长沙市中考数学模拟试卷
2024年湖南省长沙市芙蓉区中考数学适应性试卷
一.选择题(共10小题,每小题3分,共30分)1.的倒数是()A.﹣2024B.2024C.D.2.龙年春晚分会场,“长沙元素”吸引八方来客,春节假日接待旅游人数278.94万人次,同比增长109.25%,其中数据278.94万用科学记数法表示为()A.2.7894×106B.0.27894×107C.2.7894×107D.27.894×1053.下列运算正确的是()A.2a2+a2=3a4B.(﹣2a2)3=8a6C.a2÷a3=D.(a﹣b)2=a2﹣b24.下列各组数中不能作为直角三角形的三边长的是()A.,,B.6,8,10C.7,24,25D.,3,55.3月28日,小米集团正式发布小米汽车SU7.小米SU7的正式发布上市,标志着小米“人车家生态”实现完整闭环,助推了我国新能源汽车产业的发展.以下是小米SU7Max四种造型的轮毂(除去轮胎的部分),其中不能近似看成轴对称图形的是()A.B.C.D.6.不等式组的解集在数轴上表示为()A.B.C.D.7.如图所示的几何体是由六个小正方体组合而成的,它的俯视图是()A.B.C.D.8.下列命题是真命题的是()A.相等的角是对顶角B.圆周角等于圆心角的一半C.平分弦的直径垂直于弦D.同角或等角的余角相等9.王爷爷上午8:00从家出发,外出散步,到老年阅览室看了一会儿报纸,继续以相同的速度散步一段时间,然后回家.如图描述了王爷爷在散步过程中离家的路程s(米)与所用时间t(分)之间的函数关系,则下列信息错误的是()A.王爷爷看报纸用了20分钟B.王爷爷一共走了1600米C.王爷爷回家的速度是80米/分D.上午8:32王爷爷在离家800米处10.对于平面直角坐标系xOy中的点P和图形G,给出如下定义:在图形G上若存在两点M,N,使△PMN 为正三角形,则称图形G为点P的T型线,点P为图形G的T型点,△PMN为图形G关于点P的T 型三角形.若H(0,﹣2)是抛物线y=x2+n的T型点,则n的取值范围是()A.n≥﹣1B.n≤﹣1C.n≥﹣D.n≤﹣二.填空题(共6小题,每小题3分,共18分)11.的算术平方根是.12.分解因式:3x2+6xy+3y2=.13.将二次函数y=(x+1)2+3的图象向右平移2个单位,再向下平移5个单位,所得二次函数的解析式为.14.甲、乙两名男同学练习投掷实心球,每人投了10次,平均成绩均为7.5米,方差分别为s甲2=0.2,S 2=0.08,成绩比较稳定的是(填“甲”或“乙”).乙15.若圆锥底面的半径为3,它的侧面展开图的面积为16π,则它的母线长为.16.如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,点M、N分别在AC、AB两边上,将△AMN沿直线MN折叠,使点A的对应点D恰好落在线段BC上,当△DCM是直角三角形时,则tan∠AMN的值为.三.解答题(本大题共有9小题,第17、18、19题每小题6分,第20、21题每小题6分,第22、23题每小题6分,第24、25题每小题6分,共72分)17.计算:﹣2sin60°+(﹣1)0+()﹣2.18.先化简,再求值,再从0,1,2,3这4个数中选择一个恰当的x值代入求值.19.小明利用所学三角函数知识对小区洋房的高度进行测量.他们在地面的A点处用测角仪测得楼房顶端D点的仰角为30°,向楼房前行20m在B点处测得楼房顶端D点的仰角为60°,已知测角仪的高度是1.6m(点A,B,C在同一条直线上),根据以上数据求楼房CD的高度.(,结果取整数)20.随着通讯技术的迅猛发展,人与人之间的沟通方式更多样、便捷.某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种),在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次统计共抽查了名学生,在扇形统计图中“QQ”的扇形圆心角的度数为;(2)将条形统计图补充完整;(3)某天甲、乙两名同学都想从“微信”、“QQ”、“电话”三种沟通方式中选一种方式与对方联系,请用列表或画树状图的方法求出甲、乙两名同学恰好选择同一种沟通方式的概率.21.如图,在▱ABCD中,E,F分别为边AB,CD的中点,连接DE、BF、BD.(1)求证:△ADE≌△CBF.(2)若AD⊥BD,则四边形BFDE是什么特殊四边形?请证明你的结论.22.春夏来临之际,天气开始暖和.某商家抓住商机,在三月份力推甲、乙两款儿童衬衣.已知三月份甲款衬衣的销售总额为6000元,乙款衬衣的销售总额为8100元,乙款衬衣的单价是甲款衬衣单价的1.5倍,乙款衬衣的销售数量比甲款衬衣的销售数量少5件.(1)求三月份甲款衬衣的单价是多少元?(2)四月份,该商家准备销售甲、乙两款衬衣共200件.为了加大推销力度,将甲款衬衣的单价在三月份的基础上下调了20%,乙款衬衣的单价在三月份的基础上打五折销售.要使四月份的总销售额不低于18720元,则该商家至少要卖出甲款衬衣多少件?23.如图,已知AB是⊙O的直径,AC是弦(不是直径),OD⊥AC垂足为G交⊙O于D,E为⊙O上一点(异于A、B),连接ED交AC于点F,过点E的直线交BA、CA的延长线分别于点P、M,且ME =MF.(1)求证:PE是⊙O的切线.(2)若DF=2,EF=8,求AD的长.(3)若PE=6,sin∠P=,求AE的长.24.我们不妨约定:在平面直角坐标系中,过某一点分别向x、y轴作垂线,若这一点与坐标轴围成的矩形周长和面积相等,则这个点叫做“和谐点”,这个矩形称为“和谐矩形”.例如,如图①,点P(﹣3,6),过点P分别作x、y垂线,与坐标轴围成的矩形周长和面积都是18,则点P为“和谐点”,矩形PBOA 为“和谐矩形”.(1)若点P(4,m﹣8)是第四象限的“和谐点”,求点p的坐标.(2)若反比例函数图象上存在“和谐点”,求k的取值范围.(3)如图②,一次函数与x轴、y轴分别交于点A、B,点P是△AOB的外接圆上一点,且四边形P AOB为“和谐矩形”,点C为弧BP的中点,点D是△AOB的外接圆上任意一点(P 与C不重合),连接CD,过点C作CD的垂线交直线DA于点E,求CE的最大值.25.如图:在平面直角坐标系中,直线l:y=x﹣与x轴交于点A,经过点A的抛物线y=ax2﹣3x+c 的对称轴是直线x=.(1)求抛物线的解析式;(2)平移直线l经过原点O,得到直线m,点P是直线m上任意一点,PB⊥x轴于点B,PC⊥y轴于点C,若点E在线段OB上,点F在线段OC的延长线上,连接PE,PF,且PF=3PE.求证:PE⊥PF;(3)若(2)中的点P坐标为(6,2),点E是x轴上的点,点F是y轴上的点,当PE⊥PF时,抛物线上是否存在点Q,使四边形PEQF是矩形?如果存在,请求出点Q的坐标,如果不存在,请说明理由.。
2024年湖南省长沙市雅礼集团中考模拟数学预测卷(一)
2024年湖南省长沙市雅礼集团中考模拟数学预测卷(一)一、单选题1.4的算术平方根是( )A .2±B .16±C .2D .2-2.下列计算正确的是( )A .23x x x +=B .632x x x ÷=C .()437x x =D .347x x x ⋅= 3.如图所示的几何体是由一个正方体和一个圆柱组成的,它的左视图是( )A .B .C .D .4.方程211x x =+的解为( ) A .2x =- B .2x = C .4x =- D .4x =5.下列有关四边形的命题正确的是( )A .两组邻边分别相等的四边形是菱形B .对角互补的四边形是平行四边形C .矩形的对角线互相垂直D .正方形的对角线相等且互相平分6.甲、乙、丙、丁四名射击运动员进行射击测试,每人10次射击成绩的平均数x (单位:环)及方差2S (单位:环2)如下表所示:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择() A.甲B.乙C.丙D.丁7.如图,将矩形ABCD对折,使边AB与DC,BC与AD分别重合,展开后得到四边形EFGH.若2AB=,4BC=,则四边形EFGH的面积为()A.2 B.4 C.5 D.68.2023年6月4日,我省“神十五”航天员张陆和他的两位战友安全回到地球家园,“神十六”的三位航天员已在中国空间站开始值守,空间站的主体结构包括天和核心舱、问天实验舱和梦天实验舱,现在要从这三名航天员中选2人各进入一个实验舱开展科学实验,假设“神十六”甲、乙、丙三名航天员从核心舱进入问天实验舱和梦天实验舱开展实验的机会均等,则甲、乙两人同时被选中的概率为()A.12B.13C.14D.159.汉代初期的《淮南万毕术》是中国古代有关科技的重要文献,书中记载了我国古代学者在科技领域做过的一些探索及成就.如图1中记载的“取大镜高悬,置水盆于其下,则见四邻矣”,是古人利用光的反射定律改变光路的方法,即“反射光线与入射光线、法线在同一平面上;反射光线和入射光线位于法线的两侧;反射角等于入射角”.为了探清一口深井的底部情况,运用此原理,在如图2所示的井口放置一面平面镜可改变光路,当太阳光线AB与地面CD 所成夹角50ABC ∠=︒时,要使太阳光线经反射后刚好垂直于地面射入深井底部,则需要调整平面镜EF 与地面的夹角EBC ∠=( )A .70︒B .75︒C .80︒D .85︒10.观察下边的数表(横排为行,竖排为列),按数表中的规律,分数242024若排在第a 行b 列,则a b -的值为( )A .2025B .2024C .2023D .2022二、填空题11.因式分解:22ax ax a -+=.12x 应满足的条件是.13.如图,BD 是等边ABC V 的边AC 上的高,以点D 为圆心,DB 长为半径作弧交BC 的延长于点E ,则DEC ∠=.14.据长沙晚报消息:2023年一季度长沙全市实现地区生产总值3801.8亿元,同比增长4.5%.数据“3801.8亿”用科学记数法表示为.15.湖南是全国13个粮食主产省之一,水稻播种面积、总产量均居全国第一.2024年3月19日,习近平总书记来到常德市鼎城区谢家铺镇港中坪村,走进当地粮食生产万亩综合示范片区,察看秧苗培育和春耕备耕进展.如图为某农户家的圆锥形粮仓示意图,已知其底面周长为3π米,高度为3.6米,则此粮仓的侧面积为2m .(结果保留π)16.如图,点A ,B 分别在函数()0a y a x =>图像的两支上(A 在第一象限),连结AB 交x 轴于点C .点D ,E 在函数()0,0b y b x x=<<图像上,AE x P 轴,BD y ∥轴,连结DE ,BE .若2A C B C =,ABE V 的面积为12,四边形ABDE 的面积为15,则a b -的值为.三、解答题17.计算: 1011cos30|22-⎛⎫-⋅︒+ ⎪⎝⎭.18.先化简后求值:22222244a b a b a b a b a b a ab b +---÷+--+.其中2 1a b =. 19.如图1,某人的一器官后面A 处长了一个新生物,现需检测到皮肤的距离(图1).为避免伤害器官,可利用一种新型检测技术,检测射线可避开器官从侧面测量.某医疗小组制定方案,通过医疗仪器的测量获得相关数据,并利用数据计算出新生物到皮肤的距离.方案如下:请你根据上表中的测量数据,计算新生物A处到皮肤的距离.(结果精确到0.1cm)(参考数据:sin350.57︒≈,cos350.82︒≈,tan350.70︒≈,sin220.37︒≈,cos220.93︒≈,tan220.40︒≈)20.宁波象山作为杭州亚运会分赛区,积极推进各项准备工作.某校开展了亚运知识的宣传教育活动,为了解这次活动的效果,从全校1200名学生中随机抽取部分学生进行知识测试(测试满分为100分,得分x均为不小于60的整数),并将测试成绩分为四个等第;合格(6070x≤<),一般(7080x≤<),良好(8090x≤<),优秀(90100x≤≤),制作了如下统计图(部分信息未给出)由图中给出的信息解答下列问题:(1)求测试成绩为一般的学生人数,并补全频数直方图.(2)求扇形统计图中“良好”所对应的扇形圆心角的度数.(3)这次测试成绩的中位数是什么等第?(4)如果全校学生都参加测试,请你根据抽样测试的结果,估计该校测试成绩为良好和优秀的学生共有多少人?21.已知图中ABC V 和BDE V 都是等边三角形,点C 可沿AD 边翻折至BD 边上的点F .(1)求证:AE CD =;(2)试用等式写出线段AD ,BD ,DF 三者之间的数量关系,并说明理由;22.某校与当地国防大学联合开展红色之旅研学活动,如地图1,上午7:00,国防大学官兵乘坐军车从营地出发,同时学校师生乘坐大巴从学校出发,沿公路到红军抗战纪念基地进行研学.上午8:00,军车在离营地60km 的地方追上大巴并继续前行,到达仓库后,国防大学官兵下车领取研学物资,然后乘坐军车继续按原速前行,最后和师生同时到达基地,图2为军车和大巴离营地的路程()km s 与所用时间()h t 的函数关系.(1)求国防大学官兵在仓库领取物资所用的时间.(2)求大巴离营地的路程s 与所用时间t 的函数表达式及a 的值.(3)请直接写出军车领先大巴4km 时对应的大巴离营地的路程.23.如图所示,O e 外接于锐角ABC V ,D 为边BC 的中点,连接AD 并延长交O e 于点E ,过C 作AC 的垂线交AE 于点F ,点G 为AD 上一点,已知BC 平分EBG ∠且BCG AFC ∠=∠.(1)试求BGC ∠的度数.(2)①证明:AF BC =.②若AG DF =,求tan GBC ∠的值.24.定义:对于函数图像上任意一点(1x ,1y ),当1x 满足1m x n ≤≤(m 、n 为正实数)时,函数图像上都存在唯一的点(2x ,2y ),其中2m x n ≤≤,使得124y y ⋅=成立,则称该函数在m x n ≤≤时为“依赖函数”.(1)判断函数4y x=在34x ≤≤时是否为“依赖函数”,并说明理由; (2)若函数2y kx =+(0k ≠)在15x ≤≤时是“依赖函数”,求k 的值;(3)已知函数()2y x a =-(3a ≥)在34x ≤≤时是“依赖函数”,且在34x ≤≤时不等式()()2225x a t s t x -≥-+-+对于任意实数t 都成立,求实数s 的取值范围.25.定义:有两个相邻的内角是直角,并且有两条邻边相等的四边形称为邻等四边形,相等两邻边的夹角称为邻等角.(1)如图1,在四边形ABCD 中,,90AD BC A ∠=︒∥,对角线BD 平分ADC ∠.求证:四边形ABCD 为邻等四边形.(2)如图2,在6×5的方格纸中,A ,B ,C 三点均在格点上,若四边形ABCD 是邻等四边形,请画出所有符合条件的格点D .(3)如图3,四边形ABCD 是邻等四边形,90DAB ABC ∠=∠=︒,BCD ∠为邻等角,连接AC ,过B 作BE AC ∥交DA 的延长线于点E .若8,10AC DE ==,求四边形EBCD 的周长.。
湖南长沙市中考模拟数学考试卷(二)(解析版)(初三)中考模拟.doc
湖南长沙市中考模拟数学考试卷(二)(解析版)(初三)中考模拟姓名:_____________ 年级:____________ 学号:______________一、xx 题(每空xx 分,共xx 分)【题文】数轴上的点A 到原点的距离是3,则点A 表示的数为( ) A .3或﹣3 B .6 C .﹣6 D .6或﹣6 【答案】A . 【解析】试题分析:设这个数是x ,则|x|=3,解得x=+3或﹣3.故选A . 考点:数轴.【题文】下列计算正确的是( )A .a3+a4=a7B .a3•a4=a7C .(a3)4=a7D .a6÷a3=a2 【答案】B . 【解析】试题分析:选项A ,a3与a4是相加,不是相乘,不能利用同底数幂的乘法计算,故本选项错误;选项B ,、a3•a4=a7,正确;选项C ,应为(a3)4=a3×4=a12,故本选项错误;选项D ,应为a6÷a3=a6﹣3=a3,故本选项错误.故选B .考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【题文】2015年10月18日,TCL2015长沙国际马拉松赛正式开赛,来自国内外的1.5万余名选手在长沙这座美丽的城市中奔跑.马拉松长跑是国际上非常普及的长跑比赛项目,全程距离约为42千米,将数据42千米用科学记数法表示为( )A .42×103米B .0.42×105米C .4.2×104米D .4.2×105米 【答案】C . 【解析】试题分析:科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,整数位数减1即可.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.将42千米用科学记数法表示为4.2×104,故选C . 考点:科学记数法.【题文】如图,AB ∥CD ,AD 平分∠BAC ,若∠BAD=70°,那么∠ACD 的度数为( )A.40° B.35° C.50° D.45°【答案】A.【解析】试题分析:已知AD平分∠BAC,∠BAD=70°,根据角平分线定义求出∠BAC=2∠BAD=140°,再由AB∥CD,所以∠ACD=180°﹣∠BAC=40°,故选A.考点:平行线的性质.【题文】在平面直角坐标系中,如果抛物线y=3x2不动,而把x轴、y轴分别向上、向右平移2个单位,那么在新坐标系中抛物线的解析式是()A.y=3(x﹣2)2+2 B.y=3(x+2)2﹣2C.y=3(x﹣2)2+2 D.y=3(x+2)2+2【答案】B.【解析】试题分析:抛物线y=3x2的顶点坐标为(0,0),把点(0,0)向下、向左平移2个单位(﹣2,﹣2),根据“左加右减”的规律可得所以在新坐标系中此抛物线的解析式为y=3(x+2)2﹣2.故选B.考点:二次函数图象与几何变换.【题文】要使式子在实数范围内有意义,则x的取值范围是()A.x≥1 B.x<1 C.x≤1 D.x≠1【答案】A.【解析】试题分析:根据被开方数大于等于0可得x﹣1≥0,解得x≥1.故选A.考点:二次根式有意义的条件.【题文】若圆锥的轴截图为等边三角形,则称此圆锥为正圆锥,则正圆锥的侧面展开图的圆心角是()A.90° B.120° C.150° D.180°【答案】D.【解析】试题分析:设正圆锥的底面半径是r,则母线长是2r,底面周长是2πr,设正圆锥的侧面展开图的圆心角是n°,则=2πr,解得:n=180°.故选D.考点:圆锥的计算.【题文】下列说法正确的是()A. 随机抛掷一枚硬币,反面一定朝上B. 数据3,3,5,5,8的众数是8C. 某商场抽奖活动获奖的概率为,说明毎买50张奖券中一定有一张中奖D. 想要了解广安市民对“全面二孩”政策的看法,宜采用抽样调查【答案】D【解析】试题分析:选项A,抛硬币是一个随机事件,不能保证反面朝上,所以A错误;选项B,本组数据应该有两个众数,3、5都出现了两次,所以B错误;选项C,获奖概率为是一个随机事件,所以C错误;选项D,对长沙市民的调查涉及的人数众多,适合用抽样调查,所以D正确.故选D.考点:概率的意义;全面调查与抽样调查;众数.【题文】如图,线段CD两个端点的坐标分别为C(1,2)、D(2,0),以原点为位似中心,将线段CD放大得到线段AB,若点B坐标为(5,0),则点A的坐标为()A.(2,5) B.(2.5,5) C.(3,5) D.(3,6)【答案】B.【解析】试题分析:∵以原点O为位似中心,在第一象限内,将线段CD放大得到线段AB,∴B点与D点是对应点,则位似比为5:2,∵C(1,2),∴点A的坐标为:(2.5,5)故选B.考点:位似变换;坐标与图形性质.【题文】如图,是一次函数y=kx+b与反比例函数y=的图象,则关于x的方程kx+b=的解为()A.xl=1,x2=2 B.xl=﹣2,x2=﹣1C.xl=1,x2=﹣2 D.xl=2,x2=﹣1【答案】C.试题分析:由图可知,两函数图象的交点坐标为(1,2),(﹣2,﹣1),即可得关于x的方程kx+b=的解为xl=1,x2=﹣2.故选C.考点:反比例函数的图象;一次函数的图象.【题文】为了迎接元旦小长假的购物高峰,黄兴南路步行街某运动品牌专卖店购进甲、乙两种服装,现此商店同时卖出甲、乙两种服装各一件,每件售价都为240元,其中一件赚了20%,另一件亏了20%,那么这个商店卖出这两件服装总体的盈亏情况是()A.赚了12元 B.亏了12元 C.赚了20元 D.亏了20元【答案】D.【解析】试题分析:设赚钱的衣服的进价为x元,赔钱的衣服的进价为y元,则x+20%x=240,解得x=200,y﹣20%y=240,解得y=300,∴240×2﹣=﹣20(元).即:这个服装店卖出这两件服装亏本了,亏本20元.故选D.考点:一元一次方程的应用.【题文】若一列不全为零的数除了第一个数和最后一个数外,每个数都等于前后与它相邻的两数之和,则称这列数具有“波动性质”.已知一列数共有2016个,且具有“波动性质”,则这2016个数的和为()A.﹣64 B.0 C.18 D.64【答案】C.【解析】试题分析:由题意得:an+1=an+an+2,an+2=an+1+an+3,an+3=an+2+an+4,三式相加,得:an+an+2+an+4=0,同理可得:an+1+an+3+an+5=0,以上两式相加,可知:该数列连续六个数相加等于零,2016是6的倍数,所以结果为零.故选C.考点:规律探究题.【题文】如图,在平行四边形ABCD中,点E、F分别在边BC、AD上,请添加一个条件,使四边形AECF 是平行四边形(只填一个即可).【答案】AF=CE.试题分析:添加的条件是AF=CE.理由是:∵四边形ABCD是平行四边形,∴AD∥BC,∴AF∥CE,∵AF=CE,∴四边形AECF是平行四边形.考点:平行四边形的判定与性质.【题文】有一组数据如下:2,a,4,6,8,已知它们的平均数是5,那么这组数据的方差为.【答案】4.【解析】试题分析:由平均数的定义可得a=5×5﹣2﹣4﹣6﹣8=5,根据方差公式可得s2= [(2﹣5)2+(5﹣5)2+(4﹣5)2+(6﹣5)2+(8﹣5)2]=4.考点:方差;算术平均数.【题文】已知x,y满足方程组,则x﹣y的值是.【答案】﹣1.【解析】试题分析:,由②﹣①得:x﹣y=﹣1.考点:解二元一次方程组.【题文】若关x的函数y=kx2+2x-1的图像与x轴仅有一个交点,则实数k的值为__________。
湖南长沙市中考模拟数学考试卷(三)(解析版)(初三)中考模拟.doc
湖南长沙市中考模拟数学考试卷(三)(解析版)(初三)中考模拟姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)【题文】﹣4的相反数().A.4 B.﹣4 C. D.【答案】A.【解析】试题分析:根据只有符号不同的两个数叫做互为相反数解答.所以﹣4的相反数4.故选:A.考点:相反数.【题文】下列图形中,是中心对称但不是轴对称图形的为().A. B. C. D.【答案】C.【解析】试题分析:根据轴对称图形及中心对称图形的定义,结合所给图形进行判断即可.A、既不是轴对称图形,也不是中心对称图形,故本选项错误;B、是轴对称图形,也是中心对称图形,故本选项错误;C、不是轴对称图形,是中心对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误.故选:C.考点:中心对称图形;轴对称图形.【题文】下列运算正确的是().A. B.C.3x﹣2x=1 D.【答案】D.【解析】试题分析:根据同底数幂的乘法与除法,幂的乘方的运算法则计算即可.A、与不是同类项,不能合并,故选项错误;B、应为,故选项错误;C、应为3x﹣2x=x,故选项错误;D、,正确.故选:D.考点:同底数幂的除法;合并同类项;幂的乘方与积的乘方.【题文】如图所示是由六个相同的小立方块搭成的几何体,这个几何体的俯视图是().A. B. C. D.【答案】A.【解析】试题分析:找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.从上面看易得:第一层最左边有1个正方形,第二层有3个正方形.故选:A.考点:简单组合体的三视图.【题文】下列各式从左到右的变形中,为因式分解的是().A.x(a﹣b)=ax﹣bxB.C.﹣1=(y+1)(y﹣1)D.ax+by+c=x(a+b)+c【答案】C.【解析】试题分析:根据因式分解是把一个多项式转化成几个整式积,可得答案.A、是整式的乘法,故A错误;B、没把一个多项式转化成几个整式积,故B错误;C、把一个多项式转化成几个整式积,故C正确;D、没把一个多项式转化成几个整式积,故D错误.故选:C.考点:因式分解的意义.【题文】甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数都是9.3环,方差分别为=0.56,=0.60,=0.50,=0.45,则成绩最稳定的是().A.甲 B.乙 C.丙 D.丁【答案】D.【解析】试题分析:直接利用方差是反映一组数据的波动大小的一个量,方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,进而分析即可.∵=0.56,=0.60,=0.50,=0.45,∴<<<,∴成绩最稳定的是丁.故选:D.考点:方差;算术平均数.【题文】反比例函数y=的图象在().A.第一、二象限 B.第二、三象限C.第一、三象限 D.第二、四象限【答案】D.【解析】试题分析:根据反比例函数的图象与系数的关系即可得出结论.∵反比例函数y=中,k=﹣5<0,∴函数图象的两个分支分别位于二四象限.故选:D.考点:反比例函数的性质.【题文】一次函数y=﹣x+4的图象与两坐标轴所围成的三角形的面积为().A.2 B.4 C.6 D.8【答案】D.【解析】试题分析:先求出直线与坐标轴的交点,再利用三角形的面积公式即可得出结论.∵令x=0,则y=4;令y=0,则x=4,∴直线与两坐标轴的交点分别为:(0,4),(4,0),∴一次函数y=﹣x+4的图象与两坐标轴所围成的三角形的面积=×4×4=8.故选:D.考点:一次函数图象上点的坐标特征.【题文】在半径为6的⊙O中,60°圆心角所对的扇形的面积为().A.6π B.4π C.2π D.π【答案】A.【解析】试题分析:根据扇形的面积公式S=进行解答即可.依题意到所求扇形的面积==6π.故选:A.考点:扇形面积的计算.【题文】如图,以两条直线,的交点坐标为解的方程组是().A. B. C. D.【答案】C.【解析】试题分析:两条直线的交点坐标应该是联立两个一次函数解析式所组方程组的解.因此本题需先根据两直线经过的点的坐标,用待定系数法求出两直线的解析式.然后联立两函数的解析式可得出所求的方程组.直线经过(2,3)、(0,﹣1),易知其函数解析式为y=2x﹣1;直线经过(2,3)、(0,1),易知其函数解析式为y=x+1;因此以两条直线,的交点坐标为解的方程组是:.故选:C.考点:一次函数与二元一次方程(组).【题文】如图,小山岗的斜坡AC的坡角α=45°,在与山脚C距离200米的D处,测得山顶A的仰角为26.6°,小山岗的高AB约为().(结果取整数,参考数据:sin26.6°=0.45,cos26.6°=0.89,tan26.6°=0.50)A.164m B.178m C.200m D.1618m【答案】C.【解析】试题分析:首先在Rt△ABC中,根据坡角的正切值用AB表示出BC,然后在Rt△DBA中,用BA表示出BD,根据BD与BC之间的关系列出方程求解即可.∵在Rt△ABC中,=tanα=1,∴BC=AB,∵在RtADB中,∴=tan26.6°=0.50,即:BD=2AB,∵BD﹣BC=CD=200,∴2AB﹣AB=200,解得:AB=200米.故选:C.考点:解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.【题文】如图,四边形EFGH是矩形ABCD的内接矩形,且EF:FG=3:1,AB:BC=2:1,则tan∠AHE的值为().A. B. C. D.【答案】A.【解析】试题分析:先求出△AEH与△BFE相似,再根据其相似比EF:FG=3:1设出AE、BF的长及AB、BC的长,求出的值即可.∵四边形EFGH是矩形ABCD的内接矩形,EF:FG=3:1,AB:BC=2:1,∴∠HEA+∠FEB=90°,∵∠FEB+∠EFB=90°,∴∠HEA=∠EFB,∵∠HAE=∠B,∴Rt△HAE∽△EBF,∴,同理可得,∠GHD=∠EFB,HG=EF,∴△GDH≌△EBF,DH=BF,DG=EB,设AB=2x,BC=x,AE=a,BF=3a,则AH=x﹣3a,AE=a,∴tan∠AHE=tan∠BEF,即,解得:x=8a,∴tan∠AHE===.故选:A.考点:勾股定理;全等三角形的性质;全等三角形的判定;相似三角形的判定与性质.【题文】一次函数y=3x+6中,y的值随x的增大而.【答案】增大.【解析】试题分析:根据一次函数的性质可知“当k>0时,变量y的值随x的值增大而增大”,由此可得出结论.考点:一次函数的性质.∵一次函数y=3x+6中,k>0,∴变量y的值随x的值增大而增大.故答案为:增大.【题文】不等式组的解集是.【答案】﹣1≤x≤1.【解析】试题分析:先求出各不等式的解集,再求出其公共解集即可.由(1)解得x≥﹣1.由(2)解得x≤1.故原不等式组的解集为:﹣1≤x≤1.故答案为:﹣1≤x≤1.考点:解一元一次不等式组.【题文】若∠A=45°30′,那么∠A的余角是.【答案】44°30′.【解析】试题分析:根据互为余角的两个角的和等于90°列式进行计算即可得解.则∠A的余角是90°﹣45°30′=44°30′.故答案为:44°30′.考点:余角和补角;度分秒的换算.【题文】已知一组数据3,4,4,2,5,这组数据的中位数为.【答案】4.【解析】试题分析:要求中位数,是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可.从小到大排列此数据为:2、3、4、4、5,第3位是4,则这组数据的中位数是4.故答案为:4.考点:中位数.【题文】如图,在⊙O中,圆心角∠AOB=100°,点P是上任意一点(不与A、B重合,点C在AP的延长线上),则∠BPC= .【答案】50°.【解析】试题分析:在优弧上取点D,连接AD、BD,根据圆周角定理求出∠ADB=∠AOB=50°,根据圆内接四边形的性质可得∠BPC=∠ADB=50°.故答案为:50°.考点:圆内接四边形的性质;圆周角定理.【题文】在平面直角坐标系中,规定把一个点先绕原点逆时针旋转45°,再作出旋转后的点关于原点的对称点,这称为一次变换,已知点A的坐标为(﹣1,0),则点A经过连续2016次这样的变换得到的点的坐标是.【答案】(﹣1,0).【解析】试题分析:分别求得第一、二、三…八次变换后的坐标,得到每8次循环一次.则2016÷8=252即可求得结果.由题意第一次旋转后的坐标为(,),第二次旋转后的坐标为(0,﹣1),第三次旋转后的坐标为(,),第四次旋转后的坐标为(1,0),第五次旋转后的坐标为(,),第六次旋转后的坐标为(0,1),第七次旋转后的坐标为(,),第八次旋转后的坐标为(﹣1,0),因为2016÷8=252,所以把点A经过连续2016次这样的变换得到的点A2016的坐标是(﹣1,0).故答案是:(﹣1,0).考点:关于原点对称的点的坐标.【题文】计算:.【答案】1.【解析】试题分析:原式利用零指数幂、负整数指数幂法则,立方根定义,以及绝对值的代数意义化简,计算即可得到结果.试题解析:原式=4﹣2+1﹣2=1.考点:实数的运算;零指数幂;负整数指数幂.【题文】先化简再求值:,其中x=.【答案】原式化简得,代入数值得.【解析】试题分析:先把括号里式子通分,再把除法转化为乘法,约分化为最简,最后代值计算.试题解析:原式===,当x=时,原式==.考点:分式的化简求值;分母有理化.【题文】今年5月份,某校九年级学生参加了南宁市中考体育考试,为了了解该校九年级(1)班同学的中考体育情况,对全班学生的中考体育成绩进行了统计,并绘制以下不完整的频数分布表(如表)和扇形统计图(如图),根据图表中的信息解答下列问题:(1)求全班学生人数和m的值.(2)直接写出该班学生的中考体育成绩的中位数落在哪个分数段.(3)该班中考体育成绩满分共有3人,其中男生2人,女生1人,现需从这3人中随机选取2人到八年级进行经验交流,请用“列表法”或“画树状图法”求出恰好选到一男一女的概率.分组分数段(分)频数A36≤x<412B41≤x<465C46≤x<5115D51≤x<56mE56≤x<6110【答案】(1)50;18;(2) 51﹣56分数段;(3) .【解析】试题分析:(1)利用C分数段所占比例以及其频数求出总数即可,进而得出m的值;(2)利用中位数的定义得出中位数的位置;(3)利用列表或画树状图列举出所有的可能,再根据概率公式计算即可得解.试题解析:(1)由题意可得:全班学生人数:15÷30%=50(人);m=50﹣2﹣5﹣15﹣10=18(人);(2)∵全班学生人数:50人,∴第25和第26个数据的平均数是中位数,∴中位数落在51﹣56分数段;(3)如图所示,将男生分别标记为A1,A2,女生标记为B1A1A2B1A1(A1,A2)(A1,B1)A2(A2,A1)(A2,B1)B1(B1,A1)(B1,A2)P(一男一女l(2)作AM⊥BC于M,由等边三角形的性质和三角函数求出AM,在求出AD的长,证出四边形ABCD是梯形,由梯形的面积公式即可得出结果.试题解析:(1)∵△ABC、△ADE是等边三角形,∴AF=EF=AE=D E=AD,∠ACB=∠DAE=60°,∴四边形AFED是菱形;(2)解:作AM⊥BC于M,如图所示:∵△ABC是等边三角形,∴AC=BC=10,∠B=60°,∴AM=AB•sin60°=10×=,∵E是AC的中点,∴AE=AD=AC=5,∵∠ACB=∠DAE=60°,∴AD∥BC,∴四边形ABCD是梯形,∴四边形ABCD的面积=(AD+BC)×AM=(5+10)×=.考点:菱形的判定与性质;等边三角形的性质.【题文】为了促进营业额不断增长,某大型超市决定购进甲、乙两种商品,已知甲种商品每件进价为150元,售价为168元;乙种商品每件进价为120元,售价为140元,该超市用42000元购进甲、乙两种商品,销售完后共获利5600元.(1)该超市购进甲、乙两种商品各多少件?(2)超市第二次以原价购进甲、乙两种商品共400件,且购进甲种商品的件数多于乙种商品的件数,要使第二次经营活动的获利不少于7580元,共有几种进货方案?写出利润最大的进货方案.【答案】(1) 购进甲、乙两种商品分别为200件和100件;(2) 共有10种进货方案,当购进甲201件,乙种商品购进199件时,最大利润为7598元.【解析】试题分析:(1)设购进甲种商品x件,购进乙种商品y件,利用总成本和总利润列二元一次方程组,然后解方程组即可;(2)设超市第二次以原价购进甲a件,则乙种商品购进(400﹣a)件,利用“购进甲种商品的件数多于乙种商品的件数,要使第二次经营活动的获利不少于7580元”列不等式组,然后求出不等式组的整数解即可得到进货方案,再利用每件乙商品的利润比每件甲商品的利润大可确定利润最大的进货方案.试题解析:(1)设购进甲种商品x件,购进乙种商品y件,根据题意得,解得,答:该超市购进甲、乙两种商品分别为200件和10l【题文】如图,已知AB为⊙O的直径,F为⊙O上一点,AC平分∠BAF且交⊙O于点C,过点C作CD⊥AF于点D,延长AB、DC交于点E,连接BC、CF.(1)求证:CD是⊙O的切线;(2)若AD=6,DE=8,求BE的长;(3)求证:AF+2DF=AB.【答案】(1)证明详见解析;(2) ;(3)证明详见解析.【解析】试题分析:(1)连接OC,由AB为⊙O的直径,得到∠ACB=90°,求得∠ACB=∠D,根据角平分线的性质得到∠BAC=∠CAD,通过相似三角形得到∠ABC=∠ACD,等量代换得到∠OCB=∠ACD,求出∠OCD=90°,即可得到结论;(2)根据勾股定理得到AE==10,根据相似三角形的性质得到,代入数据得到r=,于是得到结论;(3)过C作CG⊥AE于G,根据全等三角形的性质得到AG=AD,CG=CD,推出Rt△BCG≌Rt△FCD,由全等三角形的性质得到BG=FD,等量代换即可得到结论.试题解析:(1)连接OC,∵AB为⊙O的直径,∴∠ACB=90°,∵CD⊥AF,∴∠D=90°,∴∠ACB=∠D,∵AC平分∠BAF,∴∠BAC=∠CAD,∴△ABC∽△ACD,∴∠ABC=∠ACD,∵OB=OC,∴∠OBC=∠OCB,∴∠OCB=∠ACD,∵∠OCB+∠ACO=∠ACO+∠ACD=90°,∴∠OCD=90°,∴CD是⊙O的切线;(2)∵AD=6,DE=8,∴AE==10,∵OC∥AD,∴∠OCE=∠ADE,∴△OCE∽△ADE,∴,即,∴r= ,∴BE=10﹣=;(3)过C作CG⊥AE于G,在△ACG与△ACD中,∠GAC=∠DAC,∠CGA=∠CDA,AC=AC,∴△ACG≌△ACD,∴AG=AD,CG=CD,∵BC=CF,在Rt△BCG与Rt△FCD中,CG=CD,BC=CF,∴Rt△BCG≌Rt△FCD,∴BG=FD,∴AF+2DF=AD+DF=AG+GB=AB,即AF+2DF=AB.考点:切线的判定.【题文】(2016•长沙模拟)已知二次函数y=(k是常数).(1)若该函数的图象与x轴有两个不同的交点,试求k的取值范围;(2)若点(1,k)在某反比例函数图象上,要使该反比例函数和二次函数y=都是y随x的增大而增大,求k应满足的条件及x的取值范围;(3)若抛物线y=与x轴交于A(,0)、B(,0)两点,且<,=34,若与y轴不平行的直线y=ax+b经过点P(1,3),且与抛物线交于(,)、(,)两点,试探究是否为定值,并写出探究过程.【答案】(1) k<,且k≠0;(2) k<0;x<;(3)1,理由详见解析.【解析】试题分析:(1)根据题意k≠0,△>0,列出不等式组即可解决问题.(2)设反比例函数解析式为y=,因为经过点(1,k),所以m=k,再根据条件即可确定k的值以及x 的范围.(3)结论:=1.令y=0,则有=0,所以+=,=,根据=34,列出方程求出k的值,设过点P的直线为y=kx+3﹣k,由消去y得+(4k﹣2)x﹣3﹣4k=0,得=﹣(4k﹣2),=﹣3﹣4k,根据=,代入化简即可解决问题.试题解析:(1)∵二次函数y=与x轴有两个不同的交点,∴,解得k<,且k≠0.所以若该函数的图象与x轴有两个不同的交点,k的取值范围是k<,且k≠0;(2)设反比例函数解析式为y=,∵经过点(1,k),∴m=k,∵反比例函数和二次函数y=都是y随x的增大而增大,∴k<0,x<,即x<.(3)结论:=1.理由:令y=0,则有=0,∴+=,=∵=34,∴=34,∴=0,解得k=或,由(1)可知k<,∴k=,∴抛物线解析式为y=,设过点P的直线为y=kx+b,把P(1,3)代入得3=k+b,∴b=3﹣k,∴过点P的直线为y=kx+3﹣k,∵过点P的直线为y=kx+3﹣k与物线交于(,)、(,)两点,∴=k+3﹣k,=k+3﹣k,由消去y得+(4k﹣2)x﹣3﹣4k=0,∴=﹣(4k﹣2),=﹣3﹣4k ,∴===1.考点:二次函数综合题.【题文】(2016•长沙模拟)已知直线y=x+3与两坐标轴分别相交于A、B两点,若点P、Q分别是线段AB、OB上的动点,且点P不与A、B重合,点Q不与O、B重合.(1)若OP⊥AB于点P,△OPQ为等腰三角形,这时满足条件的点Q有几个?请直接写出相应的OQ的长;(2)当点P是AB的中点时,若△OPQ与△ABO相似,这时满足条件的点Q有几个?请分别求出相应的OQ 的长;(3)试探究是否存在以点P为直角顶点的Rt△OPQ?若存在,求出相应的OQ的范围,并求出OQ取最小值时点P的坐标;若不存在,请说明理由.【答案】(1) 点Q有三个,OQ的长为2或或;(2) 2个,OQ的长为2或;(3)存在,OQ取最小值时点P的坐标(,).【解析】试题分析:(1)如图1中,满足条件的点Q有三个,分三种情形讨论即可①QO=QP,②OP=OQ,③PO=PQ.(2)如图2中,满足条件的点Q有2个.作⊥OB于,⊥OP于,可以证明、满足条件,理由相似三角形的性质即可解决问题.(3)存在.以OQ为直径作⊙G,当⊙G与AB相切于点P时,∠OPQ=90°,此时OQ的值最小.由此求出OQ ,即可解决问题.试题解析:(1)如图1中,满足条件的点Q有三个.理由:作PM⊥OB于M,作OP的垂直平分线交OP于F,交OB于.则=,△是等腰三角形,此时=OB=2.∵A(0,3),B(4,0),∴OA=3,OB=4,AB=5,∵OP⊥AB,∴•OA•OB=•AB•OP,∴OP==,当=OP时,△是等腰三角形,此时=,当PO=时,∵PM⊥,∴=2OM,∵∠POM=∠,∠PMO=∠OPB,∴△OPM∽△OBP,∴=OM•OB,∴OM=,∴=.综上所述,△OPQ为等腰三角形时,满足条件的点Q有三个,OQ的长为2或或.(2)如图2中,满足条件的点Q有2个.理由:作⊥OB于,⊥OP于,∵PA=PB,∠AOB=90°,∴PA=PB=PO,∴∠=∠ABO,∵∠=∠AOB,∴△∽△BAO,∵PA=PB,∥OA,∴={{165}l∴PB=AB=AP=2,在Rt△PBG中,∵∠GPB=90°,PG=r,BG=4﹣r,PB=2,∴,∴r=,∴OQ=2r=3,∴当3≤OQ<4时,△OPQ可为直角三角形.作PM⊥OB于M.∵PM∥OA,∴,∴,∴PM=,BM=,∴OM=4﹣=,∴OQ取最小值时点P的坐标(,).考点:一次函数综合题.。
初中数学湖南省长沙市中考模拟数学考试题(含解析)
xx学校xx学年xx学期xx 试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:﹣2的相反数是()A.﹣2 B.﹣ C.2 D.试题2:据统计,2017年长沙市地区生产总值约为10200亿元,经济总量迈入“万亿俱乐部”,数据10200用科学记数法表示为()A.0.102×105 B.10.2×103 C.1.02×104 D.1.02×103试题3:下列计算正确的是()A.a2+a3=a5 B.3 C.(x2)3=x5 D.m5÷m3=m2试题4:下列长度的三条线段,能组成三角形的是()A.4cm,5cm,9cm B.8cm,8cm,15cm C.5cm,5cm,10cm D.6cm,7cm,14cm试题5:下列四个图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.试题6:不等式组的解集在数轴上表示正确的是()A. B. C. D.试题7:将下列如图的平面图形绕轴l旋转一周,可以得到的立体图形是()A. B. C. D.试题8:下列说法正确的是()A.任意掷一枚质地均匀的硬币10次,一定有5次正面向上B.天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C.“篮球队员在罚球线上投篮一次,投中”为随机事件D.“a是实数,|a|≥0”是不可能事件试题9:估计+1的值是()A.在2和3之间 B.在3和4之间 C.在4和5之间 D.在5和6之间试题10:小明家、食堂、图书馆在同一条直线上,小明从家去食堂吃早餐,接着去图书馆读报,然后回家,如图反映了这个过程中,小明离家的距离y与时间x之间的对应关系.根据图象,下列说法正确的是()A.小明吃早餐用了25minB.小明读报用了30minC.食堂到图书馆的距离为0.8kmD.小明从图书馆回家的速度为0.8km/min试题11:我国南宋著名数学家秦九韶的著作《数书九章》里记载有这样一道题:“问有沙田一块,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知为田几何?”这道题讲的是:有一块三角形沙田,三条边长分别为5里,12里,13里,问这块沙田面积有多大?题中“里”是我国市制长度单位,1里=500米,则该沙田的面积为()A.7.5平方千米 B.15平方千米 C.75平方千米 D.750平方千米试题12:若对于任意非零实数a,抛物线y=ax2+ax﹣2a总不经过点P(x0﹣3,x02﹣16),则符合条件的点P()A.有且只有1个 B.有且只有2个 C.有且只有3个 D.有无穷多个试题13:化简:=试题14:某校九年级准备开展春季研学活动,对全年级学生各自最想去的活动地点进行了调查,把调查结果制成了如下扇形统计图,则“世界之窗”对应扇形的圆心角为度.试题15:在平面直角坐标系中,将点A′(﹣2,3)向右平移3个单位长度,再向下平移2个单位长度,那么平移后对应的点A′的坐标是试题16:掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得面朝上的点数为偶数的概率是试题17:已知关于x方程x2﹣3x+a=0有一个根为1,则方程的另一个根为试题18:如图,点A,B,D在⊙O上,∠A=20°,BC是⊙O的切线,B为切点,OD的延长线交BC于点C,则∠OCB= 度.试题19:计算:(﹣1)2018﹣+(π﹣3)0+4cos45°试题20:先化简,再求值:(a+b)2+b(a﹣b)﹣4ab,其中a=2,b=﹣.试题21:)为了了解居民的环保意识,社区工作人员在光明小区随机抽取了若干名居民开展主题为“打赢蓝天保卫战”的环保知识有奖问答活动,并用得到的数据绘制了如图条形统计图(得分为整数,满分为10分,最低分为6分)请根据图中信息,解答下列问题:(1)本次调查一共抽取了名居民;(2)求本次调查获取的样本数据的平均数、众数和中位数;(3)社区决定对该小区500名居民开展这项有奖问答活动,得10分者设为“一等奖”,请你根据调查结果,帮社区工作人员估计需准备多少份“一等奖”奖品?试题22:为加快城乡对接,建设全域美丽乡村,某地区对A、B两地间的公路进行改建.如图,A、B两地之间有一座山.汽车原来从A地到B地需途径C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶.已知BC=80千米,∠A=45°,∠B=30°.(1)开通隧道前,汽车从A地到B地大约要走多少千米?(2)开通隧道后,汽车从A地到B地大约可以少走多少千米?(结果精确到0.1千米)(参考数据:≈141,≈1.73)试题23:随着中国传统节日“端午节”的临近,东方红商场决定开展“欢度端午,回馈顾客”的让利促销活动,对部分品牌粽子进行打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五折,已知打折前,买6盒甲品牌粽子和3盒乙品牌粽子需600元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元.(1)打折前甲、乙两种品牌粽子每盒分别为多少元?(2)阳光敬老院需购买甲品牌粽子80盒,乙品牌粽子100盒,问打折后购买这批粽子比不打折节省了多少钱?试题24:如图,在△ABC中,AD是边BC上的中线,∠BAD=∠CAD,CE∥AD,CE交BA的延长线于点E,BC=8,AD=3.(1)求CE的长;(2)求证:△ABC为等腰三角形.(3)求△ABC的外接圆圆心P与内切圆圆心Q之间的距离.试题25:如图,在平面直角坐标系xOy中,函数y=(m为常数,m>1,x>0)的图象经过点P(m,1)和Q(1,m),直线PQ与x轴,y轴分别交于C,D两点,点M(x,y)是该函数图象上的一个动点,过点M分别作x轴和y轴的垂线,垂足分别为A,B.(1)求∠OCD的度数;(2)当m=3,1<x<3时,存在点M使得△OPM∽△OCP,求此时点M的坐标;(3)当m=5时,矩形OAMB与△OPQ的重叠部分的面积能否等于4.1?请说明你的理由.试题26:我们不妨约定:对角线互相垂直的凸四边形叫做“十字形”.(1)①在“平行四边形,矩形,菱形,正方形”中,一定是“十字形”的有;②在凸四边形ABCD中,AB=AD且CB≠CD,则该四边形“十字形”.(填“是”或“不是”)(2)如图1,A,B,C,D是半径为1的⊙O上按逆时针方向排列的四个动点,AC与BD交于点E,∠ADB﹣∠CDB=∠ABD﹣∠CBD,当6≤AC2+BD2≤7时,求OE的取值范围;(3)如图2,在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a,b,c为常数,a>0,c<0)与x轴交于A,C两点(点A在点C的左侧),B是抛物线与y轴的交点,点D的坐标为(0,﹣ac),记“十字形”ABCD的面积为S,记△AOB,△COD,△AOD,△BOC的面积分别为S1,S2,S3,S4.求同时满足下列三个条件的抛物线的解析式;①=;②=;③“十字形”ABCD的周长为12.试题1答案:C【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:﹣2的相反数是2,故选:C.试题2答案:C【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:10200=1.02×104,故选:C.试题3答案:D【分析】直接利用合并同类项法则以及幂的乘方运算法则、同底数幂的乘除运算法则分别计算得出答案.【解答】解:A、a2+a3,无法计算,故此选项错误;B、3﹣2=,故此选项错误;C、(x2)3=x6,故此选项错误;D、m5÷m3=m2,正确.故选:D.试题4答案:B分析】结合“三角形中较短的两边之和大于第三边”,分别套入四个选项中得三边长,即可得出结论.【解答】解:A、∵5+4=9,9=9,∴该三边不能组成三角形,故此选项错误;B、8+8=16,16>15,∴该三边能组成三角形,故此选项正确;C、5+5=10,10=10,∴该三边不能组成三角形,故此选项错误;D、6+7=13,13<14,∴该三边不能组成三角形,故此选项错误;故选:B.试题5答案:A【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,是中心对称图形,故此选项正确;B、是轴对称图形,不是中心对称图形,故此选项错误;C、不是轴对称图形,不是中心对称图形,故此选项错误;D、不是轴对称图形,是中心对称图形,故此选项错误;故选:A.试题6答案:C分析】先求出各不等式的解集,再求出其公共解集即可.【解答】解:解不等式x+2>0,得:x>﹣2,解不等式2x﹣4≤0,得:x≤2,则不等式组的解集为﹣2<x≤2,将解集表示在数轴上如下:故选:C.试题7答案:D【分析】根据面动成体以及圆台的特点进行逐一分析,能求出结果.【解答】解:绕直线l旋转一周,可以得到圆台,故选:D.试题8答案:C分析】直接利用概率的意义以及随机事件的定义分别分析得出答案.【解答】解:A、任意掷一枚质地均匀的硬币10次,一定有5次正面向上,错误;B、天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨,错误;C、“篮球队员在罚球线上投篮一次,投中”为随机事件,正确;D、“a是实数,|a|≥0”是必然事件,故此选项错误.故选:C.试题9答案:C【分析】应先找到所求的无理数在哪两个和它接近的整数之间,然后判断出所求的无理数的范围.【解答】解:∵32=9,42=16,∴,∴+1在4到5之间.故选:C.试题10答案:B【分析】根据函数图象判断即可.【解答】解:小明吃早餐用了(25﹣8)=17min,A错误;小明读报用了(58﹣28)=30min,B正确;食堂到图书馆的距离为(0.8﹣0.6)=0.2km,C错误;小明从图书馆回家的速度为0.8÷10=0.08km/min,D错误;故选:B.试题11答案:A【分析】直接利用勾股定理的逆定理进而结合直角三角形面积求法得出答案.【解答】解:∵52+122=132,∴三条边长分别为5里,12里,13里,构成了直角三角形,∴这块沙田面积为:×5×500×12×500=7500000(平方米)=7.5(平方千米).故选:A.试题12答案:B【分析】根据题意可以得到相应的不等式,然后根据对于任意非零实数a,抛物线y=ax2+ax﹣2a总不经过点P(x0﹣3,x02﹣16),即可求得点P的坐标,从而可以解答本题.【解答】解:∵对于任意非零实数a,抛物线y=ax2+ax﹣2a总不经过点P(x0﹣3,x02﹣16),∴x02﹣16≠a(x0﹣3)2+a(x0﹣3)﹣2a∴(x0﹣4)(x0+4)≠a(x0﹣1)(x0﹣4)∴(x0+4)≠a(x0﹣1)∴x0=﹣4或x0=1,∴点P的坐标为(﹣7,0)或(﹣2,﹣15)故选:B.试题13答案:1 .【分析】根据分式的加减法法则:同分母分式加减法法则:同分母的分式想加减,分母不变,把分子相加减计算即可.【解答】解:原式==1.故答案为:1.试题14答案:90分析】根据圆心角=360°×百分比计算即可;【解答】解:“世界之窗”对应扇形的圆心角=360°×(1﹣10%﹣30%﹣20%﹣15%)=90°,故答案为90.试题15答案:(1,1).【分析】直接利用平移的性质分别得出平移后点的坐标得出答案.【解答】解:∵将点A′(﹣2,3)向右平移3个单位长度,∴得到(1,3),∵再向下平移2个单位长度,∴平移后对应的点A′的坐标是:(1,1).故答案为:(1,1).试题16答案:.【分析】先统计出偶数点的个数,再根据概率公式解答.【解答】解:正方体骰子共六个面,点数为1,2,3,4,5,6,偶数为2,4,6,故点数为偶数的概率为=,故答案为:.试题17答案:2 .【分析】设方程的另一个根为m,根据两根之和等于﹣,即可得出关于m的一元一次方程,解之即可得出结论.【解答】解:设方程的另一个根为m,根据题意得:1+m=3,解得:m=2.故答案为:2.试题18答案:50【分析】由圆周角定理易求∠BOC的度数,再根据切线的性质定理可得∠OBC=90°,进而可求出求出∠OCB的度°°【解答】解:∵∠A=20°,∴∠BOC=40°,∵BC是⊙O的切线,B为切点,∴∠OBC=90°,∴∠OCB=90°﹣40°=50°,故答案为:50.试题19答案:解:原式=1﹣2+1+4×=1﹣2+1+2=2.试题20答案:解:原式=a2+2ab+b2+ab﹣b2﹣4ab=a2﹣ab,当a=2,b=﹣时,原式=4+1=5.试题21答案:【解答】解:(1)共抽取:4+10+15+11+10=50(人),故答案为50;(2)平均数=(4×6+10×7+15×8=11×9+10×10)=8.26;众数:得到8分的人最多,故众数为8.中位数:由小到大排列,知第25,26平均分为8分,故中位数为8分;(3)得到10分占10÷50=20%,故500人时,需要一等奖奖品500×20%=100(份).试题22答案:【解答】解:(1)过点C作AB的垂线CD,垂足为D,∵AB⊥CD,sin30°=,BC=80千米,∴CD=BC•sin30°=80×(千米),AC=(千米),AC+BC=80+40≈40×1.41+80=136.4(千米),答:开通隧道前,汽车从A地到B地大约要走136.4千米;(2)∵cos30°=,BC=80(千米),∴BD=BC•cos30°=80×(千米),∵tan45°=,CD=40(千米),∴AD=(千米),∴AB=AD+BD=40+40≈40+40×1.73=109.2(千米),∴汽车从A地到B地比原来少走多少路程为:AC+BC﹣AB=136.4﹣109.2=27.2(千米).答:汽车从A地到B地比原来少走的路程为27.2千米.试题23答案:【解答】解:(1)设打折前甲品牌粽子每盒x元,乙品牌粽子每盒y元,根据题意得:,解得:.答:打折前甲品牌粽子每盒40元,乙品牌粽子每盒120元.(2)80×40+100×120﹣80×0.8×40﹣100×0.75×120=3640(元).答:打折后购买这批粽子比不打折节省了3640元.试题24答案:【解答】(1)解:∵AD是边BC上的中线,∴BD=CD,∵CE∥AD,∴AD为△BCE的中位线,∴CE=2AD=6;(2)证明:∵BD=CD,∠BAD=∠CAD,AD=AD,∴△ABD≌△CAD,∴AB=AC,∴△ABC为等腰三角形.(3)如图,连接BP、BQ、CQ,在Rt△ABD中,AB==5,设⊙P的半径为R,⊙Q的半径为r,在Rt△PBD中,(R﹣3)2+42=R2,解得R=,∴PD=PA﹣AD=﹣3=,∵S△ABQ+S△BCQ+S△ACQ=S△ABC,∴•r•5+•r•8+•r•5=•3•8,解得r=,即QD=,∴PQ=PD+QD=+=.答:△ABC的外接圆圆心P与内切圆圆心Q之间的距离为.试题25答案:【解答】解:(1)设直线PQ的解析式为y=kx+b,则有,解得,∴y=﹣x+m+!,令x=0,得到y=m+1,∴D(0,m+1),令y+0,得到x=m+1,∴C(m+1,0),∴OC=OD,∵∠COD=90°,∴∠OCD=45°.(2)设M(a,),∵△OPM∽△OCP,∴==,∴OP2=OC•OM,当m=3时,P(3,1),C(4,0),OP2=32+12=10,OC=4,OM=,∴=,∴10=4,∴4a4﹣25a2+36=0,(4a2﹣9)(a2﹣4)=0,∴a=±,a=±2,∵1<a<3,∴a=或2,当a=时,M(,2),PM=,CP=,≠(舍弃),当a=2时,M(2,),PM=,CP=,∴==,成立,∴M(2,).(3)不存在.理由如下:当m=5时,P(5,1),Q(1,5),设M(x,),OP的解析式为:y=x,OQ的解析式为y=5x,①当1<x<5时,如图1中,∴E(,),F(x,x),S=S矩形OAMB﹣S△OAF﹣S△OBE=5﹣•x•x﹣••=4.1,化简得到:x4﹣9x2+25=0,△<O,∴没有实数根.②当x≤1时,如图2中,S=S△OGH<S△OAM=2.5,∴不存在,③当x≥5时,如图3中,S=S△OTS<S△OBM=2.5,∴不存在,综上所述,不存在.试题26答案:【解答】解:(1)①∵菱形,正方形的对角线互相垂直,∴菱形,正方形是:“十字形”,∵平行四边形,矩形的对角线不一定垂直,∴平行四边形,矩形不是“十字形”,故答案为:菱形,正方形;②如图,当CB=CD时,在△ABC和△ADC中,,∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC,∵AB=AD,∴AC⊥BD,∴当CB≠CD时,四边形ABCD不是“十字形”,故答案为:不是;(2)∵∠ADB+∠CBD=∠ABD+∠CDB,∠CBD=∠CDB=∠CAB,∴∠ADB+∠CAD=∠ABD+∠CAB,∴180°﹣∠AED=180°﹣∠AEB,∴∠AED=∠AEB=90°,∴AC⊥BD,过点O作OM⊥AC于M,ON⊥BD于N,连接OA,OD,∴OA=OD=1,OM2=OA2﹣AM2,ON2=OD2﹣DN2,AM=AC,DN=BD,四边形OMEN是矩形,∴ON=ME,OE2=OM2+ME2,∴OE2=OM2+ON2=2﹣(AC2+BD2),∵6≤AC2+BD2≤7,∴2﹣≤OE2≤2﹣,∴≤OE2≤,∴(OE>0);(3)由题意得,A(,0),B(0,c),C(,0),D(0,﹣ac),∵a>0,c<0,∴OA=,OB=﹣c,OC=,OD=﹣ac,AC=,BD=﹣ac﹣c,∴S=AC•BD=﹣(ac+c)×,S1=OA•OB=﹣,S2=OC•OD=﹣,S3=OA×OD=﹣,S4=OB×OC=﹣,∵=+,=+,∴+=+,∴=2,∴a=1,∴S=﹣c,S1=﹣,S4=﹣,∵,∴S=S1+S2+2,∴﹣c=﹣+2,∴﹣=﹣c•,∴=,∴b=0,∴A(﹣,0),B(0,c),C(,0),d(0,﹣c),∴四边形ABCD是菱形,∴4AD=12,∴AD=3,即:AD2=90,∵AD2=c2﹣c,∴c2﹣c=90,∴c=﹣9或c=10(舍),即:y=x2﹣9.。
2024年湖南省长沙市雅礼集团中考模拟数学试题(五)
2024年湖南省长沙市雅礼集团中考模拟数学试题(五)一、单选题1.2024-的倒数为( )A .2024B .12024C .2024-D .12024- 2.某市政府在2022年着力稳定宏观经济大盘,全市经济发展取得新成效,全年生产总值实现2502.7亿元.数据2502.7亿用科学记数法表示为( )A .82502.710⨯B .112.502710⨯C .102.502710⨯D .32.502710⨯ 3.如图是一个立体图形的三视图,该立体图形是( )A .三棱柱B .圆柱C .三棱锥D .圆锥4.下列函数中,函数值y 随x 的增大而减小的是( )A .6y x =B .6y x =-C .6y x =D .6y x =- 5.如图在BCD △中,A 为BD 边上一点,AE CD ∥,AC 平分BCD ∠,235∠=︒,60D ∠=︒,则B ∠=( )A .50︒B .45︒C .40︒D .25︒6.某镇的“脆红李”深受广大市民的喜爱,也是馈赠亲友的尚佳礼品,首批“脆红李”成熟后,当地某电商用12000元购进这种“脆红李”进行销售,面市后,线上订单猛增供不应求,该电商又用11000元购进第二批这种“脆红李”,由于更多“脆红李”成熟,单价比第一批每件便宜了5元,但数量比第一批多购进了40件,求购进的第一批“脆红李”的单价.设购进的第一批“脆红李”的单价为x 元/件,根据题意可列方程为( )A .1200011000405x x =-- B .1200011000405x x -=+ C .1200011000405x x +=+ D .1100012000405x x +=- 7.为了调查不同时间段的车流量,某学校的兴趣小组统计了不同时间段的车流量,如图是各时间段的小车与公交车的车流量,则下列说法正确的是( )A .小车的车流量比公交车的车流量稳定B .小车的车流量比公交车的方差较大C .小车与公交车车流量在同一时间段达到最小值D .小车与公交车车流量的变化趋势相同8.在四边形ABCD 中,,AD BC AB CD =∥.下列说法能使四边形ABCD 为矩形的是( ) A .AB CD ∥ B .AD BC = C .A B ∠=∠ D .A D ∠=∠9.()11,A x y ,()22,B x y 为反比例函数4k y x -=的图像上两点,当120x x <<时,有12y y <,则k 的取值范围是( )A .0k <B .0k >C .4k <D .4k >10.如图,四边形ABCD 是边长为12的正方形,曲线11112DA B C D A ⋅⋅⋅是由多段90︒的圆心角所对的弧组成的.其中,¼1DA 的圆心为A ,半径为AD ;¼11A B 的圆心为B ,半径为1BA ;¼11B C 的圆心为C ,半径为1CB ;¼11C D 的圆心为D ,半径为1DC ,…,按规律循环延伸曲线,¼20242024A B 则的长是( )A .4047π2B .2024πC .2025π2D .2023π二、填空题11.函数y =x 的取值范围是. 12.分解因式:29m n n -=.13.在平面直角坐标系xOy 中,若反比例函数()0k y k x=≠的图象经过点()1,2--A 和点()2,B m ,则AOB V 的面积为.14.已知12,x x 是方程2220x kx +-=的两个实数根,且()()122210x x --=,则k 的值为. 15.黄金分割是指将整体一分为二,较大部分与整体部分的比值等于较小部分与较大部分的比值,这个比例被公认为是最能引起美感的比例,因此被称为黄金分割.如图,乐器上的一根弦长80cm AB =,两个端点A ,B 固定在乐器面板上,支撑点C 是靠近点B 的黄金分割点,支撑点D 是靠近点A 的黄金分割点,则支撑点C ,D 之间的距离为cm .(结果保留根号)16.在ABC V 中7,3,90AB BC C ==∠=︒,点D 在边AC 上,点E 在CA 延长线上,且CD DE =,如果B e 过点A ,E e 过点D ,若B e 与E e 有公共点,那么E e 半径r 的取值范围是.三、解答题17()042024π2cos30--+︒18.先化简,再求值;532224a a a a ⎛⎫ ⎪⎝-÷⎭+---,其中a 为满足04a <<的整数. 19.为了防洪需要,某地决定新建一座拦水坝,如图,拦水坝的横断面为梯形ABCD ,斜面坡度3:4i =是指坡面的铅直高度AF 与水平宽度BF 的比.已知斜坡CD 长度为20米,18C ∠=︒,求斜坡AB 的长.(结果精确到米)(参考数据:sin180.31,cos180.95,tan180.32︒≈︒≈︒≈)20.在深化教育综合改革、提升区域教育整体水平的进程中,某中学以兴趣小组为载体,加强社团建设,艺术活动学生参与面达100%,通过调查统计,八年级二班参加学校社团的情况(每位同学只能参加其中一项):A .剪纸社团,B .泥塑社团,C .陶笛社团,D .书法社团,E .合唱社团,并绘制了如下两幅不完整的统计图.(1)该班共有学生_________人,并把条形统计图补充完整;(2)扇形统计图中,m =___________,n =___________,参加剪纸社团对应的扇形圆心角为_______度;(3)小鹏和小兵参加了书法社团,由于参加书法社团几位同学都非常优秀,老师将从书法社团的学生中选取2人参加学校组织的书法大赛,请用“列表法”或“画树状图法”,求出恰好是小鹏和小兵参加比赛的概率.21.在如图所示的平面直角坐标系中,菱形OABC 的一边OC 在x 轴正半轴上,顶点A 的坐标为(,点D 是边OC 上的动点,过点D 作DE OB ⊥交边OA 于点E ,作DF OB ∥交边BC 于点F ,连接EF ,设OD x =,DEF V 的面积为S .(1)求线段DF 的长度y 关于x 的函数解析式,并写出x 的范围;(2)当x 取何值时,S 的值最大?请求出S 的最大值.22.中国是世界文明古国之一.数学是中国古代科学中一门重要学科,其发展源远流长,成就辉煌.《孙子算经》、《周髀算经》是我国古代较为普及的算书,许多问题浅显有趣.某书店的《孙子算经》单价是《周髀算经》单价的34,用600元购买《孙子算经》比购买《周髀算经》多买5本.(1)求《孙子算经》、《周髀算经》两种图书的单价分别为多少元?(2)国际数学节是为了纪念中国古代数学家祖冲之而设立的节日.为筹备“3.14数学节”活动,某校计划到该书店购买这两种图书共80本,且购买的《周髀算经》数量不少于《孙子算经》数量的一半.由于购买量大,书店打折优惠,两种图书均按八折出售,求两种图书分别购买多少本时费用最少?23.在数学活动课上,小明兴趣小组对二次函数的图象进行了深入的探究,如果将二次函数()20y ax bx c a =++≠图象上的点(),A x y 的横坐标不变,纵坐标变为A 点的横、纵坐标之和,就会得到的一个新的点()1,A x x y +,他们把这个点1A 定义为点A 的“简朴”点.他们发现:二次函数()20y ax bx c a =++≠所有简朴点构成的图象也是一条抛物线,于是把这条抛物线定义为()20y ax bx c a =++≠的“简朴曲线”.例如,二次函数21y x x =++的“简朴曲线”就是22121y x x x x x =+++=++,请按照定义完成:(1)点()1,2P 的“简朴”点是________;(2)如果抛物线()2730y ax x a =-+≠经过点()1,3M -,求该抛物线的“简朴曲线”;(3)已知抛物线2y x bx c =++图象上的点(),B x y 的“简朴点”是()11,1B -,若该抛物线的“简朴曲线”的顶点坐标为(),m n ,当03c ≤≤时,求n 的取值范围.24.如图(1)所示,已知在ABC V 中,AB AC =,O 在边AB 上,点F 为边OB 中点,为以O 为圆心,BO 为半径的圆分别交CB ,AC 于点D ,E ,联结EF 交OD 于点G .(1)如果OG DG =,求证:四边形CEGD 为平行四边形;(2)如图(2)所示,联结OE ,如果90,,4BAC OFE DOE AO ∠=︒∠=∠=,求边OB 的长;(3)联结BG ,如果OBG V 是以OB 为腰的等腰三角形,且AO OF =,求OG OD的值. 25.如图1所示,已知抛物线212y x bx c =-++与x 轴交于A ,B 4,0 两点,与y 轴交于点()0,2C .点P 为第一象限抛物线上的点,连接CA ,CB ,PB ,PC .(1)填空:b =______,c =______,tan ABC ∠=______;(2)如图1所示,当2PCB OCA ∠=∠时,求点P 的坐标;(3)如图2所示,点D 在y 轴负半轴上,OD OB =,点Q 为抛物线上一点,90QBD ∠=︒.点E ,F 分别为BDQ △的边DQ ,DB 上的动点,且QE DF =,记BE QF +的最小值为m . ①求m 的值;②设PCB V 的面积为S ,若214S m k =-,请直接写出k 的取值范围.。
初中数学 湖南省长沙市中考模拟数学考试卷考试题及答案word解析版
xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:-3相反数是()A. B.-3 C. - D.3试题2:下列平面图形中,既是轴对称图形,又是中心对称图形的是()A. B.C.试题3:甲、乙两学生在军训打靶训练中,打靶的总次数相同,且所中环数的平均数也相同,但甲的成绩比乙的成绩稳定,那么两者的方差的大小关系是()A.<B.>C.=D.不能确定试题4:一个不等式组的解集在数轴上表示出来如图所示,则下列符合条件的不等式组为()评卷人得分A. B. C.D.试题5:下列四边形中,对角线一定不相等的是()A.正方形 B.矩形 C.等腰梯形 D.直角梯形试题6:下列四个角中,最有可能与70°角互补的是()试题7:小明骑自行车上学,开始以正常速度匀速行驶,但行至中途时,自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,他比修车前加快了速度继续匀速行驶,下面是行驶路程s(m)关于时间t(min)的函数图象,那么符合小明行驶情况的大致图象是()试题8:如图,菱形ABCD中,对角线AC与BD相交于点O,OE∥DC且交BC于E,AD=6cm,则OE的长为()A、6cmB、4cmC、3cmD、2cm试题9:某闭合电路中,电源的电压为定值,电流I(A)与电阻R(Ω)成反比例.如图表示的是该电路中电流I与电阻R之间函数关系的图像,则用电阻R表示电流I的函数解析式为()A.I=B. I=C. I=D. I=-试题10:现有3㎝,4㎝,7㎝,9㎝长的四根木棒,任取其中三根组成一个三角形,那么可以组成的三角形的个数是()A. 1个B. 2个C. 3个D.4个试题11:已知函数关系式:y=则自变量x的取值范围是__________试题12:如图,在△ABC中,∠A=45°,∠B=60°,则外角∠ACD= 度.试题13:若实数a,b满足:,则= .试题14:如果一次函数y=mx+3的图象经过第一、二、四象限,则m的取值范围是试题15:任意抛掷一枚硬币,则“正面朝上”是事件试题16:在半径为1cm的圆中,圆心角为120°的扇形的弧长是 cm;试题17:如图,AB∥CD∥EF,那么∠BAC+∠ACE+∠CEF= 度;试题18:如图,等腰梯形ABCD中,AD//BC,AB=AD=2,∠B=60°,则BC的长为;试题19:计算:试题20:先化简,再求值:,其中=-2,b=1;试题21:某班数学科代表小华对本班上期期末考试数学成绩(成绩取整数,满分为100分)作了统计分析,绘制成如下频数、频率统计表和频数分布直方图,请你根据图表提供的信息,解答下列问题:根据上述信息,完成下列问题:(1) 频数、频率统计表中,a=;b= ;(2)请将频数分布直方图补充完整;(3)小华在班上任选一名同学,该同学成绩不低于80分的概率是多少?分组49.5~59.559.5~69.569.5~79.579.5~89.589.5~1.5合计频数2 a2164 5频率0.4.16.4.32b 1试题22:如图,A,P,B,C是半径为8的⊙O上的四点,且满足∠BAC=∠APC=60°,(1)求证:△ABC是等边三角形;(2)求圆心O到BC的距离OD;试题23:以“开放崛起,绿色发展”为主题的第七届“中博会”已于2012年5月20日在湖南长沙圆满落幕,作为东道主的湖南省一共签订了境外与省外境内投资合作项目共348个,其中境外投资合作项目个数的2倍比省内境外投资合作项目多51个。
湖南省长沙市天心区部分校2024届中考数学最后冲刺模拟试卷含解析
湖南省长沙市天心区部分校2024年中考数学最后冲刺模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划7天,每天安排4场比赛.设比赛组织者应邀请x个队参赛,则x满足的关系式为()A.1(1)282x x-=B.1(1)282x x+=C.(1)28x x-=D.(1)28x x+=2.已知二次函数y=ax1+bx+c+1的图象如图所示,顶点为(﹣1,0),下列结论:①abc>0;②b1﹣4ac=0;③a>1;④ax1+bx+c=﹣1的根为x1=x1=﹣1;⑤若点B(﹣14,y1)、C(﹣12,y1)为函数图象上的两点,则y1>y1.其中正确的个数是()A.1 B.3 C.4 D.53.如图1,将三角板的直角顶点放在直角尺的一边上,Ð1=30°,Ð2=50°,则Ð3的度数为A.80°B.50°C.30°D.20°4.在同一坐标系中,反比例函数y=kx与二次函数y=kx2+k(k≠0)的图象可能为()A.B.C .D .5.如图,某小区计划在一块长为31m ,宽为10m 的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m 1.若设道路的宽为xm ,则下面所列方程正确的是( )A .(31﹣1x )(10﹣x )=570B .31x+1×10x=31×10﹣570C .(31﹣x )(10﹣x )=31×10﹣570D .31x+1×10x ﹣1x 1=5706.小明和他的爸爸妈妈共3人站成一排拍照,他的爸爸妈妈相邻的概率是( )A .16B .13C .12 D .237.下列图形中,是中心对称图形但不是轴对称图形的是( )A .B .C .D .8.下列方程中有实数解的是( )A .x 4+16=0B .x 2﹣x+1=0C .+2x x =-D .22111xx x =--9.如图,直线y =kx +b 与x 轴交于点(﹣4,0),则y >0时,x 的取值范围是( )A .x >﹣4B .x >0C .x <﹣4D .x <010.如图,将△ABC 绕点C 旋转60°得到△A′B′C′,已知AC=6,BC=4,则线段AB 扫过的图形面积为()A .32πB .83πC .6πD .以上答案都不对11.下列实数中,有理数是( )A .2B .2.1C .πD .5312.如图所示的四边形,与选项中的一个四边形相似,这个四边形是( )A .B .C .D .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.分解因式:2363m m -+=__________.14.如图为两正方形ABCD 、CEFG 和矩形DFHI 的位置图,其中D ,A 两点分别在CG 、BI 上,若AB=3,CE=5,则矩形DFHI 的面积是_____.15.如图,已知等腰直角三角形 ABC 的直角边长为 1,以 Rt △ABC 的斜边 AC 为直角 边,画第二个等腰直角三角形 ACD ,再以 Rt △ACD 的斜边 AD 为直角边,画第三个等腰直 角三角形 ADE……依此类推,直到第五个等腰直角三角形 AFG ,则由这五个等腰直角三角形所构成的图形的面积为__________.16.当a =3时,代数式22121()222a a a a a a -+-÷---的值是______. 17.如图,正比例函数y 1=k 1x 和反比例函数y 2=2k x的图象交于A (﹣1,2),B (1,﹣2)两点,若y 1>y 2,则x 的取值范围是_____.18.已知△ABC 中,∠C=90°,AB=9,2cos 3A =,把△ABC 绕着点C 旋转,使得点A 落在点A′,点B 落在点B′.若点A′在边AB 上,则点B 、B′的距离为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)解方程:x 2-4x -5=020.(6分)为了丰富校园文化,促进学生全面发展.我市某区教育局在全区中小学开展“书法、武术、黄梅戏进校园”活动.今年3月份,该区某校举行了“黄梅戏”演唱比赛,比赛成绩评定为A ,B ,C ,D ,E 五个等级,该校部分学生参加了学校的比赛,并将比赛结果绘制成如下两幅不完整的统计图,请根据图中信息,解答下列问题.(1)求该校参加本次“黄梅戏”演唱比赛的学生人数;(2)求扇形统计图B 等级所对应扇形的圆心角度数;(3)已知A 等级的4名学生中有1名男生,3名女生,现从中任意选取2名学生作为全校训练的示范者,请你用列表法或画树状图的方法,求出恰好选1名男生和1名女生的概率.21.(6分)甲乙两件服装的进价共500元,商场决定将甲服装按30%的利润定价,乙服装按20%的利润定价,实际出售时,两件服装均按9折出售,商场卖出这两件服装共获利67元.求甲乙两件服装的进价各是多少元;由于乙服装畅销,制衣厂经过两次上调价格后,使乙服装每件的进价达到242元,求每件乙服装进价的平均增长率;若每件乙服装进价按平均增长率再次上调,商场仍按9折出售,定价至少为多少元时,乙服装才可获得利润(定价取整数).22.(8分)已知二次函数y=a(x+m)2的顶点坐标为(﹣1,0),且过点A(﹣2,﹣12).(1)求这个二次函数的解析式;(2)点B(2,﹣2)在这个函数图象上吗?(3)你能通过左,右平移函数图象,使它过点B吗?若能,请写出平移方案.23.(8分)已知AC,EC分别为四边形ABCD和EFCG的对角线,点E在△ABC内,∠CAE+∠CBE=1.(1)如图①,当四边形ABCD和EFCG均为正方形时,连接BF.i)求证:△CAE∽△CBF;ii)若BE=1,AE=2,求CE的长;(2)如图②,当四边形ABCD和EFCG均为矩形,且AB EFkBC FC==时,若BE=1,AE=2,CE=3,求k的值;(3)如图③,当四边形ABCD和EFCG均为菱形,且∠DAB=∠GEF=45°时,设BE=m,AE=n,CE=p,试探究m,n,p三者之间满足的等量关系.(直接写出结果,不必写出解答过程)24.(10分)有A,B两个黑布袋,A布袋中有两个完全相同的小球,分别标有数字1和1.B 布袋中有三个完全相同的小球,分别标有数字﹣1,﹣1和﹣2.小明从A布袋中随机取出一个小球,记录其标有的数字为x,再从B布袋中随机取出一个小球,记录其标有的数字为y,这样就确定点Q的一个坐标为(x,y).(1)用列表或画树状图的方法写出点Q的所有可能坐标;(1)求点Q落在直线y=﹣x﹣1上的概率.25.(10分)楼房AB后有一假山,其坡度为i=13E点处有一休息亭,测得假山坡脚C与楼房水平距离BC=30米,与亭子距离CE=18米,小丽从楼房顶测得E点的俯角为45°,求楼房AB的高.(注:坡度i是指坡面的铅直高度与水平宽度的比)26.(12分)小李在学习了定理“直角三角形斜边上的中线等于斜边的一半”之后做了如下思考,请你帮他完成如下问题:他认为该定理有逆定理:“如果一个三角形某条边上的中线等于该边长的一半,那么这个三角形是直角三角形”应该成立.即如图①,在ABC ∆中,AD 是BC 边上的中线,若AD BD CD ==,求证:90BAC ∠=︒.如图②,已知矩形ABCD ,如果在矩形外存在一点E ,使得AE CE ⊥,求证:BE DE ⊥.(可以直接用第(1)问的结论)在第(2)问的条件下,如果AED ∆恰好是等边三角形,请求出此时矩形的两条邻边AB 与BC 的数量关系.27.(12分)为做好防汛工作,防汛指挥部决定对某水库的水坝进行加高加固,专家提供的方案是:水坝加高2米(即CD=2米),背水坡DE 的坡度i=1:1(即DB :EB=1:1),如图所示,已知AE=4米,∠EAC=130°,求水坝原来的高度BC .(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、A【解题分析】根据应用题的题目条件建立方程即可.【题目详解】 解:由题可得:1(1)472x x -=⨯ 即:1(1)282x x -= 故答案是:A.【题目点拨】本题主要考察一元二次方程的应用题,正确理解题意是解题的关键.2、D【解题分析】根据二次函数的图象与性质即可求出答案.【题目详解】 解:①由抛物线的对称轴可知:02b a -<, ∴0ab >,由抛物线与y 轴的交点可知:22c +>,∴0c >,∴0abc >,故①正确;②抛物线与x 轴只有一个交点,∴0∆=,∴240b ac -=,故②正确;③令1x =-,∴20y a b c =-++=, ∵12b a-=-, ∴2b a =,∴220a a c -++=,∴2a c =+,∵22c +>,∴2a >,故③正确;④由图象可知:令0y =,即202ax bx c =+++的解为121x x ==-,∴22ax bx c ++=-的根为121x x ==-,故④正确; ⑤∵11124-<-<-, ∴12y y >,故⑤正确;故选D .【题目点拨】考查二次函数的图象与性质,解题的关键是熟练运用数形结合的思想.3、D【解题分析】 试题分析:根据平行线的性质,得∠4=∠2=50°,再根据三角形的外角的性质∠3=∠4-∠1=50°-30°=20°.故答案选D .考点:平行线的性质;三角形的外角的性质.4、D【解题分析】根据k >0,k <0,结合两个函数的图象及其性质分类讨论.【题目详解】分两种情况讨论:①当k <0时,反比例函数y=k x,在二、四象限,而二次函数y=kx 2+k 开口向上下与y 轴交点在原点下方,D 符合; ②当k >0时,反比例函数y=k x ,在一、三象限,而二次函数y=kx 2+k 开口向上,与y 轴交点在原点上方,都不符. 分析可得:它们在同一直角坐标系中的图象大致是D .故选D .【题目点拨】本题主要考查二次函数、反比例函数的图象特点.5、A【解题分析】六块矩形空地正好能拼成一个矩形,设道路的宽为xm,根据草坪的面积是570m1,即可列出方程:(31−1x)(10−x)=570,故选A.6、D【解题分析】试题解析:设小明为A,爸爸为B,妈妈为C,则所有的可能性是:(ABC),(ACB),(BAC),(BCA),(CAB),(CBA),∴他的爸爸妈妈相邻的概率是:4263,故选D.7、B【解题分析】根据轴对称图形与中心对称图形的概念判断即可.【题目详解】解:A、是轴对称图形,也是中心对称图形,故错误;B、是中心对称图形,不是轴对称图形,故正确;C、是轴对称图形,也是中心对称图形,故错误;D、是轴对称图形,也是中心对称图形,故错误.故选B.【题目点拨】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.8、C【解题分析】A、B是一元二次方程可以根据其判别式判断其根的情况;C是无理方程,容易看出没有实数根;D是分式方程,能使得分子为零,分母不为零的就是方程的根.【题目详解】A.中△=02﹣4×1×16=﹣64<0,方程无实数根;B.中△=(﹣1)2﹣4×1×1=﹣3<0,方程无实数根;C.x=﹣1是方程的根;D.当x=1时,分母x2-1=0,无实数根.故选:C.【题目点拨】本题考查了方程解得定义,能使方程左右两边相等的未知数的值叫做方程的解.解答本题的关键是针对不同的方程进行分类讨论.9、A【解题分析】试题分析:充分利用图形,直接从图上得出x的取值范围.由图可知,当y<1时,x<-4,故选C.考点:本题考查的是一次函数的图象点评:解答本题的关键是掌握在x轴下方的部分y<1,在x轴上方的部分y>1.10、D【解题分析】从图中可以看出,线段AB扫过的图形面积为一个环形,环形中的大圆半径是AC,小圆半径是BC,圆心角是60度,所以阴影面积=大扇形面积-小扇形面积.【题目详解】阴影面积=() 603616103603π⨯-=π.故选D.【题目点拨】本题的关键是理解出,线段AB扫过的图形面积为一个环形.11、B【解题分析】实数分为有理数,无理数,有理数有分数、整数,无理数有根式下不能开方的,π等,很容易选择.【题目详解】A、二次根2不能正好开方,即为无理数,故本选项错误,B、无限循环小数为有理数,符合;C、π为无理数,故本选项错误;D、故选B.【题目点拨】本题考查的知识点是实数范围内的有理数的判断,解题关键是从实际出发有理数有分数,自然数等,无理数有π、根式下开不尽的从而得到了答案.12、D【解题分析】根据勾股定理求出四边形第四条边的长度,进而求出四边形四条边之比,根据相似多边形的性质判断即可. 【题目详解】解:作AE ⊥BC 于E ,则四边形AECD 为矩形, ∴EC =AD =1,AE =CD =3, ∴BE =4,由勾股定理得,AB 22AE BE =5,∴四边形ABCD 的四条边之比为1:3:5:5, D 选项中,四条边之比为1:3:5:5,且对应角相等, 故选D . 【题目点拨】本题考查的是相似多边形的判定和性质,掌握相似多边形的对应边的比相等是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.) 13、3(m-1)2 【解题分析】试题分析:根据因式分解的方法,先提公因式,再根据完全平方公式分解因式即可,即3m 2-6m +3=3(m 2-2m +1)=3(m-1)2.故答案为:3(m-1)2点睛:因式分解是把一个多项式化为几个因式积的形式.根据因式分解的一般步骤:一提(公因式)、二套(平方差公式()()22a b a b a b -=+-,完全平方公式()2222a ab b a b ±+=±)、三检查(彻底分解).14、872【解题分析】由题意先求出DG 和FG 的长,再根据勾股定理可求得DF 的长,然后再证明△DGF ∽△DAI ,依据相似三角形的性质可得到DI 的长,最后依据矩形的面积公式求解即可. 【题目详解】∵四边形ABCD 、CEFG 均为正方形, ∴CD=AD=3,CG=CE=5, ∴DG=2,在Rt △DGF 中, DF=22DG FG +=222529+=, ∵∠FDG+∠GDI=90°,∠GDI+∠IDA=90°, ∴∠FDG=∠IDA . 又∵∠DAI=∠DGF , ∴△DGF ∽△DAI , ∴23DF DG DI AD ==,即2923DI =,解得:DI=3292, ∴矩形DFHI 的面积是32987292=, 故答案为:872. 【题目点拨】本题考查了正方形的性质,矩形的性质,相似三角形的判定和性质,三角形的面积,熟练掌握相关性质定理与判定定理是解题的关键. 15、12.2 【解题分析】∵△ABC 是边长为1的等腰直角三角形,∴S △ABC =12×1×1=12=11-1; 2211+2,22(2)(2)+,∴S △ACD =12221-1∴第n 个等腰直角三角形的面积是1n-1.∴S △AEF =14-1=4,S △AFG =12-1=8, 由这五个等腰直角三角形所构成的图形的面积为12+1+1+4+8=12.2.故答案为12.2. 16、1. 【解题分析】先根据分式混合运算顺序和运算法则化简原式,再将a 的值代入计算可得. 【题目详解】原式=212a a --÷()212a a --=()()a1a12a+--•()221aa--=1a1a+-,当a=3时,原式=3131+-=1,故答案为:1.【题目点拨】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.17、x<﹣2或0<x<2【解题分析】仔细观察图像,图像在上面的函数值大,图像在下面的函数值小,当y2>y2,即正比例函数的图像在上,反比例函数的图像在下时,根据图像写出x的取值范围即可.【题目详解】解:如图,结合图象可得:①当x<﹣2时,y2>y2;②当﹣2<x<0时,y2<y2;③当0<x<2时,y2>y2;④当x>2时,y2<y2.综上所述:若y2>y2,则x的取值范围是x<﹣2或0<x<2.故答案为x<﹣2或0<x<2.【题目点拨】本题考查了图像法解不等式,解题的关键是仔细观察图像,全面写出符合条件的x的取值范围.18、5【解题分析】过点C作CH⊥AB于H,利用解直角三角形的知识,分别求出AH、AC、BC的值,进而利用三线合一的性质得出AA'的值,然后利用旋转的性质可判定△ACA'∽△BCB',继而利用相似三角形的对应边成比例的性质可得出BB'的值.【题目详解】解:过点C作CH⊥AB于H,∵在Rt△ABC中,∠C=90,cosA=23,∴AC=AB•cosA=6,BC=35,在Rt△ACH中,AC=6,cosA=23,∴AH=AC•cosA=4,由旋转的性质得,AC=A'C,BC=B'C,∴△ACA'是等腰三角形,因此H也是AA'中点,∴AA'=2AH=8,又∵△BCB'和△ACA'都为等腰三角形,且顶角∠ACA'和∠BCB'都是旋转角,∴∠ACA'=∠BCB',∴△ACA'∽△BCB',∴‘'AC AABC BB=即68'35BB=,解得:BB'=45.故答案为:45.【题目点拨】此题考查了解直角三角形、旋转的性质、勾股定理、等腰三角形的性质、相似三角形的判定与性质,解答本题的关键是得出△ACA'∽△BCB'.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、x1 ="-1," x2 =5【解题分析】根据十字相乘法因式分解解方程即可.20、(1)50;(2)115.2°;(3).【解题分析】(1)先求出参加本次比赛的学生人数;(2)由(1)求出的学生人数,即可求出B等级所对应扇形的圆心角度数;(3)首先根据题意列表或画出树状图,然后由求得所有等可能的结果,再利用概率公式即可求得答案.解:(1)参加本次比赛的学生有:(人)(2)B等级的学生共有:(人).∴所占的百分比为:∴B等级所对应扇形的圆心角度数为:.(3)列表如下:男女1 女2 女3男﹣﹣﹣(女,男)(女,男)(女,男)女1 (男,女)﹣﹣﹣(女,女)(女,女)女2 (男,女)(女,女)﹣﹣﹣(女,女)女3 (男,女)(女,女)(女,女)﹣﹣﹣∵共有12种等可能的结果,选中1名男生和1名女生结果的有6种.∴P(选中1名男生和1名女生).“点睛”本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A 或B的结果数目m,然后根据概率公式求出事件A或B的概率.通过扇形统计图求出扇形的圆心角度数,应用数形结合的思想是解决此类题目的关键.21、(1)甲服装的进价为300元、乙服装的进价为1元.(2)每件乙服装进价的平均增长率为10%;(3)乙服装的定价至少为296元.【解题分析】(1)若设甲服装的成本为x元,则乙服装的成本为(500-x)元.根据公式:总利润=总售价-总进价,即可列出方程.(2)利用乙服装的成本为1元,经过两次上调价格后,使乙服装每件的进价达到242元,利用增长率公式求出即可;(3)利用每件乙服装进价按平均增长率再次上调,再次上调价格为:242×(1+10%)=266.2(元),进而利用不等式求出即可.【题目详解】(1)设甲服装的成本为x元,则乙服装的成本为(500-x)元,根据题意得:90%•(1+30%)x+90%•(1+20%)(500-x)-500=67,解得:x=300,500-x=1.答:甲服装的成本为300元、乙服装的成本为1元.(2)∵乙服装的成本为1元,经过两次上调价格后,使乙服装每件的进价达到242元, ∴设每件乙服装进价的平均增长率为y ,则 22001y 242()+=, 解得:1y =0.1=10%,2y =-2.1(不合题意,舍去). 答:每件乙服装进价的平均增长率为10%; (3)∵每件乙服装进价按平均增长率再次上调 ∴再次上调价格为:242×(1+10%)=266.2(元) ∵商场仍按9折出售,设定价为a 元时 0.9a-266.2>0 解得:a >2662295.89≈ 故定价至少为296元时,乙服装才可获得利润.考点:一元二次方程的应用,不等式的应用,打折销售问题 22、(1)y=﹣12(x+1)1;(1)点B (1,﹣1)不在这个函数的图象上;(3)抛物线向左平移1个单位或平移5个单位函数,即可过点B ; 【解题分析】(1)根据待定系数法即可得出二次函数的解析式; (1)代入B (1,-1)即可判断; (3)根据题意设平移后的解析式为y=-12(x+1+m )1,代入B 的坐标,求得m 的植即可. 【题目详解】解:(1)∵二次函数y=a (x+m )1的顶点坐标为(﹣1,0), ∴m=1,∴二次函数y=a (x+1)1,把点A (﹣1,﹣12)代入得a=﹣12, 则抛物线的解析式为:y=﹣12(x+1)1.(1)把x=1代入y=﹣12(x+1)1得y=﹣92≠﹣1,所以,点B (1,﹣1)不在这个函数的图象上;(3)根据题意设平移后的解析式为y=﹣12(x+1+m )1, 把B (1,﹣1)代入得﹣1=﹣12(1+1+m )1, 解得m=﹣1或﹣5,所以抛物线向左平移1个单位或平移5个单位函数,即可过点B . 【题目点拨】本题考查了待定系数法求二次函数的解析式,二次函数图象上点的坐标特征,二次函数的性质以及图象与几何变换.23、(1)i )证明见试题解析;ii ;(2;(3)222(2p n m -=. 【解题分析】(1)i )由∠ACE+∠ECB=45°,∠ BCF+∠ECB=45°,得到∠ACE=∠BCF ,又由于AC CEBC CF==△CAE ∽△CBF ;ii )由AEBF=,再由△CAE ∽△CBF ,得到∠CAE=∠CBF ,进一步可得到∠EBF=1°,从而有222222()6CE EF BE BF ==+=,解得CE =(2)连接BF ,同理可得:∠EBF=1°,由AB EFk BC FC==,得到::1:BC AB AC k =::1:CF EF EC k =AC AEBC BF==BF =,得到2222222211()k k CE EF BE BF k k++=⨯=+,代入解方程即可;(3)连接BF ,同理可得:∠EBF=1°,过C 作CH ⊥AB 延长线于H ,可得:222::1:1:(2AB BC AC =,222::1:1:(2EF FC EC =+,故22222222(2(2)(2(2p EF BE BF m m n =+=+=++=++,从而有222(2p n m -=+. 【题目详解】解:(1)i )∵∠ACE+∠ECB=45°,∠ BCF+∠ECB=45°,∴∠ACE=∠BCF ,又∵AC CEBC CF==,∴△CAE ∽△CBF ;ii )∵AEBF=,∴,∵△CAE ∽△CBF ,∴∠CAE=∠CBF ,又∵∠CAE+∠CBE=1°,∴∠CBF+∠CBE=1°,即∠EBF=1°,∴222222()6CE EF BE BF ==+=,解得CE =(2)连接BF ,同理可得:∠EBF=1°,∵AB EFk BC FC==,∴2::1::1BC AB AC k k =+,2::1::1CF EF EC k k =+,∴21AC AE k BC BF==+,∴21AEBF k =+,2221AE BF k =+,∴2222222211()k k CE EF BE BF k k ++=⨯=+,∴222222123(1)1k k k +=++,解得104k =; (3)连接BF ,同理可得:∠EBF=1°,过C 作CH ⊥AB 延长线于H ,可得:222::1:1:(22)AB BC AC =+,222::1:1:(22)EF FC EC =+,∴22222222(22)(22)()(22)()(22)22n p EF BE BF m m n =+=++=++=+++, ∴222(22)p n m -=+.【题目点拨】本题考查相似三角形的判定与性质;正方形的性质;矩形的性质;菱形的性质. 24、 (1)见解析;(1)13【解题分析】试题分析:先用列表法写出点Q 的所有可能坐标,再根据概率公式求解即可. (1)由题意得 11-1 (1,-1)(1,-1)-1(1,-1)(1,-1)-2 (1,-2)(1,-2)(1)共有6种等可能情况,符合条件的有1种P(点Q在直线y=−x−1上)=1 3 .考点:概率公式点评:解题的关键是熟练掌握概率公式:概率=所求情况数与总情况数的比值.25、(39+93)米.【解题分析】过点E作EF⊥BC的延长线于F,EH⊥AB于点H,根据CE=20米,坡度为i=1:3,分别求出EF、CF的长度,在Rt△AEH中求出AH,继而可得楼房AB的高.【题目详解】解:过点E作EF⊥BC的延长线于F,EH⊥AB于点H,在Rt△CEF中,∵13EFiCF===tan∠ECF,∴∠ECF=30°,∴EF=12CE=10米,CF=10米,∴BH=EF=10米,HE=BF=BC+CF=(25+103)米,在Rt△AHE中,∵∠HAE=45°,∴AH=HE=(25+103)米,∴AB=AH+HB=(35+103)米.答:楼房AB的高为(35+103)米.【题目点拨】本题考查解直角三角形的应用-仰角俯角问题;坡度坡角问题,掌握概念正确计算是本题的解题关键.26、(1)详见解析;(2)详见解析;(3)3BC AB = 【解题分析】(1)利用等腰三角形的性质和三角形内角和即可得出结论; (2)先判断出OE=12AC ,即可得出OE=12BD ,即可得出结论; (3)先判断出△ABE 是底角是30°的等腰三角形,即可构造直角三角形即可得出结论. 【题目详解】 (1)∵AD=BD , ∴∠B=∠BAD , ∵AD=CD , ∴∠C=∠CAD ,在△ABC 中,∠B+∠C+∠BAC=180°,∴∠B+∠C+∠BAD+∠CAD=∠B+∠C+∠B+∠C=180° ∴∠B+∠C=90°, ∴∠BAC=90°,(2)如图②,连接AC 与BD ,交点为O ,连接OE四边形ABCD 是矩形1122OA OB OC OD AC BD ∴===== AE CE ⊥ 90AEC ∴∠=︒12OE AC ∴=12OE BD ∴=90BED ∴∠=︒BE DE ∴⊥(3)如图3,过点B 做BF AE ⊥于点F四边形ABCD 是矩形AD BC ∴=,90BAD ∠=︒ADE ∆是等边三角形AE AD BC ∴==,60DAE AED ∠=∠=︒由(2)知,90BED ∠=︒30BAE BEA ∴∠=∠=︒2AE AF ∴=在Rt ABF ∆中,30BAE ∠=︒2AB AF ∴=,3AF BF =3AE AB ∴=AE BC =3BC AB ∴=【题目点拨】此题是四边形综合题,主要考查了矩形是性质,直角三角形的性质和判定,含30°角的直角三角形的性质,三角形的内角和公式,解(1)的关键是判断出∠B=∠BAD ,解(2)的关键是判断出OE=12AC ,解(3)的关键是判断出△ABE 是底角为30°的等腰三角形,进而构造直角三角形.27、水坝原来的高度为12米【解题分析】试题分析:设BC=x 米,用x 表示出AB 的长,利用坡度的定义得到BD=BE ,进而列出x 的方程,求出x 的值即可.试题解析:设BC=x 米,在Rt △ABC 中,∠CAB=180°﹣∠EAC=50°,AB=≈=, 在Rt △EBD 中,∵i=DB :EB=1:1,∴BD=BE ,∴CD+BC=AE+AB ,即2+x=4+,解得x=12,即BC=12,答:水坝原来的高度为12米..考点:解直角三角形的应用,坡度.。
湖南省长沙市2024年中考模拟数学试题
湖南省长沙市2024年中考模拟数学试题一、单选题1.3-的倒数为( ) A .3B .3-C .13D .13-2.苏州地铁4号线,2017年上半年通车试运营,主线全程长约为42000m ,北起相城区荷塘月色公园,南至吴江同津大道站,共设31站.将42000用科学记数法表示应为( ) A .0.42×105B .4.2×104C .44×103D .440×1023.下列等式成立的是( ) A .1232a a a+=B .11111a a a a a ++=--- C .1111x x x +=++ D .()()()222112222m m m m m ---=---4.下列图形中,不是轴对称图形的是( ) A .B .C .D .5.下列长度的三根木棒首尾相接,不能做成三角形框架的是( ) A .5cm ,7cm ,10cm B .5cm ,7cm ,13cm C .7cm ,10cm ,13cmD .5cm ,10cm ,13cm6.某市教育体育局想要了解本市初二年级8万名学生的期中数学成绩,从中抽取了2000名学生的数学成绩进行统计分析,以下说法正确的是( ) A .2000名学生是总体的一个样本 B .每位学生的数学成绩是个体 C .8万名学生是总体D .2000名学生是样本的容量7.如图所示,已知正方形ABCD 的面积是8平方厘米,正方形EFGH 的面积是62平方厘米,BC 落在EH 上,ACG V 的面积是4.9平方厘米,则ABE V 的面积是( )A .0.5平方厘米B .2平方厘米CD .0.9平方厘米8.如图,在V ABC 中,∠B =30°,若AB ∥CD ,CB 平分∠ACD ,则∠ACD 的度数为( )A .30°B .40°C .60°D .90°9.一次函数y kx b =+与正比例函数y kbx =(k ,b 为常数,且0kb ≠)在同一平面直角坐标系中的图象可能是( )A .B .C .D .10.张浩有红牌和蓝牌各75张,已知张浩能在一个摊位上用2张红牌换1张银牌和1张蓝牌,还能在另一个摊位上用3张蓝牌换1张银牌和1张红牌,若他按照上述方法继续换下去,直到手中的牌无法交换为止,则张浩手中最后有银牌( )张A .62B .26C .102D .103二、填空题11.因式分解:21x -=.12.若不等式组220x a b x ->⎧⎨->⎩的解集为11x -<<,则2009()a b +=.13.在x 2+( )+4=0的括号中添加一个关于x 的一次项...,使方程有两个相等的实数根. 14.如图,双曲线ky (k 0)x=>与⊙O 在第一象限内交于P 、Q 两点,分别过P 、Q 两点向x 轴和y 轴作垂线,已知点P 坐标为(1,3),则图中阴影部分的面积为.15.如图,OA 是O e 的半径,BC 是O e 的弦,OA BC ⊥于点D ,AE 是O e 的切线,AE 交OC 的延长线于点E .若45AOC ∠=︒,2BC =,则线段AE 的长为.16.如图,扇形纸扇完全打开后,外侧两竹条AB ,AC 夹角为150°,AB 的长为32cm ,BD的长为14cm ,则»DE的长为cm .三、解答题17.(1)计算:())121--+﹣sin30°(2)化简:2a 11a a a++-. 18.(1)计算:()()21122x x x ⎛⎫--+- ⎪⎝⎭;(2)先化简,再求值:()()()23366a a a a +---+,其中1a =-.19.位于河南省郑州市的炎黄二帝巨型塑像,是为代表中华民族之创始、之和谐、之统一.塑像由山体CD 和头像AD 两部分组成.某数学兴趣小组在塑像前50米处的B 处测得山体D 处的仰角为45°,头像A 处的仰角为70.5°,求头像AD 的高度.(最后结果精确到0.1米,参考数据:sin70.5°≈0.943,cos70.5°≈0.334,tan70.5°≈2.824)20.为了加强对青少年防溺水安全教育,5月底某校开展了“远离溺水,珍爱生命”的防溺水安全知识比赛.下面是从参赛学生中随机收集到的20名学生的成绩(单位:分): 87 99 86 89 91 91 95 96 87 97 91 97 96 86 96 89 100 91 99 97 整理数据:分析数据:解决问题:(1)直接写出上面表格中的a ,b ,c ,d 的值;(2)若成绩达到95分及以上为“优秀”等级,求“优秀”等级所占的百分率; (3)请估计该校1500名学生中成绩达到95分及以上的学生人数.21.如图,已知点B E C F ,,,在一条直线上,BE CF =,AC DE ∥,A D ∠=∠. 求证:ABC DFE △≌△.22.某游船先顺流而下,然后逆流返回.已知水流速度是每小时3千米,游船在静水中的速度是每小时18千米.为使游船在4小时内(含4小时)返回出发地,则游船顺流最远可行多少千米?23.如图,在ABC V 中,AB AC =,30B ∠=︒,线段AB 的垂直平分线MN 交BC 于D ,连接AD .(1)求DAC ∠的度数; (2)若2BD =,求BC 的长.24.在平面直角坐标系xOy 中,对于直线l 及点P 给出如下定义:过点P 作y 轴的垂线交直线l 于点Q ,若PQ ≤1,则称点P 为直线l 的关联点,当PQ =1时,称点P 为直线l 的最佳关联点,当点P 与点Q 重合时,记PQ =0.例如,点P (1,2)是直线y =x 的最佳关联点.根据阅读材料,解决下列问题.如图,在平面直角坐标系xOy 中,已知直线1l :y =﹣x +3,2l :y =2x +b .(1)已知点A (0,4),3(,1)2B ,C (2,3),上述各点是直线1l 的关联点是;(2)若点D (﹣1,m )是直线1l 的最佳关联点,则m 的值是;(3)点E 在x 轴的正半轴上,点A (0,4),以OA 、OE 为边作正方形AOEF .若直线l 2与正方形AOEF 相交,且交点中至少有一个是直线1l 的关联点,则b 的取值范围是.25.如图,⊙O为△ABC的外接圆,AC=BC,D为OC与AB的交点,E为线段OC延长线上一点,且∠EAC=∠ABC.(1)求证:直线AE是⊙O的切线.(2)若D为AB的中点,CD=6,AB=16,求⊙O的半径;(3)在(2)的基础上,点F在⊙O上,且»»,△ACF的内心点G在AB边上,求BGBC BF的长.。
2024年中考数学第一次模拟试卷(湖南长沙卷)(全解全析)
2024年中考第一次模拟考试(湖南长沙卷)数学·全解全析第Ⅰ卷一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.下列四个实数中,最小的是()A.2-B.4C.1D.5-【答案】D【分析】此题主要考查了实数大小比较的方法.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.>,【详解】解:∵54∴52>,∴52-<-,∴5214-<-<<,∴最小的数是5-,故选:D.2.在以下回收、绿色食品、节能、节水四个标志中,是中心对称图形的是()A.B.C.D.【答案】C【分析】根据中心对称图形的概念:一个图形沿某个点旋转180度后能与原图完全重合的;由此问题可求解.【详解】解:选项A、B、D不能找到一个点绕其旋转180度后能与原图完全重合,所以都不是中心对称图形,而C选项可以找到一个点绕其旋转180度后能与原图完全重合,所以是中心对称图形;故选C.【点睛】本题主要考查中心对称图形,熟练掌握中心对称图形的概念是解题的关键.3.下列计算中,正确的是()A .()326x x -=-B .()2211x x =++C .632x x x=D .235+=【答案】A 【分析】根据积的乘方,完全平方公式,同底数幂的除法,二次根式的加法对各选项进行判断即可.【详解】解:由题意知,()326x x -=-,正确,故A 符合要求;()2221211x x x x +=++≠+,错误,故B 不符合要求;6432x x x x=≠,错误,故C 不符合要求;235+≠,错误,故D 不符合要求;故选:A .【点睛】本题考查了积的乘方,完全平方公式,同底数幂的除法,二次根式的加法.熟练掌握积的乘方,完全平方公式,同底数幂的除法,二次根式的加法是解题的关键.4.据共青团中央2023年5月3日发布的中国共青团团内统计公报,截至2022年12月底,全国共有共青团员7358万.数据7358万用科学记数法表示为()A .7.358×107B .7.358×103C .7.358×104D .7.358×106【答案】A【分析】本题主要考查了科学记数法,表示较大的数,利用科学记数法的法则解答即可.【详解】解:7358万77.3581735800000=⨯=,故选:A .5.如图,把一个含有45︒角的直角三角板放在两条平行线m ,n 上,若123α∠=︒,则∠β的度数是()A .48︒B .88︒C .78︒D .75︒【答案】C 【分析】可求1123α∠=∠=︒,178ACB B ∠=∠-∠=︒,即可求解.【详解】解:如图:m n ∥,1123α∴∠=∠=︒,1∠ 是ABC 的一个外角,45B ∠=︒,178ACB B ∴∠=∠-∠=︒,78ACB β∴∠=∠=︒,故选:C .【点睛】本题考查了平行线的性质,三角形外角的性质,掌握性质是解题的关键.6.如图,AB 是O 的直径,42D ∠=︒,则CAB ∠=()A .52︒B .58︒C .48︒D .42︒【答案】C 【分析】本题考查圆周角的性质.由AB 是O 的直径可得90ACB ∠=︒,又由“同弧或等弧所对圆周角相等”可得42B D ∠=∠=︒,从而可求得CAB ∠.【详解】∵AB 是O 的直径,∴90ACB ∠=︒,∵ AC AC=∴42B D ∠=∠=︒,∴90904248CAB B ∠=︒-∠=︒-︒=︒.故选:C7.一元一次方程不等式组11112x x +≥-⎧⎪⎨<⎪⎩的解在数轴上表示正确的是()A .B .C .D .【答案】D 【分析】本题考查的是一元一次不等式组的解法及在数轴上表示解集,在数轴上表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.熟练掌握不等式组的解法是解题的关键.先分别解出两个不等式,然后找出解集,表示在数轴上即可.【详解】解:11112x x +≥-⎧⎪⎨<⎪⎩①②,由①得,x ≥−2,由②得,2x <,故原不等式组的解集为:22x -≤<.在数轴上表示为:故答案为:D .8.如图,在“经典诵读”比赛活动中,某校10名学生参赛成绩如图所示,对于这10名学生的参赛成绩,下列说法错误的是()A .众数是90分B .方差是10C .平均数是91分D .中位数是90分【答案】B 【分析】根据众数、中位数、平均数、方差的定义和统计图中提供的数据分别列出算式,求出答案.【详解】解:A 、∵90出现了5次,出现的次数最多,∴众数是90;故此选项不符合题意;B 、方差是:()()()()2222128591295915909110091191010⎡⎤⨯⨯-+⨯-+-+-=≠⎣⎦;故此选项符合题意;C 、平均数是(85×2+100×1+90×5+95×2)÷10=91;故此选项不符合题意;D 、∵共有10个数,∴中位数是第5、6个数的平均数,∴中位数是(90+90)÷2=90;故此选项不符合题意.故选:B .【点睛】此题考查了折线统计图,用到的知识点是众数、中位数、平均数、方差,能从统计图中获得有关数据,求出众数、中位数、平均数、方差是解题的关键.9.在同一平面直角坐标系中,函数y ax =和()0y x a a =+≠的图象可能是()A .B .C .D .【答案】D【分析】本题主要考查正比例函数的系数和一次函数常数项决定图象所过象限的知识点.【详解】解:A .由函数y ax =得0a >,与()0y x a a =+≠图象的a<0矛盾,故本选项不符合题意;B .函数()0y x a a =+≠所过象限错误,故本选项不符合题意;C .函数()0y x a a =+≠所过象限错误,故本选项不符合题意;D .由函数y ax =得a<0,与()0y x a a =+≠图象的a<0一致,故本选项符合题意.故选:D .10.“千门万户瞳瞳日,总把新桃换旧符”.春节是中华民族的传统节日,古人常用写“桃符”的方式来祈福避祸,而现在,人们常用贴“福”字、贴春联、挂灯笼等方式来表达对新年的美好祝愿.某商家在春节期间开展商品促销活动,顾客凡购物金额满100元,就可以从“福”字、春联、灯笼这三类礼品中免费领取一件.礼品领取规则:顾客每次从装有大小、形状、质地都相同的三张卡片(分别写有“福”字、春联、灯笼)的不透明袋子中,随机摸出一张卡片,然后领取一件与卡片上文字所对应的礼品.现有2名顾客都只领取了一件礼品,那么他们恰好领取同一类礼品的概率是()A .19B .16C .13D .12【答案】C【分析】分别用,,A B C 表示写有“福”字、春联、灯笼的三张卡片,利用列表法求出概率即可.【详解】解:分别用A ,B ,C 表示写有“福”字、春联、灯笼的三张卡片,列表如下:AB C AA ,A A ,B A ,C BB ,A B ,B B ,C C C ,A C ,B C ,C共有9中等可能的结果,其中他们恰好领取同一类礼品有3种等可能的结果,∴3193P ==;故选C .【点睛】本题考查列表法求概率,解题的关键是正确的列出表格.第Ⅱ卷二、填空题(本大题共6个小题,每小题3分,共18分)11.若22x -在实数范围内有意义,则x 的取值范围是.【答案】2x ≥【分析】此题主要考查了二次根式有意义的条件,正确掌握相关定义是解题关键.直接利用二次根式有意义则被开方数大于或等于零即可得出答案.【详解】解:22x -在实数范围内有意义,故20x -≥,解得:2x ≥.故答案为:2x ≥.12.分式方程422x x =-的解是.【答案】2x =-【分析】先去分母,再解出整式方程,然后检验,即可求解.【详解】解:去分母得:()224x x -=,解得:2x =-,检验:当2x =-时,()20x x -≠,∴原方程的解为2x =-.故答案为:2x =-【点睛】本题考查了解分式方程,能把分式方程转化成整式方程是解此题的关键.解分式方程注意要检验.13.若关于x 的一元二次方程220x x m -+=有两个不相等的实数根,实数m 的取值范围是.【答案】1m </1m>【分析】利用方程有两个不相等的实数根时,0∆>,建立关于m 的不等式,求出m 的取值范围.【详解】解: 关于x 的一元二次方程220x x m -+=有两个不相等的实数根,∴()2240m ∆=-->,即440m ->,解得:1m <,故答案为:1m <.【点睛】本题考查了根的判别式,牢记“当0∆>时,方程有两个不相等的实数根”是解题的关键.14.如图,扇形OAB 的半径为1,分别以点A 、B 为圆心,大于12AB 的长为半径画弧,两弧相交于点P ,35BOP ∠=︒,则 AB 的长l =(结果保留π).【答案】718π/718π【分析】先求解223570AOB BOP ∠=∠=⨯︒=︒,再利用弧长公式计算即可.【详解】解:由作图知:OP 垂直平分AB ,∵OA OB =,∴223570AOB BOP ∠=∠=⨯︒=︒,∵扇形的半径是1,∴ AB 的长70π17π18018⨯==.故答案为:7π18.【点睛】本题考查的是线段的垂直平分线的作图,等腰三角形的性质,弧长的计算,熟记弧长公式是解本题的关键.15.如图,反比例函数k y x=的图象经过ABCD Y 对角线的交点P ,已知点A ,C ,D 在坐标轴上,BD DC ⊥,ABCD Y 的面积为16,则k =.【答案】8-【分析】由平行四边形面积转化为矩形BDOA 面积,在得到矩形PDOE 面积,应用反比例函数比例系数k 的意义即可.【详解】解:如图,过点P 做PE y ⊥轴于点E .四边形ABCD 为平行四边形,AB CD ∴=,又BD x ⊥Q 轴,ABDO ∴为矩形,AB DO ∴=,16ABCD ABDO S S ∴== 矩形,P 为对角线交点,PE y ⊥轴,∴四边形PDOE 为矩形面积为8,即8DO EO ⋅=,∴设P 点坐标为(,)x y ,8k xy ==-.故答案为:8-.【点睛】本题考查了反比例函数k 的几何意义以及平行四边形的性质,理解等底等高的平行四边形与矩形面积相等是解题的关键.16.《九章算术》是中国古代的数学专著,书中记载了这样一个问题:“今有勾五步,股十二步,问勾中容方几何?”其大意是:如图,Rt ABC △的两条直角边的长分别为5和12,则它的内接正方形CDEF 的边长为.【答案】6017/9317【分析】先设正方形的边长为x ,再表示出DE ,AD ,然后说明ADE V ∽ACB △,并根据对应边成比例得出答案.【详解】根据题意可知=5AC ,=12BC .设正方形的边长为x ,则=DE CD x =,5AD x =-.∵四边形CDEF 是正方形,∴==90C ADE ∠∠︒.∵A A ∠=∠,∴ADE V ∽ACB △,∴AD DE AC BC =,即5512x x -=,解得6017x =.所以正方形的边长为6017.故答案为:6017.【点睛】本题主要考查了正方形的性质,相似三角形的性质和判定,相似三角形的对应边成比例是求线段长的常用方法.三、解答题(本大题共9个小题,第17、18、19题每题6分,第20、21题每题8分,第22、23题每题9分,第24、25每题10分,共72分)17.计算:()2012sin60π2133-⎛⎫︒--++- ⎪⎝⎭【答案】237+【分析】本题考查实数的混合运算,先计算特殊角三角函数值,零次幂,负整数次幂,绝对值,再进行加减运算即可,正确计算是解题的关键.【详解】解:()2012sin60π2133-⎛⎫︒--++- ⎪⎝⎭2312131213=⨯-++-⎛⎫ ⎪⎝⎭31931=-++-237=+18.先化简,再求值:2221111a a a a a --⎛⎫÷-- ⎪-+⎝⎭,其中3a =.【答案】21-a a ,336+【分析】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.先根据分式混合运算的法则把原式进行化简,再把a 的值代入进行计算即可.【详解】解:原式22212111a a a a a ---+=÷-+()()()21112a a a a a a -+=⋅+--21a a =-当3a =时,原式133633+==-.19.如图,从水平面看一山坡上的通讯铁塔PC ,在点A 处用测角仪测得塔顶端点P 的仰角是45︒,向前走9米到达B 点,用测角仪测得塔顶端点P 和塔底端点C 的仰角分别是60︒和30︒.(1)求BPC ∠的度数;(2)求该铁塔PC 的高度.(结果精确到0.1米;参考数据:3 1.73≈,2 1.41≈)【答案】(1)30︒(2)14.3米【分析】本题考查了仰角的定义、解直角三角形、三角函数;(1)延长PC 交直线AB 于点F ,根据直角三角形两锐角互余求得即可;(2)设PC x =米,根据AF PF =,构建方程求出x 即可.【详解】(1)延长PC 交直线AB 于点F ,则AF PF ⊥,依题意得:45PAF ∠=︒,60PBF ∠=︒,∴906030BPC ∠=-=︒︒︒.(2)设PC x =米,∵60PBF ∠=︒,30CBF ∠=︒,∴30PBC ∠=︒,∴PBC BPC ∠=∠,∴PC CB x ==米,在Rt CBF △中,3cos302BF CB x =︒=,1sin 302CF CB x =︒=,在Rt PAF △中,45PAF APF ∠=∠=︒,∴PF AF =,∴3139222x x x x +=+=,∴933x =+,∴93393 1.7314.3PC =+≈+⨯≈(米),即该铁塔PC 的高度约为14.3米.20.为了进一步加强中小学国防教育,教育部研究制定了《国防教育进中小学课程教材指南》.某中学开展了形式多样的国防教育培训活动.为了解培训效果,该校组织七、八年级全体学生参加了国防知识竞赛(百分制),并规定90分及以上为优秀,8089~分为良好,6079~分为及格,59分及以下为不及格.该学校七、八两个年级各有学生300人,现随机抽取了七、八年级各20名学生的成绩进行了整理与分析,下面给出了部分信息.a .抽取七年级20名学生的成绩如下:65875796796789977710083698994589769788188b .抽取七年级20名学生成绩的频数分布直方图如图1所示(数据分成5组:5060x ≤<,6070x ≤<,7080x ≤<,8090x ≤<,90100)x ≤≤)c .抽取八年级20名学生成绩的扇形统计图如图2所示.d .七年级、八年级各抽取的20名学生成绩的平均数、中位数、方差如下表:年级平均数中位数方差七年级81m 167.9八年级8279.5108.3请根据以上信息,回答下列问题:(1)补全七年级20名学生成绩的频数分布直方图,写出表中m 的值;(2)估计七、八两个年级此次竞赛成绩达到优秀的学生共有多少人;(3)若本次竞赛成绩达到81分及以上的同学可以获得参加挑战赛的机会,请根据样本数据估计,七、八两个年级中哪个年级获得参加挑战赛的机会的学生人数更多?并说明理由.【答案】(1)补全条形统计图见解析;82m =(2)七、八两个年级此次竞赛成绩达到优秀的学生共有165人(3)七年级获得参加挑战赛的机会的学生人数更多;理由见解析【分析】(1)根据题意可得七年级成绩位于6070x ≤<的有4人;七年级成绩位于第10位和第11位的是81和83,即可求解;(2)先求出八年级成绩优秀的所占的百分比,再分别用300乘以各自的百分比,即可求解;(3)分别求出七、八两个年级获得参加挑战赛的机会的学生人数,然后进行比较即可.【详解】(1)解:根据题意得:七年级成绩位于6070x ≤<的有4人,补全图形如下:七年级成绩位于第10位和第11位的是81和83,∴七年级成绩的中位数8183822m +==;(2)解:根据题意得:八年级成绩良好的所占的百分比为72100%20%360︒⨯=︒∴八年级成绩优秀的所占的百分比为120%45%5%30%---=,∴八年级成绩达到优秀的学生有30030%90⨯=(人),七年级成绩达到优秀的学生有53007520⨯=人,9075165+=(人),答:七、八两个年级此次竞赛成绩达到优秀的学生共有165人.(3)解:八年级获得参加挑战赛的机会的学生人数约为:()30020%30%150⨯+=(人),七年级获得参加挑战赛的机会的学生人数约为:1130016520⨯=(人),∵150165<,∴七年级获得参加挑战赛的机会的学生人数更多.【点睛】本题主要考查了条形统计图和扇形统计图,求中位数,用样本估计总体,明确题意,准确从统计图中获取信息是解题的关键.21.如图,在Rt ABC 中,32AC BC ==,点D 在AB 边上,连接CD ,将CD 绕点C 逆时针旋转90︒得到CE ,连接BE ,DE .(1)求证:CAD CBE ≌;(2)若2AD =时,求CE 的长;(3)点D 在AB 上运动时,试探究22AD BD +的值是否存在最小值,如果存在,求出这个最小值;如果不存在,请说明理由.【答案】(1)见解析(2)10(3)存在,18【分析】(1)由S AS 即可证明CAD CBE ≌;(2)证明CAD CBE ≌(SAS ),勾股定理得到DE ,在Rt CDE 中,勾股定理即可求解;(3)证明2222AD BD CD +=,即可求解.【详解】(1)解:由题意,可知90ACB DCE ∠=∠=︒,CA CB =,CD CE =.ACB DCB DCE DCB ∴∠-∠=∠-∠.即ACD BCE ∠=∠.()SAS CAD CBE ∴ ≌.(2) 在Rt ABC 中,32AC BC ==,45,26CAB CBA AB AC ∴∠=∠=︒==.624BD AB AD ∴=-=-=.CAD CBE ≌,2BE AD ∴==,45CBE CAD ∠=∠=︒.90ABE ABC CBE ∴∠=∠+∠=︒.2225DE BD BE ∴=+=.∴在Rt CDE △中,102DE CE CD ===.(3)由(2)可知,2222222AD BD BE BD DE CD ===++.∴当CD 最小时,有22AD BD +的值最小,此时CD AB ⊥.ABC 为等腰直角三角形,116322CD AB ∴==⨯=.∴222222318AD BD CD =≥⨯=+.即22AD BD +的最小值为18.【点睛】本题主要考查了图形的几何变换,涉及到等腰直角三角形的判定与性质,全等三角形的判定与性质,勾股定理,熟练掌握以上知识是解题的关键.22.某服装店老板到厂家选购A 、B 两种型号的服装,若购进A 种型号服装9件与B 种型号服装10件共需要1810元;若购进A 种型号服装12件与B 种型号服装8件共需要1880元.(1)A 、B 两种型号的服装每件分别为多少元?(2)若销售1件A 型服装可获利18元,销售1件B 型服装可获利30元,根据市场需求,服装店老板决定购进A 型服装的数量要比购进B 型服装的数量的2倍还多4件,这样服装全部售出后可使总的获利不少于732元,问至少购进B 型服装多少件?【答案】(1)A 种型号服装每件90元,B 种型号服装每件100元.(2)至少购进B 型服装10件.【分析】本题考查了一元一次不等式的应用、一元一次方程的应用,准确地找到等量关系并用方程组表示出来是解题的关键.(1)根据题意可知,本题中的相等关系是“A 种型号服装9件,B 种型号服装10件,需要1810元”和“A 种型号服装12件,B 种型号服装8件,需要1880元”,列方程组求解即可.(2)利用两个不等关系列不等式,结合实际意义求解.【详解】(1)设A 种型号服装每件x 元,B 种型号服装每件y 元.依题意可得:91018101281880x y x y +=⎧⎨+=⎩,解得:90100x y =⎧⎨=⎩,答:A 种型号服装每件90元,B 种型号服装每件100元.(2)设B 型服装购进m 件,则A 型服装购进()24m +件.根据题意得:()182430732m m ++≥,解不等式得10m ≥,答:至少购进B 型服装10件.23.如图,四边形ABCD 为矩形,点E 在边AD 上,AE CD =,连接CE ,过点E 作EF CE ⊥交AB 于点F ,分别过点C 、F 作CG EF ∥、FG CE ∥且CG 、GF 相交于点G .(1)求证:EF CE =;(2)连接GE ,若4CD =,点F 是AB 的中点,求GE 的长.【答案】(1)见解析;(2)210.【分析】(1)根据CE EF ⊥即余角的性质得到,可得∠=∠AFE CED ,根据矩形的性质可得90A D ∠=∠=︒,可证明(AAS)AEF DCE ≌ ,由此即可求证FE CE =;(2)根据题意可证四边形EFGC 是正方形,在Rt AEF 中由勾股定理求出的长,且EFG 是等腰直角三角形,根据其性质得到.【详解】(1)证明:∵CE EF ⊥,∴90CEF ∠=︒,∵四边形ABCD 是矩形,∴90A D ∠=∠=︒,AB CD =,∴90AEF AFE AEF CED ∠+∠=∠+∠=︒,∴∠=∠AFE CED ,∵AE CD =,∴(AAS)AEF DCE ≌ ,∴EF CE =.(2)解:如图所示,连接GE ,∵CG EF ∥,FG CE ∥,∴四边形CEFG 是平行四边形,∵90CEF ∠=︒,∴四边形CEFG 是矩形,∵EF CE =,∴四边形CEFG 是正方形,∵4AB CD ==,点F 是AB 的中点,∴122AF AB ==,∵4AE CD ==,在Rt AEF 中,90A ∠=︒,∴2225EF AF AE =+=,∵四边形CEFG 是正方形,∴EFG 是等腰直角三角形,∴2210EG EF ==.【点睛】此题考查了全等三角形的判定和性质,矩形的性质,正方形的性质,勾股定理,解题的关键是证明(AAS)AEF DCE ≌ ,由勾股定理求出FE 的长,由等腰直角三角形的性质即可得到2EG EF =.24.如图,A ,B ,C 是O 上的三点,且AB AC =,8BC =,点D 为优弧BDC 上的动点,且4cos 5ABC ∠=.(1)如图1,若BCD ACB ∠=∠,延长DC 到F ,使得CF CA =,连接AF ,求证:AF 是O 的切线;(2)如图2,若BCD ∠的角平分线与AD 相交于E ,求O 的半径与AE 的长;(3)如图3,将ABC 的BC 边所在的直线1l 绕点A 旋转得到2l ,直线2l 与O 相交于M ,N ,连接AM AN ,.2l 在运动的过程中,AM AN ⋅的值是否发生变化?若不变,求出其值;若变化,说明变化规律.【答案】(1)见解析(2)O 的半径为256,5AE =(3)2l 在运动的过程中,AM AN ⋅的值不发生变化,其值为25【分析】(1)连接AO ,先证BCD ABC ∠=∠,推出AB DF ∥,得到四边形ABCF 是平行四边形,AF BC ∥,再得到OA AF ⊥,即可证得结论;(2)连接AO 交BC 于H ,连接OB ,由垂径定理得142BH CH BC ===,根据4cos 5BH ABC AB ∠==,求出5AB =,设O 的半径为x ,则OA OB x ==,3OH x =-,在Rt BOH 中,由勾股定理求出256x =,O 的半径为256,根据角平分线定义及同弧所对圆周角相等得到AEC ACB BCE ACE ∠=∠+∠=∠,由此得到5AE AC AB ===;(3)连接AO ,并延长AO 交O 于Q ,连接NQ ,过点A 作2AP l ⊥于P ,证明AQM ANP △∽△,得到AM AN AP AQ ⋅=⋅,由(2)可知,点A 到直线1l 的距离为3,直线1l 绕点A 旋转得到2l ,A 到直线2l 的距离始终等于3,不会发生改变,由此得到253253AM AN AP AQ ⋅=⋅=⨯=.【详解】(1)证明:连接AO ,如图1所示:∵AB AC =,∴A ABC CB =∠∠,∵BCD ACB ∠=∠,∴BCD ABC ∠=∠,∴AB DF ∥,∵CF CA =,∴CF AB =,∴四边形ABCF 是平行四边形,∴AF BC ∥,∵AB AC =,∴»»AB AC =,∴OA BC ⊥,∴OA AF ⊥,∵OA 是O 的半径,∴AF 是O 的切线;图1(2)解:连接AO 交BC 于H ,连接OB ,如图2所示:∵OA BC ⊥,∴142BH CH BC ===,∵4cos 5BH ABC AB ∠==,∴554544AB BH ==⨯=,在Rt AHB 中,由勾股定理得:2222543AH AB BH =-=-=,设O 的半径为x ,则OA OB x ==,3OH x =-,在Rt BOH 中,由勾股定理得:()22234x x =-+,解得:256x =,∴O 的半径为256,∵CE 平分BCD ∠,∴BCE DCE ∠=∠,∵ABC ADC ∠=∠,∴AEC ADC DCE ABC DCE ACB BCE ACE ∠=∠+∠=∠+∠=∠+∠=∠,∴5AE AC AB ===;图2(3)解:连接AO ,并延长AO 交O 于Q ,连接NQ ,过点A 作2AP l ⊥于P ,如图3所示:则AQ 是O 的直径,∴90AMQ ∠=︒,∵2AP l ⊥,∴90APN ∠=︒,∴AMQ APN ∠=∠,∵AQM ANP ∠=∠,∴AQM ANP △∽△,∴AM AQ AP AN=,∴AM AN AP AQ ⋅=⋅,由(2)可知,点A 到直线1l 的距离为3,直线1l 绕点A 旋转得到2l ,∴点A 到直线2l 的距离始终等于3,不会发生改变,∴3AP =,∵25252263AQ OA ==⨯=,∴253253AM AN AP AQ ⋅=⋅=⨯=,∴2l 在运动的过程中,AM AN ⋅的值不发生变化,其值为25.图3【点睛】此题考查锐角三角函数,证明直线是圆的切线,平行四边形的判定和性质,相似三角形的判定和性质,勾股定理,垂径定理,等知识,熟练掌握各知识点并综合应用是解题的关键.25.定义:在平面直角坐标系中,抛物线()20y ax bx c a =++≠与y 轴的交点坐标为()0,c ,那么我们把经过点()0,c 且平行于x 轴的直线称为这条抛物线的极限分割线.【特例感知】(1)抛物线221y x x =++的极限分割线与这条抛物线的交点坐标为______.【深入探究】(2)经过点()2,0A -和(),0(2)B x x >-的抛物线21142y x mx n =-++与y 轴交于点C ,它的极限分割线与该抛物线另一个交点为D ,请用含m 的代数式表示点D 的坐标.【拓展运用】(3)在(2)的条件下,设抛物线21142y x mx n =-++的顶点为P ,直线EF 垂直平分OC ,垂足为E ,交该抛物线的对称轴于点F .①当45CDF ∠=︒时,求点P 的坐标.②若直线EF 与直线MN 关于极限分割线对称,是否存在使点P 到直线MN 的距离与点B 到直线EF 的距离相等的m 的值?若存在,直接写出m 的值;若不存在,请说明理由.【答案】(1)()0,1和()2,1-(2)点D 的坐标为()2,1m m +(3)①顶点为91,4P ⎛⎫ ⎪⎝⎭或顶点为125,336P ⎛⎫- ⎪⎝⎭;②存在,0m =或222m =+或222m =-【分析】(1)根据定义,确定c 值,再建立方程组求解即可.(2)把点()2,0A -代入解析式,确定1n m =+,根据定义建立方程求解即可.(3)①根据等腰直角三角形的性质,得到等线段,再利用字母表示等线段建立绝对值等式计算即可.②设MN 与对称轴的交点为H ,用含m 的式子表示出点P 的坐标,分别写出极限分割线CD 、直线EF 及直线MN 的解析式,用含m 的式子分别表示出点B 到直线EF 的距离和点P 到直线MN 的距离,根据点P 到直线MN 的距离与点B 到直线EF 的距离相等,得出关于m 的绝对值方程,解方程即可.【详解】(1)∵抛物线221y x x =++的对称轴为直线=1x -,极限分割线为1y =,∴极限分割线与这条抛物线的一个交点坐标为()0,1,则另一个交点坐标为()2,1-.故答案为:()0,1和()2,1-.(2)抛物线经过点()2,0A -,∴()()21102242m n =-⨯-+⨯⨯-+∴1n m =+∴2111142x mx m m -+++=+,解得120,2x x m==∴点D 的坐标为()2,1m m +.(3)①设CD 与对称轴交于点G ,若45CDF ∠=︒,则DG GF =.∵点C 的坐标为()0,1m +,点D 的坐标为()2,1m m +..∴1,2OC m CD m =+=,∴11,22DG CD GF OC ==,∴112m m =+,解得1211,3m m ==-.∵抛物线21142y x mx n =-++的顶点为P ,∴抛物线()2211144y x m m m =--+++的顶点为21,14m m m P ⎛⎫++ ⎪⎝⎭,∴当1m =时,219144m m ++=,故顶点为91,4P ⎛⎫ ⎪⎝⎭;∴当13m =-时,21111251112511144933649336m m ++=⨯-+=⨯-+=,故顶点为125,336P ⎛⎫- ⎪⎝⎭;∴顶点为91,4P ⎛⎫ ⎪⎝⎭或顶点为125,336P ⎛⎫- ⎪⎝⎭.②存在,0m =或222m =+或222m =-.如图,设MN 与对称轴的交点为H .由()2知,1n m =+,抛物线()2211144y x m m m =--+++的顶点为21,14m m m P ⎛⎫++ ⎪⎝⎭,∴抛物线21142y x mx n =-++的极限分割线CD :1y m =+, 直线EF 垂直平分OC ,∴直线EF :12m y +=,∴点B 到直线EF 的距离为12m +; 直线EF 与直线MN 关于极限分割线CD 对称,∴直线MN :()312m y +=,∵21,14m m m P ⎛⎫++ ⎪⎝⎭,∴点P 到直线MN 的距离为()()()2213111114242m m m m m ++-+=-+,点P 到直线MN 的距离与点B 到直线EF 的距离相等,∴()()211111422m m m -+=+,∴()()211111422m m m -+=+或()()211111422m m m -+=-+,解得0m =或222m =+或222m =-,故0m =或222m =+或222m =-.【点睛】.查了抛物线与坐标轴的交点坐标和直线与抛物线的交点坐标等知识点,明确题中的定义、熟练掌握二次函数的图像与性质及绝对值方程是解题的关键.。
湖南省长沙市长郡集团2024届中考数学全真模拟试题含解析
湖南省长沙市长郡集团2024届中考数学全真模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列命题中,真命题是()A.如果第一个圆上的点都在第二个圆的外部,那么这两个圆外离B.如果一个点即在第一个圆上,又在第二个圆上,那么这两个圆外切C.如果一条直线上的点到圆心的距离等于半径长,那么这条直线与这个圆相切D.如果一条直线上的点都在一个圆的外部,那么这条直线与这个圆相离2.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴交于点C,且OA=OC.则下列结论:①abc<0;②244b aca->;③ac-b+1=0;④OA·OB=ca-.其中正确结论的个数是()A.4 B.3 C.2 D.13.如图,数轴上有A,B,C,D四个点,其中表示互为倒数的点是()A.点A与点B B.点A与点D C.点B与点D D.点B与点C4.已知二次函数y=-x2-4x-5,左、右平移该抛物线,顶点恰好落在正比例函数y=-x的图象上,则平移后的抛物线解析式为()A.y=-x2-4x-1 B.y=-x2-4x-2 C.y=-x2+2x-1 D.y=-x2+2x-25.如图,点F是ABCD的边AD上的三等分点,BF交AC于点E,如果△AEF的面积为2,那么四边形CDFE的面积等于( )A .18B .22C .24D .466.已知二次函数y =ax 2+bx+c(a≠1)的图象如图所示,给出以下结论:①a+b+c <1;②a ﹣b+c <1;③b+2a <1;④abc >1.其中所有正确结论的序号是( )A .③④B .②③C .①④D .①②③7.下列各数中比﹣1小的数是( ) A .﹣2B .﹣1C .0D .18.若关于x 的一元二次方程x(x+1)+ax=0有两个相等的实数根,则实数a 的值为( ) A .1-B .1C .22-或D .31-或9.已知在一个不透明的口袋中有4个形状、大小、材质完全相同的球,其中1个红色球,3个黄色球.从口袋中随机取出一个球(不放回),接着再取出一个球,则取出的两个都是黄色球的概率为( ) A .B .C .D .10.如图,图1是由5个完全相同的正方体堆成的几何体,现将标有E 的正方体平移至如图2所示的位置,下列说法中正确的是( )A .左、右两个几何体的主视图相同B .左、右两个几何体的左视图相同C .左、右两个几何体的俯视图不相同D .左、右两个几何体的三视图不相同11.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为( ) A .120元B .100元C .80元D .60元12.如图,将△ABC 绕点B 顺时针旋转60°得△DBE ,点C 的对应点E 恰好落在AB 延长线上,连接AD .下列结论一定正确的是( )A .∠ABD =∠EB .∠CBE =∠C C .AD ∥BC D .AD =BC二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.因式分解:x 2﹣10x+24=_____.14.写出一个比2大且比5小的有理数:______.15.若圆锥的底面半径长为10,侧面展开图是一个半圆,则该圆锥的母线长为_____. 16.已知二次函数2y ax bx c =++中,函数y 与x 的部分对应值如下: ... -1 0 1 2 3 ......105212...则当5y <时,x 的取值范围是_________.17.计算221b a a b a b ⎛⎫÷- ⎪-+⎝⎭的结果是____.18.在形状为等腰三角形、圆、矩形、菱形、直角梯形的5张纸片中随机抽取一张,抽到中心对称图形的概率是________. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)春节期间,收发微信红包已经成为各类人群进行交流联系、增强感情的一部分,小王在年春节共收到红包元,年春节共收到红包元,求小王在这两年春节收到红包的年平均增长率.20.(6分)已知:如图,在△ABC 中,AB =13,AC =8,cos ∠BAC =513,BD ⊥AC ,垂足为点D ,E 是BD 的中点,联结AE 并延长,交边BC 于点F . (1)求∠EAD 的余切值; (2)求BFCF的值.21.(6分)如图,矩形OABC 摆放在平面直角坐标系xOy 中,点A 在x 轴上,点C 在y 轴上,8 ,6OA OC ==.(1)求直线AC 的表达式;(2)若直线y x b =+与矩形OABC 有公共点,求b 的取值范围;(3)直线: 10l y kx =+与矩形OABC 没有公共点,直接写出k 的取值范围.22.(8分)(1)解方程:11322xx x--=---. (2)解不等式组:312215(1)x x x x -⎧<-⎪⎨⎪+≥-⎩ 23.(8分)在平面直角坐标系xOy 中,对于P ,Q 两点给出如下定义:若点P 到两坐标轴的距离之和等于点Q 到两坐标轴的距离之和,则称P ,Q 两点为同族点.下图中的P ,Q 两点即为同族点.(1)已知点A 的坐标为(﹣3,1),①在点R(0,4),S(2,2),T(2,﹣3)中,为点A 的同族点的是 ;②若点B 在x 轴上,且A ,B 两点为同族点,则点B 的坐标为 ; (2)直线l :y=x ﹣3,与x 轴交于点C ,与y 轴交于点D ,①M 为线段CD 上一点,若在直线x=n 上存在点N ,使得M ,N 两点为同族点,求n 的取值范围;②M 为直线l 上的一个动点,若以(m ,0)2为半径的圆上存在点N ,使得M ,N 两点为同族点,直接写出m 的取值范围.24.(10分)如图,△BAD 是由△BEC 在平面内绕点B 旋转60°而得,且AB ⊥BC ,BE =CE ,连接DE .求证:△BDE ≌△BCE ;试判断四边形ABED 的形状,并说明理由.25.(10分)已知a +b =3,ab =2,求代数式a 3b +2a 2b 2+ab 3的值. 26.(12分)计算:|2﹣1|﹣2sin45°+38﹣21()227.(12分)随着信息技术的快速发展,“互联网+”渗透到我们日常生活的各个领域,网上在线学习交流已不再是梦,现有某教学网站策划了A ,B 两种上网学习的月收费方式: 收费方式 月使用费/元 包时上网时间/h 超时费/(元/min) A 7 25 0.01 Bmn0.01设每月上网学习时间为x 小时,方案A ,B 的收费金额分别为y A ,y B .(1)如图是y B 与x 之间函数关系的图象,请根据图象填空:m = ;n = ; (2)写出y A 与x 之间的函数关系式; (3)选择哪种方式上网学习合算,为什么.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1、D 【解题分析】根据两圆的位置关系、直线和圆的位置关系判断即可.【题目详解】A.如果第一个圆上的点都在第二个圆的外部,那么这两个圆外离或内含,A是假命题;B.如果一个点即在第一个圆上,又在第二个圆上,那么这两个圆外切或内切或相交,B是假命题;C.如果一条直线上的点到圆心的距离等于半径长,那么这条直线与这个圆相切或相交,C是假命题;D.如果一条直线上的点都在一个圆的外部,那么这条直线与这个圆相离,D是真命题;故选:D.【题目点拨】本题考查了两圆的位置关系:设两圆半径分别为R、r,两圆圆心距为d,则当d>R+r时两圆外离;当d=R+r时两圆外切;当R-r<d<R+r(R≥r)时两圆相交;当d=R-r(R>r)时两圆内切;当0≤d<R-r(R>r)时两圆内含.2、B【解题分析】试题分析:由抛物线开口方向得a<0,由抛物线的对称轴位置可得b>0,由抛物线与y轴的交点位置可得c>0,则可对①进行判断;根据抛物线与x轴的交点个数得到b2﹣4ac>0,加上a<0,则可对②进行判断;利用OA=OC可得到A(﹣c,0),再把A(﹣c,0)代入y=ax2+bx+c得ac2﹣bc+c=0,两边除以c则可对③进行判断;设A(x1,0),B(x2,0),则OA=﹣x1,OB=x2,根据抛物线与x轴的交点问题得到x1和x2是方程ax2+bx+c=0(a≠0)的两根,利用根与系数的关系得到x1•x2=,于是OA•OB=﹣,则可对④进行判断.解:∵抛物线开口向下,∴a<0,∵抛物线的对称轴在y轴的右侧,∴b>0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以①正确;∵抛物线与x轴有2个交点,∴△=b2﹣4ac>0,而a<0,∴<0,所以②错误;∵C(0,c),OA=OC,∴A(﹣c,0),把A(﹣c,0)代入y=ax2+bx+c得ac2﹣bc+c=0,∴ac﹣b+1=0,所以③正确;设A(x1,0),B(x2,0),∵二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,∴x1和x2是方程ax2+bx+c=0(a≠0)的两根,∴x1•x2=,∴OA•OB=﹣,所以④正确.故选B.考点:二次函数图象与系数的关系.3、A【解题分析】试题分析:主要考查倒数的定义和数轴,要求熟练掌握.需要注意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.根据倒数定义可知,-2的倒数是-12,有数轴可知A对应的数为-2,B对应的数为-12,所以A与B是互为倒数.故选A.考点:1.倒数的定义;2.数轴.4、D【解题分析】把这个二次函数的图象左、右平移,顶点恰好落在正比例函数y=﹣x的图象上,即顶点的横纵坐标互为相反数,而平移时,顶点的纵坐标不变,即可求得函数解析式.【题目详解】解:∵y=﹣x1﹣4x﹣5=﹣(x+1)1﹣1,∴顶点坐标是(﹣1,﹣1).由题知:把这个二次函数的图象左、右平移,顶点恰好落在正比例函数y=﹣x的图象上,即顶点的横纵坐标互为相反数.∵左、右平移时,顶点的纵坐标不变,∴平移后的顶点坐标为(1,﹣1),∴函数解析式是:y=﹣(x-1)1-1=﹣x1+1x ﹣1,即:y=﹣x1+1x﹣1.故选D.【题目点拨】本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律,上下平移时,点的横坐标不变;左右平移时,点的纵坐标不变.同时考查了二次函数的性质,正比例函数y=﹣x的图象上点的坐标特征.5、B【解题分析】连接FC,先证明△AEF∽△BEC,得出AE∶EC=1∶3,所以S△EFC=3S△AEF,在根据点F是□ABCD的边AD上的三等分点得出S△FCD=2S△AFC,四边形CDFE的面积=S△FCD+ S△EFC,再代入△AEF的面积为2即可求出四边形CDFE 的面积.【题目详解】解:∵AD∥BC,∴∠EAF=∠ACB,∠AFE=∠FBC;∵∠AEF=∠BEC,∴△AEF∽△BEC,∴AFBC=AEEC=13,∵△AEF与△EFC高相等,∴S△EFC=3S△AEF,∵点F是□ABCD的边AD上的三等分点,∴S△FCD=2S△AFC,∵△AEF的面积为2,∴四边形CDFE的面积=S△FCD+ S△EFC=16+6=22.故选B.【题目点拨】本题考查了相似三角形的应用与三角形的面积,解题的关键是熟练的掌握相似三角形的应用与三角形的面积的相关知识点.6、C【解题分析】试题分析:由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.解:①当x=1时,y=a+b+c=1,故本选项错误;②当x=﹣1时,图象与x轴交点负半轴明显大于﹣1,∴y=a﹣b+c<1,故本选项正确;③由抛物线的开口向下知a<1,∵对称轴为1>x=﹣>1,∴2a+b<1,故本选项正确;④对称轴为x=﹣>1,∴a、b异号,即b>1,∴abc<1,故本选项错误;∴正确结论的序号为②③.故选B.点评:二次函数y=ax2+bx+c系数符号的确定:(1)a由抛物线开口方向确定:开口方向向上,则a>1;否则a<1;(2)b由对称轴和a的符号确定:由对称轴公式x=﹣b2a判断符号;(3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c>1;否则c<1;(4)当x=1时,可以确定y=a+b+C的值;当x=﹣1时,可以确定y=a﹣b+c的值.7、A【解题分析】根据两个负数比较大小,绝对值大的负数反而小,可得答案.【题目详解】解:A、﹣2<﹣1,故A正确;B、﹣1=﹣1,故B错误;C、0>﹣1,故C错误;D、1>﹣1,故D错误;故选:A.【题目点拨】本题考查了有理数大小比较,利用了正数大于0,0大于负数,注意两个负数比较大小,绝对值大的负数反而小.8、A【解题分析】【分析】整理成一般式后,根据方程有两个相等的实数根,可得△=0,得到关于a的方程,解方程即可得.【题目详解】x(x+1)+ax=0,x2+(a+1)x=0,由方程有两个相等的实数根,可得△=(a+1)2-4×1×0=0,解得:a1=a2=-1,故选A.【题目点拨】本题考查一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.9、D【解题分析】试题分析:列举出所有情况,看取出的两个都是黄色球的情况数占总情况数的多少即可. 试题解析:画树状图如下:共有12种情况,取出2个都是黄色的情况数有6种,所以概率为.故选D.考点:列表法与树状法.10、B【解题分析】直接利用已知几何体分别得出三视图进而分析得出答案.【题目详解】A、左、右两个几何体的主视图为:,故此选项错误;B、左、右两个几何体的左视图为:,故此选项正确;C、左、右两个几何体的俯视图为:,故此选项错误;D、由以上可得,此选项错误;故选B.【题目点拨】此题主要考查了简单几何体的三视图,正确把握观察的角度是解题关键.11、C【解题分析】解:设该商品的进价为x元/件,依题意得:(x+20)÷510=200,解得:x=1.∴该商品的进价为1元/件.故选C.12、C【解题分析】根据旋转的性质得,∠ABD=∠CBE=60°, ∠E=∠C,则△ABD为等边三角形,即AD=AB=BD,得∠ADB=60°因为∠ABD=∠CBE=60°,则∠CBD=60°,所以,∠ADB=∠CBD,得AD∥BC.故选C.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、(x﹣4)(x﹣6)【解题分析】因为(-4)×(-6)=24,(-4)+(-6)=-10,所以利用十字相乘法分解因式即可.【题目详解】x2﹣10x+24= x2﹣10x+(-4)×(-6)=(x﹣4)(x﹣6)【题目点拨】本题考查的是因式分解,熟练掌握因式分解的方法是解题的关键.14、2.【题目详解】2(答案不唯一),故答案为:2(答案不唯一).【题目点拨】此题考查无理数的估算,解题的关键在于利用题中所给有理数的大小求符合题意的答案.15、2【解题分析】侧面展开后得到一个半圆,半圆的弧长就是底面圆的周长.依此列出方程即可.【题目详解】设母线长为x ,根据题意得2πx÷2=2π×5,解得x=1.故答案为2.【题目点拨】本题考查了圆锥的计算,解题的关键是明白侧面展开后得到一个半圆就是底面圆的周长,难度不大.16、0<x<4【解题分析】根据二次函数的对称性及已知数据可知该二次函数的对称轴为x=2,结合表格中所给数据可得出答案.【题目详解】由表可知,二次函数的对称轴为直线x =2,所以,x =4时,y =5,所以,y <5时,x 的取值范围为0<x <4.故答案为0<x <4.【题目点拨】此题主要考查了二次函数的性质,利用图表得出二次函数的图象即可得出函数值得取值范围,同学们应熟练掌握. 17、1a b- 【解题分析】原式=()()()()1·b a b a b a b a b a b a b a b a b b a b +-+÷==+-++-- ,故答案为1a b.18、3 5【解题分析】在形状为等腰三角形、圆、矩形、菱形、直角梯形的5张纸片中,中心对称图案的卡片是圆、矩形、菱形,直接利用概率公式求解即可求得答案.【题目详解】∵在:等腰三角形、圆、矩形、菱形和直角梯形中属于中心对称图形的有:圆、矩形和菱形3种,∴从这5张纸片中随机抽取一张,抽到中心对称图形的概率为:3 5 .故答案为3 5 .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、小王在这两年春节收到的年平均增长率是【解题分析】增长后的量=增长前的量×(1+增长率),2018年收到微信红包金额400(1+x)元,在2018年的基础上再增长x,就是2019年收到微信红包金额400(1+x)(1+x)元,由此可列出方程400(1+x)2=484,求解即可.【题目详解】解:设小王在这两年春节收到的红包的年平均增长率是.依题意得:解得(舍去).答:小王在这两年春节收到的年平均增长率是【题目点拨】本题考查了一元二次方程的应用.对于增长率问题,增长前的量×(1+年平均增长率)年数=增长后的量.20、(1)∠EAD的余切值为56;(2)BFCF=58.【解题分析】(1)在Rt△ADB中,根据AB=13,cos∠BAC=513,求出AD的长,由勾股定理求出BD的长,进而可求出DE的长,然后根据余切的定义求∠EAD的余切即可;(2)过D作DG∥AF交BC于G,由平行线分线段成比例定理可得CD:AD=CG:FG=3:5,从而可设CD=3x,AD=5x,再由EF∥DG,BE=ED,可知BF=FG=5x,然后可求BF:CF的值.(1)∵BD⊥AC,∴∠ADE=90°,Rt△ADB中,AB=13,cos∠BAC=5 13,∴AD=5,由勾股定理得:BD=12,∵E是BD的中点,∴ED=6,∴∠EAD的余切==56;(2)过D作DG∥AF交BC于G,∵AC=8,AD=5,∴CD=3,∵DG∥AF,∴=35,设CD=3x,AD=5x,∵EF∥DG,BE=ED,∴BF=FG=5x,∴==5 8 .【题目点拨】本题考查了勾股定理,锐角三角函数的定义,平行线分线段成比例定理.解(1)的关键是熟练掌握锐角三角函数的概念,解(2)的关键是熟练掌握平行线分线段成比例定理.21、(1)364y x=-+;(2)86b-≤≤;(3)12k>-【解题分析】(1)由条件可求得A、C的坐标,利用待定系数法可求得直线AC的表达式;(2)结合图形,当直线平移到过C、A时与矩形有一个公共点,则可求得b的取值范围;(3)由题意可知直线l过(0,10),结合图象可知当直线过B点时与矩形有一个公共点,结合图象可求得k的取值范围.解:(1) 8 , 6OA OC ==()()8,0 , 0,6A C ∴,设直线AC 表达式为y kx b =+,806k b b +=⎧∴⎨=⎩,解得346k b ⎧=-⎪⎨⎪=⎩ ∴直线AC 表达式为364y x =-+; (2) 直线 y x b =+可以看到是由直线y x =平移得到,∴当直线 y x b =+过A C 、时,直线与矩形OABC 有一个公共点,如图1,当过点A 时,代入可得08b =+,解得8b =-.当过点C 时,可得6b =∴直线 y x b =+与矩形OABC 有公共点时,b 的取值范围为86b -≤≤;(3) 10y kx =+,∴直线l 过()0, 10D ,且()8, 6B ,如图2,直线l 绕点D 旋转,当直线过点B 时,与矩形OABC 有一个公共点,逆时针旋转到与y 轴重合时与矩形OABC 有公共点,当过点B 时,代入可得6810k =+,解得12k =- ∴直线l :10y kx =+与矩形OABC 没有公共点时k 的取值范围为12k >-【题目点拨】本题为一次函数的综合应用,涉及待定系数法、直线的平移、旋转及数形结合思想等知识.在(1)中利用待定系数法是解题的关键,在(2)、(3)中确定出直线与矩形OABC 有一个公共点的位置是解题的关键.本题考查知识点较多,综合性较强,难度适中.22、(1)无解;(1)﹣1<x≤1.【解题分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(1)分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【题目详解】(1)去分母得:1﹣x+1=﹣3x+6,解得:x=1,经检验x=1是增根,分式方程无解;(1)()3122151x x x x -⎧<-⎪⎨⎪+≥-⎩①②,由①得:x >﹣1,由②得:x≤1,则不等式组的解集为﹣1<x≤1.【题目点拨】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.23、(1)①R ,S ;②(4-,0)或(4,0);(2)①33n -≤≤;②m ≤1-或m ≥1.【解题分析】(1)∵点A 的坐标为(−2,1),∴2+1=4,点R (0,4),S (2,2),T (2,−2)中,0+4=4,2+2=4,2+2=5,∴点A 的同族点的是R ,S ;故答案为R ,S ;②∵点B 在x 轴上,∴点B 的纵坐标为0,设B (x ,0),则|x |=4,∴x =±4,∴B (−4,0)或(4,0);故答案为(−4,0)或(4,0);(2)①由题意,直线3y x =-与x 轴交于C (2,0),与y 轴交于D (0,3-).点M 在线段CD 上,设其坐标为(x ,y ),则有:0x ≥,0y ≤,且3y x =-.点M 到x 轴的距离为y ,点M 到y 轴的距离为x , 则3x y x y +=-=.∴点M 的同族点N 满足横纵坐标的绝对值之和为2.即点N 在右图中所示的正方形CDEF 上.∵点E 的坐标为(3-,0),点N 在直线xn =上,②如图,设P(m,0)为圆心, 2为半径的圆与直线y=x−2相切,2,45PN PCN CPN︒=∠=∠=∴PC=2,∴OP=1,观察图形可知,当m≥1时,若以(m,0)为圆心,2为半径的圆上存在点N,使得M,N两点为同族点,再根据对称性可知,m≤1-也满足条件,∴满足条件的m的范围:m≤1-或m≥124、证明见解析.【解题分析】(1)根据旋转的性质可得DB=CB,∠ABD=∠EBC,∠ABE=60°,然后根据垂直可得出∠DBE=∠CBE=30°,继而可根据SAS证明△BDE≌△BCE;(2)根据(1)以及旋转的性质可得,△BDE≌△BCE≌△BDA,继而得出四条棱相等,证得四边形ABED为菱形.【题目详解】(1)证明:∵△BAD是由△BEC在平面内绕点B旋转60°而得,∴DB=CB,∠ABD=∠EBC,∠ABE=60°,∵AB⊥EC,∴∠ABC=90°,∴∠DBE=∠CBE=30°,在△BDE和△BCE中,∵DB CBDBE CBE BE BE=⎧⎪∠=∠⎨⎪=⎩,∴△BDE≌△BCE;(2)四边形ABED为菱形;由(1)得△BDE≌△BCE,∵△BAD是由△BEC旋转而得,∴△BAD≌△BEC,∴BA=BE,AD=EC=ED,又∵BE=CE,∴BA=BE=ED= AD∴四边形ABED为菱形.考点:旋转的性质;全等三角形的判定与性质;菱形的判定.25、1【解题分析】先提取公因式ab,再根据完全平方公式进行二次分解,然后代入数据进行计算即可得解.【题目详解】解:a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2,将a+b=3,ab=2代入得,ab(a+b)2=2×32=1.故代数式a3b+2a2b2+ab3的值是1.26、﹣1【解题分析】直接利用负指数幂的性质以及绝对值的性质、特殊角的三角函数值分别化简得出答案.【题目详解】+2﹣4原式=﹣1)﹣2×21﹣4=﹣1.【题目点拨】此题主要考查了实数运算,正确化简各数是解题关键.27、(1)10,50;(2)见解析;(3)当0<x<30时,选择A方式上网学习合算,当x=30时,选择哪种方式上网学习【解题分析】(1)由图象知:m=10,n=50;(2)根据已知条件即可求得y A与x之间的函数关系式为:当x≤25时,y A=7;当x>25时,y A=7+(x﹣25)×0.01;(3)先求出y B与x之间函数关系为:当x≤50时,y B=10;当x>50时,y B=10+(x﹣50)×60×0.01=0.6x﹣20;然后分段求出哪种方式上网学习合算即可.【题目详解】解:(1)由图象知:m=10,n=50;故答案为:10;50;(2)y A与x之间的函数关系式为:当x≤25时,y A=7,当x>25时,y A=7+(x﹣25)×60×0.01,∴y A=0.6x﹣8,∴y A=7(025){0.68(25)xx x<≤->;(3)∵y B与x之间函数关系为:当x≤50时,y B=10,当x>50时,y B=10+(x﹣50)×60×0.01=0.6x﹣20,当0<x≤25时,y A=7,y B=50,∴y A<y B,∴选择A方式上网学习合算,当25<x≤50时.y A=y B,即0.6x﹣8=10,解得;x=30,∴当25<x<30时,y A<y B,选择A方式上网学习合算,当x=30时,y A=y B,选择哪种方式上网学习都行,当30<x≤50,y A>y B,选择B方式上网学习合算,当x>50时,∵y A=0.6x﹣8,y B=0.6x﹣20,y A>y B,∴选择B方式上网学习合算,综上所述:当0<x<30时,y A<y B,选择A方式上网学习合算,当x=30时,y A=y B,选择哪种方式上网学习都行,当x>30时,y A>y B,选择B方式上网学习合算.【题目点拨】本题考查一次函数的应用.。
【3套试卷】长沙市中考模拟考试数学试题含答案
【3套试卷】长沙市中考模拟考试数学试题含答案中考⼀模数学试卷及答案试卷内容:九年级上册---九年级下册2.4;满分120分⼀.选择题(共10⼩题,每⼩题3分,共30分)1.如图,在平⾯直⾓坐标系xOy 中,直线y =k 1x +2与y 轴交于点C ,与反⽐例函数2k y x在第⼀象限内的图象交于点B ,连接BO ,若S △OBC =1,tan ∠BOC =13,则k 2的值是()A .﹣3B .1C .2D .32.若关于x 的⼀元⼆次⽅程(k +2)x 2﹣3x +1=0有实数根,则k 的取值范围是() A .k <14且k ≠﹣2 B .kC .k ≤14且k ≠﹣2 D .k3.等腰△ABC 的⼀边长为4,另外两边的长是关于x 的⽅程x 2﹣10x +m =0的两个实数根,则等腰三⾓形底边的值是() A .4B .25C .4或6D .24或254.如果△ABC 中,AB =AC ,BC =AB ,那么∠A 的度数是() A .30°B .36°C .45°D .60°5.如图,在△ABC 中,DE ∥BC ,若S △ADE :S △BDE =1:2,S △ADE =3,则S △ABC 为()A.9B.12C.24D.276.如图,在直⾓坐标系中,矩形OABC的顶点O在坐标原点,边OA在x轴上,OC在y轴上,如果矩形OA′B′C′与矩形OABC关于点O位似,且矩形OA′B′C′与矩形OABC的相似⽐为12,那么点B′的坐标是()A.(﹣2,3)B.(2,﹣3)C.(3,﹣2)或(﹣2,3)D.(﹣2,3)或(2,﹣3)7.设tan 69.83°=a,则tan 20.17°⽤a可表⽰为()A.﹣a B.1aC.3aD.a8.由于各地雾霾天⽓越来越严重,2018年春节前⼣,安庆市政府号召市民,禁放烟花炮⽵.学校向3000名学⽣发出“减少空⽓污染,少放烟花爆⽵”倡议书,并围绕“A类:不放烟花爆⽵;B类:少放烟花爆⽵;C类:使⽤电⼦鞭炮;D 类:不会减少烟花爆⽵数量”四个选项进⾏问卷调查(单选),并将对100名学⽣的调查结果绘制成统计图(如图所⽰).根据抽样结果,请估计全校“使⽤电⼦鞭炮”的学⽣有()A.900名B.1050名C.600名D.450名9.将抛物线y=ax2+bx+c向左平移2个单位,再向下平移3个单位得抛物线y=﹣(x+2)2+3,则()A.a=﹣1,b=﹣8,c=﹣10B.a=﹣1,b=﹣8,c=﹣16C.a=﹣1,b=0,c=0D.a=﹣1,b=0,c=610.如图所⽰,点A,B,C,D在⊙O上,CD是直径,∠ABD=75°,则∠AOC 的度数为()A.15°B.25°C.30°D.35°⼆.填空题(共8⼩题,每⼩题3分,共24分)11.⽤配⽅法将⽅程x2+10x﹣11=0化成(x+m)2=n的形式(m、n为常数),则m+n=.12.若,则=.13.如图,Rt△ABC中,∠ACB=90°,CD⊥AB,垂⾜为D,若AD=BC,则cos∠B =.14.若点P(﹣m2﹣1,m﹣3)在第三象限,则反⽐例函数y=的图象在第象限.15.如图是抛物线y=ax2+bx+c的⼀部分,其对称轴为直线x=2,若其与x轴的⼀个交点为(5,0),则由图象可知,不等式ax2+bx+c<0的解集是.16.如图,有⼀座拱桥洞呈抛物线形状,这个桥洞的最⼤⾼度为16m,跨度为40m,现把它的⽰意图放在如图的平⾯直⾓坐标系中,则抛物线对应的函数关系式为.17.如图,⊙M经过点A(﹣3,5),B(1,5),C(4,2),则圆⼼M的坐标是.18.如图,四边形ABCD内接于⊙O,∠DCB=40°,连接OC,点P是半径OC上任意⼀点,连接DP,BP,则∠BPD的取值范围是.三.解答题(共8⼩题,19—20,每⼩题5分;21—22,每⼩题7分;23—25,每⼩题10分;26题12分;满分66分)19.解下列⽅程:(x+2)2=3x+6.20.计算:﹣2-?﹣tan45°(1tan60)21.如图,有⼀座拱桥是圆弧形,它的跨度AB=60⽶,拱⾼PD=18⽶.(1)求圆弧所在的圆的半径r的长;(2)当洪⽔泛滥到跨度只有30⽶时,要采取紧急措施,若拱顶离⽔⾯只有4⽶,即PE=4⽶时,是否要采取紧急措施?22.为迎接2019年中考,对道⾥区西部优质教育联盟九年级学⽣进⾏了⼀次数学期中模拟考试,并随机抽取了部分学⽣的测试成绩作为样本进⾏分析,绘制成了如下两幅不完整的统计图,请你根据统计图中提供的信息解答下列问题:(1)这次被调查的学⽣共有多少⼈,并将条形统计图补充完整:(2)在扇形统计图中,求出“优”所对应的圆⼼⾓度数;(3)若该联盟九年级共有1050⼈参加了这次数学考试,估计九年级这次考试共有多少名学⽣的数学成绩可以达到优秀?23.正⽅形ABCD的边长为4,M,N分别是BC,CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直.(1)证明:△ABM∽△MCN;(2)若△ABM的周长与△MCN周长之⽐是4:3,求NC的长.24.如图1,2分别是某款篮球架的实物图与⽰意图,已知底座BC的长为0.60⽶,底座BC与⽀架AC所成的⾓∠ACB=75°,点A、H、F在同⼀条直线上,⽀架AH段的长为1⽶,HF段的长为1.50⽶,篮板底部⽀架HE的长为0.75⽶.(1)求篮板底部⽀架HE与⽀架AF所成的⾓∠FHE的度数.(2)求篮板顶端F到地⾯的距离.(结果精确到0.1⽶;参考数据:cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.73232≈1.414)25.⼗⼀黄⾦周期间某旅游景点的⽇游客量y(万⼈)是门票价格x(元)的⼀次函数,其函数图象如图所⽰:(1)求y关于x的函数解析式;(2)经过景点⼯作⼈员统计发现:此景点⽇游客承载量的极限为10万⼈,为了确保安全“⼗⼀”黄⾦周期间⽇游客量不能多于9万⼈,每卖出⼀张门票所需成本为20元,那么要想获得⽇利润300万元,该⽇的门票价格应该定为多少元?26.如图,抛物线y=ax2+bx+c与x轴交于A(﹣1,0)、B(3,0)两点,与y 轴交于点C(0,﹣3).(1)求出该抛物线的函数关系式;(2)设抛物线y=ax2+bx+c的顶点为M:①求四边形ABMC的⾯积;②点D为抛物线在第四象限内图象上⼀个动点,是否存在点D,使得四边形ABDC的⾯积最⼤?若存在,请求出点D的坐标;若不存在,请说明理由;(3)在抛物线y=ax2+bx+c上求点Q,使△BCQ是以BC为直⾓边的直⾓三⾓形.湖南省澧县张公庙中学2018—2019学年(秋季)湘教版九年级数学期末模拟试卷(⼀)参考简答⼀.选择题(共10⼩题,每⼩题3分,共30分)1.D.2.C.3.C.4.B.5.D.6.D.7.B.8.C.9.D.10.C.⼆.填空题(共8⼩题,每⼩题3分,共24分)11.41.12.﹣11.13.512-.14.⼆、四.15.﹣1<x<5.16y=﹣125(x﹣20)2+16.17.(﹣1,0).18.40°≤∠BPD≤80°.三.解答题(共8⼩题,19—20,每⼩题5分;21—22,每⼩题7分;23—25,每⼩题10分;26题12分;满分66分)19.解下列⽅程:(x+2)2=3x+6.【解】:(x+2)2=3x+6.(x+2)2﹣3x﹣6=0,(x+2)2﹣3(x+2)=0(x+2)[(x+2)﹣3]=0,x+2=0,(x+2)﹣3=0,∴x1=﹣2,x2=1.20.计算:﹣2(1tan60)-?﹣tan45°【解】:原式=31)﹣1323﹣12.21.如图,有⼀座拱桥是圆弧形,它的跨度AB=60⽶,拱⾼PD=18⽶.(1)求圆弧所在的圆的半径r的长;(2)当洪⽔泛滥到跨度只有30⽶时,要采取紧急措施,若拱顶离⽔⾯只有4⽶,即PE=4⽶时,是否要采取紧急措施?【解】:(1)连结OA,由题意得:AD=12AB=30,OD=(r﹣18)在Rt△ADO中,由勾股定理得:r2=302+(r﹣18)2,解得,r=34;(2)连结OA′,∵OE=OP﹣PE=30,∴在Rt△A′EO中,由勾股定理得:A′E2=A′O2﹣OE2,即:A′E2=342﹣302,解得:A′E=16.∴A′B′=32.∵A′B′=32>30,∴不需要采取紧急措施.22.为迎接2019年中考,对道⾥区西部优质教育联盟九年级学⽣进⾏了⼀次数学期中模拟考试,并随机抽取了部分学⽣的测试成绩作为样本进⾏分析,绘制成了如下两幅不完整的统计图,请你根据统计图中提供的信息解答下列问题:(1)这次被调查的学⽣共有多少⼈,并将条形统计图补充完整:(2)在扇形统计图中,求出“优”所对应的圆⼼⾓度数;(3)若该联盟九年级共有1050⼈参加了这次数学考试,估计九年级这次考试共有多少名学⽣的数学成绩可以达到优秀?【解】:(1)22÷44%=50,所以这次被调查的学⽣共有50⼈;成绩为中的⼈数为50﹣10﹣22﹣8=10,补图条形统计图为:(2)360°×1050=72°,答:“优”所对应的圆⼼⾓度数72°;(3)1050×1050=210,答:估计九年级这次考试共有210名学⽣的数学成绩可以达到优秀.23.正⽅形ABCD的边长为4,M,N分别是BC,CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直.(1)证明:△ABM∽△MCN;(2)若△ABM的周长与△MCN周长之⽐是4:3,求NC的长.(1)【证明】:∵四边形ABCD是正⽅形,正⽅形ABCD的边长为4,∴AB=BC=4,∠B=∠C=90°,∵AM和MN垂直,∴∠AMN=90°,∴∠BAM+∠AMB=90°,∠NMC+∠BMA=180°﹣90°=90°,∴∠BAM=∠NMC,∵∠B=∠C,∴△ABM∽△MCN;(2)【解】:∵△ABM∽△MCN,∴ABCM =BMCN,∵△ABM∽△MCN,△ABM的周长与△MCN周长之⽐是4:3,∴△ABM的周长与△MCN边长之⽐也是4:3,∴ABCM =BMCN=43,∵AB=4,∴4CM =43,∴CM=3,∴1CN =43,∴NC=34.24.如图1,2分别是某款篮球架的实物图与⽰意图,已知底座BC的长为0.60⽶,底座BC与⽀架AC所成的⾓∠ACB=75°,点A、H、F在同⼀条直线上,⽀架AH段的长为1⽶,HF段的长为1.50⽶,篮板底部⽀架HE的长为0.75⽶.(1)求篮板底部⽀架HE与⽀架AF所成的⾓∠FHE的度数.(2)求篮板顶端F到地⾯的距离.(结果精确到0.1⽶;参考数据:cos75°≈0.2588,sin75°≈0.9659,t an75°≈3.732≈1.414)【解】:(1)由题意可得:cos∠FHE=HEHF=12,则∠FHE=60°;(2)延长FE交CB的延长线于M,过A作AG⊥FM于G,在Rt△ABC中,tan∠ACB=AB BC,∴AB=BC?tan75°=0.60×3.732=2.2392,∴GM=AB=2.2392,在Rt△AGF中,∵∠FAG=∠FHE=60°,sin∠FAG=FG AF,∴FG≈2.17(m),∴FM=FG+GM≈4.4(⽶),答:篮板顶端F到地⾯的距离是4.4⽶.25.⼗⼀黄⾦周期间某旅游景点的⽇游客量y(万⼈)是门票价格x(元)的⼀次函数,其函数图象如图所⽰:(1)求y关于x的函数解析式;(2)经过景点⼯作⼈员统计发现:此景点⽇游客承载量的极限为10万⼈,为了确保安全“⼗⼀”黄⾦周期间⽇游客量不能多于9万⼈,每卖出⼀张门票所需成本为20元,那么要想获得⽇利润300万元,该⽇的门票价格应该定为多少元?【解】:(1)设y关于x的函数解析式为y=kx+b(k≠0),将(50,10),(100,5)代⼊y=kx+b,得:,解得:,∴y关于x的函数解析式为y=﹣0.1x+15.(2)根据题意得:(x﹣20)(﹣0.1x+15)=300,整理得:x2﹣170x+6000=0,解得:x1=50,x2=120.∵“⼗⼀”黄⾦周期间⽇游客量不能多于9万⼈,∴﹣0.1x+15≤9,解得:x≥60,∴x=120.答:该⽇的门票价格应该定为120元.26.如图,抛物线y=ax2+bx+c与x轴交于A(﹣1,0)、B(3,0)两点,与y 轴交于点C(0,﹣3).(1)求出该抛物线的函数关系式;(2)设抛物线y=ax2+bx+c的顶点为M:①求四边形ABMC的⾯积;②点D为抛物线在第四象限内图象上⼀个动点,是否存在点D,使得四边形ABDC的⾯积最⼤?若存在,请求出点D的坐标;若不存在,请说明理由;(3)在抛物线y=ax2+bx+c上求点Q,使△BCQ是以BC为直⾓边的直⾓三⾓形.【解】:(1)设抛物线解析式为y=a(x+1)(x﹣3),∵抛物线过点C(0,﹣3),∴﹣3=a(0+1)(0﹣3),∴a=1,∴抛物线解析式为y=(x+1)(x﹣3),(2)①∵y=(x+1)(x﹣3)=(x﹣1)2﹣4,∴M(1,﹣4);如图1∴S△BCM=S梯形OCMD+S△BMD﹣S△BCO=12(3+4)×1+12×2×4﹣12×3×3=3;②如图2设D(x,x2﹣2x﹣3),∴OH=x,DH=2x+3﹣x2,HB=3﹣x ∴S四边形ABDC=S△AOC+S四边形OCDH+S△HDB =32++=﹣32;∴x=32时,S四边形ABDC的最⼤值为758,y=,∴D(32,154).(3)如图3过点B作BQ1⊥BC,交抛物线于点Q1、交y轴于点E,连接Q1C.∵CO=BO=3,∴∠CBO=45°,∴∠EBO=45°,BO=OE=3.∴点E的坐标为(0,3).将(0,3),(3,0)代⼊y=kx+b得:,解得,∴直线BE的解析式为y=﹣x+3,由,解得,,如图4,过点C作CF⊥CB,交抛物线于点Q2、交x轴于点F,连接BQ2.∵∠CBO=45°,∴∠CFB=45°,OF=OC=3.∴点F的坐标为(﹣3,0).∴直线CF的解析式为y=﹣x﹣3.由,解得,,∴点Q2的坐标为(1,﹣4).综上,在抛物线上存在点Q1(﹣2,5)、Q2(1,﹣4),使△BCQ1、△BCQ2是以BC为直⾓边的直⾓三⾓形.中考⼀模数学试卷及答案⼀、选择题(4分×6=24分)1.下列⼆次根式中,最简单⼆次根式是()【A】45【B】21【C】2x【D】x12、下列⽅程中,⽆实数解的是()【A】2+x=0【B】2-x=0【C】2x=0【D】2x=03、下列函数中y随着x的增⼤⽽减⼩的是()【A】y=3x【B】y=x3【C】y=-3x【D】y=-x34、对于数据:6,3,4,7,6,0,9.下列判断中正确确的是()【A】这组数据的平均数是6,中位数是6【B】这组数据的平均数是5,中位数是6【C】这组数据的平均数是6,中位数是7【D】这组数据的平均数是5,中位数是75、下列图形中,中⼼对称图形有()【A】4个【B】3个【C】2个【D】1个6、下列命题中,真命题是()【A】如果⼀个四边形两条対⾓线相等,那么这个四边形是矩形【B 】如果⼀个四边形两条对⾓线相互垂直,那么这个四边形是菱形【C 】如果⼀个四边形两条对⾓线均平分所在的⾓,那么这个四边形是菱形【D 】如果⼀个四边形两条对⾓线相互垂直平分,那么这个四边形是矩形⼆、填空题(4分×12=48分) 7、计算:()222a= .8、不等式组{20240x x +>-≥的解集是 .9、⽅程221x x -=的根是 .10、已知函数 2()1f x x =+,那么 =-)23(f __________ 11、将直线y x =-沿着y 轴向上平移3个单位将得到直线L ,那么该直线与两条坐标轴围成的三⾓形的周长为。
2024年湖南省长沙市中考数学模拟试卷及答案解析
2024年湖南省长沙市中考数学模拟试卷一、选择题(在下列各题的四个选项中,只有一项符合题意的。
请在答题卡中填涂符合题意的选项。
本大题共10小题,每小题3分,共30分)1.(3分)下列实数中,为有理数的是()A.B.πC.D.12.(3分)若分式在实数范围内有意义,则x的取值范围是()A.x≠0B.x≠1C.x>1D.x<13.(3分)下列立体图形中,俯视图与主视图不同的是()A.B.C.D.4.(3分)下列说法正确的是()A.打开电视机,正在播放“张家界新闻”是必然事件B.天气预报说“明天的降水概率为65%”,意味着明天一定下雨C.两组数据平均数相同,则方差大的更稳定D.数据5,6,7,7,8的中位数与众数均为75.(3分)2023年前三季度全国GDP30强城市排名已经揭晓,长沙GDP约为10800亿名列第十五,同比增速为6.32%,数据10800用科学记数法表示为()A.0.108×105B.10.8×103C.1.08×104D.1.08×103 6.(3分)下列运算正确的是()A.a2•a3=a6B.a2+a3=a5C.(a+b)2=a2+b2D.(a3)2=a6 7.(3分)在直角坐标系中,点A(2,﹣3)关于原点对称的点位于()A.第一象限B.第二象限C.第三象限D.第四象限8.(3分)如图,E、F、G、H分别是四边形ABCD四条边的中点,则四边形EFGH一定是()A.平行四边形B.矩形C.菱形D.正方形9.(3分)如图所示,四边形ABCD为⊙O的内接四边形,∠BCD=120°,则∠BOD的大小是()A.80°B.120°C.100°D.90°10.(3分)我国古代数学典籍《九章算术》第七章“盈不足”中有一道两鼠穿墙问题:“今有垣厚五尺,两鼠对穿,大鼠日一尺,小鼠日一尺,大鼠日自倍,小鼠日自半,问何日相逢,各穿几何”,翻译过来就是:有五尺厚的墙,两只老鼠从墙的两边相对分别打洞穿墙,大、小鼠第一天都进一尺,以后每天,大鼠加倍,小鼠减半,则几天后两鼠相遇,这个问题体现了古代对数列问题的研究,现将墙的厚度改为20尺,则需要几天时间才能打穿(结果取整数)()A.4B.5C.6D.7二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)分解因式:1﹣x2=.12.(3分)如图,在⊙O中,圆心角∠AOB=70°,那么圆周角∠C=.13.(3分)睡眠管理作为“五项管理”中重要的内容之一,也是学校教育重点关注的内容.某老师了解到某班40位同学每天睡眠时间(单位:小时)如下表所示,则该班级学生每天的平均睡眠时间是小时.睡眠时间8小时9小时10小时人数6241014.(3分)已知关于x的方程x2+3x﹣m=0的只有一个解,则m的值是.15.(3分)如图所示,点A是反比例函数y=图象上一点,作AB⊥x轴,垂足为点B,若△AOB的面积为2,则k的值是.16.(3分)若一次函数y=x+1与y=﹣x﹣1交于A点,则A点的坐标为.三、解答题(本大题共9小题,第17、18、19题每小题6分,第20、21题每小题6分,第22、23题每小题6分,第24、25题每小题6分,共72分。
【中考冲刺】2023年湖南省长沙市中考模拟数学试卷(附答案)
2023年湖南省长沙市中考模拟数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列图形中,属于轴对称图形的是( )A .B .C .D .2.函数y =12x-自变量x 的取值范围是( ) A .全体实数 B .x ≠0 C .x <2 D .x ≠2 3.如图,AB ∥CD ,且被直线l 所截,若∥1=54°,则∥2的度数是( )A .154°B .126°C .116°D .54° 4.下列计算正确的是( )A .()222a b a b -=-B .()232622ab a b =C .235ab ab ab +=D .248a a a ⋅= 5.在一次中学生田径运动会上,参加跳远的15名运动员的成绩如下表所示:则这15名运动员成绩的中位数、众数分别是( )A .4.65,4.70 B .4.65,4.75 C .4.70,4.70, D .4.70,4.75 6.如图,在Rt∥ABC 中,∥ACB=90°,∥A=α,将∥ABC 绕点C 按顺时针方向旋转后得到∥DEC ,此时点E 在AB 边上,则旋转角的大小为( )A.αB.2αC.90α︒-D.1802α︒-7.在一个不透明的盒子中装有2个白球,若干个黄球,它们除了颜色不同外,其余均相同.若从中随机摸出一个白球的概率是13,则黄球的个数为()A.2B.3C.4D.68.在平面直角坐标系中,将抛物线y=x2向上平移2个单位长度,再向右平移1个单位长度,得到的抛物线的解析式是()A.y=(x﹣1)2+2B.y=(x﹣1)2﹣2C.y=(x+1)2﹣2D.y=(x+1)2+29.如图,在∥ABC中,D,E,F分别是AB,AC,BC上的点,且DE∥BC,EF∥AB,若CF:BC=3:5,AB=15,则BD=()A.6B.9C.10D.1210.已知二次函数2y-x+x6=+,将该二次函数在x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,得到一个新函数的图像(如图所示),当直线y x m=+与新图象有3个或4个交点时,m的取值范围是()A.2524m-≤<-B.2534m-≤<-C.62m-≤≤-D.73m-≤≤-二、填空题11.“学中共党史,庆建党百年”,截至4月26日,某市党员群众参与答题次数达8420000次,掀起了党史学习竞赛的热潮,数据“8420000”用科学记数法可表示为___. 12.因式分解2242x x -+=______.13.如图,∥ABC 中,AB =5,AC =4,以点A 为圆心,任意长为半径作弧,分别交AB 、AC 于D 和E ,再分别以点D 、E 为圆心,大于二分之一DE 为半径作弧,两弧交于点F ,连接AF 并延长交BC 于点G ,GH ∥AC 于H ,GH =2,则∥ABG 的面积为________.14.一个扇形的圆心角为150°,弧长20cm π,则此扇形的半径是________cm .15.如图,CD 是∥O 的直径,弦AB ∥CD 于点H ,若∥D =30°,AD =,则AB =________cm .16.如图,直线CE 是平行四边形ABCD 的边AB 的垂直平分线,垂足为点O ,CE 与DA 的延长线交于点E .连接AC ,BE ,DO ,DO 与AC 交于点F ,则下列结论: ∥四边形ACBE 是菱形; ∥∥ACD=∠BAE ; ∥AF :FC=1:2;其中正确的结论有________.(填写所有正确结论的序号)三、解答题17.计算:1024cos 45(2022)π-︒+-18.先化简22213111-+⎛⎫÷- ⎪-+⎝⎭x x x x ,再从-1,2,3三个数中选一个合适的数作为x 的值代入求值.19.如图,在平面直角坐标系xOy中,一次函数152y x=+和2y x=-的图象相交于点A,反比例函数kyx=的图象经过点A.(1)求反比例函数的表达式;(2)设一次函数152y x=+的图象与反比例函数kyx=的图象的另一个交点为B,连接OB,求ABO∆的面积.20.某市教育局实施对口帮扶活动中,准备为部分农村学校的小学生捐赠一批课外读物,为了解学生课外读物阅读的喜好情况,现对该市农村学校中随机抽取部分小学生进行问卷调查,调查要求每人只选一种喜欢的书籍,如果没有喜欢的书籍,则作“其他”类统计,图(1)与图(2)是整理后绘制的两幅不完整的统计图.(1)本次调查抽取的人数是________人;在扇形统计图中,“漫画”所在扇形的圆心角为________度.(2)本次调查中喜欢“小说”的人数是________人;若该市农村小学有25000名学生,则由这两个统计图可估计喜爱“科普常识”的小学生约有________人.(3)现在有一种漫画书,发到最后只剩一本但小丽和小芳都想要,于是她们设计了一种游戏,规则是:现有4张卡片上分别写有7,8,9,10四个整数,先让小丽随机抽取一张后不放回...,再由小芳随机抽取一张,若抽取的两张卡片上的数字之和是2的倍数则小丽得到这本书,若抽取的两张卡片上的数字之和是3的倍数则小芳得到这本书.用列表法或树状图分析这种方法对二人是否公平?AC ,连接AE 交OD 于点F ,连接OE 、CE .(1)求证:四边形OCED 为矩形;(2)已知AB =2,DE =1,求OD 的长.22.甲、乙两人加工某种机器零件,已知甲比乙每小时少加工6个这种零件,甲加工240个这种零件所用的时间与乙加工300个这种零件所用的时间相等.(1)甲、乙两人每小时各加工多少个零件?(2)现有一批这种零件需要加工,已知由甲单独完成比由乙单独完成多花费2个小时,这批零件共有多少个?23.已知,如图,AB 是∥O 的直径,点C 为∥O 上一点,作弦BD ∥OC 于点F ,交AC 于点G .过点B 作直线交OC 的延长线于点E ,且∥OEB =∥AC D .(1)求证:BE 是∥O 的切线;(2)求证:2CD CG CA =⋅;24.我们不妨约定:在平面直角坐标系中,若点M 的横坐标与纵坐标之和等于点N 的横坐标与纵坐标之和,则称M ,N 两点同为“郡系点”.(1)己知点A 的坐标为(2,6),B 是反比例函数16y x=图象上的一点,且A ,B 两点同为“郡系点”,求点B 的坐标;(2)若点C (2-,1y ),D (4,2y )在直线3y kx =-(0k ≠)上,且C ,D 两点同为“郡系点”,求k 的值;(3)若点E 是直线132y x =-+上第一象限内的一点,若在抛物线212y x x c =++(1322x -≤≤)上总存在点F ,使得E ,F 两点同为“郡系点”,求c 的取值范围. 25.如图,CD 与∥O 相切于点D ,CB 与∥O 相交于A 、B 两点,且圆心O 在AB 上.(1)若1tan2C∠=,OD=2.求CD的长;(2)若点E在∥O上运动,连接DE,当弦DE平分∥ADB且与AB交于点F时:∥若AF=7,EF=13,求此时∥O的直径;∥设DE长为x,直径AB长为t(0t>,t为常数),求∥ABD的面积S关于x的函数解析式(不要求写x的取值范围).参考答案:1.B【解析】【分析】根据轴对称图形的概念求解.【详解】解:A 、不是轴对称图形,故本选项不符合;B 、是轴对称图形,故本选项符合;C 、不是轴对称图形,故本选项不符合;D 、不是轴对称图形,故本选项不符合.故选:B .【点睛】本题考查了轴对称图形的概念,识别轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.D【解析】【分析】函数右边为分式,分式有意义的条件是分母不等于零,由此进行计算即可得到正确答案.【详解】解:∥当20x -≠时,分式12x -有意义 ∥函数y =12x-自变量x 的取值范围是:2x ≠ 故选:D【点睛】本题考查函数自变量的取值范围,牢记相关知识点并灵活应用是解题关键.3.B【解析】【分析】由平行线的性质得到∥2与∥3的关系,再根据对顶角的性质得到∥1与∥3的关系,最后求出∥2.解:∥AB∥CD,∥∥2+∥3=180°.∥∥3=∥1=54°,∥∥2=180°-∥3=180°-54°=126°.故选:B.【点睛】本题考查了平行线的性质,掌握“对顶角相等”和“两直线平行,同旁内角互补”是解决本题的关键.4.C【解析】【分析】根据展开式是三项不是两项,2平方是4不是2,合并同类项、同底数幂乘法法则计算即可判断.【详解】A、∥()222a b a ab b-=-+,此选项错误,不符合题意;2B、∥()2326=,此选项错误,不符合题意;24ab a bC、∥2ab+3ab=5ab,此选项正确,符合题意;D、∥246⋅=,此选项错误,不符合题意.a a a故选:C.【点睛】本题主要考查了整式的运算,解题的关键是熟练掌握完全平方公式计算、积的乘方法则、合并同类项、同底数幂乘法法则计算.5.D【分析】根据中位数、众数的定义即可解决问题.【详解】解:这些运动员成绩的中位数、众数分别是4.70,4.75.故选D.【点睛】本题考查中位数、众数的定义,解题的关键是记住中位数、众数的定义,属于中考基础题. 6.B【解析】【分析】先根据互余得到∥B=90°-α,再根据旋转的性质得CB=CE,∥BCE等于旋转角,再根据等腰三角形的性质得∥CEB=∥B=90°-α,然后根据三角形的内角和定理计算出∥BCE=180°-2∥B=2α,于是得到旋转角为2α.【详解】∥∥ACB=90°,∥A=α,∥∥B=90°-α,∥∥ABC绕点C按顺时针方向旋转后得到△DEC,∥CB=CE,∥BCE等于旋转角,∥∥CEB=∥B=90°-α,∥∥BCE=180°-2∥B=2α,∥旋转角为2α.故选:B.【点睛】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角,等腰三角形的性质.7.C【解析】【详解】试题分析:设黄球的个数为x个,根据题意得:1212x+=13,解得:x=24,经检验:x=24是原分式方程的解;∥黄球的个数为24.故选C.考点:概率公式.8.A【解析】【分析】根据图象的平移规律,可得答案.【详解】解:将抛物线2y x向上平移2个单位长度,再向右平移1个单位长度,得到的抛物线的解析式是()212y x=-+.故选:A.【点睛】本题主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式是解题的关键.9.B【解析】【分析】先证明CEF CAB∆∆,由相似三角形的性质求出EF=9,再证明四边形BFED是平行四边形即可得到结论.【详解】解:∥EF //AB,∥CEF CAB∆∆,∥EF CF AB CB=,∥3155CFABCB==,∥3, 155 EF=∥9,EF=∥DE∥BC,EF∥AB,∥四边形BFED是平行四边形,∥9,BD EF ==故选B .【点睛】本题主要考查了相似三角形的判定与性质,平行四边形的判定与性质,求出EF =9是解答本题的关键.10.D【解析】【分析】解方程-x 2+x +6=0得A (-2,0),B (3,0),再利用折叠的性质求出折叠部分的解析式为y =(x +2)(x -3),即y =x 2-x -6(-2≤x ≤3),然后求出直线y =x +m 经过点B (3,0)时m 的值和当直线y =x +m 与抛物线y =x 2-x -6(-2≤x ≤3)有唯一公共点时m 的值,从而得到当直线y =x +m 与新图象有3个或4个交点时,m 的取值范围.【详解】解:如图,当0y =时,260x x -++=,解得122,3x x =-=,∥A (-2,0),B (3,0),将该二次函数在x 轴上方的图象沿x 轴翻折到x 轴下方,则下方对应的解析式为2(2)(3)6(23)=+-=---≤≤y x x x x x ,∥y=x 为第一、三象限的角平分线,直线y =x +m 可以看成是y=x 上下平移m 个单位得到, ∥当直线y =x +m 刚好经过B 点时,此时新函数图像与y =x +m 恰好有3个交点,如上图中的 直线y =x +m 1所示,∥10=3+m ,解得13m =-;当直线y =x +m 刚好经过C 点时,此时新函数图像与y =x +m 恰好有3个交点,如上图中的 直线y =x +m 2所示,∥联立方程组226⎧=--⎨=+⎩y x x y x m ,整理得到:22260---=x x m , ∥直线y =x +m 2和y =x 2-x -6(-2≤x ≤3)有唯一公共点C ,∥方程22260---=x x m 有两个相等的实数根,∥22=444(6)0∆-=-⨯--=b ac m ,解得:27m =-,当新函数图像与y =x +m 有4个交点时,73m -<<-,综上所述:直线y =x +m 与新图象有3个或4个交点时,m 的取值范围是73m -≤≤-.【点睛】本题考查了抛物线与坐标轴的交点坐标的求法及二次函数的图像和性质,考查了二次函数图像的坐标变化,本题的关键是求出2y -x +x 6=+沿x 轴翻折后对应的解析式.11.68.4210⨯【解析】【分析】科学记数法的表示形式为10n a ⨯ 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数【详解】解:8420000=68.4210⨯.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.12.22(1)x -.【解析】【详解】解:2242x x -+=22(21)x x -+=22(1)x -,故答案为22(1)x -.13.5【解析】【分析】根据ADF AEF ≌,得出AG 为BAC ∠的角平分线,得到GM =GH 即可求出∥ABG 的面积.【详解】连接DF 、EF ,过点F 作GM ∥AB ,交AB 于点M∥在以A为圆心的圆中,AD=AE,以D、E为圆心的半径DF=EF∥AD AE DF EF AF AF=⎧⎪=⎨⎪=⎩∥ADF AEF≌∥DAF FAE∠=∠∥ AG为BAC∠的角平分线∥ GM∥AB,GH∥AC∥ GM=GH=2∥1152522ABGAB GM=⨯=⨯⨯=△S故答案为:5.【点睛】本题考查全等三角形和角平分线的性质,解题的关键是熟练掌握角平分线的相关知识.14.24【解析】【分析】根据弧长公式即可得到关于扇形半径的方程即可求解.【详解】解:设扇形的半径是R,则15020 180Rππ=解得:R=24.故答案为24.【点睛】题主要考查了扇形的弧长,正确理解公式是解题的关键.15.【解析】【分析】根据∥D=30°,直角三角形中30°角对应的直角边等于斜边的一半计算出AH,再根据垂直于弦的直径平分弦得到AB=2AH计算出AB.【详解】在Rt AHD中,∥D=30°∥2AD AH=∥AH∥弦AB∥CD∥2==AB AH故答案为:【点睛】本题考查直角三角形和圆的性质,解题的关键是熟练掌握直角三角形和圆的相关知识.16.∥∥∥【解析】【分析】根据菱形的判定方法、平行线分线段成比例定理、直角三角形斜边中线的性质一一判断即可.【详解】∥四边形ABCD是平行四边形,∥AB CD∥,AB=CD,∥EC垂直平分AB,∥OA=OB=12AB=12DC,CD∥CE,∥OA CD∥,∥EA EO OAED EC CD===12,∥AE=AD,OE=OC,∥OA=OB,OE=OC,∥四边形ACBE是平行四边形,∥AB∥EC,∥四边形ACBE是菱形,故∥正确,∥∥DCE=90°,DA=AE,∥AC=AD=AE,∥∥ACD=∥ADC=∥BAE,故∥正确,∥OA CD ∥, ∥12AF OA CF CD ==,故∥正确, 故答案是:∥∥∥.【点睛】此题考查平行四边形的性质、菱形的判定和性质、平行线分线段成比例定理等知识,解题的关键是灵活运用所学知识解决问题.17.32【解析】【分析】直接利用负指数幂、特殊角的三角函数值、二次根式的化简和零指数幂分别计算,然后根据实数的混合运算法则计算即可求解.【详解】解:原式1412=+ 32=+32=. 【点睛】本题主要考查负指数幂、特殊角的三角函数值、二次根式的化简和零指数幂,熟记相关运算法则和特殊角的三角函数值是解题的关键.18.12x x --,2. 【解析】【分析】先根据分式的混合运算顺序和运算法则化简原式,再选取使分式有意义的x 的值代入计算即可.【详解】解:原式=2(1)13()(1)(1)11x x x x x x -+÷-+-++ =1211x x x x --÷++=1112x x x x -+⋅+- =12x x -- , ∥x≠±1且x≠2,∥x=3,则原式=3132--=2. 【点睛】本题考查了分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则及分式有意义的条件.19.(1)反比例函数的表达式为8y x-=;(2)ABO ∆的面积为15. 【解析】【分析】(1)联立两一次函数解出A 点坐标,再代入反比例函数即可求解;(2)联立一次函数与反比例函数求出B 点坐标,再根据反比例函数的性质求解三角形的面积.【详解】 (1)由题意:联立直线方程1522y x y x⎧=+⎪⎨⎪=-⎩,可得24x y =-⎧⎨=⎩,故A 点坐标为(-2,4) 将A (-2,4)代入反比例函数表达式k y x=,有42k =-,∥8k =- 故反比例函数的表达式为8y x =-(2)联立直线152y x =+与反比例函数8y x=-, 1528x y x y ⎧=+⎪⎪⎨⎪=-⎪⎩解得122,8x x =-=-,当8x =-时,1y =,故B (-8,1)如图,过A ,B 两点分别作x 轴的垂线,交x 轴于M 、N 两点,由模型可知S 梯形AMNB =S △AOB ,∥S 梯形AMNB =S △AOB =12121()()2y y x x +-⨯=1(14)[(2)(8)]2+⨯---⨯=156152⨯⨯= 【点睛】此题主要考查一次函数与反比例函数综合,解题的关键是熟知一次函数与反比例函数的图像与性质.20.(1)300、72(2)120、7500(3)公平,理由见解析【解析】【分析】(1)用“其他”种类人数除以“其他”种类人数所占百分比即可求出本次调查抽取的人数;用“漫画”种类人数除以本次调查抽取的人数乘360°即可求出“漫画”所在扇形的圆心角度数; (2)先求出“科普常识”人数,再用本次调查抽取的人数减去“漫画”“科普常识”“其他”的人数,即可求出本次调查中喜欢“小说”的人数;用25000乘“科普常识”所占的百分比,即可求出该市农村25000名学生,估计喜爱“科普常识”的小学生人数;(3)画出树状图,根据树状图求出所有情况,找到符合抽得的数字之和是2的倍数的情况数、是3的倍数的情况数,再分别除以总情况数,即可求出数字之和是2的倍数的概率,数字之和是3的倍数的概率,即可判断是否公平.(1)解:30÷10%=300(人)60÷300×360°=72°故答案为:300,72(2)解:300×30%=90(人)300-90-60-30=120(人)25000×30%=7500(人)故答案为:120,7500(3)解:树状图如下:由树状图可知,共有12种等可能的结果,其中,抽得的数字之和是2的倍数的有4种,是3的倍数的有4种;则书给小丽的概率是41123=,给小亮的概率是41123= 答:这种方法是公平的.【点睛】本题考查了结合扇形统计图和条形统计图获取相关信息,包括利用样本百分比估计总体数量,根据树状图或列表法计算概率等知识点,理解题意,综合运用这些知识点是解题的关键.21.(1)见解析【解析】【分析】(1)根据菱形的性质先证,即有DE =OC ,即有四边形OCED 都是平行四边形,再结合AC ∥BD ,即可证明四边形OCED 是矩形;(2)在Rt ∥OCD 中利用勾股定理即可求出OD .(1)证明∥四边形ABCD 是菱形,∥OA =OC 12AC =,AC ∥BD∥DE AC ∥且DE 12AC =, ∥DE =OC ,又DE AC ∥,∥四边形OCED 都是平行四边形,∥AC ∥BD ,∥四边形OCED 是矩形;(2)∥四边形OCED 为矩形,DE =1,∥OC =DE =1,∥COD =90°,又∥四边形ABCD 是菱形,AB =2,∥CD =AB =2,又∥∥COD =90°,∥在Rt ∥OCD 中,∥OD【点睛】本题考查了菱形的性质、平行四边形的判定与性质、矩形的判定与性质、勾股定理等知识,掌握菱形的性质是解答本题的关键.22.(1)甲每小时分别加工24个零件,乙每小时分别加工30个零件;(2)这批零件共有240个【解析】【分析】(1)设甲每小时加工x 个零件,则乙每小时加工()6x +个零件,根据题意列出分式方程,解方程即可解答;(2)设这批零件共有y 个,根据题意列出关于y 的一元一次方程,解方程即可解答(1)解:设甲每小时加工x 个零件,则乙每小时加工()6x +个零件,由题意得:2403006x x =+, 解得:24x =,检验:24x =是方程的解,且符合题意,630x +=,答:甲每小时分别加工24个零件,乙每小时分别加工30个零件.(2)设这批零件共有y 个,由题意得:22430y y -=, 解得:240y =,答:这批零件共有240个.【点睛】本题考查了分式方程的实际应用,一元一次方程的实际应用,解题关键是读懂题意正确列出方程,熟练掌握分式方程和一元一次方程的解法.23.(1)见解析(2)见解析【解析】【分析】(1)根据BD∥OC,可得∥OBF+∥BOF=90°,又根据∥OEB=∥ACD,∥ACD=∥ABD,即有∥OEB=∥ABD,则∥OEB+∥BOF=90°,即OB∥BE问题得证;(2)连接AD,证明出∥DCG∥∥ACD即可.(1)证明:∥BD∥OC,∥∥OBF+∥BOF=90°,又∥∥OEB=∥ACD,∥ACD=∥ABD,∥∥OEB=∥ABD,∥∥OEB+∥BOF=90°,∥∥OBE=90°,即OB∥BE,∥OB是∥O的半径,∥BE是∥O的切线;(2)证明:连接AD,如图,∥OC是∥O的半径,BD∥OC,∥CD BC=,∥∥DAC=∥BDC,∥∥DCA=∥DCA,∥∥DCG∥∥ACD,∥CG CD CD CA=.∥ 2•CD CG CA=.【点睛】本题考查了切线的判定与性质、圆周角定理、垂径定理、相似三角形的判定与性质等知识,掌握垂径定理是解答本题的关键.24.(1)(4,4)(2)1k=-(3)1531 88c≤≤【解析】【分析】(1)设点B的坐标为(b,16b),由A,B两点同为“郡系点”得1626bb+=+,解分式方程即可;(2)根据一次函数图象上点的坐标的特征求出1y,2y,利用C,D两点横坐标与纵坐标之和相等列方程即可求解;(3)先根据点E在直线132y x=-+上第一象限内,求出点E的横、纵坐标之和N的取值范围,再根据二次函数图象的性质求出点F的横、纵坐标之和M的取值范围,N的取值范围在M的取值范围之内,列一元一次不等式组,即可求解.(1)解:∥点B是反比例函数16yx=图象上的一点,∥设点B的坐标为(b,16b),∥点A的坐标为(2,6),A,B两点同为“郡系点”,∥16 26bb+=+,整理得28160b b-+=,解得4b =,经验证4b =是分式方程1626b b+=+的解, ∥164b =, ∥点B 的坐标为(4,4).(2)解:∥点C (2-,1y ),D (4,2y )在直线3y kx =-(0k ≠)上,∥123y k =--,243y k =-,∥C ,D 两点同为“郡系点”,∥223443k k ---=+-,整理得66k =-,∥1k =-.(3) 解:对于一次函数图象132y x =-+, 令0x =,得3y =;令0y =,得6x =.∥点E 是直线132y x =-+上第一象限内的一点, ∥设点E 的坐标为(n ,132n -+),其中06n <<,∥点E 的横、纵坐标之和为:113322N n n n =-+=+,∥06n <<,N 随n 的增大而增大, ∥11036322N ⨯+<<⨯+,即36N <<.∥点F 在抛物线212y x x c =++(1322x -≤≤)上, ∥设点F 的坐标为(m ,212m m c ++),其中1322m -≤≤, ∥点F 的横、纵坐标之和为:2211222M m m m c m m c =+++=++, ∥二次函数2122M m m c =++的图象开口向上,对称轴为22122m -==-⨯, ∥当1322m -≤≤时,M 随m 的增大而增大,∥2211113322222222c M c ⎛⎫⎛⎫⎛⎫⎛⎫⨯-+⨯-+<<⨯+⨯+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,即73388c M c -+<<+, ∥抛物线212y x x c =++(1322x -≤≤)上总存在点F ,使得E ,F 两点同为“郡系点”, ∥7383368c c ⎧-+≤⎪⎪⎨⎪+≥⎪⎩, 解得153188c ≤≤. 【点睛】本题借新定义考查一次函数、二次函数图象的性质,解一元一次不等式组等知识点,第3问有一定难度,求出点E 及点F 的横、纵坐标之和的取值范围是解题的关键. 25.(1)4(2)∥24;∥221124S x t =- 【解析】【分析】(1)连接OD ,在Rt COD 中,利用tan OD C CD∠=即可求得 (2)∥将EBD △绕E 点逆时针旋转,至EB 与EA 重合,易知AEB △和D ED '△等腰直角三角形,且AFD EFB ∽△△,设AD a =,BD b =,OB r =,由Rt ADB 和相似三角形得对应边成比例,列三个等式,解三个未知数,即可算出r∥设AD a =,BD b =,OB r =,由Rt ADB 和等腰直角三角形D ED '△,列出两个关于a ,b ,r 的等式,得到ab 的表达式,即可(1)连接OD∥CD 为切线∥90CDO ∠=︒在Rt COD 中:1tan 2OD C CD ∠== 解得:4CD =(2)∥连接AE ,BE∥AB 为直径∥90AEB =︒∠∥DE 平分ADB ∠,90ADB ∠=︒∥45ADE BDE ∠=∠=︒∥AE BE =,AE BE =∥AEB △是等腰直角三角形将EBD △绕E 点逆时针旋转,至EB 与EA 重合,D 点对应点为D∥180DBE DAE ∠+∠=︒,DBE D AE '∠=∠∥180D AE DAE '∠+∠=︒即D ,A ,D 三点共线∥90DEB AED ∠+∠=︒,DEB D EA '∠=∠∥90D EA AED '∠+∠=︒又∥D E DE '=∥D ED '△是等腰直角三角形设AD a =,BD b =,OB r =则BE =,DD a b '=+,)2DE a b =+ ∥ADE ABE ∠=∠,AFD EFB ∠=∠,∥AFD EFB ∽△△ ∥AD AF DF BE EF BF== 即: 222(2)a b r +=①713== 将∥式拆成两个:713713=④ 由∥得:a =将a =代入∥式得:b =将a =,b =代入∥式 解得:24r =∥设AD a =,BD b =,由∥知:222a b a b t ⎧+⎪⎨+=⎪⎩①② 2-①②化简得:2212ab x r =- 2211112224ABD S AD BD ab x t =⋅==-△ 【点睛】本题是几何综合题,考查了圆的基本性质,相似三角形,旋转,特殊直角三角形三边关系.第一小问注意利用切线的特点做辅助线构造直角三角形,第二小问∥旋转构造等腰直角三角形是难点,相似是重点,第二小问∥注意利用方程组算出目标代数式即可.。
2024年湖南省长沙市教科院中考数学模拟试卷及参考答案
2024年湖南省长沙市教科院中考数学模拟试卷一、选择题:本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)2023年10月23日,湖南某中学举办了“观书画之美,品文化之姿”书法优秀作品展览,下面是学生湘湘临摹的著名书法家邓石如的《弟子职》的部分图片,据此,回答问题.下面哪个函数与该图片最相似?()A.x2+y2=2024B.y=﹣x2025C.y=x2023D.y=﹣x2024 2.(3分)如图,已知,在△ABC中,∠B=60°,延长BC至点M,过点C作CN平分∠ACM,且AB∥CN.在BC上取点D,CN上取点E,使BD=CE,连接AD,DE,AE,过B点作BH∥DE,分别交AD,AC,AE于点G,F,H,连接HC交DE于点K.若BG2﹣2•BG•DG﹣3DG2=0,GF=5,DE=8,则KE的长为()A.1B.C.3D.集合论是现代数学的重要分支.萧文灿在《集合论初步》一书中写道:“吾人直观或思维之对象,如为相异而确定之物,其总括之全体即谓之集合,其组成此集合之物谓之集合之元素.”阅读下列材料,回答第3,4题.一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合.我们通常用大写拉丁字母A,B,C,…表示集合,用小写拉丁字母a,b,c表示集合中的元素.只要构成两个集合的元素是一样的,我们就称这两个集合是相等的,记作A=B.1.如果a是集合A中的元素,我们则读作a属于A,记作a∈A,反之,读作a不属于A,记作a∉A.2.集合的表示方法:①列举法:把集合的所有元素一一列举出来,并用花括号“{}”括起来表示集合;②描述法:一般地,设A是一个集合,我们把集合A中所有具有共同特征的P(x)的元素x所组成的集合表示为{x∈A|P(x)}.(注:R为实数集);3.子集:一般地,对于两个集合A,B,如果集合A中任意一个元素都是集合B中的元素,就称集合A为集合B的子集.4.交集:一般地,由所有属于集合A且属于集合B的元素组成的集合,称为集合A与集合B的交集,记作A∩B.3.(3分)对于集合{x∈R|a≤x≤b},我们把b﹣a称为它的长度.设集合A={x∈R|a+43≤x+43≤a+2024},B={x∈R|b+1010≤x+2024≤b+2024},且A,B都是U={x∈R|12≤x+12≤2024}的子集,则A∩B的长度的最小值是()A.2024B.983C.981D.20234.(3分)对于集合{+b|1≤a≤b≤2}中的最大元素和最小元素分别为m,n,则4mn4﹣856的值为()A.2024B.2023C.2022D.20215.(3分)如图,OABC是平行四边形,对角线OB在y轴正半轴上,位于第一象限的点A和第二象限的点C分别在双曲线和的一个分支上,分别过点A、C作x轴的垂线段,垂足分别为点M和点N,先给出如下四个结论:①;②阴影部分的面积是;③当∠AOC=90°时,|k1|=|k2|;④若OABC是菱形,则k1+k2=0,以上结论正确的是()A.①③B.①②③C.②③④D.①④6.(3分)已知正方形ABCD的边长为4,点E是线段CD上一点,作点C关于BE的垂线交BE于点F,以F为圆心,CF为半径的圆交BE于点P,M在AB上,N在AC上,则C△PMN的最小值为()A.B.C.D.7.(3分)已知二次函数y=ax2+bx+c(a≠0)满足:(1)当x=﹣1时,y=0,(2)对一切x的值有成立.则该二次函数的解析式为()A.B.C.D.8.(3分)“田忌赛马”的故事闪烁着我国古代先贤的智慧光芒.该故事的大意是:齐王有上、中、下三匹马A1,B1,C1,田忌也有上、中、下三匹马A2,B2,C2,且这6匹马在比赛中的胜负可以用不等式表示如下A1>A2>B1>B2>C1>C2(注:A>B表示A马与B 马比赛,A马获胜).一天,齐王找田忌赛马,约定:每匹马都出场比赛一局,共赛三局,胜两局者获得整场比赛的胜利.面对劣势,田忌事先了解到齐王三局比赛的“出马”顺序为上马、中马、下马,并采用孙膑的策略:分别用下马、上马、中马与齐王的上马、中马、下马比赛,并借助对阵(C2A1,A2B1,B2C1)取得了整场比赛的胜利,创造了以弱胜强的经典案例.假设齐王事先不打探田忌的“出马”情况,回答问题.如果田忌事先只打探到齐王首局将出“上马”,他首局应出哪种马才可能获得整场比赛的胜利?获胜的概率是多少?()A.上:B.中:C.下:D.下:9.(3分)如图,已知抛物线与x轴交于点A与点B(4,0),与y轴交于C (0,2).点P为第一象限抛物线上的点(图中未标出),点D在y轴负半轴上,且满足OD=OB,点Q为抛物线上一点,使得∠QBD=90°,点E,F分别为△BDQ的边DQ、DB上的动点,满足QE=DF,记BE+QF的最小值为m,△PCB的面积为S,若,则k的取值范围是()A.13≤k<17B.13≤k≤17C.13<k<17D.不确定10.(3分)设S是xOy平面上的一个正n边形,中心在原点O处,顶点依次为P1,P2,…,P n,有一个顶点在正y轴上.又设变换σ是将S绕原点O旋转一个角度使得旋转后的图形与原图形重合,σ﹣1表示σ的反变换(即旋转角度大小和σ相同但方向相反),变换φ是将S作关于y轴的对称变换(即将(x,y)变为(﹣x,y)),σφ表示先作变换σ再作变换φ,以此类推,则有()A.φσφ=σB.φσφ=σ﹣1C.φσ=σφD.φσφσ=σσ二、填空题:本题共5小题,每题3分,共18分.11.(3分)分解因式:(x2+4xy+3y2)(4x2+20xy+21y2)﹣15y4=.12.(3分)设x>0,y<1,则如下式子中u的最小值为.13.(3分)如图,∠ACB=45°,半径为2的⊙O与角的两边相切,点P是⊙O上任意一点,过点P向角的两边作垂线,垂足分别为E,F,设t=PE+PF,则t的取值范围是.14.(3分)在△ABC中AB=7,BC=3,∠C=90°,点D在边AC上,点E在CA延长线上,且CD=DE,如果⊙B过点A,⊙E过点D,若⊙B与⊙E有公共点,那么⊙E半径r的取值范围是.15.(6分)在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+b经过点,点,与y轴交于点C.(1)如图1,点D在该抛物线上,点D的横坐标为﹣2,过点D向y轴作垂线,垂足为点E.点P是y轴负半轴上的一个动点,连接DP,设点P的纵坐标为t,△DEP的面积为S,则S关于t的函数解析式为.(不要求写出自变量t的取值范围)(2)如图2,在(1)的条件下,连接OA,点F在OA上,过点F向y轴作垂线,垂足为点H,连接DF交y轴于点G,点G为DF的中点,过点A作y轴的平行线与过P点所作的x轴的平行线相交于点N,连接CN,PB,延长PB交AN于点M,点R在PM上,连接RN,若3CP=5GE,∠PMN+∠PDE=2∠CNR,则直线RN的解析式为.三、解答题:本题共9小题,共72分,解答时应写出文字说明、证明过程或演算步骤.16.先化简,再求值:,其中.17.在“双减”政策实施两个月后,某市“双减办”面向本市城区学生,就“‘双减’前后参加校外学科补习班的情况”进行了一次随机问卷调查(以下将“参加校外学科补习班”简称“报班”),根据问卷提交时间的不同,把收集到的数据分两组进行整理,分别得到统计表1和统计图1:整理描述表1:“双减”前后报班情况统计表(第一组)报班数01234及以上合计人数类别“双减”前10248755124m“双减”后2551524n0m(1)根据表1,m的值为,的值为;分析处理(2)请你汇总表1和图1中的数据,求出“双减”后报班数为3的学生人数所占的百分比;(3)“双减办”汇总数据后,制作了“双减”前后报班情况的折线统计图(如图2).请依据图表中的信息回答以下问题:①本次调查中,“双减”前学生报班个数的中位数为,“双减”后学生报班个数的众数为;②请对该市城区学生“双减”前后报班个数变化情况作出对比分析(用一句话来概括).18.图1是某长征主题公园的雕塑,将其抽象成如图2所示的示意图,已知AB∥CD∥FG,A,D,H,G四点在同一直线上,测得∠FEC=∠A=72.9°,AD=1.6m,EF=6.2m.(结果保留小数点后一位)(1)求证:四边形DEFG为平行四边形;(2)求雕塑的高(即点G到AB的距离).(参考数据:sin72.9°≈0.96,cos72.9°≈0.29,tan72.9°≈3.25)19.正弦定理在高中数学中有很广泛的运用,据此,回答问题.(1)在△ABC中,顶点A,B,C所对的边分别为a,b,c,记△ABC的外接圆半径为R,求证:.(本题图未给出)(2)在等边三角形ABC中,D,E分别为边AC,BC上的点,且满足AE=CD,过B作AD的垂线交AD于点F,设AD与BE交于点G,若GF=x,GE=y,求△ACD的外接圆半径.(用x,y表示)20.有一个工程,甲完成需规定时间多5天,乙完成需规定时间的一半多两天,丙完成需规定时间的多1天,丁完成需规定时间的多天,戊完成需规定时间的一半多半天,己恰好在规定时间完成,且甲,乙,戊,己的工作效率之和恰等于丙,丁的工作效率之和.问:是否存在满足题意的规定时间(量纲:天)?如果有,求出具体数值,如果没有,说明理由.21.跳台滑雪运动可分为助滑、起跳、飞行和落地四个阶段,运动员起跳后飞行的路线是抛物线的一部分(如图中实线部分所示),落地点在着陆坡(如图中虚线部分所示)上,着陆坡上的基准点K为飞行距离计分的参照点,落地点超过K点越远,飞行距离分越高.2022年北京冬奥会跳台滑雪标准台的起跳台的高度OA为66m,基准点K到起跳台的水平距离为75m,高度为h m(h为定值).设运动员从起跳点A起跳后的高度y(m)与水平距离x(m)之间的函数关系为y=ax2+bx+c(a≠0).(1)c的值为;(2)①若运动员落地点恰好到达K点,且此时a=﹣,b=,求基准点K的高度h;②若a=﹣时,运动员落地点要超过K点,则b的取值范围为;(3)若运动员飞行的水平距离为25m时,恰好达到最大高度76m,试判断他的落地点能否超过K点,并说明理由.22.设点H是△ABC的垂心,以AC为直径的圆与△ABH的外接圆交于点K,求证:CK平分BH.23.在平面直角坐标系中,点O为坐标系的原点,抛物线y=ax2+bx经过A(10,0),B(,6)两点,直线y=2x﹣4与x轴交于点C,与y轴交于点D,点P为直线y=2x﹣4上的一个动点,连接PA.(1)求抛物线的解析式;(2)如图1,当点P在第一象限时,设点P的横坐标为t,△APC的面积为S,求S关于t的函数解析式(不要求写出自变量t的取值范围);(3)如图2,在(2)的条件下,点E在y轴的正半轴上,且OE=OD,连接CE,当直线BP交x轴正半轴于点L,交y轴于点V时,过点P作PG∥CE交x轴于点G,过点G 作y轴的平行线交线段VL于点F,连接CF,过点G作GQ∥CF交线段VL于点Q,∠CFG的平分线交x轴于点M,过点M作MH∥CF交FG于点H,过点H作HR⊥CF于点R,若FR+MH=GQ,求点P的坐标.24.阅读材料,回答下列小题.阅读材料1:调和是射影几何重要不变量交比的一种特殊形式,早在古希腊,数学家们便发现了一组具有特殊比例关系的点列:调和点列.我们定义:若一直线上依次存在四点A,B,C,D,满足AB•CD=BC•AD,则称A,B,C,D为调和点列.从直线外一点P引射线PA,PB,PC,PD,则称PA,PB,PC,PD 为调和线束.(1)如图1,过圆Q外一点P作圆Q的切线PA,PB,并引圆Ω的割线PCD,设PD与A交于点E.①求证:P,C,E,D是调和点列.②求证:AC•BD=BC•AD.阅读材料2:阿波罗尼斯圆:对于平面上的两定点A,B和平面上一动点P,若P到A和B的距离之比为定值,则点P的轨迹是一个圆,我们称该圆是点P关于AB的“阿氏圆”.(2)根据阅读材料1,2,回答①②小题.(本题图未给出)①证明阿波罗尼斯圆,并确定该圆圆心的位置.②若点P关于AB的“阿氏圆”交AB于C,D,求证:A,C,B,D为调和点列.(3)如图2,ABCD是平行四边形,G是三角形ABD的重心,点P,Q在直线BD上,满足GP与PC垂直,GQ与QC垂直.求证:AG平分∠PAQ.2024年湖南省长沙市教科院中考数学模拟试卷(3月份)参考答案一、选择题:本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.D;2.B;3.B;4.A;5.D;6.A;7.B;8.C;9.A;10.B二、填空题:本题共5小题,每题3分,共18分.11.(2x+y)(x+4y)(2x2+9xy+12y2);12.;13.2≤t≤4+2;14.;15.S=﹣t+;y=﹣三、解答题:本题共9小题,共72分,解答时应写出文字说明、证明过程或演算步骤.16.﹣.;17.300;0.02;1;0;18.(1)证明见解答;(2)7.5m.;19.(1)证明见解答;(2)△ACD 的外接圆半径为.;20.不存在满足题意的规定时间,理由见解答过程.;21.66;b >;22.答案见解答过程.;23.(1)y=﹣x2+x.(2)S=8t﹣16.(3)P(,5).;24.(1)①见解答;②见解答;(2)①见解答;②见解答;(3)见解答.第1页(共1页)。
2024年湖南省长沙市立信中学中考一模数学试题(含解析)
立信中学2023-2024学年第二学期学业水平考试模拟试卷(一)初三数学试卷时量:120分钟总分:120分注意事项:1.答题前,请先将自己的姓名、班级、考场号、座位号填写清楚;2.必须在答卷上答题,在草稿纸、试题卷上答题无效;3.答题时,请考生注意各大题号后面的答题提示;4.请注意卷面、保持字体工整、笔迹清晰、卷面清洁;5.答卷上不准使用涂改液、涂改胶和贴纸;6.本试卷时量120分钟,满分120分.一、选择题(每小题3分,共30分,每题均有四个选项,符合题意的选项只有一个)1.2024年3月5日国务院总理李强在政府工作报告中指出,过去一年经济总体回升向好.国内生产总值超过126万亿元,增长,增速居世界主要经济体前列.将126万用科学记数法表示应为( )A .B .C .D .2.下列大学校徽内部图案中可以看成由某一个基本图形通过平移形成的是( )A .B .C .D .3.如图是一个由5个小正方体和1个圆锥组成的立体图形,这个立体图形的主视图是()5.2%412610⨯512.610⨯61.2610⨯70.12610⨯A .B .C .D .4.下列运算正确的是( )A .B .C .D .5.把不等式组的解集表示在数轴上,下列选项正确的是( )A .B .C .D .6.程大位,明代珠算发明家,被称为珠算之父、卷尺之父.少年时,读书极为广博,对数学颇感兴趣,60岁时完成其杰作《直指算法统宗》(简称《算法统宗》).《算法统宗》中有这样一道题,其大意为:有一群人分银子,如果每人分七两,则剩余四两;如果每人分九两,则还差八两,请问:这一群人共有多少人?若设共有x 人,则可列方程为( )A .B .C .D .7.如图,的内切圆分别与相切于点,且,则的周长为( )A .18B .17C .16D .1523a a a +=232a a a ⋅=325()a a =22a a a÷=1034x x +>⎧⎨+≤⎩7498x x -=+7498x x +=-4789x x +=-4789x x -=+ABC O ,,AB BC AC ,,D E F 3,2,4AD BE CF ===ABC8.若关于x 的一元二次方程的一个解是,则代数式的值为( )A .B .2021C .2022D .20239.如图,在△ABC 中,EF BC ,ED 平分∠BEF ,且∠DEF =60°,则∠B 的度数为( )A .70°B .60°C .50°D .40°10.二次函数的图象大致如图所示,关于二次函数,下列说法错误的是( )A .B .对称轴是C .当,随的增大而减小D .当时,二、填空题(本大题共6个小题,每小题3分,共18分)11.若分式的值为0,则 .12.如图,为了美化校园,学校在一块靠墙角的空地上建造了一个扇形花圃,扇形的圆心角∠AOB =120°,半径为9m ,则扇形的弧长是 m .210ax bx ++=1x =2022a b --2022-∥()20y ax bx c a =++≠0abc >12x =12x <y x 12x -<<0y >12x x +x =13.如图,与位似,位似中心为点O .已知,若的周长等于4,则的周长等于 .14.一元二次方程x 2﹣2x ﹣1=0的两根分别为x 1,x 2,则的值为 .15.如图,已知△ABC 的顶点在⊙O 上,连接AO ,若∠B =60°,则∠OAC = °.16.如图,在中,以点A 为圆心AB 长为半径作弧交于点F ,分别以点B 、F 为圆心,大于的长度为半径作弧,交于点G ,连接并延长交于点E ,若,,则的长为 .三、解答题(本大题共9个小题,第17、18、19题每小题6分,第20、21题每小题8分,第22、23题每小题9分,第24、25题每小题10分,共72分.解答应写出必要的文字说明,证明过程或演算步骤)17.计算:.ABC DEF :1:3OA OD =ABC DEF 1211+x x ABCD Y AD 12BF AG BC 8BF =6AB =AE 1012cos30(2024)2π-⎛⎫-+- ⎪⎝⎭18.先化简再求值:,其中19.为建设美好公园社区,增强民众生活幸福感,如图1,便于社区居民休憩.在如图2的侧面示意图中,遮阳篷靠墙端离地高记为BC ,遮阳棚长为5米,与水平面的夹角为.(1)求点A 到墙面BC 的距离;(2)当太阳光线AD 与地面CE 的夹角为时,量得影长CD 为米,求遮阳篷靠墙端离地高BC 的长.(结果精确到米;参考数据:,,)20.珠海市有A ,B ,C ,D ,E 五个景区很受游客喜爱.对某小区居民在暑假期间去以上五个景区旅游(只选一个景区)的意向做了一次随机调查统计,并根据这个统计结果制作了如下两幅不完整的统计图.(1)该小区居民在这次随机调查中被调查到的人数是 人,m = ;(2)若该小区有居民1500人,试估计去C 景区旅游的居民约有多少人?(3)甲、乙两人暑假打算游玩,甲从B 、C 两个景点中任意选择一个游玩,乙从B 、C 、E 三个景点中任意选择一个游玩.求甲、乙恰好游玩同一景点的概率.21.如图,在中,是边上的中线,过点,分别作,,垂足为,.22121211x x x x x ÷---++x AB 16︒45︒ 1.80.1sin160.28︒≈cos160.96︒≈tan160.29︒≈ABC AD BC B C BF AD ⊥CE AD ⊥E F(1)求证:.(2)若,,求的长.22.某小区拟对地下车库进行喷涂规划,每个燃油车位的占地面积比每个新能源车位的占地面积多5平方米,喷涂燃油车位每平方米的费用为20元,喷涂新能源车位每平方米的费用为40元(含充电桩喷涂).已知用150平方米建燃油车位的个数恰好是用120平方米建新能源车位个数的.(1)求每个燃油车位,新能源车位占地面积各为多少平方米?(2)该小区拟混建燃油车位和新能源车位共200个,且新能源车位的数量不少于燃油车位数量的3倍.规划燃油车位,新能源车位各多少个,才能使喷涂总费用最少?费用最少为多少?23.如图,在矩形中,点E 、F 是对角线上两点,.(1)求证:四边形是平行四边形;(2)若,,,求的长.24.我们约定:在平面直角坐标系中,若某函数图象上至少存在不同的两点,,满足,则称此函数为关于m 的等和函数,这两点叫做关于m 的等和点.(1)下列函数中,是关于1的等和函数的是________;BF CE =3BF =2AE =AC 56ABCD AC AE FC =BEDF BE AC ⊥5AD =3BE =AB ()11,A x y ()22,B x y 1122x y x y m +=+=①; ②; ③.(2)若点,在双曲线上,且C ,D 两点是关于m 的等和点,求k 的值;(3)若函数的图像记为,将其沿直线翻折后的图像记为.若,两部分组成的图像上恰有两个关于m 的等和点,请求出m 的取值范围.25.如图,锐角内接于,的平分线交于点,交于点,连接,,过点作的垂线交于点,点在上,连接,,若且.(1)求证:;(2)求的度数;求证:;(3)如图,延长交于点,若恰好等于,求线段的长.参考答案与解析1.C 【分析】本题主要考查了科学记数法,确定n 的值时,要看把原数变成a 时,小数点移动了1y x =-+1y x =22y x x =++()12,C y -()24,D y (0)k y k x =≠22(2)y x x x =--≤1W 2x =2W 1W 2W 1ABC O BAC ∠AE O E BC D BE CE C AC AE F G AD BG CG BG CF ∥BG AG =BG FD GD CF ⋅=⋅①BGE ∠②AC BC GE EC=2CG AB P PC =BGP ∠45︒BG多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n 是正数,当原数绝对值小于1时n 是负数;由此进行求解即可得到答案,熟练掌握科学记数法的表示方法是解决此题的关键.【详解】126亿,故选:C .2.C【分析】由平移的性质,分别进行判断,即可得到答案.【详解】解:由平移的性质可知,C 选项的图案是通过平移得到的;A 、B 、D 中的图案不是平移得到的;故选:C .【点睛】本题考查了平移的性质,解题的关键是掌握图案的平移进行解题.3.C【分析】直接根据从正面看到的图形即可求解.【详解】解:从正面看到的图形为 ,故选:C【点睛】本题考查了立体图形的三视图,理解三视图的概念是解题的关键.4.A【分析】本题考查了积的乘方、同底数幂相乘、幂的乘方、同底数幂的除法运算,根据相关运算法则进行计算,判断即可.【详解】,A 选项正确,故符合题意;,B 选项错误,故不符合题意;,C 选项错误,故不符合题意;,D 选项错误,故不符合题意;故选:A .5.D【分析】本题主要考查了一元一次不等式组的解法,分别解出各不等式的解集和确定解集的公共部分是解答本题的关键.先分别解出两个不等式的解集,然后确定两个解集的公共部分,61260000 1.2610==⨯23a a a +=23a a a ⋅=()236a a =2201a a a ÷==即为方程组的解.【详解】解:解不等式,得,解不等式,得,∴不等式组的解集为,在数轴上表示为:,故选:D .6.B【分析】设共有x 人,根据“如果每人分七两,则剩余四两;如果每人分九两,则还差八两”及银子总数不变,即可得出关于x 的一元一次方程,此题得解.【详解】解:依题意,得:7x +4=9x -8.故选:B .【点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.7.A【分析】本题主要考查三角形的内切圆及切线长定理,灵活运用切线长定理是解题的关键.由切线长定理可知,再根据线段的和差即可求得答案.【详解】解:的内切圆分别与相切于点,,,,,的周长,故选:A .8.D【分析】根据一元二次方程解得定义即可得到,再由进行求解即可.【详解】解:∵关于x 的一元二次方程的一个解是,10x +>1x >-34x +≤1x ≤11x -<≤AD AF BD BE EC FC ===,,ABC O ,,AB BC AC ,,D E F AD AF BD BE EC FC ==∴=,,324AD BE CF === ,,324AF BD CE ===∴,,657BC BE EC AB AD BD AC AF FC ∴=+==+==+=,,ABC ∴ 18BC AB AC =++=1a b +=-()20222022a b a b --=-+210ax bx ++=1x =∴,∴,∴ ,故选D .【点睛】本题主要考查了代数式求值和一元二次方程的解,熟知一元二次方程解得定义是解题的关键.9.B【分析】根据ED 平分∠BEF ,求出角∠BEF =120°,从而求得,再根据EF BC ,得,最终得到∠B 的度数.【详解】解:∵ED 平分∠BEF ,∠DEF =60°∴∠DEB =∠DEF =60°,∴∠BEF =120°,∴,∵EF BC ,∴,∴,故选:B .【点睛】本题考查角平分线和平行线的性质,解题的关键是熟练掌握角平分线和平行线的相关知识.10.D【分析】观察图象得:二次函数的图象开口向上,与y 轴交于负半轴,对称轴位于y 轴的右侧,从而得到,,进而得到,故A 选项正确;再由抛物线与x 轴交于,可得对称轴为直线,故B 选项正确;再根据二次函数的图象和性质可得当时,y 随x 的增大而减小,故选项C 正确;再观察图象得:当时,,故D 选项不正确,即可求解.【详解】解:观察图象得:二次函数的图象开口向上,与y 轴交于负半轴,对称轴位于y 轴的右侧,∴,,10a b ++=1a b +=-()()20222022202212023a b a b --=-+=--=AEF ∠∥AEF B ∠=∠18060AEF BEF ︒︒∠=-∠=∥AEF B ∠=∠60B ︒∠=0,0a c ><0b <0abc >()()1,02,0-,12122x -+==12x <12x -<<0y <0,0a c ><02b a ->∴,∴,故A 选项正确,不符合题意;观察图象得:抛物线与x 轴交于,∴对称轴为直线,故B 选项正确,不符合题意;∵,抛物线开口向上,对称轴为,∴当时,y 随x 的增大而减小,故选项C 正确,不符合题意;观察图象得:当时,,故D 选项不正确,符合题意.故选:D .【点睛】本题考查了二次函数的图象和性质,解题的关键是利用数形结合思想解题.11.【分析】本题主要考查了分式值为0的条件.熟知分式值为0的条件是分母不为0分子为0是解题的关键.【详解】解:∵分式的值为0,∴,∴,故答案为:.12.6π【分析】直接利用弧长公式求解即可.【详解】l ==6π,故答案为:6π.【点睛】本题考查了扇形弧长的计算,解答本题的关键是熟练掌握扇形的面积公式.13.【分析】本题考查的是位似变换的概念和性质、相似三角形的性质,根据位似变换的概念得到,,得到,根据相似三角形的性质求出,再根据相似三角形的性质解答即可.【详解】∵与位似,0b <0abc >()()1,02,0-,12122x -+==0a >12x =12x <12x -<<0y <1-12x x+1020x x +=⎧⎨≠⎩1x =-1-1209180180n r ππ⨯=12ABC DEF △△∽AC DF ∥OAC ODF ∽ 13AC DF =ABC DEF∴,,∴,∴,∴的周长:的周长,∵的周长等于4,∴的周长,故答案为:12.14.-2【分析】由根与系数的关系得出x 1+x 2=2,x 1x 2=﹣1,代入到原式=计算可得.【详解】解:∵一元二次方程x 2﹣2x ﹣1=0的两根分别为x 1,x 2,∴x 1+x 2=2,x 1x 2=﹣1,则原式==﹣2,故答案为:﹣2.【点睛】本题主要考查根与系数的关系,解题的关键是掌握x 1,x 2是一元二次方程ax 2+bx +c =0(a ≠0)的两根时,x 1+x 2=﹣,x 1x 2=.15.30【分析】连接OC ,如图,先根据圆周角定理得到∠AOC=120°,再根据等腰三角形的性质和三角形内角和计算∠OAC 的度数.【详解】解:连接OC ,如图,∵∠B=60°,∴∠AOC=2∠B=120°,∵OA=OC ,∴∠OAC=∠OCA ,∴∠OAC=(180°120°)=30°.ABC DEF △△∽AC DF ∥OAC ODF ∽ 13AC DF =ABC DEF 13AC DF ==::ABC DEF 12=1212x x x x +112221x x x x =-+b a c a12-故答案为:30.【点睛】本题主要考查了圆周角定理以及等腰三角形的性质等,熟练掌握上述知识是解题的关键.16.【分析】本题主要考查了菱形的性质与判定、线段垂直平分线的尺规作图、勾股定理等知识点,掌握垂直平分线的尺规作图成为解题的关键.如图:连接,根据尺规作图可得,,再根据等腰三角形的性质可得、,再运用勾股定理可得,再证明是菱形可得即可解答.【详解】解:如图,连接,由作图可知:,,,,∴,∵,,∴,∴,,∴四边形是平行四边形,∵,∴四边形是菱形,∴故答案为:EF AB AE =AE BF ⊥4OB OF ==BAE EAF ∠=∠AO =ABEF 2AE AO =EF AB AE =AE BF ⊥142OB OF BF ∴===BAE EAF ∠=∠AO =ABCD Y AD BC ∴∥EAF AEB ∠=∠EAB AEB ∠=∠AB BE AF \==AF BE∥ ABEF AB AE =ABEF 2AE AO ==17.【分析】本题主要考查实数的混合运算,分别代简,再代入特殊角三角函数值后,再进行计算即可.【详解】解:18.,.【分析】根据分式的混合运算法则,先化简,再代入求值,即可得到答案.【详解】原式.当【点睛】本题主要考查分式的化简求值,掌握分式的约分,通分,是解题的关键.19.(1)米(2)米【分析】(1)作,在中,根据三角函数,求出的长,即可求解,(2)作,依次求出,,的长,在中,根据三角函数,求出的长,即可求解,本题考查了,解直角三角形的应用,解题的关键是:连接辅助线构造直角三角形.1-()101120242π-⎛⎫-=⎪⎭ ⎝=-112cos30)2π-⎛⎫-+- ⎪⎝⎭221=-+21=-1=-1x -22121211x x x x x -+=⋅--+21(1)2(1)(1)1x x x x x -=⋅-+-+12(1)1x x x x -=-++12(1)(1)x x x x x x -=-++1x=-x ===4.84.4AF BC ⊥Rt ABF AF AG CE ⊥DG AG FC Rt ABF BF【详解】(1)解:过点A 作,垂足为F ,在中,(米),∴(米),∴点A 到墙面BC 的距离约为米,(2)解:过点A 作,垂足为G ,由题意得:,(米),∵(米),∴(米),在中,,∴(米),∴(米),在中,∴(米),∴(米),故答案为:米.20.(1)200,35;(2)300;(3)【分析】(1)先由D 景区人数及其所占百分比求出总人数,再根据百分比的概念和各景区人数之和等于总人数求解可得;(2)利用样本估计总体思想求解可得;(3)画树状图得出所有等可能结果,再根据概率公式计算可得.【详解】解:(1)该小区居民在这次随机调查中被调查到的人数是20÷10%=200(人),AF BC ⊥Rt ABF 5AB =cos1650.96 4.8AF AB =⋅︒≈⨯=4.8AG CE ⊥AG CF = 4.8AF CG ==1.8CD = 4.8 1.83DG CG CD =-=-=Rt ADG 45ADG ∠=︒3AG DG ==3CF DG ==Rt ABF sin1650.28 1.4BF AB =⋅︒≈⨯=1.43 4.4BC BF CF =+=+=4.413则m%=×100%=35%,即m=35, 故答案为:200;35(2)C 景区人数为200-(20+70+20+50)=40(人)估计去C 景区旅游的居民约有(人) (3)画树状图如下共有6种等可能的结果数,其中甲、乙恰好游玩同一景点的结果数为2,所以甲、乙恰好游玩同一景点的概率==.【点睛】此题考查了列表法或树状图法求概率以及扇形与条形统计图的知识.注意掌握扇形统计图与条形统计图的对应关系.用到的知识点为:概率=所求情况数与总情况数之比.21.(1)见解析【分析】(1)利用全等三角形的判定与性质证明即可证得结论;(2)利用勾股定理求解即可.【详解】(1)证明:∵是边上的中线,∴∵,,∴在和中,∴,∴;(2)在中,,,∴70200401500300200⨯=2613BFD CED ≌V V AD BC BD CD=BF AD ⊥CE AD ⊥90BFD CED ∠=∠=︒BFD △CED △BFD CED BDF CDEBD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩()BFD CED AAS △△≌BF CE =AEC △3CE BF ==2AE =AC ===【点睛】本题主要考查了全等三角形的判定与性质、勾股定理、垂直定义,熟练掌握全等三角形的判定与性质是解答的关键.22.(1)每个燃油车位占地面积为平方米,每个新能源车位占地面积为平方米;(2)建燃油车位个,新能源车位个,才能使喷涂总费用最少,费用最少为元.【分析】本题考查了分式方程的应用,一元一次不等式的应用,一次函数的应用,正确理解题意是解题关键.(1)设每个燃油车位占地面积为平方米,则每个新能源车位占地面积为平方米,根据“用150平方米建燃油车位的个数恰好是用120平方米建新能源车位个数的”列分式方程求解即可;(2)设建燃油车位个,则建新能源车位个,根据题意列一元一次不等式,求出的取值范围,设喷涂总费用为,根据题意列一次函数,再根据一次函数的性质求出最值即可.【详解】(1)解:设每个燃油车位占地面积为平方米,则每个新能源车位占地面积为平方米,由题意得:,解得:,经检验,是原分式方程的解,,答:每个燃油车位占地面积为平方米,每个新能源车位占地面积为平方米;(2)解:设建燃油车位个,则建新能源车位个,由题意得:,解得:,设喷涂总费用为,则,,随的增大而减小,当时,有最小值,最小值为,15105015075000x ()5x -56a ()200a -a w x ()5x -150120556x x =⨯-15x =15x =510x -=1510a ()200a -2003a a -≥50a ≤w ()2015401020010080000w a a a =⨯+⨯-=-+100-< w ∴a ∴50a =w 75000即建燃油车位个,新能源车位个,才能使喷涂总费用最少,费用最少为元.23.(1)证明见详解(2)【分析】(1)由矩形的性质可得出,,,,由平行线的性质可得出,,再用证明,,由全等得性质可得出,,即可证明四边形是平行四边形.(2)证明,由相似的性质可得出,即可得出,再由勾股定理可得,即可求出.【详解】(1)证明:∵是矩形,∴,,,,∴,,又∵∴,,∴,,∴四边形是平行四边形.(2)∵,∴,又∵∴,∴,∵,∴,又∵,即,解得:.5015075000154AB CD =AD BC =AB CD AD BC ∥BAE DCF ∠=∠BCF DAE ∠=∠SAS ABE CDF △≌△ADE CBF V V ≌BE DF =DE BF =BEDF ~ACB BCE AC AB BC BE=35AC AB =222553AB AB ⎛⎫+= ⎪⎝⎭AB ABCD AB CD =AD BC =AB CD AD BC ∥BAE DCF ∠=∠BCF DAE ∠=∠AE FC=()SAS ABE CDF ≌()SAS ADE CBF ≌BE DF =DE BF =BEDF BE AC ⊥==90ABC BEC ∠∠︒BCE ACB∠=∠~ACB BCE AC AB BC BE=5BC AD ==3BE =35AC AB =222AB BC AC +=222553AB AB ⎛⎫+= ⎪⎝⎭154AB =【点睛】本题主要考查了平行四边形的判定,全等三角形的判定以及性质,相似三角形的判定以及性质,矩形的性质,平行线的性质,勾股定理等知识,掌握这些判定定理以及性质是解题的关键.24.(1)①(2)(3)m 的取值范围为或;【分析】(1)根据等和函数的定义求解即可;(2)根据等和函数的定义和反比例函数上点的特征列方程求解即可;(3)先求出函数沿直线翻折后的解析式,再分别求出当与仅有一个交点时和当与仅有一个交点时的m 值,结合图像即可求解.【详解】(1)把,代入得:,∴,∴;把,代入得:,∴,当,且互为倒数时,∴;把,代入得:,∴,假设,解得:,与题意不符∴是关于1的等和函数的是;(2)由题意得:,解得;(3)在上取点,点关于直线的对称8k =-m>221m -<<22(2)y x x x =--≤2x =y x m =-+2710y x x =-+y x m =-+2y x x 2=--()11,A x y ()22,B x y 1y x =-+111y x =-+221y x =-+111111x y x x +=-+=222211x y x x +=-+=11221x y x y +=+=()11,A x y ()22,B x y 1y x =111y x =221y x =11111x y x x +=+22221x y x x +=+12x x ≠12x x ,11221x y x y =++≠()11,A x y ()22,B x y 22y x x =++21112y x x =++2222y x x =++2111122x y x x +=++2222222x x x y =+++211221x x ++=111x x ==-1y x =-+121224,24y y y y k -+=+-==8k =-22(2)y x x x =--≤2(,2)P m m m --2(,2)P m m m --2x =点为则由对称性知,消m 得: ∴,两部分的图像如下,当,解得,∴当与仅有一个交点时,,解得:当与仅有一个交点时,,解得:当过时,解得:∴m 的取值范围为或;【点睛】本题考查一次函数的应用,涉及到新定义等和函数,正确理解概念和一次函数的联系是解题关键.25.(1)证明见解析;(2);证明见解析;(3).【分析】()利用平行线证明,然后根据性质即可求解;()由,得,根据三角形的外角性质得,又则,最后根据直角三角形的性质即可求解;(,)Q x y 242x m y m m +=⎧⎨=--⎩2710y x x =-+1W 2W 202x x =--122,1x x ==-(2,0)A y x m =-+2710y x x =-+20610,Δ364040x x m m =-+-=-+=1m =y x m =-+2y x x 2=--202,Δ840x m m =--=+=2m =-y x m =-+(2,0)A 2m =2m >21m -<<60BGE ∠=︒①②2BG =1BGD CFD ∽2①BG AG =BAG ABG ∠=∠22BGE BAG CAE ∠=∠=∠BG CF ∥2BGE GFC CAE ∠=∠=∠连接,根据弧、圆心角和弦的关系得,再通过圆周角定理得,证明,最后根据相似三角形的性质即可求解;()先通过三角形外角性质和角度和差得,则,过作于点,得,,再利用三角函数即可求解.【详解】(1)证明:∵,∴,∴,∴;(2)∵,∴,∵,∴,∵,∴,∵,∴,∴,∴,∴;如图,连接,∵平分,∴,②OB OE OC 、、BE EC =BEG BCA ∠=∠BAC BGE ∽375AGP APG =︒∠=∠BG AG AP ==P PH AC ⊥H 30APH ∠= 45HPC HCP ∠=∠= BG CF ∥BGD CFD ∽BG GD CF FD=BG FD GD CF ⋅=⋅①BG AG =BAG ABG ∠=∠BGE BAG ABG ∠=∠+∠22BGE BAG CAE ∠=∠=∠BG CF ∥2BGE GFC CAE ∠=∠=∠CF AC ⊥90AFC ∠=︒90GFC CAE ∠+∠=︒30BAE CAE ∠=∠=︒260BGE CAE ∠=∠=︒②OB OE OC 、、AE BAC ∠BAE CAE ∠=∠∵,,∴,∴,由()得:,,∴,∵,∴,∴,∴;(3)由()得:,,∴,∴,∵,,∴,∴,如图,过作于点,∴,∴,∴,∴,12BAE BOE ∠=∠12CAE EOC ∠=∠BOE EOC ∠=∠BE EC =22BGE BAE ∠=∠12∠=∠=∠BAE CAE BAC BAC BGE ∠=∠BEG BCA ∠=∠BAC BGE ∽AC BC GE BE =ACBC GE EC =230BAE CAE ∠=∠=︒BAG ABG ∠=∠30BAE ABG ∠=∠=︒304575APG ABG BGP ︒+︒=︒∠=∠+∠=60BGE ∠=︒45BGP ∠=︒75AGP APG =︒∠=∠BG AG AP ==P PH AC ⊥H 90AHP PHC ∠=∠= 30APH ∠= 45HPC HCP ∠=∠= cos 45PH PC ==∴,∴.【点睛】本题考查了平行线的性质,相似三角形的判定与性质,圆周角定理,弧、圆心角和弦的关系,三角形的外角性质和解直角三角形,熟练掌握知识点的应用是解题的关键.2cos30PH AP === 2BG AP ==。
湖南省长沙市2023届九年级下学期中考模拟(五)数学试卷(含解析)
2023年湖南省长沙市中考数学模拟试卷(五)学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中,选出符合题目的一项)1. 下列实数为无理数的是( )A. B. C. D.2. 湖南卫视芒果跨年晚会赋予了“跨年”更深刻的涵义:跨过困难,跨出可能“跨”包含着主动经历、克服与改变,“跨”过之后,迎接美好的前景据统计,各卫视跨年晚会收视出炉,湖南卫视以平均收视率夺冠,若以人口估算,约有人守在电视机前欣赏,全面体现出观众网友的喜爱和肯定,数据用科学记数法表示为( )A. B. C. D.3. 下列运算正确的是( )A. B.C. D.4. 下列各图中,既是轴对称图形,又是中心对称图形的是( )A. B. C. D.5. 不等式组的解集在数轴上表示正确的是( )A. B.C. D.6. 长沙市某学校篮球集训队名队员进行定点投篮训练,将名队员在分钟内投进篮筐的球数由小到大排序后为,,,,,,,,,这组数据的众数和中位数分别是( )A. ,B. ,C. ,D. ,7. 若函数的图象在第二、四象限内,则的取值范围是( )A. B. C. D.8. 在中,已知,,,那么边的长是( )A. B. C. D.9. 现有,两个不透明的盒子,盒里有两张卡片,分别标有数字,,盒里有三张卡片,分别标有数字,,,这些卡片除数字外其余都相同,将卡片充分握匀,从盒、盒里各随机抽取一张卡片,则抽到的两张卡片上标有的数字之积大于的概率为( )A. B. C. D.10. 如图,将沿弦折叠,交直径于点,若,,则的长是( )A. B. C. D.第II卷(非选择题)二、填空题(本大题共6小题,共18.0分)11. 已知甲、乙两支篮球队的人数相同,且平均身高都是,身高的方差分别是,,则身高比较整齐的篮球队是______ 填“甲”或“乙”12. 分解因式:.13. 若一个扇形的圆心角为,弧长为,则此扇形的半径是______ .14. 在平面直角坐标系中,点关于原点对称的点的坐标是______ .15. 如图,与位似,点为位似中心,点为的中点,则与的周长比为______ .16. 如图,在中,,按以下步骤作图:以点为圆心、任意长为半径作弧,分别交,于点和;分别以,为圆心、大于的长为半径画弧,两弧交于点;作射线交于点;延长至,使,连接,若,,则的周长为______ ;的面积为______ .三、解答题(本大题共9小题,共72.0分。
2024年长沙中考数学试题
湖南省长沙市2024届中考数学模拟冲刺训练温馨提示:1.答题前,请考生先将自己的姓名、准考证号填写清楚,并认真核对条形码上的姓名、准考证号、考室和座位号;2.必须在答题卡上答题,在草稿纸、试题卷上答题无效;3.答题时,请考生注意各大题题号后面的答题提示;4.请勿折叠答题卡,保持字体工整、笔迹清晰、卡面清洁;5.答题卡上不得使用涂改液、涂改胶和贴纸;6.本学科试卷共25个小题,考试时量120分钟,满分120分.一、选择题:本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.2024年3月27日清晨,在中国太原卫星发射中心使用长征六号改运载火箭,成功将云海三号02星发射升空,卫星顺利进入预定轨道,发射任务获得圆满成功.长六改火箭总长约50米,起飞重量约530000千克.其中数据530000用科学记数法表示为()A .45310´B .45.310⨯C .55.310⨯D .50.5310´2.下列计算正确的是()A .325a b ab +=B .623a a a ÷=C .()222x y x y +=+D .()23624x x -=3.“青年大学习”是共青团中央为组织引导广大青少年,深入学习贯彻习近平新时代中国特色社会主义思想的青年学习行动.某校为了解同学们某季度学习“青年大学习”的情况,从中随机抽取7位同学,经统计他们的学习时间(单位:分钟)分别为:78,80,85,80,90,80,85.则这组数据的众数为()A .78B .80C .85D .904.亮亮的妈妈在超市买了24个青团,其中豆沙馅的8个,芋泥馅的6个,蛋黄肉松馅的10个,它们的形状、大小和重量都是一样的,这些青团装在一个不透明的塑料袋中.小敏从中随机摸出一个,恰好是芋泥馅青团的概率是()A .14B .13C .12D .235.图①是某品牌共享单车放在水平地面的实物图,图②是其示意图,其中AB 、CD 都与地面l 平行,40BAC ∠︒=,80MAC ∠=︒,若AM BE ∥,则BCD ∠=()A .45︒B .50︒C .60︒D .70︒6.如图,ABCD Y 的对角线AC ,BD 相交于点O ,ADC ∠的平分线与边AB 相交于点P ,E 是PD 的中点,若4=AD ,6CD =,则EO 的长为()A .1B .12C .13D .27.不等式组11123x x -≤⎧⎨-<⎩的解集在数轴上表示正确的是()A .B .C .D .8.如图,在一艘小船A 上测得海岸上高为36m 的灯塔BC 的顶部C 处的仰角是30︒,则船离灯塔的水平距离AB 等于()A .B .C .18mD .36m9.《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设合伙人数为x 人,羊价为y 钱,根据题意,可列方程组为()A .54573y x y x =+⎧⎨=+⎩B .54573y x y x =-⎧⎨=+⎩C .54573y x y x =+⎧⎨=-⎩D .54573y x y x =-⎧⎨=-⎩10.如图,二次函数:2(0)y ax bx c a =++≠的图象与x 轴交于A 、B 两点,与y 轴交于C 点,且对称轴为直线1x =,点B 坐标为()1,0-,则下面的五个结论:①0abc <;②420a b c ++>;③当0y <时,1x <-或3x >;④230c b +=;⑤()a b m am b +≥+(m 为实数),其中正确的结论是()A .②③④⑤B .①③④⑤C .①②④⑤D .①②③⑤二、填空题:本题共6小题,每小题3分,共18分.11.因式分解:269x x -+=.12x 的取值范围是.13.如图,在ABCD Y 中,以点A 为圆心,AB 长为半径作弧,交AD 于点F ;分别以B ,F为圆心,大于12BF 长为半径作弧,两弧交于点G ,连接AG 并延长,交BC 于点E .若6AE =,4BF =,则AB 的长为.14.某校为开展“阳光体育”活动,组织调查了该校50名学生各自最喜爱的一项体育活动,制成了如图所示的扇形统计图.全校共有3200名学生,估计该学校选择羽毛球的学生有名.15.如图,已知AB 是O 的直径,弦CD AB ⊥,垂足为E ,且30ODE ∠=︒,1BE =,则图中阴影部分的面积为.16.如图,点A 在反比例函数()0k y x x=<的图像上,AB x ⊥轴于点B ,C 为OB 的中点,连接AO ,若OAC 的面积为6,则k 的值为.三、解答题:本题共9小题,共72分,解答应写出文字说明、证明过程或演算步骤.17.计算:()1202411tan452-⎛⎫-+︒ ⎪⎝⎭.18.先化简,再求值:222424436x x x x x x -+÷-+-,其中3x =-.19.解方程组:213424x y x y +⎧+=⎪⎨⎪+=⎩20.近年来教育部要求学校积极开展素质教育,落实“双减”政策,泸县某中学把足球和篮球列为该校的特色项目.学校准备从体育用品商店一次性购买若干个篮球和足球.若购买3个篮球和2个足球共490元,购买2个篮球和3个足球共460元.(1)篮球、足球的单价各是多少元?(2)根据学校实际需要,需一次性购买篮球和足球共100个,要求购买篮球和足球的总费用不超过9200元,且购买篮球的数量不少于足球数量的一半,请求出最省钱的一种购买方案.21.我校为加强学生安全意识,组织全校学生参加安全知识竞赛.从中抽取部分学生成绩进行统计,绘制以下两幅不完整的统计图.请根据图中的信息,解决下列问题:(1)填空:_______a =,_________n =;(2)补全频数直方图;(3)我校共有3000名学生,若成绩在70分以下(含70分)的学生安全意识不强,则我校安全意识不强的学生约有多少人?22.如图,AB 是O 的直径,C ,D 是O 上两点,EC 为O 的切线,且EC AE ⊥,垂足是E ,连接AC 交BD 于点F .(1)求证:AC 平分EAB ∠;(2)求证:()22CD BD BD DF =-;(3)若DC DF=sin ACD ∠的值.23.如图是某款篮球架的示意图,已知底座0.60BC =米,底座BC 与支架AC 所成的角75ACB ∠=︒,支架AF 的长为2.50米,篮板顶端F 点到篮框D 的距离 1.35FD =米,篮板底部支架HE 与支架AF 所成的角60FHE ∠=︒.(参考数据:sin750.97︒≈,cos750.26︒≈,tan75 3.73︒≈ 1.73≈ 1.41≈)(1)求支架AC 的顶端A 到地面的距离AB 的高度.(精确到0.01米);(2)求篮框D 到地面的距离(精确到0.1米).24.如图,在平面直角坐标系中,点O 为坐标原点,菱形OABC 顶点A 的坐标为(.(1)求过点B 的反比例函数的解析式;(2)点D 在x 轴上,当以B 、D 、O 三点构成的三角形为等腰三角形时,求点D 的坐标;(3)反向延长OB ,与反比例函数在交于点F ,点Q 在x 轴上的一点,当以F 、Q 、B 三点构成的三角形为直角三角形时,直接写出Q 点的坐标.25.定义:对于函数,当自变量0x x =,函数值0y x =时,则0x 叫做这个函数的不动点.(1)直接写出反比例函数1y x=的不动点是______.(2)如图,若二次函数2y ax bx =+有两个不动点,分别是0与3,且该二次函数图象的顶点P 的坐标为()2,4.①求该二次函数的表达式;②连接OP ,M 是线段OP 上的动点(点M 不与点O ,P 重合),N 是该二次函数图象上的点,在x 轴正半轴上是否存在点(),0Q m 满足MOQ MPN NMQ ∠=∠=∠,若存在,求m 的最大值;若不存在,请说明理由.阅读材料:在平面直角坐标系中,若点E 和点F 的坐标分别为11()x y ,和22()x y ,,则点E 和点F 的距离为EF =26.【问题探究】综合实践课上,老师给出这样一个问题要求同学们进行小组合作探究:如图①,在Rt ABC △中,90,BAC AB AC ∠=︒=,点D E 、在边BC 上,45DAE =︒∠.探究图中线段,,BD DE CE 之间的数量关系.小红同学这一个学习小组探究此问题的方法是:将ABD △绕点A 逆时针旋转90︒,得到ACF △,连接EF (如图②),由图形旋转的性质和等腰直角三角形的性质以及45DAE =︒∠,可证FAE DAE ≌,得FE DE =.即可得出,,BD DE CE 之间的数量关系.(1)请你根据小红同学这一学习小组的探究方法,写出探究结论:在图②中,FCE ∠=______度,,,BD DE CE 之间的数量关系是______.【问题延伸】(2)小明同学这一学习小组在上述探究的基础上,又进行了如下问题的探究:如图③,在正方形ABCD 中,点E F 、分别是边BC CD 、上的动点,连接AE AF 、交BD 于M N 、,若45EAF ∠=︒.请你帮小明同学这一学习小组完成如下猜想:①线段BM MN DN 、、的数量关系是______;②线段BE EF DF 、、的数量关系是______;请任选一个你的猜想说明理由.【问题解决】(3)请根据上述探究方法,解决如下问题:如图④,已知点()6,0A -,点()0,3B -,点C 位于y 轴正半轴,45BAC ∠=︒,试求出点C 的坐标.参考答案:1.C 【分析】本题考查科学记数法,根据科学记数法的表示方法:()10110,n a a n ⨯≤<为整数,进行表示即可.【详解】解:53000055.310=⨯;故选C .2.D【分析】本题考查了整式的运算,涉及整式的乘法,同底数幂的除法,幂的乘方等知识,解题的关键是掌握相关的计算法则.根据相关的计算法则逐一判断即可.【详解】解:A 、325a b ab +≠,故该选项错误,不符合题意;B 、62624a a a a -÷==,故该选项错误,不符合题意;C 、()2222x y x xy y +=++,该选项错误,不符合题意;D 、()()26623224x x x -==-,故该选项正确,符合题意;故选:D .3.B【分析】本题考查了众数的求解,根据众数的定义进行求解即可.【详解】解: 数据为78,80,85,80,90,80,85,数据中80这个数最多,则这组数据的众数为80,故选:B .4.A【分析】本题主要考查了概率公式,先确定总数为24个,芋泥馅的6个,再根据概率公式计算即可.【详解】根据题意可知一共有24个青团,每种结果出现的可能性相同,芋泥馅有6个,所以小敏从中随机摸出一个,恰好是芋泥馅青团的概率是61244=.故选:A .5.C【分析】本题考查了平行线的性质,解题的关键是掌握平行线的性质.根据题意可得120MAB ∠=︒,由AM BE ∥推出60ABC ∠=︒,根据AB 、CD 都与地面l 平行,推出60BCD ABC ∠=∠=︒,即可求解.【详解】解: 40BAC ∠︒=,80MAC ∠=︒,∴120MAB MAC BAC ∠=∠+∠=︒,AM BE ∥,∴180MAB ABC ∠+∠=︒,∴18060ABC MAB ∠=︒-∠=︒,AB 、CD 都与地面l 平行,∴AB CD ,∴60BCD ABC ∠=∠=︒,故选:C .6.A【分析】首先证明APD △为等腰三角形,易得4AP AD ==,进而可得2PB AB AP =-=,再证明OE 为BDP △的中位线,结合三角形中位线的性质即可获得答案.【详解】解:∵四边形ABCD 为平行四边形,4=AD ,6CD =,∴6AB CD ==,AB CD ∥,∴APD CDP ∠=∠,∵DP 平分ADC ∠,∴ADP CDP ∠=∠,∴ADP APD ∠=∠,∴4AP AD ==,∴2PB AB AP =-=,∵四边形ABCD 为平行四边形,∴OD OB =,∵E 是PD 的中点,∴112122OE PB ==⨯=.故选:A .【点睛】本题主要考查了平行四边形的性质、三角形中位线的性质、平行线的性质、等腰三角形的判定与性质、角平分线等知识,熟练掌握相关知识是解题关键.7.C【分析】本题考查的是解一元一次不等式组,分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解:11123x x -≤⎧⎨-<⎩①②由①得:2x ≤;由②得:1x >-;∴不等式组的解集为:12x -<≤故选:C8.A【分析】本题考查解直角三角形的应用,要求学生能借助仰角构造直角三角形并解直角三角形.在直角三角形中,已知角的对边求邻边,可以用正切函数来解决.【详解】解:根据题意可得:船离海岸线的距离为36tan 30÷︒=,故选:A .9.A【分析】本题主要考查了二元一次方程组的应用,设合伙人数为x 人,羊价为y 钱,根据每人出5钱,还差45钱;若每人出7钱,还差3钱,列出方程组即可.【详解】解:设合伙人数为x 人,羊价为y 钱,根据题意得:54573y x y x =+⎧⎨=+⎩,故选:A .10.D【分析】本题考查二次函数的图象与系数之间的关系.开口方向,对称轴,与y 轴的交点坐标判断①,特殊点判断②,图象法解不等式,判断③,特殊点结合对称轴,判断④,最值判断⑤;掌握二次函数的性质,是解题的关键.【详解】解:∵抛物线的开口向下,∴a<0,∵对称轴为12b x a=-=,∴20b a =->,∵抛物线与y 轴交于正半轴,∴0c >,∴0abc <,故①正确;∵对称轴为1x =,∴2x =与0x =的函数值相等,即:420a b c c ++=>,故②正确;∵点()1,0-关于1x =的对称点为()3,0,∴当0y <时,1x <-或3x >;故③正确;∵图象过点()1,0-,2b a =-,∴13022b a bc b b c c -+=--+=-+=,∴230c b -=;故④错误;∵抛物线的开口向下,∴当1x =时,函数值最大,即:2a b c am bm c ++≥++,∴()a b m am b +≥+;故⑤正确;综上,正确的结论是①②③⑤;故选:D .11.()23x -【分析】本题主要考查因式分解,运用公式法分解即可【详解】解:269x x -+22233x x =-⨯⋅+()23x =-,故答案为:()23x -12.4x ≥-【分析】本题考查了二次根式有意义的条件,解一元一次不等式,熟练掌握知识点是解题的关键.根据二次根式有意义的条件:被开方数非负,得到280x +≥,再解不等式即可.【详解】解:由题意得:280x +≥,解得:4x ≥-,故答案为:4x ≥-.13【分析】本题主要考查了菱形的性质与判定,线段垂直平分线的尺规作图,勾股定理,设AE 交BF 于点O ,连接EF ,根据作图可知AB AF =,AE BF ⊥,再根据平行四边形的性质及等角对对边得出AB BE AF ==,再证明四边形ABEF 是菱形,然后根据菱形的性质及勾股定理即可得出答案.【详解】解:如图,设AE 交BF 于点O ,连接EF ,由作图可知:AB AF =,AE BF⊥OB OF ∴=,BAE EAF ∠=∠,四边形ABCD 是平行四边形,AD BC ∴∥,EAF AEB ∴∠=∠,BAE AEB ∴∠=∠,AB BE AF \==,AF BE ∥,∴四边形ABEF 是平行四边形,AB AF = ,∴四边形ABEF 是菱形,132OA OE AE ∴===,122OB OF BF ===,在Rt AOB △中,90AOB ∠=︒Q ,AB ∴==14.1280【分析】本题主要考查了扇形统计图、用样本估计整体等知识点,掌握用样本估计整体成为解题的关键.先求出羽毛球所占的百分比,然后再乘以全校的学生数即可解答.【详解】解:羽毛球所占的百分比为110%20%30%40%---=,所以该学校选择羽毛球的学生有320040%1280⨯=名.故答案为:1280.15.2π3【分析】本题考查扇形面积公式、垂径定理、勾股定理、等边三角形的判定和性质等,先证明COB △是等边三角形,根据1BE =求出半径,进而利用勾股定理求出CE ,再根据OBC OBC S S S =-V 阴影扇形即可求解.【详解】解:如图,连接OC ,CD AB ⊥,30ODE ∠=︒,∴ CBDB =,903060∠=︒-︒=︒DOE ,即60DOB ∠=︒,∴60COB DOB ∠=∠=︒,又 OC OB =,∴COB △是等边三角形,CE OB ⊥,1BE =,∴22OB BE ==,∴2BC OB ==,∴CE ===∴2260π160π212π2360236023OBCOBC OB S S S OB CE ⨯⋅⨯⨯=-=-⋅=-⨯= 阴影扇形故答案为:2π316.24-【分析】本题考查反比例函数k 值的几何意义(过双曲线上任意一点作x 轴、y 轴的垂线,所得的矩形的面积为k ),熟练掌握反比例函数k 值的几何意义是解题的关键.【详解】解:∵OAC 的面积为6,C 为OB 的中点,∴22612AOB OAC S S ==⨯=△△,∵AB x ⊥轴,∴224AOB k S ==△,∵反比例函数图像在第二象限,∴24k =-.故答案为:24-.17.1【分析】本题主要考查了实数的运算,负整数指数幂,求特殊角三角函数中,先计算特殊角三角函数值,算术平方根和负整数指数幂,再计算乘方,最后计算加减法即可.【详解】解:()1202411tan452-⎛⎫-++︒ ⎪⎝⎭1231=+-+1=.18.3x,1-.【分析】本题主要考查了分式化简求值.先将原式的分子、分母进行因式分解,再将除法化乘法,化简后代值求解即可.【详解】解:222424436x x x x x x -+÷-+-()()()()()2222322x x x x x x +-+=÷--()()()()()2223222x x x x x x +--=⋅+-3x =,当3x =-时,原式313==--.19.44x y =⎧⎨=-⎩【分析】本题主要考查解二元一次方程组,掌握加减消元法解二元一次方程组是解题的关键.先化简①式,再运用加减消元法即可求解.【详解】解:213424x y x y +⎧+=⎪⎨⎪+=⎩①②①式化简去分母得,()42312x y ++=,整理得,434x y +=③,∴2-⨯③②得,()4322424x y x y +-+=-⨯,∴4y =-,∴244x -=,解得,4x =,∴原方程组的解为44x y =⎧⎨=-⎩.20.(1)篮球的单价是110元,足球的单价是80元.(2)该校购买34个篮球,则购买66个足球最省钱.【分析】本题主要考查了二元一次方程组的实际应用,一元一次不等式组的实际应用等知识点,根据题意正确列出方程组和不等式成为解题的关键.(1)设篮球的单价是x 元,足球的单价是y 元,根据等量关系“购买3个篮球和2个足球共490元,购买2个篮球和3个足球共460元”列出方程组求解即可;(2)设该校购买m 个篮球,则购买(100)m -个足球,根据购买的总费用不超过9200元列出不等式求解即可.【详解】(1)解:设篮球的单价是x 元,足球的单价是y 元,依题意得:3249023460x y x y +=⎧⎨+=⎩,解得:11080x y =⎧⎨=⎩.答:篮球的单价是110元,足球的单价是80元.(2)解:设该校购买m 个篮球,则购买(100)m -个足球,购买篮球和足球的总费用()11080100308000y m m x =+-=+依题意得:()()11080100920011002m m m m ⎧+-≤⎪⎨≥-⎪⎩①②,解不等式①得:40m ≤.解不等式①得:13m ≥33.∴m 的取值范围为:1403m 33≤≤,∵购买篮球和足球的总费用308000y x =+,300k =>,∴y 随m 的增大而增大,∴当34m =时,最省钱,∴该校购买34个篮球,则购买66个足球最省钱.答:该校购买34个篮球,则购买66个足球最省钱.21.(1)75,54;(2)图见详解(3)900人【分析】本题考查了频数(率)分布直方图:提高读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了用样本估计总体.(1)先由A 组人数及其所占百分比求出总人数,总人数乘以B 、C 组对应百分比求出人数,再用360︒乘以E 组人数所占比例即可得;(2)根据以上所求结果可得答案;(3)利用样本估计总体思想求解可得.【详解】(1)解: 被调查的总人数为3010%300÷=(人),30025%75a ∴=⨯=,B 组人数为30020%60⨯=(人),则E 组人数为300(30607590)45-+++=(人),4536054300n ∴=⨯=,故答案为:75,54;(2)解:补全直方图如下:(3)解:()300010%20%900⨯+=(人),答:该校安全意识不强的学生约有900名.22.(1)见解析;(2)见解析;(3)12.【分析】(1)连接OC ,利用切线的性质,平行线的性质,等腰三角形的性质,结合角的平分线的定义证明即可;(2)连接BC ,设OC 交BD 于点G ,证明CBG FBC ∽,利用等量代换,垂径定理,证明即可;(3)设DF x =,3DC DF=3DC BC ==,结合()22CD BD BD DF =-,勾股定理,三角函数计算即可.【详解】(1)证明:连接OC ,如图.∵EC 为O 的切线,∴90ECO ∠=︒.∵AE EC ⊥,∴90E ECO ∠=∠=︒,∴OC AE ∥,∴EAC ACO ∠=∠.又∵OA OC=∴OAC ACO ∠=∠,∴CAO EAC ∠=∠,即EAC CAB ∠=∠,∴AC 平分EAB ∠.(2)证明:如图,连接BC ,设OC 交BD 于点G ,由(1)得DAC BAC ∠=∠,∴C 为劣弧 BD的中点,∴CO BD ⊥,DG GB =.∵AB 为O 的直径,∴90ACB ∠=︒,∵CBF CBG ∠=∠,∴CBG FBC ∽,∴CB BG FB BC=,即2BC BG FB =⋅.∵12BG DB =,FB DB DF =-,DC BC =,∴()212DC DB DB DF =⋅-,即()22CD BD BD DF =-.(3)解:设DF x =,DC DF =,则DC BC ==,代入()22CD BD BD DF =-中,得)()22BD BD x =-,解得3BD x =,∴32BG GD x ==.在Rt DGC △中,2232GC DC DG =-,∵DAC GCF ∠=∠,DFA CFG ∠=∠,∴CGF ADF △∽△,∴FG GC FD DA=,又12FG DG DF x =-=,∴3AD =.在Rt ADB 中,2223AB AD DB =+=,∴1sin sin 2AD ACD ABD AB ∠=∠==.【点睛】本题考查了切线的性质,三角形相似的判定和性质,垂径定理,勾股定理,三角函数,角的平分线的定义,熟练掌握切线的性质,勾股定理,三角函数,三角形相似的判定和性质是解题的关键.23.(1)AB 的高度为2.24米(2)篮框D 到地面的距离约为3.1米【分析】本题考查了解直角三角形的应用,构造直角三角形并解直角三角形是解题的关键.(1)直接根据tan AB BC ACB =⋅∠即可求解;(2)延长EF 交射线CB 于点M ,过点A 作AN FM ⊥于点N ,则四边形ABMN 是矩形,解Rt FAN △,求得FN ,进而根据EM FN NM FD =+-,即可求解.【详解】(1)解:由题意得:在Rt ABC △中,tan ∠=AB ACB BC,tan 0.60 3.73 2.238 2.24AB BC ACB =⋅∠≈⨯=≈(米),∴AB 的高度为2.24米;(2)如图,延长FE 交射线CB 于点M ,过点A 作AN FM ⊥于点N .∵AB CB ⊥,NM CB ⊥,AN NM ⊥,∴四边形ABMN 是矩形,∴ 2.24NM AB ==(米).∵HE FM ⊥,则HE AN ∥,∴60FAN FHE ∠=∠=︒.在Rt FAN △中,sin 2.50 2.501.732 2.1632FN AF FAN =⋅∠=⨯=⨯÷≈(米),∴ 2.163 2.24 1.35 3.05 3.1EM FN NM FD =+-=+-=≈(米),∴篮框D 到地面的距离约为3.1米24.(1)y x=(2)()或()-或()2,0或()6,0(3)(4,0)--或(4,0)【分析】(1)过点A 作AE x ⊥轴于E ,过B 作BG x ⊥轴于G .由点A 的坐标可求出2OA =.再根据菱形的性质可知2AO AB OC ===,AB x 轴,即得出2EG AB ==,3OG OE EG =+=,即(3B ,最后利用待定系数法即可求出反比例函数解析式;(2))根据勾股定理得到OB =O 为顶点时,根据等腰三角形的性质得到OD OB ==D 为顶点时,OD DB =,根据菱形的性质得到()2,0D ;③当B 为顶点时,根据等腰三角形的性质得到结论;(3)反向延长OB ,与反比例函数在第三象限交于点F ,即得出(3F -,248BF =.设(0)Q t ,,则22(3)3BQ t =-+,22(3)3FQ t =++.分类讨论:①以BF 为斜边时,②以BQ 为斜边时和③以FQ 为斜边时,根据勾股定理分别列出关于t 的等式,解出t 即可.【详解】(1)解:过点A 作AE x ⊥轴于E ,过B 作BG x ⊥轴于G ,如图,∵A ,∴1OE AE ==,∴2OA ==.∵四边形OABC 是菱形,∴2AO AB OC ===,AB x 轴,∴2EG AB ==,∴123OG OE EG =+=+=,∴(3B .∵过B 点的反比例函数解析式为k y x =,3k =,解得:k =,∴反比例函数解析式为y =(2)解:∵(B ,∴OB =①当O 为顶点时,OD OB ==∴()D 或()-;②当D 为顶点时,OD DB =,∵四边形ABCD 是菱形,∴AC 是OB 的垂直平分线,∴点D 与C 重合,∴()2,0D ;③当B 为顶点时,BO BD =,则3OG DG ==,∴6OD =,∴()6,0D ;综上所述:D 的坐标为()或()-或()2,0或()6,0;(3)解:如图,反向延长OB ,与反比例函数在第三象限交于点F ,∵(3B ,∴(3F -,,∴248BF =.设(0)Q t ,,则22(3)3BQ t =-+,22(3)3FQ t =++,①以BF 为斜边时,222BQ FQ BF +=,∴22(3)3(3)348t t -++++=,解得12t t ==-∴Q或(-;②以BQ 为斜边时,222BF FQ BQ +=,∴2248(3)3(3)3t t +++=-+,解得4t =-,∴()40Q -,;③以FQ 为斜边时,222BF BQ FQ +=,∴2248(3)3(3)3t t +-+=++,解得4t =,∴(40)Q ,.综上所述,Q的坐标为:0)或(-或(40)-,或(40),.【点睛】本题考查反比例函数与几何综合,菱形的性质,坐标与图形,等腰三角形的判定和性质,勾股定理等知识.正确的作出辅助线是解题关键.25.(1)(11),,(11)--,;(2)①24y x x =-+;②存在,m 的最大值为94.【分析】本题考查了待定系数法求解抛物线表达式与二次函数的性质,相似三角形的判定与性质等知识,(1)根据不动点的定义求解即可;(2)①根据抛物线经过点()0,0、()3,3,利用待定系数法求解即可;②延长PN 交x 轴于点A ,求出PA ,OP 的解析式,联立求出点N 的坐标,设点()(),202M x x x <<,利用相似三角形的性质得出()299144m x =--+,根据二次函数的性质求解即可.【详解】(1)解:把0x x =,函数值0y x =代入1y x =,001x x =,解得01x =±,故答案为:(11),,(11)--,.(2)①∵二次函数2y ax bx =+有两个不动点0与3,∴点()0,0、()3,3在二次函数2y ax bx =+的图象上.将()3,3,()2,4P 代入得393442a b a b =+⎧⎨=+⎩,解得14a b =-⎧⎨=⎩.∴二次函数的表达式为24y x x =-+.②延长PN 交x 轴于点A ,设(),0A n ,∵MOQ MPN ∠=∠,∴OA PA =,则n =解得5n =,()5,0A .设直线PA 的表达式为y kx t =+,将()5,0A ,()2,4P 代入得0542k t k t =+⎧⎨=+⎩,解得43203k t ⎧=-⎪⎪⎨⎪=⎪⎩.∴直线PA 的表达式为42033=-+y x ,同理直线OP 的表达式为2y x =.联立2442033y x x y x ⎧=-+⎪⎨=-+⎪⎩,解得1124x y =⎧⎨=⎩,22103209x y ⎧=⎪⎪⎨⎪=⎪⎩,则1020,39N ⎛⎫ ⎪⎝⎭.设点()(),202M x x x <<,由()0,0O ,()2,4P ,1020,39N ⎛⎫ ⎪⎝⎭可得OM ==,)22PM x ==-=-.209PN =.∵PMQ MOQ MQO NMQ PMN ∠=∠+∠=∠+∠,MOQ MPN NMQ ∠=∠=∠,∴MQO PMN ∠=∠.∴MOQ NPM △∽△,则OQ OM PM PN=,整理得OQ PN OM PM ⋅=⋅.∴2029m x =-,整理得()22999914244m x x x =-+=--+.∵904-<,∴当1x =时,max 94m =.∴在x 轴正半轴上存在点(),0Q m ,且m 的最大值为94.26.(1)22290,CE BD DE ︒+=;(2)①222BM DN MN +=,②BE DF EF +=,理由见解析;(3)()0,2【分析】(1)根据小红组的研究方法写出求解过程即可;(2)猜想①可由(1)得到结论,仿照(1)过程证明;选择猜想②证明:根据正方形的性质和旋转性质可将ABE 绕点B 逆时针旋转90︒,得到ADG △,证明G 、D 、F 、C 共线,和()SAS GAF EAF ≌得到DG BE =,GF EF =,进而可得结论;(3)在y 轴正半轴上截取OD OE OA ==,连接AD ,AE ,利用(1)中结论知222CD BE BC +=,根据坐标与图形性质得到6OA =,3OB =,进而得到3BE =,9BC CD =-,由()22239CD CD +=-求得4CD =,则2OC =,即可求解.【详解】解:(1)如图2,∵在Rt ABC △中,90,BAC AB AC ∠=︒=,∴45ACB ABC ∠=∠=︒,由旋转性质得45ACF ABD ∠=∠=︒,CAF BAD ∠=∠,=CF BD ,AF AD =,∴90FCE ACF ACB ∠=∠+∠=︒,∵45DAE =︒∠,∴45CAE BAD +∠=︒∠,则45FAE CAF CAE BAD CAE ∠=∠+∠=∠+∠=︒,∴FAE DAE ∠=∠,又AF AD =,AE AE =,∴()SAS FAE DAE ≌,则EF DE =,在Rt CEF △中,222CE CF EF +=,∴222CE BD DE +=,故答案为:90︒,222CE BD DE +=;(2)猜想:①222BM DN MN +=;②BE DF EF +=;选择猜想②,证明过程如下:∵四边形ABCD 是正方形,∴90BAD ADC ABC ∠=∠=∠=︒,AB AD =,如图③,将ABE 绕点B 逆时针旋转90︒,得到ADG △,则DG BE =,AG AE =,90ADG ABE ∠=∠=︒,DAG BAE ∠∠=,∴180ADG ADC ∠+∠=︒,则G 、D 、F 、C 共线,∵45EAF ∠=︒,∴45DAF DAG DAF BAE ∠+∠=∠+∠=︒,∴GAF EAF ∠=∠,又AG AE =,AF AF =,∴()SAS GAF EAF ≌,∴GF EF =,∵DG DF GF +=,∴BE DF EF +=;故答案为:①222BM DN MN +=;②BE DF EF +=;(3)如图,在y 轴正半轴上截取OD OE OA ==,连接AD ,AE ,则45ADO AEO BAC ∠=∠=∠=︒,由(1)得222CD BE BC +=,∵点()6,0A -,点()0,3B -,∴6OA =,3OB =,∴633BE OE OB =-=-=,1239BC CD CD =--=-,∴()22239CD CD +=-,解得4CD =,∴2OC OD CD =-=,则点C 坐标为()0,2.【点睛】本题考查等腰直角三角形性质、旋转性质、全等三角形的判定与性质、勾股定理、正方形的性质、坐标与图形等知识,熟练掌握利用旋转的性质构造全等三角形探究线段之间的关系是解答的关键.。
【2022】湖南省长沙市中考数学模拟检测试卷(含答案)
湖南省长沙市中考数学模拟试卷(含答案)(时间:120分钟分数:120分)一.选择题(共8小题,满分24分)1.若|a|=2,则a的值是()A.﹣2B.2C.D.±22.下列式子成立的是()A.2x﹣5=﹣(5﹣2x)B.7a+3=7(a+3)C.﹣a﹣b=﹣(a﹣b)D.2x﹣5=﹣(2x﹣5)3.把不等式组中每个不等式的解集在同一条数轴上表示出来,正确的为()A.B.C.D.4.设x1,x2是一元二次方程x2﹣2x﹣5=0的两根,则x12+x22的值为()A.6B.8C.14D.165.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132°B.134°C.136°D.138°6.如图,在⊙O的内接△ABC中,∠ABC=30°,AC的延长线与过点B的⊙O的切线相交于点D,若⊙O的半径OC=1,BD∥OC,则CD的长为()A.1+B.C.D.7.如图,从位于O处的某海防哨所发现在它的北偏东60°的方向,相距600米的A处有一艘快艇正在向正南方向航行,经过若干时间快艇要到达哨所东南方向的B处,则A、B间的距离是()米.A.300+300B.300+300C.150+150D.150+150 8.按一定规律排列的一列数依次为:2,3,10,15,26,35,…,按此规律排列下去,则这列数中的第100个数是()A.9999B.10000C.10001D.10002二.填空题(共8小题,满分24分,每小题3分)9.已知(x﹣1)3=64,则x的值为.10.分解因式:x2y﹣y=.11.函数y=的定义域为.12.分式方程﹣x=3的解是.13.如图,在Rt△ABC中,∠ABC=90°,AB=12cm,BC=5cm,AC=13cm,若BD 是AC边上的高,则BD的长为cm.14.如图,△ABC中,∠BAC=75°,BC=7,△ABC的面积为14,D为BC边上一动点(不与B,C重合),将△ABD和△ACD分别沿直线AB,AC翻折得到△ABE与△ACF,那么△AEF的面积最小值为.15.小青在八年级上学期的数学成绩如下表所示.平时测验期中考试期末考试成绩869081如果学期总评成绩根据如图所示的权重计算,小青该学期的总评成绩是分.16.如图所示,两个全等菱形的边长为1米,一个微型机器人由A点开始按A ﹣>B﹣>C﹣>D﹣>E﹣>F﹣>C﹣>G﹣>A的顺序沿菱形的边循环运动,行走2009米停下,则这个微型机器人停在点.三.解答题(共9小题,满分72分)17.(6分)先化简,再求值:÷(﹣x+1),其中x满足x2+7x=0.18.(6分)如图,△ABC≌△ABD,点E在边AB上,CE∥BD,连接DE.求证:(1)∠CEB=∠CBE;(2)四边形BCED是菱形.19.(6分)典典同学学完统计知识后,随机调查了她家所在辖区若干名居民的年龄,将调查数据绘制成如下扇形和条形统计图:请根据以上不完整的统计图提供的信息,解答下列问题:(1)扇形统计图中a=,b=;并补全条形统计图;(2)若该辖区共有居民3500人,请估计年龄在0~14岁的居民的人数.(3)一天,典典知道了辖区内60岁以上的部分老人参加了市级门球比赛,比赛的老人们分成甲、乙两组,典典很想知道甲乙两组的比赛结果,王大爷告诉说,甲组与乙组的得分和为110,甲组得分不低于乙组得分的1.5倍,甲组得分最少为多少?20.(7分)某工厂接受了20天内生产1200台GH型电子产品的总任务.已知每台GH型产品由4个G型装置和3个H型装置配套组成.工厂现有80名工人,每个工人每天能加工6个G型装置或3个H型装置.工厂将所有工人分成两组同时开始加工,每组分别加工一种装置,并要求每天加工的G、H型装置数量正好全部配套组成GH型产品.(1)按照这样的生产方式,工厂每天能配套组成多少套GH型电子产品?请列出二元一次方程组解答此问题.(2)为了在规定期限内完成总任务,工厂决定补充一些新工人,这些新工人只能独立进行G型装置的加工,且每人每天只能加工4个G型装置.1.设原来每天安排x名工人生产G型装置,后来补充m名新工人,求x的值(用含m的代数式表示)2.请问至少需要补充多少名新工人才能在规定期内完成总任务?21.(7分)如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与反比例函数y=的图象相交于点A(m,3)、B(﹣6,n),与x轴交于点C.(1)求一次函数y=kx+b的关系式;(2)结合图象,直接写出满足kx+b>的x的取值范围;=,求点P的坐标.(3)若点P在x轴上,且S△ACP22.(8分)如图,在Rt△ABC中,∠C=90°,以AC为直径作⊙O,交AB于D,过点O作OE∥AB,交BC于E.(1)求证:ED为⊙O的切线;(2)如果⊙O的半径为,ED=2,延长EO交⊙O于F,连接DF、AF,求△ADF 的面积.23.(10分)一种实验用轨道弹珠,在轨道上行驶5分钟后离开轨道,前2分钟其速度v(米/分)与时间t(分)满足二次函数v=at2,后三分钟其速度v(米/分)与时间t(分)满足反比例函数关系,如图,轨道旁边的测速仪测得弹珠1分钟末的速度为2米/分,求:(1)二次函数和反比例函数的关系式.(2)弹珠在轨道上行驶的最大速度.24.(10分)阅读材料:小胖同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来则形成一组旋转全等的三角形.小胖把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小胖发现若∠BAC=∠DAE,AB=AC,AD=AE,则BD=CE.(1)在图1中证明小胖的发现;借助小胖同学总结规律,构造“手拉手”图形来解答下面的问题:(2)如图2,AB=BC,∠ABC=∠BDC=60°,求证:AD+CD=BD;(3)如图3,在△ABC中,AB=AC,∠BAC=m°,点E为△ABC外一点,点D为BC中点,∠EBC=∠ACF,ED⊥FD,求∠EAF的度数(用含有m的式子表示).25.(12分)抛物线y=ax2+bx+3(a≠0)经过点A(﹣1,0),B(,0),且与y轴相交于点C.(1)求这条抛物线的表达式;(2)求∠ACB的度数;(3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC 上,且DE⊥AC,当△DCE与△AOC相似时,求点D的坐标.答案一.选择题1.D.2.A.3.B.4.C.5.B.6.B.7.A.8.A.二.填空题9.5.10.y(x+1)(x﹣1).11.x>﹣3.12.x=6.13..14.4.15.84.2.16.B.三.解答题(共9小题,满分72分)17.(6分)先化简,再求值:÷(﹣x+1),其中x满足x2+7x=0.【分析】由x满足x2+7x=0,求出x的值.注意x的取值需使分式有意义.化简多项式后,代入求值.【解答】解:原式=÷(﹣)==×=﹣∵x2+7x=0x(x+7)=0∴x1=0,x2=﹣7当x=0时,除式(﹣x+1)=0,所以x不能为0,所以x=﹣7.当x=﹣7时,原式=﹣=﹣=【点评】本题考查了一元二次方程的解法,分式的化简求值.本题化简后代入时,确定x的值是关键.18.(6分)如图,△ABC≌△ABD,点E在边AB上,CE∥BD,连接DE.求证:(1)∠CEB=∠CBE;(2)四边形BCED是菱形.【分析】(1)欲证明∠CEB=∠CBE,只要证明∠CEB=∠ABD,∠CBE=∠ABD即可.(2)先证明四边形CEDB是平行四边形,再根据BC=BD即可判定.【解答】证明;(1)∵△ABC≌△ABD,∴∠ABC=∠ABD,∵CE∥BD,∴∠CEB=∠DBE,∴∠CEB=∠CBE.(2))∵△ABC≌△ABD,∴BC=BD,∵∠CEB=∠CBE,∴CE=CB,∴CE=BD∵CE∥BD,∴四边形CEDB是平行四边形,∵BC=BD,∴四边形CEDB是菱形.【点评】本题考查全等三角形的性质、菱形的判定、平行四边形的判定等知识,熟练掌握全等三角形的性质是解题的关键,记住平行四边形、菱形的判定方法,属于中考常考题型.19.(6分)典典同学学完统计知识后,随机调查了她家所在辖区若干名居民的年龄,将调查数据绘制成如下扇形和条形统计图:请根据以上不完整的统计图提供的信息,解答下列问题:(1)扇形统计图中a=20%,b=12%;并补全条形统计图;(2)若该辖区共有居民3500人,请估计年龄在0~14岁的居民的人数.(3)一天,典典知道了辖区内60岁以上的部分老人参加了市级门球比赛,比赛的老人们分成甲、乙两组,典典很想知道甲乙两组的比赛结果,王大爷告诉说,甲组与乙组的得分和为110,甲组得分不低于乙组得分的1.5倍,甲组得分最少为多少?【分析】(1)根据“15~40”的百分比和频数可求总数,进而求出b和a的值.利用总数和百分比求出频数再补全条形图;(2)用样本估计总体即可;(3)首先设甲组得x分,则乙组得(110﹣x)分,由题意得不等关系:甲组得x分≥乙组得x分×1.5,根据不等关系列出不等式,解不等式即可.【解答】解:(1)总人数:230÷46%=500(人),100÷500×100%=20%,60÷500×100%=12%;500×22%=110(人),如图所示:(2)3500×20%=700(人);(3)设甲组得x分,则乙组得(110﹣x)分,由题意得:x≥1.5(110﹣x),解得:x≥66.答:甲组最少得66分.【点评】此题主要考查了扇形统计图与条形统计图,以及一元一次不等式的应用,正确读图,能从图中得到正确的信息是解决问题的关键.20.(7分)某工厂接受了20天内生产1200台GH型电子产品的总任务.已知每台GH型产品由4个G型装置和3个H型装置配套组成.工厂现有80名工人,每个工人每天能加工6个G型装置或3个H型装置.工厂将所有工人分成两组同时开始加工,每组分别加工一种装置,并要求每天加工的G、H型装置数量正好全部配套组成GH型产品.(1)按照这样的生产方式,工厂每天能配套组成多少套GH型电子产品?请列出二元一次方程组解答此问题.(2)为了在规定期限内完成总任务,工厂决定补充一些新工人,这些新工人只能独立进行G型装置的加工,且每人每天只能加工4个G型装置.1.设原来每天安排x名工人生产G型装置,后来补充m名新工人,求x的值(用含m的代数式表示)2.请问至少需要补充多少名新工人才能在规定期内完成总任务?【分析】(1)设x人加工G型装置,y人加工H型装置,利用每个工人每天能加工6个G型装置或3个H型装置得出等式求出答案;(2)利用每天加工的G、H型装置数量正好全部配套组成GH型产品得出等式表示出x的值,进而利用不等式解法得出答案.【解答】(1)解:设x人加工G型装置,y人加工H型装置,由题意可得:解得:,6×32÷4=48(套),答:按照这样的生产方式,工厂每天能配套组成48套GH型电子产品.(2) 由题意可知:3(6x+4m)=3(80﹣x)×4,解得:.‚×4=240(个),6x+4m≥2406×+4m≥240.解得:m≥30.答:至少需要补充30名新工人才能在规定期内完成总任务.【点评】此题主要考查了一元一次方程的应用以及一元一次不等式的应用,根据题意正确得出等量关系是解题关键.21.(7分)如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与反比例函数y=的图象相交于点A(m,3)、B(﹣6,n),与x轴交于点C.(1)求一次函数y=kx+b的关系式;(2)结合图象,直接写出满足kx+b>的x的取值范围;=,求点P的坐标.(3)若点P在x轴上,且S△ACP【分析】(1)把点A、B的坐标分别代入反比例函数解析式中,求出m、n的值,得到点A、B的坐标,再将点A、B的坐标分别代入一次函数解析式中即可确定出一次函数解析式;(2)结合图象,根据两函数的交点横坐标,找出一次函数图象在反比例图象上方时x的范围即可;=求出CP的长,进而得到点P (3)先求出△BOC的面积,再根据S△ACP的坐标.【解答】解:(1)将A(m,3)代入反比例解析式得:m=2,则A(2,3),将B(﹣6,n)代入反比例解析式得:n=﹣1,则B(﹣6,﹣1),将A与B的坐标代入y=kx+b得:,解得:,则一次函数解析式为y=x+2;(2)由图象得:x+2>的x的取值范围是:﹣6<x<0或x>2;(3)∵y=x+2中,y=0时,x+2=0,解得x=﹣4,则C(﹣4,0),OC=4∴△BOC的面积=×4×1=2,==×2=3.∴S△ACP=CP×3=CP,∵S△ACP∴CP=3,∴CP=2,∵C(﹣4,0),∴点P的坐标为(﹣2,0)或(﹣6,0).【点评】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.函数图象上点的坐标特征,待定系数法求一次函数的解析式,三角形的面积,利用了数形结合思想.22.(8分)如图,在Rt△ABC中,∠C=90°,以AC为直径作⊙O,交AB于D,过点O作OE∥AB,交BC于E.(1)求证:ED为⊙O的切线;(2)如果⊙O的半径为,ED=2,延长EO交⊙O于F,连接DF、AF,求△ADF 的面积.【分析】(1)首先连接OD,由OE∥AB,根据平行线与等腰三角形的性质,易证得△COE≌△DOE,即可得∠ODE=∠OCE=90°,则可证得ED为⊙O的切线;(2)连接CD,根据直径所对的圆周角是直角,即可得∠CDA=90°,利用勾股定理即可求得OE的长,又由OE∥AB,证得△COE∽△CAB,根据相似三角形的对应边成比例,即可求得AB的长,然后利用三角函数的知识,求得CD与AD的长,=S梯形ABEF﹣S梯形DBEF求得答案.然后利用S△ADF【解答】解:(1)证明:连接OD,∵OE∥AB,∴∠COE=∠CAD,∠EOD=∠ODA,∵OA=OD,∴∠OAD=∠ODA,∴∠COE=∠DOE,在△COE和△DOE中,,∴△COE≌△DOE(SAS),∴∠ODE=∠OCE=90°,∴ED⊥OD,∴ED是圆O的切线;(2)连接CD,交OE于M,在Rt△ODE中,∵OD=,DE=2,∴OE===,∵OE∥AB,∴△COE∽△CAB,∴=,∴AB=5,∵AC是直径,∴∠ADC=90°,∴cos∠BAC===,∴AD=,∴CD==,∵EF∥AB,∴,∴CM=DM=CD=,∴EF=OE+OF=4,BD=AB﹣AD=5﹣=,=S梯形ABEF﹣S梯形DBEF=(AB+EF)•DM﹣(BD+EF)•DM=×(5+4)×∴S△ADF﹣×(+4)×=.∴△ADF的面积为.【点评】此题考查了圆的切线的判定与性质,直角三角形的性质,相似三角形的判定与性质以及全等三角形的判定与性质等知识.此题综合性较强,难度较大,解题的关键是注意数形结合思想的应用,注意辅助线的作法.23.(10分)一种实验用轨道弹珠,在轨道上行驶5分钟后离开轨道,前2分钟其速度v(米/分)与时间t(分)满足二次函数v=at2,后三分钟其速度v(米/分)与时间t(分)满足反比例函数关系,如图,轨道旁边的测速仪测得弹珠1分钟末的速度为2米/分,求:(1)二次函数和反比例函数的关系式.(2)弹珠在轨道上行驶的最大速度.【分析】(1)由图象可知前一分钟过点(1,2),后三分钟时过点(2,8),分别利用待定系数法可求得函数解析式;(2)(2)把t=2代入(1)中二次函数解析式即可.【解答】解:(1)v=at2的图象经过点(1,2),∴a=2.∴二次函数的解析式为:v=2t2,(0≤t≤2);设反比例函数的解析式为v=,由题意知,图象经过点(2,8),∴k=16,∴反比例函数的解析式为v=(2<t≤5);(2)∵二次函数v=2t2,(0≤t≤2)的图象开口向上,对称轴为y轴,∴弹珠在轨道上行驶的最大速度在2秒末,为8米/分.【点评】本题考查了反比例函数和二次函数的应用.解题的关键是从图中得到关键性的信息:自变量的取值范围和图象所经过的点的坐标.24.(10分)阅读材料:小胖同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来则形成一组旋转全等的三角形.小胖把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小胖发现若∠BAC=∠DAE,AB=AC,AD=AE,则BD=CE.(1)在图1中证明小胖的发现;借助小胖同学总结规律,构造“手拉手”图形来解答下面的问题:(2)如图2,AB=BC,∠ABC=∠BDC=60°,求证:AD+CD=BD;(3)如图3,在△ABC中,AB=AC,∠BAC=m°,点E为△ABC外一点,点D为BC中点,∠EBC=∠ACF,ED⊥FD,求∠EAF的度数(用含有m的式子表示).【分析】(1)如图1中,欲证明BD=EC,只要证明△DAB≌△EAC即可;(2)如图2中,延长DC到E,使得DB=DE.首先证明△BDE是等边三角形,再证明△ABD≌△CBE即可解决问题;(3)如图3中,将AE绕点E逆时针旋转m°得到AG,连接CG、EG、EF、FG,延长ED到M,使得DM=DE,连接FM、CM.想办法证明△AFE≌△AFG,可得∠EAF=∠FAG=m°;【解答】(1)证明:如图1中,∵∠BAC=∠DAE,∴∠DAB=∠EAC,在△DAB和△EAC中,,∴△DAB≌△EAC,∴BD=EC.(2)证明:如图2中,延长DC到E,使得DB=DE.∵DB=DE,∠BDC=60°,∴△BDE是等边三角形,∴∠BD=BE,∠DBE=∠ABC=60°,∴∠ABD=∠CBE,∵AB=BC,∴△ABD≌△CBE,∴AD=EC,∴BD=DE=DC+CE=DC+AD.∴AD+CD=BD.(3)解:如图3中,将AE绕点E逆时针旋转m°得到AG,连接CG、EG、EF、FG,延长ED到M,使得DM=DE,连接FM、CM.由(1)可知△EAB≌△GAC,∴∠1=∠2,BE=CG,∵BD=DC,∠BDE=∠CDM,DE=DM,∴△EDB≌△MDC,∴EM=CM=CG,∠EBC=∠MCD,∵∠EBC=∠ACF,∴∠MCD=∠ACF,∴∠FCM=∠ACB=∠ABC,∴∠1=3=∠2,∴∠FCG=∠ACB=∠MCF,∵CF=CF,CG=CM,∴△CFG≌△CFM,∴FG=FM,∵ED=DM,DF⊥EM,∴FE=FM=FG,∵AE=AG,AF=AF,∴△AFE≌△AFG,∴∠EAF=∠FAG=m°.【点评】本题考查几何变换综合题、旋转变换、等腰三角形的性质、全等三角形的判定和性质等知识,解题的关键是学会利用“手拉手”图形中的全等三角形解决问题,学会构造“手拉手”模型,解决实际问题,属于中考压轴题.25.(12分)抛物线y=ax2+bx+3(a≠0)经过点A(﹣1,0),B(,0),且与y轴相交于点C.(1)求这条抛物线的表达式;(2)求∠ACB的度数;(3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC 上,且DE⊥AC,当△DCE与△AOC相似时,求点D的坐标.【分析】(1)先求得点C(0,3)的坐标,然后设抛物线的解析式为y=a(x+1)(x﹣),最后,将点C的坐标代入求得a的值即可;(2)过点B作BM⊥AC,垂足为M,过点M作MN⊥OA,垂足为N.先求得AC 的解析式,然后再求得BM的解析式,从而可求得点M的坐标,依据两点间的距离公式可求得MC=BM,最后,依据等腰直角三角形的性质可得到∠ACB的度数;(3)如图2所示:延长CD,交x轴与点E.依据题意可得到∠ECD>45°,然后依据相似三角形的性质可得到∠CAO=∠ECD,则CE=AE,设点E的坐标为(a,0),依据两点间的距离公式可得到(a+1)2=32+a2,从而可得到点E的坐标,然后再求得CE的解析式,最后求得CE与抛物线的交点坐标即可.【解答】解:(1)当x=0,y=3,∴C(0,3).设抛物线的解析式为y=a(x+1)(x﹣).将C(0,3)代入得:﹣a=3,解得:a=﹣2,∴抛物线的解析式为y=﹣2x2+x+3.(2)过点B作BM⊥AC,垂足为M,过点M作MN⊥OA,垂足为N.∵OC=3,AO=1,∴tan∠CAO=3.∴直线AC的解析式为y=3x+3.∵AC⊥BM,∴BM的一次项系数为﹣.设BM的解析式为y=﹣x+b,将点B的坐标代入得:﹣×+b=0,解得b=.∴BM的解析式为y=﹣x+.将y=3x+3与y=﹣x+联立解得:x=﹣,y=.∴MC=BM═=.∴△MCB为等腰直角三角形.∴∠ACB=45°.(3)如图2所示:延长CD,交x轴与点F.∵∠ACB=45°,点D是第一象限抛物线上一点,∴∠ECD>45°.又∵△DCE与△AOC相似,∠AOC=∠DEC=90°,∴∠CAO=∠ECD.∴CF=AF.设点F的坐标为(a,0),则(a+1)2=32+a2,解得a=4.∴F(4,0).设CF的解析式为y=kx+3,将F(4,0)代入得:4k+3=0,解得:k=﹣.∴CF的解析式为y=﹣x+3.将y=﹣x+3与y=﹣2x2+x+3联立:解得:x=0(舍去)或x=.将x=代入y=﹣x+3得:y=.∴D(,).【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求一次函数、二次函数的解析式、两点间距离公式的应用、相似三角形的性质、等腰三角形的判定,依据相似三角形的性质、等腰三角形的判定定理得到AF=CF 是解题的关键.。
【3套试卷】长沙市中考模拟考试数学精选含答案
中考模拟考试数学试题含答案一.选择题(共10小题)1.﹣的相反数是()A.9 B.﹣9 C.D.﹣2.下列运算正确的是()A.﹣3(x﹣4)=﹣3x+12 B.(﹣3x)2=6x2C.3x+x2=3x D.x8÷x2=x43.下列图形中,是中心对称图形,但不是轴对称图形的是()A.B.C.D.4.如图的几何体的左视图是()A.B.C.D.5.如图,若等边△ABC的内切圆⊙O的半径是2,则△ABC的面积是()A.4B.6C.8D.12 6.下列关于抛物线y=(x+2)2+6的说法,正确的是()A.抛物线开口向下B.抛物线的顶点坐标为(2,6)C.抛物线的对称轴是直线x=6D.抛物线经过点(0,10)7.方程=0的解为()A.﹣2 B.2 C.5 D.无解8.如图,菱形ABCD的对角线AC=6,BD=8,AE⊥BC于点E,则AE的长是()A.5 B.C.D.9.已知直线y=x+1与反比例函数y=的图象的一个交点为P(a,2),则ak的值为()A.2 B.C.﹣2 D.﹣10.如图,在△ABC中,点D、E分别为AB、AC边上的点,连接DE,且DE∥BC,点F为BC 边上一点,连接AF交DE于点G,则下列结论中一定正确的是()A.=B.=C.=D.=二.填空题(共10小题)11.数据0.0007用科学记数法表示为.12.在函数y=中,自变量x的取值范围是.13.分解因式5a3b﹣10a2b+5ab=.14.计算:=.15.不等式组的整数解是.16.一个扇形的弧长是20πcm,面积是240πcm2,则这个扇形的圆心角是度.17.有一枚材质均匀的正方体骰子,它的六个面上分别有1点、2点、…6点的标记,掷一次骰子,向上的一面出现的点数是3的倍数的概率是.18.△ABC的面积为,AB=3,BC=10,AH⊥BC于点H,点E为BC中点,则HE=.19.如图,在平行四边形ABCD中,AE⊥BC于点E,AF⊥CD于点F,若AE=4,AF=6,AD+CD =20,则平行四边形ABCD的面积为.20.如图,△ABC中,∠ACB=90°,∠B=60°,AB=4,D为AB中点,CE平分∠ACB,∠DEC=30°,则CE=.三.解答题(共7小题)21.先化简再求值,其中x=3tan30°﹣4cos60°.22.如图,在小正方形的边长均为1的方格纸中有线段AB,BC,点A,B,C均在小正方形的顶点上.(1)在图1中画出凸四边形ABCD,使四边形ABCD是轴对称图形,点D在小正方形的顶点上;(2)在图2中画出凸四边形ABCE,点E在小正方形的顶点上,∠AEC=90°,EC>EA;直接写出四边形ABCE的周长.23.某中学围绕“哈尔滨市周边五大名山,即:香炉山、凤凰山、金龙山、帽儿山、二龙山,你最喜欢那一座山?(每名学生必选且只选一座山)的问题在全校范围内随机抽取了部分学生进行问卷调查,根据调查结果绘制了如图的不完整的统计图:(1)求本次调查的样本容量;(2)求本次调查中,最喜欢凤凰山的学生人数,并补全条形统计图;(3)若该中学共有学生1200人,请你估计该中学最喜欢香炉山的学生约有多少人?24.已知:如图,在Rt△ABC中,∠ACB=90°,点D、E分别是AB、AC的中点,点F在BC 延长线上,连接EF,且∠CEF=∠BAC.(1)如图1,求证:四边形CDEF是平行四边形;(2)如图2,连接AF、BE,在不添加任何辅助线的情况下,请直接写出图2中所有与△AED面积相等的三角形.25.王叔叔决定在承包的荒山上种苹果树,第一次用1000元购进了一批树苗,第二次又用了1000元购进该种树苗,但这次每棵树苗的进价是第一次进价的2倍,购进数量比第一次少了100棵.(1)求第一次每棵树苗的进价是多少元?(2)一年后,树苗的成活率为85%,每棵果树平均产苹果30斤,王叔叔将两批果树所产苹果按同一价格全部销售完毕后获利不低于89800元,求每斤苹果的售价至少是多少元?26.如图,△ABC中,AB=AC,AD⊥BC于D,E是AC边上一点,⊙O过B、D、E三点,分别交AC、AB于点F、G,连接EG、BF分别与AD交于点M、N;(1)求证:∠AMG=∠BND;(2)若点E为AC的中点,求证:BF=BC;(3)在(2)的条件下,作EH⊥EG交AD于点H,若EH=EG=4,过点G作GK⊥BF 于点K,点P在线段GK上,点Q在线段BK上,连接BP、GQ,若∠KGQ=2∠GBP,GQ=15,求GP的长度.27.如图,直线y=x+6与x轴、y轴交于A、B两点,点C在第四象限,BC⊥AB,且BC =AB;(1)如图1,求点C的坐标;(2)如图2,D是BC的中点,过D作AC的垂线EF交AC于E,交直线AB于F,连接CF,点P为射线AD上一动点,求PF2﹣PC2的值;(3)如图3,在(2)的条件下,在第二象限过点A作线段AM⊥AB于点A,在线段AB 上取一点N,连接MN,使MN=BN,在第三象限取一点Q,使∠NMQ=90°,连接QC,若QC∥AB,且QC=6AM,设点P的横坐标为t,△PMQ的面积为s,求s与t的函数关系式.参考答案与试题解析一.选择题(共10小题)1.﹣的相反数是()A.9 B.﹣9 C.D.﹣【分析】直接利用相反数的定义分析得出答案.【解答】解:﹣的相反数是:.故选:C.2.下列运算正确的是()A.﹣3(x﹣4)=﹣3x+12 B.(﹣3x)2=6x2C.3x+x2=3x D.x8÷x2=x4【分析】分别根据去括号法则、积的乘方法则、合并同类项法则以及同底数幂相除法则逐一判断即可.【解答】解:A.﹣3(x﹣4)=﹣3x+12,故本选项符合题意;B.(﹣3x)2=9x2,故本选项不合题意;C.3x与x2不是同类项,故不能合并,故本选项不合题意;D.x8÷x2=x6,故本选项不合题意.故选:A.3.下列图形中,是中心对称图形,但不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、是中心对称图形,也是轴对称图形,故本选项错误;B、是中心对称图形,但不是轴对称图形,故本选项正确;C、不是中心对称图形,但是轴对称图形,故本选项错误;D、不是中心对称图形,但是轴对称图形,故本选项错误.故选:B.4.如图的几何体的左视图是()A.B.C.D.【分析】细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可.【解答】解:从左边看去,左边是3个正方形,右边是2个正方形.故选:A.5.如图,若等边△ABC的内切圆⊙O的半径是2,则△ABC的面积是()A.4B.6C.8D.12【分析】连接OB,OD,根据⊙O是等边△ABC的内切圆,求出∠OBD=30°,求出OB=2OD =4,根据勾股定理求出BD,同理求出CD,得到BC,求出AD,即可得出答案.【解答】解:连接OB,OD,OA,∵⊙O是等边△ABC的内切圆,∴∠OBD=30°,∠BDO=90°,∴OB=2OD=4,由勾股定理得:BD==2,同理CD=2,∴BC=BD+CD=4,∵△ABC是等边三角形,A,O,D三点共线,∴AD=6,∴S△ABC=BC•AD=12.6.下列关于抛物线y=(x+2)2+6的说法,正确的是()A.抛物线开口向下B.抛物线的顶点坐标为(2,6)C.抛物线的对称轴是直线x=6D.抛物线经过点(0,10)【分析】根据抛物线的解析式可以判断各个选项中的结论是否正确,从而可以解答本题.【解答】解:∵y=(x+2)2+6=x2+4x+10,∴a=1,该抛物线的开口向上,故选项A错误,抛物线的顶点坐标是(﹣2,6),故选项B错误,抛物线的对称轴是直线x=﹣2,故选项C错误,当x=0时,y=10,故选项D正确,故选:D.7.方程=0的解为()A.﹣2 B.2 C.5 D.无解【分析】根据解分式方程的步骤依次计算可得.【解答】解:两边都乘以x﹣5,得:2﹣x+3=0,解得:x=5,检验:当x=5时,x﹣5=0,所以方程无解.故选:D.8.如图,菱形ABCD的对角线AC=6,BD=8,AE⊥BC于点E,则AE的长是()A.5 B.C.D.【分析】根据菱形的性质得出BO、CO的长,在Rt△BOC中求出BC,利用菱形面积等于对角线乘积的一半,也等于BC×AE,可得出AE的长度.【解答】解:∵四边形ABCD是菱形,∴CO=AC=3,BO=BD=4,AO⊥BO,∴BC==5,∴S菱形ABCD=AC•BD=×6×8=24,∵S菱形ABCD=BC×AE,∴BC×AE=24,∴AE=.故选:C.9.已知直线y=x+1与反比例函数y=的图象的一个交点为P(a,2),则ak的值为()A.2 B.C.﹣2 D.﹣【分析】根据图象上的点满足函数解析式,可求得a,从而求得点P的坐标,根据待定系数法,可得k值,进而求得ak的值.【解答】解:一次函数y=x+1的图象过点(a,2),∴a+1=2,∴a=1∵y=的图象过点(1,2)∴2=,解得k=2,∴ak=2.故选:A.10.如图,在△ABC中,点D、E分别为AB、AC边上的点,连接DE,且DE∥BC,点F为BC 边上一点,连接AF交DE于点G,则下列结论中一定正确的是()A.=B.=C.=D.=【分析】根据平行线分线段成比例定理即可判断;【解答】解:∵DE∥BC,∴=,∴=,故选:C.二.填空题(共10小题)11.数据0.0007用科学记数法表示为7×10﹣4.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0007=7×10﹣4.故答案为:7×10﹣4.12.在函数y=中,自变量x的取值范围是x≠6 .【分析】根据分式的意义即分母不等于0,可以求出x的范围.【解答】解:依题意得x﹣6≠0,∴x≠6.故答案为:x≠6.13.分解因式5a3b﹣10a2b+5ab=5ab(a﹣1)2.【分析】原式提取公因式,再利用完全平方公式分解即可.【解答】解:原式=5ab(a2﹣2a+1)=5ab(a﹣1)2,故答案为:5ab(a﹣1)214.计算:=.【分析】直接化简二次根式进而计算得出答案.【解答】解:原式=2﹣18×=﹣.故答案为:﹣.15.不等式组的整数解是0 .【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:解不等式①得:x>﹣1,解不等式②得:x≤0,∴不等式组的解集为﹣1<x≤0,∴不等式组的整数解为0,故答案为0.16.一个扇形的弧长是20πcm,面积是240πcm2,则这个扇形的圆心角是150 度.【分析】根据扇形的面积公式求出半径,然后根据弧长公式求出圆心角即可.【解答】解:扇形的面积公式=lr=240πcm2,解得:r=24cm,又∵l==20πcm,∴n=150°.故答案为:150.17.有一枚材质均匀的正方体骰子,它的六个面上分别有1点、2点、…6点的标记,掷一次骰子,向上的一面出现的点数是3的倍数的概率是.【分析】共有6种等可能的结果数,其中点数是3的倍数有3和6,从而利用概率公式可求出向上的一面出现的点数是3的倍数的概率.【解答】解:掷一次骰子,向上的一面出现的点数是3的倍数的概率==.故答案为.18.△ABC的面积为,AB=3,BC=10,AH⊥BC于点H,点E为BC中点,则HE=.【分析】根据题意画出图形,由勾股定理求出BH的长,则HE可求出.【解答】解:如图1,当AH在△ABC内时,∵△ABC的面积为,BC=10,∴.∴.∴=.∴.如图2,当AH在△ABC外时,同理可得AH=,BH=,∴.故答案为:或.19.如图,在平行四边形ABCD中,AE⊥BC于点E,AF⊥CD于点F,若AE=4,AF=6,AD+CD =20,则平行四边形ABCD的面积为48 .【分析】已知平行四边形的高AE、AF,设BC=AD=x,则CD=20﹣x,根据“等面积法”列方程,求BC,从而求出平行四边形的面积.【解答】解:设BC=AD=x,则CD=20﹣x,根据“等面积法”得4x=6(20﹣x),解得x=12,∴平行四边形ABCD的面积=4x=4×12=48.故答案为:48.20.如图,△ABC中,∠ACB=90°,∠B=60°,AB=4,D为AB中点,CE平分∠ACB,∠DEC=30°,则CE=2.【分析】连接CD,作CH⊥DE于H,由直角三角形的性质可得CD=BD=AD=2,∠A=30°,可得HD=HC=,由直角三角形的性质可得CE=2HC=2.【解答】解:连接CD,作CH⊥DE于H∵∠ACB=90°,∠B=60°,AB=4,D为AB中点,∴CD=BD=AD=2,∠A=30°∴∠ACD=∠A=30°,∵CE平分∠ACB∴∠ACE=45°∴∠DCE=15°∴∠HDC=∠DEC+∠DCE=45°,且CH⊥DE∴∠HCD=∠HDC=45°,且CD=2∴HD=HC=∵∠DEC=30°,CH⊥DE∴CE=2CH=2故答案为:2三.解答题(共7小题)21.先化简再求值,其中x=3tan30°﹣4cos60°.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=•=•=,∵x=3×﹣4×=﹣2,∴原式=.22.如图,在小正方形的边长均为1的方格纸中有线段AB,BC,点A,B,C均在小正方形的顶点上.(1)在图1中画出凸四边形ABCD,使四边形ABCD是轴对称图形,点D在小正方形的顶点上;(2)在图2中画出凸四边形ABCE,点E在小正方形的顶点上,∠AEC=90°,EC>EA;直接写出四边形ABCE的周长6+4.【分析】(1)根据轴对称图形的性质作出只有一条对称轴的图形即可求解;(2)作出四边形ABCE即为所求四边形ABCE,进而利用周长解答即可.【解答】解:(1)如图1所示:凸四边形ABCD即为所求;(2)如图2所示,凸四边形ABCE即为所求,四边形ABCE的周长=6+4.故答案为:6+4.23.某中学围绕“哈尔滨市周边五大名山,即:香炉山、凤凰山、金龙山、帽儿山、二龙山,你最喜欢那一座山?(每名学生必选且只选一座山)的问题在全校范围内随机抽取了部分学生进行问卷调查,根据调查结果绘制了如图的不完整的统计图:(1)求本次调查的样本容量;(2)求本次调查中,最喜欢凤凰山的学生人数,并补全条形统计图;(3)若该中学共有学生1200人,请你估计该中学最喜欢香炉山的学生约有多少人?【分析】(1)由帽儿山的人数及其所占百分比可得总人数;(2)根据各部分人数之和等于总人数可得凤凰山的人数;(3)利用样本估计总体思想求解可得.【解答】解:(1)20÷25%=80(名),答:本次抽样调查共抽取了80名学生.(2)最喜欢凤凰山的学生人数为80﹣24﹣8﹣20﹣12=16(名),补全条形统计图(3)1200×=360(名),由样本估计总体得该中学最喜欢香炉山的学生约有360名.24.已知:如图,在Rt△ABC中,∠ACB=90°,点D、E分别是AB、AC的中点,点F在BC 延长线上,连接EF,且∠CEF=∠BAC.(1)如图1,求证:四边形CDEF是平行四边形;(2)如图2,连接AF、BE,在不添加任何辅助线的情况下,请直接写出图2中所有与△AED面积相等的三角形.【分析】(1)利用三角形中位线定理证明DE∥CF,再证明EF∥CD即可;(2)利用等高模型即可解决问题;【解答】(1)证明:∵点D、E分别是AB、AC的中点,∴DE是△ABC的中位线,∴DE∥BC,∵∠ACB=90°,AD=DB,∴CD=AD=DB,∴∠A=∠DCA,∵∠CEF=∠A,∴∠CEF=∠ECD,∴EF∥CD,∴四边形CDEF是平行四边形.(2)如图2中,与△AED面积相等的三角形有:△AEF,△ECF,△EDC,△EDB.理由:∵四边形CDEF是平行四边形,∴△EFC与△DEC的面积相等,∵AE=ED,DE∥BC,∴△ADE与△EDC,△EDC与△EDB的面积相等,∴与△AED面积相等的三角形有:△AEF,△ECF,△EDC,△EDB.25.王叔叔决定在承包的荒山上种苹果树,第一次用1000元购进了一批树苗,第二次又用了1000元购进该种树苗,但这次每棵树苗的进价是第一次进价的2倍,购进数量比第一次少了100棵.(1)求第一次每棵树苗的进价是多少元?(2)一年后,树苗的成活率为85%,每棵果树平均产苹果30斤,王叔叔将两批果树所产苹果按同一价格全部销售完毕后获利不低于89800元,求每斤苹果的售价至少是多少元?【分析】(1)首先设第一次每棵树苗的进价是x元,则第二次每棵树苗的进价是2x元,依题意得等量关系:第一购进树苗的棵数﹣第二次购进树苗的棵树=100,由等量关系列出方程即可;(2)设每斤苹果的售价是a元,依题意得等量关系:两次购进树苗的总棵树×成活率为85%×每棵果树平均产苹果30斤﹣两次购进树苗的成本≥89800元,根据不等关系代入相应的数值,列出不等式.【解答】解:(1)设第一次每棵树苗的进价是x元,依题意得:﹣=100,解得:x=5,经检验x=5是原分式方程的解,∴第一次每棵树苗的进价是5元.(2)设每斤苹果的售价是a元,依题意得:(+)×85%×30a﹣1000×2≥89800,解得:a≥12,答:每斤苹果的售价至少是12元.26.如图,△ABC中,AB=AC,AD⊥BC于D,E是AC边上一点,⊙O过B、D、E三点,分别交AC、AB于点F、G,连接EG、BF分别与AD交于点M、N;(1)求证:∠AMG=∠BND;(2)若点E为AC的中点,求证:BF=BC;(3)在(2)的条件下,作EH⊥EG交AD于点H,若EH=EG=4,过点G作GK⊥BF 于点K,点P在线段GK上,点Q在线段BK上,连接BP、GQ,若∠KGQ=2∠GBP,GQ=15,求GP的长度.【分析】(1)由等腰三角形的性质和圆的内接四边形的性质可得结论;(2)可证出BD=CD,可得∠FBC=∠BAC,证出∠BFC=∠ABC=∠C,结论得证;(3)取AB中点P,连接MH、GH、DE,可得平行四边形BDEM、等边△MHE,可得出∠GAH =∠GHA=15°,求出GA=GH=•EH=,求出AE=,可求出AB和BG长,Rt△BGK中,可得∠GBK=45°,求出GK=BK=,Rt△QGK中勾股定理可得QK=,延长BK到T使KT=PK,连接GK则△BKP≌△GKT,得出∠KGT=∠KBP,可得QG=QT=15,则PK可求出,GP=GK﹣PK=.【解答】(1)证明:∵AB=AC,AD⊥BC,∴∠BAD=∠CAD,∵四边形BFEG内接于⊙O,∴∠BGE+∠BFE=180°∵∠BGE+∠AGE=180°,∴∠BFE=∠AGE,∵△AGM中,∠BAD+∠AGE+∠AMG=180°,△ANF中,∠CAD+∠BFE+∠ANF=180°,∴∠AMG=∠ANF,∵∠ANF=∠BND,∴∠AMG=∠BND;(2)证明:如图,连接DE,∵AB=AC,AD⊥BC,∴BD=CD,∵AE=CE,∴DE是△ABC的中位线,∴DE∥AB,∴∠DEC=∠BAC,∵∠DEC=∠FBC,∴∠FBC=∠BAC,∵AB=AC,∴∠ABC=∠C,∴∠BFC=∠ABC=∠C,∴BF=BC;(3)解:如图,取AB中点M,连接MH、GH、DE,∵AE=CE,∴四边形BDEM是平行四边形,∴ME∥BD,∴∠GME=∠ABC,∵∠ABC=∠C,∠C=∠EDC=∠BGE,∴∠MGE=∠GME,∴GE=ME,∵MH=ME,EH=EG,∴△MHE是等边三角形,∵AD垂直平分BC,∴AH垂直平分ME,∴∠GAH=∠GHA=15°,∴GA=CH=•EH==,∴在△AGE中,AE=,∴AB=AC=,∴BG=AB﹣AG=,∵Rt△BGK中,可得∠GBK=45°,∴GK=BK=,∴Rt△QGK中,QK==,延长BK到T使KT=PK,连接GK,∵∠BKP=∠GKT,∴△BKP≌△GKT(SAS),∴∠KGT=∠KBP,∴∠BPK=∠GTK,∵∠QGT=∠KGQ+∠KGT=∠KGQ+∠PBK,∠KGQ=2∠GBP,∴∠QGT=2∠GBP+∠PBK,∵∠PBK=45°﹣∠GBP,∴∠QGT=45°+∠PBG=∠BPK,∴∠QGT=∠GTK,∴QG=QT=15,∴PK=KT=QT﹣QK=,∴GP=GK﹣PK=12=.27.如图,直线y=x+6与x轴、y轴交于A、B两点,点C在第四象限,BC⊥AB,且BC =AB;(1)如图1,求点C的坐标;(2)如图2,D是BC的中点,过D作AC的垂线EF交AC于E,交直线AB于F,连接CF,点P为射线AD上一动点,求PF2﹣PC2的值;(3)如图3,在(2)的条件下,在第二象限过点A作线段AM⊥AB于点A,在线段AB 上取一点N,连接MN,使MN=BN,在第三象限取一点Q,使∠NMQ=90°,连接QC,若QC∥AB,且QC=6AM,设点P的横坐标为t,△PMQ的面积为s,求s与t的函数关系式.【分析】(1)过C作CH⊥y轴于H,则∠BCH+∠CBH=90°,证明△BHC≌△AOB(AAS)即可解决问题.(2)(2)如图2中,设射线AD交CF于G.证明△ABD≌△CBF(SAS),利用勾股定理解决问题即可.(3)如图3中,连接BM,BQ,过B作BK⊥QM延长线于点K,延长MA交QC于点T,可得正方形ABCT.证明△BKM≌△BAM(ASA),推出BA=BK=BC,MK=MA,证明Rt△BKQ≌Rt△BCQ(HL),推出QK=QC,设AM=a,则QK=QC=6a,在Rt△QMT中,MQ=5a,MT=a+10,QT=6a﹣10,勾股定理可得a=,由tan∠MNA=tan∠QMT=tan∠BAO=,推出QT=10,MQ=,MT=,作PS⊥MQ于点S,根据,计算即可.【解答】解:(1)如图1中,在y=x+6中,令y=0,得x=﹣8;令x=0,得y=6 ∴A(﹣8,0),B(0,6),∴OA=8,OB=6,过C作CH⊥y轴于H,则∠BCH+∠CBH=90°,∵BC⊥AB,∴∠ABO+∠CBH=90°,∴∠BCH=∠ABO,又∠BHC=∠AOB=90°,BC=AB,∴△BHC≌△AOB(AAS),∴HC=OB=6,BH=OA=8,OH=8﹣6=2,∴C(6,﹣2).(2)如图2中,设射线AD交CF于G.∵BC⊥AB,BC=AB,∴∠BAC=45°∵EF⊥AC,∴∠AFE=45°∴△BDF是等腰直角三角形,∴BD=BF,又∠ABD=∠CBF=90°,AB=CB∴△ABD≌△CBF(SAS),∴∠BAD=∠BCF,∵∠BDA=∠CDG,∴∠CGD=∠ABD=90°,即AD⊥CF,∵OA=8,OB=6,∴AB==10,∴BC=10,∴BF=BD=5,∴PF2﹣PC2=(PG2+FG2)﹣(PG2+CG2)=FG2﹣CG2=(DF2﹣DG2)﹣(DC2﹣DG2)=DF2﹣DC2=DF2﹣BD2=BF2=25(3)如图3中,连接BM,BQ,过B作BK⊥QM延长线于点K,延长MA交QC于点T,可得正方形ABCT.∵MN=BN,∴∠NMB=∠NBM,∵BK⊥QK,NM⊥QK,∴BK∥MN,∴∠KBM=∠BMN,∴∠KBM=∠MBA,∵MB=MB,∠K=∠BAM=90°∴△BKM≌△BAM(ASA),∴BA=BK=BC,MK=MA,∴Rt△BKQ≌Rt△BCQ(HL),∴QK=QC,设AM=a,则QK=QC=6a,在Rt△QMT中,MQ=5a,MT=a+10,QT=6a﹣10,勾股定理可得a=,∵tan∠MNA=tan∠QMT=tan∠BAO=,∴QT=10,MQ=,MT=∴MN∥x轴,MQ∥y轴,作PS⊥MQ于点S,∴,设MQ与x轴交于点I,Rt△MAI中,AI=2,作AL⊥PS于点L,得矩形ALSI,∴PS=PL+LS=t+10,∴,∴.中考模拟考试数学试题一.选择题(共10小题)1.在﹣1,﹣3,0,1中最小的数与最大的数的差是()A.﹣2 B.﹣4 C.﹣1 D.﹣32.如图,已知∠1=70°,要使AB∥CD,则须具备另一个条件()A.∠2=70°B.∠2=100°C.∠2=110°D.∠3=110°3.把代数式xy2﹣16x分解因式,结果正确的是()A.x(y+4)(y﹣4)B.x(y+16)(y﹣16)C.x(y2﹣16)D.x(y﹣4)24.国家统计局于2018年1月18日公布2017年国内生产总值(GDP)等重磅经济数据.初步核算,2017年国内生产总值为827122亿元,按可比价格计算,比上年增长6.9%.数据827122亿元用科学记数法表示为()A.827122×108元B.827122×109元C.827.122×1011元D.8.27122×1013元5.下列计算正确的是()A.a2+a3=a5B.(2a)2=4a C.a2•a3=a5D.a6÷a3=a26.施工队要铺设一段全长2000米的管道,因在中考期间需停工三天,实际每天施工需比原计划多50米才能按时完成任务,求原计划每天施工多少米?设原计划每天施工x米,则根据题意所列方程正确的是()A.B.C.D.7.如图,若AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD=()A.116°B.32°C.58°D.64°8.某校九年级(1)班全体学生2015年初中毕业体育考试的成绩统计如下表:成绩(分)35 39 42 44 45 48 50人数(人) 2 5 6 6 8 7 6根据上表中的信息判断,下列结论中错误的是()A.该班一共有40名同学B.该班学生这次考试成绩的众数是45分C.该班学生这次考试成绩的中位数是45分D.该班学生这次考试成绩的平均数是45分9.如图,在平面直角坐标系中,Rt△OAB的顶点A在x轴的正半轴上,顶点B的坐标为,点C的坐标为(1,0),点P为斜边OB上的一动点,则PA+PC的最小值为()A.B.C.2 D.10.在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()A.10 B.C.10或D.10或二.填空题(共5小题)11.计算的结果为.12.如图,从一张矩形纸片ABCD的宽AD上找一点E,过点E剪下两个正方形,它们的边长分别为AE,DE,要使剪下的两个正方形的面积和为9,点E应选在何处?若AD=6,设AE=x,则可列方程为.13.下列图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,……,按此规律排列下去,第⑨个图形中菱形的个数为.14.如图,在扇形AOB中,∠AOB=90°,正方形CDEF的顶点C是弧AB的中点,点D在OB 上,点E在OB的延长线上,当正方形CDEF的边长为2时,阴影部分的面积为.15.如图是由边长为1的小正方形组成的网格图,线段AB,BC,BD,DE的端点均在格点上,线段AB和DE交于点F,则DF的长度为.三.解答题(共8小题)16.(1)计算:(2)化简求值:,其中.17.直线y=kx+b与反比例函数y=(x>0)的图象分别交于点A(m,3)和点B(6,n),与坐标轴分别交于点C和点D.(1)求直线AB的解析式;(2)若点P是x轴上一动点,当△COD与△ADP相似时,求点P的坐标.18.尺规作图任务一:下面是小希设计的“过直线外一点作已知直线的平行线”的尺规作图过程.已知:直线l及直线外一点P.求作:直线PQ,使得PQ∥l.作法:如图①在直线l上取一点O,连接OP,以点O为圆心,OP为半径画圆,交直线l与点A和点B;②连接AP,以点B为圆心,AP长为半径在直线l上方画弧交⊙O于点Q;③作直线PQ.所以直线PQ就是所求作的直线.根据小希设计的尺规作图步骤完成下列问题:(1)在图1中使用直尺和圆规,补全图形;(保留作图痕迹)(2)证明:PQ∥l任务二:已知:直线l及直线l外一点M.请根据下列提供的数学原理,选择其一,在图2中使用直尺和圆规作直线MN,使得MN ∥l.(保留作图痕迹,不写作法)19.为响应国家的“一带一路”经济发展战略,树立品牌意识,我市质检部门对A、B、C、D四个厂家生产的同种型号的零件共2000件进行合格率检测,通过检测得出C厂家的合格率为95%,并根据检测数据绘制了如图1、图2两幅不完整的统计图.(1)抽查D厂家的零件为件,扇形统计图中D厂家对应的圆心角为;(2)抽查C厂家的合格零件为件,并将图1补充完整;(3)通过计算说明合格率排在前两名的是哪两个厂家;(4)若要从A、B、C、D四个厂家中,随机抽取两个厂家参加德国工业产品博览会,请用“列表法”或“画树形图”的方法求出(3)中两个厂家同时被选中的概率.20.如图,已知AB为⊙O的直径,AC为⊙O的切线,OC交⊙O于点D,BD的延长线交AC 于点E.(1)求证:∠1=∠CAD;(2)若AE=EC=2,求⊙O的半径.21.随着人们生活质量的提高,净水器已经慢慢走入了普通百姓家庭,某电器公司销售每台进价分别为2000元、1700元的A、B两种型号的净水器,下表是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周3台5台18000元第二周4台10台31000元(1)求A,B两种型号的净水器的销售单价;(2)若电器公司准备用不多于54000元的金额在采购这两种型号的净水器共30台,求A种型号的净水器最多能采购多少台?(3)在(2)的条件下,公司销售完这30台净水器能否实现利润为12800元的目标?若能,请给出相应的采购方案;若不能,请说明理由.22.综合与实践:矩形的旋转问题情境:在综合与实践课上,老师让同学们以“矩形的旋转”为主题开展数学活动.具体要求:如图1,将长与宽都相等的两个矩形纸片ABCD和EFGH叠放在一起,这时对角线AC和EG 互相重合.固定矩形ABCD,将矩形EFGH绕AC的中点O逆时针方向旋转,直到点E与点B重合时停止,在此过程中开展探究活动.操作发现:(1)雄鹰小组初步发现:在旋转过程中,当边AB与EF交于点M,边CD与GH交于点N,如图2、图3所示,则线段AM与CN始终存在的数量关系是.(2)雄鹰小组继续探究发现:在旋转开始后,当两个矩形纸片重叠部分为四边形QMRN 时,如图3所示,四边形QMRN为菱形,请你证明这个结论.(3)雄鹰小组还发现在问题(2)中的四边形QMRN中∠MQN与旋转角∠AOE存在着特定的数量关系,请你写出这一关系,并说明理由.实践探究:(4)在图3中,随着矩形纸片EFGH的旋转,四边形QMRN的面积会发生变化.若矩形纸片的长为,宽为,请你帮助雄鹰小组探究当旋转角∠AOE为多少度时,四边形QMRN的面积最大?最大面积是多少?(直接写出答案)23.如图,在平面直角坐标系xOy,已知二次函数y=﹣x2+bx的图象过点A(4,0),顶点为B,连接AB、BO.(1)求二次函数的表达式;(2)若C是BO的中点,点Q在线段AB上,设点B关于直线CQ的对称点为B',当△OCB'为等边三角形时,求BQ的长度;(3)若点D在线段BO上,OD=2DB,点E、F在△OAB的边上,且满足△DOF与△DEF全等,求点E的坐标.参考答案与试题解析一.选择题(共10小题)1.在﹣1,﹣3,0,1中最小的数与最大的数的差是()A.﹣2 B.﹣4 C.﹣1 D.﹣3【分析】先找出最小数和最大数,再求出差即可.【解答】解:在﹣1,﹣3,0,1这四个数中,最小的数是﹣3,最大的数是1,差为﹣3﹣1=﹣4.故选:B.2.如图,已知∠1=70°,要使AB∥CD,则须具备另一个条件()A.∠2=70°B.∠2=100°C.∠2=110°D.∠3=110°【分析】欲证AB∥CD,在图中发现AB、CD被一直线所截,且已知∠1=70°,故可按同旁内角互补两直线平行补充条件.【解答】解:∠1=70°,要使AB∥CD,则只要∠2=180°﹣70°=110°(同旁内角互补两直线平行).故选:C.3.把代数式xy2﹣16x分解因式,结果正确的是()A.x(y+4)(y﹣4)B.x(y+16)(y﹣16)C.x(y2﹣16)D.x(y﹣4)2【分析】原式提取公因式,再利用平方差公式分解即可.【解答】解:原式=x(y2﹣16)=x(y+4)(y﹣4),故选:A.4.国家统计局于2018年1月18日公布2017年国内生产总值(GDP)等重磅经济数据.初步核算,2017年国内生产总值为827122亿元,按可比价格计算,比上年增长6.9%.数据827122亿元用科学记数法表示为()A.827122×108元B.827122×109元C.827.122×1011元D.8.27122×1013元【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:827122亿元用科学记数法表示为8.27122×1013.故选:D.5.下列计算正确的是()A.a2+a3=a5B.(2a)2=4a C.a2•a3=a5D.a6÷a3=a2【分析】直接利用合并同类项法则以及同底数幂的乘除运算法则分别计算得出答案.【解答】解:A、a2+a3,无法计算,故此选项错误;B、(2a)2=4a2,故此选项错误;C、a2•a3=a5,正确;D、a6÷a3=a3,故此选项错误;故选:C.6.施工队要铺设一段全长2000米的管道,因在中考期间需停工三天,实际每天施工需比原计划多50米才能按时完成任务,求原计划每天施工多少米?设原计划每天施工x米,则根据题意所列方程正确的是()A.B.C.D.【分析】设原计划每天施工x米,实际每天施工(x+50)米,根据工作时间=工作总量÷工作效率结合实际比原计划少用3天,即可得出关于x的分式方程,此题得解.【解答】解:设原计划每天施工x米,实际每天施工(x+50)米,依题意,得:﹣=3.故选:C.7.如图,若AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD=()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
长沙市中考数学模拟试卷Modified by JACK on the afternoon of December 26, 20202017年长沙市中考数学模拟试卷(二)一、选择题(每题3分)1.给出四个数:0,,,1,其中最大的是()A.0 B. C.D.﹣12.下列各图中,∠1与∠2互为余角的是()A.B.C.D.3.下列图形中,是中心对称图形但不是轴对称图形的是()A.平行四边形 B.矩形C.正方形D.圆4.据统计,2016年长沙市的常住人口约为7500000人,将数据7500000用科学记数法表示为()A.×106B.×107C.×107D.75×1055.已知关于x的不等式ax﹣3x+2>5的一个解是﹣2,则a的取值范围为()A.a<B.a>C.a>﹣D.a<﹣6.下列说法中,正确的是()A.任何一个数都有平方根B.任何正数都有两个平方根C.算术平方根一定大于0 D.一个数不一定有立方根7.在以下数据75,80,80,85,90中,众数、中位数分别是()A.75,80 B.80,80 C.80,85 D.80,908.已知一个正n边形的每个内角为120°,则这个多边形的对角线有()A.5条B.6条C.8条D.9条9.如图,C是线段AB的中点,D是线段CB的中点,下列说法错误的是()A.CD=AC﹣BD B.CD=AB﹣BD C.AC+BD=BC+CD D.CD=AB 10.如图,已知A是反比例函数y=图象上的一点,过点A向x轴作垂线交x轴于点B,在点A从左往右移动的过程中,△ABO的面积将()A.越来越大B.越来越小C.先变大,后变小D.不变11.如图,扇形AOB是圆锥的侧面展开图,已知圆锥的底面半径为2,母线长为6,则阴影部分的面积为()A.12π﹣ B.4π﹣C.12π﹣9D.4π﹣912.如图,A点在半径为2的⊙O上,过线段OA上的一点P作直线m,与⊙O过A点的切线交于点B,且∠APB=60°,设OP=x,则△PAB的面积y关于x的函数图象大致是()A.B.C.D.二、填空题(每题3d分)13.分解因式:2x2﹣8=______.14.如图所示,在?ABCD中,∠BAD的角平分线AE交BC于点E,AB=4,AD=6,则EC=______.15.化简: +2=______.16.一个不透明的口袋中共放有3个红球和11个黄球,这两种球除颜色外没有其他任何区别,若从口袋中随机取出一个球,则取到黄球的概率是______.17.如图所示,在⊙O中,AB为⊙O的直径,AC=8,sinD=,则BC=______.18.规定一种新的运算:ab=,则12=______.三、解答题19.计算:2cos30°﹣|﹣2|﹣+1.20.先化简,再求值:(2a﹣b)2﹣b(b﹣2a)﹣a2,其中3a=2b.21.长沙市中考体育分值已经提高到了60分,其中的必考项目就有男子引体向上和女子一分钟仰卧起坐,各校为此加强了对体育训练的重视.引体向上(男)和一分钟仰卧起坐(女)共16分单位:次数分值 16 15 14 13 12 10 8 6 3成绩男(次)8 7 6 5 4 3 2 1女(次)45 40 36 32 28 25 22 20 <19注:次是指考生从直臂悬垂开始,有正确的引体动作和下杠动作,但未完整完成一次某中学对全校学生这两项运动的成绩进行了统计,规定分值15分及以上为优秀,12分到14分为良好,6分到10分为合格,6分以下不合格,在全校800名初三学生中,随机抽取部分学生进行测试,并将测试成绩绘制成如下两幅不完整的统计图,求:(1)某女生说她得了12分,请问她一分钟做了多少次仰卧起坐;(2)请问一共抽取了多少名学生?并补全条形统计图;(3)根据抽样结果估计,本校项目由多少学生能够得优秀?22.如图,在Rt△PAD中,∠PAD=90°,∠APD的角平分线PO交AD于O点,以O为圆心,OA为半径作⊙O,交AD于点B,过D作DE⊥PO交PO的延长线于点E.(1)求证:PD是⊙O的切线;(2)若PA=6,tan∠PDA=,求半径OA及OE的长.23.某汽车专卖店销售A、B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元.(1)求每辆A型车和B型车的售价各为多少元;(2)甲公司拟向该店购买A、B两种型号的新能源汽车共6辆,购车费不少于130万元,但不超过140万元.则有哪几种购车方案?并写出哪种方案所需的购车费用最低.24.已知,如图,△ABC是等边三角形,过AC边上的点D作DG∥BC,交AB于点G,在GD的延长线上取点E,使DE=DC,连接AE、BD.(1)求证:△AGE≌△DAB;(2)过点E作EF∥DB,交BC于点F,连接AF,求∠AFE的度数.25.若x1、x2是关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根,则方程的两个根x1、x2和系数a、b、c有如下关系:x1+x2=﹣,x1x2=,我们把它们称为根与系数的关系定理,请你参考上述定理,解答下列问题:设二次函数y=ax2+bx+c(a≠0)的图象与x轴的两个交点为A(x1,0),B(x2,0).抛物线的顶点为C,且△ABC为等腰三角形.(1)求A、B两点之间的距离(用字母a、b、c表示)(2)当△ABC为等腰直角三角形时,求b2﹣4ac的值;(3)设抛物线y=x2+kx+1与x轴的两个交点为A、B,顶点为C,且∠ACB=90°,试问如何平移此抛物线,才能使∠ACB=60°?26.如图,四边形OABC为直角梯形,OA∥BC,∠AOC=90°,OA=OC=4,BC=3.点M 从O出发以每秒2个单位长度的速度向A运动;点N从B同时出发,以每秒1个单位长度的速度向C运动,当其中一个动点达到终点时,另一个动点也随之停止运动,过点N作NP垂直OA于点P,连接AC交NP于点Q,连接MQ.(1)当t为何值时,M和P两点重合;(2)求△AQM的面积S与运动时间t的函数关系式,并写出自变量t的取值范围,及当t 为何值时,S的值最大;(3)是否存在点M,使得△AQM为直角三角形?若存在,求NQ的长;若不存在,请说明理由.2017年长沙市中考数学模拟试卷(二)参考答案与试题解析一、选择题(每题3分)1.给出四个数:0,,,1,其中最大的是()A.0 B. C.D.﹣1【考点】实数大小比较.【分析】根据正数都大于0,负数都小于0,两个负数绝对值大的反而小即可解答.【解答】解:∵>1,∴0<<1<,∴最大的数是,故选;B.2.下列各图中,∠1与∠2互为余角的是()A.B.C.D.【考点】余角和补角.【分析】如果两个角的和等于90°(直角),就说这两个角互为余角.依此定义结合图形即可求解.【解答】解:四个选项中,只有选项C满足∠1+∠2=90°,即选项C中,∠1与∠2互为余角.故选C.3.下列图形中,是中心对称图形但不是轴对称图形的是()A.平行四边形 B.矩形C.正方形D.圆【考点】中心对称图形;轴对称图形.【分析】根据中心对称图形和轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、平行四边形是中心对称图形但不是轴对称图形,故本选项正确;B、矩形是中心对称图形也是轴对称图形,故本选项错误;C、正方形是中心对称图形也是轴对称图形,故本选项错误;D、圆是中心对称图形也是轴对称图形,故本选项错误.故选A.4.据统计,2016年长沙市的常住人口约为7500000人,将数据7500000用科学记数法表示为()A.×106B.×107C.×107D.75×105【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将数据7500000用科学记数法表示为×106.故选A.5.已知关于x的不等式ax﹣3x+2>5的一个解是﹣2,则a的取值范围为()A.a<B.a>C.a>﹣D.a<﹣【考点】不等式的解集;解一元一次不等式.【分析】先将x=﹣2代入不等式,得到关于a的一元一次不等式,求得a的取值范围即可.【解答】解:∵不等式ax﹣3x+2>5的一个解是﹣2∴﹣2a+6+2>5∴﹣2a>﹣3∴a<故选A.6.下列说法中,正确的是()A.任何一个数都有平方根B.任何正数都有两个平方根C.算术平方根一定大于0 D.一个数不一定有立方根【考点】立方根;平方根;算术平方根.【分析】根据平方根、算术平方根、立方根,即可解答.【解答】解:A、任何一个数都有平方根,错误,负数没有平方根;B、任何正数都有两个平方根,正确;C、算术平方根一定大于0,错误,0的算术平方根是0;D、任何数都有立方根,故错误;故选:B.7.在以下数据75,80,80,85,90中,众数、中位数分别是()A.75,80 B.80,80 C.80,85 D.80,90【考点】众数;中位数.【分析】首先找出这组数据中出现次数最多的数,则它就是这组数据的众数;然后把这组数据从小到大排列,则中间的数就是这组数据的中位数,据此解答即可.【解答】解:∵数据75,80,80,85,90中,80出现的次数最多,出现了2次,∴这组数据的众数是80;把数据75,80,80,85,90从小到大排列,可得75,80,80,85,90,所以这组数据的中位数是80.故选:B.8.已知一个正n边形的每个内角为120°,则这个多边形的对角线有()A.5条B.6条C.8条D.9条【考点】多边形内角与外角.【分析】多边形的每一个内角都等于120°,则每个外角是60°,而任何多边形的外角是360°,则求得多边形的边数;再根据多边形一个顶点出发的对角线=n﹣3,即可求得对角线的条数.【解答】解:∵多边形的每一个内角都等于120°,∴每个外角是60度,则多边形的边数为360°÷60°=6,则该多边形有6个顶点,则此多边形从一个顶点出发的对角线共有6﹣3=3条.∴这个多边形的对角线有(6×3)=9条,故选D.9.如图,C是线段AB的中点,D是线段CB的中点,下列说法错误的是()A.CD=AC﹣BD B.CD=AB﹣BD C.AC+BD=BC+CD D.CD=AB【考点】两点间的距离.【分析】根据线段中点的性质,可得CD、BD与AB、BC的关系,可得答案.【解答】解:由C是线段AB的中点,D是线段CB的中点,得AC=CB,CD=DB.A、CD=CB﹣BD=AC﹣BD,故A正确;B、CD=CB﹣BD=AB﹣BD,故B正确;C、AC+BD=BC+CD,故C正确;D、CD=BC=AB,故D错误;故选:D.10.如图,已知A是反比例函数y=图象上的一点,过点A向x轴作垂线交x轴于点B,在点A从左往右移动的过程中,△ABO的面积将()A.越来越大B.越来越小C.先变大,后变小D.不变【考点】反比例函数系数k 的几何意义.【分析】由点A 在反比例函数图象上以及AB ⊥x 轴于点B ,结合反比例函数系数k 的几何意义即可得出S △ABO =|k |,由此即可得出结论.【解答】解:∵点A 是反比例函数y=图象上的一点,且AB ⊥x 轴于点B ,∴S △ABO =|k |,∴点A 从左往右移动的过程中,△ABO 的面积不变.故选D .11.如图,扇形AOB 是圆锥的侧面展开图,已知圆锥的底面半径为2,母线长为6,则阴影部分的面积为( )A .12π﹣B .4π﹣C .12π﹣9D .4π﹣9【考点】圆锥的计算.【分析】首先求得展开扇形的圆心角的度数,从而求得圆心到线AB 的长,用扇形的面积减去三角形的面积即可求得阴影部分的面积.【解答】解:由题意知:弧长=圆锥底面周长=2×2π=4πcm ,扇形的圆心角=弧长×180÷母线长÷π=4π×180÷6π=120°.作OC ⊥AB 于点C ,∴OC=OA=3,AB=2AC=2×3=6, ∴S 阴影=S 扇形﹣S △AOB =﹣×3×6=12π﹣9, 故选C .12.如图,A 点在半径为2的⊙O 上,过线段OA 上的一点P 作直线m ,与⊙O 过A 点的切线交于点B ,且∠APB=60°,设OP=x ,则△PAB 的面积y 关于x 的函数图象大致是( )A.B.C.D.【考点】动点问题的函数图象.【分析】根据已知得出S与x之间的函数关系式,进而得出函数是二次函数,当x=﹣=2时,S取到最小值为: =0,即可得出图象.【解答】解:∵A点在半径为2的⊙O上,过线段OA上的一点P作直线m,与⊙O过A 点的切线交于点B,且∠APB=60°,∴AO=2,OP=x,则AP=2﹣x,∴tan60°==,解得:AB=(2﹣x)=﹣x+2,∴S△ABP=×PA×AB=(2﹣x)(﹣x+2)=x2﹣2x+2,故此函数为二次函数,∵a=>0,∴当x=﹣=2时,S取到最小值为: =0,根据图象得出只有D符合要求.故选:D.二、填空题(每题3d分)13.分解因式:2x2﹣8=2(x+2)(x﹣2).【考点】因式分解-提公因式法.【分析】观察原式,找到公因式2,提出即可得出答案.【解答】解:2x2﹣8=2(x+2)(x﹣2).14.如图所示,在?ABCD中,∠BAD的角平分线AE交BC于点E,AB=4,AD=6,则EC=2.【考点】平行四边形的性质.【分析】根据平行四边形的性质得到AD=BC=6,DC=AB=4,AD∥BC,推出∠DAE=∠BEA,根据AE平分∠BAD,能证出∠BAE=∠BEA,根据等腰三角形的判定得到AB=BE=4,根据EC=BC﹣BE,代入即可.【解答】解:∵四边形ABCD是平行四边形,∴AD=BC=6,DC=AB=4,AD∥BC,∴∠DAE=∠BEA,∵AE平分∠BAD,∴∠DAE=∠BAE,∴∠BAE=∠BEA,∴AB=BE=4,∴EC=BC﹣BE=6﹣4=2,故答案为:2.15.化简: +2=.【考点】分式的加减法.【分析】原式通分并利用同分母分式的加法法则计算即可得到结果.【解答】解:原式=+=,故答案为:16.一个不透明的口袋中共放有3个红球和11个黄球,这两种球除颜色外没有其他任何区别,若从口袋中随机取出一个球,则取到黄球的概率是.【考点】概率公式.【分析】用黄球的个数除以球的总个数可得.【解答】解:∵不透明的袋中有除颜色外没有其他任何区别的3个红球和11个黄球,共14个球,其中黄球有11个,∴从口袋中随机取出一个球,则取到黄球的概率是,故答案为:.17.如图所示,在⊙O中,AB为⊙O的直径,AC=8,sinD=,则BC=6.【考点】圆周角定理;解直角三角形.【分析】根据圆周角定理得到∠D=∠A,设BC=3x,根据正弦的定义得到AB=5x,根据勾股定理计算即可.【解答】解:∵AB为⊙O的直径,∴∠ACB=90°,由圆周角定理得,∠D=∠A,又sinD=,∴sinA=,即=,设BC=3x,则AB=5x,由勾股定理得,(5x)2﹣(3x)2=82,解得,x=2,则BC=6,故答案为:6.18.规定一种新的运算:ab=,则12=﹣.【考点】有理数的混合运算.【分析】根据2大于1,利用题中的新定义计算即可得到结果.【解答】解:∵2>1,∴12=﹣1=﹣,故答案为:﹣三、解答题19.计算:2cos30°﹣|﹣2|﹣+1.【考点】实数的运算;特殊角的三角函数值.【分析】原式利用特殊角的三角函数值,绝对值的代数意义,以及二次根式性质计算即可得到结果.【解答】解:原式=2×﹣2+﹣2+1=﹣1.20.先化简,再求值:(2a﹣b)2﹣b(b﹣2a)﹣a2,其中3a=2b.【考点】整式的混合运算—化简求值.【分析】原式利用完全平方公式,单项式乘以多项式法则计算,去括号合并得到最简结果,将已知等式代入计算即可求出值.【解答】解:原式=4a2﹣4ab+b2﹣b2+2ab﹣a2=3a2﹣2ab,由3a=2b,得到a=b,则原式=b2﹣b2=0.21.长沙市中考体育分值已经提高到了60分,其中的必考项目就有男子引体向上和女子一分钟仰卧起坐,各校为此加强了对体育训练的重视.引体向上(男)和一分钟仰卧起坐(女)共16分单位:次数分值 16 15 14 13 12 10 8 6 3成绩男(次)8 7 6 5 4 3 2 1女(次)45 40 36 32 28 25 22 20 <19注:次是指考生从直臂悬垂开始,有正确的引体动作和下杠动作,但未完整完成一次某中学对全校学生这两项运动的成绩进行了统计,规定分值15分及以上为优秀,12分到14分为良好,6分到10分为合格,6分以下不合格,在全校800名初三学生中,随机抽取部分学生进行测试,并将测试成绩绘制成如下两幅不完整的统计图,求:(1)某女生说她得了12分,请问她一分钟做了多少次仰卧起坐;(2)请问一共抽取了多少名学生?并补全条形统计图;(3)根据抽样结果估计,本校项目由多少学生能够得优秀?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)由表格即可知答案;(2)根据“优秀”的人数及其占被调查学生的百分比可得总人数,总人数乘以“不合格”的百分比可得对应人数,由个等级人数之和等于总人数可得“良好”的人数,补全条形图;(3)用样本中“优秀”的人数所占百分比乘以全校总人数可得.【解答】解:(1)由表可知,她一分钟做了28次仰卧起坐;(2)一共抽取学生有:10÷20%=50(人),“不合格”的学生有50×10%=5(人),“良好”的学生有50﹣10﹣15﹣5=20(人),补全统计图如图:(3)800×20%=160(人),答:根据抽样结果估计,全校有160名学生能够取得优秀.22.如图,在Rt△PAD中,∠PAD=90°,∠APD的角平分线PO交AD于O点,以O为圆心,OA为半径作⊙O,交AD于点B,过D作DE⊥PO交PO的延长线于点E.(1)求证:PD是⊙O的切线;(2)若PA=6,tan∠PDA=,求半径OA及OE的长.【考点】切线的判定.【分析】(1)作OC⊥PD于C,根据角平分线的性质得出OC=OA,即可判定PD是⊙O 的切线;(2)根据已知求得AD,PC,根据勾股定理求得PD,得出CD,设半径为x,则OD=8﹣x,在RT△ODC中,根据勾股定理得出(8﹣x)2=x2+42,解得半径为3,然后根据勾股定理求得OP,进而证得△POA∽△DOE,根据相似三角形的性质即可求得.【解答】(1)证明:作OC⊥PD于C,∵OP是∠APD的角平分线,OA⊥PA,OC⊥PD,∴OC=OA,∴PD是⊙O的切线;(2)解:∵PA=6,tan∠PDA==,∴AD=8,∴PD==10,∵PA⊥OA,∴PA是⊙O的切线,∵PD是⊙O的切线,∴PC=PA=6,∴CD=PD﹣PC=4,设半径为x,则OD=8﹣x,在RT△ODC中,OD2=OC2+CD2,∴(8﹣x)2=x2+42,解得x=3,∴半径OA=3,∴OD=8﹣3=5,在RT△AOP中,OP==3,∵∠PAO=∠E=90°,∠POA=∠DOE,∴△POA∽△DOE,∴=,即=,∴OE=.23.某汽车专卖店销售A、B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元.(1)求每辆A型车和B型车的售价各为多少元;(2)甲公司拟向该店购买A、B两种型号的新能源汽车共6辆,购车费不少于130万元,但不超过140万元.则有哪几种购车方案?并写出哪种方案所需的购车费用最低.【考点】一元一次不等式组的应用;二元一次方程组的应用.【分析】(1)每辆A型车和B型车的售价分别是x万元、y万元.则等量关系为:1辆A 型车和3辆B型车,销售额为96万元,2辆A型车和1辆B型车,销售额为62万元;(2)设购买A型车a辆,则购买B型车(6﹣a)辆,则根据“购买A,B两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元”得到不等式组.【解答】解:(1)每辆A型车和B型车的售价分别是x万元、y万元.则,解得.答:每辆A型车的售价为18万元,每辆B型车的售价为26万元;(2)设购买A型车a辆,则购买B型车(6﹣a)辆,则依题意得,解得 2≤a≤3.∵a是正整数,∴a=2或a=3.∴共有两种方案:方案一:购买2辆A型车和4辆B型车;方案二:购买3辆A型车和3辆B型车.方案二:购买3辆A型车和3辆B型车所需的购车费用最低.24.已知,如图,△ABC是等边三角形,过AC边上的点D作DG∥BC,交AB于点G,在GD的延长线上取点E,使DE=DC,连接AE、BD.(1)求证:△AGE≌△DAB;(2)过点E作EF∥DB,交BC于点F,连接AF,求∠AFE的度数.【考点】全等三角形的判定;等边三角形的性质.【分析】(1)根据SAS判定△AGE和△DAB全等;(2)证明四边形DEFB是平行四边形,△AEF是个等边三角形.【解答】(1)证明:∵△ABC是等边三角形,DG∥BC,∴∠AGD=∠ABC=60°,∠ADG=∠ACB=60°,且∠BAC=60°,∴△AGD是等边三角形,AG=GD=AD,∠AGD=60°.∵DE=DC,∴GE=GD+DE=AD+DC=AC=AB,∴在△AGE与△DAB中,,∴△AGE≌△DAB(SAS);(2)解:由(1)知AE=BD,∠ABD=∠AEG.∵EF∥DB,DG∥BC,∴四边形BFED是平行四边形.∴EF=BD,∴EF=AE.∵∠DBC=∠DEF,∴∠ABD+∠DBC=∠AEG+∠DEF,即∠AEF=∠ABC=60°.∴△AFE是等边三角形,∠AFE=60°.25.若x1、x2是关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根,则方程的两个根x1、x2和系数a、b、c有如下关系:x1+x2=﹣,x1x2=,我们把它们称为根与系数的关系定理,请你参考上述定理,解答下列问题:设二次函数y=ax2+bx+c(a≠0)的图象与x轴的两个交点为A(x1,0),B(x2,0).抛物线的顶点为C,且△ABC为等腰三角形.(1)求A、B两点之间的距离(用字母a、b、c表示)(2)当△ABC为等腰直角三角形时,求b2﹣4ac的值;(3)设抛物线y=x2+kx+1与x轴的两个交点为A、B,顶点为C,且∠ACB=90°,试问如何平移此抛物线,才能使∠ACB=60°?【考点】二次函数综合题.【分析】(1)令二次函数解析式中y=0,根据根与系数的关系可得出“x1+x2=﹣,x1x2=”,利用配方法即可求出|x2﹣x1|的值,由此即可得出结论;(2)利用配方法将二次函数解析式转化成顶点式,由此即可求出点C的坐标,再根据等腰直角三角形的性质可得出2×||=,利用换元解方程即可求出b2﹣4ac的值;(3)由(2)的结论即可得出关于k的方程,解方程即可得出抛物线的解析式,画出函数图象,由此可得出若要使∠ACB=60°,则需把抛物线往下平移,设平移的距离为n(n>0),则平移后的抛物线的解析式为y=x2﹣2x+1﹣n,结合(1)(2)的结论即可得出关于n的一元二次方程,解方程即可得出结论.【解答】解:(1)令y=ax2+bx+c(a≠0)中y=0,则有ax2+bx+c=0,∵二次函数y=ax2+bx+c(a≠0)的图象与x轴的两个交点为A(x1,0),B(x2,0),∴x1+x2=﹣,x1x2=,∴|x2﹣x1|===.(2)∵二次函数y=ax2+bx+c=a+,∴点C的坐标为(﹣,),∵△ABC为等腰直角三角形,∴2×||=,令=m,则有m2﹣2m=0,解得:m=2,或m=0,∵二次函数与x轴有两个不相同的交点,∴m==2,∴b2﹣4ac=4.(3)∵∠ACB=90°,∴b2﹣4ac=k2﹣4=4,解得:k=±2.选k=﹣2,画出图形,如图所示.若要使∠ACB=60°,则需把抛物线往下平移,设平移的距离为n(n>0),则平移后的抛物线的解析式为y=x2﹣2x+1﹣n,由(1)可知AB==2,由(2)可知点C(﹣,),即(,﹣1﹣n),∵△ABC为等腰三角形,且∠ACB=60°,∴﹣y C=AB,即1+n=,解得:n=﹣1(舍去),或n=2.故将抛物线往下平移2个单位长度,能使∠ACB=60°.26.如图,四边形OABC为直角梯形,OA∥BC,∠AOC=90°,OA=OC=4,BC=3.点M 从O出发以每秒2个单位长度的速度向A运动;点N从B同时出发,以每秒1个单位长度的速度向C运动,当其中一个动点达到终点时,另一个动点也随之停止运动,过点N作NP垂直OA于点P,连接AC交NP于点Q,连接MQ.(1)当t为何值时,M和P两点重合;(2)求△AQM的面积S与运动时间t的函数关系式,并写出自变量t的取值范围,及当t 为何值时,S的值最大;(3)是否存在点M,使得△AQM为直角三角形?若存在,求NQ的长;若不存在,请说明理由.【考点】四边形综合题.【分析】(1)用t可表示出BN、OM,则可表示出CN,又由△OAC为等腰直角三角形,MN⊥OA,可得到CN=NQ,AP=PQ,当M、P重合时,则有AM=PQ,可得到关于t的方程,可求得t;(2)由(1)可用t分别表示出AM、PQ,可表示出△AQM的面积,再利用二次函数的性质可求得其最大值;(3)由于∠OAC=45°,故当△AQM为直角三角形只能有QM⊥OA和MQ⊥AQ两种情况,当QM⊥OA时,则M、P重合,由(1)可得到t的值,当MQ⊥AQ时,则有MP=PQ,可得到关于t的方程可,可求得t的值.【解答】解:(1)∵OA=OC=4,∠AOC=90°,∴∠OAC=45°,∵OA∥BC,∴∠BCA=∠OAC=45°,∵NP⊥OA,∴CN=NQ,PQ=AP,当运动t秒时,则有BN=t,OM=2t,且BC=3,∴CN=NQ=BC﹣BN=3﹣t,AP=PQ=PN﹣NQ=4﹣(3﹣t)=t+1,AM=OA﹣OM=4﹣2t,当M和P重合时,则有AM=PQ,即t+1=4﹣2t,解得t=1,∴当t的值为1秒时,M和P两点重合;(2)当运动时间为t秒时,由(1)可知PQ=t+1,AM=4﹣2t,∴S=AM?PQ=(t+1)(4﹣2t)=﹣(t﹣)2+,∵OA=4,∴M点的运动时间最大为2秒,∴0≤t≤2,∴当t=时,S max=,综上可知S=﹣(t﹣)2+(0≤t≤2),当t=时S有最大值;(3)∵∠OAC=45°∴当△AQM为直角三角形只能有QM⊥OA和MQ⊥AQ两种情况,①当QM⊥OA时,则M、P重合,由(1)可得到t=1,此时NQ=3﹣t=2;②当MQ⊥AQ时,则有MP=PQ,由(1)可知AM=4﹣2t,AP=t+1,∴PM=AM﹣AP=(4﹣2t)﹣(t+1)=3﹣3t,又PQ=t+1,∴3﹣3t=t+1,解得t=,此时NQ=3﹣t=;综上当t的值为1秒或秒时,△AQM为直角三角形,NQ的长分别为2或.。