第十一章 荧光分析方法
第十一章荧光分析法复习过程
第十一章 荧光分析法、选择题1.荧光分析法是通过测定 ( ) 而达到对物质的定性或定量分析。
A 、激发光 D 、散射光2.下面 ( )分析方法不属于分子发射光谱法。
3.荧光发射光谱含有 ()个发射带。
A 、 1B 、 2C 、 3 4.下列关于荧光光谱的叙述错误的是()A 、 荧光光谱的形状与激发光的波长无关B 、 荧光光谱与激发光谱一般是对称镜像C 、 荧光光谱属于分子的受激发射光谱D 、 荧光激发射光谱与紫外吸收光谱重合 5.下列叙述错误的是()A 、 荧光光谱的最长波长和激发光谱的最长波长相对应B 、 荧光光谱的最短波长和激发光谱的最长波长相对应C 、 荧光光谱的形状与激发光波长无关D 、 荧光波长大于激发光波长6.激发态分子经过振动弛豫回到第一电子激发态的最低振动能级后,经系间窜越转移至激 发三重态, 再经振动弛豫降至三重态的最低振动能级, 然后发出光辐射跃迁至基态的各个振 动能级,这种光辐射称为 ()。
A 、分子荧光B 、分子磷光C 、瑞利散射光D 、拉曼散射光 7.关于振动弛豫,下列叙述中错误的是( )。
A 、振动弛豫只能在同一电子能级内进行B 、振动弛豫属于无辐射跃迁C 、通过振动弛豫可使处于不同电子激发态的分子均返回到第一电子激发态的最低振动 能级D 、振动弛豫是产生 Stokes 位移的原因之一 8.荧光寿命指的是 ( )。
A 、 从激发光开始照射到发射荧光的时间B 、 受激分子从第一电子激发态的最低振动能级返回到基态所需的时间C 、 从除去激发光光源至分子的荧光熄灭所需的时间D 、 除去激发光源后,分子的荧光强度降低到激发时最大荧光强度的 1/e 所需的时间9.关于荧光效率,下面叙述不正确的是()A 、 具有长共轭的 n~ ;跃迁的物质具有较大的荧光效率B 、 分子的刚性和共平面性越大,荧光效率越大C 、 顺式异构体的荧光效率大于反式异构体 学习资料D 、共轭体系上的取代基不同,对荧光效率的影响不同 10.采用下列 ()措施可使物质的荧光效率提高。
第十一章 分子发光―荧光、 磷光和化学发光光谱法Molecular .
已逐步形成一支在这个研究领域中的工作队伍,研究内
容2已020从/6/15经典的荧光分析方扩展到新近发展起来的新技术。
返回第一张
上一张幻灯片 下一张幻灯片
§11-1 分子荧光和磷光光谱法
1.产生机理
在一般温度下,大多数分子处在基态的最低振动 能级。处于基态的分子吸收能量(电能、热能、化 学能或光能等到)后天激发为激发态。激发态是很 不稳定的,它得很快地释放出能量又重新跃迁回 基态。若分子返回基态时以发射的电磁辐射(即光) 的形式释放能量,就称为“发光”;如果物质的 分子吸收了光能而被激发,跃迁回基态所发射的 电磁辐射,称为荧光和磷光。现从分子结构理论 来讨论荧光和磷光的产生机理。
进入二十世纪以后,荧光现象被研究得更多了,在理论 或实验技术上都得到极大的发展。特别是随着激光、计 算机和电子学的新成就及技术的引入,大大推动了荧光 分析法在理论上及实验技术的发展,出现了许多新的理 论和新的方法。
在我国,二十世纪五十年代初期仅有极少数的分析工作
者从事荧光分析方面的研究工作。到了 下一张幻灯片
磷光也是某些物质受紫外光照射后产生的光。1944年 Lewis和Kasha提出了磷光与荧光的不同概念,指出磷光 是分子从亚稳的激发三重态跃迁回基态所发射出的光, 它有别于从激发单态跃迁回基态所发射的荧光。磷光分 析法由于其有某些特点,几十年来的理论研究及应用也 不断得到发展。
2020/6/15
返回第一张
上一张幻灯片 下一张幻灯片
处于分子基态单重态的分子轨道上的电子,激发 时不能直接跃迁至第一激发三重态轨道上(不符 合光谱选择定则),但处于单重激发态的轨道上 的电子,可以通过体系跨越(系间窜跃),转移 到三重态轨道上;在这个过程中,处于激发态的 电子自旋发生变化,这个过程需要时间较长,故 处于三重激发态的寿命为10-4~1s;当其由三重激 发态的最低振动能级跃迁回基态时产生磷光。
仪器分析课件12荧光分析法
ex = 356nm em = 404nm
f = 0.36
16
2. 分子的刚性
• 同样具有*跃迁的长共轭分子中,刚性分子 增加了共平面性, 越大, 长移。
f = 0.2
-O
O
COO-
C H2
f = 1.0
-O
O
O
COO- 荧光素钠
17
原来不发生荧光的,如:8-羟基喹啉
消除干扰,提高选择性、灵敏度
脉冲激光
样品
干扰 组分
44
3. 同步荧光分析
固定,同时扫描激光光谱和发射光谱 若: = em - ex
Fsp = KcFem Fex 提高灵敏度和选择性
混合物的同步荧光光谱( =3nm)
45
4. 胶束增敏荧光
CH3(CH2)11OSO3-Na+ 非极性疏水基团 极性亲水基团 增加溶解度 增加荧光效率 增加荧光的稳定性
• 荧光分析法的灵敏度高于紫外-可见分光光度法
荧光法
F=Kc
紫外法 A lg T lg I
I0
36
二、定量分析方法
1. 工作曲线法
用空白溶液调零 用标准溶液调满刻度
F cx
c1
c2 c3 c4 c5
20 40 60 80 100%
16 32 48 64 80%
37
2. 比例法(对比法)
光
强
荧光光谱 横坐标em, 度
纵坐标 发射光强度
400
500
(nm)
8
溶液荧光光谱通常具有如下特征
斯托克斯位移 荧光光谱的形状与激发波长无关 荧光光谱与激发光谱的镜像关系
第十一章荧光分析法.ppt
散射光干扰及消除
散射光:当一束平行光投射在液体试样上,大部分 被吸收或透过,小部分由于光子和物质分子相碰撞, 使光子的运动方向改变,而向不同方向散射形成的 光。
散射光包括瑞利散射光和拉曼光
瑞利散射光:无能量的交换,λ散射≈λ激发
拉曼光: 有能量转移, λ散射> <λ激发
干扰的消除
1)改变激发光的波长;
单色器1
样品池
单色器2
垂直方向
放大 与
记录
检测器
荧光仪特点
与分光光度计的主要差别
① 垂直测量方式, 消除透射光影响 ② 两个单色器,激发和发射,常用光栅
1 光源 A、白炽灯:钨灯、卤钨灯 B、气体放电灯:氢、氙、汞,
常用氙灯(波长: 250-700nm) C、激光光源 2 单色器
闪耀光栅
3 检测器 光电倍增管
5.弱荧光的芳香族化合物也可与荧光试剂作用生成 强荧光衍生物以提高测量灵敏度。
故药物中的胺类、抗菌素、维生素、甾体类均可 用荧光法测定。该法在体内药物定量分析中应用甚 广。
思考题
• 1.荧光和磷光在产生机制上有什么不同?
• 2.何谓荧光量子效率?哪些结构物质有较高荧光效率?
• 3.以下物质中可能有最强荧光的物质是( )。
6.()荧光光谱形状与激发光的波长无关。
7. 荧光光谱的特征?
1. 所谓荧光,即指某些物质经入射光照射后,吸收了入射光的能量,从而辐射 出比入射光( )。
A. 波长长的光线
B. 波长短的光线
C. 能量大的光线
D. 频率高的光线
2. 下列说法正确的是(
)
A 荧光发射波长永远大于激发波长
B 荧光发射波长永远小于激发波长
荧光分析法ppt课件
结果:导致荧光或磷光减弱,甚至熄灭
或
19
续前
返回2 返2回0
11.2.2 激发光谱与发射(荧光)光谱
——荧光物质分子的两个特征光谱
发射波长
激发波长
激发光谱(excitation spectrum): F~ ex 荧光光谱(fluorescence spectrum): F~ em
3
续前 荧光分析法分类:根据光源不同进行分类
激发光源
紫外-可见光
X射线
原子特征谱线
荧光分析法
分子荧光法(Molecular Fluorometry) X射线荧光法(X-ray Fluorometry) 原子荧光法(Atomic Fluorometry)
荧光分析法与可见紫外吸收光谱比较
相同点
本质
不同点
过程:当两个电子的能级非常靠近,以致其振动能级有重叠 时,电子常常由高电子能级以非辐射跃迁方式转移至低 电子能级,这种过程称为内部能量转换
特点:发生在非常靠近的两个电子能级间,他们的振动能级有 重叠;时间约10-1~10-13秒。
或
11
续前
注:
➢ 处于激发态的电子,通过振动弛豫和内部能量 转换,均回到第一激发态的最低振动能级
➢激发光谱与荧光光谱上的λmax是定性定量的依据
荧光
磷光
9
续前 1、振动弛豫(vibrational relexation)
过程:从电子激发态的某一振动能级以非辐射跃迁的方式, 回到同一电子激发态的最低振动能级的过程为振动驰豫
特点:发生在同一个电子能级内不同振动能级间的跃迁;时 间约10-12秒。
第十一章荧光分析法解析
1. 长共轭结构
能产生荧光的物质大都含有芳香环或杂环,或是长 共轭双键的脂肪烃
共轭效应增大了荧光物质的摩尔吸收系数,有利于 产生更多的激发态分子,从而有利于荧光的产生
苯
lex 205nm lem 278nm
0.11
萘
lex 286nm lem 321nm
0.29
蒽
lex 356nm lem 404nm
内部能量转换 当两电子激发态能量相差较小以致其振动能级有重 叠时,受激分子由高电子能级转移致低电子能级的 过程。 (振动失活在同样多重态间进行,如S2* S1*)
术语
外部能量转换 激发态分子与溶剂或其它溶质碰撞,以热能的形 式释放能量的过程。
体系间跨越 处于激发态分子的电子发生自旋反转而使分子的 多重性发生变化的过程,如S1* T1*
(2)溶液温度降低通常会使荧光效率 。 (3)在高浓度时荧光物质的浓度增加,荧光强度 。 (4)下列化合物中,哪种物质的荧光效率最大( )
A. 苯 B. 联苯 C. 萘 D. 芴 E.蒽 (5)下列说法中正确的是( )
A. 长共轭结构使得分子的荧光波长向短波方向移动。 B. 分子的刚性越强,荧光强度越小。 C. 给电子取代基可导致荧光增强。 D. 吸电子取代基可导致荧光增强。
3. 酸度
每一种荧光物质都有其最适宜的pH范围
S
O
3
- H+
S
O
3
p H = 6 .4 ~ 7 .4 OH
O-
无荧光
蓝色荧光
+ H+ p H = 4.8 ~3.4 NH2
蓝色荧光
N H 3+ 无荧光
苯胺在( C)条件下荧光强度最强 A. pH=1 B. pH=3 C. pH=10 D. pH=13
第十一章 荧光分析法
第十一章荧光分析法一、选择题1.荧光分析法是通过测定( )而达到对物质的定性或定量分析。
A、激发光B、磷光C、发射光D、散射光2.下面( )分析方法不属于分子发射光谱法。
A、紫外一可见分光光度法B、荧光分析法C、磷光分析法D、化学发光分析法3.荧光发射光谱含有( )个发射带。
A、1B、2C、3D、不一定4.下列关于荧光光谱的叙述错误的是()A、荧光光谱的形状与激发光的波长无关B、荧光光谱与激发光谱一般是对称镜像C、荧光光谱属于分子的受激发射光谱D、荧光激发射光谱与紫外吸收光谱重合5.下列叙述错误的是()A、荧光光谱的最长波长和激发光谱的最长波长相对应B、荧光光谱的最短波长和激发光谱的最长波长相对应C、荧光光谱的形状与激发光波长无关D、荧光波长大于激发光波长6.激发态分子经过振动弛豫回到第一电子激发态的最低振动能级后,经系间窜越转移至激发三重态,再经振动弛豫降至三重态的最低振动能级,然后发出光辐射跃迁至基态的各个振动能级,这种光辐射称为( )。
A、分子荧光B、分子磷光C、瑞利散射光D、拉曼散射光7.关于振动弛豫,下列叙述中错误的是( )。
A、振动弛豫只能在同一电子能级内进行B、振动弛豫属于无辐射跃迁C、通过振动弛豫可使处于不同电子激发态的分子均返回到第一电子激发态的最低振动能级D、振动弛豫是产生Stokes位移的原因之一8.荧光寿命指的是( )。
A、从激发光开始照射到发射荧光的时间B、受激分子从第一电子激发态的最低振动能级返回到基态所需的时间C、从除去激发光光源至分子的荧光熄灭所需的时间D、除去激发光源后,分子的荧光强度降低到激发时最大荧光强度的1/e所需的时间9.关于荧光效率,下面叙述不正确的是()A、具有长共轭的π→π﹡跃迁的物质具有较大的荧光效率B、分子的刚性和共平面性越大,荧光效率越大C、顺式异构体的荧光效率大于反式异构体D、共轭体系上的取代基不同,对荧光效率的影响不同10.采用下列( )措施可使物质的荧光效率提高。
分析化学 第十一章 荧光分析法
h
29
㈡环境因素
荧光分子所处的溶液环境对其荧光发射有直接的 影响。适当的选取实验条件有利于提高荧光分析的 灵敏度和选择性。 ⑴溶剂效应 ①溶剂的极性:
溶剂的极性增大,π→π*跃迁的能量减小,红 移。 ②溶剂的粘度
溶剂的粘度降低,分子间碰撞机会增加,无辐 射跃迁几率增加,荧光减弱。
h
30
⑵温度的影响
激发态分子与溶剂和其它溶质分子间的相 互作用及能量转换等过程称为外部能量转换。
外转换过程是荧光或磷光的竞争过程,因该
过程发光强度减弱或消失,该现象称为“猝灭” 或
“熄灭”。
h
10
⑸体系间跨越 系间跃迁是不同多重态之间的一种无辐射跃迁
该过程是激发态电子改变其自旋态,是分子的多 重性发生变化的结果。
当两种能态的振动能级重叠时,这种跃迁的几 率增大。
的吸收(或激发)光谱的波长长。荧光发射这种波长 位移的现象称为Stokes位移。
原因:处于激发态的分子一方面由于振动弛豫 等损失了部分能量,另一方面溶剂分子的弛豫作用 使其能量进一步损失,因而产生了发射光谱波长的 位移。
Stokes位移表明在荧光激发和发射之间所产生 的能量损失。(见P220图11-3)
①对于含有酸性或碱性基团的荧光物质而言, 溶液的pH将对这类物质的荧光强度产生较大的 影响。 如:在pH7~12的溶液中,苯胺以分子形式存 在,产生蓝色荧光;
当pH<3、 pH>13时,苯胺以阳离子、 阴离子形式存在,均无荧光。 ②溶液的pH也影响金属配合物的荧光性质。
h
32
⑷荧光猝灭
荧光猝灭:荧光分子与溶剂或其它溶质分子之间相互 作用,使荧光强度减弱的作用。
F0/eF0eKf
则K= 1/τf,将其带入 Ft F0eKt
分析化学---名词解释
名词解释第二章误差和分析数据处理:准确度:分析结果与真实值接近的程度,其大小可用误差表示。
精密度:平行测量的各测量值之间互相接近的程度,其大小可用偏差表示。
系统误差:是由某种确定的原因所引起的误差,一般有固定的方向(正负)和大小,重复测定时重复出现。
包括方法误差、仪器或试剂误差及操作误差三种。
ﻫ偶然误差:是由某些偶然因素所引起的误差,其大小和正负均不固定。
空白试验:在不加入试样的情况下,按与测定试样相同的条件和步骤进行的分析试验,称为空白试验。
有效数字:是指在分析工作中实际上能测量到的数字。
通常包括全部准确值和最末一位欠准值(有±1个单位的误差)。
t分布:指少量测量数据平均值的概率误差分布。
可采用t分布对有限测量数据进行统计处理。
置信水平与显著性水平:指在某一t值时,测定值x落在μ±tS范围内的概率,称为置信水平(也称置信度或置信概率),用P表示;测定值x落在μ±tS范围之外的概率(1-P),称为显著性水平,用α表示。
ﻫ置信区间与置信限:系指在一定的置信水平时,以测定结果x为中心,包括总体平均值μ在内的可信范围,即μ=x±uσ,式中uσ为置信限。
分为双侧置信区间与单侧置信区间。
显著性检验:用于判断某一分析方法或操作过程中是否存在较大的系统误差和偶然误差的检验。
包括t检验和F检验。
第三章滴定分析法概论:滴定度:是每毫升标准溶液相当于被测物质的质量(g或mg),以符号TT/B表示,其下标中T、B分别表示标准溶液中的溶质、被测物质的化学式。
T T/B=mB/V T,单位为g/ml或mg/ml分布系数:是溶液中某型体的平衡浓度在溶质总浓度中所占的分数,又称为分布分数以δi表示。
化学计量点:滴定剂的量与被测物质的量正好符合化学反应式所表示的计量关系的一点。
ﻫ滴定终点:滴定终止(指示剂改变颜色)的一点。
滴定误差:滴定终点与化学计量点不完全一致所造成的相对误差。
可用林邦误差公式计算。
荧光分光光度法
11.1 概述
吸收
发射
热辐射
hν+基态 →激发态 →基态
光辐射
1、光致发光现象:
激发态电子回到低能级而伴随光的辐射
光致发光的分类:
磷光
X-射线荧光
光
原子荧光
荧光
原子 荧光
分子荧光 UV 荧光
光源
荧光:物质分子在激发态最低振动能级 返回到基态各振动能级时所发射出的光
2荧光分析法:利用物质的荧光谱线波 长和强度进行定性定量分析方法 。
2、温度 温度↗,碰撞机率↗ ,效率↘。热淬灭
3、 pH值:酸度改变了弱酸弱碱的结构,从而 使其荧光效率受到影响。分子状态最强
OH NH+3
-
NH2 OH-
_ NH
H+
H+
pH 2
pH 7 ~ 12
pH 13
4、荧光熄灭剂:
引起荧光熄灭的形式:
①碰撞熄灭②化学反应淬灭③ 体系间跨越
自熄灭现象:当荧光物质的浓度升高而产生
最低能级,跃迁至基态而发生的光。
荧光\磷光产生过程:
磷光
基态→S1*→弛豫→跨越→T1*→T1V=0* →基态
基态→S2*→弛豫→跨越→S1*→S1V=0*→基态
荧光
二、激发光谱与荧光光谱
1. 荧光光谱(发射光谱):
激发波长λex和I0强度一定。F~λem
单色器
I0
I
λex
λem 单色器
表面吸 光物质
检测器
(1)不同强度的光照射物质所产生的荧光光 谱形状是否相同? (2)不同波长的光照射物质所产生的荧光光 谱是否相同? 答:光谱形状相同,强度I0和波长λex影响荧光强度 2、激发光谱:荧光λem不变;F~λeX F
分析化学教材(系列一)Word版
分析化学教材(系列一)目 录第一章 绪论第二章 误差和分析数据处理 第三章 滴定分析法概论 第四章 酸碱滴定法 第五章 配位滴定法 第六章 氧化还原滴定法 第七章 沉淀滴定法和重量分析法 第八章 电位法和永停滴定法 第九章 光谱分析法概论 第十章 紫外可见分光光度法 第十一章 荧光分析法 第十二章 红外吸收光谱法 第十三章 原子吸收分光光度法第十四章核磁共振波谱法第十五章 质谱法 第十六章 色谱分析法概论 第十七章 气相色谱法 第十八章 高效液相色谱法 第十九章 平面色谱法 第二十章 毛细管电泳法 第二十一章 色谱联用分析法 附录一 元素的相对原子质量(2005) 附录二 常用化合物的相对分子质量 附录三 中华人民共和国法定计量单位 附录四 国际制(SI )单位与cgs 单位换算及常用物理化学常数附录五常用酸、碱在水中的离解常数(25℃)附录六配位滴定有关常数附录七常用电极电位附录八难溶化合物的溶度积常数(25℃,I=0)附录九标准缓冲溶液的pH(0—95℃)附录十主要基团的红外特征吸收峰附录十一质子化学位移表附录十二质谱中常见的中性碎片与碎片离子附录十三气相色谱法用表参考文献英文索引中文索引目录第三版前言第二版前言第一版前言第1章绪论第2章误差和分析数据处理第3章重量分析法第4章滴定分析法概论第5章酸碱滴定法第6章络合滴定法第7章沉淀滴定法第8章氧化还原滴定法第9章取样与样品预处理方法附录附录Ⅰ中华人民共和国法定计量单位附录Ⅱ分析化学中常用的物理化学常数及物理量附录Ⅲ国际相对原子质量表附录Ⅳ常用相对分子质量表附录Ⅴ酸、碱在水中的离解常数附录Ⅵ常用标准缓冲溶液的pH(0~60℃)附录Ⅶ络合滴定有关常数附录Ⅷ标准电极电位及条件电位表附录Ⅸ难溶化合物的溶度积(Ksp) 符号表第1章概论1.1 定量分析概述1.1.1 分析化学的任务和作用1.1.2 定量分析过程1.1.3 定量分析方法1.2 滴定分析法概述1.2.1 滴定分析法对反应的要求和滴定方式1.2.2 基准物质和标准溶液1.2.3 滴定分析中的体积测量1.2.4 滴定分析的计算思考题习题第2章误差与分析数据处理2.1 有关误差的一些基本概念2.1.1 误差的表征——准确度与精密度2.1.2 误差的表示——误差与偏差2.1.3 误差的分类——系统误差与随机误差2.2 随机误差的分布2.2.1 频率分布2.2.2 正态分布2.2.3 随机误差的区间概率2.3 有限数据的统计处理2.3.1 数据的集中趋势和分散程度的表示——对μ和σ2.3.2 总体均值的置信区间——对μ的区别间估计2.3.3 显著性检验2.3.4 异常值的检验2.4 测定方法的选择与测定准确度的提高2.5 有效数字思考题习题第3章酸碱平衡与酸碱滴定法3.1 酸碱反应3.1.2 酸碱反应的平衡常数3.1.3 活度与浓度,平衡常数的几种形式3.2 酸度对弱酸(碱)形态分布的影响3.2.1 一元弱酸溶液中各种形态的分布3.2.2 多元酸溶液中各种形态的分布3.2.3 浓度对数图3.3 酸碱溶液的H+浓度计算3.3.1 水溶液中酸碱平衡处理的方法3.3.2 一元弱酸(碱)溶液pH的计算3.3.3 两性物质溶液pH的计算3.3.4 多元弱酸溶液pH的计算3.3.5 一元弱酸及其共轭碱(HA+A)混合溶液pH的计算3.3.6 强酸(碱)溶液pH的计算3.3.7 混合酸和混合碱溶液pH的计算3.4 酸碱缓冲溶液3.4.1 缓冲容量和缓冲范围3.4.2 缓冲溶液的选择3.4.3 标准缓冲溶液3.5 酸碱指示剂3.5.1 酸碱指示剂的作用原理3.5.2 影响指示剂变色间隔的因素3.5.3 混合指示剂3.6 酸碱滴定曲线和指示剂的选择3.6.1 强碱滴定强酸或强酸滴定强碱3.6.2 一元弱酸(碱)的滴定3.6.3 滴定一元弱(弱碱)及其与强酸(强碱)混合物的总结3.6.4 多元酸和多元碱的滴定3.7 终点误差3.7.1 代数法计算终点误差图及其应用3.7.2 终点误差公式和终点误差图及其应用3.8 酸碱滴定法的应用3.8.1 酸碱标准溶液的配制与标定……第4章络合滴定法第5章氧化还原滴定法第6章沉淀重量与沉淀滴定法第7章分光光度法第8章分析化学中常用的分离方法第9章其他常用仪器分析方法附录目录编写说明第1章绪论第1节分析化学的任务与作用第2节分析化学方法的分类第3节试样分析的基本程序第4节分析化学的发展与趋势第2章误差和分析数据的处理第1节误差第2节测量值的准确度和精密度第3节有效数字及其运算法则第4节分析数据的统计处理与分析结果的表示方法第5节相关与回归思考与练习第3章重量分析法第1节挥发法第2节萃取法第3节沉淀法思考与练习第4章滴定分析法概论第1节滴定反应类型与滴定方式第2节基准物质与标准溶液第3节滴定分析的计算思考与练习第5章酸碱滴定法第1节水溶液中的酸碱平衡第2节基本原理第3节滴定终点误差第4节应用与示例第5节非水滴定法思考与练习第6章沉淀滴定法第1节基本原理第2节应用与示例思考与练习第7章配位滴定法第1节配位平衡第2节基本原理第3节滴定条件的选择第4节应用与示例思考与练习第8章氧化还原滴定法第9章电位法和永停滴定法参考资料附录目录符号缩写或简称第一篇概述第1章分析化学的目的及其对社会的重要性1.1 分析化学的目的:对社会的基本重要性1.2 分析化学的目的:作为问题解决者的分析化学家1.3 非常规实验实应用分析化学的目的参考文献第2章分析过程2.1 概述2.2 全分析过程2.3 工作特性2.4 分析化学中的误差参考文献第3章质量保证和质量控制3.1 分析化学的质量和目标3.2 分析方法3.3 如何保证准确度3.4 质是保证和质是控制受规章限制的方面3.5 结论参考文献第二篇化学分析第4章化学分析的基本原理第5章色谱法第6章动力学与催化第7章化学分析的方法及其应用第三篇物理分析第8章元素分析第9章化合物和分子特效分析第10章微束流和表面分析第11章结构分析第四篇基于计算机的分析化学(COBAC)第12章化学计理学第13章计算机软硬件及分析仪器接口第五篇全分析系统第14章联用技术第15章微分析系统第16章过程分析化学VI. 附录汉英索引英汉索引目录总序出版说明第二版前言第一版前言符号表绪论0.1 分析化学的任务与作用0.2 分析方法的分类0.3 发展中的分析化学1 分析质量保证1.1 分析化学中关于误差的一些基本概念 1.2 有效数字及其运算规则1.3 分析数据的统计处理1.4 提高分析结果准确度的方法小结习题分析化学前沿领域简介——化学计量学2 化学分析法2.1 滴定分析概述2.2 滴定分析的基本理论2.3 确定滴定终点的方法2.4 滴定条件选择2.5 滴定分析的应用2.6 重理分析法小结习题化学大师Liebig3 分离分析方法3.1 分析试样的制备和分解3.2 沉淀分离法3.3 溶齐萃取分离法3.4 离子交换分离法3.5 挥发和蒸馏分离法3.6 气相色谱法3.7 高效液相色谱法3.8 色谱分离技术发展简介3.9 膜分离法3.10 激光分离法3.11 复杂试样分析实例3.12 分离技术的发展趋势小结习题科学家及其思维方法简介——色谱学家马丁4 原子光谱分析法4.1 原子吸收分光光度法4.2 原子发射光谱分析法小结习题著名化学家本生对分析化学的贡献5 分子光谱分析法5.1 紫外-可见分光光度法5.2 红外光谱法5.3 分子发光分析法小结习题光分析化学前沿简介——光化学传感器6 核磁共振谱法6.1 基本原理6.2 核磁共振谱仪6.3 化学位移6.4 自旋偶合与自旋裂分6.5 核磁共振谱图解析6.6 13C核磁共振谱小结习题生物分子的革命性分析方法7 质谱法7.1 基本原理7.2 质谱仪7.3 离子的主要类型7.4 有机化合物质谱7.5 质谱图解析7.6 飞行时间质谱简介7.7 UV、IR、NMR和MS四谱综合解析小结习题科学展望——2000年诺贝尔化学奖简介8 电化学分析法8.1 电位分析法8.2 极谱法和伏安法8.3 库仑分析法8.4 电分析化学新进展小结习题2003年诺贝尔化学奖得主阿格雷和麦金农参考文献附录后记目录第1篇分析化学基础第1章分析化学导言1.1 分析化学的定义、任务和作用1.2 分析化学的特点和分类1.3 分析化学的发展趋势1.4 学习分析化学课程的方法思考题第2章试样的采集、制备与分解2.1 试样的采集2.2 固体物料试样的制备2.3 试样的分解思考题第3章定量分析中的误差及数据处理3.1 误差的基本概念3.2 误差的传递3.3 有效数字的表示与运算规则3.4 随机误差的正态分布3.5 少量数据的统计处理3.6 数据的评价——显著性检验、异常值的取舍3.7 回归分析3.8 提高分析结果准确度的方法思考题习题第2篇化学分析法第4章化学分析法概述4.1 化学分析法概述4.2 滴定分析法概述4.3 标准溶液与基准物4.4 化学分析法的计算思考题习题第5章酸碱滴定法第6章配位滴定法第7章氧化还原滴定法第8章沉淀滴定法第9章重量分析法第3篇仪器分析法第10章仪器分析法概述第11章紫外可见吸收光谱法第12章原子吸收光谱法第13章电位分析法第14章气相色谱法第4篇复杂物质分析第15章定量分析中的分离及富集方法第16章复杂物质分析示例附录参考文献目录第1章绪论第1节分析化学的任务和作用第2节分析化学的分类一、化学分析与仪器分析二、定性分析、定量分析和结构分析三、无机分析和有机分析四、常量分析、半微量分析和微量分析五、例行分析和仲裁分析第3节试样分析的基本程序一、取样二、分析试液的制备三、分析测定四、分析结果的计算与评价第4节分析化学的发展与趋势第2章误差和分析数据的处理第1节概述第2节定量分析误差一、系统误差和偶然误差二、绝对误差和相对误差三、准确度与精密度四、提高分析准确度的方法第3节有效数字及其运算法则一、有效数字二、有效数字的运算法则三、有效数字的运算法则在分析化学中的应用第4节分析数据的统计处理与分析结果的表示方法一、偶然误差的正态分布二、实验数据的统计处理三、可疑值的取舍四、分析数据处理与报告第3章重量分析法第1节概述第2节挥发法一、定义二、操作过程三、应用第3节萃取法一、定义及分类二、操作过程三、应用第4节沉淀法一、沉淀重量法二、沉淀的溶解度及影响因素三、沉淀的纯度及其影响因素四、沉淀的类型与沉淀条件五、沉淀法中的计算第5节应用一、药物含量测定二、药物纯度检查第4章滴定分析法概论第1节概述第2节滴定方式一、直接滴定法二、反滴定法三、置换滴定法四、间接滴定法第3节基准物质和标准溶液一、基准物质二、标准溶液三、标准溶液浓度的表示第4节滴定分析中的计算一、计算依据二、计算示例第5章酸碱滴定法第1节概述第2节水溶液中的酸碱平衡一、酸碱质子理论二、溶液中酸碱组分的分布三、酸碱溶液中H+浓度的计算第3节酸碱指示剂一、酸碱指示剂的变色原理二、酸碱指示剂的理论变色点和变色范围三、影响指示剂变色范围的因素四、混合指示剂第4节酸碱滴定法的基本原理……第6章沉淀滴定法第7章配位滴定法第8章氧化还原滴定法第9章电位分析法第10章紫外-可见分光光度法第11章荧光分析法第12章红外分光光度法第13章原子吸收分光光度法第14章经典液相色谱法第15章气相色谱法第16章高效液相色谱法第17章其他分析方法实验部分参考文献附录《分析化学》教学基本要求目录第一章绪论第一节分析化学的任务和作用第二节分析方法的分类一、定性分析、定量分析和结构分析二、无机分析和有机分析三、常量、半微量、微量、超微量分析四、化学分析和仪器分析五、例行分析、仲裁分析和快速分析第三节分析化学的发展趋势一、分析理论与其他学科相互渗透二、分析技术的发展趋势本章小结思考题与习题第二章定量分析误差和分析数据的处理第一节定量分析误差的种类和来源一、系统误差二、随机误差第二节准确度与精密度一、准确度与误差二、精密度与偏差三、准确度与精密度的关系第三节随机误差的正态分布一、频率分布二、正态分布三、随机误差的区间概率第四节有限测定数据的统计处理一、置信度与μ的置信区间二、可疑测定值的取舍三、显著性检验第五节提高分析结果准确度的方法一、选择适当的分析方法二、减小测量的相对误差三、检验和消除系统误差四、减小随机误差第六节有效数字及其运算规则一、有效数字的意义和位数二、数字修约规则三、有效数字的运算规则本章小结思考题与习题第三章滴定分析法概论第一节滴定分析法的分类及滴定方式一、滴定分析法的分类二、滴定分析法对化学反应的要求三、滴定方式第二节滴定分析的标准溶液一、标准溶液浓度的表示方法二、化学试剂的规格与基准物质三、标准溶液的配制第三节滴定分析的有关计算一、滴定分析计算的理论依据二、滴定分析计算示例本章小结思考题与习题第四章酸碱滴定法第一节酸碱反应及其平衡常数一、酸碱反应及其实质二、酸碱反应的平衡常数以及共轭酸碱对Ka与Kb的关系第二节酸碱溶液中各型体的分布系数与分布曲线一、一元弱酸(碱)溶液中各型体的分布系数与分布曲线二、多元酸(碱)溶液中各型体的分布系数与分布曲线第三节酸碱溶液pH的计算一、质子等衡式(质子条件式)二、酸碱溶液pH的计算第四节酸碱指示剂一、酸碱指示剂的作用原理二、影响酸碱指示剂变色范围的因素三、混合酸碱指示剂第五节酸碱滴定原理及指示剂选择一、强碱与强酸的滴定二、强碱(酸)滴定一元弱酸(碱)三、多元酸(碱)的滴定四、酸碱滴定中CO2的影响第六节酸碱滴定法的应用一、酸(碱)标准溶液的配制及标定二、酸碱滴定法应用实例本章小结思考题与习题第五章配位滴定法第一节概述第二节 EDTA及其配合物一、乙二胺四乙酸(EDTA)的结构与性质二、EDTA在水溶液中各存在型体的分布系数三、EDTA与金属离子形成螯合物的特点第三节 EDTA与金属离子的配位平衡一、配合物的稳定常数二、溶液中各级配合物浓度的计算第四节影响配位平衡的主要因素一、酸效应及酸效应系数二、配位效应及配位效应系数三、配合物的条件稳定常数第五节配位滴定原理一、配位滴定曲线二、影响配位滴定突跃范围的主要因素三、准确滴定金属离子的判据四、配位滴定中适宜pH范围第六节金属指示剂一、金属指示剂的作用原理二、金属指示剂应具备的条件三、金属指示剂的选择四、金属指示剂的封闭、僵化和氧化变质现象五、常用的金属指示剂第七节提高配位滴定选择性的方法一、控制溶液酸度二、利用掩蔽和解蔽作用三、采用其他配位剂四、分离干扰离子第八节配位滴定法的应用一、EDTA标准溶液的配制、标定二、各种配位滴定方式三、配位滴定法应用实例本章小结思考题与习题第六章氧化还原滴定法第一节氧化还原反应的特点一、标准电极电势和条件电极电势二、氧化还原反应进行的方向三、氧化还原反应进行的程度四、氧化还原反应速率第二节氧化还原滴定原理一、氧化还原滴定曲线二、化学计量点时溶液电势的计算三、影响氧化还原滴定突跃范围的因素第三节氧化还原滴定的指示剂一、自身指示剂二、特殊指示剂三、氧化还原指示剂第四节常见氧化还原滴定法及其应用一、高锰酸钾法二、重铬酸钾法三、碘量法本章小结思考题与习题第七章沉淀滴定法第一节沉淀滴定法基本原理第二节银量法一、莫尔法二、佛尔哈德法三、法扬司法第三节沉淀滴定法的应用一、标准溶液的配制与标定二、应用示例本章小结思考题与习题第八章分析化学中的常用分离方法第一节沉淀分离法一、无机沉淀剂分离二、有机沉淀剂分离三、共沉淀分离第二节液?液萃取分离法一、萃取分离法的基本原理二、萃取体系的分类和萃取条件的选择三、萃取分离技术四、溶剂萃取在分析化学中的应用第三节离子交换分离法一、离子交换剂的种类和性质二、离子交换树脂的亲和力三、离子交换分离操作技术四、离子交换分离法的应用第四节常规色谱法一、柱色谱法二、纸色谱法三、薄层色谱法本章小结思考题与习题第九章电势分析法第一节电势分析法基本原理一、直接电势法二、电势滴定法三、电池电动势的测量第二节参比电极和指示电极一、参比电极二、指示电极第三节直接电势法及应用一、溶液pH值的测定二、离子活度(浓度)的测定三、直接电势法的应用第四节电势滴定法一、电势滴定法的原理二、电势滴定终点的确定三、电势滴定法的应用本章小结思考题与习题第十章吸光光度分析法第一节吸光光度法的基础知识一、光的基本性质二、光的互补作用与溶液的颜色三、光的吸收曲线第二节光的吸收定律一、朗伯?比耳定律二、朗伯?比耳定律的推导三、吸光度与透光度四、吸光系数、摩尔吸光系数及桑德尔灵敏度第三节显色反应及影响因素一、吸光光度法对显色反应的要求二、影响显色反应的主要因素三、显色剂第四节吸光光度分析法及仪器一、吸光光度分析的类型二、吸光光度分析的定量分析方法三、分光光度计的构造四、分光光度计的类型第五节吸光光度法测量误差及测量条件的选择一、吸光光度法的测量误差二、测量条件的选择第六节吸光光度法的应用一、示差吸光光度法二、多组分的分析三、配合物组成的测定本章小结思考题与习题第十一章原子吸收分光光度法第一节基本原理一、共振发射线与吸收线二、基态原子与激发态原子的关系三、原子吸收线的宽度四、原子吸收的测量五、灵敏度和检出限第二节原子吸收分光光度计一、光源二、原子化器三、分光系统四、检测系统五、读数装置六、原子吸收分光光度计的类型第三节仪器测量条件的选择一、分析线的选择二、灯电流的选择三、原子化条件的选择四、燃烧器高度的选择五、进样量六、单色器狭缝宽度与光谱通带的选择第四节定量分析方法一、标准工作曲线法二、标准加入法第五节干扰及消除方法一、光谱干扰二、化学干扰、物理干扰及电离干扰第六节原子吸收分光光度法的应用一、测定生物样品中的化学元素二、有机物分析本章小结思考题与习题第十二章气相色谱分析法第一节色谱法概述一、色谱法原理介绍二、色谱法的分类第二节气相色谱法的特点及基本原理一、气相色谱法的特点二、气相色谱法的基本原理第三节气相色谱的实验技术一、色谱系统二、实验技术要点三、程序升温和衍生物制备第四节气相色谱法的应用一、定性分析二、定量分析三、气相色谱分析误差产生的原因第五节气相色谱法的新进展一、顶空气相色谱二、气相色谱?质谱联用技术三、气相色谱?红外光谱联用技术本章小结思考题与习题第十三章高效液相色谱法第一节高效液相色谱法的技术参数一、速率理论二、柱外效应三、分离度四、系统适应性实验第二节高效液相色谱法的色谱系统一、高压泵二、梯度洗脱装置三、进样器四、色谱柱五、检测器六、数据处理系统和结果处理第三节高效液相色谱法的分离方式一、吸附色谱法二、分配色谱法三、离子色谱法四、尺寸排阻色谱法五、亲和色谱法第四节样品预处理与色谱柱的保护一、样品预处理二、色谱柱的保护第五节液相色谱分析技术的新进展一、液相色谱?质谱联用技术概述二、超临界流体色谱法概述三、高效毛细管液相色谱法概述本章小结思考题与习题第十四章现代仪器分析简介第一节光分析法导论一、电磁波的辐射能特性二、光分析法的分类第二节原子发射光谱法一、基本原理二、原子发射光谱仪三、应用第三节原子荧光光谱法一、基本原理二、原子荧光光谱仪三、应用第四节分子荧光和磷光分析法一、荧光和磷光的产生二、荧光和磷光强度的影响因素三、荧光/磷光分析仪器四、荧光/磷光分析法应用第五节红外分光光度法一、分子的红外吸收二、红外光谱解析程序第六节核磁共振波谱法一、基本原理二、1HNMR谱的解析三、13CNMR谱的特点与解析第七节流动注射分析本章小结思考题与习题第十五章样品分析的一般过程第一节试样采集和制备一、试样的采集二、试样的制备第二节试样的分解与处理一、无机试样的分解处理二、有机试样的分解处理三、试样分解处理方法的选择四、干扰组分的处理第三节测定方法的选择一、测定的具体要求二、被测组分的性质三、被测组分的含量四、共存组分的影响五、实验室条件第四节分析结果的计算和数据评价一、分析结果的计算及表示方法二、分析结果的报告与评价本章小结思考题与习题附录附录一相对原子质量表(2001年国际原子量)附录二化合物的相对分子质量表附录三弱酸在水中的离解常数(25℃)附录四弱碱在水中的离解常数(25℃)附录五常用浓酸浓碱的密度和浓度附录六几种常用缓冲溶液的配制附录七常用标准缓冲溶液不同温度下的pH值附录八金属离子与EDTA配合物的lgKf(25℃)附录九标准电极电势表(25℃)附录十部分氧化还原电对的条件电极电势(25℃)附录十一难溶化合物的溶度积常数(25℃)参考文献目录绪论0.1 分析化学的任务和作用0.2 分析方法的分类0.2.1 无机分析和有机分析0.2.2 化学分析和仪器分析0.2.3 常量分析、半微量分析和微量分析。
第十一章 荧光分析法复习过程
第十一章荧光分析法一、选择题1.荧光分析法是通过测定( )而达到对物质的定性或定量分析。
A、激发光B、磷光C、发射光D、散射光2.下面( )分析方法不属于分子发射光谱法。
A、紫外一可见分光光度法B、荧光分析法C、磷光分析法D、化学发光分析法3.荧光发射光谱含有( )个发射带。
A、1B、2C、3D、不一定4.下列关于荧光光谱的叙述错误的是()A、荧光光谱的形状与激发光的波长无关B、荧光光谱与激发光谱一般是对称镜像C、荧光光谱属于分子的受激发射光谱D、荧光激发射光谱与紫外吸收光谱重合5.下列叙述错误的是()A、荧光光谱的最长波长和激发光谱的最长波长相对应B、荧光光谱的最短波长和激发光谱的最长波长相对应C、荧光光谱的形状与激发光波长无关D、荧光波长大于激发光波长6.激发态分子经过振动弛豫回到第一电子激发态的最低振动能级后,经系间窜越转移至激发三重态,再经振动弛豫降至三重态的最低振动能级,然后发出光辐射跃迁至基态的各个振动能级,这种光辐射称为( )。
A、分子荧光B、分子磷光C、瑞利散射光D、拉曼散射光7.关于振动弛豫,下列叙述中错误的是( )。
A、振动弛豫只能在同一电子能级内进行B、振动弛豫属于无辐射跃迁C、通过振动弛豫可使处于不同电子激发态的分子均返回到第一电子激发态的最低振动能级D、振动弛豫是产生Stokes位移的原因之一8.荧光寿命指的是( )。
A、从激发光开始照射到发射荧光的时间B、受激分子从第一电子激发态的最低振动能级返回到基态所需的时间C、从除去激发光光源至分子的荧光熄灭所需的时间D、除去激发光源后,分子的荧光强度降低到激发时最大荧光强度的1/e所需的时间9.关于荧光效率,下面叙述不正确的是()A、具有长共轭的π→π﹡跃迁的物质具有较大的荧光效率B、分子的刚性和共平面性越大,荧光效率越大C、顺式异构体的荧光效率大于反式异构体D、共轭体系上的取代基不同,对荧光效率的影响不同10.采用下列( )措施可使物质的荧光效率提高。
第十一章 原子光谱分析法
(2)跃迁几率
跃迁几率是指电子在某两个能级之间每秒跃迁的 可能性的大小,可以通过实验数据计算出来。对 于遵守光谱选律的那些跃迁,一般跃迁几率在 106~109s-1之间。跃迁几率是与激发态寿命成反比 的,即原子处于激发态的时间越长,跃迁几率就 越小,产生的谱线强度就弱。 例如产生NaI330.232nm谱线的跃迁几率比产生 NaI588.996nm谱线的跃迁几率小约22倍,因而谱 线强度也相应弱得多。
(4)离子和电子复合
在光源中离子和电子在复合形成中性原子的过程 中,也会辐射出连续的光谱背景,尤其是在使用 激发能力较强的光源时,例如火花,这种背景尤 为明显。另外像金属一类的固体物质中自由电子 很多,它在与金属离子复合时也是一种非量子化 的能量变化,也会发射出连续的光谱背景。 背景的大小还与狭缝的宽度有关,一般狭缝越宽, 背景越严重,所以为了减小背景,应选择合适的 狭缝宽度。为了保证光谱分析的准确度及灵敏度 等,在选择分析条件时,要尽量降低或消除背景, 必要时必须进行背景扣除。
2.谱线强度
图11-2 能级跃迁示意图级之间的跃迁,只要符合光谱选律就可能发 生,而这种跃迁发生可能性的大小称为跃迁几率。
设电子在某两个能级之间的跃迁几率为A,这两个能级的能量分别为 Ei和E0,发射的谱线频率为v,则一个电子在这两个能级之间跃迁时 所放出的能量,即这两个能级之间的能量差=Ei-E0=hv。因在热力 学平衡条件下,共有Ni个原子处在第i激发态,故产生的谱线强度(I) 为 (11-2)
二、谱线强度
1.玻尔兹曼分布定律
2.谱线强度 3.影响谱线强度的主要因素 4.光谱背景
1.玻尔兹曼分布定律
谱线的产生是由于电子从高能级向低能级跃迁的结果, 即原子或离子由激发态跃迁到基态或低能态时产生的。 在热力学平衡条件下,某元素的原子或离子的激发情况, 即分配在各激发态和基态的原子浓度遵守统计热力学中 的麦克斯韦-玻尔兹曼(Maxwell-Boltzman)分布定律, 即
荧光分析法
基态时分子中的电子对填充在能量最低的轨道,
且自旋相反,即总自旋量子数s为0
电子能级多重性:M=2s+1 单重态S M=1 自旋相反 三重态T M=3 自旋相同
4
基态
被激发跃迁过程中:
通常电子不发生自旋方向的改变,电子对自旋相反, 电子发生自旋方向的改变,电子对自旋相同,总自旋
总自旋量子数s为0,处于激发单重态。
第十一章 荧光分析法
(Fluorescence)
1
分子发光(molecular luminescence)
某些物质分子吸收能量跃迁到较高的电子激发态后, 返回基态的过程中伴随发光的现象。
hγ
概述
M+ 能量 →M*
M
2
分类
原子荧光 荧光 分子荧光 光致发光(PL) 紫外可见荧光 磷光 化学发光(CL) 红外荧光 X射线荧光 电致发光(EL) 生物发光(BL)
19
3)荧光光谱与激发光谱镜像关系 通常荧光发射光谱与它的吸收光谱(与激发光谱
形状一样)成镜像对称关系
基态上的各振动能级分布与第一激发态上的各振 动能级分布类似;
20
镜像关系?
固定em=620nm 固定ex=290nm (MAX)
IF
4 3 2 1
4800 4400
1→ 4 1→ 3
S1
4000
44
4.胶束增敏荧光分析 当单体表面活性剂浓度增大到临界胶束浓度,
会缔合为球状胶束, 利用胶束溶液对荧光物质有
增溶、增敏和增稳的作用,对荧光物质进行保护
45
荧光分析法的应用 1.无机化合物的分析 与有机试剂配合物后测量;可测量约60多种元素。 铍、铝、硼、镓、硒、镁、稀土常采用荧光分析法; 氟、硫、铁、银、钴、镍采用荧光熄灭法测定; 铜、铍、铁、钴、锇及过氧化氢采用催化荧光法测; 铬、铌、铀、碲采用低温荧光法测定; 铈、铕、锑、钒、铀采用固体荧光法测定 2.生物与有机化合物的分析
第十一章-分子荧光与分子磷光光谱法
振动弛豫(Vibrational Relaxation, VR)它是指 在同一电子能
级中,电子由高振动能级转至低振动能级,而将多余的能量以
热的形式发出。发生振动弛豫的时间为10-12s数量级。
S2
S1
振动弛豫
T1
S0 吸光1
吸光2
荧光、磷光 能级图
→ 振动弛豫
4
内转换(Internal Conversion,IC)
基态中振动能层的分布和第一电子激发态中振动能层的分 布情况是类似的。 因此荧光光谱的形状和吸收光谱的形状极为 相似。
14
荧光光谱与吸收光谱呈镜像对称关系。
15
由基态最低振动能层跃迁到 第一电子激发态各个振动能 层的吸收过程中,振动能层越高,两个能层之间的能量 差越大,即激发所需的能量越高,所以吸收峰的波长越 短。反之,由 第一电子激发态的最低振动能层降落到基 态各个振动能层的荧光发射过程中,基态振动能层越高, 两个能层之间的能量差越小,荧光峰的波长越长。
激发三重态:分子吸收能 量,电子自旋不再配对, 为三重态,称为激发三 重态,以T1,T2….表示。
基态:电子自旋配对, 多重度=2s+1=1,为单 重态,以S0表示。
三重态能级低于单重态 (Hund规则)
2
在单重激发态中,两个电子平行自旋,单重态分子具有抗磁 性,其激发态的平均寿命大约为10-8s,而三重态分子具有顺磁性, 其激发态的平均寿命为10-4 ~ 1s以上(通常用S和T分别表示单重 态和三重态)。
给电子基团,如-OH、-OR、-CN、-NH2 、 -NR2等,使荧 光增强。因为产生了p-共轭作用,增强了电子共轭程度,使 最低激发单重态与基态之间的跃迁几率增大。
吸电子基团,如-COOH、-NO、-C O、卤素等,会减弱 甚至会猝灭荧光。 卤素取代基随原子序数的增加而荧光降低。这可能是由所谓 “重原子效应”使系间跨越速率增加所致。在重原子中,能级 之间的交叉现象比较严重,因此容易发生自旋轨道的相互作用, 增加了由单重态转化为三重态的速率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在某些情况下,电子在跃迁过程中还伴随着自 旋方向的改变,这时分子的两个电子的自旋方向 相同,自旋量子数都为1/2,总自旋量子数s等 于1,这时分子处于激发三重态(2s+1=3)。 S0+hν→T1
6
激发单重态与激发三重态的区别:
激发单重态分子是抗磁性分子,激发三重 态分子是顺磁性分子;
激发单重态的平均寿命大约10-8s,激发三 重态的平均寿命大约10-4~1s; 电子由S0→S1,S2等的跃迁较容易,属于允 许跃迁。电子由S0→T1,T2等的跃迁较难发 生,属于禁阻跃迁。
23
(二)有机化合物分子结构与荧光的关系
能够发射荧光的物质同时具备两个条件:即有 强的紫外—可见吸收和一定的荧光效率。 1.长共扼结构 绝大多数能产生荧光的物质都含有芳香环或杂 环、因为芳香环和杂环分子具有长共轭的π—π* 跃迁。π电子共轭程度越大,荧光强度(荧光效率) 越大,而荧光波长也长移。
24
31
5.散射光
当一束平行单色光照射在液体样
品上时,大部分光线透过溶液,小部分由于光
子与物质分子相碰撞,使光子的运功方向发生
改变而向不同角度散射,这种光称为散射光。
光子和物质分子发生弹性碰撞时,发生能量
的交换,仅仅是光子运动方向发生改变,这种
散射光称为瑞利光。其波长与入射光波长相同。
32
光子和物质分子发生非弹性碰撞时.在光子 运动方向发生改变的同时,光子与物质分子发 生能量的交换,光子把部分能量转移给物质分 子或从物质分子获得部分能量,而发射出比入 射光稍长或稍短的光,这种散射光称为拉曼光。 散射光对荧光测定有干扰,尤其是波长比入 射光波长更长的拉曼光。
12
② 磷光(phosphorescence)发射:经过体系间跨越 的分子再通过振动弛豫降至激发三重态的最低振动 能级,分子在激发三重态的最低振动能级可以存活 一段时间,然后返回至基态的各个振动能级而发出 光辐射,这种光辐射称为磷光。 T1→S0+hνp 磷光发射时间较长,约10-4-10s。 激发光停止后,磷光可持续一段时间。 电子由S0→T1为禁阻跃迁,需由S1经过体系间跨越 转化为T1。 同一分子的S1→S0 比T1→S0 的能级差大,磷光 的波长比荧光波长长
28
3. 酸度:
具酸或碱性基团的有机物质,在不同pH值时,
其结构可能发生变化,因而荧光强度将发生改变;
+
NH3
OH H
-
OH-
NH2
NH-
+
H+
pH<2
pH=7~12
pH>13
无荧光
蓝色荧光
无荧光
对无机荧光物质,因pH值会影响其稳定性,因 而也可使其荧光强度发生改变。
29
4.荧光熄灭剂
荧光熄灭又称荧光淬灭 指荧光物质分子 与溶剂分子或其他溶质分子相互作用引起荧 光强度降低的现象。
13
内转换 S2
S1 能 量
振动弛豫
内转换
系间跨越
吸 收
发 射 荧 光
T1 T2
外转换 磷 光
振动弛豫
S0
λ1
λ
2
λ 3 λ 2 分子内的光物理过程
14
荧光与磷光的不同点:
跃迁时重度不同。荧光:S1→S0重度未变。 磷光:T1→S0重度改变。 辐射强度不同。荧光:强度较大,因从 S0→S1是自旋允许的,处于S1,S2态电子多, 因而荧光亦强。磷光:很弱,因为S0→T1是 自旋禁阻的,处于T1态电子少。 寿命不同。荧光:10-9~10-7s,寿命短。磷 光:10-4~100s,寿命稍长。
③ 外部能量转换(外转换 external conversion) 是溶液中的激发态分子与溶剂分子 或与其他溶质分子之间相互碰撞而失去能量,并 以热能的形式释放能量的过程。外转换常发生在 第一激发单重态或激发三重态的最低振动能级向 基态转换的过程中。外转换会降低荧光强度。
10
④ 体系间跨越(intersystem crossing) :是处 于激发态分子的电子发生自旋反转而使分子的多 重性发生变化的过程。 如S1→T1,S1上的受激电子发生自旋方向变化 而变成T1,即可通过自旋-轨道耦合而产生无辐射 跃迁。 如果两个电子能级态(如S1与T1)的振动能级相 重叠,则发生体系间跨越的几率将增大。 体系间跨越常见于含有重原子(如碘、溴等) 的有机分子。
第十一章
荧光分析方法
1
有些物质受到光照射时,除吸收某种波长 的光之外还会发射出比原来所吸收光的波长 更长的光,这种现象称为光致发光。最常见 的光致发光现象是荧光和磷光。 荧光是物质分子接受光子能量被激发后, 从激发态的最低振动能级返回基态时发射出 的光。 荧光分析法是根据物质的荧光谱线位臵及 其强度进行物质鉴定和含量测定的方法。
2
荧光分析法的特点
(1)灵敏度高
比紫外-可见分光光度法高2~4个数量级
检测下限:0.1~0.1μg/cm-3
(2)选择性强
既可依据特征发射光谱,又可根据特征吸收 光谱;
(3)试样量少 缺点:应用范围小。
3
第一节荧光分析法的基本原理
一、分子荧光
(一)分子荧光的产生 1.分子的电子能级与激发过程 在基态时,分子中的电子成对地填充在能量最低 的各轨道中。
选择适当的激发波长可消除拉曼光的干扰。
33
第二节 荧光定量分析方法
一、荧光强度与物质浓度的关系
荧光强度正比于被荧光物 质吸收的光强度
F K ' (I0 I )
I I 010
ECl
F K ' I 0 (1 10 ECl ) K ' I 0 (1 e2.3ECl )
(2.3ECl) 2 (2.3ECl)3 F K ' I 0 [2.3ECl ] 2! 3!
b 减弱分子的π电子共轭程度,使荧光减弱甚至熄
灭,如 -COOH、 -NO2 、-C=O、 -NO、-SH、NHCOCH3、-X等;常为吸收电子取代基 c 对π电子共轭体系作用较小,如:-R、-SO3H、NH3+等,对荧光的影响也不明显。
26
(三)荧光试剂
为了提高测定的灵敏度和选据性,常使弱荧光 物质与某些荧光试剂作用,以得到强荧光性产物, 扩大荧光分析法的应用范围。 1.荧光胺 能与脂肪族和芳香族伯胺形成高度 荧光衍生物。
Ft F0e
Kt
F0和Ft分别是在激发时t=0和激发后时间t时的荧光强度, K是衰减常数。
21
假定在时间t=τf时测得的Ft为F0的1/e, 即Ft=(1/e)F0,则:
F0 e F0e
K f
K
1
f
F0
Ft
e
Kt
F0 t ln Ft f
如果以1nF0/Ft对t作图,直线斜率即为1/τf,此 可计算荧光寿命。
15
(二)荧光的激发光谱和荧光光谱
1. 激发光谱
激发光谱表示不同激发波长的辐射引起物质发 射某一波长荧光的相对效率。
绘制激发光谱曲线时,固定发射单色器在某一 波长,通过激发单色器扫描,以不同波长的入射 光激发荧光物质,记灵荧光强度(F)对激发波长 (λex)的关系曲线,即激发光谱,其形状与吸收 光谱极为相似。
ECl 0.05, F 2.3K ' I 0ECl KC
34
二、定量方法
1.工作曲线(校正曲线)法:用一定量的对照品配制成浓度不同的对照 品系列溶液(标准系列溶液),测得对照品 系列溶液的荧光强度,绘制荧光强度F对浓度 c的标准曲线。然后,测量同样条件供试品溶 液的荧光强度,对照标准曲线求出供试品溶 液的浓度。
17
18
溶液荧光光谱通常具有如下特征:
(1)斯托克斯位移 光波长的现象。 原因:
荧光发射波长总是大于激发
①激发态分子通过内转换和振动弛豫过程而迅速到 达第一激发单重态s1*的最低振动能级; ②荧光发射可能使激发态分子返回到基态的各个不 同振动能级.然后进一步损失能量;
③激发态分子与溶剂分子的相互作用。
振动弛豫过程很快,约10-12~10-14s
在其他去激发过程发生之前,电子已首先完成 了由较高能级跃迁至同一电子能级的最低振动能 级的振动弛豫过程。
9
② 内部能量转换(内转换 internal conversion) 是当两个电子激发态之间的能量相差较小以致其 振动能级有重叠时,受激分子常由高电子能级以 无辐射方式转移至低电子能级的过程。
16
2. 荧光光谱:
荧光光谱表示在所发射的荧光中各种波长组分
的相对强度。
绘制发射光谱时,使激发光的波长和强度保持
不变,通过发射单色器扫描以检测各种波长下相 应的荧光强度,记录荧光强度 (F)对发射波长 (λem)的关系曲线,即荧光光谱。 激发光谱和荧光光谱可用来鉴别荧光物质,而 且是选择测定波长的依据。
2.分子的刚性 在同样的长共轭分子中,分子的刚性越强,荧 光效率越大,荧光波长产生越长。
芴(φf=1.0)
联苯 (φf=0.2)
N N O Al H2O H2O
N OH
N
O
HO
2,2’-二羟基偶氮苯 (无荧光)
配合物(荧光)
25
3. 取代基:
a 增加分子的π电子共轭程度,常使荧光效率提高,
荧光波长长移.如-NH2、 -OH、-OCH3、-NHR、CN、-NR2等;常为给电子取代基
激发三重态比激发单重态能级稍低一些。
7
2. 荧光的产生 分子的去激发:分子中处于激发态的电 子以辐射(发光)跃迁方式或无辐射跃迁 方式回到基态。 辐射跃迁:荧光或磷光
无辐射跃迁:振动驰豫、内转移、体系 间跨越、外转移。
8
(1)无辐射跃迁: