人教版初二数学上册角平分线及平行构造等腰三角形

合集下载

人教版八年级数学上册等腰三角形

人教版八年级数学上册等腰三角形

学习目标
1、理解等腰三角形的性质,体会等腰三角形性质和等边 三角形性质的联系.(重点) 2、探索并掌握等边三角形性质的过程,并用以解决实际 问题.(难点)
课堂导入
思考1:如果把等腰三角形的性质用于等边三角形,你能得到什么结论? 结论:等边三角形的三条边都相等,是一种特殊的等腰三角形.所以等边三 角形具有等腰三角形的所有性质.
新知探究
例1:如图,已知△ABC,△BDE都是等边三角形,求证:AE=CD.
证明:∵△ABC,△BDE都是等边三角形, ∴AB=BC,BE=BD,∠ABC=∠DBE=60°. ∵在△ABE和△CBD中,AB=CB, ∠ABE=∠CBD, BE=BD, ∴△ABE≌△CBD(SAS). ∴AE=CD.
∵等边三角形ABC的边长为3,点D是AC的中点, ∴CE=CD= 3 . 2
C
E
随堂练习
如图,已知△ABC是等边三角形,点B,C,D,E在同一直线上,且CG=CD,
DF=DE,则∠E=( A )
A.15° B.20°
C.25°
D.30°
解:∵△ABC是等边三角形, ∴∠ACB=60°. ∵CG=CD, ∴∠CGD =∠CDG. ∴∠ACB =∠CGD+∠CDG=2∠CDG. 同理可得∠CDG=2∠E, ∴∠ACB =4∠E=60°. ∴∠E=15°.
如图,在等边三角形ABC中,D,E分别是AB,AC上的点,且AD=CE,则
∠BCD+∠CBE的大小是多少?
解:∵△ABC是等边三角形,
∴∠ACB=∠A=∠ABC=60°,且AB=BC=AC.
∵在△ADC和△CEB中, AC=CB,
A
D
E
∠A=∠BCE, AD=CE, ∴△ADC≌△CEB(SAS),∠CBE=∠ACD.

三角形中的特殊模型-平分平行(射影)构等腰、角平分线第二定理模型(解析版)

三角形中的特殊模型-平分平行(射影)构等腰、角平分线第二定理模型(解析版)

三角形中的特殊模型-平分平行(射影)构等腰、角平分线第二定理模型角平分线在中考数学中都占据着重要的地位,角平分线常作为压轴题中的常考知识点,需要掌握其各大模型及相应的辅助线作法,且辅助线是大部分学生学习几何内容中的弱点,,本专题就角平分线的非全等类模型作相应的总结,需学生反复掌握。

平分平行(射影)构等腰模型、角平行线第二定理模型(内角平分线定理和外角平分线定理模型)平分平行(射影)构等腰1)角平分线加平行线必出等腰三角形.模型分析:由平行线得到内错角相等,由角平分线得到相等的角,等量代换进行解题.平行线、角平分线及等腰,任意由其中两个条件都可以得出第三个。

(简称:“知二求一”,在以后还会遇到很多类似总结)。

平行四边形中的翻折问题就常出现该类模型。

图1图2图3条件:如图1,OO'平分∠MON,过OO'的一点P作PQ⎳ON. 结论:△OPQ是等腰三角形。

条件:如图2,△ABC中,BD是∠ABC的角平分线,DE∥BC。

结论:△BDE是等腰三角形。

条件:如图3,在△ABC中,BO平分∠ABC,CO平分∠ACB,过点O作BC的平行线与AB,AC分别相交于点M,N.结论:△BOM、△CON都是等腰三角形。

2)角平分线加射影模型必出等腰三角形.→图4条件:如图4,BE平分∠CBA,∠ACB=∠CDA=90°. 结论:三角形CEF是等腰三角形。

1(2023·浙江·八年级假期作业)如图,已知∠AOB,以点O为圆心,以任意长为半径画弧,与OA、OB分别于点C、D,再分别以点C、D为圆心,以大于12CD为半径画弧,两弧相交于点E,过OE上一点M作MN∥OA,与OB相交于点N,∠MOB=50°,则∠AOM=.【答案】25度/25°【分析】通过两直线平行,同位角相等,再利用角平分线定义求解即可.【详解】∵MN∥OA,∴∠AOB=∠MNB=50°,由题意可知:OM平分∠AOB,∠AOB=25°.故答案为:25°.∴∠AOM=∠MOB=12【点睛】本题考查了基本作图,作已知角的角平分线及其定义和平行线的性质,解此题的关键是熟练掌握基本作图和平行线的性质及角平分线定义的应用.2(2023·浙江·八年级期中)如图,已知△ABC的两边AB=5,AC=8,BO、CO分别平分∠ABC、∠ACB,过点O作DE∥BC,则△ADE的周长等于.【答案】13【分析】根据BO平分∠CBA,CO平分∠ACB,且ED∥BC,可得出OD=OB,OE=OC,所以三角形ADE的周长是AB+AC.【详解】解:∵BO平分∠CBA,CO平分∠ACB,∴∠DBO=∠OBC,∠OCE=∠OCB,由∵DE∥BC,∴∠DOB=∠OBC,∠EOC=∠OCB,∴∠DBO=∠DOB,∠EOC=∠ECO,∴DO=DB,EO=EC,·又∵AB=5,AC=8,∴ADE的周长=AD+DE+AE=AB+AC=13【点睛】本题主要考查了角平分线的定义、平行线的性质以及等腰三角形的判定,其中运用角平分线的定义和平行线的性质创造等腰三角形的条件是关键.3(2023·广东·八年级期末)如图,▱ABCD中,AB=3cm,BC=5cm,BE平分∠ABC交AD于E点,CF 平分∠BCD交AD于F点,则EF的长为cm.【答案】1【分析】根据角平分线的概念、平行线的性质及等腰三角形的性质,可分别推出AE=AB,DF=DC,进而推出EF=AE+DF-AD.【详解】∵四边形ABCD是平行四边形,∴∠AEB=∠EBC,AD=BC=5cm,∵BE平分∠ABC,∴∠ABE=∠EBC,则∠ABE=∠AEB,∴AB=AE=3cm,同理可证:DF=DC=AB=3cm,则EF=AE+FD-AD=3+3-5=1cm.故答案为:1.【点睛】本题考查了平行四边形的性质,关键是运用角平分线的概念和平行线的性质,由等角推出等边.4(2023.江苏八年级期中)如图,已知:在△ABC中,∠BAC=90°,AD⊥BC于D,∠BCA的角平分线交AD与F,交AB于E,FG⎳BC交AB于G.AE=4cm,AB=12cm,则BG=,GE=.【答案】4cm;4cm.【详解】过E作EH垂直BC交BC于H点,易证△AEC≌△EHC;由角度分析易知∠AEF=∠AFE,即AE=AF,则有EH=EA=AF;又可证△AGF≌△BHE,则AG=EB=12-4=8,则BG=8-4=4,GE=4.【点睛】这道题主要讲解角平分线加射影模型必出等腰三角形的模型.角平行线第二定理(内角平分线定理和外角平分线定理)模型1)内角平分线定理图1图2图3条件:如图1,在△ABC中,若AD是∠BAC的平分线。

人教版初二数学上册:等腰三角形性质及判定(基础)知识讲解

人教版初二数学上册:等腰三角形性质及判定(基础)知识讲解

等腰三角形性质及判定(基础)【学习目标】1. 掌握等腰三角形的性质,并能利用它证明两个角相等、两条线段相等以及两条直线垂直.2. 掌握等腰三角形的判定定理.3. 熟练运用等腰三角形的判定定理与性质定理进行推理和计算.【要点梳理】要点一、等腰三角形的定义有两条边相等的三角形,叫做等腰三角形,其中相等的两条边叫做腰,另一边叫做底,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.如图所示,在△ABC中,AB=AC,则它叫等腰三角形,其中AB、AC为腰,BC为底边,∠A是顶角,∠B、∠C是底角.要点诠释:等腰直角三角形的两个底角相等,且都等于45°.等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角).∠A=180°-2∠B,∠B=∠C=1802A︒-∠.【高清课堂:389301 等腰三角形的性质及判定,知识要点】要点二、等腰三角形的性质1.等腰三角形的性质性质1:等腰三角形的两个底角相等(简称“等边对等角”).性质2:等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合(简称“三线合一”).2.等腰三角形的性质的作用性质1证明同一个三角形中的两角相等.是证明角相等的一个重要依据.性质2用来证明线段相等,角相等,垂直关系等.3.等腰三角形是轴对称图形等腰三角形底边上的高(顶角平分线或底边上的中线)所在直线是它的对称轴,通常情况只有一条对称轴.要点三、等腰三角形的判定如果一个三角形中有两个角相等,那么这两个角所对的边也相等(简称“等角对等边”).要点诠释:等腰三角形的判定是证明两条线段相等的重要定理,是将三角形中的角的相等关系转化为边的相等关系的重要依据.等腰三角形的性质定理和判定定理是互逆定理. 【典型例题】类型一、等腰三角形中有关度数的计算题【高清课堂:389301 等腰三角形的性质及判定:例1】1、如图,在△ABC中,D在BC上,且AB=AC=BD,∠1=30°,求∠2的度数.【答案与解析】解:∵AB=AC∴∠B =∠C∵AB=BD∴∠2=∠3∵∠2=∠1+∠C∴∠2=∠1+∠B∵∠2+∠3+∠B=180°∴∠B=180°-2∠2∴∠2=∠1+180°-2∠2∴3∠2=∠1+180°∵∠1=30°∴∠2=70°【总结升华】解该题的关键是要找到∠2和∠1之间的关系,显然∠2=∠1+∠C,只要再找出∠C与∠2的关系问题就好解决了,而∠C=∠B,所以把问题转化为△ABD的角之间的关系,问题就容易的多了.关于角度问题可以通过建立方程进行解决.【高清课堂:389301 等腰三角形的性质及判定:例1练习】举一反三:【变式】已知:如图,D、E分别为AB、AC上的点,AC=BC=BD,AD=AE,DE=CE,求∠B的度数.【答案】解:∵AC=BC=BD,AD=AE,DE=CE,∴设∠ECD=∠EDC=x,∠BCD=∠BDC=y,则∠AED=∠ADE=2x,∠A=∠B=180°-4x在△ABC中,根据三角形内角和得,x+y+180°-4x+180°-4x=180°①又∵A、D、B在同一直线上,∴2x+x+y=180°②由①,②解得x=36°∴∠B=180°-4x=180°-144°=36°.类型二、等腰三角形中的分类讨论2、在等腰三角形中,有一个角为40°,求其余各角.【思路点拨】唯独等腰三角形的角有专用名词“顶角”“底角”,别的三角形没有,然而此题没有指明40°的角是顶角还是底角,所以要分类讨论.【答案与解析】解:(1)当40°的角为顶角时,由三角形内角和定理可知:两个底角的度数之和=180°-40°=140°,又由等腰三角形的性质可知:两底角相等,故每个底角的度数1140702=⨯︒=︒;(2)当40°的角为底角时,另一个底角也为40°,则顶角的度数=180°-40°-40°=100°.∴其余各角为70°,70°或40°,100°.【总结升华】条件指代不明,做此类题应分类讨论,把可能出现的情况都讨论到,别遗漏.3.(2015春•安岳县期末)已知一个等腰三角形的两边长a、b满足方程组.(1)求a、b的值.(2)求这个等腰三角形的周长.【答案与解析】解:(1),②×2﹣①得5b=15,解得b=3,把b=3代入②得2a+3=13,解得a=5;(2)若a=5为腰长,5+5>3满足,此时三角形周长为:5×2+3=13;若b=3为腰长,3+3>5满足,此时三角形周长为:3×2+5=11.【总结升华】本题考查了等腰三角形的性质及解二元一次方程组,难度一般,关键是掌握分类讨论的思想解题.举一反三:【变式】(2015•裕华区模拟)若x,y满足|x﹣3|+=0,则以x,y的值为两边长的等腰三角形的周长为()A. 12 B.14 C.15 D.12或15【答案】C.解:根据题意得,x﹣3=0,y﹣6=0,解得x=3,y=6,①3是腰长时,三角形的三边分别为3、3、6,∵3+3=6,EB A DC F∴不能组成三角形,②3是底边时,三角形的三边分别为3、6、6, 能组成三角形,周长=3+6+6=15, 所以,三角形的周长为15. 故选C .类型三、等腰三角形性质和判定综合应用【高清课堂:389301 等腰三角形的性质及判定:例8】4、已知:如图,△ABC 中,∠ACB =45°,AD⊥B C 于D ,CF 交AD 于点F ,连接BF 并延长交AC 于点E ,∠BAD =∠FCD . 求证:(1)△ABD≌△CFD;(2)BE⊥AC.【思路点拨】此题由等腰三角形的判定知AD =DC ,易证△ABD ≌△CFD ,要证BE ⊥AC ,只需证∠BEC =90°即可,DF =BD ,可知∠FBD =45°,由已知∠ACD =45°,可知∠BEC =90°. 【答案与解析】证明:(1) ∵ AD⊥BC,∴ ∠ADC=∠FDB=90°.∵ 45ACB ∠=︒,∴ 45ACB DAC ∠=∠=︒ ∴ AD=CD∵ BAD FCD ∠=∠,∴ △ABD≌△CFD(2)∵△ABD≌△CFD∴ BD=FD.∵ ∠FDB=90°,∴ 45FBD BFD ∠=∠=︒.∵ 45ACB ∠=︒, ∴ 90BEC ∠=︒. ∴ BE⊥AC.【总结升华】本题主要考查全等三角形判定定理及性质,垂直的性质,三角形内角和定理,等腰直角三角形的性质等知识点,关键在于熟练的综合运用相关的性质定理,通过求证△ABD≌△CFD,推出BD=FD ,求出∠FBD=∠BFD=45°. 举一反三:【变式】(2016•海淀区校级模拟)如图,已知∠BAC=90°,AD ⊥BC 于点D ,∠1=∠2,EF ∥BC 交AC 于点F .试说明AE=CF .【思路点拨】作EH⊥AB于H,作FG⊥BC于G,根据角平分线的性质可得EH=ED,再证ED=FG,则EH=FG,通过证明△AEH≌△CFG即可.【答案与解析】解:作EH⊥AB于H,作FG⊥BC于G,∵∠1=∠2,AD⊥BC,∴EH=ED(角平分线的性质)∵EF∥BC,AD⊥BC,FG⊥BC,∴四边形EFGD是矩形,∴ED=FG,∴EH=FG,∵∠BAD+∠CAD=90°,∠C+∠CAD=90°,∴∠BAD=∠C,又∵∠AHE=∠FGC=90°,∴△AEH≌△CFG(AAS)∴AE=CF.【总结升华】本题考查了角平分线的性质;综合利用了角平分线的性质、同角的余角相等、全等三角形的判定等知识点.附录资料:《三角形》全章复习与巩固(基础)知识讲解【学习目标】1.认识三角形并能用符号语言正确表示三角形,理解并会应用三角形三边之间的关系.2.理解三角形的高、中线、角平分线的概念,通过作三角形的三条高、中线、角平分线,提高学生的基本作图能力,并能运用图形解决问题.3.能够运用三角形内角和定理及三角形的外角性质进行相关的计算,证明问题.4.通过观察和实地操作知道三角形具有稳定性,知道四边形没有稳定性,了解稳定性与没有稳定性在生产、生活中的广泛应用.5.了解多边形、多边形的对角线、正多边形以及镶嵌等有关的概念;掌握多边形内角和及外角和,并能灵活运用公式解决有关问题,体验并掌握探索、归纳图形性质的推理方法,进一步培养说理和进行简单推理的能力.【知识网络】【要点梳理】要点一、三角形的有关概念和性质 1.三角形三边的关系:定理:三角形任意两边之和大于第三边;三角形任意两边的之差小于第三边.要点诠释:(1)理论依据:两点之间线段最短.(2)三边关系的应用:判断三条线段能否组成三角形,若两条较短的线段长之和大于最长线段的长,则这三条线段可以组成三角形;反之,则不能组成三角形.当已知三角形两边长,可求第三边长的取值范围. 2.三角形按“边”分类:⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形三角形 底边和腰不相等的等腰三角形等腰三角形 等边三角形 3.三角形的重要线段:(1)三角形的高从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称三角形的高.要点诠释:三角形的三条高所在的直线相交于一点的位置情况有三种:锐角三角形交点在三角形内;直角三角形交点在直角顶点;钝角三角形交点在三角形外. (2)三角形的中线三角形的一个顶点与它的对边中点的连线叫三角形的中线.要点诠释:一个三角形有三条中线,它们交于三角形内一点,叫做三角形的重心.中线把三角形分成面积相等的两个三角形. (3)三角形的角平分线三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.要点诠释:一个三角形有三条角平分线,它们交于三角形内一点,这一点叫做三角形的内心.要点二、三角形的稳定性如果三角形的三边固定,那么三角形的形状大小就完全固定了,这个性质叫做三角形的稳定性.要点诠释:(1)三角形的形状固定是指三角形的三个内角不会改变,大小固定指三条边长不改变.(2)三角形的稳定性在生产和生活中很有用.例如,房屋的人字梁具有三角形的结构,它就坚固而稳定;在栅栏门上斜着钉一条(或两条)木板,构成一个三角形,就可以使栅栏门不变形.大桥钢架、输电线支架都采用三角形结构,也是这个道理.(3)四边形没有稳定性,也就是说,四边形的四条边长确定后,不能确定它的形状,它的各个角的大小可以改变.四边形的不稳定性也有广泛应用,如活动挂架,伸缩尺.有时我们又要克服四边形的不稳定性,如在窗框未安好之前,先在窗框上斜着钉一根木板,使它不变形.要点三、三角形的内角和与外角和1.三角形内角和定理:三角形的内角和为180°.推论:1.直角三角形的两个锐角互余2.有两个角互余的三角形是直角三角形2.三角形外角性质:(1)三角形的一个外角等于与它不相邻的两个内角的和.(2)三角形的一个外角大于任意一个与它不相邻的内角.3.三角形的外角和:三角形的外角和等于360°.要点四、多边形及有关概念1. 多边形的定义:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.要点诠释:多边形通常还以边数命名,多边形有n条边就叫做n边形.三角形、四边形都属于多边形,其中三角形是边数最少的多边形.2.正多边形:各个角都相等、各个边都相等的多边形叫做正多边形.如正三角形、正方形、正五边形等.要点诠释:各角相等、各边也相等是正多边形的必备条件,二者缺一不可. 如四条边都相等的四边形不一定是正方形,四个角都相等的四边形也不一定是正方形,只有满足四边都相等且四个角也都相等的四边形才是正方形.3.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.要点诠释:(1)从n边形一个顶点可以引(n-3)条对角线,将多边形分成(n-2)个三角形;(2)n边形共有(3)2n n条对角线.要点五、多边形的内角和及外角和公式1.内角和公式:n边形的内角和为(n-2)·180°(n≥3,n是正整数) .要点诠释:(1)一般把多边形问题转化为三角形问题来解决;(2)内角和定理的应用:①已知多边形的边数,求其内角和;②已知多边形内角和,求其边数.2.多边形外角和:n边形的外角和恒等于360°,它与边数的多少无关.要点诠释:(1)外角和公式的应用:①已知外角度数,求正多边形边数; ②已知正多边形边数,求外角度数. (2)多边形的边数与内角和、外角和的关系:①n 边形的内角和等于(n -2)·180°(n≥3,n 是正整数),可见多边形内角和与边数n 有关,每增加1条边,内角和增加180°.要点六、镶嵌的概念和特征1、定义:用一些不重叠摆放的多边形把平面的一部分完全覆盖,通常把这类问题叫做用多边形覆盖平面(或平面镶嵌).这里的多边形可以形状相同,也可以形状不相同. 要点诠释:(1)拼接在同一点的各个角的和恰好等于360°;相邻的多边形有公共边. (2)用正多边形实现镶嵌的条件:边长相等;顶点公用;在一个顶点处各正多边形的内角之和为360°.(3)只用一种正多边形镶嵌地面,当围绕一点拼在一起的几个正多边形的内角加在一起恰好组成一个周角360°时,就能铺成一个平面图形.事实上,只有正三角形、正方形、正六边形的地砖可以用. 【典型例题】类型一、三角形的三边关系1. (2016•丰润区二模)若三角形的两条边长分别为6cm 和10cm ,则它的第三边长不可能为( )A .5cmB .8cmC .10cmD .17cm【思路点拨】直接利用三角形三边关系得出第三边的取值范围,进而得出答案. 【答案与解析】解:∵三角形的两条边长分别为6cm 和10cm , ∴第三边长的取值范围是:4<x <16, ∴它的第三边长不可能为:17cm . 故选:D .【总结升华】此题主要考查了三角形三边关系,正确得出第三边的取值范围是解题关键. 【高清课堂:与三角形有关的线段 例1】举一反三【变式】判断下列三条线段能否构成三角形.(1) 3,4,5; (2) 3,5,9 ; (3) 5,5,8. 【答案】(1)能; (2)不能; (3)能.2.若三角形的两边长分别是2和7,则第三边长c 的取值范围是_______. 【答案】59c <<【解析】三角形的两边长分别是2和7, 则第三边长c 的取值范围是│2-7│<c<2+7,即 5<c<9.【总结升华】三角形的两边a 、b ,那么第三边c 的取值范围是│a -b│<c<a+b.举一反三【变式】(浙江金华)已知三角形的两边长为4,8,则第三边的长度可以是________(写出一个即可)【答案】5,注:答案不唯一,填写大于4,小于12的数都对.类型二、三角形中重要线段3. (江苏连云港)小华在电话中问小明:“已知一个三角形三边长分别为4,9,12,如何求这个三角形的面积?”小明提示:“可通过作最长边上的高来求解.”小华根据小明的提示作出的图形正确的是( ) .【答案】C【解析】三角形的高就是从三角形的顶点向它的对边所在直线作垂线,顶点和垂足之间的线段.解答本题首先应找到最长边,再找到最长边所对的顶点.然后过这个顶点作最长边的垂线即得到三角形的高.【总结升华】锐角三角形、直角三角形、钝角三角形都有三条高,并且三条高所在的直线交于一点.这里一定要注意钝角三角形的高中有两条高在三角形的外部.举一反三【变式】如图所示,已知△ABC,试画出△ABC各边上的高.【答案】解:所画三角形的高如图所示.4.如图所示,CD为△ABC的AB边上的中线,△BCD的周长比△ACD的周长大3cm,BC =8cm,求边AC的长.【思路点拨】根据题意,结合图形,有下列数量关系:①AD=BD,②△BCD的周长比△ACD的周长大3.【答案与解析】解:依题意:△BCD的周长比△ACD的周长大3cm,故有:BC+CD+BD-(AC+CD+AD)=3.又∵ CD为△ABC的AB边上的中线,∴ AD =BD ,即BC-AC =3. 又∵ BC =8,∴ AC =5. 答:AC 的长为5cm .【总结升华】运用三角形的中线的定义得到线段AD =BD 是解答本题的关键,另外对图形中线段所在位置的观察,找出它们之间的联系,这种数形结合的数学思想是解几何题常用的方法. 举一反三【变式】如图所示,在△ABC 中,D 、E 分别为BC 、AD 的中点,且4ABC S △,则S 阴影为________.【答案】1类型三、与三角形有关的角5、(2014春•新泰市期末)已知:如图,在△ABC 中,AD 是BC 边上的高,AE 是∠BAC 平分线,∠B=50°,∠DAE=10°, (1)求∠BAE 的度数; (2)求∠C 的度数.【思路点拨】(1)根据AD 是BC 边上的高和∠DAE=10°,求得∠AED 的度数;再进一步根据三角形的外角等于和它不相邻的两个内角的和求解;(2)根据(1)的结论和角平分线的定义求得∠BAC 的度数,再根据三角形的内角和定理就可求得∠C 的度数. 【答案与解析】 解:(1)∵AD 是BC 边上的高,∴∠ADE=90°.∵∠ADE+∠AED+∠DAE=180°,∴∠AED=180°﹣∠ADE﹣∠DAE=180°﹣90°﹣10°=80°. ∵∠B+∠BAE=∠AED,∴∠BAE=∠AED﹣∠B=80°﹣50°=30°. (2)∵AE 是∠BAC 平分线,∴∠BAC=2∠BAE=2×30°=60°. ∵∠B+∠BAC+∠C=180°,∴∠C=180°﹣∠B﹣∠BAC=180°﹣50°﹣60°=70°. 【总结升华】本题主要考查了三角形的内角和定理、角平分线的定义以及三角形的外角性质. 【高清课堂:与三角形有关的角 例1、】举一反三:【变式】已知,如图,在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数.【答案】解:已知△ABC中,∠C=∠ABC=2∠A设∠A=x则∠C=∠ABC=2xx+2x+2x=180°解得:x=36°∴∠C=2x=72°在△BDC中, BD是AC边上的高,∴∠BDC=90°∴∠DBC=180°-90°-72°=18°类型四、三角形的稳定性6. 如图所示,木工师傅在做完门框后,为防止变形常常像图中那样钉上两条斜拉的木板条(即AB、CD),这样做的数学道理是什么?【答案与解析】解:三角形的稳定性.【总结升华】本题是三角形的稳定性在生活中的具体应用.实际生活中,将多边形转化为三角形都是为了利用三角形的稳定性.类型五、多边形内角和及外角和公式7.一个多边形的内角和等于它的外角和的5倍,它是几边形?【思路点拨】本题实际告诉了这个多边形的内角和是.【答案与解析】设这个多边形是边形,则它的内角和是,∴,解得.∴这个多边形是十二边形.【总结升华】本题是多边形的内角和定理和外角和定理的综合运用. 只要设出边数,根据条件列出关于的方程,求出的值即可,这是一种常用的解题思路.举一反三【变式】(2015•徐州)若正多边形的一个内角等于140°,则这个正多边形的边数是.【答案】9.解:∵正多边形的一个内角是140°,∴它的外角是:180°﹣140°=40°,边数:360°÷40°=9.类型六、多边形对角线公式的运用8.一个十二边形有几条对角线.【思路点拨】根据多边形对角线条数公式,把边数代入计算即可.【答案与解析】解:∵过十二边形的任意一个顶点可以画9条对角线,∴十二个顶点可以画12×9条对角线,但每条对角线在每个顶点都数了一次,∴实际对角线的条数应该为12×9÷2=54(条)∴十二边形的对角线共有54条.【总结升华】对于一个n边形的对角线的条数,我们可以总结出规律条,牢记这个公式,以后只要用相应的n的值代入即可求出对角线的条数,要记住这个公式只有在理解的基础之上才能记得牢.举一反三【变式】一个多边形共有20条对角线,则多边形的边数是().A.6 B.7 C.8 D.9【答案】C;类型七、镶嵌问题9.分别用形状、大小完全相同的①三角形木板;②四边形木板;③正五边形木板;④正六边形木板作平面镶嵌,其中不能镶嵌成地板的是( )A、①B、②C、③D、④【答案】C【总结升华】用多边形组合成平面图形,实质上是相关多边形“交接处各角之和能否拼成一个周角”的问题.。

人教版数学八年级上册第十三章中垂线(角平分线)与等腰三角形联手巧解题

人教版数学八年级上册第十三章中垂线(角平分线)与等腰三角形联手巧解题

中垂〔角平分〕线与等腰三角形联手巧解题角平分线与等腰三角形有着密不可分联系.在许多几何问题中,遇到等腰三角形就会想到顶角的平分线,遇到角平分线又会想到构造等腰三角形.为了能说明这个问题,下面归类说明.一、角平分线与等腰三角形例1、如图1,在△ABC中,∠BAC,∠BCA的平分线相交于点O,过点O 作DE∥AC,分别交AB,BC于点D,E.试猜测线段AD,CE,DE的数量关系,并说明你的猜测理由.分析:当一个三角形中出现角平分线和平行线时,我们就可以寻找到等腰三角形.由于OA,OC分别是∠BAC,∠BCA的平分线,DE∥AC,可得△ADO 和△CEO均是等腰三角形,那么DO=DA,EC=EO,故AD+CE=DE。

解:AD+CE=DE.理由如下:OA,OC分别是∠BAC,∠BCA的平分线,所以∠OAC=∠DAO,∠OCA=∠OCE,因为DE∥AC,所以∠DOA=∠OAC,∠EOC=∠OCA,所以∠DOA=∠DAO,∠EOC=∠OCE,所以DO=DA,EC=EO,故AD+CE=DO+EO=DE。

.例2、如图2,△ABC中,AB=AC,在AC上取点P,过点P作EF⊥BC,交BA的延长线于点E,垂足为点F.说明:AE=AP.分析:要说明AE=AP,可寻找一条角平分线与EF平行,于是想到AB=AC,那么可以作AD平分∠BAC,所以AD⊥BC,而EF⊥BC,所以AD∥EF,所以可得到△AEP是等腰三角形,故AE=AP.解:作AD平分∠BAC,那么∠BAD=∠CAD,因为AB=AC,所以AD⊥BC,而EF⊥BC,所以∠ADC=∠EFC=90°,所以AD∥EF,所以∠BAD=∠E,∠CAD=∠APE,所以∠E=∠APE,所以AE=AP。

二、中垂线与等腰三角形例3、如图3,在Rt ABC∠=︒,DE是AB的垂直平分线,△中,90C交BC于D,E是垂足,∠CA D∶∠CAB=1∶3 ,求∠B的度数.分析:由DE是AB的垂直平分线,得DA=DB,从而DAB B∠=∠,从而找到CAB∠与B∠的关系,再根据三角形内角和定理可求.解:因为DE垂直平分AB,所以DA=DB,所以DAB B∠=∠.设CAD xB DAB x∠=∠=︒.CAB x∠=︒,所以3∠=︒,所以2因为90x x x︒+︒+︒=︒.∠+∠+∠=︒,所以2290CAD DAB B解得18∠=︒=︒.B xx︒=︒,所以236例4 、如图4,在△ABC中,AB、AC的垂直平分线分别交BC于点E、F,且∠BAC=115º,∠EAF的度数.分析:要求∠EAF的度数,可采用整体思想,结合条件“垂直平分线〞得“线段相等〞,进一步可得∠B=∠EAB,∠C=∠F AC,而∠B+∠C=180º-∠BAC=65º,从而可求得∠EAF的度数.解:因为EM、FD分别是AB、AC的垂直平分线,所以EB=EA,FC=FA.所以∠B=∠EAB,∠C=∠F AC.因为∠B+∠EAB+∠C+∠F AC+∠EAF=180º,所以∠EAF=180º-2〔∠B+∠C〕,而∠BAC=115º.所以B+∠C=180º-115º=65º,所以∠EAF=180º-130º=50º.。

人教版八年级数学上册13.3等腰三角形(教案)及反思

人教版八年级数学上册13.3等腰三角形(教案)及反思
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解等腰三角形的基本概念。等腰三角形是指两边长度相等的三角形。它的重要性在于,等腰三角形的两个底角相等,具有独特的性质和应用。
2.案例分析:接下来,我们来看一个具体的案例。通过分析等腰三角形在桥梁建筑中的应用,了解它如何帮助我们解决问题。
3.重点难点解析:在讲授过程中,我会特别强调等腰三角形的定义和性质这两个重点。对于难点部分,如底角平分线、高、中线及对称轴的性质,我会通过举例和比较来帮助大家理解。
-等腰三角形的底角平分线、高、中线及对称轴性质:这些性质是解决相关几何问题的基础,需要学生熟练掌握。
-实际应用:培养学生将等腰三角形的性质应用于解决实际问题,如计算角度、线段长度等。
举例:讲解等腰三角形性质时,可以结合具体图形,如等腰三角形ABC(AB=AC),强调角B=角C,底角平分线、高、中线互相重合。
最后,我认为在今后的教学中,要加强以下几个方面:
1.提高学生对等腰三角形性质的理解,通过丰富多样的教学手段,让学生真正掌握知识点。
2.培养学生独立思考和解决问题的能力,鼓励他们在课堂上积极发言,表达自己的观点。
3.注重课堂总结与反馈,及时了解学生的学习情况,调整教学方法,提高教学效果。
2.教学难点
-难点一:等腰三角形性质的理解与应用。学生在理解等腰三角形的性质时,可能会对其底角平分线、高、中线及对称轴的相互关系感到困惑。
举例:解释底角平分线同时也是高和中线时,学生可能会混淆这些概念,需要教师通过图形和具体例题进行详细讲解。
-难点Байду номын сангаас:等腰三角形的判定在实际问题中的应用。学生在面对复杂几何图形时,可能难以准确识别等腰三角形。
1.讨论主题:学生将围绕“等腰三角形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。

人教版八年级数学上册《等腰三角形的性质》教学设计

人教版八年级数学上册《等腰三角形的性质》教学设计
教学环境及资源准备
教学资源包括《人教版数学八年级上数学教材》、装有“小蚂蚁移动教学平台”的平板电脑(已经接入无线WiFi)、一张A4白纸、一把剪刀以及常见的学习文具。
教学过程
教师活动
学生活动
设计意图
1.1课前练习
用装有“”小蚂蚁移动教学平台”的平板(以下简称平板)推送一道课前练习题
学生迅速在自己的平板电脑上做出选择
教师活动
学生活动
设计意图
2.2等腰三角形直观感受
请同学们利用手里的白纸和剪刀,快速制作一个等腰三角形。巡视教室,帮助有困难的学生,发现用轴对称性来制作等腰三角形的孩子,让到教室前方展示自己的操作,老师给予充分的肯定和表扬。
动手制作等腰三角形
学生通过各种方式制作等腰三角形,在制作过程中通过分享和交流,体会如何快速地制作一个等腰三角形,以及思考如何验证自己制作的三角形就是一个等腰三角形。
2.充分鼓励学生在验证等腰三角形“三线合一”性质时采用不同的证明方法,引导他们比较各种证明方法之间的优劣,体会数学中“优选法”的思维方式。
3.让学生经历“实验-探究-解决-收获”的学习过程,体会发现问题、探究问题的思想,从中感悟证明结论的方法和乐趣,初步了解作辅助线的技巧,培养“转化”及“分类讨论”的数学思想方法。
追问:如何构造这样的两个全等三角形呢?
学生会想到在这个等腰三角形的中间构造一条线段,将大三角形一分为二,然后通过对左右两个三角形进行全等证明从而得出结论。
在几何证明中,我们通常需要构造全等三角形来帮助解题,但是辅助线的添加和描述其实对于学生来讲是个难题,这是本课的重点和难点。
如何添加这条辅助线呢?辅助线其实是为我们的证明添加一个或几个条件,那么我们应该首先分析这个命题有什么条件,还需要什么条件。

八年级数学人教版(上册)小专题(七)角平分线+平行线→等腰三角形

八年级数学人教版(上册)小专题(七)角平分线+平行线→等腰三角形

(2)如图 2,AB>AC,BD 平分∠ABC,CD 平分△ABC 的外角 ∠ACG,过点 D 作 DE∥BC,分别交 AB,AC 于点 E,F,则 EF 与 BE,CF 之间有何关系?写出你的结论,并加以证明.
解: BE-CF=EF. 证明:∵BD 平分∠ABC,CD 平分∠ACG, ∴∠EBD=∠CBD,∠FCD=∠DCG. ∵DE∥BC,
第十三章 轴对称
小专题(七) 角平分线+平行线→等腰三角形
模型展示 常见的“角平分线+平行线→等腰三角形”模型有以下两种:
(1)如图 1,BC 平分∠ABD,AC∥BD,AC=3,则 AB= 3 . (2)如图 2,AE∥BC,AE 平分∠DAC,则△ABC 是等腰 三角形.
模型应用 (1)如图 3,在△ABC 中,BE 是角平分线,DE∥BC 交 AB 于点 D.若 DE=7,AD=5,则 AB= 12 .
∴∠EDB=∠CBD,∠FDC=∠DCG.
∴∠EDB=∠CBD,∠FDC=∠DCG. ∴BE=DE,CF=DF. 又∵ED-DF=EF,∴BE-CF=EF.
(3)如图 3,BD,CD 分别平分△ABC 的外角∠GBC 和∠HCB, 过点 D 作 DE∥BC,分别交 BG,CH 于点 E,F,则 EF 与 BE,CF 之间存在怎样的关系?直接写出你的结论.
(2)如图 4,在△ABC 中,∠ABC 与∠ACB 的平分线相交于点 F, 过点 F 作 DE∥BC,分别交 AB,AC 于点 D,E.若 AB=12,AC =18,BC=24,则△ADE 的周长为 30 .
1.(2021·淄博)如图,在△ABC 中,∠ABC 的平分线交 AC 于点 D,过点 D 作 DE∥BC 交 AB 于点 E.
(1)求证:BE=DE. 证明:∵BD 平分∠ABC, ∴∠ABD=∠CBD. ∵DE∥BC,

数学人教版八年级上册角平分线和平行线构成等腰三角形的探究

数学人教版八年级上册角平分线和平行线构成等腰三角形的探究

角平分线和平行线构成等腰三角形的探究-----李春蕊北京市育英学校一、教材分析:《等腰三角形》是“人教版八年级数学(上)”第十二章第三节的内容。

等腰三角形是一种特殊的三角形,它除了具备一般三角形的所有性质外,还有许多特殊的性质,由于这些特殊性质,使它比一般的三角形应用更广泛。

这一单元的主要内容是等腰三角形的性质和判定,以及等边三角形的相关知识,尤其是等腰三角形的性质和判定,它们是研究等边三角形、证明线段等和角等的重要依据.学情分析:本节课在学生已经学习了轴对称、等腰三角形性质及判定基础上,进一步探究角平分线和平行线形成等腰三角形的问题。

学生具有一定说理能力,整体几何感观比较清晰,在探究活动中,能够根据老师的问题进行有切入的思考。

二、教学目标:(1)掌握角平分线和平行线形成等腰三角形的基本规律;(2)体会研究问题中用到的分类思想,经历由特征图形问题的解决,发展对问题的进一步探究,认识到在几何问题中,位置关系可得出一定数量关系,特殊的数量关系也能推出一定位置关系.(3)通过交流和研讨,使学生在探索的同时获得解决问题的一种方法,提高学生学习数学的兴趣和信心.教学重点:掌握角平分线+平行线能形成等腰三角形这个基本规律,利用这个规律解决等腰三角形方面的有关问题.教学难点:灵活运用角平分线和平行线形成等腰三角形这个基本规律解决有关问题.突出重点方法:观察,思考,证明.突出难点方法:自主探究教学方法:启发与探究相结合教学准备:PPT,课本,作图工具三、教学设计:(一)复习等腰三角形相关知识1、请同学们对等腰三角形的知识要点进行自我回顾:(由学生先进行回顾,教师补充)(二)探究过程问题1:已知∠ABC,BD平分∠ABC,ED//BC.思考:△EBD是等腰三角形吗?解:是;EB=ED发现:无论点D 在BD 上如何运动,△EBD 都是等腰三角形结论:角平分线+平行线 等腰三角形我们在几何证明中,一般不单独研究角,大多数都是借助图形,比如在三角形中研究问题,上面问题如果放在三角形中,我们可以作三角形中一个角的角平分线,然后过角平分线上一点,作这个角的一边的平行线。

人教版【说课稿】 等腰三角形的判定

人教版【说课稿】  等腰三角形的判定

等腰三角形的判定教材分析1. 教材地位分析本节课选自人教版八年级上册第十三章《轴对称》第三大节第一小节第二课时:等腰三角形的判定。

它是在上一节掌握了等腰三角形的性质的基础后进行的。

它既是上节知识的深化和应用,又是下节学习等边三角形和线段的垂直平分线的定理的预备知识。

从知识结构看,它是把三角形中角的相等关系转化为边的相等关系的重要依据,为以后的几何学习提供了重要的证明和计算依据 .许多中考题中常常用等腰三角形结合四边形、相似形、圆、函数等相关知识点出一些综合性题目和压轴题目,所以要求学生能掌握并灵活应用。

2.学情分析初二的学生在这个阶段,通过前面全等三角形的学习,其逻辑思维从经验型逐步向理论型发展,观察和想象力也迅速发展,他们也有了很强的求知欲,探索欲,学完性质,他们可能就会猜想到判定.目前学生们已初步形成合作交流、勇于探索、敢于置疑的学风.教学目标根据新课程标准的基本理念,结合八年级数学教材结构和学生的认知结构心理特征,我制定了这节课的三维目标.知识目标:掌握等腰三角形的判定定理;会用等腰三角形的判定进行简单的推理判断及应用。

能力训练要求:培养学生对命题抽象概括能力,加强发散思维训练。

培养大胆分析,敢于求异,勇于探索的精神和能力,形成良好的思维品质。

情感与价值观要求:通过对等腰三角形的判定定理的探索,让学生体会探索学习的乐趣,并通过等腰三角形的判定定理的简单应用,加深对定理的理解.从而培养学生利用已有知识解决实际问题的能力。

教学重点、难点教学重点:等腰三角形的判定方法及应用。

教学难点:1、性质与判定的综合应用。

2、文字叙述题的证明也是本节的难点之一。

3、将实际问题抽象成数学问题,并用数学知识解决。

说明:本定理是证明两条线段相等的重要定理,它是把三角形中角的相等关系转化为边的相等关系的重要依据,此定理为证明线段相等提供了又一种方法,这是本节的重点。

等腰三角形的性质定理和判定定理是互逆定理,学生在应用它们的时候,经常混淆,帮助学生认识判定与性质的区别,这是本节的难点.文字叙述题也是难点之一。

人教版 八年级数学讲义 等腰三角形“三线合一”的性质 (含解析)

人教版 八年级数学讲义  等腰三角形“三线合一”的性质 (含解析)

第5讲等腰三角形“三线合一”的性质知识定位讲解用时:5分钟A、适用范围:人教版初二,基础较好;B、知识点概述:本讲义主要用于人教版初二新课,本节课我们要重点学习等腰三角形“三线合一”的性质。

我们知道等腰三角形是一种特殊的三角形,它除了具有一般三角形所有的性质外,还有许多特殊性,正是由于它的这些特殊性,使得它比一般三角形的应用更广泛。

因此,我们有必要把这部分内容学得更扎实。

知识梳理讲解用时:20分钟等腰三角形1、等腰三角形的概念:有两条边相等的三角形叫做等腰三角形,相等的两条边叫做腰,另外一条边叫做底,两腰所夹的角叫做顶角,底边和腰的夹角叫做底角。

2、等腰三角形的性质:(1)等腰三角形的两个底角相等;(简写成“等边对等角”)(2)等腰三角形的角平分线、底边上的中线、底边上的高互相重合.(简写成“三线合一”)3、等腰三角形的判定方法:(1)有两条边相等的三角形叫做等腰三角形;(定义法)(2)如果一个三角形有两个角相等,那么这两个角对应的边也相等.(简写成“等角对等边”)AB C等边三角形我们知道等边三角形是特殊的等腰三角形,所以接下来要研究等边三角形的性质和判定!1、等边三角形的概念:在等腰三角形中,有一种特殊的等腰三角形——三条边都相等的三角形,我们把这样的三角形叫做等边三角形。

2、等边三角形的性质:(1)等边三角形的三条边都相等;(定义)(2)等边三角形的三个内角都相等,都等于60°;(3)等腰三角形“三线合一”的性质同样适用于等边三角形.3、等边三角形的判定方法:(1)有两条边相等的三角形叫做等腰三角形;(定义)(2)三个内角都相等的三角形是等边三角形;(3)有一个角是60°的等腰三角形是等边三角形.AB C课堂精讲精练【例题1】如图,点D、E在△ABC的BC边上,AB=AC,AD=AE.求证:BD=CE.【答案】BD=CE【解析】要证明线段相等,只要过点A作BC的垂线,利用三线合一得到P为DE及BC的中点,线段相减即可得证.证明:如图,过点A作AP⊥BC于P.∵AB=AC,∴BP=PC;∵AD=AE,∴DP=PE,∴BP﹣DP=PC﹣PE,∴BD=CE.讲解用时:3分钟解题思路:本题考查了等腰三角形的性质;做题时,两次用到三线合一的性质,由等量减去等量得到差相等是解答本题的关键;教学建议:熟练运用等腰三角形“三线合一”的性质.难度: 3 适应场景:当堂例题例题来源:无年份:2018【练习1.1】如图,在△ABC中,AB=AC,AD是BC边上的高,过点C作CE∥AB交AD的延长线于点E,求证:CE=AB.【答案】CE=AB【解析】先根据等腰三角形的性质,得到∠BAE=∠CAE,再根据平行线的性质,得到∠E=∠CAE,最后根据等量代换即可得出结论.证明:∵AB=AC,AD是BC边上的高,∴∠BAE=∠CAE.∵CE∥AB,∴∠E=∠BAE.∴∠E=∠CAE.∴CE=AC.∵AB=AC,∴CE=AB.讲解用时:3分钟解题思路:本题主要考查了等腰三角形的性质以及平行线的性质,解题时注意:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.教学建议:熟练运用等腰三角形“三线合一”的性质以及平行线的性质.难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题2】如图,在△ABC中,AB=AC,点D,点E分别是BC,AC上一点,且DE⊥AD.若∠BAD=55°,∠B=50°,求∠DEC的度数.【答案】115°【解析】根据等腰三角形的性质和三角形的内角和得到∠C=50°,进而得到∠BAC=80°,由∠BAD=55°,得到∠DAE=25°,由DE⊥AD,进而求出结论.解:∵AB=AC,∴∠B=∠C,∵∠B=50°,∴∠C=50°,∴∠BAC=180°﹣50°﹣50°=80°,∵∠BAD=55°,∴∠DAE=25°,∵DE⊥AD,∴∠ADE=90°,∴∠DEC=∠DAE+∠ADE=115°.讲解用时:3分钟解题思路:本题主要考查了等腰三角形的性质,三角形的内角和定理,垂直定义,熟练应用等腰三角形的性质是解题的关键.教学建议:熟练掌握等腰三角形等腰对等角的性质以及三角形的内角和定理. 难度: 3 适应场景:当堂例题例题来源:无年份:2018【练习2.1】已知等腰三角形一腰上的中线将三角形的周长分成6cm和15cm的两部分,求这个三角形的腰和底边的长度.【答案】10cm,10cm,1cm【解析】根据题意,分两种情况进行分析,从而得到腰和底边的长,注意运用三角形的三边关系对其进行检验.解:①如图,AB+AD=6cm,BC+CD=15cm,∵AD=DC,AB=AC,∴2AD+AD=6cm,∴AD=2cm,∴AB=4cm,BC=13cm,∵AB+AC<BC,∴不能构成三角形,故舍去;②如图,AB+AD=15cm,BC+CD=6cm,同理得:AB=10cm,BC=1cm,∵AB+AC>BC,AB﹣AC<BC,∴能构成三角形,∴腰长为10cm,底边为1cm.故这个等腰三角形各边的长为10cm,10cm,1cm.讲解用时:3分钟解题思路:本题考查等腰三角形的性质及三角形三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这是解题的关键.教学建议:熟练掌握等腰三角形的性质以及三角形的三边关系.难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题3】如图,在△ACB中,AC=BC,AD为△ACB的高线,CE为△ACB的中线.求证:∠DAB=∠ACE.【答案】∠DAB=∠ACE【解析】根据等腰三角形的性质证明即可.证明:∵AC=BC,CE为△ACB的中线,∴∠CAB=∠B,CE⊥AB,∴∠CAB+∠ACE=90°,∵AD为△ACB的高线,∴∠D=90°.∴∠DAB+∠B=90°,∴∠DAB=∠ACE.讲解用时:3分钟解题思路:此题考查等腰三角形的性质,关键是根据等腰三角形的性质解答.教学建议:熟练掌握等腰三角形“三线合一”的性质.难度: 3 适应场景:当堂例题例题来源:无年份:2018【练习3.1】如图,在△ABC中,AB=AC,AD是BC边上的中线,E是AC 边上的一点,且∠CBE=∠CAD.求证:BE⊥AC.【答案】BE⊥AC【解析】根据等腰三角形的性质得出AD⊥BC,再得出∠CBE+∠C=90°.证明:∵AB=AC,AD是BC边上的中线,∴AD⊥BC,∴∠CAD+∠C=90°,又∵∠CBE=∠CAD,∴∠CBE+∠C=90°,∴BE⊥AC.讲解用时:3分钟解题思路:本题主要考查等腰三角形的性质,掌握等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合是解题的关键.教学建议:熟练掌握等腰三角形“三线合一”的性质.难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题4】如图所示,已知△ABC中,AB=AC,∠BAD=30°,AD=AE,求∠EDC的度数.【答案】15°【解析】可以设∠EDC=x,∠B=∠C=y,根据∠ADE=∠AED=x+y,∠ADC=∠B+∠BAD即可列出方程,从而求解.解:设∠EDC=x,∠B=∠C=y,∠AED=∠EDC+∠C=x+y,又因为AD=AE,所以∠ADE=∠AED=x+y,则∠ADC=∠ADE+∠EDC=2x+y,又因为∠ADC=∠B+∠BAD,所以2x+y=y+30,解得x=15.所以∠EDC的度数是15°.讲解用时:3分钟解题思路:本题主要考查了等腰三角形的性质,等边对等角.正确确定相等关系列出方程是解题的关键.教学建议:熟练掌握等腰三角形等边对等角的性质.难度: 3 适应场景:当堂例题例题来源:无年份:2018【练习4.1】在△ABC中,AB=AC,AD⊥BC,∠BAD=40°,AD=AE,求∠CDE的度数.【答案】20°【解析】根据等腰三角形的性质得到∠CAD=∠BAD=40°,由于AD=AE,于是得到∠ADE==70°,根据三角形的内角和即可得到∠CDE=90°﹣70°=20°.解:∵AB=AC,AD⊥BC,∴∠CAD=∠BAD=40°,∠ADC=90°,又∵AD=AE,∴∠ADE==70°,∴∠CDE=90°﹣70°=20°.讲解用时:3分钟解题思路:本题考查等腰三角形的性质,三角形外角的性质,熟知三角形的外角等于与之不相邻的两个内角的和是解答此题的关键.教学建议:熟练掌握等腰三角形“三线合一”的性质以及等边对等角的性质.难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题5】如图,在△ABC中,AB=AC,D为BC上一点,∠B=30°,连接AD.(1)若∠BAD=45°,求证:△ACD为等腰三角形;(2)若△ACD为直角三角形,求∠BAD的度数.【答案】(1)△ACD为等腰三角形;(2)60°或30°【解析】(1)根据等腰三角形的性质求出∠B=∠C=30°,根据三角形内角和定理求出∠BAC=120°,求出∠CAD=∠ADC,根据等腰三角形的判定得出即可;(2)有两种情况:①当∠ADC=90°时,当∠CAD=90°时,求出即可.(1)证明:∵AB=AC,∠B=30°,∴∠B=∠C=30°,∴∠BAC=180°﹣30°﹣30°=120°,∵∠BAD=45°,∴∠CAD=∠BAC﹣∠BAD=120°﹣45°=75°,∠ADC=∠B+∠BAD=75°,∴∠ADC=∠CAD,∴AC=CD,即△ACD为等腰三角形;(2)解:有两种情况:①当∠ADC=90°时,∵∠B=30°,∴∠BAD=∠ADC﹣∠B=90°﹣30°=60°;②当∠CAD=90°时,∠BAD=∠BAC﹣∠CAD=120°﹣90°=30°;即∠BAD的度数是60°或30°.讲解用时:4分钟解题思路:本题考查了三角形内角和定理,等腰三角形的判定的应用,能根据定理求出各个角的度数是解此题的关键,用了分类讨论思想.教学建议:学会通过等角对等边证明三角形是全等三角形.难度: 3 适应场景:当堂例题例题来源:无年份:2018【练习5.1】如图,△ABC中BA=BC,点D是AB延长线上一点,DF⊥AC于F交BC于E,求证:△DBE是等腰三角形.【答案】△DBE是等腰三角形【解析】首先根据等腰三角形的两个底角相等得到∠A=∠C,再根据等角的余角相等得∠FEC=∠D,同时结合对顶角相等即可证明△DBE是等腰三角形.证明:在△ABC中,BA=BC,∵BA=BC,∴∠A=∠C,∵DF⊥AC,∴∠C+∠FEC=90°,∠A+∠D=90°,∴∠FEC=∠D,∵∠FEC=∠BED,∴∠BED=∠D,∴BD=BE,即△DBE是等腰三角形.讲解用时:3分钟解题思路:此题主要考查等腰三角形的判定和性质,关键是根据等腰三角形的基本性质及综合运用等腰三角形的性质来判定三角形是否为等腰三角形.教学建议:熟练掌握等腰三角形的判定和性质.难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题6】如图:已知等边△ABC中,D是AC的中点,E是BC延长线上的一点,且CE=CD,DM⊥BC,垂足为M,求证:M是BE的中点.【答案】M是BE的中点【解析】要证M是BE的中点,根据题意可知,证明△BDE△为等腰三角形,利用等腰三角形的高和中线向重合即可得证.证明:连接BD,∵在等边△ABC,且D是AC的中点,∴∠DBC=∠ABC=×60°=30°,∠ACB=60°,∵CE=CD,∴∠CDE=∠E,∵∠ACB=∠CDE+∠E,∴∠E=30°,∴∠DBC=∠E=30°,∴BD=ED,△BDE为等腰三角形,又∵DM⊥BC,∴M是BE的中点.讲解用时:4分钟解题思路:本题考查了等腰三角形顶角平分线、底边上的中线和高三线合一的性质以及等边三角形每个内角为60°的知识.辅助线的作出是正确解答本题的关键.教学建议:熟练掌握等腰三角形“三线合一”的性质以及等边三角形的性质. 难度: 4 适应场景:当堂例题例题来源:无年份:2018【练习6.1】如图,等边三角形ABC中,D为AC上一点,E为AB延长线上一点,DE⊥AC交BC 于点F,且DF=EF.(1)求证:CD=BE;(2)若AB=12,试求BF的长.【答案】(1)CD=BE;(2)4【解析】(1)先作DM∥AB,交CF于M,可得△CDM为等边三角形,再判定△DMF ≌△EBF,最后根据全等三角形的性质以及等边三角形的性质,得出结论;(2)根据ED⊥AC,∠A=60°=∠ABC,可得∠E=∠BFE=∠DFM=∠FDM=30°,由此得出CM=MF=BF=BC,最后根据AB=12即可求得BF的长.解:(1)如图,作DM∥AB,交CF于M,则∠DMF=∠E,∵△ABC是等边三角形,∴∠C=60°=∠CDM=∠CMD,∴△CDM是等边三角形,∴CD=DM,在△DMF和△EBF中,,∴△DMF≌△EBF(ASA),∴DM=BE,∴CD=BE;(2)∵ED⊥AC,∠A=60°=∠ABC,∴∠E=∠BFE=∠DFM=∠FDM=30°,∴BE=BF,DM=FM,又∵△DMF≌△EBF,∴MF=BF,∴CM=MF=BF,又∵AB=BC=12,∴CM=MF=BF=4.解题思路:本题主要考查了等边三角形的性质、全等三角形的判定与性质的综合应用,解决问题的关键是作平行线,构造等边三角形和全等三角形,根据全等三角形的性质以及等边三角形的性质进行求解.教学建议:熟练掌握等边三角形的性质以及全等三角形的判定和性质.难度:4 适应场景:当堂练习例题来源:无年份:2018【例题7】如图所示,BO平分∠CBA,CO平分∠ACB,过O作EF∥BC,若AB=12,AC=8,求△AEF的周长.【答案】20【解析】根据角平分线的定义可得∠OBE=∠OBC,∠OCF=∠OCB,再根据两直线平行,内错角相等可得∠OBC=∠BOE,∠OCB=∠COF,然后求出∠OBE=∠BOE,∠OCF=∠COF,再根据等角对等边可得OE=BE,OF=CF,即可得证.解:∵BO平分∠CBA,∴∠EBO=∠OBC,∵CO平分∠ACB,∴∠FCO=∠OCB,∵EF∥BC,∴∠EOB=∠OBC,∠FOC=∠OCB,∴∠EBO=∠EOB,∠FOC=∠FCO,∴BE=OE,CF=OF,∴△AEF的周长=AE+OE+OF+AF=AE+BE+CF+AF=AB+AC,∵AB=12,AC=8,∴C=12+8=20.△AEF解题思路:本题考查了等腰三角形的判定与性质,平行线的性质,主要利用了角平分线的定义,等角对等边的性质,两直线平行,内错角相等的性质,熟记各性质是解题的关键.教学建议:熟练掌握等腰三角形的判定和性质以及平行线的性质.难度:4 适应场景:当堂例题例题来源:无年份:2018【练习7.1】在△ABC中,AB=AC,DE∥BC,若M为DE上的点,且BM平分∠ABC,CM平分∠ACB,若△ADE的周长为20,BC=8,求△ABC的周长.【答案】28【解析】分别利用角平分线的性质和平行线的性质,说明DB=DM,EM=EC.把求△ABC的周长转化为△ADE的周长+BC边的长.解:∵BM平分∠ABC,∴∠ABM=∠CBM,∵DE∥BC,∴∠CBM=∠DMB,∴∠ABM=∠DMB,∴DB=DM.同理可证EM=CE∴AB+AC=AD+DB+AE+EC=AD+DM+ME+AE=AD+DE+AE∵△ADE的周长为20∴AB+AC=20∴△ABC的周长=AB+AC+BC=20+8=28.答:△ABC的周长为28.讲解用时:3分钟解题思路:此题主要考查了平行线的性质,角平分线的性质及等腰三角形的判定.本题的关键是利用平行线和角平分线的性质将△ABC的周长转化为△ADE的周长+BC边的长.教学建议:熟练掌握平行线的性质、角平分线的性质以及等腰三角形的判定. 难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题8】如图,D为等边三角形ABC内一点,将△BDC绕着点C旋转成△AEC,则△CDE是怎样的三角形?请说明理由.【答案】△CDE是等边三角形【解析】因为△ABC为等边三角形,所以△BDC绕着点C旋转60°成△AEC,则∠DCE=60°,DC=EC,故可判定△CDE是等边三角形.解:△CDE是等边三角形.理由:∵△ABC为等边三角形,∴∠ACB=60°∴将△BDC绕着点C旋转成△AEC,旋转角为60°∴∠DCE=60°∴DC=EC∴△CDE是等边三角形.讲解用时:3分钟解题思路:本题利用了等边三角形的判定和性质,旋转的性质等知识解决问题.考查学生综合运用数学知识的能力.教学建议:熟练掌握等边三角形的判定和性质,了解“手拉手”模型.难度: 4 适应场景:当堂例题例题来源:无年份:2018【练习8.1】已知,如图,△ABC是正三角形,D,E,F分别是各边上的一点,且AD=BE=CF.请你说明△DEF是正三角形.【答案】△DEF是正三角形【解析】根据等边△ABC中AD=BE=CF,证得△ADE≌△BEF≌△CFD即可得出△DEF是等边三角形.解:∵△ABC为等边三角形,且AD=BE=CF,∴AE=BF=CD,又∵∠A=∠B=∠C=60°,∴△ADE≌△BEF≌△CFD(SAS),∴DF=ED=EF,∴△DEF是等边三角形.讲解用时:3分钟解题思路:本题主要考查了等边三角形的判定与性质和全等三角形判定,根据已知得出△ADE≌△BEF≌△CFD是解答此题的关键.教学建议:熟练掌握等边三角形的判定和性质以及全等三角形的判定.难度: 4 适应场景:当堂练习例题来源:无年份:2018课后作业【作业1】如图,D,E在△ABC的边BC上,AB=AC,AD=AE,在图中找出一条与BE相等的线段,并说明理由.【答案】BE=CD【解析】根据等腰三角形的性质可得到两组角相等,再根据AAS可判定△ABE ≌△ACD,由全等三角形的性质即可证得BE=CD.解:BE=CD.理由如下:∵AB=AC,AD=AE,∴∠B=∠C,∠ADE=∠AED.在△ABE与△ACD中,,∴△ABE≌△ACD,∴BE=CD.故答案为CD.讲解用时:3分钟难度: 3 适应场景:练习题例题来源:无年份:2018【作业2】如图,已知∠BAC=60°,D是BC边上一点,AD=CD,∠ADB=80°,求∠B的度数.【答案】80°【解析】先根据三角形外角的性质求出∠C的度数,再根据三角形内角和定理即可得出∠B的度数.解:∵∠ADB=80°又∵AD=CD∴∠DAC=∠C=40°,∴∠B=180°﹣∠BAC﹣∠C=180°﹣60°﹣40°=80°.讲解用时:3分钟难度: 3 适应场景:练习题例题来源:无年份:2018【作业3】已知:如图,AB=BC,∠A=∠C.求证:AD=CD.【答案】AD=CD【解析】连接AC,根据等边对等角得到∠BAC=∠BCA,因为∠A=∠C,则可以得到∠CAD=∠ACD,根据等角对等边可得到AD=DC.证明:连接AC,∵AB=BC,∴∠BAC=∠BCA.∵∠BAD=∠BCD,∴∠CAD=∠ACD.∴AD=CD.讲解用时:3分钟难度: 3 适应场景:练习题例题来源:无年份:2018【作业4】如图,在△ABC中,∠ABC、∠ACB的平分线相交于F,过F作DE∥BC,分别交AB、AC于点D、E.判断DE=DB+EC是否成立?为什么?【答案】成立【解析】根据BF和CF分别平分∠ABC和∠ACB,和DE∥BC,利用两直线平行,内错角相等和等量代换,求证出DB=DF,FE=EC.然后即可得出答案.解:DE=DB+EC成立.理由如下:∵在△ABC中,FB和FC分别平分∠ABC和∠ACB,∴∠DBF=∠FBC,∠ECF=∠FCB,∵DE∥BC,∴∠DFB=∠FBC=∠DBF,∠EFC=∠FCB=∠ECF,∴DB=DF,FE=EC,∵DE=DF+FE,∴DE=BD+EC.讲解用时:3分钟难度:4 适应场景:练习题例题来源:无年份:2018【作业5】如图,等边△ABC中,点D在延长线上,CE平分∠ACD,且CE=BD.说明:△ADE是等边三角形.【答案】△ADE是等边三角形【解析】由条件可以容易证明△ABD≌△ACE,进一步得出AD=AE,∠BAD=∠CAE,加上∠DAE=60°,即可证明△ADE为等边三角形.证明:∵△ABC为等边三角形,∴∠B=∠ACB=60°,AB=AC,即∠ACD=120°,∵CE平分∠ACD,∴∠ACE=∠DCE=60°,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴AD=AE,∠BAD=∠CAE,又∵∠BAC=60°,∴∠DAE=60°,∴△ADE为等边三角形.讲解用时:3分钟难度: 4 适应场景:练习题例题来源:无年份:2018。

等腰三角形七种常见辅助线作法(方法梳理与题型分类讲解)(人教版)(教师版) 25学年八年级数学上册

等腰三角形七种常见辅助线作法(方法梳理与题型分类讲解)(人教版)(教师版) 25学年八年级数学上册

专题13.14等腰三角形七种常见辅助线作法(方法梳理与题型分类讲解)第一部分【模型归纳与题型目录】题型目录【题型1】作等腰三角形底边上高线求值或证明 (1)【题型2】遇到中点作中线求值或证明 (6)【题型3】过一腰上的某一已知点作另一腰的平行线 (10)【题型4】过一腰上的某一已知点作底边的平行线 (14)【题型5】倍长中线构造等腰三角形 (20)【题型6】截长补短构造等腰三角形 (24)【题型7】延长相交构造或证明等腰三角形 (28)第二部分【题型展示与方法点拨】【题型1】作等腰三角形底边上高线求值或证明【例1】(2024·浙江·模拟预测)如图,ABC V 是等腰三角形,AB AC =.设BAC α∠=.(1)如图1,点D 在线段AB 上,若45ACD BAC ∠+∠=︒,求DCB ∠的度数(用含α的代数式表示).(2)如图2,已知AB AC BD ==.若180∠+∠=︒ABD BAC ,过点B 作BH AD ⊥于点H ,求证:12BH BC =.【答案】(1)452DCB ∠=+︒α(2)见解析【分析】本题主要考查了等腰三角形的判定和性质,角平分线的性质定理,(1)根据等腰三角形的性质可得B ACB ∠=∠,设ACD β∠=,DCB x ∠=,解出方程组,即可求解;(2)延长DB ,交AC 于点F ,过点A 作AE BC ⊥于点E .根据180∠+∠=︒ABD BAC ,可得ABF BAC α∠=∠=.再由等腰三角形的性质可得1122D DAB ABF α∠=∠=∠=,从而得到1122BAE BAF α∠=∠=,12BE BC =,进而得到DAB BAE ∠=∠,然后根据角平分线的性质定理,可得BH BE =,即可求证.解:(1)∵AB AC =,∴B ACB ∠=∠.设ACD β∠=,DCB x ∠=,则()452180x βαβα+=︒⎧⎨++=︒⎩解得:452x α=+︒,即452DCB ∠=+︒α;(2)如图,延长DB ,交AC 于点F ,过点A 作AE BC ⊥于点E .∵180∠+∠=︒ABD BAC ,180ABD ABF ∠+∠=︒.∴ABF BAC α∠=∠=.又∵AB BD =,∴1122D DAB ABF α∠=∠=∠=∵AB AC =,∴1122BAE BAF α∠=∠=,12BE BC =∴DAB BAE ∠=∠.又∵BH AD ⊥,BE AE ⊥,∴BH BE =,∴12BH BC =.【变式1】(24-25八年级上·全国·课后作业)如图,在ABC V 中,2AC AB =,AD 平分BAC ∠交BC 于点D ,E 是AD 上一点,且EA EC =.求证:EB AB ⊥.【分析】本题主要考查了等腰三角形的性质,角平分线的定义,全等三角形的判定和性质,正确作出辅助线,构建全等三角形是解题的关键.作EF AC ⊥于点F ,根据等腰三角形的性质得出12AF FC AC ==,再证明 ≌ABE AFE 即可得出结论.证明:如图,作EF AC ⊥于点F.EA EC = ,12AF FC AC ∴==.2AC AB = ,AF AB ∴=.AD 平分BAC ∠,BAD CAD ∴∠=∠.在BAE 和FAE 中,AB AF BAE FAE AE AE =⎧⎪∠=∠⎨⎪=⎩,()SAS ABE AFE ∴ ≌,90ABE AFE ∴∠=∠=︒,EB AB ∴⊥.【变式2】(22-23八年级上·江苏泰州·阶段练习)在ABC V 中,AB AC =,过点C 作射线CB ',使ACB ACB '∠=∠(点B '与点B 在直线AC 的异侧)点D 是射线CB '上一动点(不与点C 重合),点E 在线段BC 上,且90DAE ACD ∠+∠=︒.(1)如图1,当点E 与点C 重合时,AD 与CB '的位置关系是,若BC a =,则CD 的长为;(用含a 的式子表示)(2)如图2,当点E 与点C 不重合时,连接DE ,①若30DAE ∠=︒,求BAC ∠的度数;②用等式表示BAC ∠与DAE ∠直间的数量关系,并证明.【答案】(1)互相垂直;12a (2)①60︒;②2BAC DAE∠=∠【分析】(1)根据三角形内角和定理可得AD 与CB '的位置关系是互相垂直,过点A 作AM BC ⊥于点M ,根据等腰三角形性质得到1122CM BM BC ===,利用AAS 证明ACD ACM ≌ ,根据全等三角形性质即可得出12CD CM a ==;(2)当点E 与点C 不重合时,①求解60ACD ∠=︒,可得60ACB ACB '∠=∠=︒,由AB AC =,可得60ABC ACB ∠=∠=︒,可得60BAC ∠=︒;②过点A 作AM BC ⊥于点M 、AN CB '⊥于点N ,利用AAS 证明ACD ACM ≌ ,根据全等三角形性质即可得到2BAC DAE ∠=∠;解:(1)当点E 与点C 重合时,DAE DAC ∠=∠,∵90DAE ACD ∠+∠=︒,∴90DAC ACD ∠+∠=︒,∴90ADC ∠=︒,∴AD CB '⊥,即AD 与CB '的位置关系是互相垂直,若BC a =,过点A 作AM BC ⊥于点M ,如图:则90AMC ADC ∠∠=︒=,∵AB AC =,∴1122CM BM BC a ===,在ACD 与ACM △中,ADC AMC ACD ACM AC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AAS ACD ACM ≌,∴12CD CM a ==,即CD 的长为12a ,(2)解:①∵90DAE ACD ∠+∠=︒,30DAE ∠=︒,∴60ACD ∠=︒,∴60ACB ACB '∠=∠=︒,∵AB AC =,∴60ABC ACB ∠=∠=︒,∴60BAC ∠=︒;②当点E 与点C 不重合时,用等式表示BAC ∠与DAE ∠之间的数量关系是:2BAC DAE ∠=∠,证明如下:过点A 作AM BC ⊥于点M 、AN CB '⊥于点N,如图:则90AMC ANC ∠=∠=︒,∴90CAN ACB '∠+∠=︒,∵90DAE ACD ∠+∠=︒,即90DAE ACB '∠+∠=︒,∴DAE CAN ∠=∠,∵AB AC =,AM BC ⊥,∴22CA B C A A M B M ∠∠=∠=,在ACN △与ACM △中,ANC AMC ACN ACM AC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AAS ACN ACM ≌,∴CAN CAM ∠=∠,∴222BAC CAM CAN DAE ∠=∠=∠=∠;【点拨】本题是三角形综合题,考查了等腰三角形的性质、全等三角形的判定与性质、三角形内角和定理、垂直定义等知识,熟练掌握等腰三角形的性质、全等三角形的判定与性质并作出合理的辅助线是解题的关键.【题型2】遇到中点作中线求值或证明【例3】(23-24七年级下·四川成都·阶段练习)在Rt ABC △中,AB AC =,45DEF ∠=︒且DEF ∠的顶点E 在边BC 上移动,在移动过程中,边DE ,EF 分别与AB ,AC 交于点M ,N ,(1)当BE CN =且M 与A 重合时,求证:ABE ECN△≌△(2)当E 为BC 中点时,连接MN ,求证:NC AM MN=+【分析】本题考查等腰三角形的性质、全等三角形的判定与性质、三角形外角的性质,(1)根据等腰直角三角形的性质可得==45ABE ECN ∠∠︒,利用三角形外角的性质与等量代换可得BAE CEN =∠∠,在根据全等三角形的判定即可证明;(2)连接AE ,在AC 上截取AM CG =,根据等腰直角三角形的性质可得AE EC =,===45MAE CAE ACE ∠∠∠︒,证得()AME CGE SAS ≌,可得=ME GE ,=MEA GEC ∠∠,利用等量代换可得==45MEN GEN ∠∠︒,证得()MEN GEN SAS ≌,可得MN GN =,即可得证.解:(1)证明:∵AB AC =,90BAC ∠=︒,∴==45ABE ECN ∠∠︒,∵==45AEC AEN CEN CEN ∠∠+∠︒+∠,又∵==45AEC ABE BAE BAE ∠∠+∠︒+∠,∴BAE CEN =∠∠,又∵BE CN =,∴()ABE ECN AAS ≌;(2)证明:连接AE ,在AC 上截取AM CG =,∵AB AC =,90BAC ∠=︒,E 为BC 中点,∴AE BC ⊥,AE EC =,∴===45MAE CAE ACE ∠∠∠︒,在AME △和CGE 中,AM CG MAE GCE AE CE =⎧⎪∠=∠⎨⎪=⎩,∴()AME CGE SAS ≌,∴=ME GE ,=MEA GEC ∠∠,∵90AEG GEC ∠+∠=︒,∴=90MEA AEG ∠+∠︒,即90MEG ∠=︒,∵45DEF ∠=︒,∴==45MEN GEN ∠∠︒,又∵NE NE =,=ME GE ,∴()MEN GEN SAS ≌,∴MN GN =,∵=CN CG GN +,∴=CN AM MN +.【变式1】(23-24八年级上·广东汕头·期中)如图,ABC V 中,AB AC =,D 是BC 的中点,E 、F 分别是AB 、AC 上的点,且AE AF =,求证:DE DF =.【分析】本题考查了等腰三角形的性质和全等三角形的判定和性质,属于基础题目,熟练掌握上述知识是解题的关键.连接AD ,根据等腰三角形的性质可得∠∠EAD FAD =,然后即可证明AED AFD ≌,进而可得结论.证明:连接AD ,AB AC = ,D 是BC 的中点,∴∠∠EAD FAD =,在AED △和AFD △中,AE AF EAD FAD AD AD =⎧⎪∠=∠⎨⎪=⎩,()AED AFD SAS ∴ ≌,DE DF ∴=.【变式2】(24-25八年级上·全国·课后作业)如图,在ABC 中,B C ∠∠=,过BC 的中点D 作DE AB ⊥,DF AC ⊥,垂足分别为点E ,F .(1)求证:DE DF =;(2)若40BDE ∠=︒,求BAC ∠的度数.【答案】(1)见解析;(2)80︒。

人教版初中数学八上 微专题18 构造等腰三角形的方法一——作平行线

人教版初中数学八上 微专题18 构造等腰三角形的方法一——作平行线
方法点拨:如图1、图2,若AB=AC,DE∥AC,则△BDE为等腰三角形;如图3、 图4,若AB=AC,DE∥BC,则△ADE为等腰三角形.
图1
图2 图3
图4
2.如图,在△ABC中,AB=AC,点D在AB上,点E在AC的延长线上,且BD=CE, DE交BC于点F.求证:DF=EF.
证明:过点D作DM∥AC,交BC于点M,
∴∠DMB=∠ACB, ∠FDM=∠E. ∵AB=AC,∴∠B=∠ACB, ∴∠B=∠DMB,∴BD=MD. ∵BD=CE,∴MD=CE. ∵∠MFD=∠CFE, ∴△DMF≌△ECF(AAS),∴DF=EF.
3.在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且ED=EC. (1)如图1,当E为AB的中点时,AE = DB;(填“>”“<”或“=”) (2)如图2,当E为AB上任意一点时,AE = DB(填“>”“<”或 “=”),请说明理由.
微专题18 构造等腰三角形的方法 一——作平行线
类型一 :如图,若∠1=∠2,AC∥OB,则△OAC为等腰三角形.
1.如图,BD平分∠ABC,交AC于点D,E为CD上一点,且AD=DE,EF∥BC,
交BD于点F.求证:AB=EF.
类型二 作腰或底的平行线构造等腰三角形
图1
图2
解:理由如下:
过点E作EF∥BC,交AC于点F,
则∠AEF=∠ABC,∠AFE=∠ACB, ∠CEF=∠ECD. ∵△ABC是等边三角形, ∴∠A=∠ABC=∠ACB=60°,AB=AC, ∴∠AFE=∠AEF=60°=∠A,∠DBE=120°, ∴△AEF是等边三角形,
∴AE=EF=AF,∠EFC=120°, ∴∠DBE=∠EFC,AB-AE=AC-AF, ∴BE=FC. ∵ED=EC,∴∠D=∠ECD,∴∠D=∠CEF, ∴△DBE≌△EFC(AAS), ∴DB=EF,∴AE=DB.

八年级人教版数学上册几何定理

八年级人教版数学上册几何定理

八年级人教版数学上册几何定理
《八年级上册数学》几何定理汇总:
一、直角三角形定理:
角平分线定理:在任意一个直角三角形中,若将直角边分成两部分,则分成的两条边中间会等距地经过直角顶点。

等腰三角形定理:等腰三角形的顶点肯定在直角边的中点上。

垂直边定理:任何一条垂直边分成两部分,分开的两部分所连接的边相等。

二、平行线定理:
对角线定理:如果一个四边形中,以对角线两侧两条边平行,则该四边形是平行四边形。

侧边定理:两个平行四边形的侧边相等。

重点定理:如果一个四边形中,以其对角线,将四边形一分为二,其中两个子四边形的邻边相等,则该四边形两个对角线相等。

三、全等三角形定理:
角平分线定理:如果两个三角形的角都是平分的,则它们是全等的;有关边定理:如果两个三角形的有关边相等,则它们是全等的;
有关角定理:如果两个三角形的有关角相等,则它们是全等的。

四、梯形的定理:
圆形定理:在一个梯形中,经过八点,有四条边形成一个圆形;
对角线定理:在一个梯形中,经过对角线,有两条边形成一个圆形;重点定理:如果两个梯形的对角线和其中一条边相等,则它们是全等的。

最新人教版八年级数学上册13.3 等腰三角形

最新人教版八年级数学上册13.3 等腰三角形
合一”) 平分∠BAC,BD=CD
(1)等腰三角形的两腰相等, 知识解读 两底角相等; (2)在“三线合一”中,①② ③的证明依据都是 △ABD≌△ACD
注意:等腰三角形腰上的高、中线不一定重合.
有关等腰三角形的性质的一些结论:
(1)等腰三角形两底角的平分线相等,两条腰上的中
线相等,两条腰上的高相等; (2)等腰三角形底边上的任意一点到两条腰的距离之 和等于腰上的高.
例3 如图13-3-3,△ABC是等腰三角形,且AB=AC, BM,CM分别平分∠ABC,∠ACB,DE经过点M,且 DE∥BC,则图中有 5 个等腰三角形.
图13-3-3
解析:∵BM平分∠DBC,∴∠DBM=∠CBM.
又∵DE∥BC,∴∠DMB=∠MBC,∴∠DMB=∠DBM, ∴BD=DM,∴△BDM是等腰三角形.同理,△CEM是等 腰三角形.∵AB=AC,∴∠ABC=∠ACB, ∴∠MBC=∠MCB,∴△CBM是等腰三角形.∵DE∥BC,
∴∠CAD=∠CBE, ∴∠CBE=∠BAD.
等腰三角形的判定 文字叙述 几何语言 图例
如果一个三角 在△ABC中, 形有两个角相 ∵∠B=∠C, 等腰三角 形的判定 等,那么这两 ∴AB=AC,即 个角所对的边 △ABC是等腰三 也相等(简写 成“等角对等 边”) 角形
(1)“等角对等边”必须是在
知识 同一个三角形中; (2)有两条边相等的三角形 是等腰三角形(定义)
解读
巧计乐背: 性质“等边对等角”,
判定“等角对等边”,
“三线合一”最广泛.
对等腰三角形“三线合一”的再思考:
(1)在△ABC中,如果AD既是△ABC的角平分线, 又是△ABC的中线,那么AB=AC; (2)在△ABC中,如果AD既是△ABC的角平分线, 又是△ABC的高,那么AB=AC; (3)在△ABC中,如果AD既是△ABC的中线,又 是△ABC的高,那么AB=AC.

人教版数学八年级上册-12.3角的平分线的性质 教案(1)

人教版数学八年级上册-12.3角的平分线的性质 教案(1)

奇妙的角平分线——由书上一道添辅助线题的思辨而作南昌二中昌北校区一、教材内容和内容解析1.教材内容本节课是人教版八年级上册第十二章第三节《角平分线的性质》的第二课时。

角平分线性质的应用,空间广博,是前面学习全等三角形的综合应用。

在平面几何的学习研究中应用广泛,本节课拟就“角平分线”背景的专题的探究学习,帮助学生体会角平分线的应用价值和作为辅助线的神奇,并积累一定的学习经验。

2.内容解析在平面几何学习中,角平分线是一种重要而又丰富的线,它的奇妙作用,需要在科学思维指导下,通过直观想象和综合分析来体现。

在此之前,学生已经学习了角平分线的定义、全等三角形、角平分线的性质及其结论,都为本节专题课奠定了基础。

通过“奇妙的角平分线”专题学习,着力于培育学生的直观想象和逻辑推理核心素养,积累一定的添辅助线构造全等三角形的经验。

二、教学目标和目标解析根据学生已有的知识和对本课知识的理解,我设计了如下目标:1.教学目标(1)掌握角平分线的性质,理解角平分线会带来轴对称图形从而带来相等的元素;(2)掌握利用角平分线构造全等三角形的三种方法“截长法”、“补短法”、“作垂线”;(3)在探究角平分线的拓展应用中,通过动手操作,互相交流,分享经验,提高学生交流合作的意识,培养学生科学的探究精神,和理性思考的意义;2.目标解析教学目标(1)是本节课的核心目标;教学目标(2)的确立则在(1)的基础上让学生进一步感受角平分线的神奇的魅力,体现它的应用价值,实现数学思维的启发与数学方法迁移;教学目标(3)则是以本节专题课为平台,开展数学推理的思考过程,综合训练学生各种能力,为以后的数学学习,特别是逻辑推理内容的学习起到很好的示范作用。

三、教学问题诊断分析1.学情分析八年级的学生已学完了三角形和全等三角形,对平面几何的证明有了初步的认识。

具备一定逻辑思考能力,动手能力较强,但学习数学的科学方法、思维范式会有所欠缺,以及每个学生的数学素养各有不同。

初中数学人教版八年级上册 等腰三角形(第1课时)

初中数学人教版八年级上册 等腰三角形(第1课时)

巩固练习
(1)解:∵AB=AC,AD是BC边上的中线,
∴∠BAD=∠CAD,∴∠BAC=2∠BAD=50°.
∵AB=AC,
∴ ∠C=∠ABC = ×(180°– ∠BAC)
1
2 = ×(180°– 50°)=65°.
(2)证明:∵AB=AC,AD是BC边上的中线,
1
∴ED⊥BC,
2
又∵BG平分∠ABC,EF⊥AB,
A
∴ ∠C= ∠B=30°,
∵BD = CD,∴AD⊥BC,
∴∠ADB=∠ADC = 90°.
B
D
C
∴∠ BAD =90°– ∠B = 60°.
课堂检测
2.如图,已知△ABC为等腰三角形,BD、CE为底角的平分线,
且∠DBC=∠F,求证:EC∥DF.
证明:∵△ABC为等腰三角形,AB=AC, ∴∠ABC=∠ACB.
人教版 数学 八年级 上册
13.3 等腰三角形
13.3.1 等腰三角形 (第1课时)
导入新知
导入新知
看到下面三角形了吗,它有何特点呢?

顶 角

底角 底角 底边
我们今天来探讨一下等腰三角形的性质.
素养目标
2.会运用等腰三角形的概念和性质解决有 关问题.
1. 探索并掌握等腰三角形的两个性质.
探究新知
知识点 等腰三角形的性质 把一张长方形的纸按图中的虚线对折,并剪去阴 影部分(一个直角三角形),再把得到的直角三角形
展开,得到的三角形ABC有什么特点?
探究新知
B
A
AB=AC
等腰三角形
C
探究新知 【思考】△ABC 是轴对称图形吗?它的对称轴是什么?

人教版八年级数学上册期末专题复习:以等腰三角形为桥梁的几何题例析(含解析、点评、跟踪训练)

人教版八年级数学上册期末专题复习:以等腰三角形为桥梁的几何题例析(含解析、点评、跟踪训练)

新人教版八年数学上册期末专题复习资料以等腰三角形为桥梁的几何题例析新人教版八年级数学上册前面三个单元都是几何内容,其中以等腰三角形为桥梁的题所占比例较大,在期末统考试题中高频出现,也是中考的热点题型;等腰三角形含特殊等腰三角形等边三角形和等腰直角三角形的“等对等关系” 和“三线合一”是桥梁作用的支撑. 题目一. 平分角添加“垂直”,“平行”元素构成等腰三角形的举例.例1. 如图,⊿ABC 中,过点C 作出∠BAC 的平分线的垂线于点D ,交AB 于点E .=BC 7 ⑴.若∠=346,∠=B 39;求∠BCE 的度数; ⑵.若==AB 12,AC 10;求BE 的长. 分析:对于⑴问利用12∠=∠和∠+∠=1490,∠+∠=2390可以得到:∠=∠43 ;因为∠=∠+∠4B BCE ,结合∠=346,∠=B 39 可以求出∠=-=BCE 46397.⑵问结合⑴问∠=∠43可以得出=AE AC ,所以=-=-=-=BE AB AE AB AE 12102.例2.已知⊿ABC 中,∠=ACB 90,⊥CD AB 于点D ,AE 平分∠BAC ,交CD 于点F ,⊥EG AB 于点G .求证:=EG CF .分析:由AE 平分∠BAC ,∠=ACB 90,⊥EG AB 可以得出: =CE GE ;根据直角三角形的锐角互余和对顶角相等可以得到∠+∠=CEA CAE 90, ∠+∠=CFE DAF 90,而AE 平分∠BAC 可以得到:∠=∠CAE DAE ,所以∠=∠CFE CEF ,所以=CE CF ;综上可证:=EG CF . 点评:例1、例2都是在平分线的基础上添加“垂直”条件,利用互余关系和平分角来得到同一个三角形的两角相等,从而得到等腰三角形为桥梁解决问题.例3.如图,在⊿ABC 中,∠=∠ABC 2C ,BD 平分∠ABC 交AC 于点D ,⊥AE BC 于点E ;求证:=AC 2BE .解析: 过点A 作AF ∥BC 交BD 的延长线于点F .∴∠=∠1F ,∠=∠2C∵BD 平分∠ABC 交AC 于点D本题有3个等腰三角形,其中通过作平行线构建出的等腰⊿ABF 是关键的一环;当然本题方法不止一种.特别注意当有平行线和角平分线结合,往往要通过其中构建出的等腰三角形为桥梁解决问题.追踪练习: 1. 如图,在△ABC ,B C ∠∠、的平分线交于点P ,过点P 作DE ∥BC ,别交AB AC 、于点D E 、两点,已知,,AB a AC b BC 10===,则△ADE 的周长为 ( )A. 10B. 2a 2b +C.a b +D.a b 10++ 2. 如图,⊿ABC 中,过点C 作出∠BAC 的平分线的垂线于点D . 求证:∠>∠1C3.在四边形ABCD 中,AB ∥CD BD AD ⊥,BD 平分ABC ∠,,=∠=BC AD C 120,CD 2cm =;求AB 的长?M .138,则MAB ∠A5.如图,已知△ABC 是等腰直角三角形,∠=BAC 90 ,BE 平分∠ABC ,⊥DE BC ,垂足为点D .⑴.求证:⊥AD BE ; ⑵.如果=BC 10 ,求+AB AE 的长.题目二.遇“垂直+中点”型以及“T 字”型结构连起的等腰三角形举例.例1.如图,在四边形ABCD 中,点E 是边BC 的中点,点F 是边CD 的中点,且有AE BC,AF CD ⊥⊥ . ⑴.求证:AB AD =;⑵.若BCD 114∠= ,求BAD ∠的度数.解析:⑴.连结AC .∵点E 是边BC 的中点,AE BC ⊥ ∴AB AC = (垂直平分线的性质) 同理AD AC = ∴=AB AD⑵.∵AB AC,AD AC == ,且有AE BC,AF CD ⊥⊥。

人教版八年级上册13.3.1《等腰三角形》

人教版八年级上册13.3.1《等腰三角形》

《等腰三角形》◆教材分析本节课是在前面学习了三角形的有关概念及性质、轴对称变换、全等三角形、垂直平分线和尺规作图的基础上,研究等腰三角形的定义及其重要性质,它既是前面所学知识的延伸,也是后面直角三角形、等边三角形的知识的重要储备,我们常常利用它证明角相等、线段相等、两直线垂直,因此本节课具有承上启下的重要作用。

◆教学目标【知识与能力目标】1、理解并掌握等腰三角形的性质。

2、会运用等腰三角形的概念和性质解决有关问题。

3、观察等腰三角形的对称性、发展形象思维。

4、探索等腰三角形的判定定理【过程与方法目标】1、通过实践、观察、证明等腰三角形的性质,培养学生的推理能力。

2、通过运用等腰三角形的性质解决有关的问题,提高运用知识和技能解决问题的能力,发展应用意识。

3、探索等腰三角形的判定定理,进一步体验轴对称的特征,发展空间观念【情感态度价值观目标】1、引导学生对图形的观察、发现,激发学生的好奇心和求知欲。

2、在运用数学知识解决问题的活动中获取成功的体验,建立学习的自信心。

3、感受图形中的动态美、和谐美、对称美,感受合作交流带来的成功感,树立自信心。

4、通过对等腰三角形的判定定理的探索,让学生体会探索学习的乐趣,并通过等腰三角形的判定定理的简单应用,加深对定理的理解.从而培养学生利用已有知识解决实际问题的能力【教学重点】1、等腰三角形的概念和性质及其应用。

2、等腰三角形的判定定理及其应用【教学难点】1、等腰三角形的性质的证明。

2、探索等腰三角形的判定定理◆教学过程一、情景导入:师:日常生活中,我们会经常看到一些美丽的图案,其中一些是平面几何图形,接下来我们观察几幅图片,说一说你们看到了什么图形?(课件向学生展示平常见到的有关等腰三角形的图片)学生观察一组图片,回答问题。

【设计意图】使学生能从实际生活中抽象出等腰三角形,初步感知等腰三角形在实际生活中的广泛应用,用美丽的画面激发学生的求知欲。

培养学生勤观察,肯思考的学习习惯。

2024年人教版八年级上册数学阶段拔尖专训8 构造等腰三角形常用模型

2024年人教版八年级上册数学阶段拔尖专训8 构造等腰三角形常用模型

【高分秘籍】
1
2
3
4
5
6
7
8
9
10
阶段拔尖专训
作腰的平行线模型
作底边的平行线模型
【条件】 AB = AC , DE ∥
【条件】 AB = AC , DE ∥
AC .
BC .
【结论】 DB = DE .
【结论】 AD = AE .
1
2
3
4
5
6
7
8
9
10
阶段拔尖专训
4. [2023广州番禺区期末]如图,△ ABC 中, AB = AC ,点
∠ FBC =3∠ C . ∴∠ FBC =∠ C ,∴ BF = FC . ∵ AB
= AF , BE ⊥ AD ,∴ BF =2 BE . ∴ AC = AF + FC =
AB + BF = AB +2 BE . ∴ AC - AB =2 BE .
1
2
3
4
5
6
7
8
9
10
阶段拔尖专训
作腰(底边)的平行线构造等腰三角形
AD 平分∠ BAC , AD ⊥ BD 于点 D ,连接 CD ,求
△ ACD 的面积.
1
2
3
4
5
6
7
8
9
10
阶段拔尖专训
【解】如图,延长 BD , AC 交于点 E ,∵ AD 平分
∠ BAC ,且 AD ⊥ BD 于点 D ,
∴ AB = AE , BD = DE .
∴ S△ ABD = S△ AED , S△ BDC = S△ EDC .
= AC ,∴∠ B =∠ ACB ,∴∠ B =∠ DHB ,∴ BD
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(一)复习等腰三角形相关知识
1、请同学们对等腰三角形的知识要点进行自我回顾:
(由学生先进行回顾,教师补充)
(二)探究过程
问题1:已知∠ABC,BD平分∠ABC,ED//BC.思考:△EBD是等腰三角形吗?
解:是;EB=ED
发现:无论点D在BD上如何运动,△EBD都是等腰三角形
结论:角平分线+平行线 等腰三角形
我们在几何证明中,一般不单独研究角,大多数都是借助图形,比如在三角形中研究问题,上面问题如果放在三角形中,我们可以作三角形中一个角的角平分线,然后过角平分线上一点,作这个角的一边的平行线。

(几何画板动态演示):
同样得到:点D在BD上运动,点D在三角形内、上、外,△EBD都是等腰三角形(随着点动,平行线的位置变了,不管位置如何变,角之间的关系没有变,形成等腰三角形这个结论不会变.)。

相关文档
最新文档