工程数学第四次作业讲评(满分100分)

合集下载

工程数学第四次作业

工程数学第四次作业

工程数学第四次作业随着工程的复杂性和综合性日益增长,工程数学成为了工程师必备的重要工具。

本次作业的主题为“线性代数与矩阵运算”。

线性代数是工程数学的一个重要分支,它研究的是向量空间及线性变换。

在工程领域,线性代数被广泛应用于计算机图形学、机器学习、物理建模和经济学等领域。

通过对线性代数的学习,工程师可以更好地理解和分析工程问题,提高解决问题的效率和质量。

矩阵是线性代数中的一个重要概念,它是向量空间中的一种特殊元素。

矩阵的运算是工程数学中的基本运算之一,它可以表示物体之间的相对位置和运动状态。

在工程中,矩阵被广泛应用于计算机图形学、计算机视觉、机器人学和控制系统等领域。

通过对矩阵的学习,工程师可以更好地理解和分析工程问题,提高解决问题的效率和质量。

本次作业的任务是完成一份关于线性代数与矩阵运算的试卷。

试卷包括了填空题、选择题和计算题等多种题型,涵盖了线性代数与矩阵运算的基本概念和基本运算。

完成本次作业需要学生掌握线性代数与矩阵运算的基本概念和基本运算,能够灵活运用所学知识解决实际问题。

通过本次作业,学生可以更好地理解和掌握线性代数与矩阵运算的基本概念和基本运算,提高解决实际问题的能力。

本次作业还可以帮助学生培养良好的学习习惯和思维方式,为未来的学习和工作打下坚实的基础。

工程数学第四次作业是关于线性代数与矩阵运算的一次重要实践。

通过本次作业,学生可以更好地理解和掌握工程数学的基本概念和基本方法,提高解决实际问题的能力。

本次作业还可以帮助学生培养良好的学习习惯和思维方式,为未来的学习和工作打下坚实的基础。

第四次中东战争中东战争是指在中东地区发生的多次军事冲突和战争,其中第四次中东战争是指1973年埃及和叙利亚等国家与以色列之间爆发的一场大规模战争。

这场战争的爆发原因和战场情况以及战争的影响和后果都值得我们深入探讨。

在第四次中东战争爆发前,中东地区已经存在着紧张的政治和军事局势。

以色列和埃及、叙利亚等国家之间长期存在着领土争端和民族矛盾,这是导致战争爆发的重要原因之一。

南京理工大学(工程数学(4.0学分)(A)(18.1.5))

南京理工大学(工程数学(4.0学分)(A)(18.1.5))
6. ;
7. ;
8. ;
9.数量场 在点 处方向导数最大的方向为;
10.矢量场 是场。
二、(10分)已知调和函数 ,求一个解析函数 使得 ?
第页共页
南京理工大学课程考试试卷(学生考试用)
课程名称:工程数学学分:4教学大纲编号:11024001
试卷编号:A考试方式:闭卷满分分值:100考试时间:120分钟
组卷日期:2018年1月5日组卷教师(签字):审定人(签字):
三、(8分)将函数 在下列指定的圆环域内展开成洛朗(Laurent)级数
(1) ;(2) 。
八、(4分)若函数 在圆周 内解析,在圆周上连续,且
,证明:对任意的 ,都有 成立。
所有试题的答案全部写在答题纸上,否则无效!
一、填空题(每题3分,共30分)
1.复数 的三分 ,其中C是从点 沿虚轴到点 的路径;
4.映射 将z平面上区域 映射成w平面上区域;
5.幂级数 的收敛半径R=;
四、(8分)求一个将z平面上区域 映射成w平面上区域 的映射?(请画出映射前后的示意图)
五、(20分)计算下列积分
1) ;(4分)2) ;(6分)
3) ;(4分)4) 。(6分)
六、(10分)1)设 ,计算Fourier变换 。
2)求 。
七、(10分)用Laplace变换求解常微分方程的初值问题 ?

国开电大《工程数学(本)》形考任务四答案

国开电大《工程数学(本)》形考任务四答案

国家开放大学《工程数学(本)》形成性考核作业四测验答案一、解答题(答案在最后)
二、证明题(答案在最后)
参考答案
试题1答案:解:
试题2答案:
试题3答案:解:
试题4答案:
试题5答案:
试题6答案:
试题7答案:
试题8答案:
试题9答案:
试题10答案:
证明:(A+A′)′=A′+(A′)′=A′+A=A+A′∴A+A′是对称矩阵
试题11答案:
证明:∵A是n阶方阵,且AA′=I
∴|AA′|=|A||A′|=|A|2=|I|=1
∴|A|=1或|A|=-1
试题12答案:
证明:设AX=B为含n个未知量的线性方程组
该方程组有解,即R(Ā)=R(A)=n
从而AX=B有唯一解当且仅当R(A)=n
而相应齐次线性方程组AX=0只有零解的充分必要条件是R(A)=n
∴AX=B有唯一解的充分必要条件是:相应的齐次线性方程组AX=0只有零解。

《工程数学》广播电视大学历年期末试题及答案及中央电大工程数学形成性考核册答案

《工程数学》广播电视大学历年期末试题及答案及中央电大工程数学形成性考核册答案

试卷代号:1080中央广播电视大学2011~2012学年度第一学期“开放本科”期末考试(半开卷)工程数学(本)试题2012年1月一、单项选择题(每小题3分,共15分)1.设A ,B 为三阶可逆矩阵,且0k >,则下列( )成立.A .AB A B +=+ B .AB A B '=C .1AB A B -=D .kA k A =2.设A 是n 阶方阵,当条件()成立时,n 元线性方程组AX b =有惟一解.3.设矩阵1111A -⎡⎤=⎢⎥-⎣⎦的特征值为0,2,则3A 的特征值为()。

A .0,2B .0,6 (0,1)N ,则随机变量()..对正态总体方差的检验用每小题3分,共[0,2]U ,则θ的无偏估计,且满足231⎢⎥⎣⎦230⎢⎥⎣⎦12.在线性方程组中λ取何值时,此方程组有解。

在有解的情况下,求出通解。

13.设随机变量(8,4)X N ,求(81)P X -<和(12)P X ≤。

(已知(0.5)0.6915Φ=,(1.0)0.8413Φ=,(2.0)0.9773Φ=)14.某切割机在正常工作时,切割的每段金属棒长服从正态分布,且其平均长度为10.5cm ,标准差为0.15cm 。

从一批产品中随机地抽取4段进行测量,测得的结果如下:(单位:cm )10.4,10.6,10.1,10.4问:该机工作是否正常(0.9750.05, 1.96u α==)?四、证明题(本题6分)15.设n 阶矩阵A 满足2,A I AA I '==,试证A 为对称矩阵。

参考解答一、单项选择题(每小题3分,共15分)1、B2、A3、B4、D5、C二、填空题(每小题3分,共15分)三、计算题(每小题16分,共64分)试卷代号:1080中央广播电视大学2010~2011学年度第二学期“开放本科”期末考试(半开卷)工程数学(本)试题2011年7月一、单项选择题(每小题3分,共15分)1.设A ,B 都是n 阶方阵,则等式( )成立.A .AB A B +=+B .AB BA =4)α至多是()。

2020年秋季国家开放大学《工程数学本》形考任务(1-5)试题与答案解析

2020年秋季国家开放大学《工程数学本》形考任务(1-5)试题与答案解析

2020年秋季国家开放大学《工程数学本》形考任务(1-5)试题与答案解析(红色标注为正确答案)工程数学作业(第一次)(满分100分)第2章矩阵(一)单项选择题(每小题2分,共20分)⒈设,则(D).A. 4B. -4C. 6D. -6⒉若,则(A).A. B. -1 C. D. 1⒊乘积矩阵中元素(C).A. 1B. 7C. 10D. 8⒋设均为阶可逆矩阵,则下列运算关系正确的是(B).A. B.C. D.⒌设均为阶方阵,且,则下列等式正确的是(D).A. B.C. D.⒍下列结论正确的是(A).A. 若是正交矩阵,则也是正交矩阵B. 若均为阶对称矩阵,则也是对称矩阵C. 若均为阶非零矩阵,则也是非零矩阵D. 若均为阶非零矩阵,则⒎矩阵的伴随矩阵为(C).A. B.C. D.⒏方阵可逆的充分必要条件是(B).A. B. C. D.⒐设均为阶可逆矩阵,则(D).A. B.C. D.⒑设均为阶可逆矩阵,则下列等式成立的是(D).A. B.C. D.(二)填空题(每小题2分,共20分)⒈7 .⒉是关于的一个一次多项式,则该多项式一次项的系数是 2 .⒊若为矩阵,为矩阵,切乘积有意义,则为5×4 矩阵.⒋二阶矩阵.⒌设,则.⒍设均为3阶矩阵,且,则-72 .⒎设均为3阶矩阵,且,则-3 .⒏若为正交矩阵,则0 .⒐矩阵的秩为 2 .⒑设是两个可逆矩阵,则.(三)解答题(每小题8分,共48分)⒈设,求⑴;⑵;⑶;⑷;⑸;⑹.⒉设,求.⒊已知,求满足方程中的.⒋写出4阶行列式中元素的代数余子式,并求其值.⒌用初等行变换求下列矩阵的逆矩阵:⑴;⑵;⑶.⒍求矩阵的秩.(四)证明题(每小题4分,共12分)⒎对任意方阵,试证是对称矩阵.⒏若是阶方阵,且,试证或.⒐若是正交矩阵,试证也是正交矩阵.工程数学作业(第二次)(满分100分)第3章 线性方程组(一)单项选择题(每小题2分,共16分)⒈用消元法得x x x x x x 12323324102+-=+=-=⎧⎨⎪⎩⎪的解x x x 123⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥为(C ).A. [,,]102-'B. [,,]--'722C. [,,]--'1122D. [,,]---'1122 ⒉线性方程组x x x x x x x 12313232326334++=-=-+=⎧⎨⎪⎩⎪(B ).A. 有无穷多解B. 有唯一解C. 无解D. 只有零解⒊向量组100010001121304⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥,,,,的秩为(A ). A. 3 B. 2 C. 4 D. 5⒋设向量组为αααα12341100001110101111=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥,,,,则(B )是极大无关组.A. αα12,B. ααα123,,C. ααα124,,D. α1⒌A 与A 分别代表一个线性方程组的系数矩阵和增广矩阵,若这个方程组无解,则(D ). A. 秩()A =秩()A B. 秩()A <秩()A C. 秩()A >秩()A D. 秩()A =秩()A -1⒍若某个线性方程组相应的齐次线性方程组只有零解,则该线性方程组(A ). A. 可能无解 B. 有唯一解 C. 有无穷多解 D. 无解 ⒎以下结论正确的是(D ).A. 方程个数小于未知量个数的线性方程组一定有解B. 方程个数等于未知量个数的线性方程组一定有唯一解C. 方程个数大于未知量个数的线性方程组一定有无穷多解D. 齐次线性方程组一定有解⒏若向量组ααα12,,, s 线性相关,则向量组内(A )可被该向量组内其余向量线性表出.A. 至少有一个向量B. 没有一个向量C. 至多有一个向量D. 任何一个向量(二)填空题(每小题2分,共16分) ⒈当λ= 1 时,齐次线性方程组x x x x 121200+=+=⎧⎨⎩λ有非零解.⒉向量组[][]αα12000111==,,,,,线性 相关 .⒊向量组[][][][]123120100000,,,,,,,,,,,的秩是 3 .⒋设齐次线性方程组ααα1122330x x x ++=的系数行列式ααα1230=,则这个方程组有 无穷多 解,且系数列向量ααα123,,是线性 相关 的. ⒌向量组[][][]ααα123100100===,,,,,的极大线性无关组是 .⒍向量组ααα12,,, s 的秩与矩阵[]ααα12,,, s 的秩 相同 .⒎设线性方程组AX =0中有5个未知量,且秩()A =3,则其基础解系中线性无关的解向量有 2 个.⒏设线性方程组AX b =有解,X 0是它的一个特解,且AX =0的基础解系为X X 12,,则AX b =的通解为 .(三)解答题(第1小题9分,其余每小题11分) 1.设有线性方程组λλλλλ11111112⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥=⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥x y z λ为何值时,方程组有唯一解?或有无穷多解?2.判断向量β能否由向量组ααα123,,线性表出,若能,写出一种表出方式.其中βααα=---⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=-⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=--⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=--⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥83710271335025631123,,,3.计算下列向量组的秩,并且(1)判断该向量组是否线性相关;(2)求出该向量组的一个极大无关组。

【第4次】2022年国家开放大学工程数学第4次作业及答案

【第4次】2022年国家开放大学工程数学第4次作业及答案

工程数学(本)形成性考核作业4综合练习书面作业(线性代数部分)一、解答题(每小题10分,共80分)1. 设矩阵1213A ⎡⎤=⎢⎥⎣⎦,123110B -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,已知XA B =,求X . 解:[]121012101032 130101110111A I -⎡⎤⎡⎤⎡⎤=→→⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦, 13211A --⎡⎤=⎢⎥-⎣⎦11232311110X BA --⎡⎤-⎡⎤⎢⎥==⎢⎥⎢⎥-⎣⎦⎢⎥⎣⎦548532-⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦2. 设矩阵012213114,356211A B ⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥-⎣⎦⎢⎥-⎣⎦,解矩阵方程AX B '= 解:[]012100114010114010,114 010012100012100211001211001037021A I ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=→→⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-----⎣⎦⎣⎦⎣⎦114010012100001321⎡⎤⎢⎥→⎢⎥⎢⎥--⎣⎦1101274010742001321-⎡⎤⎢⎥→-⎢⎥⎢⎥--⎣⎦100532010742001321-⎡⎤⎢⎥→-⎢⎥⎢⎥--⎣⎦ 1532742321A --⎡⎤⎢⎥=-⎢⎥⎢⎥--⎣⎦1532237421532136X A B ---⎡⎤⎡⎤⎢⎥⎢⎥'==-⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦131********-⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦3. 解矩阵方程AX X B -=,其中4559A ⎡⎤=⎢⎥⎣⎦,1234B ⎡⎤=⎢⎥⎣⎦. 解:AX IX B -=()A I X B -=[]3510,5801A I I ⎡⎤-=⎢⎥⎣⎦35101221⎡⎤→⎢⎥---⎣⎦12213510---⎡⎤→⎢⎥⎣⎦12210153---⎡⎤→⎢⎥--⎣⎦12210153-⎡⎤→⎢⎥-⎣⎦10850153-⎡⎤→⎢⎥-⎣⎦()18553A I --⎡⎤-=⎢⎥-⎣⎦()1X A I B -=-8553-⎡⎤=⎢⎥-⎣⎦1234⎡⎤⎢⎥⎣⎦7442⎡⎤=⎢⎥--⎣⎦4. 求齐次线性方程组12341234134 30240 450x x x x x x x x x x x -+-=⎧⎪--+=⎨⎪-+=⎩的通解.解:113111312114017610450176A ----⎡⎤⎡⎤⎢⎥⎢⎥=--→-⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦104501760000-⎡⎤⎢⎥→-⎢⎥⎢⎥⎣⎦134234450760x x x x x x -+=⎧⎨-+=⎩方程组的一般解为1342344576x x x x x x =-⎧⎨=-⎩(其中34,x x 是自由未知量)令341,0x x ==,得14710X ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦令330,1x x ==,得25601X -⎡⎤⎢⎥-⎢⎥=⎢⎥⎢⎥⎣⎦方程组的通解为1122k X k X +(其中12,k k 为任意常数) 5.求齐次线性方程组x x x x x x x x x x x x x x x 1234123412341243205230112503540-+-=-+-+=--+-=++=⎧⎨⎪⎪⎩⎪⎪的通解.解:13125123111253504A --⎡⎤⎢⎥--⎢⎥=⎢⎥---⎢⎥⎣⎦13120143701437014310--⎡⎤⎢⎥--⎢⎥→⎢⎥--⎢⎥-⎣⎦13120143700000003--⎡⎤⎢⎥--⎢⎥→⎢⎥⎢⎥⎣⎦1312310114200010000--⎡⎤⎢⎥⎢⎥-→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦131030101400010000-⎡⎤⎢⎥⎢⎥-→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦5101430101400010000⎡⎤⎢⎥⎢⎥⎢⎥-→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦13234501430140x x x x x ⎧+=⎪⎪⎪-=⎨⎪=⎪⎪⎩,一般解为132345143140x x x x x ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩(其中3x 为自由未知量) 令314x =,得1245,3,0x x x =-==基础解系为153140X -⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦通解为1X kX =(k 为任意常数) 6. 当λ取何值时,齐次线性方程组123123123204503720x x x x x x x x x λ++=⎧⎪++=⎨⎪++=⎩有非零解?在有非零解的情况下求方程组的通解. 解:将齐次线性方程组的系数矩阵化为阶梯形12112145034372011A λλ⎡⎤⎡⎤⎢⎥⎢⎥=→--⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦103011034λ⎡⎤⎢⎥→-⎢⎥⎢⎥--⎣⎦ 103011007λ⎡⎤⎢⎥→-⎢⎥⎢⎥-⎣⎦故当7λ=时,方程组有非零解方程组的一般解为13233x x x x =-⎧⎨=⎩(其中3x 是自由未知量)令31x =,得方程组的一个基础解系1312X -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦方程组的通解为1kX (其中k 为任意常数) 7. 当λ取何值时,非齐次线性方程组123123123124225x x x x x x x x x λ++=⎧⎪-+-=⎨⎪+-=⎩ 有解?在有解的情况下求方程组的通解.解:11111242251A λ⎡⎤⎢⎥=--⎢⎥⎢⎥-⎣⎦111103330332λ⎡⎤⎢⎥→-⎢⎥⎢⎥--⎣⎦111103330005λ⎡⎤⎢⎥→-⎢⎥⎢⎥-⎣⎦当5λ=时,方程组有解111103330000A ⎡⎤⎢⎥→-⎢⎥⎢⎥⎣⎦111101110000⎡⎤⎢⎥→-⎢⎥⎢⎥⎣⎦102001110000⎡⎤⎢⎥→-⎢⎥⎢⎥⎣⎦一般解为132321x x x x =-⎧⎨=+⎩(其中3x 是自由未知量)令30x =,得到方程组的一个特解为0010X ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦不计最后一列,令31x =,得到相应的齐次线性方程组的一个基础解系1211X -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦于是,方程组的通解为01X X kX =+(其中k 为任意常数)8. 求线性方程组12312312312324523438213496x x x x x x x x x x x x -+=-⎧⎪++=⎪⎨+-=⎪⎪-+=-⎩的通解.解:将方程组的增广矩阵化为阶梯形矩阵12452314382134196A --⎡⎤⎢⎥⎢⎥=⎢⎥-⎢⎥--⎣⎦124507714014142807714--⎡⎤⎢⎥-⎢⎥→⎢⎥-⎢⎥-⎣⎦1245011200000000--⎡⎤⎢⎥-⎢⎥→⎢⎥⎢⎥⎣⎦1021011200000000-⎡⎤⎢⎥-⎢⎥→⎢⎥⎢⎥⎣⎦ 方程组的一般解为1323212x x x x =--⎧⎨=+⎩(其中3x 是自由未知量)令30x =,得到方程组的一个特解为0120X -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦不计最后一列,令31x =,得到相应的齐次线性方程组的一个基础解系1211X -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦于是,方程组的通解为01X X kX =+(其中k 为任意常数)二、证明题(每题10分,共20分) 1. 对任意方阵A ,试证A A +'是对称矩阵. 证明:()()A A A A A A ''''''+=+=+ 故A A '+是对称矩阵2. 设n 阶方阵A 满足2A A I O +-=,试证矩阵A 可逆. 证明:2A A I += A A A I I ⋅+⋅= ()A A I I += 所以矩阵A 可逆。

工程数学作业第四次方健 (10.26)

工程数学作业第四次方健 (10.26)

姓名:方健学号:652081701073问题:在MATLAB中关联一个线性方程组,这个方程组是overdetermined的,并且对于rand命令进行取随机数,并且对于rand命令进行理解,以及对于超定方程的求解。

并且学会对于实验数据进行拟合,下面是如何对于在超定系统中遇到曲线拟合的问题。

尝试建模数据与一个一次函数s=a1+a2*t前面的方程表示,向量s应该用两个向量线性组合近似,一个是一个常数向量包含所有的,另一个是向量和组件t,未知系数a1和a2可以通过最小二乘匹配计算。

有10个方程两个未知数,由10-by-2表示矩阵。

> t=rand(10,1) %选取十个随机数t =0.64630.70940.75470.27600.67970.65510.16260.11900.49840.9597>> a1=2.4;a2=3.1;>> s=a1+a2*ts =4.40364.59904.73953.25574.50714.43082.90412.76893.94495.3752>> E = [ones(size(t)) t]E =1.0000 0.64631.0000 0.70941.0000 0.75471.0000 0.27601.0000 0.67971.0000 0.65511.0000 0.16261.0000 0.11901.0000 0.49841.0000 0.9597使用反斜杆求解最小二乘解。

>> a = E\sa =2.40003.1000z=s.*(1+0.04*(t-0.5))z =4.42934.63754.78783.22654.53954.45832.86492.72673.94475.4741S = [ones(size(t)) t]*aS =3.45524.21433.09384.72893.19083.96854.56715.16185.37384.0964hold onplot(t,S,'-',t,z,'*');%作出数据点和拟合曲线的图形总结:通过本次作业的学习,主要对于matlab 中的线性方程计算考虑三种系统,广场系统(Square Systems )、超定系统(Overdetermined Systems )以及欠定系统(Underdetermined Systems )有所了解,主要对于overdetermined system 学习。

工程数学作业题参考答案

工程数学作业题参考答案

《工程数学》作业题参考答案一、填空题(每小题3分,共18分)1. i =5,k = 4;2. 40;3. 2-n A;4. 2442222136x x x x x x --+;5.2-;6. 充分。

7. 1. 16;8.n 2;9. r = n , r<n ; 10. -17; 11. 11<<-t 。

二、简答题(每小题4分,12分)1. 举出任何反例皆可。

当BA AB =时,等式2222)(B AB A B A ++=+成立。

2. 一定不为零。

若A 的特征值0=λ,则存在0 ≠x 使得0 ==x x A λ,即方程0=x A 有非零解,所以0=A ,即A 不可逆,与已知矛盾。

3. 不相似。

否则有可逆阵C 使C -1AC=B ,即A=B ,矛盾。

4. 分别是A B A k B A B ==-=,,(4分)。

5. 不相似(2分)。

否则,存在可逆阵C 使C-1AC=B ,即A=B ,矛盾(2分)。

6.B A +一定为正定阵因为0,00,,>>≠∈∀x B x x A x x R x ,B A T T n有所以为正定阵,从而0)(>+x B A x T ,所以B A +一定为正定阵。

三、计算题(一)(每小题8分,共32分) 1. 值为120(答案错误可适当给步骤分)。

2. 解:由X A E AX +=+2化简得))(()(E A E A X E A +-=-,E A E A --=-故,1可逆,所以⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=+=201030102E A X 。

3.解:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎦⎤⎢⎣⎡601424527121103121301,,,,54321TT T T T ααααα∽⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡00000110001011021301, 故421,,ααα 或431,,ααα为一个最大线性无关组(或其他正确答案)。

4. 解:利用分块矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=113232101,8231,2121A A O AA OA ,则 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=⎥⎦⎤⎢⎣⎡--=--31702431161,1238211211A A ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡------=⎥⎦⎤⎢⎣⎡=---000211000234216167000313200216110011121O A A OA5.是,⎪⎪⎩⎪⎪⎨⎧+=是奇数;,,是偶数,n n n nS 212dim 6. (1) 121||||2+=e f ;(2)))(41()(2是任意实数b e x b x g +-=。

北邮工程数学第四阶段作业

北邮工程数学第四阶段作业

一、判断题(共5道小题,共50.0分)1.设,则,.A. 正确B. 错误知识点: 阶段作业四学生答案: [A;]得分: [10] 试题分值: 10.0提示:2.3.设随机变量X与Y独立,则X与Y的相关系数.A. 正确B. 错误知识点: 阶段作业四学生答案: [A;]得分: [10] 试题分值: 10.0提示:4.5.设二维随机变量(X,Y)的分布列为则X与Y相互独立.A. 正确B. 错误知识点: 阶段作业四学生答案: [A;]得分: [10] 试题分值: 10.0提示:6.设(X,Y)的概率密度,则常数.A. 正确B. 错误知识点: 阶段作业四学生答案: [A;]得分: [10] 试题分值: 10.0提示:7.8.设(X,Y)的概率密度为,则X与Y相互独立.A. 正确B. 错误知识点: 阶段作业四学生答案: [B;]得分: [10] 试题分值: 10.0提示:9.二、单项选择题(共5道小题,共50.0分)1.设随机变量X ~U[1,3],则( ).A.B.C.D.知识点: 阶段作业四学生答案: [A;]得分: [10] 试题分值: 10.0提示:2.3.设(X,Y)的分布列为则E( X ),E( Y )分别为().A. ,B. ,C. ,D. ,知识点: 阶段作业四学生答案: [A;]得分: [10] 试题分值: 10.0提示:4.设X与Y均在区间[0,2]上服从均匀分布,则().A. 1B. 1.5C. 2D. 2.5知识点: 阶段作业四学生答案: [C;]得分: [10] 试题分值: 10.0提示:5.6.设,如果,,则X的分布列().A.B.C.D.知识点: 阶段作业四学生答案: [D;]得分: [10] 试题分值: 10.0提示:7.8.已知(X,Y)的分布列为且知X与Y相互独立,则和分别为().A.B.C.D.知识点: 阶段作业四学生答案: [B;]得分: [10] 试题分值: 10.0 提示:。

工程数学作业第一次满分100分

工程数学作业第一次满分100分

全面覆盖,不遗漏任何要点
注意答题规范和格式
严格按照题目 要求答题,避 免不必要的失
分。
保持卷面整洁, 字迹清晰易读。
正确使用数学 符号和公式, 确保表达准确。
注意解题步骤 的完整性和逻 辑性,避免跳
跃步骤。
避免常见的错误和失分点
仔细审题,理解题意 计算过程要准确无误 避免因粗心大意而失分 注意表达清晰,避免歧义
掌握基础知识
理解概念:深 入理解工程数 学的基本概念, 为后续学习打 下坚实基础。
练习习题:通 过大量练习习 题,加深对知 识点的理解和
记忆。
归纳总结:对 学过的知识点 进行归纳总结, 形成知识体系。
注重细节:在 解题过程中注 重细节,避免 因粗心大意而
失分。
练习解题技巧
掌握基础知识: 理解并熟练掌握 工程数学的基本 概念和公式。
完成作业并进行自我检查
按照规定时间完 成作业,避免拖 延
仔细阅读题目要 求,确保理解清 楚
按照步骤进行计 算,确保每一步 都正确
完成作业后进行ห้องสมุดไป่ตู้自我检查,确保 无误
05
如何获得满分
保证答题准确性和完整性
仔细审题,理解题目要求
逻辑严密,表达清晰
添加标题
添加标题
计算准确,避免低级错误
添加标题
添加标题
制定作业计划
确定目标:明确 作业要求和评分 标准
分解任务:将作 业分解为若干个 部分或模块,便 于逐一攻克
安排时间:根据 作业的难易程度 和紧急程度,合 理安排完成时间
制定计划表:将 作业计划具体化 ,包括每周的学 习内容和时间安 排
仔细审题并分析问题
仔细阅读题目,确保理解题意 分析题目所涉及的知识点,确定解题思路 列出已知条件和未知数,以便于解题 结合实际情境,理解问题的实际意义

最新电大工程数学形成性考核册作业【1-4】答案参考知识点复习考点归纳总结

最新电大工程数学形成性考核册作业【1-4】答案参考知识点复习考点归纳总结

三一文库()*电大考试*电大工程数学作业(一)答案(满分100分)第2章矩阵(一)单项选择题(每小题2分,共20分)⒈设,则(D).A. 4B. -4C. 6D. -6⒉若,则(A).A. B. -1 C. D. 1⒊乘积矩阵中元素(C).A. 1B. 7C. 10D. 8⒋设均为阶可逆矩阵,则下列运算关系正确的是(B).A. B.C. D.⒌设均为阶方阵,且,则下列等式正确的是(D).A. B.C. D.⒍下列结论正确的是(A).A. 若是正交矩阵,则也是正交矩阵B. 若均为阶对称矩阵,则也是对称矩阵C. 若均为阶非零矩阵,则也是非零矩阵D. 若均为阶非零矩阵,则⒎矩阵的伴随矩阵为(C).A. B.C. D.⒏方阵可逆的充分必要条件是(B ). A. B.C.D.⒐设均为阶可逆矩阵,则(D ). A. B.C. D.⒑设均为阶可逆矩阵,则下列等式成立的是(A ).A. B. C.D.(二)填空题(每小题2分,共20分)⒈ 7 .⒉是关于的一个一次多项式,则该多项式一次项的系数是 2 .⒊若为矩阵,为矩阵,切乘积有意义,则为 5×4 矩阵.⒋二阶矩阵⎥⎦⎤⎢⎣⎡1051. ⒌设,则⎥⎦⎤⎢⎣⎡--815360 ⒍设均为3阶矩阵,且,则72 .⒎设均为3阶矩阵,且,则-3 .⒏若为正交矩阵,则 0 .⒐矩阵的秩为 2 .⒑设是两个可逆矩阵,则⎥⎦⎤⎢⎣⎡--1211A O O A .(三)解答题(每小题8分,共48分) ⒈设,求⑴;⑵;⑶;⑷;⑸;⑹.答案:⎥⎦⎤⎢⎣⎡=+8130B A ⎥⎦⎤⎢⎣⎡=+4066C A ⎥⎦⎤⎢⎣⎡=+73161732C A⎥⎦⎤⎢⎣⎡=+01222265B A ⎥⎦⎤⎢⎣⎡=122377AB ⎥⎦⎤⎢⎣⎡='801512156)(C AB⒉设,求.解:⎥⎦⎤⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎦⎤⎢⎣⎡=+=+10221046200123411102420)(C B A BC AC ⒊已知,求满足方程中的.解:∴ ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=-=252112712511234511725223821)3(21B A X ⒋写出4阶行列式中元素的代数余子式,并求其值.答案:0352634020)1(1441=--=+a 45350631021)1(2442=---=+a⒌用初等行变换求下列矩阵的逆矩阵:⑴ ; ⑵ ; ⑶ .解:(1)[]⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--−−−→−⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡----−−→−⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡------−−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------−−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=+-+--+-++-+-91929292919292929110001000191929203132032311002120112201203231900630201102012001360630221100010001122212221|2313323212312122913123222r r r r r r r r r r r r rr I A ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--=∴-9192929291929292911A (2)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------=-35141201132051717266221A (过程略) (3) ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=-11000110001100011A ⒍求矩阵的秩.解:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+-+-+-+-+-000000001110001110110110110101110000111000111011011011011221110011100011101101101101102311210121010011011110110143424131212r r r r r r r r r r ∴ 3)(=A R(四)证明题(每小题4分,共12分) ⒎对任意方阵,试证是对称矩阵. 证明:'')''(')''(A A A A A A A A +=+=+=+∴是对称矩阵 ⒏若是阶方阵,且,试证或.证明:是阶方阵,且∴ 12==='='I A A A A A∴ 或1-=A⒐若是正交矩阵,试证也是正交矩阵.证明: 是正交矩阵∴ A A '=-1∴ )()()(111''==='---A A A A即是正交矩阵工程数学作业(第二次)(满分100分)第3章 线性方程组(一)单项选择题(每小题2分,共16分)⒈用消元法得的解为(C ).A. B. C.D.⒉线性方程组(B ).A. 有无穷多解B. 有唯一解C. 无解D. 只有零解⒊向量组的秩为( A ).A. 3B. 2C. 4D. 5⒋设向量组为,则(B )是极大无关组.A. B. C. D.⒌与分别代表一个线性方程组的系数矩阵和增广矩阵,若这个方程组无解,则(D ). A. 秩秩 B. 秩秩 C. 秩秩D. 秩秩⒍若某个线性方程组相应的齐次线性方程组只有零解,则该线性方程组(A ).A. 可能无解B. 有唯一解C. 有无穷多解D. 无解 ⒎以下结论正确的是(D ).A. 方程个数小于未知量个数的线性方程组一定有解B. 方程个数等于未知量个数的线性方程组一定有唯一解C. 方程个数大于未知量个数的线性方程组一定有无穷多解D. 齐次线性方程组一定有解 ⒏若向量组线性相关,则向量组内(A )可被该向量组内其余向量线性表出.A. 至少有一个向量B. 没有一个向量C. 至多有一个向量D. 任何一个向量9.设A ,B为n 阶矩阵,λ既是A又是B的特征值,x 既是A又是B的属于λ的特征向量,则结论( )成立. A.λ是AB 的特征值 B.λ是A+B 的特征值C.λ是A -B 的特征值 D.x 是A+B 的属于λ的特征向量10.设A,B,P为n 阶矩阵,若等式(C )成立,则称A和B相似. A.BA AB = B.AB AB =')( C.B PAP =-1 D.B P PA =' (二)填空题(每小题2分,共16分) ⒈当1 时,齐次线性方程组有非零解.⒉向量组线性 相关 .⒊向量组的秩是 3 . ⒋设齐次线性方程组的系数行列式,则这个方程组有 无穷多 解,且系数列向量是线性 相关 的.⒌向量组的极大线性无关组是21,αα.⒍向量组的秩与矩阵的秩 相同 .⒎设线性方程组中有5个未知量,且秩,则其基础解系中线性无关的解向量有 2 个.⒏设线性方程组有解,是它的一个特解,且的基础解系为,则的通解为22110X k X k X ++.9.若λ是A的特征值,则λ是方程0=-A I λ 的根. 10.若矩阵A满足A A '=-1 ,则称A为正交矩阵. (三)解答题(第1小题9分,其余每小题11分) 1.用消元法解线性方程组解:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---------−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----------=+-+++++-2612100090392700188710482319018431001850188710612312314112141205183612314132124131215323r r r r r r r r r r r r ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−→−+-+-+---+3311000411004615010124420011365004110018871048231901136500123300188710482319014323133434571931213r r r r r r r r r r ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−→−++-+-31000101001001020001310004110046150101244200134241441542111r r r r r r r ∴方程组解为⎪⎪⎩⎪⎪⎨⎧-==-==31124321x x x x2.设有线性方程组为何值时,方程组有唯一解?或有无穷多解?解:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+-+---−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------−−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=++-+-↔22322222)1)(1()1)(2(00)1(110111110110111111111111111132312131λλλλλλλλλλλλλλλλλλλλλλλλλλλλλλr r r r r r r r A ]∴ 当1≠λ且2-≠λ时,3)()(==R A R ,方程组有唯一解当1=λ时,1)()(==A R A R ,方程组有无穷多解3.判断向量能否由向量组线性表出,若能,写出一种表出方式.其中解:向量能否由向量组321,,ααα线性表出,当且仅当方程组βααα=++332211x x x 有解这里 []⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--−→−⋯⋯⋯⋯−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------==571000117100041310730110123730136578532,,,321βαααA)()(A R A R ≠∴ 方程组无解 ∴不能由向量321,,ααα线性表出4.计算下列向量组的秩,并且(1)判断该向量组是否线性相关解:[]⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-−→−⋯⋯⋯⋯−→−⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡------=0000001800021101131631343393608293711131,,,4321αααα ∴该向量组线性相关5.求齐次线性方程组的一个基础解系.解:⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------=+-+-+-+-++30000000731402114501103140731407314021314053521113215213142321241312114335r r r r r r r r r r r r A ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-−−−→−⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--−→−⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--−−→−+-+↔-0001000143100145010001002114310211450100030002114310211450123133432212131141r r r r r r r r ∴ 方程组的一般解为⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=014314543231x x x x x 令13=x ,得基础解系 ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=10143145ξ 6.求下列线性方程组的全部解.。

工程数学4

工程数学4

u 2 x(1 y ) v x2 y2 2 y u v u v 2(1 y ) , 2 x x y y x
由于偏导数处处存在,且满足C-R方程,因此,处处解析
12
3、函数解析的充分必要条件
(b) f ( z ) z x iy ux v y
18
2、已知实部或虚部的解析函数的表达式
• 解析函数中:
– v是u的共轭调和函数
– -u是v的共轭调和函数 – 已知v,也可求出u
19
• (1)利用C-R方程来求
ux vy
u y v x
– 例:
v x y 2y
2 2
解:
vx 2 x u y
v y 2 y 2 u x
0 0
c为任意实数
使函数 f ( z ) u iv 在D内解析
• 同理:
x, y u ( x, y ) x , y u x dx u y dy c 0 0 x, y x , y v y dx vx dy c 0 0
21
2、已知实部或虚部的解析函数的 表达式
8
1、解析函数的概念
• 解析和可导的关系
– 函数在区域D内解析
– 函数在某点解析
函数在区域D内可导
函数在某点可导
– 函数在某点可导,但不一定在该点解析
9
2、解析函数的性质
• 若函数在某区域上解析,则在该区域上:
– (1)解析函数的加减乘除仍然解析;
– (2)解析函数的复合函数仍然解析; – (3)解析函数的单值反函数仍然解析。
第二章 解析函数
1
主要内容
• 2.1 复变函数的极限 • 2.2 复变函数的连续性 • 2.3 导数 • 2.4 解析函数

北邮工程数学作业1-4

北邮工程数学作业1-4

一、判断题(共5道小题,共分)1.设A、B都为n阶矩阵,则.A.正确B.错误知识点:阶段作业一学生答案:[B;]得分:[10]试题分值:提示:2.3.设A、B都为n阶矩阵,若AB = 0,则|A| = 0或|B| = 0.A.正确B.错误知识点:阶段作业一学生答案:[A;]得分:[10]试题分值:提示:4.5.设A为n阶矩阵,则必有.A.正确B.错误知识点:阶段作业一学生答案:[A;]得分:[10]试题分值:提示:6.7.设A为n阶矩阵,若k是不为零常数,则必有| kA| = k| A|.A.正确B.错误知识点:阶段作业一学生答案:[B;]得分:[10]试题分值:提示:8.9.设A为5阶矩阵,若k是不为零常数,则必有.A.正确B.错误知识点:阶段作业一学生答案:[A;]得分:[10]试题分值:提示:10.二、单项选择题(共5道小题,共分)1.(错误)设A为m×n矩阵,如果Rank (A) = r (< min( m, n )),则(B ).A.A有一个r阶子式不等于零,一个r + 1阶子式等于零.XXB.A有一个r阶子式不等于零,所有r + 1阶子式都等于零.C.A的所有r阶子式都不等于零,一个r + 1阶子式等于零.D.A的r阶子式不全为零,一个r + 1阶子式等于零.知识点:阶段作业一学生答案:[A;]不对标准B得分:[0]试题分值:提示:2.(错误)如果n阶矩阵A,B均可逆,则必有().A.XXXXXXXXXXB.XXXXXXXXXXXXXXXXC.XXXXXXXXXXXXXXXXXXXXXXD.知识点:阶段作业一学生答案:[C;]标准D得分:[0]试题分值:提示:3.(错误)当k = ( )时,矩阵不可逆.A. 4B. 2C.D.0知识点:阶段作业一学生答案:[B;]标准C 得分:[0]试题分值:提示:4.(错误)当ad - cb =1时,=(B ).A.B.C.D.知识点:阶段作业一学生答案:[A;]B得分:[0]试题分值:提示:5.A为3阶矩阵且| A| =3,则|-2A| =().A.-24B.-8C.-6D.24知识点:阶段作业一学生答案:[A;]得分:[10]试题分值:提示:第二次作业一、判断题(共5道小题,共分)1.若线性方程组的系数矩阵A满足Rank(A) < n,则此方程组有非零解.A.正确B.错误知识点:阶段作业二学生答案:[A;]标准答案:A得分:[10]试题分值:提示:2.3.若是非齐次线性方程组的两个解,则也是它的解.A.正确B.错误知识点:阶段作业二学生答案:[B;]标准答案:B得分:[10]试题分值:提示:4.5.任何一个齐次线性方程组都有解.A.正确B.错误知识点:阶段作业二学生答案:[A;]标准答案:A得分:[10]试题分值:提示:6.7.任何一个齐次线性方程组都有基础解系,它的解都可由其基础解系线性表示.A.正确B.错误知识点:阶段作业二学生答案:[B;]标准答案:B得分:[10]试题分值:提示:8.9.若存在使式子成立,则向量组线性无关.A.正确B.错误知识点:阶段作业二学生答案:[B;]标准答案:B得分:[10]试题分值:提示:10.二、单项选择题(共5道小题,共分)1.设A为n阶矩阵,,如果| A | ≠0,则齐次线性方程组AX = 0().A.无解B.有非零解C.仅有零解D.不能确定是否有非零解知识点:阶段作业二学生答案:[C;]标准答案:C得分:[10]试题分值:提示:2.3.设向量组,,,则当实数k = ( )时,,,是线性相关的.A.-2或3B.2或-3C.2或3D.-2或-3知识点:阶段作业二学生答案:[A;]标准答案:A得分:[10]试题分值:提示:4.5.设向量,,,,则向量可由向量线性表示的表达式为( ).A.B.C.D.知识点:阶段作业二学生答案:[B;]标准答案:B得分:[10]试题分值:提示:6.7.设向量,,,,则向量可由向量线性表示的表达式为( ).A.B.C.D.知识点:阶段作业二学生答案:[D;]标准答案:D得分:[10]试题分值:提示:8.9.向量组(m2)线性无关的充分必要条件是().A.中至少有一个向量可以用其余向量线性表示.B.中有一个零向量.C.中的所有向量都可以用其余向量线性表示.D.中每一个向量都不能用其余向量线性表示.知识点:阶段作业二学生答案:[D;]标准答案:D得分:[10]试题分值:提示:10.第三次作业:一、判断题(共5道小题,共分)1.一口袋中装有6个球,球上分别标有数字-3,-3,1,1,1,2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A. B.
C. D.
⒊在下列函数中可以作为分布密度函数的是(B ).
A. B.
C. D.
⒋设连续型随机变量的密度函数为,分布函数为,则对任意的区间,则(D ).
工程数学第四次作业讲评(满分100分)
第5章 随机变量及其数字特征
(一)单项选择题(每小题2分,共14分)
⒈设随机变量,且,则参数与分别是(A ).
A. 6, 0.8 B. 8, 0.6 C. 12, 0.4 D. 14, 0.2
⒉设为连续型随机变量的密度函数,则对任意的,( A).
解:
⒉设随机变量的概率分布为
试求.
解:
⒊设随机变量具有概率密度
试求.
解:
⒋已知随机变量的概率分布为
求.
解:
⒌设,求.
解: ห้องสมุดไป่ตู้
⒍已知100个产品中有5个次品,现从中任取1个,有放回地取3次,求在所取的3个产品中恰有2个次品的概率.
解:
设A={有2个次品}
C. D.
7. 设是随机变量,,设,则(B ).
(A) (B)
(C) (D)
(二)填空题(每小题2分,共14分)
⒈已知连续型随机变量的分布函数,且密度函数连续,则 .
⒉设随机变量,则的分布函数
⒊若,则 6 .
⒋若,则 .
⒌若二维随机变量的相关系数,则称 不相关 .
⒍称为二维随机变量的 协方差 .
7. 设连续型随机变量的密度函数是,则.
(三)解答题(每小题8分,共72分)
⒈某射手连续向一目标射击,直到命中为止.已知他每发命中的概率是,求所需设计次数的概率分布.
A. B.
C. D.
⒌设为随机变量,则( D).
A. B.
C. D.
⒍设为随机变量,,当(C )时,有.
A. B.

⒎某篮球运动员一次投篮投中篮框的概率为0.8,该运动员投篮4次,求⑴投中篮框不少于3次的概率;⑵至少投中篮框1次的概率.
解:
设X={投中篮框次数}

⒏设,计算⑴;⑵.
解:
(本题有误)
9. 设是独立同分布的随机变量,已知,设,求.
解:
1
1
相关文档
最新文档