABC 的内角,所以C =2π3.12.给出下列四个命题:①f (x )=sin ⎝⎛⎭⎫2x -π4的对称轴为x =k π2+3π8,k ∈Z ; ②函数f (x )=sin x +3cos x 的最大值为2; ③函数f (x )=sin x cos x -1的周期为2π;④函数f (x )=sin ⎝⎛⎭⎫x +π4在⎣⎡⎦⎤-π2,π2上是增函数. 其中正确命题的个数是________. 答案 2解析 ①由2x -π4=k π+π2,k ∈Z ,得x =k π2+3π8(k ∈Z ),即f (x )=sin ⎝⎛⎭⎫2x -π4的对称轴为x =k π2+3π8,k ∈Z ,正确; ②由f (x )=sin x +3cos x =2sin ⎝⎛⎭⎫x +π3知,函数的最大值为2,正确; ③f (x )=sin x cos x -1=12sin 2x -1,函数的周期为π,故③错误;④函数f (x )=sin ⎝⎛⎭⎫x +π4的图象是由f (x )=sin x 的图象向左平移π4个单位得到的,故④错误. 三、解答题13.(星课堂·安徽)已知函数f (x )=4cos ωx ·sin ⎝⎛⎭⎫ωx +π4(ω>0)的最小正周期为π. (1)求ω的值;(2)讨论f (x )在区间⎣⎡⎦⎤0,π2上的单调性. 解 (1)f (x )=4cos ωx ·sin ⎝⎛⎭⎫ωx +π4 =22sin ωx ·cos ωx +22cos 2ωx =2(sin 2ωx +cos 2ωx )+ 2=2sin ⎝⎛⎭⎫2ωx +π4+ 2.因为f (x )的最小正周期为π,且ω>0.从而有2π2ω=π,故ω=1.(2)由(1)知,f (x )=2sin ⎝⎛⎭⎫2x +π4+ 2. 若0≤x ≤π2,则π4≤2x +π4≤5π4.当π4≤2x +π4≤π2, 即0≤x ≤π8时,f (x )单调递增;当π2≤2x +π4≤5π4, 即π8≤x ≤π2时,f (x )单调递减. 综上可知,f (x )在区间⎣⎡⎦⎤0,π8上单调递增, 在区间⎣⎡⎦⎤π8,π2上单调递减.14.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,a 2+b 2=4ab cos C ,且c 2=3ab .(1)求角C 的大小;(2)设函数f (x )=sin(ωx -C )-cos ωx (ω>0),且直线y =3与函数y =f (x )图象相邻两交点间的距离为π,求f (A )的取值范围.解 (1)由余弦定理知a 2+b 2-c 2=2ab cos C , ∵a 2+b 2=4ab cos C ,c 2=3ab , ∴4ab cos C -3ab =2ab cos C ,cos C =32. 又∵0<C <π,∴C =π6.(2)f (x )=sin ⎝⎛⎭⎫ωx -π6-cos ωx =32sin ωx -32cos ωx =3sin(ωx -π3).由已知2πω=π⇒ω=2,则f (A )=3sin(2A -π3),∵C =π6,∴0<A <5π6,-π3<2A -π3<4π3.∴根据正弦函数图象知-32<sin ⎝⎛⎭⎫2A -π3≤1, ∴-32<f (A )≤ 3.。

高考数学(理)精准培优专题七:解三角形

高考数学(理)精准培优专题七:解三角形

培优点七 解三角形1.解三角形中的要素例1:ABC △的内角A ,B ,C 所对的边分别为a ,b ,c ,若c =b ,60B =o ,则C =_____. 【答案】30C =o【解析】(1)由已知B ,b ,c 求C 可联想到使用正弦定理:sin sin sin sin b c c BC B C b=⇒=, 代入可解得:1sin 2C =.由c b <可得:60C B <=o ,所以30C =o .2.恒等式背景例2:已知a ,b ,c 分别为ABC △三个内角A ,B ,C 的对边,且有cos sin 0a C C b c --=. (1)求A ;(2)若2a =,且ABC △b ,c . 【答案】(1)3π;(2)2,2.【解析】(1)cos sin 0a C C b c --=sin cos sin sin sin 0A C A C B C ⇒--=()sin cos sin sin sin 0A C A C A C C ⇒-+-=sin cos sin sin cos sin cos sin 0A C A C A C C A C ⇒---=,1cos 12sin 1sin 662A A A A ππ⎛⎫⎛⎫-=⇒-=⇒-= ⎪ ⎪⎝⎭⎝⎭∴66A ππ-=或566A ππ-=(舍),∴3A π=;(2)1sin 42ABC S bc A bc =⇒=△,222222cos 4a b c bc A b c bc =+-⇒=+-,∴22224844b c bc b c bc bc ⎧⎧+-=+=⇒⎨⎨==⎩⎩,可解得22b c =⎧⎨=⎩.一、单选题1.在ABC △中,1a =,6A π∠=,4B π∠=,则c =( ) ABCD【答案】A【解析】由正弦定理sin sin a bA B =可得1sinsin 4sin sin 6a Bb A π⨯===π,且()()cos cos cos cos sin sin C A B A B A B =-+=--=由余弦定理可得:c ===.故选A . 2.在ABC △中,三边长7AB =,5BC =,6AC =,则AB BC ⋅uu u v uu u v等于( )A .19B .19-C .18D .18-【答案】B【解析】∵三边长7AB =,5BC =,6AC =,∴22222275619cos 227535AB BC AC B AB BC +-+-===⋅⨯⨯, ()19cos 751935AB BC AB BC B ⎛⎫⋅=⋅π-=⨯⨯-=- ⎪⎝⎭uu u v uu u v .故选B .3.在ABC △中,角A ,B ,C 所对应的边分别是a ,b ,c ,若2cos c a B =,则三角形一定是( )A .等腰直角三角形B .直角三角形C .等腰三角形D .等边三角形【答案】C【解析】∵2cos c a B =,由正弦定理2sin c R C =,2sin a R A =,∴sin 2sin cos C A B =, ∵A ,B ,C 为ABC △的内角,∴()sin sin C A B =+,A ,()0,B ∈π,∴()sin 2sin cos A B A B +=,sin cos cos sin 2sin cos A B A B A B +=,整理得()sin 0A B -=, ∴0A B -=,即A B =.故ABC △一定是等腰三角形.故选C . 4.ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,若3C π=,c 3b a =,则ABC △对点增分集训的面积为( ) ABCD【答案】A 【解析】已知3C π=,c =3b a =, ∴由余弦定理2222cos c a b ab C =+-,可得:2222227937a b ab a a a a =+-=+-=, 解得:1a =,3b =,∴11sin 1322ABC S ab C ==⨯⨯=V A . 5.在ABC △中,内角A ,B ,C 的对边分别为a ,b ,c ,若22a b bc -=,sin C B =,则A =( ) A .30︒ B .60︒ C .120︒ D .150︒【答案】A【解析】根据正弦定理由sin C B =得:c =,所以222a b =-,即227a b =,则222222cos 2b c a A bc +-===,又()0,A ∈π,所以6A π=.故选A . 6.设ABC △的三个内角A ,B ,C 所对的边分别为a ,b ,c ,如果()()3a b c b c a bc +++-=,且a =ABC △外接圆的半径为( ) A .1 BC .2D .4【答案】A【解析】因为()()3a b c b c a bc +++-=,所以()223b c a bc +-=,化为222b c a bc +-=,所以2221cos 22b c a A bc +-==,又因为()0,A ∈π,所以3A π=,由正弦定理可得22sin aR A===,所以1R =,故选A .7.在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,且222b c a bc +=+,若2sin sin sin B C A ⋅=,则ABC △的形状是( )A .等腰三角形B .直角三角形C .等边三角形D .等腰直角三角形【答案】C【解析】因为2sin sin sin B C A ⋅=,所以2222b c a R R R ⎛⎫⋅= ⎪⎝⎭, 也就是2a bc =,所以222b c bc +=,从而b c =, 故a b c ==,ABC △为等边三角形.故选C .8.ABC △的内角A ,B ,C 的对边分别是a ,b ,c 且满足cos cos a B b A c -=,则ABC △是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰三角形【答案】B【解析】利用正弦定理sin sin sin a b cA B C==化简已知的等式得: sin cos sin cos sin A B B A C -=,即()sin sin A B C -=, ∵A ,B ,C 为三角形的内角,∴A B C -=,即2A B C π=+=, 则ABC △为直角三角形,故选B .9.在ABC △中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知ABC △的面积为,2b c -=,1cos 4A =-,则a 的值为( )A .8B .16C .32D .64【答案】A【解析】因为0A <<π,所以sin A =,又1sin 2ABCS bc A ===V ,∴24bc =,解方程组224b c bc -=⎧⎨=⎩得6b =,4c =, 由余弦定理得2222212cos 64264644a b c bc A ⎛⎫=+-=+-⨯⨯⨯-= ⎪⎝⎭,所以8a =.故选A .10.在ABC △中,a ,b ,c 分别为角A ,B ,C 所对的边.若()sin cos 0b a C C +-=, 则A =( ) A .4π B .3π C .34π D .23π 【答案】C【解析】()sin sin sin cos cos sin B A C A C A C =+=+,∵()sin cos 0b a C C +-=,可得:()sin sin sin cos 0B A CC +=﹣,∴sin cos cos sin sin sin sin cos 0A C A C A C A C ++-=,∴cos sin sin sin 0A C A C +=, ∵sin 0C ≠,∴cos sin A A =-,∴tan 1A =-, ∵2A π<<π,∴34A =π.故答案为C . 11.在ABC △中,内角A ,B ,C 的对边分别是a ,b ,c ,若c o s c o s c o s ab c A B C==,则ABC△是( ) A .直角三角形 B .钝角三角形 C .等腰直角三角形 D .等边三角形【答案】D 【解析】∵cos cos cos a b cA B C==,由正弦定理得:2sin a R A =⋅,2sin b R B =⋅,2sin c R C =⋅代入, 得sin sin sin cos cos cos A B CA B C==,∴进而可得tan tan tan A B C ==, ∴A B C ==,则ABC △是等边三角形.故选D .12.在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,已知a =,c =,tan 21tan A cB b+=, 则C ∠=( ) A .6π B .4π C .4π或34π D .3π【答案】B【解析】利用正弦定理,同角三角函数关系,原式可化为:sin cos 2sin 1cos sin sin A B CA B B+=,去分母移项得:sin cos sin cos 2sin cos B A A B C A +=, 所以()sin sin 2sin cos A B C C A +==,所以1cos 2A =.由同角三角函数得sin A =,由正弦定理sin sin a c A C =,解得sin C =所以4C π∠=或34π(舍).故选B .二、填空题13.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c,c =2216b a -=,则角C 的最大值为_____; 【答案】6π 【解析】在ABC △中,由角C 的余弦定理可知22222222232cos 224b a a b a b c a b C ab ab ab -+-+-+===≥, 又因为0C <<π,所以max 6C π=.当且仅当a =b =14.已知ABC △的三边a ,b ,c 成等比数列,a ,b ,c 所对的角分别为A ,B ,C ,则sin cos B B +的取值范围是_________.【答案】(【解析】∵ABC △的三边a ,b ,c 成等比数列, ∴2222cos 22cos ac b a c ac B ac ac B ==+-≥-,得1cos 2B ≥, 又∵0B <<π,∴03B π⎛⎤∈ ⎥⎝⎦,,74412B πππ⎛⎤+∈ ⎥⎝⎦,,可得(sin cos 4B B B π⎛⎫++∈ ⎪⎝⎭,故答案为(. 15.在ABC △中三个内角A ∠,B ∠,C ∠,所对的边分别是a ,b ,c ,若()2s i nc o s 2s i n c o s b C A A C +=-,且a =ABC △面积的最大值是________【解析】∵()2sin cos 2sin cos b C A A C +=-,∴()()cos 2sin cos sin cos 2sin 2sin b A C A A C A C B =-+=-+=-, 则2sin cos b B A -=,结合正弦定理得2cos sin a A A -==,即tan A =,23A ∠=π 由余弦定理得2221cos 22b c a A bc +-==-,化简得22122b c bc bc +=-≥, 故4bc ≤,11sin 422ABC S bc A =≤⨯=△16.在锐角ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,且A ,B ,C 成等差数列,b则ABC △面积的取值范围是__________.【答案】⎝⎦【解析】∵ABC △中A ,B ,C 成等差数列,∴3B π=.由正弦定理得2sin sin sin sin 3a c b A C B ====,∴2sin a A =,2sin c C =,∴12sin sin sin 23ABC S ac B A C A A π⎛⎫====- ⎪⎝⎭△21331cos 2sin sin cos sin 22242AA A A A A A A ⎫-=+=+=+⎪⎪⎝⎭3sin 22246A A A π⎛⎫=+=- ⎪⎝⎭, ∵ABC △为锐角三角形,∴022032A A π⎧<<⎪⎪⎨ππ⎪<-<⎪⎩,解得62A ππ<<.∴52666A πππ<-<,∴1sin 2126A π⎛⎫<-≤ ⎪⎝⎭,26A π⎛⎫<-≤ ⎪⎝⎭,故ABC △面积的取值范围是⎝⎦.三、解答题17.己知a ,b ,c 分别为ABC △三个内角A ,B ,Ccos 2sin A C+=. (1)求角A 的大小;(2)若5b c +=,且ABC △a 的值. 【答案】(1)23π;(2【解析】(1cos 2sin A C+=,∵sin 0C ≠cos 2A A -=,即sin 16A π⎛⎫-= ⎪⎝⎭.∵0A <<π∴666A ππ5π-<-<,∴62A ππ-=,∴23A π=. (2)由ABC S =△1sin 2S bc A =4bc =,∵5b c +=,∴由余弦定理得:()22222cos 21a b c bc A b c bc =+-=+-=,∴a =18.如图,在ABC △中,点D 在BC 边上,60ADC ∠=︒,AB =4BD =..(1)求ABD △的面积.(2)若120BAC ∠=o ,求AC 的长. 【答案】(1);(2. 【解析】(1)由题意,120BDA ∠=︒在ABD △中,由余弦定理可得2222cos120AB BD AD BD AD =+-⋅⋅︒ 即2281642AD AD AD =++⇒=或6AD =-(舍),∴ABD △的面积11sin 4222S DB DA ADB =⋅⋅⋅∠=⨯⨯=. (2)在ABD △中,由正弦定理得sin sin AD ABB BDA=∠,代入得sin B =B为锐角,故cos B , 所以()sin sin 60sin 60cos cos60sin C B B B =︒-=︒-︒=, 在ADC △中,由正弦定理得sin sin AD ACC CDA=∠,,解得AC =。

高考数学第六章 突破2 解三角形中的热点问题

高考数学第六章 突破2 解三角形中的热点问题


1+sin
cos
所以 cos A cos B = sin B + sin A sin B ,
所以 cos ( A + B )= sin B ,
所以 sin B =- cos C =-
π
3

1
cos = .
3
2
π
6
因为 B ∈(0, ),所以 B = .
例1
训练1
例2
训练2
例3
训练3
例4
例5
A.
π
6
B.
π
3
例1
C.
训练1
例2
π
2
训练2
D.
例3
B )

3
训练3
例4
例5
训练4
返回目录
突破2
解三角形中的热点问题
[解析] 由射影定理得 c cos A + a cos C = b =2.∵ AC 边上的高为 3 ,∴ S △ ABC =
3
2
3
解法二 由题意可得, = ,所以 = + = + = +
2
1
2
1
4
4
( - )= + ,则 2 = c 2+ a 2+ ac cos
3
3
3
9
9
9
由余弦定理得 b 2= a 2+ c 2-2 ac cos ∠ ABC
∠ ABC
∠ BAC ,所以 bc sin
2
2∠ BAC +
sin
3 3
3=

2
3 3
∠ BAC =
,可得
2
sin

【成才之路】2021届高考数学二轮温习 专题2 第2讲 三角变换与解三角形素能训练(文、理)(1)

【成才之路】2021届高考数学二轮温习 专题2 第2讲 三角变换与解三角形素能训练(文、理)(1)

【成才之路】2021届高考数学二轮温习 专题2 第2讲 三角变换与解三角形素能训练(文、理)一、选择题1.假设三角形ABC 中,sin(A +B )sin(A -B )=sin 2C ,那么此三角形的形状是( ) A .等腰三角形 B .直角三角形 C .等边三角形 D .等腰直角三角形[答案] B[解析] ∵sin(A +B )sin(A -B )=sin 2C ,sin(A +B )=sin C ≠0,∴sin(A -B )=sin(A +B ),∴cos A sin B =0, ∵sin B ≠0,∴cos A =0,∴A 为直角.2.在△ABC 中,角A 、B 、C 的对边别离为a 、b 、c ,假设(a 2+c 2-b 2)tan B =3ac ,那么角B 的值为( )A.π6 B.π3 C.π6或5π6 D.π3或2π3[答案] D[解析] 由(a 2+c 2-b 2)tan B =3ac 得,a 2+c 2-b 2ac·tan B =3,再由余弦定理cos B =a 2+c 2-b 22ac得,2cos B ·tan B =3,即sin B =32,∴角B 的值为π3或2π3,故应选D.3.(文)在△ABC 中,已知b ·cos C +c ·cos B =3a ·cos B ,其中a 、b 、c 别离为角A 、B 、C 的对边,那么cos B 的值为( )A.13 B .-13C.223D .-223[答案] A[解析] 由正弦定理得sin B cos C +sin C cos B =3sin A cos B , ∴sin(B +C )=3sin A cos B , ∴sin A =3sin A cos B ,∵sin A ≠0,∴cos B =13.(理)(2021·东北三省四市联考)在△ABC 中,假设tan A tan B =tan A +tan B +1,那么cos C 的值是( ) A .-23B.22C.12 D .-12[答案] B[解析] 由tan A ·tan B =tan A +tan B +1,可得tan A +tan B1-tan A ·tan B =-1,即tan(A +B )=-1,因此A +B =3π4,那么C =π4,cos C =22,应选B.4.设tan α、tan β是方程x 2-3x +2=0的两根,那么tan(α+β)的值为( ) A .-3 B .-1 C .1 D .3[答案] A[解析] 此题考查了根与系数的关系与两角和的正切公式. 由已知tan α+tan β=3,tan α·tan β=2,因此tan(α+β)=tan α+tan β1-tan α·tan β=31-2=-3.应选A.[点评] 运用根与系数的关系,利用整体代换的思想使问题求解变得简单. 5.(2021·哈三中二模)在△ABC 中,内角A ,B ,C 的对边长别离为a ,b ,c ,且a 2-c 2=2b ,tan Atan C=3,那么b 等于( )A .3B .4C .6D .7[答案] B[解析] ∵tan Atan B=3,∴sin A cos C =3sin C cos A ,∴sin B =sin(A +C )=4sin C cos A ,∴b =4c ·b 2+c 2-a 22bc,∴b 2=2(a 2-c 2)=4b ,∵b >0,∴b =4.6.(文)函数y =cos(x +π2)+sin(π3-x )具有性质( )A .最大值为1,图象关于点(π6,0)对称B .最大值为3,图象关于点(π6,0)对称C .最大值为1,图象关于直线x =π6对称D .最大值为3,图象关于直线x =π6对称[答案] B[解析] y =-sin x +32cos x -12sin x=-3(32sin x -12cos x )=-3sin(x -π6),∴最大值为3,图象关于点(π6,0)对称.(理)给出以下四个命题:①f (x )=sin(2x -π4)的对称轴为x =k π2+3π8,k ∈Z ;②函数f (x )=sin x +3cos x 最大值为2;③函数f (x )=sin x cos x -1的周期为2π; ④函数f (x )=sin(x +π4)在[-π2,π2]上是增函数.其中正确命题的个数是( ) A .1 B .2 C .3 D .4[答案] B[解析] ①由2x -π4=k π+π2,k ∈Z ,得x =k π2+3π8(k ∈Z ),即f (x )=sin(2x -π4)的对称轴为x =k π2+3π8,k ∈Z ,正确;②由f (x )=sin x +3cos x =2sin(x +π3)知,函数的最大值为2,正确;③f (x )=sin x cos x -1=12sin2x -1,函数的周期为π,故③错误;④函数f (x )=sin(x +π4)的图象是由f (x )=sin x 的图象向左平移π4个单位取得的,故④错误.二、填空题7.已知△ABC 的一个内角为120°,而且三边长组成公差为4的等差数列,那么△ABC 的面积为________. [答案] 153[解析] 设三角形的三边长别离为a -4,a ,a +4,最大角为θ,由余弦定理得(a +4)2=a 2+(a -4)2-2a (a -4)·cos120°,那么a =10,因此三边长为6,10,14.△ABC 的面积为S =12×6×10×sin120°=153.8.(文)(2021·新课标Ⅱ理,14)函数f (x )=sin(x +2φ)-2sin φcos(x +φ)的最大值为________. [答案] 1[解析] ∵f (x )=sin(x +2φ)-2sin φcos(x +φ) =sin(x +φ)·cos φ+cos(x +φ)·sin φ-2sin φcos(x +φ) =sin(x +φ)·cos φ-cos(x +φ)·sin φ =sin x ≤1. ∴最大值为1.(理)(2021·天津理,12)在△ABC 中,内角A 、B 、C 所对的边别离是a 、b 、c ,已知b -c =14a,2sin B =3sin C ,那么cos A 的值为________.[答案] -14[解析] ∵2sin B =3sin C ,∴2b =3c , 又∵b -c =14a ,∴b =34a ,c =12a ,∴cos A =b 2+c 2-a 22bc=916a 2+14a 2-a 22×34a ×12a =-14.9.在△ABC 中,(AB →-3AC →)⊥CB →,那么角A 的最大值为________. [答案] π6[解析] 由已知可得(AB →-3AC →)·CB →=0,AB →·CB →=3AC →·CB →,由数量积公式可得ac cos B =3ab cos(π-C )=-3ab cos C ,可化为c cos B =-3b cos C ,由正弦定理可得sin C cos B =-3sin B cos C ,化简得sin A =-2sin B cos C ,可得cos C <0,角C 为钝角,角A 为锐角,又sin A =sin(C -B )-sin(C +B ), 即有sin A =12sin(C -B )≤12,综上,0<A ≤π6,A 的最大值为π6.三、解答题10.(文)(2021·山东文,17)△ABC 中,角A 、B 、C 所对的边别离为a 、b 、c . 已知a =3,cos A =63,B=A +π2.(1)求b 的值; (2)求△ABC 的面积.[解析] (1)∵cos A =63.0<A <π.∴sin A =33.又B =A +π2.∴sin B =sin(A +π2)=cos A =63.又a =3.∴由正弦定理得. asin A =bsin B即333=b63∴b =32.(2)∵cos B =cos(A +π2)=-sin A =-33,∴在△ABC 中,sin C =sin(A +B )=sin A cos B +cos A sin B =33×(-33)+63×63=13∴S △ABC =12ab sin C =12×3×32×13=322. (理)(2021·陕西理,16)已知向量a =⎝⎛⎭⎪⎫cos x ,-12,b =(3sin x ,cos 2x ),x ∈R ,设函数f (x )=a ·b .(1)求f (x )的最小正周期;(2)求f (x )在⎣⎢⎡⎦⎥⎤0,π2上的最大值和最小值.[解析] f (x )=a ·b =3sin x cos x -12cos2x=32sin2x -12cos2x =sin(2x -π6)(1)f (x )的最小正周期为T =2π2=π(2)∵x ∈[0,π2],∴2x -π6∈[-π6,5π6],∴sin(2x -π6)∈[-12,1]故当2x -π6=π2即x =π3时,f (x )max =1当2x -π6=-π6即x =0时,f (x )min =-12.一、选择题11.(2021·天津理,6)在△ABC 中,∠ABC =π4,AB =2,BC =3,那么sin ∠BAC =( )A.1010B.105C.31010D.55[答案] C[解析] 此题考查了余弦定理、正弦定理. 由余弦定理得AC 2=AB 2+BC 2-2AB ×BC ·cosπ4=2+9-2×2×3×22=5,∴AC =5,由正弦定理,AC sin B =BCsin A,∴sin A =BC sin B AC=3×225=31010. 12.(文)(2021·东北三省三校二模)已知方程|cos x |x=k 在(0,+∞)上有两个不同的解α、β(α<β),那么以下的四个命题正确的选项是( )A .sin 2α=2αcos 2αB .cos2α=2αsin 2αC .sin2β=-2βsin 2βD .cos2β=-2βsin 2β[答案] C[解析] 令y =|cos x |,y =kx ,在同一坐标系中画出它们的图象,如下图. ∵α<β,∴0<α<π2,π2<β<π,查验可知,选C.(理)(2021·新课标Ⅰ理,8)设α∈(0,π2),β∈(0,π2),且tan α=1+sin βcos β,那么( )A .3α-β=π2B .3α+β=π2C .2α-β=π2D .2α+β=π2[答案] C[解析] 此题考查了诱导公式和三角恒等变换.运用验证法. 解法1:当2α-β=π2时,β=2α-π2,因此1+sin 2α-π2cos 2α-π2=1-cos2αsin2α=2·sin 2αsin2α=tan α.解法2:∵tan α=sin αcos α=1+sin βcos β,∴sin(α-β)=cos α=sin(π2-α),∵α、β∈(0,π2),∴α-β∈(-π2,π2),π2-α∈(0,π2),∴α-β=π2-α,∴2α-β=π2.13.已知函数f (x )=1+cos2x -2sin 2(x -π6),其中x ∈R ,那么以下结论中正确的选项是( ) A .f (x )是最小正周期为π的偶函数 B .f (x )的一条对称轴是x =π3C .f (x )的最大值为2D .将函数y =3sin2x 的图象左移π6取得函数f (x )的图象[答案] D[解析] f (x )=cos2x +cos(2x -π3)=cos2x +12cos2x +32sin2x=3sin(2x +π3),应选D.14.(文)函数f (x )=sin(x +π3)+a sin(x -π6)的一条对称轴方程为x =π2,那么a =( )A .1 B.3C .2D .3[答案] B[解析] 由题意得f (x )=sin(x +π3)+a sin[(x +π3)-π2]=sin(x +π3)-a cos(x +π3),假设x =π2是函数f (x )的图象的一条对称轴,那么由对称轴的意义可得f (π2)=cos π3+a sin π3=1+a 2,解得a =3.(理)在锐角△ABC 中,设x =sin A ·sin B ,y =cos A ·cos B ,那么x 、y 的大小关系为( ) A .x ≤y B .x <y C .x >y D .x ≥y[答案] C[解析] y -x =cos A cos B -sin A sin B =cos(A +B ) =cos(π-C )=-cos C ,∵△ABC 为锐角三角形,∴cos C >0, ∴y -x <0,∴y <x .15.已知函数f (x )=sin x +cos x ,g (x )=sin x -cos x ,以下四个命题: ①将f (x )的图象向右平移π2个单位可取得g (x )的图象;②y =f (x )g (x )是偶函数; ③y =f xg x是以π为周期的周期函数;④关于∀x 1∈R ,∃x 2∈R ,使f (x 1)>g (x 2). 其中真命题的个数是( ) A .1B .2C .3D .4[答案] C[解析] ∵f (x )=sin x +cos x =2sin(x +π4),g (x )=sin x -cos x =2sin(x -π4),∴将f (x )的图象向右平移π2个单位,能够取得g (x )的图象,故①为真命题;又y =f (x )·g (x )=sin 2x -cos 2x =-cos2x 为偶函数,故②为真命题;y =f xg x =sin x +π4sin x -π4=sin x +π4-cos x +π4=-tan(x +π4),故其最小正周期为π,∴③为真命题;取x 1=5π4,那么f (x 1)=2sin(5π4+π4)=-2,∵∀x 2∈R 都有g (x 2)≥-2,∴不存在x 2∈R ,使f (5π4)>g (x 2),应选C.二、填空题16.(文)在△ABC 中,sin 2C =3sin A sin B +sin 2B ,a =23b ,那么角C =________.[答案] π6[解析] 由正弦定理知c 2=3ab +b 2,因此cos C =a 2+b 2-c 22ab=a 2-3ab2ab=a -3b 2b=23b -3b2b=32,又C ∈(0,π),因此C =π6.(理)(2021·福建理,12)在△ABC 中,A =60°,AC =4,BC =23,那么△ABC 的面积等于________.[答案] 23[解析] 此题考查正弦定理及三角形的面积公式,由正弦定理得,2332=4sin B , ∴sin B =1,∴B =90°,∴AB =2, S =12×23×2=23.三、解答题17.(文)(2021·浙江文,18)在锐角△ABC 中,内角A 、B 、C 的对边别离为a 、b 、c ,且2a sin B =3b . (1)求角A 的大小;(2)假设a =6,b +c =8,求△ABC 的面积.[解析] (1)由2a sin B =3b 及正弦定理a sin A =bsin B ,得sin A =32. 因为A 是锐角,因此A =π3. (2)由余弦定理a 2=b 2+c 2-2bc cos A ,得b 2+c 2-bc =36,即(b +c )2-3bc =36.又b +c =8,因此bc =283. 由三角形面积公式S =12bc sin A ,得 △ABC 的面积为733.(理)(2021·北京理,15)在△ABC 中,a =3,b =26,∠B =2∠A . (1)求cos A 的值;(2)求c 的值.[解析] (1)因为a =3,b =26,∠B =2∠A , 因此在△ABC 中,由正弦定理得3sin A =26sin2A, 因此2sin A cos A sin A =263,故cos A =63. (2)由(1)知cos A =63,因此sin A =1-cos 2A =33.又因为∠B =2∠A ,因此cos B =2cos 2A -1=13.因此sin B =1-cos 2B =223,在△ABC 中,sin C =sin(A +B )=sin A cos B +cos A sin B =539. 因此c =a sin Csin A =5.18.(文)(2021·唐山市一模)在△ABC 中,角A 、B 、C 的对边别离为a ,b ,c ,且4b sin A =7a . (1)求sin B 的值;(2)假设a ,b ,c 成等差数列,且公差大于0,求cos A -cos C 的值.[解析] (1)由4b sin A =7a ,依照正弦定理得4sin B sin A =7sin A ,因此sin B =74. (2)由已知得2b =a +c ,由正弦定理和(1)得,sin A +sin C =72.① 设cos A -cos C =x ,②①2+②2,得2-2cos(A +C )=74+x 2.③ 又由条件知a <b <c ,∴A <B <C ,因此0°<B <90°,cos A >cos C ,故cos(A +C )=-cos B =-34,且x >0. 代入③式得x 2=74. 因此cos A -cos C =72. (理)已知△ABC 中,a ,b, c 别离为角A ,B ,C的对边,a 2+b 2<c 2,且sin(2C -π2) =12. (1)求角C 的大小;(2)求 a +b c 的取值范围. [解析] (1)∵a 2+b 2<c 2,∴cos C =a 2+b 2-c 22ab <0,∴π2<C <π,故π<2C <2π, 由sin(2C -π2)=12,得cos2C =-12, ∴2C =4π3,即C =2π3; (2)a +b c =sin A +sin B sin C =sin A +sin π3-A sin 2π3=12sin A +32cos A 32=23sin(A +π3), 由C =2π3,知0<A <π3,故π3<A +π3<2π3, ∴32<sin(A +π3)≤1, ∴23·32<a +b c ≤23,即1<a +b c ≤233.。

高考复习理科数学专题强化训练解三角形含解析

高考复习理科数学专题强化训练解三角形含解析

教课资料范本高考复习理科数学专题加强训练:解三角形含分析编辑: __________________时间: __________________(十六 ) 解三角形1.[20xx ·天津卷 ] 在△ABC 中,内角 A ,B ,C 所对的边分别为 a ,b ,c ,已知 b +c =2a,3csin B =4asinC.(1)求cosB 的值;π(2)求sin 2B + 6 的值.bc解: (1)在△ ABC 中,由正弦定理 sinB =sinC ,得 bsinC =csinB ,又由 3csinB =4asinC ,得 3bsinC =4asinC ,即 3b =4a.又因为42b +c =2a ,获得 b =3a ,c =3a.由余弦定理可得416a2+c2-b2 a2+9a2- 9 a2 1cosB = 2ac = 2=- 4.2·a ·3a(2)由(1)可得 sinB = 1-cos2B = 154 ,15进而 sin2B =2sinBcosB =- 8 ,7cos2B =cos 2B -sin 2B =- 8,ππ π15371故 sin 2B + 6 =sin2Bcos 6 +cos2Bsin 6 =- 8 × 2 -8×2=3 5+7 - 16 .2.[20xx ·石家庄一模 ] 已知△ABC 的面积为 3 3,且内角 A ,B ,C 挨次成等差数列.(1)若sinC =3sinA ,求边 AC 的长;(2)设D 为AC 边的中点,求线段 BD 长的最小值.解: (1)∵△ ABC 三个内角 A 、B 、C 挨次成等差数列,∴ B =60°.设 A 、B 、C 所对的边分别为 a 、b 、c ,1由△ ABC 的面积 S =3 3=2acsinB 可得 ac =12.∵ sinC =3sinA ,由正弦定理知 c =3a , ∴ a =2,c =6.在△ ABC 中,由余弦定理可得b 2=a 2+c 2-2accosB =28,∴ b =2 7,即 AC 的长为 2 7.(2)∵BD 是 AC 边上的中线,→1→ →∴ BD =2(BC +BA),→21→2→2→→1 221 22∴ BD =4(BC+BA +2BC · =4(a +c +2accosB)=4(a+c +BA)1ac)≥4(2ac +ac)=9,当且仅当 a =c 时取“=”,∴→|BD|≥3,即 BD 长的最小值为 3. 3.[20xx ·合肥质检二 ] 在△ABC 中,角 A ,B ,C 所对的边分别为 a ,b ,c ,sin 2A +sin 2B +sinAsin B =2csinC ,△ ABC 的面积 S =abc.(1)求角 C ;(2)求△ ABC 周长的取值范围.1解: (1)由 S =abc =2absinC 可得 2c =sinC ,∴ sin 2A +sin 2B +sinAsinB =sin 2C ,由正弦定理得 a 2+b 2+ab =c 2,1 2π 由余弦定理得 cosC =- 2,∴ C = 3 .(2)由(1)知 2c =sinC ,同理可知 2a =sinA ,2b =sinB.△ ABC 的周长为1a +b +c =2(sinA +sinB +sinC)= 1 +π-A ] + 32[sinAsin 341 313= 2 sinA + 2 cosA -2sinA + 41 133= 2 2sinA + 2 cosA + 41 π+ 3= sin A +34. 2∵ ∈ 0,π,∴ +π∈ π,2π ,A3A 3 3 3π3∴ sin A + 3 ∈ 2 ,1 ,3 2+ 3∴△ ABC 周长的取值范围为2 , 4 .4.[20xx ·武汉 4 月调研 ]在△10ABC 中,角 A ,B ,C 的对边分别为 a ,b ,c ,若 cosA = 4 , B =2A ,b = 15.(1)求a ;CM 1(2)已知 M 在边 BC 上,且= ,求△ CMA 的面积.MB 2106 解: (1)由 0<A<π,cosA = 4 ,知 sinA = 4 ,6 10 15 ∴ sinB =sin2A =2sinAcosA =2× 4 × 4 = 4 ,a bc由正弦定理sinA=sinB =sinC 可知,bsinAa = sinB = 6.(2)cosB=cos2A=2cos2A-1=2×10 2-1=1,446 11015sinC=sin(A+B)=sinAcosB+cosAsinB=4×4+ 4 ×4=3 68,11 3 6 915△ABC 的面积 S△ABC=2ab·sinC=2× 6× 15×8=8,又CM 111915315=,∴ S△CMA=△ABC=×=8. MB 23S385.[20xx ·济南模拟 ]△ABC的内角 A,B,C的对边分别为 a,b,c,已知 2bsinC=acosC+cc 2πosA,B=3,c= 3.(1)求角 C;→=→,求的长.(2)若点 E知足 AE 2EC BE解: (1)解法一:由题设及正弦定理得2sinBsinC=sinAcosC+sinCcosA,又 sinAcosC+sinCcosA=sin(A+C)=sin( -πB)=sinB,因此 2sinBsinC=sinB.31因为 sinB=2≠0,因此 sinC=2.ππ又 0<C<3,因此 C=6.解法二:由题设及余弦定理可得=×a2+b2-c2b2+c2-a2+c×,2bsinC a2ab2bc化简得 2bsinC=b.1因为 b>0,因此 sinC=2.ππ又 0<C<3,因此 C =6.解法三:由 2bsinC =acosC +ccosA ,联合 b =acosC +ccosA ,可得 2bsinC =b.1因为 b>0,因此 sinC =2.π π又 0<C<3,因此 C =6.(2)解法一:由正弦定理易知 b =c =2 3,解得 b =3. sinB sinC→ →22又 AE =2EC ,因此 AE =3AC =3b ,即 AE =2. 2 π在△ ABC 中,因为∠ ABC = π, =,3C6π因此 A =6,π因此在△ ABE 中, A = 6 ,AB = 3,AE =2,由余弦定理得πBE =AB2+AE2-2AB ·AEcos 6 =33+4-2× 3×2× 2 =1,因此 BE =1.解法二:在△ ABC 中,因为∠ ABC = 2 π, =π ,因此 A =π,3 C 6 6a =c = 3.由余弦定理得b =3 2+3 2-2× 3× 3×cos 2π= 3.3→→1π在△ BCE 中, C = 6 ,BC = 3,CE =1,π由余弦定理得 BE =BC2+EC2-2BC ·ECcos 6 =33+1-2× 3×1× 2 =1,因此 BE =1.2π,C = π, 解法三:在△ ABC 中,因为∠ ABC =63π因此 A = 6 ,a =c = 3.→→→1→2→因为 AE = 2EC ,因此 BE =BA + BC33.→ 2 1 →→ 2 =1→ 2→→→2 = 1- ×则|BE =+2BC9(|BA|+4BA · +4|BC9(3|9(BA)BC | )431× 3×2+4×3)=1,因此 BE =1.6.[20xx ·太原一模 ]如图,已知△ABC 的内角 A ,B ,C 的对边分别是 a ,b ,c ,且 asinA +(c -a)sinC = b sinB ,点 D 是AC 的中点, DE ⊥6AC ,交 AB 于点 E ,且 BC =2,DE = 2 .(1)求B ;(2)求△ ABC 的面积.解: (1)∵asinA +(c -a)sinC =bsinB ,abc∴由 sinA =sinB =sinC 得 a 2+c 2-ac =b 2,a2+c2-b2 1由余弦定理得cosB=2ac=2,∵0°<B<180°,∴ B=60°.(2)如图,连结 CE,∵ D 是 AC 的中点, DE⊥AC,∴AE=CE,DE6∴CE=AE=sinA=2sinA .在△ BCE 中,由正弦定理得CE=BC BC,sinB=sin2Asin ∠BEC622∴2sinAsin60 °=2sinAcosA,∴cosA=2,∵0°<A<180°,∴A=45°,∴∠ ACB=75°,∴∠ BCE=∠ ACB-∠ ACE=30°,∠ BEC=90°,∴ CE=AE= 3,AB=AE+BE= 3+1,13+3∴S△ABC=2AB·CE=2.7.[20xx ·长沙一模 ]已知△B+C ABC的内角 A,B,C的对边分别为 a,b,c.且asin(A+ B)=csin2.(1)求A;(2)若△ ABC的面积为3,周长为 8,求 a.A解: (1)由题设得 asinC=ccos2,A由正弦定理得sinAsinC=sinCcos2,∵ sinC≠0,A因此 sinA =cos 2,A AA A因此 2sin 2cos 2=cos 2,又 cos 2≠0,A 1因此 sin 2=2,故 A =60°.1(2)由题设得 2bcsinA = 3,进而 bc =4.由余弦定理 a 2=b 2+c 2-2bccosA ,得 a 2=(b +c)2-12.又 a +b +c =8,因此 a 2=(8-a)2-12,13解得 a = 4 .8.[20xx ·福州质检 ]△ABC 的内角 A ,B ,C 的对边分别为 a ,b ,c.若角 A ,B ,C 成等差数列3,且 b = 2 .(1)求△ ABC 的外接圆直径;(2)求a + c 的取值范围.解: (1)因为角 A ,B ,C 成等差数列,因此 2B =A +C ,π又因为 A +B +C =π,因此 B = 3 .依据正弦定理得,△ ABC 的外接圆直径3=b=2 =1.2RsinBπsin 3(2) 解法一:由 =π,知 A +C = 2π,B332π可得 0<A< 3 .由 (1)知△ ABC 的外接圆直径为 1,依据正弦定理得,a b csinA =sinB =sinC =1,因此 a +c =sinA +sinC2π= sinA +sin 3 -A31= 3 2 sinA +2cosAπ= 3sin A + 6 .因为 0<A<2π ππ 5π3 ,因此 6<A +6< 6 .1π因此 2<sin A + 6 ≤1,3 π进而 2<3sin A + 6 ≤ 3,因此 a +c 的取值范围是 3, 3.2π解法二:由 (1)知, B = 3 ,b 2=a 2+c 2-2accosB = (a +c)2-3aca +c 1≥ (a +c)2-322=4(a +c)2(当且仅当 a =c 时,取等号 ),3因为 b = 2 ,因此 (a +c)2≤3,即 0<a +c ≤ 3,又三角形两边之和大于第三边,3因此 2 <a +c ≤3,高考复习理科数学专题强化训练解三角形含解析因此 a+c 的取值范围是3, 3. 211/11。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档