博弈论初步课件

合集下载

第六讲博弈论课件

第六讲博弈论课件
❖ 对于矩阵博弈,其主要的任务就是求出矩阵 博弈的Nash均衡解-----双方尽可能满意的结 果。
例12.1 智猪博弈模型
❖ 每次踩出6个单位的食物,按者支付2个单位 成本,小踩,(1,5)大踩(4,2)同时 (2,4)
大猪
小猪

踩 2,4 等待 4,2
等待
1,5 0,0
小猪的收入矩阵
A
2, 4,
❖ 20世纪50年代以来,纳什、泽尔腾、海萨尼 等人使博弈论最终成熟并进入实用。
三位大师主要的贡献
❖ 1950年和1951年纳什的两篇关于非合作博弈 论的重要论文,彻底改变了人们对竞争和市 场的看法。他证明了非合作博弈及其均衡解, 并证明了均衡解的存在性,即著名的纳什均 衡。从而揭示了博弈均衡与经济均衡的内在 联系。因为在现实世界中,非合作博弈要比 合作博弈普遍得多。
囚徒困境的意义
❖ “囚徒的两难选择”有着广泛而深刻的意义。 个人理性与集体理性的冲突,各人追求利己 行为而导致的最终结局是一个“纳什均衡”, 也是对所有人都不利的结局。
❖ 他们两人都是在坦白与抵赖策略上首先想到 自己,这样他们必然要服长的刑期。只有当 他们都首先替对方着想时,或者相互合谋(串 供)时,才可以得到最短时间的监禁的结果。
顺序和信息
❖ 博弈论非常强调时间和信息的重要性,认为 时间和信息是影响博弈均衡的主要因素。
❖ 在博弈过程中,参与者之间的信息传递决定 了其行动空间和最优战略的选择;
❖ 同时,博弈过程中始终存在一个先后问题 Sequence order,参与人的行动次序对博弈 最后的均衡有直接的影响。
分类
❖ 博弈的划分可以从参与人行动的次序和参与 人对其它参与人的特征、战略空间和支付的 知识、信息,是否了解两个角度进行。

第一章 博弈论概述PPT课件

第一章 博弈论概述PPT课件
博弈论与信息经济学
Game Theory and Information Economics 天津大学管理与经济学部
授课:XXX
1
第一章 博弈论概述 (Game Theory)
授课:XXX
2
一、博弈论的定义
又称对策论,是研究决策主体的行为发生直 接相互作用时的决策以及这种决策的均衡问 题的学科。
➢ 博弈分析的基本假设 (1)个人理性 假设当事人在决策时能够充分考虑他所面临 的局势,并能做出合乎理性的选择。
(2)最大化自己的收益 假设当事人在决策时通常选择使自己收益最
大化的策略。
授课:XXX
12
坦白 抵赖
➢ 博弈问题的基本要素
坦白
(1)局中人(Players)
抵赖
参与对抗的各方;不一定指自然人
若二人均不坦白,则只能因藏有枪支而被判刑1年; 若有一人坦白而另一个不坦白,则坦白者无罪释放,
不坦白者 被判刑10年; 若二人都坦白了,则同判8年。 此二人确系抢劫犯,请分析他们的抉择。

坦白

抵赖
坦白 -8,-8 -10,0
抵赖 0,-10 -1,-1
授课:XXX
均衡解: 二人均坦白
11
相关概念介绍
他的故事被好莱坞拍成了电影《美丽心灵》,该影片获 得了2002年奥斯卡金像奖的四项大奖
授课:XXX
7
2002年 北京国际数学家大会(ICM)
授课:XXX
8
• 主演
罗素·克劳,Russell Crowe
詹妮弗·康纳利, Jennifer Connelly
授课:XXX
9
1. 囚犯困境(Prisoners’ dilemma

博弈论完整版PPT课件

博弈论完整版PPT课件
R3 3, 2 0, 4 4, 3 50, 1 会将C4从C的战略空间中剔除, 所以 R4 2, 93 0, 92 0, 91 100, 90 R不会选择R4;
2-阶理性: C相信R相信C是理性的,C会将R4从R的战略空间中剔除, 所以 C不会选择C1;
3-阶理性: R相信C相信R相信C是理性的, R会将C1从C的战略空间中剔 除, R不会选择R1;
基本假设:完全竞争,完美信息
个人决策是在给定一个价格参数和收入的条 件下最大化自己的效用,个人的效用与其他人 无涉,所有其他人的行为都被总结在“价格”参数 之中
一般均衡理论是整个经济学的理论基石 和道义基础,市场机制是完美的,帕累托 最优成立,平等与效率可以兼顾。
.
3
然而在以下情况,上述结论不成立:
.
19
理性共识
0-阶理性共识:每个人都是理性的,但不知道其 他人是否是理性的;
1-阶理性共识:每个人都是理性的,并且知道其 他人也是理性的,但不知道其他人是否知道自己 是理性的;
2-阶理性共识:每个人都是理性的,并且知道其
他人也是理性的,同时知道其他人也知道自己是
理性的;但不知道其他人是否知道自己知道他们
如果你预期我会选择X,我就真的会选择X。
如果参与人事前达成一个协议,在不存在外部强 制的情况下,每个人都有积极性遵守这个协议,这 个协议就是纳什均衡。
.
28
应用1——古诺的双寡头垄断模型(1938)
假定:
只有两个厂商 面对相同的线形需求曲线,P(Q)=a-Q, Q=q1+q2 两厂商同时做决策; 假定成本函数为C(qi)=ciqi
劣策略:如果一个博弈中,某个参与人有占优策略,那么
该参与人的其他可选择策略就被称为“劣策略”。

《博弈论》课程ppt课件

《博弈论》课程ppt课件

10
图1 进攻与防守的基本式 G={N, S, u},其中N=(1,2), Si={(0,2),(1,1),(2,0)},ui (s1, s2) = ri,i = 1, 2。
守方 (0,2) (1,1) (2,0)
(0,2)
攻方 (1,1)
失败,成功
成功,失败
成功,失败
失败,成功
成功,失败
成功,失败
《博弈论》课程
(一)什么是博弈论
我们首先看几个例子。 例1 石头、剪刀、布
猪八戒
石头 石头 孙悟空 剪刀 布 未定,未定 找水,休息 休息,找水 剪刀 休息,找水 未定,未定 找水,休息 布 找水,休息 休息,找水 未定,未定
2
例2 诺曼底登陆
德军
加来设防 加来登陆 盟军
诺曼底登陆 成功,失败
诺曼பைடு நூலகம்设防 成功,失败
9
例4 进攻与防守 双方争夺一个据点,有两条进攻路线X和Y, 攻方有两个军,而防守方也有两个军,只有 当守方的兵力不少于攻方时,才能击退进攻, 否则据点将会失守。首先可知守方的防守方 案(即策略)为(0,2),(1,1),(2,0),即在X 线路和Y线路驻扎军队数,同样可以到的攻 方的进攻方案(0,2),(1,1)和(2,0)。容易看出, 行动并非策略,策略是行动方案。
正是由于博弈论将博弈如何出现均衡列为核心, 因而博弈论对于各门社会科学而言,就具有了方 法论意义,成为各门学科的有力分析工具。
6
(二)博弈表达的科学式
(1)博弈的策略式
如何将博弈表示成一种便于研究和分析的形式显然 是很重要的。如果用参与者、策略和收益函数来 科学地描述一个博弈,就称为博弈表达的策略式 (或基本式、标准式)。

博弈论最全完整ppt-讲解

博弈论最全完整ppt-讲解
能提供万无一失的应对办法。
例1:无谓竞争(The GPA Rat Race)
你所注册的一门课程按照比例来给分:无论 卷面分数是多少,只有40%的人能够得优秀, 40%的人能得良好。
所有学生达成一个协议,大家都不要太用功, 如何?想法不错,但无法实施!稍加努力即可 胜过他人,诱惑大矣。
问题是,大家都这么做。这样一来,所有人 的成绩都不比大家遵守协议来得高。而且, 大家还付出了更多的功夫。
约翰·纳什 1928年生于美国
莱因哈 德·泽尔 腾, 1930 年生于 德国
约翰· 海萨尼 1920年 生于美 国
1996年诺贝尔经济学奖获得者
英国人詹姆斯·莫里斯 (James A. Mirrlees)和美国人威廉-维克瑞 (William Vickrey)
获奖理由:前者在信息经济学理论领域做 出了重大贡献,尤其是不对称信息条件 下的经济激励理论的论述;后者在信息 经济学、激励理论、博弈论等方面都做 出了重大贡献。
博弈论为众多学科提供了分析的概念和方 法:经济学和商学,政治科学,生物学, 心 理学和哲学。
如何在“博弈”中获胜?
日常生活中的博弈(“游戏”)往往指的是 诸如赌博和运动这样的东西: 赌抛硬币 百米赛跑 打网球/橄榄球
How can you win such games? 许多博弈都包含着运气、技术和策略。 策略是为了获胜所需要的一种智力的技巧。
没有某个这样的暗示,默契的合作就完 全不可能。
例3:为什么教授如此苛刻?
许多教授强硬地规定,不进行补考,不 允许迟交作业或论文。
教授们为何如此苛刻? 如果允许某种迟交,而且教授又不能辨
别真伪,那么学生就总是会迟交。 期限本身就毫无意义了。 避免这一“滑梯”通常只有一种办法,

第十章博弈论初步-PPT精品

第十章博弈论初步-PPT精品

▪ 1、纳什均衡的定义:
▪ 设 s(s1, .., .sn)是n人博弈G={ ; S1, .., . Sn u1,.., . un } 的一个策略组合。如果对于每个局中人 i , ui(s1 , ., .s .i 1 , si , si 1 , ., .s .n )≥ ui(s1 , ., .s .i 1 , si, si 1 , ., .s .n )
第十章 博弈论初步 Game Theory
博弈论概述 纳什均衡 序贯博弈与重复博弈 进入威慑
第一节 博弈论概述
▪ 什么是博弈? ▪ 拍卖金钱 ▪ 海盗博弈 ▪ 田忌赛马 ▪ 围棋和象棋
齐王
田忌



上 赢,输 赢,输 赢,输
中 输,赢 赢,输 赢,输
下 输,赢 输,赢 赢,输
一、博弈的基本要素
ui(si,si) ≥ ui(si,si) 对于所有si Si 都成立,则我们称策略组合
s(s1, .., .sn)
是该博弈的一个纳什均衡。
▪ 纳什简介: ▪ 约翰·纳什生于1928年6月13日。父亲是电子工程师
与教师,第一次世界大战的老兵。纳什小时孤独内 向。纳什的数学天分大约在14岁开始展现。他在普 林斯顿大学读博士时刚刚二十出头,但他的一篇关 于非合作博弈的博士论文和其他相关文章,确立了 他博弈论大师的地位。在20世纪50年代末,他已是 闻名世界的科学家了。 ▪ 然而,30岁的时候,纳什和他惟一儿子都罹患精神 分裂症。半个世纪之后,在他妻子(艾利西亚—— —麻省理工学院物理系毕业生)的精心照料下,和 她的儿子一样,纳什教授渐渐康复,并在1994年获 得诺贝尔经济学奖。 ▪ 影片《美丽心灵》是一部以纳什的生平经历为基础 而创作的人物传记片。该片荣获2019年奥斯卡金像 奖。

《博弈论初步》课件

《博弈论初步》课件

THANKS
感谢观看
02
纳什均衡是一种非合作博弈均衡 ,其中每个参与者都认为当前策 略是最好的,不会受到其他参与 者的欺骗或影响。
纳什均衡的求解方法
迭代法
通过不断迭代每个参与者的策略,逐步逼近纳什均衡。这 种方法适用于较简单的博弈模型,但对于复杂的博弈模型 可能收敛速度较慢。
线性规划法
将纳什均衡问题转化为线性规划问题,通过求解线性规划 来找到纳什均衡。这种方法适用于具有线性特征的博弈模 型,但计算复杂度较高。
价格战与非价格战
博弈论分析了价格战和非价格战的利弊,为企业制定营销策略提供 博弈论可以用来分析选民的投票行为和政治立场,预测选举结果。
02
候选人策略
博弈论为候选人提供了制定最优竞选策略的方法,帮助他们在选举中获
胜。
03
政治联盟与利益交换
博弈论中的合作博弈理论可以用来分析政治联盟的形成和利益交换机制
特征值法
利用特征值和特征向量的性质来求解纳什均衡。这种方法 适用于具有矩阵特征的博弈模型,但需要一定的数学基础 。
纳什均衡的应用实例
1 2
价格竞争
在寡头市场中,企业之间通过价格策略进行竞争 ,最终形成价格均衡,即纳什均衡。
劳资谈判
劳资双方在谈判中会提出自己的工资要求,最终 达成工资协议,这也是一种纳什均衡。
博弈类型
合作博弈
定义
01
参与者通过合作达成共赢的博弈。
特点
02
存在合作协议,强调集体行动和收益分配。
应用场景
03
国际关系、商业合作、团队协作等。
非合作博弈
定义
应用场景
参与者追求各自利益最大化的博弈。
市场竞争、个人决策、资源分配等。

第四篇博弈论PPT课件

第四篇博弈论PPT课件
• 此情况下由于博弈没有可预测的明确的博弈结果,所以就不能 确定博弈方的策略。但是是否在这样的博弈中,各博弈方选择 任何策略都是一样的,因此可以随意选择吗?
• 按博弈中的得益
• 零和博弈 (Zero-sum Games) (严格竞争博 弈)
(麻将、赌博、猜硬币)
• 常和博弈 (Constant-sum Games)
博弈)
(固定数量利润、财产分配的讨价还价
• 变和博弈 (Variable-sum Games) (囚徒 困境博弈、古诺模型)
• 按博弈过程的次序
囚犯困境博弈
• 个人理性选择的结果: -5)
(坦白,坦白)——(-5,
• 集体理性决策的结果: -1)
(抵赖,抵赖)——(-1,
• 个人理性不一定导致集体理性
• 现实中的囚徒困境模型:价格战、恶性广告竞争、军备竞赛等。
第12页/共83页
2、猜硬币博弈

硬 正面 币 反面 方
猜硬币方
正面
反面
-1,1
• 博弈论是系统研究各种博弈问题,寻求博弈方合理的策略选择 和合理选择策略时的博弈结果,并分析结果的经济、效率意义 的理论与方法。
第3页/共83页
二、博弈论发展的里程碑
• 古诺模型(Cournot) (1838)(两寡头通过 产量决策进行竞争的模型;
• 伯特兰德模型(Bertrand) (1883)(价格竞争) • 《博弈论与经济行为》(1944)
六、博弈的表示方法
• 标准型 (normal form ) 收益矩阵
对简单的博弈适用(二人有限博弈)
• 扩展型 (extensive form )
博弈树
适用于动态博弈
• 特征式

高鸿业西方经济学-第10章博弈论初步dmqn.pptx

高鸿业西方经济学-第10章博弈论初步dmqn.pptx

30
第十章 博弈论初步 第三节 同时博弈:混合策略均衡
二、存在纯策略均衡时的混合策略均衡
求解混合策略纳什均衡的方法不仅适用于纯策略 纳什均衡不存在的情况,而且也适用于纯策略纳什均 衡存在的情况。在后面这种情况下,纯策略纳什均衡 将作为特例被包含在相应的混合策略纳什均衡之中。
2024年9月29日星期日
12
第十章 博弈论初步 第二节 同时博弈:纯策略均衡
五、寻找纳什均衡的方法——条件策略下划线法
2.条件策略下划线方法的五步法 第二,在甲厂商的支付矩阵中,找出每一列的最大者 (每列的最大者可能不只一个),并在其下划线
2024年9月29日星期日
制作者:张昌廷(河北经贸大学)
13
第十章 博弈论初步 第二节 同时博弈:纯策略均衡
个厂商都不再有单独改变策略的倾向时,整个博弈就 达到了均衡,即博弈均衡。
博弈均衡是博弈各方最终选取的策略组合,是博 弈的最终结果,是博弈的解。
2024年9月29日星期日
制作者:张昌廷(河北经贸大学)
8
第十章 博弈论初步 第二节 同时博弈:纯策略均衡
四、纳什均衡
2.纳什均衡的概念 第一,纳什均衡的概念
2024年9月29日星期日
制作者:张昌廷(河北经贸大学)
24
第十章 博弈论初步 第三节 同时博弈:混合策略均衡
一、不存在纯策略均衡时的混合策略均衡
1.混合策略 第三,“混合”策略的概念
把甲厂商和乙厂商原来的策略叫做“纯”策略, 把赋予这些纯策略的概率向量叫做“混合”策略。
2024年9月29日星期日
2024年9月29日星期日
制作者:张昌廷(河北经贸大学)
23
第十章 博弈论初步 第三节 同时博弈:混合策略均衡

《博弈论的基本概念》课件

《博弈论的基本概念》课件

智猪博弈
• 总结词:描述大猪和小猪在食槽附近争夺食物的策略博弈。
• 详细描述:在智猪博弈中,一个大猪和一个小猪共同生活在一个猪圈里,食槽位于猪圈的一端。每次食物被放入食槽时 ,大猪和小猪都有两种选择:冲向食槽或继续等待。如果大猪选择冲向食槽,小猪的最佳策略是等待,因为大猪吃掉大 部分食物后,小猪可以享用剩余的食物。相反,如果小猪选择冲向食槽,大猪的最佳策略也是等待,因为小猪可能无法 抢到任何食物。因此,无论大猪如何选择,小猪的最佳策略都是等待;同样地,无论小猪如何选择,大猪的最佳策略也 是等待。
合作博弈
特征
强调合作、协议和联盟,目标是实现共同利益。
应用领域
国际关系、商业合作、团队协作等。
非合作博弈
特征
强调竞争、自利和策略互动,目标是实现个人利益。
应用领域
市场竞争、个人决策、政治选举等。
动态博弈
特征
强调行动的顺序和信息传递,策略和 行动需考虑时间因素。
应用领域
商业竞争、投资决策、谈判策略等。
《博弈论的基本概念》ppt课件
目录
• 博弈论简介 • 博弈论的基本类型 • 博弈论的基本概念 • 博弈论的经典案例 • 博弈论的未来发展
01
博弈论简介
博弈论的定义
01
博弈论:研究决策主体在相互影 响、相互作用的环境中如何进行 决策,以及这种决策的均衡结果 的学科。
02
博弈论强调参与者之间的互动关 系,通过数学模型和理论分析来 研究策略选择和均衡结果。
应用领域:拍卖机制设计、保险市场 分析、医疗资源分配等。

03
博弈论的基本概念
参与者
01
02
03
参与者
在博弈中,参与者是决策 的主体,可以是个人或组 织。

《博弈论教程》课件

《博弈论教程》课件

博弈论的应用领域
经济学
博弈论在经济学中广泛应用于 市场行为、产业组织、贸易政
策等领域。
政治学
博弈论在政治学中用于研究国 际关系、政治制度、选举行为 等领域。
社会学
博弈论在社会学中用于研究社 会结构、社会互动、社会行为 等领域。
计算机科学
博弈论在计算机科学中用于人 工智能、机器学习、网络安全
等领域。
应用场景
保险市场、拍卖、投资决策等。
04
纳什均衡
纳什均衡的定义
纳什均衡是指在博弈中,所有参与者 的最优策略组合,即在这种策略组合 下,每个参与者都认为没有更好的选 择。
纳什均衡是一种非合作博弈的解概念 ,适用于各种博弈类型,如囚徒困境 、智猪博弈等。
纳什均衡的求解方法
迭代法
通过不断迭代每个参与者的最优策略,逐步逼近纳什均衡。
03
博弈论应用
04
市场进入博弈中,企业通常会选 择不同的策略,如快速进入、缓 慢进入或等待观察等。这些策略 的选择会影响到企业的收益和市 场格局。
结论
市场进入博弈可以帮助企业制定 出最优的市场进入策略,以最大 化自身的收益。
价格战博弈
总结词
价格战博弈是博弈论中研究企业之间价格竞争的 模型。
博弈论应用
03
市场竞争、个人决策、政治选举等。
完全信息博弈
定义
参与者拥有完全的信息,即每个 参与者都了解其他参与者的策略 和收益。
特点
信息对称、策略空间明确。
应用场景
金融市场、体育比赛等。
不完全信息博弈
定义
参与者之间存在信息不对称,即某个参与者 对其他参与者的策略和收益不完全了解。
特点
不确定性、信息不完全、策略空间的模糊性。

经济学课件博弈论初步

经济学课件博弈论初步
经济学课件博弈论初步
博弈论是经济学中的重要分支,探讨决策者如何针对不同的情况做出最优或 是稳定的策略。本课件将带你入门博弈论。
博弈基础
玩家、策略、收益
博弈论的基础概念包括玩家(两 个或多个决策者)、策略(决策 者可选的不同行动)、收益(每 个玩家的利益)。
零和博弈和非零和博弈
纳什均衡
零和博弈是指通过一方赢得另外 一方的损失来实现收益。相反, 非零和博争中的博弈论应 用
通过博弈论模型,企业可以 优化价格、销售策略、广告 推广等方面来获得利益。
政治决策中的博弈论应 用
政治决策中的博弈论应用广 泛,例如国际贸易、军备竞 赛、公共压试验等。
社会博弈中的博弈论应 用
社会博弈包括合作、交叉、 竞争等情形。了解博弈论可 以让我们更好地了解社会行 为。
纳什均衡指的是玩家做出的最优 决策,即使其他玩家对此决策做 出的反应已知,其决策仍然是最 好的。
重要概念解析
1
支配策略
在某种情况下,一种选择比其他所有选
调和纳什均衡
2
择都要好,无论其他玩家选择什么。
指对于每个玩家而言,都不再存在更好
的策略。
3
子博弈完美均衡
针对某个博弈中的某个子博弈,所有玩 家都采取的策略构成了一个完美均衡。
2 博弈论的局限性
博弈论研究过程中需要进行简化和假设,从而忽略部分现实中的因素,需要结合其他学 科进行研究。
3 博弈论的未来趋势
随着经济、政治、社会等领域的日益发展,博弈论在有限理性、混合策略和进化博弈等 方面仍有很多研究空间。
博弈论的拓展
两人博弈论
多人博弈论
博弈树
常用的两人博弈论包括囚徒困境、 鸽子与鹰、石头剪子布等。

《博弈论基础》课件

《博弈论基础》课件
●由 VL(σG,σL)=-γ[2θ-1]+3θ 得到流浪汉的反应 对应:γ=1,当θ<0.5;γ∈[0,1],当θ=0.5;γ =0,当θ>0.5
● NE:(σ*G,σL*) σ*G=(0.5,0.5) σL*=(0.2,0.8)
01-3-2
23
● 另解(支付最大法): 一阶条件(FOC): dVG/dθ=0;dVL/dγ=0 γ*=0.2;θ*=0.5
8
2、博弈规则(续)
● “兵来将挡、水来土掩”
● “以不变应万变”、“以静制动”
● 毛主席语录:“人不犯我,我不犯人;人若犯我,我
必犯人”—这里,
人的行动集:{犯;不犯};
人的战略集:{犯;不犯}
我的行动集: {犯;不犯}
01-3-2
9
2、博弈规则(续)
而我的战略集合:{s1,s2,s3,s4} 其中,s1=(犯,犯);s2=(犯,不犯)
若 S1=D,则п1=1/2×0+1/2×2=2
所以,给定 S2*,S1*=U 为参与人 1 的最优战略
01-3-2
33
反之,给定 S1*,S(t21)=L;S(t22)=R 分别是 t21 与 t22 类 型的参与人 2 的最优战略
2.Static B.G 的定义:
{I;{Si};{ui(·)};Θ;F(·)}
(5,4,4) (0,-1,7)
L 1○
R
(-1,5,6) (5,4,4)
01-3-2
29
●SPNE(s1,s2,s3):s1={R};s2:a If 1 Plays R; s3:=r,If 1 Plays L; =r,If L Plays R and 2 Plays a; =l,If L Plays R and2 Plays b
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5
从行动的先后次序来分,博弈可以分为静态博 弈和动态博弈。 静态博弈指在博弈中,参与人同时选择行动, 或虽非同时但后行动者并不知道前行动者采取 了什么具体行动; 动态博弈指的是参与人的行动有先后顺序,且 后行动者能够观察到先行动者所选择的行动的 博弈。
6
从参与人对其他参与人的各种特征信息 的获得差异来分,博弈可分为完全信息博 弈和不完全信息博弈。 完全信息指的是每一个参与人对所有 其他参与人的特征,如策略集合及得益函 数都有准确完备的知识;否则就是不完全 信息。 四种不同类型的博弈:完全信息静态博弈, 完全信息动态博弈,不完全信息静态博弈 和不完全信息动态博弈。
11
在一个博弈里,如果所有参与人都有占优策略 存在,那么占优策略均衡是可以预测到的唯一的均衡, 因为没有一个理性的参与人会选择劣策略。所以在囚徒 困境博弈里,{坦白,坦白}是占优策略均衡。 囚徒困境反映了一个深刻的问题,即个人理性与 团体理性的冲突。 这给我们一个启示,我们学习博弈论,也许更应该研究 的是怎样设计一种制度,在满足个人理 性的同时,去争取达到“集体理性”。
4
(三)博弈的分类
根据参与人的多少,可将博弈分为单人博弈、 两人博弈或多人博弈; 走迷宫、选择运输线/囚徒困境、猜硬币、齐 威王田忌赛马/申办奥运会 根据参与人是否合作,可将博弈分为合作博 弈或非合作博弈;古诺/价格领导 根据博弈结果的不同,又可分为零和博弈、 常和博弈与变和博弈。 —猜硬币,田忌赛马,石头-剪刀-布 —分配固定数额的奖金、利润,遗产官司 —囚徒困境、产量博弈
14
几个博弈案例
1.智猪博弈(占优战略均衡) 2.交通博弈;斗鸡博弈,告白博弈 3. 田忌赛马 4.猜硬币博弈 石头剪刀布博弈
15
1.智猪博弈(占优战略均衡) 假设猪圈里有一头大猪、一头小猪。猪圈的一头 有猪食槽,另一头安装着控制猪食供应的按钮, 按一下按钮会有10个单位的猪食进槽,但是谁 按按钮就会首先付出2个单位的成本,若大猪 先到槽边,大小猪吃到食物的收益比是9∶1; 同时到槽边,收益比是7∶3;小猪先到槽边, 收益比是6∶4。那么,在两头猪都有智慧的前 提下,最终结果是小猪选择等待。
7
博弈的分类和均衡
行动次序
信息
静态
动态 子博弈精练 纳什均衡 泽尔腾 精炼贝叶斯均衡 泽尔腾等
8
完全信息
纳什均衡 纳什 贝叶斯均衡 海萨尼
不完全信息
著名的“囚徒困境”的例 子
警察抓住了两个罪犯,但是警察局却缺乏足 够的证据指证他们所犯的罪行。如果罪犯中至少 有一人供认犯罪,就能确认罪名成立。为了得到 所需的口供,警察将这两名罪犯分别关押防止他 们串供或结成攻守同盟,并分别跟他们讲清了他 们的处境和面临的选择:如果他们两人都拒不认 罪,则他们会被以较轻的妨碍公务罪各判一年徒 刑;如果两人中有一人坦白认罪,则坦白者立即 释放而另一人将重判10年徒刑;如果两人都坦白 认罪,则他们将被各判5年监禁。问:两个罪犯 会如何选择(即是坦白还是抵赖)?
3
4、信息指的是参与人在博弈中所知道的关于 自己以及其他参与人的行动、策略及其得益函数 等知识; 5、得益是参与人在博弈结束后从博弈中获得 的效用,一般是所有参与人的策略或行动的函数, 这是每个参与人最关心的东西; 6、均衡是所有参与人的最优策略或行动的组 合;均衡结果是指博弈结束后博弈分析者感兴趣 的一些要素的集合,如在各参与人的均衡策略作 用下,各参与人最终的行动或效用集合。 上述要素中,参与人、行动、结果统称为博 弈规则,博弈分析的目的就是使用博弈规则来决 定均衡。
18
4猜硬币博弈
猜硬币方 正 面
盖 硬 币 方
反 面
1, -1 -1, 1
正 面
反 面
-1, 1 1, -1
19
4、石头、剪子、布
博弈方2
石 头
博 弈 方 1 石 头 剪 子 布 0, 0 -1, 1 1, -1
剪 子
1, -1 0, 0 -1, 1

-1, 1 1, -1 0, 0
20
中 上 下 1,-1 1,-1 3,-3 1,-1 1,-1 -1,1
中 下 上 1,-1 1,-1 1,-1 3,-3 -1,1 1,-1
下 上 中
-1,1 1,-1 1,-1 1,-1 3,-3 1,-1
下 中 上 1,-1 -1,1 1,-1 1,-1 1,-1 3,-3
得益矩阵
取胜关键:不让对方猜到自己策略,尽可能猜出对方策略
9
囚徒B 坦白 囚徒A 不坦白
坦白 不坦白
-5,-5
0,-10
-10,0
-1,-1
10
(四)纳什均衡
1、占优策略均衡。一般来说,由于每个参 与人的得益是博弈中所有参与人的策略的函数, 因此每个参与人的最优策略选择依赖于所有其他 参与人的策略选择。但在一些特殊的博弈中,一 个参与人的最优策略可能可以不依赖于其他参与 人的策略选择,就是说,不论其他参与人选择什 么策略,他的最优策略是唯一的,这样的最优策 略被称为“占优策略”。 如果一个博弈中,某个参与人有占优策略, 那么该参与人的其他可选择策略就被称为“劣策 略”。
Hale Waihona Puke 12(2)囚犯困境模型的扩展应用:寡头厂商合作的不稳定性
卡特尔
寡头B
违约 守约 1296 1152 864 1152
寡头A
违约
1024 864
1024 1296
守约
13
2.纳什均衡
指一组给定对手行为前提下对各 博弈方存在的最佳选择;在纳什 均衡状态下,只要其它参与者不 变换策略选择,任何单个参与者 不可能单方面通过变换策略来提 高他的所获支付。
16
2.交通博奕 斗鸡博弈 恋爱博弈

开 等 -10 1 1 -1 0 -1


-10 0

17
3、田忌赛马
田 忌
上 中 下
齐 威 王 上中下 上下中 中上下 中下上 下上中 下中上 3,-3 1,-1 1,-1 -1,1 1,-1 1,-1
上 下 中
1,-1 3,-3 -1,1 1,-1, 1,-1 1,-1
1994年诺贝尔经济学奖授予了三位博 弈论专家纳什、泽尔腾和海萨尼。 1996年诺奖授予两位博弈论与信息经济学 研究专家莫里斯、维克瑞; 2001年诺奖授予阿克洛夫、斯彭斯、斯蒂 格利茨,表彰他们在柠檬市场、信号传 递和信号甄别等非对称信息理论研究中 的开创性贡献。 2005年诺奖授予有以色列和美国双重国 籍的罗伯特· 奥曼和美国人托马斯· 谢林, 以表彰他们在博弈论领域作出的贡献。
1
博弈论的基本概念
(一)博弈论的定义
博弈论,英文为Game theory,是研究相 互依赖、相互影响的决策主体的理性决策行为 以及这些决策的均衡结果的理论。 一些相互依赖、相互影响的决策行为及其结果 的组合称为博弈(Game)。
2
(二)博弈的组成要素
一个博弈一般由以下几个要素组成,包括: 参与人、行动、信息、策略、得益、均衡等。 1、参与人指的是博弈中选择行动以自己效用 最大化的决策主体(可以是个人,也可以是团体); 2、行动是指参与人在博弈进程中轮到自己选 择时所作的某个具体决策; 3、策略是指参与人选择行动的规则,即在博 弈进程中,什么情况下选择什么行动的预先安排;
相关文档
最新文档